Sample records for developing rodent brain

  1. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species

    PubMed Central

    Semple, Bridgette D.; Blomgren, Klas; Gimlin, Kayleen; Ferriero, Donna M.; Noble-Haeusslein, Linda J.

    2013-01-01

    Hypoxic-ischemic and traumatic brain injuries are leading causes of long-term mortality and disability in infants and children. Although several preclinical models using rodents of different ages have been developed, species differences in the timing of key brain maturation events can render comparisons of vulnerability and regenerative capacities difficult to interpret. Traditional models of developmental brain injury have utilized rodents at postnatal day 7–10 as being roughly equivalent to a term human infant, based historically on the measurement of post-mortem brain weights during the 1970s. Here we will examine fundamental brain development processes that occur in both rodents and humans, to delineate a comparable time course of postnatal brain development across species. We consider the timing of neurogenesis, synaptogenesis, gliogenesis, oligodendrocyte maturation and age-dependent behaviors that coincide with developmentally regulated molecular and biochemical changes. In general, while the time scale is considerably different, the sequence of key events in brain maturation is largely consistent between humans and rodents. Further, there are distinct parallels in regional vulnerability as well as functional consequences in response to brain injuries. With a focus on developmental hypoxicischemic encephalopathy and traumatic brain injury, this review offers guidelines for researchers when considering the most appropriate rodent age for the developmental stage or process of interest to approximate human brain development. PMID:23583307

  2. Application of optical coherence tomography based microangiography for cerebral imaging

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Wang, Ruikang K.

    2016-03-01

    Requirements of in vivo rodent brain imaging are hard to satisfy using traditional technologies such as magnetic resonance imaging and two-photon microscopy. Optical coherence tomography (OCT) is an emerging tool that can easily reach at high speeds and provide high resolution volumetric images with a relatively large field of view for rodent brain imaging. Here, we provide the overview of recent developments of functional OCT based imaging techniques for neuroscience applications on rodents. Moreover, a summary of OCT-based microangiography (OMAG) studies for stroke and traumatic brain injury cases on rodents are provided.

  3. Differential cadherin expression in the developing postnatal telencephalon of a New World monkey.

    PubMed

    Matsunaga, Eiji; Nambu, Sanae; Oka, Mariko; Iriki, Atsushi

    2013-12-01

    Cadherins are cell adhesion molecules widely expressed in the nervous system, where they play various roles in neural patterning, nuclei formation, axon guidance, and synapse formation and function. Although many published articles have reported on cadherin expression in rodents and ferrets, there are limited data on their expression in primate brains. In this study, in situ hybridization analysis was performed for 10 cadherins [nine classic cadherins (Cdh4, -6, -7, -8, -9, -10, -11, -12, and -20) and T-cadherin (Cdh13)] in the developing postnatal telencephalon of the common marmoset (Callithrix jacchus). Each cadherin showed broad expression in the cerebral cortex, basal ganglia, amygdala, and hippocampus, as previously shown in the rodent brain. However, detailed expression patterns differed between rodents and marmosets. In contrast to rodents, cadherin expression was reduced overall and localized to restricted areas of the brain during the developmental process, suggesting that cadherins are more crucially involved in developmental or maturation processes rather than in neural functioning. These results also highlight the possibility that restricted/less redundant cadherin expression allows primate brains to generate functional diversity among neurons, allowing morphological and functional differences between rodents and primates. Copyright © 2013 Wiley Periodicals, Inc.

  4. Anatomical location of LPA1 activation and LPA phospholipid precursors in rodent and human brain.

    PubMed

    González de San Román, Estibaliz; Manuel, Iván; Giralt, María Teresa; Chun, Jerold; Estivill-Torrús, Guillermo; Rodríguez de Fonseca, Fernando; Santín, Luis Javier; Ferrer, Isidro; Rodríguez-Puertas, Rafael

    2015-08-01

    Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors: LPA1 -LPA6 . LPA evokes several responses in the CNS, including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation, and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1 -null mice (a variant of LPA1 -null) lack [(35) S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides and phosphatidylcholines. Both phosphatides and phosphatidylcholines species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCR), LPA1 to LPA6 . LPA evokes several responses in the central nervous system (CNS), including cortical development and folding, growth of the axonal cone and its retraction process. We used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 -binding sites in adult rodent and human brain. The distribution of LPA1 receptors in rat, mouse and human brains show the highest activity in white matter myelinated areas. The basal and LPA-evoked activities are abolished in MaLPA1 -null mice. The phospholipid precursors of LPA are localized by MALDI-IMS. The anatomical distribution of LPA precursors in rodent and human brain suggests a relationship with functional LPA1 receptors. © 2015 International Society for Neurochemistry.

  5. Effect of environment on the long-term consequences of chronic pain

    PubMed Central

    Bushnell, MC; Case, LK; Ceko, M; Cotton, VA; Gracely, JL; Low, LA; Pitcher, MH; Villemure, C

    2014-01-01

    Much evidence from pain patients and animal models shows that chronic pain does not exist in a vacuum, but has varied co-morbidities and far-reaching consequences. Patients with long-term pain often develop anxiety and depression and can manifest changes in cognitive functioning, particularly with working memory. Longitudinal studies in rodent models also show the development of anxiety-like behavior and cognitive changes weeks to months after an injury causing long-term pain. Brain imaging studies in pain patients and rodent models find that chronic pain is associated with anatomical and functional alterations in the brain. Nevertheless, studies in humans reveal that life-style choices, such as the practice of meditation or yoga, can reduce pain perception and have the opposite effect on the brain as does chronic pain. In rodent models, studies show that physical activity and a socially enriched environment reduce pain behavior and normalize brain function. Together, these studies suggest that the burden of chronic pain can be reduced by non-pharmacological interventions. PMID:25789436

  6. Enhanced cortical thickness measurements for rodent brains via Lagrangian-based RK4 streamline computation

    NASA Astrophysics Data System (ADS)

    Lee, Joohwi; Kim, Sun Hyung; Oguz, Ipek; Styner, Martin

    2016-03-01

    The cortical thickness of the mammalian brain is an important morphological characteristic that can be used to investigate and observe the brain's developmental changes that might be caused by biologically toxic substances such as ethanol or cocaine. Although various cortical thickness analysis methods have been proposed that are applicable for human brain and have developed into well-validated open-source software packages, cortical thickness analysis methods for rodent brains have not yet become as robust and accurate as those designed for human brains. Based on a previously proposed cortical thickness measurement pipeline for rodent brain analysis,1 we present an enhanced cortical thickness pipeline in terms of accuracy and anatomical consistency. First, we propose a Lagrangian-based computational approach in the thickness measurement step in order to minimize local truncation error using the fourth-order Runge-Kutta method. Second, by constructing a line object for each streamline of the thickness measurement, we can visualize the way the thickness is measured and achieve sub-voxel accuracy by performing geometric post-processing. Last, with emphasis on the importance of an anatomically consistent partial differential equation (PDE) boundary map, we propose an automatic PDE boundary map generation algorithm that is specific to rodent brain anatomy, which does not require manual labeling. The results show that the proposed cortical thickness pipeline can produce statistically significant regions that are not observed in the previous cortical thickness analysis pipeline.

  7. Investigation of brain science and neurological/psychiatric disorders using genetically modified non-human primates.

    PubMed

    Okano, Hideyuki; Kishi, Noriyuki

    2018-06-01

    Although mice have been the most frequently used experimental animals in many research fields due to well-established gene manipulation techniques, recent evidence has revealed that rodent models do not always recapitulate pathophysiology of human neurological and psychiatric diseases due to the differences between humans and rodents. The recent developments in gene manipulation of non-human primate have been attracting much attention in the biomedical research field, because non-human primates have more applicable brain structure and function than rodents. In this review, we summarize recent progress on genetically-modified non-human primates including transgenic and knockout animals using genome editing technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Comparative Analysis of Human and Rodent Brain Primary Neuronal Culture Spontaneous Activity Using Micro-Electrode Array Technology.

    PubMed

    Napoli, Alessandro; Obeid, Iyad

    2016-03-01

    Electrical activity in embryonic brain tissue has typically been studied using Micro Electrode Array (MEA) technology to make dozens of simultaneous recordings from dissociated neuronal cultures, brain stem cell progenitors, or brain slices from fetal rodents. Although these rodent neuronal primary culture electrical properties are mostly investigated, it has not been yet established to what extent the electrical characteristics of rodent brain neuronal cultures can be generalized to those of humans. A direct comparison of spontaneous spiking activity between rodent and human primary neurons grown under the same in vitro conditions using MEA technology has never been carried out before and will be described in the present study. Human and rodent dissociated fetal brain neuronal cultures were established in-vitro by culturing on a glass grid of 60 planar microelectrodes neurons under identical conditions. Three different cultures of human neurons were produced from tissue sourced from a single aborted fetus (at 16-18 gestational weeks) and these were compared with seven different cultures of embryonic rat neurons (at 18 gestational days) originally isolated from a single rat. The results show that the human and rodent cultures behaved significantly differently. Whereas the rodent cultures demonstrated robust spontaneous activation and network activity after only 10 days, the human cultures required nearly 40 days to achieve a substantially weaker level of electrical function. These results suggest that rat neuron preparations may yield inferences that do not necessarily transfer to humans. © 2015 Wiley Periodicals, Inc.

  9. Object Recognition Memory and the Rodent Hippocampus

    ERIC Educational Resources Information Center

    Broadbent, Nicola J.; Gaskin, Stephane; Squire, Larry R.; Clark, Robert E.

    2010-01-01

    In rodents, the novel object recognition task (NOR) has become a benchmark task for assessing recognition memory. Yet, despite its widespread use, a consensus has not developed about which brain structures are important for task performance. We assessed both the anterograde and retrograde effects of hippocampal lesions on performance in the NOR…

  10. Accelerated recruitment of new brain development genes into the human genome.

    PubMed

    Zhang, Yong E; Landback, Patrick; Vibranovski, Maria D; Long, Manyuan

    2011-10-01

    How the human brain evolved has attracted tremendous interests for decades. Motivated by case studies of primate-specific genes implicated in brain function, we examined whether or not the young genes, those emerging genome-wide in the lineages specific to the primates or rodents, showed distinct spatial and temporal patterns of transcription compared to old genes, which had existed before primate and rodent split. We found consistent patterns across different sources of expression data: there is a significantly larger proportion of young genes expressed in the fetal or infant brain of humans than in mouse, and more young genes in humans have expression biased toward early developing brains than old genes. Most of these young genes are expressed in the evolutionarily newest part of human brain, the neocortex. Remarkably, we also identified a number of human-specific genes which are expressed in the prefrontal cortex, which is implicated in complex cognitive behaviors. The young genes upregulated in the early developing human brain play diverse functional roles, with a significant enrichment of transcription factors. Genes originating from different mechanisms show a similar expression bias in the developing brain. Moreover, we found that the young genes upregulated in early brain development showed rapid protein evolution compared to old genes also expressed in the fetal brain. Strikingly, genes expressed in the neocortex arose soon after its morphological origin. These four lines of evidence suggest that positive selection for brain function may have contributed to the origination of young genes expressed in the developing brain. These data demonstrate a striking recruitment of new genes into the early development of the human brain.

  11. Anatomical Location of LPA1 Activation and LPA Phospholipid Precursors in Rodent and Human Brain

    PubMed Central

    González de San Román, E; Manuel, I; Giralt, MT; Chun, J; Estivill-Torrús, G; Rodriguez de Fonseca, F; Santín, LJ; Ferrer, I; Rodriguez-Puertas, R

    2016-01-01

    Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCRs): LPA1–LPA6. LPA evokes several responses in the CNS including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [35S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1-null mice (a variant of LPA1-null) lack [35S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides (PA) and phosphatidylcholines (PC). Both PA and PC species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. PMID:25857358

  12. The roots of empathy: through the lens of rodent models

    PubMed Central

    Meyza, K.Z.; Bartal, I. Ben-Ami; Monfils, M.H.; Panksepp, J.B.; Knapska, E.

    2016-01-01

    Empathy is a phenomenon often considered dependent on higher-order emotional control and an ability to relate to the emotional state of others. It is, by many, attributed only to species having well-developed cortical circuits capable of performing such complex tasks. However, over the years, a wealth of data has been accumulated showing that rodents are capable not only of sharing emotional states of their conspecifics, but also of prosocial behavior driven by such shared experiences. The study of rodent empathic behaviors is only now becoming an independent research field. Relevant animal models allow precise manipulation of neural networks, thereby offering insight into the foundations of empathy in the mammalian brains. Here we review the data on empathic behaviors in rat and mouse models, their neurobiological and neurophysiological correlates, and the factors influencing these behaviors. We discuss how simple rodent models of empathy enhance our understanding of how brain controls empathic behaviors. PMID:27825924

  13. MODEST THYROID HORMONE INSUFFICIENCY DURING DEVELOPMENT INDUCES A CELLULAR MALFORMATION IN THE CORPUS CALLOSUM: A MODEL OF CORTICAL DYSPLASIA.

    EPA Science Inventory

    There is a growing body of evidence that subtle decreases in maternal thyroid hormone during gestation can impact fetal brain development. The present study examined the impact of graded levels of thyroid hormone insufficiency on brain development in rodents. Maternal thyroid ho...

  14. Social dysfunction after pediatric traumatic brain injury: a translational perspective

    PubMed Central

    Ryan, Nicholas P.; Catroppa, Cathy; Godfrey, Celia; Noble-Haeusslein, Linda J.; Shultz, Sandy R.; O'Brien, Terence J.; Anderson, Vicki; Semple, Bridgette D.

    2016-01-01

    Social dysfunction is common after traumatic brain injury (TBI), contributing to reduced quality of life for survivors. Factors which influence the emergence, development or persistence of social deficits after injury remain poorly understood, particularly in the context of ongoing brain maturation during childhood. Aberrant social interactions have recently been modeled in adult and juvenile rodents after experimental TBI, providing an opportunity to gain new insights into the underlying neurobiology of these behaviors. Here, we review our current understanding of social dysfunction in both humans and rodent models of TBI, with a focus on brain injuries acquired during early development. Modulators of social outcomes are discussed, including injury-related and environmental risk and resilience factors. Disruption of social brain network connectivity and aberrant neuroendocrine function are identified as potential mechanisms of social impairments after pediatric TBI. Throughout, we highlight the overlap and disparities between outcome measures and findings from clinical and experimental approaches, and explore the translational potential of future research to prevent or ameliorate social dysfunction after childhood TBI. PMID:26949224

  15. 25 years of research on global asphyxia in the immature rat brain.

    PubMed

    Barkhuizen, M; van den Hove, D L A; Vles, J S H; Steinbusch, H W M; Kramer, B W; Gavilanes, A W D

    2017-04-01

    Hypoxic-ischemic encephalopathy remains a common cause of brain damage in neonates. Preterm infants have additional complications, as prematurity by itself increases the risk of encephalopathy. Currently, therapy for this subset of asphyxiated infants is limited to supportive care. There is an urgent need for therapies in preterm infants - and for representative animal models for preclinical drug development. In 1991, a novel rodent model of global asphyxia in the preterm infant was developed in Sweden. This method was based on the induction of asphyxia during the birth processes itself by submerging pups, still in the uterine horns, in a water bath followed by C-section. This insult occurs at a time-point when the rodent brain maturity resembles the brain of a 22-32 week old human fetus. This model has developed over the past 25 years as an established model of perinatal global asphyxia in the early preterm brain. Here we summarize the knowledge gained on the short- and long-term neuropathological and behavioral effects of asphyxia on the immature central nervous system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates

    PubMed Central

    Laramée, Marie-Eve; Boire, Denis

    2015-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals. PMID:25620914

  17. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates.

    PubMed

    Laramée, Marie-Eve; Boire, Denis

    2014-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.

  18. Brain and Behavioral Pathology in an Animal Model of Wernicke’s Encephalopathy and Wernicke-Korsakoff Syndrome

    PubMed Central

    Vetreno, Ryan P.; Ramos, Raddy L.; Anzalone, Steven; Savage, Lisa M.

    2012-01-01

    Animal models provide the opportunity for in-depth and experimental investigation into the anatomical and physiological underpinnings of human neurological disorders. Rodent models of thiamine deficiency have yielded significant insight into the structural, neurochemical and cognitive deficits associated with thiamine deficiency as well as proven useful toward greater understanding of memory function in the intact brain. In this review, we discuss the anatomical, neurochemical and behavioral changes that occur during the acute and chronic phases of thiamine deficiency and describe how rodent models of Wernicke-Korsakoff Syndrome aid in developing a more detailed picture of brain structures involved in learning and memory. PMID:22192411

  19. Brain and behavioral pathology in an animal model of Wernicke's encephalopathy and Wernicke-Korsakoff Syndrome.

    PubMed

    Vetreno, Ryan P; Ramos, Raddy L; Anzalone, Steven; Savage, Lisa M

    2012-02-03

    Animal models provide the opportunity for in-depth and experimental investigation into the anatomical and physiological underpinnings of human neurological disorders. Rodent models of thiamine deficiency have yielded significant insight into the structural, neurochemical and cognitive deficits associated with thiamine deficiency as well as proven useful toward greater understanding of memory function in the intact brain. In this review, we discuss the anatomical, neurochemical and behavioral changes that occur during the acute and chronic phases of thiamine deficiency and describe how rodent models of Wernicke-Korsakoff Syndrome aid in developing a more detailed picture of brain structures involved in learning and memory. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Early life stress-induced alterations in rat brain structures measured with high resolution MRI.

    PubMed

    Sarabdjitsingh, R Angela; Loi, Manila; Joëls, Marian; Dijkhuizen, Rick M; van der Toorn, Annette

    2017-01-01

    Adverse experiences early in life impair cognitive function both in rodents and humans. In humans this increases the vulnerability to develop mental illnesses while in the rodent brain early life stress (ELS) abnormalities are associated with changes in synaptic plasticity, excitability and microstructure. Detailed information on the effects of ELS on rodent brain structural integrity at large and connectivity within the brain is currently lacking; this information is highly relevant for understanding the mechanism by which early life stress predisposes to mental illnesses. Here, we exposed rats to 24 hours of maternal deprivation (MD) at postnatal day 3, a paradigm known to increase corticosterone levels and thereby activate glucocorticoid receptors in the brain. Using structural magnetic resonance imaging we examined: i) volumetric changes and white/grey matter properties of the whole cerebrum and of specific brain areas; and ii) whether potential alterations could be normalized by blocking glucocorticoid receptors with mifepristone during the critical developmental window of early adolescence, i.e. between postnatal days 26 and 28. The results show that MD caused a volumetric reduction of the prefrontal cortex, particularly the ventromedial part, and the orbitofrontal cortex. Within the whole cerebrum, white (relative to grey) matter volume was decreased and region-specifically in prefrontal cortex and dorsomedial striatum following MD. A trend was found for the hippocampus. Grey matter fractions were not affected. Treatment with mifepristone did not normalize these changes. This study indicates that early life stress in rodents has long lasting consequences for the volume and structural integrity of the brain. However, changes were relatively modest and-unlike behavior- not mitigated by blockade of glucocorticoid receptors during a critical developmental period.

  1. Updated Neuronal Scaling Rules for the Brains of Glires (Rodents/Lagomorphs)

    PubMed Central

    Herculano-Houzel, Suzana; Ribeiro, Pedro; Campos, Leandro; Valotta da Silva, Alexandre; Torres, Laila B.; Catania, Kenneth C.; Kaas, Jon H.

    2011-01-01

    Brain size scales as different functions of its number of neurons across mammalian orders such as rodents, primates, and insectivores. In rodents, we have previously shown that, across a sample of 6 species, from mouse to capybara, the cerebral cortex, cerebellum and the remaining brain structures increase in size faster than they gain neurons, with an accompanying decrease in neuronal density in these structures [Herculano-Houzel et al.: Proc Natl Acad Sci USA 2006;103:12138–12143]. Important remaining questions are whether such neuronal scaling rules within an order apply equally to all pertaining species, and whether they extend to closely related taxa. Here, we examine whether 4 other species of Rodentia, as well as the closely related rabbit (Lagomorpha), conform to the scaling rules identified previously for rodents. We report the updated neuronal scaling rules obtained for the average values of each species in a way that is directly comparable to the scaling rules that apply to primates [Gabi et al.: Brain Behav Evol 2010;76:32–44], and examine whether the scaling relationships are affected when phylogenetic relatedness in the dataset is accounted for. We have found that the brains of the spiny rat, squirrel, prairie dog and rabbit conform to the neuronal scaling rules that apply to the previous sample of rodents. The conformity to the previous rules of the new set of species, which includes the rabbit, suggests that the cellular scaling rules we have identified apply to rodents in general, and probably to Glires as a whole (rodents/lagomorphs), with one notable exception: the naked mole-rat brain is apparently an outlier, with only about half of the neurons expected from its brain size in its cerebral cortex and cerebellum. PMID:21985803

  2. High-resolution in vivo Wistar rodent brain atlas based on T1 weighted image

    NASA Astrophysics Data System (ADS)

    Huang, Su; Lu, Zhongkang; Huang, Weimin; Seramani, Sankar; Ramasamy, Boominathan; Sekar, Sakthivel; Guan, Cuntai; Bhakoo, Kishore

    2016-03-01

    Image based atlases for rats brain have a significant impact on pre-clinical research. In this project we acquired T1-weighted images from Wistar rodent brains with fine 59μm isotropical resolution for generation of the atlas template image. By applying post-process procedures using a semi-automatic brain extraction method, we delineated the brain tissues from source data. Furthermore, we applied a symmetric group-wise normalization method to generate an optimized template of T1 image of rodent brain, then aligned our template to the Waxholm Space. In addition, we defined several simple and explicit landmarks to corresponding our template with the well known Paxinos stereotaxic reference system. Anchoring at the origin of the Waxholm Space, we applied piece-wise linear transformation method to map the voxels of the template into the coordinates system in Paxinos' stereotoxic coordinates to facilitate the labelling task. We also cross-referenced our data with both published rodent brain atlas and image atlases available online, methodologically labelling the template to produce a Wistar brain atlas identifying more than 130 structures. Particular attention was paid to the cortex and cerebellum, as these areas encompass the most researched aspects of brain functions. Moreover, we adopted the structure hierarchy and naming nomenclature common to various atlases, so that the names and hierarchy structure presented in the atlas are readily recognised for easy use. It is believed the atlas will present a useful tool in rodent brain functional and pharmaceutical studies.

  3. Microglial Dynamics During Human Brain Development

    PubMed Central

    Menassa, David A.; Gomez-Nicola, Diego

    2018-01-01

    Microglial cells are thought to colonize the human cerebrum between the 4th and 24th gestational weeks. Rodent studies have demonstrated that these cells originate from yolk sac progenitors though it is not clear whether this directly pertains to human development. Our understanding of microglial cell dynamics in the developing human brain comes mostly from postmortem studies demonstrating that the beginning of microglial colonization precedes the appearance of the vasculature, the blood–brain barrier, astrogliogenesis, oligodendrogenesis, neurogenesis, migration, and myelination of the various brain areas. Furthermore, migrating microglial populations cluster by morphology and express differential markers within the developing brain and according to developmental age. With the advent of novel technologies such as RNA-sequencing in fresh human tissue, we are beginning to identify the molecular features of the adult microglial signature. However, this is may not extend to the much more dynamic and rapidly changing antenatal microglial population and this is further complicated by the scarcity of tissue resources. In this brief review, we first describe the various historic schools of thought that had debated the origin of microglial cells while examining the evidence supporting the various theories. We then proceed to examine the evidence we have accumulated on microglial dynamics in the developing human brain, present evidence from rodent studies on the functional role of microglia during development and finally identify limitations for the used approaches in human studies and highlight under investigated questions. PMID:29881376

  4. Investigations of primary blast-induced traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Sawyer, T. W.; Josey, T.; Wang, Y.; Villanueva, M.; Ritzel, D. V.; Nelson, P.; Lee, J. J.

    2018-01-01

    The development of an advanced blast simulator (ABS) has enabled the reproducible generation of single-pulse shock waves that simulate free-field blast with high fidelity. Studies with rodents in the ABS demonstrated the necessity of head restraint during head-only exposures. When the head was not restrained, violent global head motion was induced by pressures that would not produce similar movement of a target the size and mass of a human head. This scaling artefact produced changes in brain function that were reminiscent of traumatic brain injury (TBI) due to impact-acceleration effects. Restraint of the rodent head eliminated these, but still produced subtle changes in brain biochemistry, showing that blast-induced pressure waves do cause brain deficits. Further experiments were carried out with rat brain cell aggregate cultures that enabled the conduct of studies without the gross movement encountered when using rodents. The suspension nature of this model was also exploited to minimize the boundary effects that complicate the interpretation of primary blast studies using surface cultures. Using this system, brain tissue was found not only to be sensitive to pressure changes, but also able to discriminate between the highly defined single-pulse shock waves produced by underwater blast and the complex pressure history exposures experienced by aggregates encased within a sphere and subjected to simulated air blast. The nature of blast-induced primary TBI requires a multidisciplinary research approach that addresses the fidelity of the blast insult, its accurate measurement and characterization, as well as the limitations of the biological models used.

  5. Comparisons of MRI images, and auditory-related and vocal-related protein expressions in the brain of echolocation bats and rodents.

    PubMed

    Hsiao, Chun-Jen; Hsu, Chih-Hsiang; Lin, Ching-Lung; Wu, Chung-Hsin; Jen, Philip Hung-Sun

    2016-08-17

    Although echolocating bats and other mammals share the basic design of laryngeal apparatus for sound production and auditory system for sound reception, they have a specialized laryngeal mechanism for ultrasonic sound emissions as well as a highly developed auditory system for processing species-specific sounds. Because the sounds used by bats for echolocation and rodents for communication are quite different, there must be differences in the central nervous system devoted to producing and processing species-specific sounds between them. The present study examines the difference in the relative size of several brain structures and expression of auditory-related and vocal-related proteins in the central nervous system of echolocation bats and rodents. Here, we report that bats using constant frequency-frequency-modulated sounds (CF-FM bats) and FM bats for echolocation have a larger volume of midbrain nuclei (inferior and superior colliculi) and cerebellum relative to the size of the brain than rodents (mice and rats). However, the former have a smaller volume of the cerebrum and olfactory bulb, but greater expression of otoferlin and forkhead box protein P2 than the latter. Although the size of both midbrain colliculi is comparable in both CF-FM and FM bats, CF-FM bats have a larger cerebrum and greater expression of otoferlin and forkhead box protein P2 than FM bats. These differences in brain structure and protein expression are discussed in relation to their biologically relevant sounds and foraging behavior.

  6. The Revised Neurobehavioral Severity Scale (NSS-R) for Rodents.

    PubMed

    Yarnell, Angela M; Barry, Erin S; Mountney, Andrea; Shear, Deborah; Tortella, Frank; Grunberg, Neil E

    2016-04-08

    Motor and sensory deficits are common following traumatic brain injury (TBI). Although rodent models provide valuable insight into the biological and functional outcomes of TBI, the success of translational research is critically dependent upon proper selection of sensitive, reliable, and reproducible assessments. Published literature includes various observational scales designed to evaluate post-injury functionality; however, the heterogeneity in TBI location, severity, and symptomology can complicate behavioral assessments. The importance of choosing behavioral outcomes that can be reliably and objectively quantified in an efficient manner is becoming increasingly important. The Revised Neurobehavioral Severity Scale (NSS-R) is a continuous series of specific, sensitive, and standardized observational tests that evaluate balance, motor coordination, and sensorimotor reflexes in rodents. The tasks follow a specific order designed to minimize interference: balance, landing, tail raise, dragging, righting reflex, ear reflex, eye reflex, sound reflex, tail pinch, and hindpaw pinch. The NSS-R has proven to be a reliable method differentiating brain-injured rodents from non-brain-injured rodents across many brain injury models. Copyright © 2016 John Wiley & Sons, Inc.

  7. High-throughput 3D whole-brain quantitative histopathology in rodents

    PubMed Central

    Vandenberghe, Michel E.; Hérard, Anne-Sophie; Souedet, Nicolas; Sadouni, Elmahdi; Santin, Mathieu D.; Briet, Dominique; Carré, Denis; Schulz, Jocelyne; Hantraye, Philippe; Chabrier, Pierre-Etienne; Rooney, Thomas; Debeir, Thomas; Blanchard, Véronique; Pradier, Laurent; Dhenain, Marc; Delzescaux, Thierry

    2016-01-01

    Histology is the gold standard to unveil microscopic brain structures and pathological alterations in humans and animal models of disease. However, due to tedious manual interventions, quantification of histopathological markers is classically performed on a few tissue sections, thus restricting measurements to limited portions of the brain. Recently developed 3D microscopic imaging techniques have allowed in-depth study of neuroanatomy. However, quantitative methods are still lacking for whole-brain analysis of cellular and pathological markers. Here, we propose a ready-to-use, automated, and scalable method to thoroughly quantify histopathological markers in 3D in rodent whole brains. It relies on block-face photography, serial histology and 3D-HAPi (Three Dimensional Histology Analysis Pipeline), an open source image analysis software. We illustrate our method in studies involving mouse models of Alzheimer’s disease and show that it can be broadly applied to characterize animal models of brain diseases, to evaluate therapeutic interventions, to anatomically correlate cellular and pathological markers throughout the entire brain and to validate in vivo imaging techniques. PMID:26876372

  8. Registration of in vivo MR to histology of rodent brains using blockface imaging

    NASA Astrophysics Data System (ADS)

    Uberti, Mariano; Liu, Yutong; Dou, Huanyu; Mosley, R. Lee; Gendelman, Howard E.; Boska, Michael

    2009-02-01

    Registration of MRI to histopathological sections can enhance bioimaging validation for use in pathobiologic, diagnostic, and therapeutic evaluations. However, commonly used registration methods fall short of this goal due to tissue shrinkage and tearing after brain extraction and preparation. In attempts to overcome these limitations we developed a software toolbox using 3D blockface imaging as the common space of reference. This toolbox includes a semi-automatic brain extraction technique using constraint level sets (CLS), 3D reconstruction methods for the blockface and MR volume, and a 2D warping technique using thin-plate splines with landmark optimization. Using this toolbox, the rodent brain volume is first extracted from the whole head MRI using CLS. The blockface volume is reconstructed followed by 3D brain MRI registration to the blockface volume to correct the global deformations due to brain extraction and fixation. Finally, registered MRI and histological slices are warped to corresponding blockface images to correct slice specific deformations. The CLS brain extraction technique was validated by comparing manual results showing 94% overlap. The image warping technique was validated by calculating target registration error (TRE). Results showed a registration accuracy of a TRE < 1 pixel. Lastly, the registration method and the software tools developed were used to validate cell migration in murine human immunodeficiency virus type one encephalitis.

  9. Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia

    PubMed Central

    Wahl, Devin; Coogan, Sean CP; Solon-Biet, Samantha M; de Cabo, Rafael; Haran, James B; Raubenheimer, David; Cogger, Victoria C; Mattson, Mark P; Simpson, Stephen J; Le Couteur, David G

    2017-01-01

    Evaluation of behavior and cognition in rodent models underpins mechanistic and interventional studies of brain aging and neurodegenerative diseases, especially dementia. Commonly used tests include Morris water maze, Barnes maze, object recognition, fear conditioning, radial arm water maze, and Y maze. Each of these tests reflects some aspects of human memory including episodic memory, recognition memory, semantic memory, spatial memory, and emotional memory. Although most interventional studies in rodent models of dementia have focused on pharmacological agents, there are an increasing number of studies that have evaluated nutritional interventions including caloric restriction, intermittent fasting, and manipulation of macronutrients. Dietary interventions have been shown to influence various cognitive and behavioral tests in rodents indicating that nutrition can influence brain aging and possibly neurodegeneration. PMID:28932108

  10. The ontogenesis of the forebrain commissures and the determination of brain asymmetries.

    PubMed

    Lent, R; Schmidt, S L

    1993-02-01

    We have reviewed the organization and development of the interhemispheric projections through the forebrain commissures, especially those of the CC, in connection with the development of brain asymmetries. Analyzing the available data, we conclude that the developing CC plays an important role in the ontogenesis of brain asymmetries. We have extended a previous hypothesis that the rodent CC may exert a stabilizing effect over the unstable populational asymmetries of cortical size and shape, and that it participates in the developmental stabilization of lateralized motor behaviors.

  11. Watching from a distance: A robotically controlled laser and real-time subject tracking software for the study of conditioned predator/prey-like interactions.

    PubMed

    Wilson, James C; Kesler, Mitch; Pelegrin, Sara-Lynn E; Kalvi, LeAnna; Gruber, Aaron; Steenland, Hendrik W

    2015-09-30

    The physical distance between predator and prey is a primary determinant of behavior, yet few paradigms exist to study this reliably in rodents. The utility of a robotically controlled laser for use in a predator-prey-like (PPL) paradigm was explored for use in rats. This involved the construction of a robotic two-dimensional gimbal to dynamically position a laser beam in a behavioral test chamber. Custom software was used to control the trajectory and final laser position in response to user input on a console. The software also detected the location of the laser beam and the rodent continuously so that the dynamics of the distance between them could be analyzed. When the animal or laser beam came within a fixed distance the animal would either be rewarded with electrical brain stimulation or shocked subcutaneously. Animals that received rewarding electrical brain stimulation could learn to chase the laser beam, while animals that received aversive subcutaneous shock learned to actively avoid the laser beam in the PPL paradigm. Mathematical computations are presented which describe the dynamic interaction of the laser and rodent. The robotic laser offers a neutral stimulus to train rodents in an open field and is the first device to be versatile enough to assess distance between predator and prey in real time. With ongoing behavioral testing this tool will permit the neurobiological investigation of predator/prey-like relationships in rodents, and may have future implications for prosthetic limb development through brain-machine interfaces. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A New Variational Method for Bias Correction and Its Applications to Rodent Brain Extraction.

    PubMed

    Chang, Huibin; Huang, Weimin; Wu, Chunlin; Huang, Su; Guan, Cuntai; Sekar, Sakthivel; Bhakoo, Kishore Kumar; Duan, Yuping

    2017-03-01

    Brain extraction is an important preprocessing step for further analysis of brain MR images. Significant intensity inhomogeneity can be observed in rodent brain images due to the high-field MRI technique. Unlike most existing brain extraction methods that require bias corrected MRI, we present a high-order and L 0 regularized variational model for bias correction and brain extraction. The model is composed of a data fitting term, a piecewise constant regularization and a smooth regularization, which is constructed on a 3-D formulation for medical images with anisotropic voxel sizes. We propose an efficient multi-resolution algorithm for fast computation. At each resolution layer, we solve an alternating direction scheme, all subproblems of which have the closed-form solutions. The method is tested on three T2 weighted acquisition configurations comprising a total of 50 rodent brain volumes, which are with the acquisition field strengths of 4.7 Tesla, 9.4 Tesla and 17.6 Tesla, respectively. On one hand, we compare the results of bias correction with N3 and N4 in terms of the coefficient of variations on 20 different tissues of rodent brain. On the other hand, the results of brain extraction are compared against manually segmented gold standards, BET, BSE and 3-D PCNN based on a number of metrics. With the high accuracy and efficiency, our proposed method can facilitate automatic processing of large-scale brain studies.

  13. Automatic cortical thickness analysis on rodent brain

    NASA Astrophysics Data System (ADS)

    Lee, Joohwi; Ehlers, Cindy; Crews, Fulton; Niethammer, Marc; Budin, Francois; Paniagua, Beatriz; Sulik, Kathy; Johns, Josephine; Styner, Martin; Oguz, Ipek

    2011-03-01

    Localized difference in the cortex is one of the most useful morphometric traits in human and animal brain studies. There are many tools and methods already developed to automatically measure and analyze cortical thickness for the human brain. However, these tools cannot be directly applied to rodent brains due to the different scales; even adult rodent brains are 50 to 100 times smaller than humans. This paper describes an algorithm for automatically measuring the cortical thickness of mouse and rat brains. The algorithm consists of three steps: segmentation, thickness measurement, and statistical analysis among experimental groups. The segmentation step provides the neocortex separation from other brain structures and thus is a preprocessing step for the thickness measurement. In the thickness measurement step, the thickness is computed by solving a Laplacian PDE and a transport equation. The Laplacian PDE first creates streamlines as an analogy of cortical columns; the transport equation computes the length of the streamlines. The result is stored as a thickness map over the neocortex surface. For the statistical analysis, it is important to sample thickness at corresponding points. This is achieved by the particle correspondence algorithm which minimizes entropy between dynamically moving sample points called particles. Since the computational cost of the correspondence algorithm may limit the number of corresponding points, we use thin-plate spline based interpolation to increase the number of corresponding sample points. As a driving application, we measured the thickness difference to assess the effects of adolescent intermittent ethanol exposure that persist into adulthood and performed t-test between the control and exposed rat groups. We found significantly differing regions in both hemispheres.

  14. Fully automated rodent brain MR image processing pipeline on a Midas server: from acquired images to region-based statistics.

    PubMed

    Budin, Francois; Hoogstoel, Marion; Reynolds, Patrick; Grauer, Michael; O'Leary-Moore, Shonagh K; Oguz, Ipek

    2013-01-01

    Magnetic resonance imaging (MRI) of rodent brains enables study of the development and the integrity of the brain under certain conditions (alcohol, drugs etc.). However, these images are difficult to analyze for biomedical researchers with limited image processing experience. In this paper we present an image processing pipeline running on a Midas server, a web-based data storage system. It is composed of the following steps: rigid registration, skull-stripping, average computation, average parcellation, parcellation propagation to individual subjects, and computation of region-based statistics on each image. The pipeline is easy to configure and requires very little image processing knowledge. We present results obtained by processing a data set using this pipeline and demonstrate how this pipeline can be used to find differences between populations.

  15. Traffic-related air pollution and brain development.

    PubMed

    Woodward, Nicholas; Finch, Caleb E; Morgan, Todd E

    Automotive traffic-related air pollution (TRP) imposes an increasing health burden with global urbanization. Gestational and early child exposure to urban TRP is associated with higher risk of autism spectrum disorders and schizophrenia, as well as low birth weight. While cardio-respiratory effects from exposure are well documented, cognitive effects are only recently becoming widely recognized. This review discusses effects of TRP on brain and cognition in human and animal studies. The mechanisms underlying these epidemiological associations are studied with rodent models of pre- and neonatal exposure to TRP, which show persisting inflammatory changes and altered adult behaviors and cognition. Some behavioral and inflammatory changes show male bias. Rodent models may identify dietary and other interventions for neuroprotection to TRP.

  16. GENE EXPRESSION PROFILES IN THE DEVELOPING RAT CEREBELLUM AND HIPPOCAMPUS

    EPA Science Inventory

    Development of the nervous system is a complex program, involving coordinated growth of axons and their targets. In rodents, rapid brain growth occurs during early postnatal development. At this time, several fundamental processes, such as dendritic and axonal outgrowth and the e...

  17. Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts

    PubMed Central

    Krauze, Michal T.; Noble, Charles O.; Kawaguchi, Tomohiro; Drummond, Daryl; Kirpotin, Dmitri B.; Yamashita, Yoji; Kullberg, Erika; Forsayeth, John; Park, John W.; Bankiewicz, Krystof S.

    2007-01-01

    We have previously shown that convection-enhanced delivery (CED) of highly stable nanoparticle/liposome agents encapsulating chemotherapeutic drugs is effective against intracranial rodent brain tumor xenografts. In this study, we have evaluated the combination of a newly developed nanoparticle/liposome containing the topoisomerase I inhibitor CPT-11 (nanoliposomal CPT-11 [nLs-CPT-11]), and PEGylated liposomal doxorubicin (Doxil) containing the topoisomerase II inhibitor doxorubicin. Both drugs were detectable in the CNS for more than 36 days after a single CED application. Tissue half-life was 16.7 days for nLs-CPT-11 and 10.9 days for Doxil. The combination of the two agents produced synergistic cytotoxicity in vitro. In vivo in U251MG and U87MG intracranial rodent xenograft models, CED of the combination was also more efficacious than either agent used singly. Analysis of the parameters involved in this approach indicated that tissue pharmacokinetics, tumor microanatomy, and biochemical interactions of the drugs all contributed to the therapeutic efficacy observed. These findings have implications for further clinical applications of CED-based treatment of brain tumors. PMID:17652269

  18. NMR imaging and spectroscopy of the mammalian central nervous system after heavy ion radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, T.

    NMR imaging, NMR spectroscopic, and histopathologic techniques were used to study the proton relaxation time and related biochemical changes in the central nervous system after helium beam in vivo irradiation of the rodent brain. The spectroscopic observations reported in this dissertation were made possible by development of methods for measuring the NMR parameters of the rodent brain in vivo and in vitro. The methods include (1) depth selective spectroscopy using an optimization of rf pulse energy based on a priori knowledge of N-acetyl aspartate and lipid spectra of the normal brain, (2) phase-encoded proton spectroscopy of the living rodent usingmore » a surface coil, and (3) dual aqueous and organic tissue extraction technique for spectroscopy. Radiation induced increases were observed in lipid and p-choline peaks of the proton spectrum, in vivo. Proton NMR spectroscopy measurements on brain extracts (aqueous and organic solvents) were made to observe chemical changes that could not be seen in vivo. Radiation-induced changes were observed in lactate, GABA, glutamate, and p-choline peak areas of the aqueous fraction spectra. In the organic fraction, decreases were observed in peak area ratios of the terminal-methyl peaks, the N-methyl groups of choline, and at a peak at 2.84 ppM (phosphatidyl ethanolamine and phosphatidyl serine resonances) relative to TMS. With histology and Evans blue injections, blood-brain barrier alternations were seen as early as 4 days after irradiation. 83 references, 53 figures.« less

  19. Adult Human Neurogenesis: From Microscopy to Magnetic Resonance Imaging

    PubMed Central

    Sierra, Amanda; Encinas, Juan M.; Maletic-Savatic, Mirjana

    2011-01-01

    Neural stem cells reside in well-defined areas of the adult human brain and are capable of generating new neurons throughout the life span. In rodents, it is well established that the new born neurons are involved in olfaction as well as in certain forms of memory and learning. In humans, the functional relevance of adult human neurogenesis is being investigated, in particular its implication in the etiopathology of a variety of brain disorders. Adult neurogenesis in the human brain was discovered by utilizing methodologies directly imported from the rodent research, such as immunohistological detection of proliferation and cell-type specific biomarkers in postmortem or biopsy tissue. However, in the vast majority of cases, these methods do not support longitudinal studies; thus, the capacity of the putative stem cells to form new neurons under different disease conditions cannot be tested. More recently, new technologies have been specifically developed for the detection and quantification of neural stem cells in the living human brain. These technologies rely on the use of magnetic resonance imaging, available in hospitals worldwide. Although they require further validation in rodents and primates, these new methods hold the potential to test the contribution of adult human neurogenesis to brain function in both health and disease. This review reports on the current knowledge on adult human neurogenesis. We first review the different methods available to assess human neurogenesis, both ex vivo and in vivo and then appraise the changes of adult neurogenesis in human diseases. PMID:21519376

  20. The role of free radicals in traumatic brain injury.

    PubMed

    O'Connell, Karen M; Littleton-Kearney, Marguerite T

    2013-07-01

    Traumatic brain injury (TBI) is a significant cause of death and disability in both the civilian and the military populations. The primary impact causes initial tissue damage, which initiates biochemical cascades, known as secondary injury, that expand the damage. Free radicals are implicated as major contributors to the secondary injury. Our review of recent rodent and human research reveals the prominent role of the free radicals superoxide anion, nitric oxide, and peroxynitrite in secondary brain injury. Much of our current knowledge is based on rodent studies, and the authors identified a gap in the translation of findings from rodent to human TBI. Rodent models are an effective method for elucidating specific mechanisms of free radical-induced injury at the cellular level in a well-controlled environment. However, human TBI does not occur in a vacuum, and variables controlled in the laboratory may affect the injury progression. Additionally, multiple experimental TBI models are accepted in rodent research, and no one model fully reproduces the heterogeneous injury seen in humans. Free radical levels are measured indirectly in human studies based on assumptions from the findings from rodent studies that use direct free radical measurements. Further study in humans should be directed toward large samples to validate the findings in rodent studies. Data obtained from these studies may lead to more targeted treatment to interrupt the secondary injury cascades.

  1. The Effect of Prenatal Hypoxia on Brain Development: Short- and Long-Term Consequences Demonstrated in Rodent Models

    ERIC Educational Resources Information Center

    Golan, Hava; Huleihel, Mahmoud

    2006-01-01

    Hypoxia (H) and hypoxia-ischemia (HI) are major causes of foetal brain damage with long-lasting behavioral implications. The effect of hypoxia has been widely studied in human and a variety of animal models. In the present review, we summarize the latest studies testing the behavioral outcomes following prenatal hypoxia/hypoxia-ischemia in rodent…

  2. Human primary mixed brain cultures: preparation, differentiation, characterization and application to neuroscience research.

    PubMed

    Ray, Balmiki; Chopra, Nipun; Long, Justin M; Lahiri, Debomoy K

    2014-09-16

    Culturing primary cortical neurons is an essential neuroscience technique. However, most cultures are derived from rodent brains and standard protocols for human brain cultures are sparse. Herein, we describe preparation, maintenance and major characteristics of a primary human mixed brain culture, including neurons, obtained from legally aborted fetal brain tissue. This approach employs standard materials and techniques used in the preparation of rodent neuron cultures, with critical modifications. This culture has distinct differences from rodent cultures. Specifically, a significant numbers of cells in the human culture are derived from progenitor cells, and the yield and survival of the cells grossly depend on the presence of bFGF. In the presence of bFGF, this culture can be maintained for an extended period. Abundant productions of amyloid-β, tau and proteins make this a powerful model for Alzheimer's research. The culture also produces glia and different sub-types of neurons. We provide a well-characterized methodology for human mixed brain cultures useful to test therapeutic agents under various conditions, and to carry forward mechanistic and translational studies for several brain disorders.

  3. Repetitive Concussions in Adolescent Athletes – Translating Clinical and Experimental Research into Perspectives on Rehabilitation Strategies

    PubMed Central

    Semple, Bridgette D.; Lee, Sangmi; Sadjadi, Raha; Fritz, Nora; Carlson, Jaclyn; Griep, Carrie; Ho, Vanessa; Jang, Patrice; Lamb, Annick; Popolizio, Beth; Saini, Sonia; Bazarian, Jeffrey J.; Prins, Mayumi L.; Ferriero, Donna M.; Basso, D. Michele; Noble-Haeusslein, Linda J.

    2015-01-01

    Sports-related concussions are particularly common during adolescence, a time when even mild brain injuries may disrupt ongoing brain maturation and result in long-term complications. A recent focus on the consequences of repetitive concussions among professional athletes has prompted the development of several new experimental models in rodents, as well as the revision of guidelines for best management of sports concussions. Here, we consider the utility of rodent models to understand the functional consequences and pathobiology of concussions in the developing brain, identifying the unique behavioral and pathological signatures of concussive brain injuries. The impact of repetitive concussions on behavioral consequences and injury progression is also addressed. In particular, we focus on the epidemiological, clinical, and experimental evidence underlying current recommendations for physical and cognitive rest after concussion, and highlight key areas in which further research is needed. Lastly, we consider how best to promote recovery after injury, recognizing that optimally timed, activity-based rehabilitative strategies may hold promise for the adolescent athlete who has sustained single or repetitive concussions. The purpose of this review is to inform the clinical research community as it strives to develop and optimize evidence-based guidelines for the concussed adolescent, in terms of both acute and long-term management. PMID:25883586

  4. Histone Deacetylase Inhibitor MS-275 Exhibits Poor Brain Penetration: Pharmacokinetic Studies of [11C]MS-275 using Positron Emission Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooker, J.M.; Hooker, J.M.; Kim, S.W.

    2009-10-01

    MS-275 (entinostat) is a histone deacetylase (HDAC) inhibitor currently in clinical trials for the treatment of several types of cancer. Recent reports have noted that MS-275 can cross the blood-brain barrier (BBB) and cause region-specific changes in rodent brain histone acetylation. To characterize the pharmacokinetics and distribution of MS-275 in the brain using positron emission tomography (PET), we labeled the carbamate carbon of MS-275 with carbon-11. Using PET, we determined that [{sup 11}C]MS-275 has low uptake in brain tissue when administered intravenously to nonhuman primates. In rodent studies, we observed that pharmacokinetics and brain accumulation of [{sup 11}C]MS-275 were notmore » changed by the coadministration of large doses of unlabeled MS-275. These results, which both highlight the poor brain penetration of MS-275, clearly suggest its limitation as a therapeutic agent for the central nervous system (CNS). Moreover, our study demonstrates the effectiveness of PET at providing brain pharmacokinetic data for HDAC inhibitors. These data are important not only for the development of new compounds for peripheral cancer treatment (where CNS exclusion is often advantageous) but also for the treatment of neurological disorders (where CNS penetration is critical).« less

  5. IMAGING BRAIN SIGNAL TRANSDUCTION AND METABOLISM VIA ARACHIDONIC AND DOCOSAHEXAENOIC ACID IN ANIMALS AND HUMANS

    PubMed Central

    Basselin, Mireille; Ramadan, Epolia; Rapoport, Stanley I.

    2012-01-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A2 (PLA2) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M1,3,5, serotonergic 5-HT2A/2C, dopaminergic D2-like (D2, D3, D4) or glutamatergic N-methyl-D-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics. PMID:22178644

  6. Cellular scaling rules for the brain of afrotherians

    PubMed Central

    Neves, Kleber; Ferreira, Fernanda M.; Tovar-Moll, Fernanda; Gravett, Nadine; Bennett, Nigel C.; Kaswera, Consolate; Gilissen, Emmanuel; Manger, Paul R.; Herculano-Houzel, Suzana

    2014-01-01

    Quantitative analysis of the cellular composition of rodent, primate and eulipotyphlan brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in evolution in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of afrotherians, believed to be the first clade to radiate from the common eutherian ancestor. We find that afrotherians share non-neuronal scaling rules with rodents, primates and eulipotyphlans, as well as the coordinated scaling of numbers of neurons in the cerebral cortex and cerebellum. Afrotherians share with rodents and eulipotyphlans, but not with primates, the scaling of number of neurons in the cortex and in the cerebellum as a function of the number of neurons in the rest of the brain. Afrotheria also share with rodents and eulipotyphlans the neuronal scaling rules that apply to the cerebral cortex. Afrotherians share with rodents, but not with eulipotyphlans nor primates, the neuronal scaling rules that apply to the cerebellum. Importantly, the scaling of the folding index of the cerebral cortex with the number of neurons in the cerebral cortex is not shared by either afrotherians, rodents, or primates. The sharing of some neuronal scaling rules between afrotherians and rodents, and of some additional features with eulipotyphlans and primates, raise the interesting possibility that these shared characteristics applied to the common eutherian ancestor. In turn, the clade-specific characteristics that relate to the distribution of neurons along the surface of the cerebral cortex and to its degree of gyrification suggest that these characteristics compose an evolutionarily plastic suite of features that may have defined and distinguished mammalian groups in evolution. PMID:24596544

  7. Restraint training for awake functional brain scanning of rodents can cause long-lasting changes in pain and stress responses

    PubMed Central

    Low, Lucie A.; Bauer, Lucy C.; Pitcher, Mark H.; Bushnell, M. Catherine

    2016-01-01

    Abstract With the increased interest in longitudinal brain imaging of awake rodents, it is important to understand both the short-term and long-term effects of restraint on sensory and emotional processing in the brain. To understand the effects of repeated restraint on pain behaviors and stress responses, we modeled a restraint protocol similar to those used to habituate rodents for magnetic resonance imaging scanning, and studied sensory sensitivity and stress hormone responses over 5 days. To uncover lasting effects of training, we also looked at responses to the formalin pain test 2 weeks later. We found that while restraint causes acute increases in the stress hormone corticosterone, it can also cause lasting reductions in nociceptive behavior in the formalin test, coupled with heightened corticosterone levels and increased activation of the “nociceptive” central nucleus of the amygdala, as seen by Fos protein expression. These results suggest that short-term repeated restraint, similar to that used to habituate rats for awake functional brain scanning, could potentially cause long-lasting changes in physiological and brain responses to pain stimuli that are stress-related, and therefore could potentially confound the functional activation patterns seen in awake rodents in response to pain stimuli. PMID:27058679

  8. Restraint training for awake functional brain scanning of rodents can cause long-lasting changes in pain and stress responses.

    PubMed

    Low, Lucie A; Bauer, Lucy C; Pitcher, Mark H; Bushnell, M Catherine

    2016-08-01

    With the increased interest in longitudinal brain imaging of awake rodents, it is important to understand both the short-term and long-term effects of restraint on sensory and emotional processing in the brain. To understand the effects of repeated restraint on pain behaviors and stress responses, we modeled a restraint protocol similar to those used to habituate rodents for magnetic resonance imaging scanning, and studied sensory sensitivity and stress hormone responses over 5 days. To uncover lasting effects of training, we also looked at responses to the formalin pain test 2 weeks later. We found that while restraint causes acute increases in the stress hormone corticosterone, it can also cause lasting reductions in nociceptive behavior in the formalin test, coupled with heightened corticosterone levels and increased activation of the "nociceptive" central nucleus of the amygdala, as seen by Fos protein expression. These results suggest that short-term repeated restraint, similar to that used to habituate rats for awake functional brain scanning, could potentially cause long-lasting changes in physiological and brain responses to pain stimuli that are stress-related, and therefore could potentially confound the functional activation patterns seen in awake rodents in response to pain stimuli.

  9. Brief Report: Robo1 Regulates the Migration of Human Subventricular Zone Neural Progenitor Cells During Development.

    PubMed

    Guerrero-Cazares, Hugo; Lavell, Emily; Chen, Linda; Schiapparelli, Paula; Lara-Velazquez, Montserrat; Capilla-Gonzalez, Vivian; Clements, Anna Christina; Drummond, Gabrielle; Noiman, Liron; Thaler, Katrina; Burke, Anne; Quiñones-Hinojosa, Alfredo

    2017-07-01

    Human neural progenitor cell (NPC) migration within the subventricular zone (SVZ) of the lateral ganglionic eminence is an active process throughout early brain development. The migration of human NPCs from the SVZ to the olfactory bulb during fetal stages resembles what occurs in adult rodents. As the human brain develops during infancy, this migratory stream is drastically reduced in cell number and becomes barely evident in adults. The mechanisms regulating human NPC migration are unknown. The Slit-Robo signaling pathway has been defined as a chemorepulsive cue involved in axon guidance and neuroblast migration in rodents. Slit and Robo proteins expressed in the rodent brain help guide neuroblast migration from the SVZ through the rostral migratory stream to the olfactory bulb. Here, we present the first study on the role that Slit and Robo proteins play in human-derived fetal neural progenitor cell migration (hfNPC). We describe that Robo1 and Robo2 isoforms are expressed in the human fetal SVZ. Furthermore, we demonstrate that Slit2 is able to induce a chemorepellent effect on the migration of hfNPCs derived from the human fetal SVZ. In addition, when Robo1 expression is inhibited, hfNPCs are unable to migrate to the olfactory bulb of mice when injected in the anterior SVZ. Our findings indicate that the migration of human NPCs from the SVZ is partially regulated by the Slit-Robo axis. This pathway could be regulated to direct the migration of NPCs in human endogenous neural cell therapy. Stem Cells 2017;35:1860-1865. © 2017 AlphaMed Press.

  10. [Sex differentiation of central nervous system--brain of man and woman].

    PubMed

    Arai, Yasumasa

    2004-02-01

    Sex differentiation of human brain is mostly dependent on the prenatal exposure to androgen(testosterone). Congenital aromatase deficiency does not disturb male brain development in men. This is quite different from experimental evidence from rodents whose brains need intraneuronal aromatization from androgen to estrogen to induce sex differentiation. There is evidence for male-female differences in brain structures. Some of them(INHA-3) appear to be related with sexual orientation. The other(BNST) might participate in forming gender-identity. In addition, sexually dimorphic features are recognized in some cognitive activities. The possible involvement of genetic factors in human brain sex differentiation is also discussed.

  11. Neuroimmunology and neuroepigenetics in the establishment of sex differences in the brain

    PubMed Central

    McCarthy, Margaret M.; Nugent, Bridget M.; Lenz, Kathryn M.

    2017-01-01

    The study of sex differences in the brain is a topic of neuroscientific study that has broad reaching implications for culture, society and biomedical science. Recent research in rodent models has led to dramatic shifts in our views of the mechanisms underlying the sexual differentiation of the brain. These include the surprising discoveries of a role for immune cells and inflammatory mediators in brain masculinization and a role for epigenetic suppression in brain feminization. How and to what degree these findings will translate to human brain development will be questions of central importance in future research in this field. PMID:28638119

  12. The Effect of Body Posture on Brain Glymphatic Transport.

    PubMed

    Lee, Hedok; Xie, Lulu; Yu, Mei; Kang, Hongyi; Feng, Tian; Deane, Rashid; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2015-08-05

    The glymphatic pathway expedites clearance of waste, including soluble amyloid β (Aβ) from the brain. Transport through this pathway is controlled by the brain's arousal level because, during sleep or anesthesia, the brain's interstitial space volume expands (compared with wakefulness), resulting in faster waste removal. Humans, as well as animals, exhibit different body postures during sleep, which may also affect waste removal. Therefore, not only the level of consciousness, but also body posture, might affect CSF-interstitial fluid (ISF) exchange efficiency. We used dynamic-contrast-enhanced MRI and kinetic modeling to quantify CSF-ISF exchange rates in anesthetized rodents' brains in supine, prone, or lateral positions. To validate the MRI data and to assess specifically the influence of body posture on clearance of Aβ, we used fluorescence microscopy and radioactive tracers, respectively. The analysis showed that glymphatic transport was most efficient in the lateral position compared with the supine or prone positions. In the prone position, in which the rat's head was in the most upright position (mimicking posture during the awake state), transport was characterized by "retention" of the tracer, slower clearance, and more CSF efflux along larger caliber cervical vessels. The optical imaging and radiotracer studies confirmed that glymphatic transport and Aβ clearance were superior in the lateral and supine positions. We propose that the most popular sleep posture (lateral) has evolved to optimize waste removal during sleep and that posture must be considered in diagnostic imaging procedures developed in the future to assess CSF-ISF transport in humans. The rodent brain removes waste better during sleep or anesthesia compared with the awake state. Animals exhibit different body posture during the awake and sleep states, which might affect the brain's waste removal efficiency. We investigated the influence of body posture on brainwide transport of inert tracers of anesthetized rodents. The major finding of our study was that waste, including Aβ, removal was most efficient in the lateral position (compared with the prone position), which mimics the natural resting/sleeping position of rodents. Although our finding awaits testing in humans, we speculate that the lateral position during sleep has advantage with regard to the removal of waste products including Aβ, because clinical studies have shown that sleep drives Aβ clearance from the brain. Copyright © 2015 the authors 0270-6474/15/3511034-11$15.00/0.

  13. The Effect of Body Posture on Brain Glymphatic Transport

    PubMed Central

    Lee, Hedok; Xie, Lulu; Yu, Mei; Kang, Hongyi; Feng, Tian; Deane, Rashid; Logan, Jean; Nedergaard, Maiken

    2015-01-01

    The glymphatic pathway expedites clearance of waste, including soluble amyloid β (Aβ) from the brain. Transport through this pathway is controlled by the brain's arousal level because, during sleep or anesthesia, the brain's interstitial space volume expands (compared with wakefulness), resulting in faster waste removal. Humans, as well as animals, exhibit different body postures during sleep, which may also affect waste removal. Therefore, not only the level of consciousness, but also body posture, might affect CSF–interstitial fluid (ISF) exchange efficiency. We used dynamic-contrast-enhanced MRI and kinetic modeling to quantify CSF-ISF exchange rates in anesthetized rodents' brains in supine, prone, or lateral positions. To validate the MRI data and to assess specifically the influence of body posture on clearance of Aβ, we used fluorescence microscopy and radioactive tracers, respectively. The analysis showed that glymphatic transport was most efficient in the lateral position compared with the supine or prone positions. In the prone position, in which the rat's head was in the most upright position (mimicking posture during the awake state), transport was characterized by “retention” of the tracer, slower clearance, and more CSF efflux along larger caliber cervical vessels. The optical imaging and radiotracer studies confirmed that glymphatic transport and Aβ clearance were superior in the lateral and supine positions. We propose that the most popular sleep posture (lateral) has evolved to optimize waste removal during sleep and that posture must be considered in diagnostic imaging procedures developed in the future to assess CSF-ISF transport in humans. SIGNIFICANCE STATEMENT The rodent brain removes waste better during sleep or anesthesia compared with the awake state. Animals exhibit different body posture during the awake and sleep states, which might affect the brain's waste removal efficiency. We investigated the influence of body posture on brainwide transport of inert tracers of anesthetized rodents. The major finding of our study was that waste, including Aβ, removal was most efficient in the lateral position (compared with the prone position), which mimics the natural resting/sleeping position of rodents. Although our finding awaits testing in humans, we speculate that the lateral position during sleep has advantage with regard to the removal of waste products including Aβ, because clinical studies have shown that sleep drives Aβ clearance from the brain. PMID:26245965

  14. Factors Influencing Cerebral Plasticity in the Normal and Injured Brain

    PubMed Central

    Kolb, Bryan; Teskey, G. Campbell; Gibb, Robbin

    2010-01-01

    An important development in behavioral neuroscience in the past 20 years has been the demonstration that it is possible to stimulate functional recovery after cerebral injury in laboratory animals. Rodent models of cerebral injury provide an important tool for developing such rehabilitation programs. The models include analysis at different levels including detailed behavioral paradigms, electrophysiology, neuronal morphology, protein chemistry, and epigenetics. A significant challenge for the next 20 years will be the translation of this work to improve the outcome from brain injury and disease in humans. Our goal in the article will be to synthesize the multidisciplinary laboratory work on brain plasticity and behavior in the injured brain to inform the development of rehabilitation programs. PMID:21120136

  15. Preliminary research on 1-(4-bromo-2-nitroimidazol-1-yl)-3-[(18)F]fluoropropan-2-ol as a novel brain hypoxia PET tracer in a rodent model of stroke.

    PubMed

    Nieto, Elena; Delgado, Mercedes; Sobrado, Mónica; de Ceballos, María L; Alajarín, Ramón; García-García, Luis; Kelly, James; Lizasoain, Ignacio; Pozo, Miguel A; Álvarez-Builla, Julio

    2015-08-28

    The synthesis of the new radiotracer precursor 4-Br-NITTP and the radiolabeling of the new tracer 1-(4-bromo-2-nitroimidazol-1-yl)-3-[(18)F]fluoropropan-2-ol (4-Br-[(18)F]FMISO) is reported. The cyclic voltammetry behaviour, neuronal cell toxicity, transport through the brain endothelial cell monolayer, in vivo PET imaging and preliminary calculations of the tracer uptake for a rodent model of stroke were studied for the new compound and the results were compared to those obtained with [(18)F]FMISO, the current gold standard PET hypoxia tracer. The new PET brain hypoxia tracer is more easily reduced, has higher CLogP than [(18)F]FMISO and it diffuses more rapidly through brain endothelial cells. The new compound is non-toxic to neuronal cells and it allows the in vivo mapping of stroke in mice with higher sensitivity. 4-Br-[(18)F]FMISO is a good candidate for further development in ischemic stroke. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Structured Illumination Diffuse Optical Tomography for Mouse Brain Imaging

    NASA Astrophysics Data System (ADS)

    Reisman, Matthew David

    As advances in functional magnetic resonance imaging (fMRI) have transformed the study of human brain function, they have also widened the divide between standard research techniques used in humans and those used in mice, where high quality images are difficult to obtain using fMRI given the small volume of the mouse brain. Optical imaging techniques have been developed to study mouse brain networks, which are highly valuable given the ability to study brain disease treatments or development in a controlled environment. A planar imaging technique known as optical intrinsic signal (OIS) imaging has been a powerful tool for capturing functional brain hemodynamics in rodents. Recent wide field-of-view implementations of OIS have provided efficient maps of functional connectivity from spontaneous brain activity in mice. However, OIS requires scalp retraction and is limited to imaging a 2-dimensional view of superficial cortical tissues. Diffuse optical tomography (DOT) is a non-invasive, volumetric neuroimaging technique that has been valuable for bedside imaging of patients in the clinic, but previous DOT systems for rodent neuroimaging have been limited by either sparse spatial sampling or by slow speed. My research has been to develop diffuse optical tomography for whole brain mouse neuroimaging by expanding previous techniques to achieve high spatial sampling using multiple camera views for detection and high speed using structured illumination sources. I have shown the feasibility of this method to perform non-invasive functional neuroimaging in mice and its capabilities of imaging the entire volume of the brain. Additionally, the system has been built with a custom, flexible framework to accommodate the expansion to imaging multiple dynamic contrasts in the brain and populations that were previously difficult or impossible to image, such as infant mice and awake mice. I have contributed to preliminary feasibility studies of these more advanced techniques using OIS, which can now be carried out using the structured illumination diffuse optical tomography technique to perform longitudinal, non-invasive studies of the whole volume of the mouse brain.

  17. A Comparison of Pathophysiology in Humans and Rodent Models of Subarachnoid Hemorrhage

    PubMed Central

    Leclerc, Jenna L.; Garcia, Joshua M.; Diller, Matthew A.; Carpenter, Anne-Marie; Kamat, Pradip K.; Hoh, Brian L.; Doré, Sylvain

    2018-01-01

    Non-traumatic subarachnoid hemorrhage (SAH) affects an estimated 30,000 people each year in the United States, with an overall mortality of ~30%. Most cases of SAH result from a ruptured intracranial aneurysm, require long hospital stays, and result in significant disability and high fatality. Early brain injury (EBI) and delayed cerebral vasospasm (CV) have been implicated as leading causes of morbidity and mortality in these patients, necessitating intense focus on developing preclinical animal models that replicate clinical SAH complete with delayed CV. Despite the variety of animal models currently available, translation of findings from rodent models to clinical trials has proven especially difficult. While the explanation for this lack of translation is unclear, possibilities include the lack of standardized practices and poor replication of human pathophysiology, such as delayed cerebral vasospasm and ischemia, in rodent models of SAH. In this review, we summarize the different approaches to simulating SAH in rodents, in particular elucidating the key pathophysiology of the various methods and models. Ultimately, we suggest the development of standardized model of rodent SAH that better replicates human pathophysiology for moving forward with translational research. PMID:29623028

  18. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics.

    PubMed

    Marmarou, A; Foda, M A; van den Brink, W; Campbell, J; Kita, H; Demetriadou, K

    1994-02-01

    This report describes the development of an experimental head injury model capable of producing diffuse brain injury in the rodent. A total of 161 anesthetized adult rats were injured utilizing a simple weight-drop device consisting of a segmented brass weight free-falling through a Plexiglas guide tube. Skull fracture was prevented by cementing a small stainless-steel disc on the calvaria. Two groups of rats were tested: Group 1, consisting of 54 rats, to establish fracture threshold; and Group 2, consisting of 107 animals, to determine the primary cause of death at severe injury levels. Data from Group 1 animals showed that a 450-gm weight falling from a 2-m height (0.9 kg-m) resulted in a mortality rate of 44% with a low incidence (12.5%) of skull fracture. Impact was followed by apnea, convulsions, and moderate hypertension. The surviving rats developed decortication flexion deformity of the forelimbs, with behavioral depression and loss of muscle tone. Data from Group 2 animals suggested that the cause of death was due to central respiratory depression; the mortality rate decreased markedly in animals mechanically ventilated during the impact. Analysis of mathematical models showed that this mass-height combination resulted in a brain acceleration of 900 G and a brain compression gradient of 0.28 mm. It is concluded that this simple model is capable of producing a graded brain injury in the rodent without a massive hypertensive surge or excessive brain-stem damage.

  19. A protein crosslinking assay for measuring cell surface expression of glutamate receptor subunits in the rodent brain after in vivo treatments

    PubMed Central

    Boudreau, Amy C.; Milovanovic, Mike; Conrad, Kelly L.; Nelson, Christopher; Ferrario, Carrie R.; Wolf, Marina E.

    2012-01-01

    Trafficking of neurotransmitter receptors between intracellular and cell surface compartments is important for regulating neurotransmission. We developed a method for determining if an in vivo treatment has altered receptor distribution in a particular region of rodent brain. After the treatment, brain slices are rapidly prepared from the region of interest. Then cell surface-expressed receptors are covalently crosslinked to nearby proteins using the membrane-impermeable, bifunctional crosslinker bis(sulfosuccinimidyl)suberate (BS3). This increases the apparent molecular weight of surface receptors, while intracellular receptors are not modified. Thus, surface and intracellular receptor pools can be separated and quantified using SDS-PAGE and immunoblotting. This method is particularly useful for analyzing AMPA receptor subunits, offering advantages in accuracy, efficiency and cost compared to biotinylation. A disadvantage is that some antibodies no longer recognize their target protein after crosslinking. We have used this method to quantify changes in receptor distribution after acute and chronic exposure to psychomotor stimulants. PMID:22470150

  20. Analysis of ultrasonic vocalizations emitted by infant rodents.

    PubMed

    Branchi, Igor; Santucci, Daniela; Alleva, Enrico

    2006-01-01

    Altricial rodent pups emit ultrasonic vocalizations (USVs), which are whistle-like sounds with frequencies between 30 and 90 kHz. These signals play an important communicative role in mother-offspring interaction because they elicit in the dam a prompt response as concerning care-giving behaviors. To investigate neurobehavioral development, the analysis of the number of USVs presents several advantages: (1) USVs are one of the few responses produced by very young rodents that can be quantitatively analyzed and elicited by quantifiable stimuli; (2) USV emission follows a clear ontogenetic profile from birth to the second to third week of life, thus allowing longitudinal analysis during very early post-natal ontogeny. The reported role played by several receptor agonists and antagonists in modulating the USV rate makes this measure highly informative in investigating the effects of toxicants and, more generally, psychoactive compounds on the development of selected brain systems.

  1. Identifying Rodent Resting-State Brain Networks with Independent Component Analysis

    PubMed Central

    Bajic, Dusica; Craig, Michael M.; Mongerson, Chandler R. L.; Borsook, David; Becerra, Lino

    2017-01-01

    Rodent models have opened the door to a better understanding of the neurobiology of brain disorders and increased our ability to evaluate novel treatments. Resting-state functional magnetic resonance imaging (rs-fMRI) allows for in vivo exploration of large-scale brain networks with high spatial resolution. Its application in rodents affords researchers a powerful translational tool to directly assess/explore the effects of various pharmacological, lesion, and/or disease states on known neural circuits within highly controlled settings. Integration of animal and human research at the molecular-, systems-, and behavioral-levels using diverse neuroimaging techniques empowers more robust interrogations of abnormal/ pathological processes, critical for evolving our understanding of neuroscience. We present a comprehensive protocol to evaluate resting-state brain networks using Independent Component Analysis (ICA) in rodent model. Specifically, we begin with a brief review of the physiological basis for rs-fMRI technique and overview of rs-fMRI studies in rodents to date, following which we provide a robust step-by-step approach for rs-fMRI investigation including data collection, computational preprocessing, and brain network analysis. Pipelines are interwoven with underlying theory behind each step and summarized methodological considerations, such as alternative methods available and current consensus in the literature for optimal results. The presented protocol is designed in such a way that investigators without previous knowledge in the field can implement the analysis and obtain viable results that reliably detect significant differences in functional connectivity between experimental groups. Our goal is to empower researchers to implement rs-fMRI in their respective fields by incorporating technical considerations to date into a workable methodological framework. PMID:29311770

  2. Virtual endocasts of Eocene Paramys (Paramyinae): oldest endocranial record for Rodentia and early brain evolution in Euarchontoglires.

    PubMed

    Bertrand, Ornella C; Amador-Mughal, Farrah; Silcox, Mary T

    2016-01-27

    Understanding the pattern of brain evolution in early rodents is central to reconstructing the ancestral condition for Glires, and for other members of Euarchontoglires including Primates. We describe the oldest virtual endocasts known for fossil rodents, which pertain to Paramys copei (Early Eocene) and Paramys delicatus (Middle Eocene). Both specimens of Paramys have larger olfactory bulbs and smaller paraflocculi relative to total endocranial volume than later occurring rodents, which may be primitive traits for Rodentia. The encephalization quotients (EQs) of Pa. copei and Pa. delicatus are higher than that of later occurring (Oligocene) Ischyromys typus, which contradicts the hypothesis that EQ increases through time in all mammalian orders. However, both species of Paramys have a lower relative neocortical surface area than later rodents, suggesting neocorticalization occurred through time in this Order, although to a lesser degree than in Primates. Paramys has a higher EQ but a lower neocortical ratio than any stem primate. This result contrasts with the idea that primates were always exceptional in their degree of overall encephalization and shows that relative brain size and neocortical surface area do not necessarily covary through time. As such, these data contradict assumptions made about the pattern of brain evolution in Euarchontoglires. © 2016 The Author(s).

  3. Virtual endocasts of Eocene Paramys (Paramyinae): oldest endocranial record for Rodentia and early brain evolution in Euarchontoglires

    PubMed Central

    Amador-Mughal, Farrah

    2016-01-01

    Understanding the pattern of brain evolution in early rodents is central to reconstructing the ancestral condition for Glires, and for other members of Euarchontoglires including Primates. We describe the oldest virtual endocasts known for fossil rodents, which pertain to Paramys copei (Early Eocene) and Paramys delicatus (Middle Eocene). Both specimens of Paramys have larger olfactory bulbs and smaller paraflocculi relative to total endocranial volume than later occurring rodents, which may be primitive traits for Rodentia. The encephalization quotients (EQs) of Pa. copei and Pa. delicatus are higher than that of later occurring (Oligocene) Ischyromys typus, which contradicts the hypothesis that EQ increases through time in all mammalian orders. However, both species of Paramys have a lower relative neocortical surface area than later rodents, suggesting neocorticalization occurred through time in this Order, although to a lesser degree than in Primates. Paramys has a higher EQ but a lower neocortical ratio than any stem primate. This result contrasts with the idea that primates were always exceptional in their degree of overall encephalization and shows that relative brain size and neocortical surface area do not necessarily covary through time. As such, these data contradict assumptions made about the pattern of brain evolution in Euarchontoglires. PMID:26817776

  4. Convection-enhanced delivery of SN-38-loaded polymeric micelles (NK012) enables consistent distribution of SN-38 and is effective against rodent intracranial brain tumor models.

    PubMed

    Zhang, Rong; Saito, Ryuta; Mano, Yui; Sumiyoshi, Akira; Kanamori, Masayuki; Sonoda, Yukihiko; Kawashima, Ryuta; Tominaga, Teiji

    2016-10-01

    Convection-enhanced delivery (CED) of therapeutic agents is a promising local delivery technique that has been extensively studied as a treatment for CNS diseases over the last two decades. One continuing challenge of CED is accurate and consistent delivery of the agents to the target. The present study focused on a new type of therapeutic agent, NK012, a novel SN-38-loaded polymeric micelle. Local delivery profiles of NK012 and SN-38 were studied using rodent brain and intracranial rodent brain tumor models. First, the cytotoxicity of NK012 against glioma cell lines was determined in vitro. Proliferations of glioma cells were significantly reduced after exposure to NK012. Then, the distribution and local toxicity after CED delivery of NK012 and SN-38 were evaluated in vivo. Volume of distribution of NK012 after CED was much larger than that of SN-38. Histological examination revealed minimum brain tissue damage in rat brains after delivery of 40 µg NK012 but severe damage with SN-38 at the same dose. Subsequently, the efficacy of NK012 delivered via CED was tested in 9L and U87MG rodent orthotopic brain tumor models. CED of NK012 displayed excellent efficacy in the 9L and U87MG orthotopic brain tumor models. Furthermore, NK012 and gadolinium diamide were co-delivered via CED to monitor the NK012 distribution using MRI. Volume of NK012 distribution evaluated by histology and MRI showed excellent agreement. CED of NK012 represents an effective treatment option for malignant gliomas. MRI-guided CED of NK012 has potential for clinical application.

  5. Searching for the gut microbial contributing factors to social behavior in rodent models of autism spectrum disorder.

    PubMed

    Needham, Brittany D; Tang, Weiyi; Wu, Wei-Li

    2018-05-01

    Social impairment is one of the major symptoms in multiple psychiatric disorders, including autism spectrum disorder (ASD). Accumulated studies indicate a crucial role for the gut microbiota in social development, but these mechanisms remain unclear. This review focuses on two strategies adopted to elucidate the complicated relationship between gut bacteria and host social behavior. In a top-down approach, researchers have attempted to correlate behavioral abnormalities with altered gut microbial profiles in rodent models of ASD, including BTBR mice, maternal immune activation (MIA), maternal valproic acid (VPA) and maternal high-fat diet (MHFD) offspring. In a bottom-up approach, researchers use germ-free (GF) animals, antibiotics, probiotics or pathogens to manipulate the intestinal environment and ascertain effects on social behavior. The combination of both approaches will hopefully pinpoint specific bacterial communities that control host social behavior. Further discussion of how brain development and circuitry is impacted by depletion of gut microbiota is also included. The converging evidence strongly suggests that gut microbes affect host social behavior through the alteration of brain neural circuits. Investigation of intestinal microbiota and host social behavior will unveil any bidirectional communication between the gut and brain and provide alternative therapeutic targets for ASD. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 474-499, 2018. © 2018 Wiley Periodicals, Inc.

  6. Brain sex differences and the organisation of juvenile social play behaviour.

    PubMed

    Auger, A P; Olesen, K M

    2009-06-01

    Juvenile social play behaviour is one of the earliest forms of non-mother directed social behaviour in rodents. Juvenile social play behaviour is sexually dimorphic, with males exhibiting higher levels compared to females, making it a useful model to study both social development and sexual differentiation of the brain. As with most sexually dimorphic behaviour, juvenile play behaviour is organised by neonatal steroid hormone exposure. The developmental organisation of juvenile play behaviour also appears to be influenced by the early maternal environment. This review will focus briefly on why and how rats play, some brain regions controlling play behaviour, and how neurotransmitters and the social environment converge within the developing brain to influence sexual differentiation of juvenile play behaviour.

  7. Epigenetic and gene expression changes in the adolescent brain: What have we learned from animal models?

    PubMed

    Mychasiuk, Richelle; Metz, Gerlinde A S

    2016-11-01

    Adolescence is defined as the gradual period of transition between childhood and adulthood that is characterized by significant brain maturation, growth spurts, sexual maturation, and heightened social interaction. Although originally believed to be a uniquely human aspect of development, rodent and non-human primates demonstrate maturational patterns that distinctly support an adolescent stage. As epigenetic processes are essential for development and differentiation, but also transpire in mature cells in response to environmental influences, they are an important aspect of adolescent brain maturation. The purpose of this review article was to examine epigenetic programming in animal models of brain maturation during adolescence. The discussion focuses on animal models to examine three main concepts; epigenetic processes involved in normal adolescent brain maturation, the influence of fetal programming on adolescent brain development and the epigenome, and finally, postnatal experiences such as exercise and drugs that modify epigenetic processes important for adolescent brain maturation. This corollary emphasizes the utility of animal models to further our understanding of complex processes such as epigenetic regulation and brain development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Sulthiame but not levetiracetam exerts neurotoxic effect in the developing rat brain.

    PubMed

    Manthey, Daniela; Asimiadou, Stella; Stefovska, Vanya; Kaindl, Angela M; Fassbender, Jessica; Ikonomidou, Chrysanthy; Bittigau, Petra

    2005-06-01

    Antiepileptic drugs (AEDs) used to treat seizures in pregnant women, infants, and young children can cause cognitive impairment. One mechanism implicated in the development of neurocognitive deficits is a pathologic enhancement of physiologically occurring apoptotic neuronal death in the developing brain. We investigated whether the newer antiepileptic drug levetiracetam (LEV) and the older antiepileptic drug sulthiame (SUL) have neurotoxic properties in the developing rat brain. SUL significantly enhanced neuronal death in the brains of rat pups ages 0 to 7 days at doses of 100 mg/kg and above, whereas LEV did not show this neurotoxic effect. Dosages of both drugs used in the context of this study comply with an effective anticonvulsant dose range applied in rodent seizure models. Thus, LEV is an AED which lacks neurotoxicity in the developing rat brain and should be considered in the treatment of epilepsy in pregnant women, infants, and toddlers once general safety issues have been properly addressed.

  9. Targeting Epigenetic Mechanisms in Pain Due to Trauma and Traumatic Brain Injury (TBI)

    DTIC Science & Technology

    2015-10-01

    particularly likely to involve TBI, peripheral trauma or both. Disability due to pain and other causes is very high amongst such patients. We have no...effective approaches to reducing the likelihood of developing chronic pain after TBI or peripheral injuries, and the mechanisms supporting such pain...brain or peripheral trauma may support chronic pain. Our work to-date has established a rodent model of TBI in combination with injury to a limb as a

  10. Sex differences in the developing brain as a source of inherent risk.

    PubMed

    McCarthy, Margaret M

    2016-12-01

    Brain development diverges in males and females in response to androgen production by the fetal testis. This sexual differentiation of the brain occurs during a sensitive window and induces enduring neuroanatomical and physiological changes that profoundly impact behavior. What we know about the contribution of sex chromosomes is still emerging, highlighting the need to integrate multiple factors into understanding sex differences, including the importance of context. The cellular mechanisms are best modeled in rodents and have provided both unifying principles and surprising specifics. Markedly distinct signaling pathways direct differentiation in specific brain regions, resulting in mosaicism of relative maleness, femaleness, and sameness through-out the brain, while canalization both exaggerates and constrains sex differences. Non-neuronal cells and inflammatory mediators are found in greater number and at higher levels in parts of male brains. This higher baseline of inflammation is speculated to increase male vulnerability to developmental neuropsychiatric disorders that are triggered by inflammation.

  11. Visible rodent brain-wide networks at single-neuron resolution

    PubMed Central

    Yuan, Jing; Gong, Hui; Li, Anan; Li, Xiangning; Chen, Shangbin; Zeng, Shaoqun; Luo, Qingming

    2015-01-01

    There are some unsolvable fundamental questions, such as cell type classification, neural circuit tracing and neurovascular coupling, though great progresses are being made in neuroscience. Because of the structural features of neurons and neural circuits, the solution of these questions needs us to break through the current technology of neuroanatomy for acquiring the exactly fine morphology of neuron and vessels and tracing long-distant circuit at axonal resolution in the whole brain of mammals. Combined with fast-developing labeling techniques, efficient whole-brain optical imaging technology emerging at the right moment presents a huge potential in the structure and function research of specific-function neuron and neural circuit. In this review, we summarize brain-wide optical tomography techniques, review the progress on visible brain neuronal/vascular networks benefit from these novel techniques, and prospect the future technical development. PMID:26074784

  12. The beneficial role of Naringin- a citrus bioflavonoid, against oxidative stress-induced neurobehavioral disorders and cognitive dysfunction in rodents: A systematic review and meta-analysis.

    PubMed

    Viswanatha, Gollapalle Lakshminarayanashastry; Shylaja, H; Moolemath, Yogananda

    2017-10-01

    Naringin is a bioflavonoid, very abundantly found in citrus species. In literature, naringin has been scientifically well documented for its beneficial effects in various neurological disorders. In this systematic review and meta-analysis, we have made an attempt to correlate the protective role of naringin against oxidative stress-induced neurological disorders in rodents. The systematic search was performed using electronic databases; the search was mainly focused on the role of naringin in oxidative stress-induced neuropathological conditions in rodents. While, the meta-analysis was performed on the effect of naringin on oxidative stress markers [superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), reduced glutathione (GSH), lipid peroxidation (LPO)], nitrite, mitochondrial complexes (I to IV) and enzymes (acetylcholinesterase, Na + -K + -ATPase, Ca 2+ -ATPase, and Mg 2+ -ATPase) in the rodent brain. The data was analyzed using Review Manager Software. Based on the inclusion and exclusion criteria, twenty studies were selected. The meta-analysis revealed that, naringin could significantly inhibit various physical and chemical stimuli- induced neurological perturbances in the rodent brain, mediated through oxidative stress. Further, naringin also significantly restored the levels of all the oxidative stress markers (oxidative, nitrosative, enzymes, and mitochondrial complexes) in different parts of the rodent brain. This systematic review and meta-analysis supports the available scientific evidence on the beneficial role of naringin in the management of various neurological ailments. However, further studies involving human subjects is recommended to establish the safety and therapeutic efficacy in humans. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems.

    PubMed

    Mattson, Mark P; Wan, Ruiqian

    2005-03-01

    Intermittent fasting (IF; reduced meal frequency) and caloric restriction (CR) extend lifespan and increase resistance to age-related diseases in rodents and monkeys and improve the health of overweight humans. Both IF and CR enhance cardiovascular and brain functions and improve several risk factors for coronary artery disease and stroke including a reduction in blood pressure and increased insulin sensitivity. Cardiovascular stress adaptation is improved and heart rate variability is increased in rodents maintained on an IF or a CR diet. Moreover, rodents maintained on an IF regimen exhibit increased resistance of heart and brain cells to ischemic injury in experimental models of myocardial infarction and stroke. The beneficial effects of IF and CR result from at least two mechanisms--reduced oxidative damage and increased cellular stress resistance. Recent findings suggest that some of the beneficial effects of IF on both the cardiovascular system and the brain are mediated by brain-derived neurotrophic factor signaling in the brain. Interestingly, cellular and molecular effects of IF and CR on the cardiovascular system and the brain are similar to those of regular physical exercise, suggesting shared mechanisms. A better understanding of the cellular and molecular mechanisms by which IF and CR affect the blood vessels and heart and brain cells will likely lead to novel preventative and therapeutic strategies for extending health span.

  14. Using animal models to evaluate the functional consequences of anesthesia during early neurodevelopment.

    PubMed

    Maloney, Susan E; Creeley, Catherine E; Hartman, Richard E; Yuede, Carla M; Zorumski, Charles F; Jevtovic-Todorovic, Vesna; Dikranian, Krikor; Noguchi, Kevin K; Farber, Nuri B; Wozniak, David F

    2018-03-14

    Fifteen years ago Olney and colleagues began using animal models to evaluate the effects of anesthetic and sedative agents (ASAs) on neurodevelopment. The results from ongoing studies indicate that, under certain conditions, exposure to these drugs during development induces an acute elevated apoptotic neurodegenerative response in the brain and long-term functional impairments. These animal models have played a significant role in bringing attention to the possible adverse effects of exposing the developing brain to ASAs when few concerns had been raised previously in the medical community. The apoptotic degenerative response resulting from neonatal exposure to ASAs has been replicated in many studies in both rodents and non-human primates, suggesting that a similar effect may occur in humans. In both rodents and non-human primates, significantly increased levels of apoptotic degeneration are often associated with functional impairments later in life. However, behavioral deficits following developmental ASA exposure have not been consistently reported even when significantly elevated levels of apoptotic degeneration have been documented in animal models. In the present work, we review this literature and propose a rodent model for assessing potential functional deficits following neonatal ASA exposure with special reference to experimental design and procedural issues. Our intent is to improve test sensitivity and replicability for detecting subtle behavioral effects, and thus enhance the translational significance of ASA models. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Large scale serial two-photon microscopy to investigate local vascular changes in whole rodent brain models of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Delafontaine-Martel, P.; Lefebvre, J.; Damseh, R.; Castonguay, A.; Tardif, P.; Lesage, F.

    2018-02-01

    In this study, an automated serial two-photon microscope was used to image a fluorescent gelatin filled rodent's brain in 3D. A method to compute vascular density using automatic segmentation was combined with coregistration techniques to build group-level vasculature metrics. By studying the medial prefrontal cortex and the hippocampal formation of 3 age groups (2, 4.5 and 8 months old), we compared vascular density for both WT and an Alzheimer model transgenic brain (APP/PS1). We observe a loss of vascular density caused by the ageing process and we propose further analysis to confirm our results.

  16. Synthesis and Initial in Vivo Studies with [11C]SB-216763: The First Radiolabeled Brain Penetrative Inhibitor of GSK-3

    PubMed Central

    2015-01-01

    Quantifying glycogen synthase kinase-3 (GSK-3) activity in vivo using positron emission tomography (PET) imaging is of interest because dysregulation of GSK-3 is implicated in numerous diseases and neurological disorders for which GSK-3 inhibitors are being considered as therapeutic strategies. Previous PET radiotracers for GSK-3 have been reported, but none of the published examples cross the blood–brain barrier. Therefore, we have an ongoing interest in developing a brain penetrating radiotracer for GSK-3. To this end, we were interested in synthesis and preclinical evaluation of [11C]SB-216763, a high-affinity inhibitor of GSK-3 (Ki = 9 nM; IC50 = 34 nM). Initial radiosyntheses of [11C]SB-216763 proved ineffective in our hands because of competing [3 + 3] sigmatropic shifts. Therefore, we have developed a novel one-pot two-step synthesis of [11C]SB-216763 from a 2,4-dimethoxybenzyl-protected maleimide precursor, which provided high specific activity [11C]SB-216763 in 1% noncorrected radiochemical yield (based upon [11C]CH3I) and 97–100% radiochemical purity (n = 7). Initial preclinical evaluation in rodent and nonhuman primate PET imaging studies revealed high initial brain uptake (peak rodent SUV = 2.5 @ 3 min postinjection; peak nonhuman primate SUV = 1.9 @ 5 min postinjection) followed by washout. Brain uptake was highest in thalamus, striatum, cortex, and cerebellum, areas known to be rich in GSK-3. These results make the arylindolemaleimide skeleton our lead scaffold for developing a PET radiotracer for quantification of GSK-3 density in vivo and ultimately translating it into clinical use. PMID:26005531

  17. Central administration of the anorexigenic peptide neuromedin U decreases alcohol intake and attenuates alcohol-induced reward in rodents.

    PubMed

    Vallöf, Daniel; Ulenius, Lisa; Egecioglu, Emil; Engel, Jörgen A; Jerlhag, Elisabet

    2017-05-01

    By investigating the neurochemical mechanisms through which alcohol activates the brain reward systems, novel treatment strategies for alcohol use disorder (AUD), a chronic relapsing disease, can be developed. In contrast to the common view of the function of gut-brain peptides, such as neuromedin U (NMU), to regulate food intake and appetite, a novel role in reinforcement mediation has been implied. The anorexigenic effects of NMU are mediated via NMU2 receptors, preferably in the arcuate nucleus and paraventricular nucleus. The expression of NMU2 receptors is also expressed in several reward-related areas in the brain, suggesting a role in reward regulation. The present experiments were therefore set up to investigate the effect of intracerebroventricular administration of NMU on alcohol-mediated behaviors in rodents. We found that central administration of NMU attenuated alcohol-induced locomotor stimulation, accumbal dopamine release and the expression of conditioned place preference in mice. In addition, NMU dose dependently decreased alcohol intake in high, but not in low, alcohol-consuming rats. Central NMU administration did not alter the blood alcohol concentrations nor change the corticosterone levels in rodents. Given that AUD is a major health-care challenge causing an enormous cost to society and novel treatment strategies are warranted, our data suggest that NMU analogues deserve to be evaluated as novel treatment of AUD in humans. © 2016 The Authors Addiction Biology published by John Wiley & Sons Ltd.

  18. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models.

    PubMed

    Horder, Jamie; Petrinovic, Marija M; Mendez, Maria A; Bruns, Andreas; Takumi, Toru; Spooren, Will; Barker, Gareth J; Künnecke, Basil; Murphy, Declan G

    2018-05-25

    Autism spectrum disorder (ASD) is a pervasive neurodevelopmental syndrome with a high human and economic burden. The pathophysiology of ASD is largely unclear, thus hampering development of pharmacological treatments for the core symptoms of the disorder. Abnormalities in glutamate and GABA signaling have been hypothesized to underlie ASD symptoms, and may form a therapeutic target, but it is not known whether these abnormalities are recapitulated in humans with ASD, as well as in rodent models of the disorder. We used translational proton magnetic resonance spectroscopy ([1H]MRS) to compare glutamate and GABA levels in adult humans with ASD and in a panel of six diverse rodent ASD models, encompassing genetic and environmental etiologies. [1H]MRS was performed in the striatum and the medial prefrontal cortex, of the humans, mice, and rats in order to allow for direct cross-species comparisons in specific cortical and subcortical brain regions implicated in ASD. In humans with ASD, glutamate concentration was reduced in the striatum and this was correlated with the severity of social symptoms. GABA levels were not altered in either brain region. The reduction in striatal glutamate was recapitulated in mice prenatally exposed to valproate, and in mice and rats carrying Nlgn3 mutations, but not in rodent ASD models with other etiologies. Our findings suggest that glutamate/GABA abnormalities in the corticostriatal circuitry may be a key pathological mechanism in ASD; and may be linked to alterations in the neuroligin-neurexin signaling complex.

  19. Cloning and sequence analysis of the human brain beta-adrenergic receptor. Evolutionary relationship to rodent and avian beta-receptors and porcine muscarinic receptors.

    PubMed

    Chung, F Z; Lentes, K U; Gocayne, J; Fitzgerald, M; Robinson, D; Kerlavage, A R; Fraser, C M; Venter, J C

    1987-01-26

    Two cDNA clones, lambda-CLFV-108 and lambda-CLFV-119, encoding for the beta-adrenergic receptor, have been isolated from a human brain stem cDNA library. One human genomic clone, LCV-517 (20 kb), was characterized by restriction mapping and partial sequencing. The human brain beta-receptor consists of 413 amino acids with a calculated Mr of 46480. The gene contains three potential glucocorticoid receptor-binding sites. The beta-receptor expressed in human brain was homology with rodent (88%) and avian (52%) beta-receptors and with porcine muscarinic cholinergic receptors (31%), supporting our proposal [(1984) Proc. Natl. Acad. Sci. USA 81, 272 276] that adrenergic and muscarinic cholinergic receptors are structurally related. This represents the first cloning of a neurotransmitter receptor gene from human brain.

  20. Evolution of structural abnormalities in the rat brain following in utero exposure to maternal immune activation: A longitudinal in vivo MRI study.

    PubMed

    Crum, William R; Sawiak, Stephen J; Chege, Winfred; Cooper, Jonathan D; Williams, Steven C R; Vernon, Anthony C

    2017-07-01

    Genetic and environmental risk factors for psychiatric disorders are suggested to disrupt the trajectory of brain maturation during adolescence, leading to the development of psychopathology in adulthood. Rodent models are powerful tools to dissect the specific effects of such risk factors on brain maturational profiles, particularly when combined with Magnetic Resonance Imaging (MRI; clinically comparable technology). We therefore investigated the effect of maternal immune activation (MIA), an epidemiological risk factor for adult-onset psychiatric disorders, on rat brain maturation using atlas and tensor-based morphometry analysis of longitudinal in vivo MR images. Exposure to MIA resulted in decreases in the volume of several cortical regions, the hippocampus, amygdala, striatum, nucleus accumbens and unexpectedly, the lateral ventricles, relative to controls. In contrast, the volumes of the thalamus, ventral mesencephalon, brain stem and major white matter tracts were larger, relative to controls. These volumetric changes were maximal between post-natal day 50 and 100 with no differences between the groups thereafter. These data are consistent with and extend prior studies of brain structure in MIA-exposed rodents. Apart from the ventricular findings, these data have robust face validity to clinical imaging findings reported in studies of individuals at high clinical risk for a psychiatric disorder. Further work is now required to address the relationship of these MRI changes to behavioral dysfunction and to establish thier cellular correlates. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Brain size and limits to adult neurogenesis.

    PubMed

    Paredes, Mercedes F; Sorrells, Shawn F; Garcia-Verdugo, Jose M; Alvarez-Buylla, Arturo

    2016-02-15

    The walls of the cerebral ventricles in the developing embryo harbor the primary neural stem cells from which most neurons and glia derive. In many vertebrates, neurogenesis continues postnatally and into adulthood in this region. Adult neurogenesis at the ventricle has been most extensively studied in organisms with small brains, such as reptiles, birds, and rodents. In reptiles and birds, these progenitor cells give rise to young neurons that migrate into many regions of the forebrain. Neurogenesis in adult rodents is also relatively widespread along the lateral ventricles, but migration is largely restricted to the rostral migratory stream into the olfactory bulb. Recent work indicates that the wall of the lateral ventricle is highly regionalized, with progenitor cells giving rise to different types of neurons depending on their location. In species with larger brains, young neurons born in these spatially specified domains become dramatically separated from potential final destinations. Here we hypothesize that the increase in size and topographical complexity (e.g., intervening white matter tracts) in larger brains may severely limit the long-term contribution of new neurons born close to, or in, the ventricular wall. We compare the process of adult neuronal birth, migration, and integration across species with different brain sizes, and discuss how early regional specification of progenitor cells may interact with brain size and affect where and when new neurons are added. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  2. Magnetic resonance-guided motorized transcranial ultrasound system for blood-brain barrier permeabilization along arbitrary trajectories in rodents.

    PubMed

    Magnin, Rémi; Rabusseau, Fabien; Salabartan, Frédéric; Mériaux, Sébastien; Aubry, Jean-François; Le Bihan, Denis; Dumont, Erik; Larrat, Benoit

    2015-01-01

    Focused ultrasound combined with microbubble injection is capable of locally and transiently enhancing the permeability of the blood-brain barrier (BBB). Magnetic resonance imaging (MRI) guidance enables to plan, monitor, and characterize the BBB disruption. Being able to precisely and remotely control the permeabilization location is of great interest to perform reproducible drug delivery protocols. In this study, we developed an MR-guided motorized focused ultrasound (FUS) system allowing the transducer displacement within preclinical MRI scanners, coupled with real-time transfer and reconstruction of MRI images, to help ultrasound guidance. Capabilities of this new device to deliver large molecules to the brain on either single locations or along arbitrary trajectories were characterized in vivo on healthy rats and mice using 1.5 MHz ultrasound sonications combined with microbubble injection. The efficacy of BBB permeabilization was assessed by injecting a gadolinium-based MR contrast agent that does not cross the intact BBB. The compact motorized FUS system developed in this work fits into the 9-cm inner diameter of the gradient insert installed on our 7-T preclinical MRI scanners. MR images acquired after contrast agent injection confirmed that this device can be used to enhance BBB permeability along remotely controlled spatial trajectories of the FUS beam in both rats and mice. The two-axis motor stage enables reaching any region of interest in the rodent brain. The positioning error when targeting the same anatomical location on different animals was estimated to be smaller than 0.5 mm. Finally, this device was demonstrated to be useful for testing BBB opening at various acoustic pressures (0.2, 0.4, 0.7, and 0.9 MPa) in the same animal and during one single ultrasound session. Our system offers the unique possibility to move the transducer within a high magnetic field preclinical MRI scanner, thus enabling the delivery of large molecules to virtually any rodent brain area in a non-invasive manner. It results in time-saving and reproducibility and could be used to either deliver drugs over large parts of the brain or test different acoustic conditions on the same animal during the same session, therefore reducing physiological variability.

  3. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models

    PubMed Central

    Karuppagounder, Saravanan S.; Alim, Ishraq; Khim, Soah J.; Bourassa, Megan W.; Sleiman, Sama F.; John, Roseleen; Thinnes, Cyrille C.; Yeh, Tzu-Lan; Demetriades, Marina; Neitemeier, Sandra; Cruz, Dana; Gazaryan, Irina; Killilea, David W.; Morgenstern, Lewis; Xi, Guohua; Keep, Richard F.; Schallert, Timothy; Tappero, Ryan V.; Zhong, Jian; Cho, Sunghee; Maxfield, Frederick R.; Holman, Theodore R.; Culmsee, Carsten; Fong, Guo-Hua; Su, Yijing; Ming, Guo-li; Song, Hongjun; Cave, John W.; Schofield, Christopher J.; Colbourne, Frederick; Coppola, Giovanni; Ratan, Rajiv R.

    2017-01-01

    Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron, and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. We show that the hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) family of iron-dependent, oxygen-sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in the mouse striatum improved functional recovery after ICH. A low-molecular-weight hydroxyquinoline inhibitor of the HIF-PHD enzymes, adaptaquin, reduced neuronal death and behavioral deficits after ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of activity of the prodeath factor ATF4 rather than activation of an HIF-dependent prosurvival pathway. Together, these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier-permeable inhibitor adaptaquin can improve functional outcomes after ICH in several rodent models. PMID:26936506

  4. aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data

    PubMed Central

    Niedworok, Christian J.; Brown, Alexander P. Y.; Jorge Cardoso, M.; Osten, Pavel; Ourselin, Sebastien; Modat, Marc; Margrie, Troy W.

    2016-01-01

    The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain. PMID:27384127

  5. Rodent wearable ultrasound system for wireless neural recording.

    PubMed

    Piech, David K; Kay, Joshua E; Boser, Bernhard E; Maharbiz, Michel M

    2017-07-01

    Advances in minimally-invasive, distributed biological interface nodes enable possibilities for networks of sensors and actuators to connect the brain with external devices. The recent development of the neural dust sensor mote has shown that utilizing ultrasound backscatter communication enables untethered sub-mm neural recording devices. These implanted sensor motes require a wearable external ultrasound interrogation device to enable in-vivo, freely-behaving neural interface experiments. However, minimizing the complexity and size of the implanted sensors shifts the power and processing burden to the external interrogator. In this paper, we present an ultrasound backscatter interrogator that supports real-time backscatter processing in a rodent-wearable, completely wireless device. We demonstrate a generic digital encoding scheme which is intended for transmitting neural information. The system integrates a front-end ultrasonic interface ASIC with off-the-shelf components to enable a highly compact ultrasound interrogation device intended for rodent neural interface experiments but applicable to other model systems.

  6. Development of brain-wide connectivity architecture in awake rats.

    PubMed

    Ma, Zilu; Ma, Yuncong; Zhang, Nanyin

    2018-08-01

    Childhood and adolescence are both critical developmental periods, evidenced by complex neurophysiological changes the brain undergoes and high occurrence rates of neuropsychiatric disorders during these periods. Despite substantial progress in elucidating the developmental trajectories of individual neural circuits, our knowledge of developmental changes of whole-brain connectivity architecture in animals is sparse. To fill this gap, here we longitudinally acquired rsfMRI data in awake rats during five developmental stages from juvenile to adulthood. We found that the maturation timelines of brain circuits were heterogeneous and system specific. Functional connectivity (FC) tended to decrease in subcortical circuits, but increase in cortical circuits during development. In addition, the developing brain exhibited hemispheric functional specialization, evidenced by reduced inter-hemispheric FC between homotopic regions, and lower similarity of region-to-region FC patterns between the two hemispheres. Finally, we showed that whole-brain network development was characterized by reduced clustering (i.e. local communication) but increased integration (distant communication). Taken together, the present study has systematically characterized the development of brain-wide connectivity architecture from juvenile to adulthood in awake rats. It also serves as a critical reference point for understanding circuit- and network-level changes in animal models of brain development-related disorders. Furthermore, FC data during brain development in awake rodents contain high translational value and can shed light onto comparative neuroanatomy. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. A new coordinate system for rodent brain and variability in the brain weights and dimensions of different ages in the naked mole-rat.

    PubMed

    Xiao, Jun

    2007-05-15

    Traditionally, the skull landmarks, i.e., bregma, lambda, and the interaural line, are the origins of the coordinate system for almost all rodent brain atlases. The disadvantages of using a skull landmark as an origin are: (i) there are differences among individuals in the alignment between the skull and the brain; (ii) the shapes of sutures, on which a skull landmark is determined, are different for different animals; (iii) the skull landmark is not clear for some animals. Recently, the extreme point of the entire brain (the tip of the olfactory bulb) has also been used as the origin for an atlas coordinate system. The accuracy of stereotaxically locating a brain structure depends on the relative distance between the structure and the reference point of the coordinate. The disadvantages of using the brain extreme as an origin are that it is located far from most brain structures and is not readily exposed during most in vivo procedures. To overcome these disadvantages, this paper introduces a new coordinate system for the brain of the naked mole-rat. The origin of this new coordinate system is a landmark directly on the brain: the intersection point of the posterior edges of the two cerebral hemispheres. This new coordinate system is readily applicable to other rodent species and is statistically better than using bragma and lambda as reference points. It is found that the body weight of old naked mole-rats is significantly bigger than that of young animals. However, the old naked mole-rat brain is not significantly heavier than that of young animal. Both brain weight and brain length vary little among animals of different weights. The disadvantages of current definition of "significant" are briefly discussed and a new expression that describes more objectively the result of statistical test is brought up and used.

  8. Homeobox genes in the rodent pineal gland: roles in development and phenotype maintenance.

    PubMed

    Rath, Martin F; Rohde, Kristian; Klein, David C; Møller, Morten

    2013-06-01

    The pineal gland is a neuroendocrine gland responsible for nocturnal synthesis of melatonin. During early development of the rodent pineal gland from the roof of the diencephalon, homeobox genes of the orthodenticle homeobox (Otx)- and paired box (Pax)-families are expressed and are essential for normal pineal development consistent with the well-established role that homeobox genes play in developmental processes. However, the pineal gland appears to be unusual because strong homeobox gene expression persists in the pineal gland of the adult brain. Accordingly, in addition to developmental functions, homeobox genes appear to be key regulators in postnatal phenotype maintenance in this tissue. In this paper, we review ontogenetic and phylogenetic aspects of pineal development and recent progress in understanding the involvement of homebox genes in rodent pineal development and adult function. A working model is proposed for understanding the sequential action of homeobox genes in controlling development and mature circadian function of the mammalian pinealocyte based on knowledge from detailed developmental and daily gene expression analyses in rats, the pineal phenotypes of homebox gene-deficient mice and studies on development of the retinal photoreceptor; the pinealocyte and retinal photoreceptor share features not seen in other tissues and are likely to have evolved from the same ancestral photodetector cell.

  9. Homeobox genes in the rodent pineal gland: roles in development and phenotype maintenance

    PubMed Central

    Rath, Martin F.; Rohde, Kristian; Klein, David C.; Møller, Morten

    2012-01-01

    The pineal gland is a neuroendocrine gland responsible for nocturnal synthesis of melatonin. During early development of the rodent pineal gland from the roof of the diencephalon, homeobox genes of the orthodenticle homeobox (Otx)- and paired box (Pax)-families are expressed and are essential for normal pineal development consistent with the well-established role that homeobox genes play in developmental processes. However, the pineal gland appears to be unusual because strong homeobox gene expression persists in the pineal gland of the adult brain. Accordingly, in addition to developmental functions, homeobox genes appear to be key regulators in postnatal phenotype maintenance in this tissue. In this paper, we review ontogenetic and phylogenetic aspects of pineal development and recent progress in understanding the involvement of homebox genes in rodent pineal development and adult function. A working model is proposed for understanding the sequential action of homeobox genes in controlling development and mature circadian function of the mammalian pinealocyte based on knowledge from detailed developmental and daily gene expression analyses in rats, the pineal phenotypes of homebox gene-deficient mice and studies on development of the retinal photoreceptor; the pinealocyte and retinal photoreceptor share features not seen in other tissues and are likely to have evolved from the same ancestral photodetector cell. PMID:23076630

  10. Sex differences in the developing brain as a source of inherent risk

    PubMed Central

    McCarthy, Margaret M.

    2016-01-01

    Brain development diverges in males and females in response to androgen production by the fetal testis. This sexual differentiation of the brain occurs during a sensitive window and induces enduring neuroanatomical and physiological changes that profoundly impact behavior. What we know about the contribution of sex chromosomes is still emerging, highlighting the need to integrate multiple factors into understanding sex differences, including the importance of context. The cellular mechanisms are best modeled in rodents and have provided both unifying principles and surprising specifics. Markedly distinct signaling pathways direct differentiation in specific brain regions, resulting in mosaicism of relative maleness, femaleness, and sameness through-out the brain, while canalization both exaggerates and constrains sex differences. Non-neuronal cells and inflammatory mediators are found in greater number and at higher levels in parts of male brains. This higher baseline of inflammation is speculated to increase male vulnerability to developmental neuropsychiatric disorders that are triggered by inflammation. PMID:28179808

  11. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    ERIC Educational Resources Information Center

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  12. Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates

    PubMed Central

    Elsworth, John D.; Jentsch, J. David; VandeVoort, Catherine A.; Roth, Robert H.; Redmond, D. Eugene; Leranth, Csaba

    2013-01-01

    Prevalent use of bisphenol-A (BPA) in the manufacture of resins, plastics and paper products has led to frequent exposure of most people to this endocrine disruptor. Some rodent studies have suggested that BPA can exert detrimental effects on brain development. However as rodent models cannot be relied on to predict consequences of human exposure to BPA during development, it is important to investigate the effects of BPA on non-human primate brain development. Previous research suggests that BPA preferentially targets dopamine neurons in ventral mesencephalon and glutamatergic neurons in hippocampus, so the present work examined the susceptibility of these systems to low dose BPA exposure at the fetal and juvenile stages of development in non-human primates. Exposure of pregnant rhesus monkeys to relatively low levels of BPA during the final 2 months of gestation, induced abnormalities in fetal ventral mesencephalon and hippocampus. Specifically, light microscopy revealed a decrease in tyrosine hydroxylase-expressing (dopamine) neurons in the midbrain of BPA-exposed fetuses and electron microscopy identified a reduction in spine synapses in the CA1 region of hippocampus. In contrast, administration of BPA to juvenile vervet monkeys (14–18 months of age) was without effect on these indices, or on dopamine and serotonin concentrations in striatum and prefrontal cortex, or on performance of a cognitive task that tests working memory capacity. These data indicate that BPA exerts an age-dependent detrimental impact on primate brain development, at blood levels within the range measured in humans having only environmental contact with BPA. PMID:23337607

  13. Fluorescence laminar optical tomography for brain imaging: system implementation and performance evaluation.

    PubMed

    Azimipour, Mehdi; Sheikhzadeh, Mahya; Baumgartner, Ryan; Cullen, Patrick K; Helmstetter, Fred J; Chang, Woo-Jin; Pashaie, Ramin

    2017-01-01

    We present our effort in implementing a fluorescence laminar optical tomography scanner which is specifically designed for noninvasive three-dimensional imaging of fluorescence proteins in the brains of small rodents. A laser beam, after passing through a cylindrical lens, scans the brain tissue from the surface while the emission signal is captured by the epi-fluorescence optics and is recorded using an electron multiplication CCD sensor. Image reconstruction algorithms are developed based on Monte Carlo simulation to model light–tissue interaction and generate the sensitivity matrices. To solve the inverse problem, we used the iterative simultaneous algebraic reconstruction technique. The performance of the developed system was evaluated by imaging microfabricated silicon microchannels embedded inside a substrate with optical properties close to the brain as a tissue phantom and ultimately by scanning brain tissue in vivo. Details of the hardware design and reconstruction algorithms are discussed and several experimental results are presented. The developed system can specifically facilitate neuroscience experiments where fluorescence imaging and molecular genetic methods are used to study the dynamics of the brain circuitries.

  14. Inactivation of Medial Prefrontal Cortex or Acute Stress Impairs Odor Span in Rats

    ERIC Educational Resources Information Center

    Davies, Don A.; Molder, Joel J.; Greba, Quentin; Howland, John G.

    2013-01-01

    The capacity of working memory is limited and is altered in brain disorders including schizophrenia. In rodent working memory tasks, capacity is typically not measured (at least not explicitly). One task that does measure working memory capacity is the odor span task (OST) developed by Dudchenko and colleagues. In separate experiments, the effects…

  15. High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates.

    PubMed

    Seiriki, Kaoru; Kasai, Atsushi; Hashimoto, Takeshi; Schulze, Wiebke; Niu, Misaki; Yamaguchi, Shun; Nakazawa, Takanobu; Inoue, Ken-Ichi; Uezono, Shiori; Takada, Masahiko; Naka, Yuichiro; Igarashi, Hisato; Tanuma, Masato; Waschek, James A; Ago, Yukio; Tanaka, Kenji F; Hayata-Takano, Atsuko; Nagayasu, Kazuki; Shintani, Norihito; Hashimoto, Ryota; Kunii, Yasuto; Hino, Mizuki; Matsumoto, Junya; Yabe, Hirooki; Nagai, Takeharu; Fujita, Katsumasa; Matsuda, Toshio; Takuma, Kazuhiro; Baba, Akemichi; Hashimoto, Hitoshi

    2017-06-21

    Subcellular resolution imaging of the whole brain and subsequent image analysis are prerequisites for understanding anatomical and functional brain networks. Here, we have developed a very high-speed serial-sectioning imaging system named FAST (block-face serial microscopy tomography), which acquires high-resolution images of a whole mouse brain in a speed range comparable to that of light-sheet fluorescence microscopy. FAST enables complete visualization of the brain at a resolution sufficient to resolve all cells and their subcellular structures. FAST renders unbiased quantitative group comparisons of normal and disease model brain cells for the whole brain at a high spatial resolution. Furthermore, FAST is highly scalable to non-human primate brains and human postmortem brain tissues, and can visualize neuronal projections in a whole adult marmoset brain. Thus, FAST provides new opportunities for global approaches that will allow for a better understanding of brain systems in multiple animal models and in human diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Long-Term Effects of Neonatal Methamphetamine Exposure on Cognitive Function in Adolescent Mice

    PubMed Central

    Siegel, Jessica A.; Park, Byung S.; Raber, Jacob

    2011-01-01

    Exposure to methamphetamine during brain development impairs cognition in children and adult rodents. In mice, these impairments are greater in females than males. Adult female, but not male, mice show impairments in novel location recognition following methamphetamine exposure during brain development. In contrast to adulthood, little is known about the potential effects of methamphetamine exposure on cognition in adolescent mice. As adolescence is an important time of development and is relatively understudied, the aim of the current study was to examine potential long-term effects of neonatal methamphetamine exposure on behavior and cognition during adolescence. Male and female mice were exposed to methamphetamine (5 mg/kg) or saline once a day from postnatal day 11-20, the period of rodent hippocampal development. Behavioral and cognitive function was assessed during adolescence beginning on postnatal day 30. During the injection period, methamphetamine-exposed mice gained less weight on average compared to saline-exposed mice. In both male and female mice, methamphetamine exposure significantly impaired novel object recognition and there was a trend towards impaired novel location recognition. Anxiety-like behavior, sensorimotor gating, and contextual and cued fear conditioning were not affected by methamphetamine exposure. Thus, neonatal methamphetamine exposure affects cognition in adolescence and unlike in adulthood equally affects male and female mice. PMID:21238498

  17. Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents.

    PubMed

    Seibt, Julie; Richard, Clément J; Sigl-Glöckner, Johanna; Takahashi, Naoya; Kaplan, David I; Doron, Guy; de Limoges, Denis; Bocklisch, Christina; Larkum, Matthew E

    2017-09-25

    How sleep influences brain plasticity is not known. In particular, why certain electroencephalographic (EEG) rhythms are linked to memory consolidation is poorly understood. Calcium activity in dendrites is known to be necessary for structural plasticity changes, but this has never been carefully examined during sleep. Here, we report that calcium activity in populations of neocortical dendrites is increased and synchronised during oscillations in the spindle range in naturally sleeping rodents. Remarkably, the same relationship is not found in cell bodies of the same neurons and throughout the cortical column. Spindles during sleep have been suggested to be important for brain development and plasticity. Our results provide evidence for a physiological link of spindles in the cortex specific to dendrites, the main site of synaptic plasticity.Different stages of sleep, marked by particular electroencephalographic (EEG) signatures, have been linked to memory consolidation, but underlying mechanisms are poorly understood. Here, the authors show that dendritic calcium synchronisation correlates with spindle-rich sleep phases.

  18. The Epileptic Thalamocortical Network is a Macroscopic Self-Sustained Oscillator: Evidence from Frequency-Locking Experiments in Rat Brains

    NASA Astrophysics Data System (ADS)

    Velazquez, J. L. Perez; Erra, R. Guevara; Rosenblum, M.

    2015-02-01

    The rhythmic activity observed in nervous systems, in particular in epilepsies and Parkinson's disease, has often been hypothesized to originate from a macroscopic self-sustained neural oscillator. However, this assumption has not been tested experimentally. Here we support this viewpoint with in vivo experiments in a rodent model of absence seizures, by demonstrating frequency locking to external periodic stimuli and finding the characteristic Arnold tongue. This result has important consequences for developing methods for the control of brain activity, such as seizure cancellation.

  19. Comprehensive transcriptional map of primate brain development

    PubMed Central

    Bakken, Trygve E.; Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A.; Ng, Lydia; Szafer, Aaron; Dalley, Rachel A.; Royall, Joshua J.; Lemon, Tracy; Shapouri, Sheila; Aiona, Kaylynn; Arnold, James; Bennett, Jeffrey L.; Bertagnolli, Darren; Bickley, Kristopher; Boe, Andrew; Brouner, Krissy; Butler, Stephanie; Byrnes, Emi; Caldejon, Shiella; Carey, Anita; Cate, Shelby; Chapin, Mike; Chen, Jefferey; Dee, Nick; Desta, Tsega; Dolbeare, Tim A.; Dotson, Nadia; Ebbert, Amanda; Fulfs, Erich; Gee, Garrett; Gilbert, Terri L.; Goldy, Jeff; Gourley, Lindsey; Gregor, Ben; Gu, Guangyu; Hall, Jon; Haradon, Zeb; Haynor, David R.; Hejazinia, Nika; Hoerder-Suabedissen, Anna; Howard, Robert; Jochim, Jay; Kinnunen, Marty; Kriedberg, Ali; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Luong, Lon; Mastan, Naveed; May, Ryan; Melchor, Jose; Mosqueda, Nerick; Mott, Erika; Ngo, Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana; Pendergraft, Julie; Potekhina, Lydia; Reding, Melissa; Riley, Zackery L.; Roberts, Tyson; Rogers, Brandon; Roll, Kate; Rosen, David; Sandman, David; Sarreal, Melaine; Shapovalova, Nadiya; Shi, Shu; Sjoquist, Nathan; Sodt, Andy J.; Townsend, Robbie; Velasquez, Lissette; Wagley, Udi; Wakeman, Wayne B.; White, Cassandra; Bennett, Crissa; Wu, Jennifer; Young, Rob; Youngstrom, Brian L.; Wohnoutka, Paul; Gibbs, Richard A.; Rogers, Jeffrey; Hohmann, John G.; Hawrylycz, Michael J.; Hevner, Robert F.; Molnár, Zoltán; Phillips, John W.; Dang, Chinh; Jones, Allan R.; Amaral, David G.; Bernard, Amy; Lein, Ed S.

    2017-01-01

    The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high resolution transcriptional atlas of rhesus monkey brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical parcellation of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons, and cortical layers and areas acquire adult-like molecular profiles surprisingly late postnatally. Disparate cell populations exhibit distinct developmental timing but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, and approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny. PMID:27409810

  20. A brain-machine interface for control of medically-induced coma.

    PubMed

    Shanechi, Maryam M; Chemali, Jessica J; Liberman, Max; Solt, Ken; Brown, Emery N

    2013-10-01

    Medically-induced coma is a drug-induced state of profound brain inactivation and unconsciousness used to treat refractory intracranial hypertension and to manage treatment-resistant epilepsy. The state of coma is achieved by continually monitoring the patient's brain activity with an electroencephalogram (EEG) and manually titrating the anesthetic infusion rate to maintain a specified level of burst suppression, an EEG marker of profound brain inactivation in which bursts of electrical activity alternate with periods of quiescence or suppression. The medical coma is often required for several days. A more rational approach would be to implement a brain-machine interface (BMI) that monitors the EEG and adjusts the anesthetic infusion rate in real time to maintain the specified target level of burst suppression. We used a stochastic control framework to develop a BMI to control medically-induced coma in a rodent model. The BMI controlled an EEG-guided closed-loop infusion of the anesthetic propofol to maintain precisely specified dynamic target levels of burst suppression. We used as the control signal the burst suppression probability (BSP), the brain's instantaneous probability of being in the suppressed state. We characterized the EEG response to propofol using a two-dimensional linear compartment model and estimated the model parameters specific to each animal prior to initiating control. We derived a recursive Bayesian binary filter algorithm to compute the BSP from the EEG and controllers using a linear-quadratic-regulator and a model-predictive control strategy. Both controllers used the estimated BSP as feedback. The BMI accurately controlled burst suppression in individual rodents across dynamic target trajectories, and enabled prompt transitions between target levels while avoiding both undershoot and overshoot. The median performance error for the BMI was 3.6%, the median bias was -1.4% and the overall posterior probability of reliable control was 1 (95% Bayesian credibility interval of [0.87, 1.0]). A BMI can maintain reliable and accurate real-time control of medically-induced coma in a rodent model suggesting this strategy could be applied in patient care.

  1. Activation of TrkB with TAM-163 Results in Opposite Effects on Body Weight in Rodents and Non-Human Primates

    PubMed Central

    Perreault, Mylène; Feng, Guo; Will, Sarah; Gareski, Tiffany; Kubasiak, David; Marquette, Kimberly; Vugmeyster, Yulia; Unger, Thaddeus J.; Jones, Juli; Qadri, Ariful; Hahm, Seung; Sun, Ying; Rohde, Cynthia M.; Zwijnenberg, Raphael; Paulsen, Janet; Gimeno, Ruth E.

    2013-01-01

    Strong genetic data link the Tyrosine kinase receptor B (TrkB) and its major endogenous ligand brain-derived neurotrophic factor (BDNF) to the regulation of energy homeostasis, with loss-of-function mutations in either gene causing severe obesity in both mice and humans. It has previously been reported that peripheral administration of the endogenous TrkB agonist ligand neurotrophin-4 (NT-4) profoundly decreases food intake and body weight in rodents, while paradoxically increasing these same parameters in monkeys. We generated a humanized TrkB agonist antibody, TAM-163, and characterized its therapeutic potential in several models of type 2 diabetes and obesity. In vitro, TAM-163 bound to human and rodent TrkB with high affinity, activated all aspects of the TrkB signaling cascade and induced TrkB internalization and degradation in a manner similar to BDNF. In vivo, peripheral administration of TAM-163 decreased food intake and/or body weight in mice, rats, hamsters, and dogs, but increased food intake and body weight in monkeys. The magnitude of weight change was similar in rodents and non-human primates, occurred at doses where there was no appreciable penetration into deep structures of the brain, and could not be explained by differences in exposures between species. Rather, peripherally administered TAM-163 localized to areas in the hypothalamus and the brain stem located outside the blood-brain barrier in a similar manner between rodents and non-human primates, suggesting differences in neuroanatomy across species. Our data demonstrate that a TrkB agonist antibody, administered peripherally, causes species-dependent effects on body weight similar to the endogenous TrkB ligand NT-4. The possible clinical utility of TrkB agonism in treating weight regulatory disorder, such as obesity or cachexia, will require evaluation in man. PMID:23700410

  2. Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain.

    PubMed

    Zensi, Anja; Begley, David; Pontikis, Charles; Legros, Celine; Mihoreanu, Larisa; Büchel, Claudia; Kreuter, Jörg

    2010-12-01

    Nanoparticles made of human serum albumin (HSA) and modified with apolipoproteins have previously been shown to transport drugs, which normally do not enter the brain, across the blood-brain barrier (BBB). However the precise mechanism by which nanoparticles with different apolipoproteins on their surface can target to the brain, as yet, has not been totally elucidated. In the present study, HSA nanoparticles with covalently bound apolipoprotein A-I (Apo A-I) as a targetor for brain capillary endothelial cells were injected intravenously into SV 129 mice and Wistar rats. The rodents were sacrificed after 15 or 30 min, and their brains were examined by transmission electron microscopy. Apo A-I nanoparticles could be found inside the endothelial cells of brain capillaries as well as within parenchymal brain tissue of both, mice and rats, whereas control particles without Apo A-I on their surface did not cross the BBB during our experiments. The maintenance of tight junction integrity and barrier function during treatment with nanoparticles was demonstrated by perfusion with a fixative containing lanthanum nitrate as an electron dense marker for the permeability of tight junctions.

  3. A simplified protocol employing elacridar in rodents: a screening model in drug discovery to assess P-gp mediated efflux at the blood brain barrier.

    PubMed

    Kallem, Rajareddy; Kulkarni, Chetan P; Patel, Dakshay; Thakur, Megha; Sinz, Michael; Singh, Sheelendra P; Mahammad, S Shahe; Mandlekar, Sandhya

    2012-06-01

    In the present study we have developed a simple, time, and cost effective in vivo rodent protocol to screen the susceptibility of a test compound for P-glycoprotein (P-gp) mediated efflux at the blood brain barrier (BBB) during early drug discovery. We used known P-gp substrates as test compounds (quinidine, digoxin, and talinolol) and elacridar (GF120918) as a chemical inhibitor to establish the model. The studies were carried out in both mice and rats. Elacridar was dosed intravenously at 5 mg/kg, 0.5 h prior to probe substrate administration. Plasma and brain samples were collected and analyzed using UPLC-MS/MS. In the presence of elacridar, the ratio of brain to plasma area under the curve (B/P) in mouse increased 2, 4, and 38-fold, respectively, for talinolol, digoxin, and quinidine; whereas in rat, a 70-fold increase was observed for quinidine. Atenolol, a non P-gp substrate, exhibited poor brain penetration in the presence or absence of elacridar in both species (B/P ratio ~ 0.1). Elacridar had no significant effect on the systemic clearance of digoxin or quinidine; however, a trend towards increasing volume of distribution and half life was observed. Our results support the utility of elacridar in evaluation of the influence of P-gp mediated efflux on drug distribution to the brain. Our protocol employing a single intravenous dose of elacridar and test compound provides a cost effective alternative to expensive P-gp knockout mice models during early drug discovery.

  4. Exercise offers anxiolytic potential: A role for stress and brain noradrenergic-galaninergic mechanisms

    PubMed Central

    Sciolino, Natale R.; Holmes, Philip V.

    2016-01-01

    Although physical activity reduces anxiety in humans, the neural basis for this response is unclear. Rodent models are essential to understand the mechanisms that underlie the benefits of exercise. However, it is controversial whether exercise exerts anxiolytic-like potential in rodents. Evidence is reviewed to evaluate the effects of wheel running, an experimental mode of exercise in rodents, on behavior in tests of anxiety and on norepinephrine and galanin systems in neural circuits that regulate stress. Stress is proposed to account for mixed behavioral findings in this literature. Indeed, running promotes an adaptive response to stress and alters anxiety-like behaviors in a manner dependent on stress. Running amplifies galanin expression in noradrenergic locus coeruleus (LC) and suppresses stress-induced activity of the LC and norepinephrine output in LC-target regions. Thus, enhanced galanin-mediated suppression of brain norepinephrine in runners is supported by current literature as a mechanism that may contribute to the stress-protective effects of exercise. These data support the use of rodents to study the emotional and neurobiological consequences of exercise. PMID:22771334

  5. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models

    DOE PAGES

    Karuppagounder, Saravanan S.; Alim, Ishraq; Khim, Soah J.; ...

    2016-03-02

    Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. Here we show that the hypoxia-inducible factor prolyl-hydroxylase (HIF- PHD) family of iron-dependent oxygen sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in mouse striatum improved functional recovery following ICH. A low molecular weight hydroxyquinoline inhibitor of the HIF-PHDs, adaptaquin, reduced neuronal death and behavioral deficitsmore » following ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of expression of the prodeath factor ATF4 rather than activation of a HIF-dependent prosurvival pathway. In conclusion, together these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier permeable inhibitor adaptaquin can improve functional outcomes following ICH in multiple rodent species.« less

  6. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karuppagounder, Saravanan S.; Alim, Ishraq; Khim, Soah J.

    Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. Here we show that the hypoxia-inducible factor prolyl-hydroxylase (HIF- PHD) family of iron-dependent oxygen sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in mouse striatum improved functional recovery following ICH. A low molecular weight hydroxyquinoline inhibitor of the HIF-PHDs, adaptaquin, reduced neuronal death and behavioral deficitsmore » following ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of expression of the prodeath factor ATF4 rather than activation of a HIF-dependent prosurvival pathway. In conclusion, together these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier permeable inhibitor adaptaquin can improve functional outcomes following ICH in multiple rodent species.« less

  7. Rodent Zic Genes in Neural Network Wiring.

    PubMed

    Herrera, Eloísa

    2018-01-01

    The formation of the nervous system is a multistep process that yields a mature brain. Failure in any of the steps of this process may cause brain malfunction. In the early stages of embryonic development, neural progenitors quickly proliferate and then, at a specific moment, differentiate into neurons or glia. Once they become postmitotic neurons, they migrate to their final destinations and begin to extend their axons to connect with other neurons, sometimes located in quite distant regions, to establish different neural circuits. During the last decade, it has become evident that Zic genes, in addition to playing important roles in early development (e.g., gastrulation and neural tube closure), are involved in different processes of late brain development, such as neuronal migration, axon guidance, and refinement of axon terminals. ZIC proteins are therefore essential for the proper wiring and connectivity of the brain. In this chapter, we review our current knowledge of the role of Zic genes in the late stages of neural circuit formation.

  8. Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla

    PubMed Central

    Liu, Feng; Garland, Marianne; Duan, Yunsuo; Stark, Raymond I.; Xu, Dongrong; Dong, Zhengchao; Bansal, Ravi; Peterson, Bradley S.; Kangarlu, Alayar

    2008-01-01

    Direct observational data on the development of the brains of human and nonhuman primates is on remarkably scant, and most of our understanding of primate brain development is extrapolated from findings in rodent models. Magnetic resonance imaging (MRI) is a promising tool for the noninvasive, longitudinal study of the developing primate brain. We devised a protocol to scan pregnant baboons serially at 3 T for up to 3 h per session. Seven baboons were scanned 1–6 times, beginning as early as 56 days post-conceptional age, and as late as 185 days (term ~185 days). Successful scanning of the fetal baboon required careful animal preparation and anesthesia, in addition to optimization of the scanning protocol. We successfully acquired maps of relaxation times (T1 and T2) and high-resolution anatomical images of the brains of fetal baboons at multiple time points during the course of gestation. These images demonstrated the convergence of gray and white matter contrast near term, and furthermore demonstrated that the loss of contrast at that age is a consequence of the continuous change in relaxation times during fetal brain development. These data furthermore demonstrate that maps of relaxation times have clear advantages over the relaxation time weighted images for the tracking of the changes in brain structure during fetal development. This protocol for in utero MRI of fetal baboon brains will help to advance the use of nonhuman primate models to study fetal brain development longitudinally. PMID:18155925

  9. Long-term alterations to DNA methylation as a biomarker of prenatal alcohol exposure: From mouse models to human children with fetal alcohol spectrum disorders.

    PubMed

    Laufer, Benjamin I; Chater-Diehl, Eric J; Kapalanga, Joachim; Singh, Shiva M

    2017-05-01

    Rodent models of Fetal Alcohol Spectrum Disorders (FASD) have revealed that prenatal alcohol exposure (PAE) results in differential DNA cytosine methylation in the developing brain. The resulting genome-wide methylation changes are enriched in genes with neurodevelopmental functions. The profile of differential methylation is dynamic and present in some form for life. The methylation changes are transmitted across subsequent mitotic divisions, where they are maintained and further modified over time. More recent follow up has identified a profile of the differential methylation in the buccal swabs of young children born with FASD. While distinct from the profile observed in brain tissue from rodent models, there are similarities. These include changes in genes belonging to a number of neurodevelopmental and behavioral pathways. Specifically, there is increased methylation at the clustered protocadherin genes and deregulation of genomically imprinted genes, even though no single gene is affected in all patients studied to date. These novel results suggest further development of a methylation based strategy could enable early and accurate diagnostics and therapeutics, which have remained a challenge in FASD research. There are two aspects of this challenge that must be addressed in the immediate future: First, the long-term differential methylomics observed in rodent models must be functionally confirmed. Second, the similarities in differential methylation must be further established in humans at a methylomic level and overcome a number of technical limitations. While a cure for FASD is challenging, there is an opportunity for the development of early diagnostics and attenuations towards a higher quality of life. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  10. Immunohistochemical localization of oxytocin receptors in human brain.

    PubMed

    Boccia, M L; Petrusz, P; Suzuki, K; Marson, L; Pedersen, C A

    2013-12-03

    The neuropeptide oxytocin (OT) regulates rodent, primate and human social behaviors and stress responses. OT binding studies employing (125)I-d(CH2)5-[Tyr(Me)2,Thr4,Tyr-NH2(9)] ornithine vasotocin ((125)I-OTA), has been used to locate and quantify OT receptors (OTRs) in numerous areas of the rat brain. This ligand has also been applied to locating OTRs in the human brain. The results of the latter studies, however, have been brought into question because of subsequent evidence that (125)I-OTA is much less selective for OTR vs. vasopressin receptors in the primate brain. Previously we used a monoclonal antibody directed toward a region of the human OTR to demonstrate selective immunostaining of cell bodies and fibers in the preoptic-anterior hypothalamic area and ventral septum of a cynomolgus monkey (Boccia et al., 2001). The present study employed the same monoclonal antibody to study the location of OTRs in tissue blocks containing cortical, limbic and brainstem areas dissected from fixed adult, human female brains. OTRs were visualized in discrete cell bodies and/or fibers in the central and basolateral regions of the amygdala, medial preoptic area (MPOA), anterior and ventromedial hypothalamus, olfactory nucleus, vertical limb of the diagonal band, ventrolateral septum, anterior cingulate and hypoglossal and solitary nuclei. OTR staining was not observed in the hippocampus (including CA2 and CA3), parietal cortex, raphe nucleus, nucleus ambiguus or pons. These results suggest that there are some similarities, but also important differences, in the locations of OTRs in human and rodent brains. Immunohistochemistry (IHC) utilizing a monoclonal antibody provides specific localization of OTRs in the human brain and thereby provides opportunity to further study OTR in human development and psychiatric conditions. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin, Germany.

    PubMed

    Krücken, Jürgen; Blümke, Julia; Maaz, Denny; Demeler, Janina; Ramünke, Sabrina; Antolová, Daniela; Schaper, Roland; von Samson-Himmelstjerna, Georg

    2017-01-01

    Rodents are important intermediate and paratenic hosts for carnivore parasites, including the important zoonotic agents Toxoplasma, Echinococcus and Toxocara. Monitoring of such parasites in rodents can be used to detect increasing risks for human and veterinary public health. Rodents were trapped at four sites in Berlin, two near the city center, two at the periphery. PCRs were conducted to detect Coccidia (target ITS-1) and specifically Toxoplasma gondii (repetitive element) in brain and ascarids (ITS-2) in muscle or brain tissue. During necropsies, metacestodes were collected and identified using ITS-2 and 12S rRNA PCRs. An ELISA to detect antibodies against Toxocara canis ES antigens was performed. Within the 257 examined rodents, the most frequently observed parasite was Frenkelia glareoli predominantly found in Myodes glareolus. T. gondii was only detected in 12 rodents and Microtus spp. (although strongly underrepresented) had a significantly increased chance of being positive. Neither Echinococcus nor typical Taenia parasites of dogs and cats were found but Mesocestoides litteratus and Taenia martis metacestodes were identified which can cause severe peritoneal or ocular cysticercosis in dogs, primates and humans. Using PCR, the ascarids T. canis (n = 8), Toxocara cati (4) and Parascaris sp. (1) were detected predominantly in muscles. Seroprevalence of T. canis was 14.2% and ELISA was thus more sensitive than PCR to detect infection with this parasite. Non-parametric multidimensional scaling and cluster analysis revealed that parasite communities could be grouped into an urban and a peri-urban cluster with high frequency of ascarid-positive rodents in urban and high frequency of F. glareoli in peri-urban sites. Prevalence rates of parasites in rodents with potential impact for human or veterinary public health are considerable and the monitoring of transmission cycles of carnivore parasites in intermediate rodent hosts is recommended to estimate the health risks arising from wild and domesticated carnivores.

  12. Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin, Germany

    PubMed Central

    Maaz, Denny; Demeler, Janina; Ramünke, Sabrina; Antolová, Daniela; Schaper, Roland; von Samson-Himmelstjerna, Georg

    2017-01-01

    Rodents are important intermediate and paratenic hosts for carnivore parasites, including the important zoonotic agents Toxoplasma, Echinococcus and Toxocara. Monitoring of such parasites in rodents can be used to detect increasing risks for human and veterinary public health. Rodents were trapped at four sites in Berlin, two near the city center, two at the periphery. PCRs were conducted to detect Coccidia (target ITS-1) and specifically Toxoplasma gondii (repetitive element) in brain and ascarids (ITS-2) in muscle or brain tissue. During necropsies, metacestodes were collected and identified using ITS-2 and 12S rRNA PCRs. An ELISA to detect antibodies against Toxocara canis ES antigens was performed. Within the 257 examined rodents, the most frequently observed parasite was Frenkelia glareoli predominantly found in Myodes glareolus. T. gondii was only detected in 12 rodents and Microtus spp. (although strongly underrepresented) had a significantly increased chance of being positive. Neither Echinococcus nor typical Taenia parasites of dogs and cats were found but Mesocestoides litteratus and Taenia martis metacestodes were identified which can cause severe peritoneal or ocular cysticercosis in dogs, primates and humans. Using PCR, the ascarids T. canis (n = 8), Toxocara cati (4) and Parascaris sp. (1) were detected predominantly in muscles. Seroprevalence of T. canis was 14.2% and ELISA was thus more sensitive than PCR to detect infection with this parasite. Non-parametric multidimensional scaling and cluster analysis revealed that parasite communities could be grouped into an urban and a peri-urban cluster with high frequency of ascarid-positive rodents in urban and high frequency of F. glareoli in peri-urban sites. Prevalence rates of parasites in rodents with potential impact for human or veterinary public health are considerable and the monitoring of transmission cycles of carnivore parasites in intermediate rodent hosts is recommended to estimate the health risks arising from wild and domesticated carnivores. PMID:28278269

  13. Enhancement of in vivo antioxidant ability in the brain of rats fed tannin.

    PubMed

    Nakajima, Akira; Ueda, Yuto; Matsuda, Emiko; Sameshima, Hiroshi; Ikenoue, Tsuyomu

    2013-07-01

    The effect of the oral administration of mimosa tannin (MMT) on the rat intra-hippocampal antioxidant ability was examined. Wistar rats at the age of 6 weeks were reared for 8 weeks with the rodent diet (RD) consisting of 0.1 g/kg of MMT (RD-MMT). The antioxidant ability of rat brain was evaluated from the decay of a brain-blood-barrier permeable stable nitroxide, 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (PCAM) measured by the microdialysis-electron spin resonance system under a freely moving state. The decay rate of PCAM in the brain of rats fed RD-MMT was significantly larger than that of rats fed control rodent diet, which indicates the increase of the antioxidant ability in the brain of rats fed RD-MMT. In vitro study showed that MMT did not reduce PCAM directly but enhanced the reduction of PCAM by ascorbic acid. These results indicate that MMT is a potent antioxidant in vitro and in vivo.

  14. Heart-rate sensitive optical coherence angiography for measuring vascular changes due to posttraumatic brain injury in mice

    NASA Astrophysics Data System (ADS)

    Tremoleda, Jordi L.; Alvarez, Karl; Aden, Abdirahman; Donnan, Robert; Michael-Titus, Adina T.; Tomlins, Peter H.

    2017-12-01

    Traumatic brain injury (TBI) results in direct vascular disruption, triggering edema, and reduction in cerebral blood flow. Therefore, understanding the pathophysiology of brain microcirculation following TBI is important for the development of effective therapies. Optical coherence angiography (OCA) is a promising tool for evaluating TBI in rodent models. We develop an approach to OCA that uses the heart-rate frequency to discriminate between static tissue and vasculature. This method operates on intensity data and is therefore not phase sensitive. Furthermore, it does not require spatial overlap of voxels and thus can be applied to pre-existing datasets for which oversampling may not have been explicitly considered. Heart-rate sensitive OCA was developed for dynamic assessment of mouse microvasculature post-TBI. Results show changes occurring at 5-min intervals within the first 50 min of injury.

  15. Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice.

    PubMed

    Reisman, Matthew D; Markow, Zachary E; Bauer, Adam Q; Culver, Joseph P

    2017-04-01

    Optical intrinsic signal (OIS) imaging has been a powerful tool for capturing functional brain hemodynamics in rodents. Recent wide field-of-view implementations of OIS have provided efficient maps of functional connectivity from spontaneous brain activity in mice. However, OIS requires scalp retraction and is limited to superficial cortical tissues. Diffuse optical tomography (DOT) techniques provide noninvasive imaging, but previous DOT systems for rodent neuroimaging have been limited either by sparse spatial sampling or by slow speed. Here, we develop a DOT system with asymmetric source-detector sampling that combines the high-density spatial sampling (0.4 mm) detection of a scientific complementary metal-oxide-semiconductor camera with the rapid (2 Hz) imaging of a few ([Formula: see text]) structured illumination (SI) patterns. Analysis techniques are developed to take advantage of the system's flexibility and optimize trade-offs among spatial sampling, imaging speed, and signal-to-noise ratio. An effective source-detector separation for the SI patterns was developed and compared with light intensity for a quantitative assessment of data quality. The light fall-off versus effective distance was also used for in situ empirical optimization of our light model. We demonstrated the feasibility of this technique by noninvasively mapping the functional response in the somatosensory cortex of the mouse following electrical stimulation of the forepaw.

  16. Wired for behaviors: from development to function of innate limbic system circuitry

    PubMed Central

    Sokolowski, Katie; Corbin, Joshua G.

    2012-01-01

    The limbic system of the brain regulates a number of behaviors that are essential for the survival of all vertebrate species including humans. The limbic system predominantly controls appropriate responses to stimuli with social, emotional, or motivational salience, which includes innate behaviors such as mating, aggression, and defense. Activation of circuits regulating these innate behaviors begins in the periphery with sensory stimulation (primarily via the olfactory system in rodents), and is then processed in the brain by a set of delineated structures that primarily includes the amygdala and hypothalamus. While the basic neuroanatomy of these connections is well-established, much remains unknown about how information is processed within innate circuits and how genetic hierarchies regulate development and function of these circuits. Utilizing innovative technologies including channel rhodopsin-based circuit manipulation and genetic manipulation in rodents, recent studies have begun to answer these central questions. In this article we review the current understanding of how limbic circuits regulate sexually dimorphic behaviors and how these circuits are established and shaped during pre- and post-natal development. We also discuss how understanding developmental processes of innate circuit formation may inform behavioral alterations observed in neurodevelopmental disorders, such as autism spectrum disorders, which are characterized by limbic system dysfunction. PMID:22557946

  17. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior

    PubMed Central

    Wohleb, Eric S.; McKim, Daniel B.; Sheridan, John F.; Godbout, Jonathan P.

    2015-01-01

    HIGHLIGHTS Psychological stress activates neuroendocrine pathways that alter immune responses.Stress-induced alterations in microglia phenotype and monocyte priming leads to aberrant peripheral and central inflammation.Elevated pro-inflammatory cytokine levels caused by microglia activation and recruitment of monocytes to the brain contribute to development and persistent anxiety-like behavior.Mechanisms that mediate interactions between microglia, endothelial cells, and macrophages and how these contribute to changes in behavior are discussed.Sensitization of microglia and re-distribution of primed monocytes are implicated in re-establishment of anxiety-like behavior. Psychological stress causes physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD), revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain and how dynamic interactions between microglia, endothelial cells, and brain macrophages lead to maladaptive behavioral responses. PMID:25653581

  18. Role of brain-derived neurotrophic factor during the regenerative response after traumatic brain injury in adult zebrafish.

    PubMed

    Cacialli, Pietro; Palladino, Antonio; Lucini, Carla

    2018-06-01

    Several mammalian animal models of traumatic brain injury have been used, mostly rodents. However, reparative mechanisms in mammalian brain are very limited, and newly formed neurons do not survive for long time. The brain of adult zebrafish, a teleost fish widely used as vertebrate model, possesses high regenerative properties after injury due to the presence of numerous stem cells niches. The ventricular lining of the zebrafish dorsal telencephalon is the most studied neuronal stem cell niche because its dorso-lateral zone is considered the equivalent to the hippocampus of mammals which contains one of the two constitutive neurogenic niches of mammals. To mimic TBI, stab wound in the dorso-lateral telencephalon of zebrafish was used in studies devoted to fish regenerative properties. Brain-derived neurotrophic factor, which is known to play key roles in the repair process after traumatic brain lesions, persists around the lesioned area of injured telencephalon of adult zebrafish. These results are extensively compared to reparative processes in rodent brain. Considering the complete repair of the damaged area in fish, it could be tempting to consider brain-derived neurotrophic factor as a factor contributing to create a permissive environment that enables the establishment of new neuronal population in damaged brain.

  19. Targeting human oligodendrocyte progenitors for myelin repair☆

    PubMed Central

    Dietz, Karen C.; Polanco, Jessie J.; Pol, Suyog U.; Sim, Fraser J.

    2017-01-01

    Oligodendrocyte development has been studied for several decades, and has served as a model system for both neurodevelopmental and stem/progenitor cell biology. Until recently, the vast majority of studies have been conducted in lower species, especially those focused on rodent development and remyelination. In humans, the process of myelination requires the generation of vastly more myelinating glia, occurring over a period of years rather than weeks. Furthermore, as evidenced by the presence of chronic demyelination in a variety of human neurologic diseases, it appears likely that the mechanisms that regulate development and become dysfunctional in disease may be, in key ways, divergent across species. Improvements in isolation techniques, applied to primary human neural and oligodendrocyte progenitors from both fetal and adult brain, as well as advancements in the derivation of defined progenitors from human pluripotent stem cells, have begun to reveal the extent of both species-conserved signaling pathways and potential key differences at cellular and molecular levels. In this article, we will review the commonalities and differences in myelin development between rodents and man, describing the approaches used to study human oligodendrocyte differentiation and myelination, as well as heterogeneity within targetable progenitor pools, and discuss the advances made in determining which conserved pathways may be both modeled in rodents and translate into viable therapeutic strategies to promote myelin repair. PMID:27001544

  20. Enhanced functional connectivity and volume between cognitive and reward centers of naïve rodent brain produced by pro-dopaminergic agent KB220Z

    PubMed Central

    Badgaiyan, Rajendra D.; Thanos, Panayotis K.; Kulkarni, Praveen; Giordano, John; Baron, David; Gold, Mark S.

    2017-01-01

    Dopaminergic reward dysfunction in addictive behaviors is well supported in the literature. There is evidence that alterations in synchronous neural activity between brain regions subserving reward and various cognitive functions may significantly contribute to substance-related disorders. This study presents the first evidence showing that a pro-dopaminergic nutraceutical (KB220Z) significantly enhances, above placebo, functional connectivity between reward and cognitive brain areas in the rat. These include the nucleus accumbens, anterior cingulate gyrus, anterior thalamic nuclei, hippocampus, prelimbic and infralimbic loci. Significant functional connectivity, increased brain connectivity volume recruitment (potentially neuroplasticity), and dopaminergic functionality were found across the brain reward circuitry. Increases in functional connectivity were specific to these regions and were not broadly distributed across the brain. While these initial findings have been observed in drug naïve rodents, this robust, yet selective response implies clinical relevance for addicted individuals at risk for relapse, who show reductions in functional connectivity after protracted withdrawal. Future studies will evaluate KB220Z in animal models of addiction. PMID:28445527

  1. The Brain as "Sexual Organ."

    ERIC Educational Resources Information Center

    Science, 1991

    1991-01-01

    The body of data indicating sex differences in the brains of almost every mammalian family examined so far (rodents, birds, monkeys, and human beings) is reviewed. The differences in the hypothalamus, thalamus, corpus callosum, anterior commissure, and the hippocampus are described. (KR)

  2. Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury.

    PubMed

    Haus, Daniel L; López-Velázquez, Luci; Gold, Eric M; Cunningham, Kelly M; Perez, Harvey; Anderson, Aileen J; Cummings, Brian J

    2016-07-01

    Traumatic brain injury (TBI) in humans can result in permanent tissue damage and has been linked to cognitive impairment that lasts years beyond the initial insult. Clinically effective treatment strategies have yet to be developed. Transplantation of human neural stem cells (hNSCs) has the potential to restore cognition lost due to injury, however, the vast majority of rodent TBI/hNSC studies to date have evaluated cognition only at early time points, typically <1month post-injury and cell transplantation. Additionally, human cell engraftment and long-term survival in rodent models of TBI has been difficult to achieve due to host immunorejection of the transplanted human cells, which confounds conclusions pertaining to transplant-mediated behavioral improvement. To overcome these shortfalls, we have developed a novel TBI xenotransplantation model that utilizes immunodeficient athymic nude (ATN) rats as the host recipient for the post-TBI transplantation of human embryonic stem cell (hESC) derived NSCs and have evaluated cognition in these animals at long-term (≥2months) time points post-injury. We report that immunodeficient ATN rats demonstrate hippocampal-dependent spatial memory deficits (Novel Place, Morris Water Maze), but not non-spatial (Novel Object) or emotional/anxiety-related (Elevated Plus Maze, Conditioned Taste Aversion) deficits, at 2-3months post-TBI, confirming that ATN rats recapitulate some of the cognitive deficits found in immunosufficient animal strains. Approximately 9-25% of transplanted hNSCs survived for at least 5months post-transplantation and differentiated into mature neurons (NeuN, 18-38%), astrocytes (GFAP, 13-16%), and oligodendrocytes (Olig2, 11-13%). Furthermore, while this model of TBI (cortical impact) targets primarily cortex and the underlying hippocampus and generates a large lesion cavity, hNSC transplantation facilitated cognitive recovery without affecting either lesion volume or total spared cortical or hippocampal tissue volume. Instead, we have found an overall increase in host hippocampal neuron survival in hNSC transplanted animals and demonstrate that a correlation exists between hippocampal neuron survival and cognitive performance. Together, these findings support the use of immunodeficient rodents in models of TBI that involve the transplantation of human cells, and suggest that hNSC transplantation may be a viable, long-term therapy to restore cognition after brain injury. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Influence of alcoholism and cholesterol on TSPO binding in brain: PET [11C]PBR28 studies in humans and rodents.

    PubMed

    Kim, Sung Won; Wiers, Corinde E; Tyler, Ryan; Shokri-Kojori, Ehsan; Jang, Yeon Joo; Zehra, Amna; Freeman, Clara; Ramirez, Veronica; Lindgren, Elsa; Miller, Gregg; Cabrera, Elizabeth A; Stodden, Tyler; Guo, Min; Demiral, Şükrü B; Diazgranados, Nancy; Park, Luke; Liow, Jeih-San; Pike, Victor; Morse, Cheryl; Vendruscolo, Leandro F; Innis, Robert B; Koob, George F; Tomasi, Dardo; Wang, Gene-Jack; Volkow, Nora D

    2018-05-03

    Neuroinflammation appears to contribute to neurotoxicity observed with heavy alcohol consumption. To assess whether chronic alcohol results in neuroinflammation we used PET and [ 11 C]PBR28, a ligand that binds to the 18-kDa translocator protein (TSPO), to compare participants with an alcohol use disorder (AUD: n = 19) with healthy controls (HC: n = 17), and alcohol-dependent (n = 9) with -nondependent rats (n = 10). Because TSPO is implicated in cholesterol's transport for steroidogenesis, we investigated whether plasma cholesterol levels influenced [ 11 C]PBR28 binding. [ 11 C]PBR28 binding did not differ between AUD and HC. However, when separating by TSPO genotype rs6971, we showed that medium-affinity binders AUD participants showed lower [ 11 C]PBR28 binding than HC in regions of interest (whole brain, gray and white matter, hippocampus, and thalamus), but no group differences were observed in high-affinity binders. Cholesterol levels inversely correlated with brain [ 11 C]PBR28 binding in combined groups, due to a correlation in AUD participants. In rodents, we observed no differences in brain [ 11 C]PBR28 uptake between alcohol-dependent and -nondependent rats. These findings, which are consistent with two previous [ 11 C]PBR28 PET studies, may indicate lower activation of microglia in AUD, whereas failure to observe alcohol effects in the rodent model indicate that species differences do not explain the discrepancy with prior rodent autoradiographic studies reporting increases in TSPO binding with chronic alcohol. However, reduced binding in AUD participants could also reflect competition from endogenous TSPO ligands such as cholesterol; and since the rs6971 polymorphism affects the cholesterol-binding domain of TSPO this could explain why differences were observed only in medium-affinity binders.

  4. A modified beam-walking apparatus for assessment of anxiety in a rodent model of blast traumatic brain injury.

    PubMed

    Sweis, Brian M; Bachour, Salam P; Brekke, Julia A; Gewirtz, Jonathan C; Sadeghi-Bazargani, Homayoun; Hevesi, Mario; Divani, Afshin A

    2016-01-01

    The elevated plus maze (EPM) is used to assess anxiety in rodents. Beam-walking tasks are used to assess vestibulomotor function. Brain injury in rodents can disrupt performance on both of these tasks. Developing novel paradigms that integrate tasks like these can reduce the need for multiple tests when attempting to assess multiple behaviors in the same animal. Using adult male rats, we evaluated the use of a modified beam-walking (MBW) apparatus as a surrogate indicator for anxiety. We used a model of blast-induced traumatic brain injury (bTBI). A total of 39 rats were assessed before and at 3, 6, 24, 72, and 168h either post- bTBI (n=33) or no-injury (n=6) using both EPM and MBW. A novel anxiety index was calculated that encompassed peeks and re-emergences on MBW. The proposed MBW anxiety index was compared with the standard anxiety index calculated from exploration into different sections of EPM. Post- bTBI, rats had an increased anxiety index when measured using EPM. Similarly, they peeked or fully emerged less out of the safe box on MBW. It was found that this novel MBW anxiety index captured similar aspects of behavior when compared to the standard anxiety index obtained from EPM. Further, these effects were dissociated from the effects of bTBI on motor function simultaneously measured on MBW. Over the course of 168h post-bTBI, rats gradually recovered on both EPM and MBW. The MBW apparatus succeeded at capturing and dissociating two separate facets of rat behavior, motor function and anxiety, simultaneously. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Unique neurobiology during the sensitive period for attachment produces distinctive infant trauma processing

    PubMed Central

    Opendak, Maya; Sullivan, Regina M.

    2016-01-01

    Background Trauma has neurobehavioral effects when experienced at any stage of development, but trauma experienced in early life has unique neurobehavioral outcomes related to later life psychiatric sequelae. Recent evidence has further highlighted the context of infant trauma as a critical variable in determining its immediate and enduring consequences. Trauma experienced from an attachment figure, such as occurs in cases of caregiver child maltreatment, is particularly detrimental. Methods Using data primarily from rodent models, we review the literature on the interaction between trauma and attachment in early life, which highlights the role of the caregiver’s presence in engagement of attachment brain circuitry and suppressing threat processing by the amygdala. We then consider how trauma with and without the caregiver produces long-term changes in emotionality and behavior, and suggest that these experiences initiate distinct pathways to pathology. Results Together these data suggest that infant trauma processing and its enduring effects are impacted by both the immaturity of brain areas for processing trauma and the unique functioning of the early-life brain, which is biased toward processing information within the attachment circuitry. Conclusion An understanding of developmental differences in trauma processing as well as the critical role of the caregiver in further altering early life brain processing of trauma is important for developing age-relevant treatment and interventions. Highlights of this article Trauma experienced in early life has been linked with life-long outcomes for mental health through a mechanism that remains unclear. Trauma experienced in the presence of a caregiver has unique consequences. The infant brain is predisposed toward processing information using attachment circuitry rather than threat circuitry. Data from rodent models suggest that repeated trauma in the presence of a caregiver prematurely engages brain areas important for threat, which may play a role in deleterious outcome. PMID:27837581

  6. Epigenetic mechanisms in sexual differentiation of the brain and behaviour.

    PubMed

    Forger, Nancy G

    2016-02-19

    Circumstantial evidence alone argues that the establishment and maintenance of sex differences in the brain depend on epigenetic modifications of chromatin structure. More direct evidence has recently been obtained from two types of studies: those manipulating a particular epigenetic mechanism, and those examining the genome-wide distribution of specific epigenetic marks. The manipulation of histone acetylation or DNA methylation disrupts the development of several neural sex differences in rodents. Taken together, however, the evidence suggests there is unlikely to be a simple formula for masculine or feminine development of the brain and behaviour; instead, underlying epigenetic mechanisms may vary by brain region or even by dependent variable within a region. Whole-genome studies related to sex differences in the brain have only very recently been reported, but suggest that males and females may use different combinations of epigenetic modifications to control gene expression, even in cases where gene expression does not differ between the sexes. Finally, recent findings are discussed that are likely to direct future studies on the role of epigenetic mechanisms in sexual differentiation of the brain and behaviour. © 2016 The Author(s).

  7. Evaluating rodent motor functions: Which tests to choose?

    PubMed

    Schönfeld, Lisa-Maria; Dooley, Dearbhaile; Jahanshahi, Ali; Temel, Yasin; Hendrix, Sven

    2017-12-01

    Damage to the motor cortex induced by stroke or traumatic brain injury (TBI) can result in chronic motor deficits. For the development and improvement of therapies, animal models which possess symptoms comparable to the clinical population are used. However, the use of experimental animals raises valid ethical and methodological concerns. To decrease discomfort by experimental procedures and to increase the quality of results, non-invasive and sensitive rodent motor tests are needed. A broad variety of rodent motor tests are available to determine deficits after stroke or TBI. The current review describes and evaluates motor tests that fall into three categories: Tests to evaluate fine motor skills and grip strength, tests for gait and inter-limb coordination and neurological deficit scores. In this review, we share our thoughts on standardized data presentation to increase data comparability between studies. We also critically evaluate current methods and provide recommendations for choosing the best behavioral test for a new research line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Regulation of IL-10 expression by upstream stimulating factor (USF-1) in glioma-associated microglia.

    PubMed

    Zhang, Leying; Handel, Michelle Van; Schartner, Jill M; Hagar, Aaron; Allen, Grant; Curet, Marjorie; Badie, Behnam

    2007-03-01

    Understanding the local CNS immune response to neoplasms is essential in the development of immune-based treatments for malignant brain tumors. Using rodent glioma models, we have recently found tumor-associated microglia/macrophages (MG/MP) to be less responsive to known MG/MP activators such as CpG, LPS and IFN-gamma. To understand the mechanism of MG/MP suppression, nuclear extracts from rodent intracranial C6 gliomas, C6 glioma-associated MG/MP, normal brain, and normal MG/MP were obtained and studied using Electrophoretic Mobility Shift Assay (EMSA). Among the nuclear factors studied (AP-1, IRF, USF-1 and Stat-1) only USF-1, which is constitutively expressed in most cells, was down-regulated in tumor-associated MG/MP, but not normal MG/MP. Because tumor-associated MG/MP had higher expression of IL-10 (but not TNF-alpha or TGF-beta), we evaluated the role of USF-1 on IL-10 expression. siRNA mediated inhibition of USF-1 expression in primary MG/MP cultures resulted in up-regulation of IL-10 mRNA but not TNF-alpha or TGF-beta. These findings suggest that USF-1 may play a role in IL-10 regulation in MG/MP in brain tumors.

  9. Subarachnoid Hemorrhage Severely Impairs Brain Parenchymal Cerebrospinal Fluid Circulation in Nonhuman Primate.

    PubMed

    Goulay, Romain; Flament, Julien; Gauberti, Maxime; Naveau, Michael; Pasquet, Nolwenn; Gakuba, Clement; Emery, Evelyne; Hantraye, Philippe; Vivien, Denis; Aron-Badin, Romina; Gaberel, Thomas

    2017-08-01

    Subarachnoid hemorrhage (SAH) is a devastating form of stroke with neurological outcomes dependent on the occurrence of delayed cerebral ischemia. It has been shown in rodents that some of the mechanisms leading to delayed cerebral ischemia are related to a decreased circulation of the cerebrospinal fluid (CSF) within the brain parenchyma. Here, we evaluated the cerebral circulation of the CSF in a nonhuman primate in physiological condition and after SAH. We first evaluated in physiological condition the circulation of the brain CSF in Macaca facicularis , using magnetic resonance imaging of the temporal DOTA-Gd distribution after its injection into the CSF. Then, animals were subjected to a minimally invasive SAH before an MRI evaluation of the impact of SAH on the brain parenchymal CSF circulation. We first demonstrate that the CSF actively penetrates the brain parenchyma. Two hours after injection, almost the entire brain is labeled by DOTA-Gd. We also show that our model of SAH in nonhuman primate displays the characteristics of SAH in humans and leads to a dramatic impairment of the brain parenchymal circulation of the CSF. The CSF actively penetrates within the brain parenchyma in the gyrencephalic brain, as described for the glymphatic system in rodent. This parenchymal CSF circulation is severely impaired by SAH. © 2017 American Heart Association, Inc.

  10. Developmental vitamin D deficiency alters MK-801-induced behaviours in adult offspring.

    PubMed

    Kesby, James P; O'Loan, Jonathan C; Alexander, Suzanne; Deng, Chao; Huang, Xu-Feng; McGrath, John J; Eyles, Darryl W; Burne, Thomas H J

    2012-04-01

    Developmental vitamin D (DVD) deficiency is a candidate risk factor for developing schizophrenia in humans. In rodents DVD deficiency induces subtle changes in the way the brain develops. This early developmental insult leads to select behavioural changes in the adult, such as an enhanced response to amphetamine-induced locomotion in female DVD-deficient rats but not in male DVD-deficient rats and an enhanced locomotor response to the N-methyl-D: -aspartate (NMDA) receptor antagonist, MK-801, in male DVD-deficient rats. However, the response to MK-801-induced locomotion in female DVD-deficient rats is unknown. Therefore, the aim of the current study was to further examine this behavioural finding in male and female rats and assess NMDA receptor density. DVD-deficient Sprague Dawley rats were assessed for locomotion, ataxia, acoustic startle response (ASR) and prepulse inhibition (PPI) of the ASR to multiple doses of MK-801. The NMDA receptor density in relevant brain regions was assessed in a drug-naive cohort. DVD deficiency increased locomotion in response to MK-801 in both sexes. DVD-deficient rats also showed an enhanced ASR compared with control rats, but PPI was normal. Moreover, DVD deficiency decreased NMDA receptor density in the caudate putamen of both sexes. These results suggest that a transient prenatal vitamin D deficiency has a long-lasting effect on NMDA-mediated signalling in the rodent brain and may be a plausible candidate risk factor for schizophrenia and other neuropsychiatric disorders.

  11. Cyberinfrastructure for the digital brain: spatial standards for integrating rodent brain atlases

    PubMed Central

    Zaslavsky, Ilya; Baldock, Richard A.; Boline, Jyl

    2014-01-01

    Biomedical research entails capture and analysis of massive data volumes and new discoveries arise from data-integration and mining. This is only possible if data can be mapped onto a common framework such as the genome for genomic data. In neuroscience, the framework is intrinsically spatial and based on a number of paper atlases. This cannot meet today's data-intensive analysis and integration challenges. A scalable and extensible software infrastructure that is standards based but open for novel data and resources, is required for integrating information such as signal distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and developmental processes. Therefore, the International Neuroinformatics Coordinating Facility (INCF) initiated the development of a spatial framework for neuroscience data integration with an associated Digital Atlasing Infrastructure (DAI). A prototype implementation of this infrastructure for the rodent brain is reported here. The infrastructure is based on a collection of reference spaces to which data is mapped at the required resolution, such as the Waxholm Space (WHS), a 3D reconstruction of the brain generated using high-resolution, multi-channel microMRI. The core standards of the digital atlasing service-oriented infrastructure include Waxholm Markup Language (WaxML): XML schema expressing a uniform information model for key elements such as coordinate systems, transformations, points of interest (POI)s, labels, and annotations; and Atlas Web Services: interfaces for querying and updating atlas data. The services return WaxML-encoded documents with information about capabilities, spatial reference systems (SRSs) and structures, and execute coordinate transformations and POI-based requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD Cell-Centered Database, and Edinburgh Mouse Atlas Project. PMID:25309417

  12. Cyberinfrastructure for the digital brain: spatial standards for integrating rodent brain atlases.

    PubMed

    Zaslavsky, Ilya; Baldock, Richard A; Boline, Jyl

    2014-01-01

    Biomedical research entails capture and analysis of massive data volumes and new discoveries arise from data-integration and mining. This is only possible if data can be mapped onto a common framework such as the genome for genomic data. In neuroscience, the framework is intrinsically spatial and based on a number of paper atlases. This cannot meet today's data-intensive analysis and integration challenges. A scalable and extensible software infrastructure that is standards based but open for novel data and resources, is required for integrating information such as signal distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and developmental processes. Therefore, the International Neuroinformatics Coordinating Facility (INCF) initiated the development of a spatial framework for neuroscience data integration with an associated Digital Atlasing Infrastructure (DAI). A prototype implementation of this infrastructure for the rodent brain is reported here. The infrastructure is based on a collection of reference spaces to which data is mapped at the required resolution, such as the Waxholm Space (WHS), a 3D reconstruction of the brain generated using high-resolution, multi-channel microMRI. The core standards of the digital atlasing service-oriented infrastructure include Waxholm Markup Language (WaxML): XML schema expressing a uniform information model for key elements such as coordinate systems, transformations, points of interest (POI)s, labels, and annotations; and Atlas Web Services: interfaces for querying and updating atlas data. The services return WaxML-encoded documents with information about capabilities, spatial reference systems (SRSs) and structures, and execute coordinate transformations and POI-based requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD Cell-Centered Database, and Edinburgh Mouse Atlas Project.

  13. A Review of the Molecular Mechanisms of Chemically-Induced Neoplasia in Rat and Mouse Models in National Toxicology Program Bioassays and Their Relevance to Human Cancer

    PubMed Central

    Hoenerhoff, Mark J.; Hong, Hue Hua; Ton, Tai-Vu; Lahousse, Stephanie A.; Sills, Robert C.

    2012-01-01

    Tumor response in the B6C3F1 mouse, F344 rat, and other animal models following exposure to various compounds provides evidence that people exposed to these or similar compounds may be at risk for developing cancer. Although tumors in rodents and humans are often morphologically similar, underlying mechanisms of tumorigenesis are often unknown and may be different between the species. Therefore, the relevance of an animal tumor response to human health would be better determined if the molecular pathogenesis were understood. The underlying molecular mechanisms leading to carcinogenesis are complex and involve multiple genetic and epigenetic events and other factors. To address the molecular pathogenesis of environmental carcinogens, we examine rodent tumors (e.g., lung, colon, mammary gland, skin, brain, mesothelioma) for alterations in cancer genes and epigenetic events that are associated with human cancer. Our NTP studies have identified several genetic alterations in chemically induced rodent neoplasms that are important in human cancer. Identification of such alterations in rodent models of chemical carcinogenesis caused by exposure to environmental contaminants, occupational chemicals, and other compounds lends further support that they are of potential human health risk. These studies also emphasize the importance of molecular evaluation of chemically induced rodent tumors for providing greater public health significance for NTP evaluated compounds. PMID:19846892

  14. Nerve agent intoxication: Recent neuropathophysiological findings and subsequent impact on medical management prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collombet, Jean-Marc, E-mail: jmcollombet@imassa.fr

    This manuscript provides a survey of research findings catered to the development of effective countermeasures against nerve agent poisoning over the past decade. New neuropathophysiological distinctive features as regards organophosphate (OP) intoxication are presented. Such leading neuropathophysiological features include recent data on nerve agent-induced neuropathology, related peripheral or central nervous system inflammation and subsequent angiogenesis process. Hence, leading countermeasures against OP exposure are down-listed in terms of pre-treatment, protection or decontamination and emergency treatments. The final chapter focuses on the description of the self-repair attempt encountered in lesioned rodent brains, up to 3 months after soman poisoning. Indeed, an increasedmore » proliferation of neuronal progenitors was recently observed in injured brains of mice subjected to soman exposure. Subsequently, the latter experienced a neuronal regeneration in damaged brain regions such as the hippocampus and amygdala. The positive effect of a cytokine treatment on the neuronal regeneration and subsequent cognitive behavioral recovery are also discussed in this review. For the first time, brain cell therapy and neuronal regeneration are considered as a valuable contribution towards delayed treatment against OP intoxication. To date, efficient delayed treatment was lacking in the therapeutic resources administered to patients contaminated by nerve agents. - Highlights: > This review focuses on neuropathophysiology following nerve agent poisoning in mice. > Extensive data on long-term neuropathology and related inflammation are provided here. > Delayed self-repair attempts encountered in lesioned rodent brains are also described. > Cell therapy is considered as a valuable treatment against nerve agent intoxication.« less

  15. Induction of Maternal Immune Activation in Mice at Mid-gestation Stage with Viral Mimic Poly(I:C)

    PubMed Central

    Wu, Wei-Li

    2016-01-01

    Maternal immune activation (MIA) model is increasingly well appreciated as a rodent model for the environmental risk factor of various psychiatric disorders. Numerous studies have demonstrated that MIA model is able to show face, construct, and predictive validity that are relevant to autism and schizophrenia. To model MIA, investigators often use viral mimic polyinosinic:polycytidylic acid (poly(I:C)) to activate the immune system in pregnant rodents. Generally, the offspring from immune activated dam exhibit behavioral abnormalities and physiological alterations that are associated with autism and schizophrenia. However, poly(I:C) injection with different dosages and at different time points could lead to different outcomes by perturbing brain development at different stages. Here we provide a detailed method of inducing MIA by intraperitoneal (i.p.) injection of 20 mg/kg poly(I:C) at mid-gestational embryonic 12.5 days (E12.5). This method has been shown to induce acute inflammatory response in the maternal-placental-fetal axis, which ultimately results in the brain perturbations and behavioral phenotypes that are associated with autism and schizophrenia. PMID:27078638

  16. Induction of Maternal Immune Activation in Mice at Mid-gestation Stage with Viral Mimic Poly(I:C).

    PubMed

    Chow, Ke-Huan; Yan, Zihao; Wu, Wei-Li

    2016-03-25

    Maternal immune activation (MIA) model is increasingly well appreciated as a rodent model for the environmental risk factor of various psychiatric disorders. Numerous studies have demonstrated that MIA model is able to show face, construct, and predictive validity that are relevant to autism and schizophrenia. To model MIA, investigators often use viral mimic polyinosinic:polycytidylic acid (poly(I:C)) to activate the immune system in pregnant rodents. Generally, the offspring from immune activated dam exhibit behavioral abnormalities and physiological alterations that are associated with autism and schizophrenia. However, poly(I:C) injection with different dosages and at different time points could lead to different outcomes by perturbing brain development at different stages. Here we provide a detailed method of inducing MIA by intraperitoneal (i.p.) injection of 20 mg/kg poly(I:C) at mid-gestational embryonic 12.5 days (E12.5). This method has been shown to induce acute inflammatory response in the maternal-placental-fetal axis, which ultimately results in the brain perturbations and behavioral phenotypes that are associated with autism and schizophrenia.

  17. Cannula Implantation into the Cisterna Magna of Rodents.

    PubMed

    Xavier, Anna L R; Hauglund, Natalie Linea; von Holstein-Rathlou, Stephanie; Li, Qianliang; Sanggaard, Simon; Lou, Nanhong; Lundgaard, Iben; Nedergaard, Maiken

    2018-05-23

    Cisterna magna cannulation (CMc) is a straightforward procedure that enables direct access to the cerebrospinal fluid (CSF) without operative damage to the skull or the brain parenchyma. In anesthetized rodents, the exposure of the dura mater by blunt dissection of the neck muscles allows the insertion of a cannula into the cisterna magna (CM). The cannula, composed either by a fine beveled needle or borosilicate capillary, is attached via a polyethylene (PE) tube to a syringe. Using a syringe pump, molecules can then be injected at controlled rates directly into the CM, which is continuous with the subarachnoid space. From the subarachnoid space, we can trace CSF fluxes by convective flow into the perivascular space around penetrating arterioles, where solute exchange with the interstitial fluid (ISF) occurs. CMc can be performed for acute injections immediately following the surgery, or for chronic implantation, with later injection in anesthetized or awake, freely moving rodents. Quantitation of tracer distribution in the brain parenchyma can be performed by epifluorescence, 2-photon microscopy, and magnetic resonance imaging (MRI), depending on the physico-chemical properties of the injected molecules. Thus, CMc in conjunction with various imaging techniques offers a powerful tool for assessment of the glymphatic system and CSF dynamics and function. Furthermore, CMc can be utilized as a conduit for fast, brain-wide delivery of signaling molecules and metabolic substrates that could not otherwise cross the blood brain barrier (BBB).

  18. Synthesis and evaluation of C-11, F-18 and I-125 small molecule radioligands for detecting oxytocin receptors

    PubMed Central

    Smith, Aaron L.; Freeman, Sara M.; Stehouwer, Jeffery S.; Inoue, Kiyoshi; Voll, Ronald J.; Young, Larry J.; Goodman, Mark M.

    2013-01-01

    Compounds 1–4 were synthesized and investigated for selectivity and potency for the oxytocin receptor (OTR) to determine their viability as radioactive ligands. Binding assays determined 1–4 to have high binding affinity for both the human and rodent OTR and also have high selectivity for the human OTR over human vasopressin V1a receptors (V1aR). Inadequate selectivity for OTR over V1aR was found for rodent receptors in all four compounds. The radioactive (C-11, F-18, and I-125) derivatives of 1–4 were synthesized and investigated for use as autoradiography and positron emission tomography (PET) ligands. Receptor autoradiography performed with [125I]1 and [125I]2 on rodent brain slices provided the first small molecule radioligand images of the OTR and V1aR. Biodistribution studies determined [125I]1 and [125I]2 were adequate for in vivo peripheral investigations, but not for central investigations due to low uptake within the brain. A biodistribution study with [18F]3 suggested brain uptake occurred slowly over time. PET imaging studies with [18F]3 and [11C]4 using a rat model provided insufficient uptake in the brain over a 90 and 45 min scan times respectively to merit further investigations in non-human primates. PMID:22425346

  19. The Impact of Centrally-acting Pesticidal/Environmental Toxicants on the Neuroendocrine Regulation of Reproductive Function in the Female Rodent: Revelant to Human Reproductive Risk Assessment.

    EPA Science Inventory

    In mammals, the secretion of gonadotropin-releasing hormone (GnRH) from the brain hypothalamic median eminence constitutes the final common path to the pituitary that results in the ovulatory surge of luteinizing hormone (LH). In rodent test species, a growing number of environme...

  20. Thyroid Hormone Availability and Action during Brain Development in Rodents.

    PubMed

    Bárez-López, Soledad; Guadaño-Ferraz, Ana

    2017-01-01

    Thyroid hormones (THs) play an essential role in the development of all vertebrates; in particular adequate TH content is crucial for proper neurodevelopment. TH availability and action in the brain are precisely regulated by several mechanisms, including the secretion of THs by the thyroid gland, the transport of THs to the brain and neural cells, THs activation and inactivation by the metabolic enzymes deiodinases and, in the fetus, transplacental passage of maternal THs. Although these mechanisms have been extensively studied in rats, in the last decade, models of genetically modified mice have been more frequently used to understand the role of the main proteins involved in TH signaling in health and disease. Despite this, there is little knowledge about the mechanisms underlying THs availability in the mouse brain. This mini-review article gathers information from findings in rats, and the latest findings in mice regarding the ontogeny of TH action and the sources of THs to the brain, with special focus on neurodevelopmental stages. Unraveling TH economy and action in the mouse brain may help to better understand the physiology and pathophysiology of TH signaling in brain and may contribute to addressing the neurological alterations due to hypo and hyperthyroidism and TH resistance syndromes.

  1. Insights into the Biology and Therapeutic Applications of Neural Stem Cells

    PubMed Central

    Harris, Lachlan; Zalucki, Oressia; Piper, Michael; Heng, Julian Ik-Tsen

    2016-01-01

    The cerebral cortex is essential for our higher cognitive functions and emotional reasoning. Arguably, this brain structure is the distinguishing feature of our species, and yet our remarkable cognitive capacity has seemingly come at a cost to the regenerative capacity of the human brain. Indeed, the capacity for regeneration and neurogenesis of the brains of vertebrates has declined over the course of evolution, from fish to rodents to primates. Nevertheless, recent evidence supporting the existence of neural stem cells (NSCs) in the adult human brain raises new questions about the biological significance of adult neurogenesis in relation to ageing and the possibility that such endogenous sources of NSCs might provide therapeutic options for the treatment of brain injury and disease. Here, we highlight recent insights and perspectives on NSCs within both the developing and adult cerebral cortex. Our review of NSCs during development focuses upon the diversity and therapeutic potential of these cells for use in cellular transplantation and in the modeling of neurodevelopmental disorders. Finally, we describe the cellular and molecular characteristics of NSCs within the adult brain and strategies to harness the therapeutic potential of these cell populations in the treatment of brain injury and disease. PMID:27069486

  2. In situ enzymatic activity of transglutaminase isoforms on brain tissue sections of rodents: A new approach to monitor differences in post-translational protein modifications during neurodegeneration.

    PubMed

    Schulze-Krebs, Anja; Canneva, Fabio; Schnepf, Rebecca; Dobner, Julia; Dieterich, Walburga; von Hörsten, Stephan

    2016-01-15

    Mammalian transglutaminases (TGs) catalyze the irreversible post-translational modifications of proteins, the most prominent of which is the calcium-dependent formation of covalent acyl transfers between the γ-carboxamide group of glutamine and the ε-amino-group of lysine (GGEL-linkage). In the central nervous system, at least four TG isoforms are present and some of them are differentially expressed under pathological conditions in human patients. However, the precise TG-isoform-dependent enzymatic activities in the brain as well as their anatomical distribution are unknown. Specificity of the used biotinylated peptides was analyzed using an in vitro assay. Isoform-specific TG activity was evaluated in in vitro and in situ studies, using brain extracts and native brain tissue obtained from rodents. Our method allowed us to reveal in vitro and in situ TG-isoform-dependent enzymatic activity in brain extracts and tissue of rats and mice, with a specific focus on TG6. In situ activity of this isoform varied between BACHD mice in comparison to their wt controls. TG isozyme-specific activity can be detected by isoform-specific biotinylated peptides in brain tissue sections of rodents to reveal differences in the anatomical and/or subcellular distribution of TG activity. Our findings yield the basis for a broader application of this method for the screening of pathological expression and activity of TGs in a variety of animal models of human diseases, as in the case of neurodegenerative conditions such as Huntington׳s, Parkinson׳s and Alzheimer׳s, where protein modification is involved as a key mechanism of disease progression. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Vasopressin and oxytocin receptor systems in the brain: sex differences and sex-specific regulation of social behavior

    PubMed Central

    Dumais, Kelly M.; Veenema, Alexa H.

    2015-01-01

    The neuropeptides vasopressin (VP) and oxytocin (OT) and their receptors in the brain are involved in the regulation of various social behaviors and have emerged as drug targets for the treatment of social dysfunction in several sex-biased neuropsychiatric disorders. Sex differences in the VP and OT systems may therefore be implicated in sex-specific regulation of healthy as well as impaired social behaviors. We begin this review by highlighting the sex differences, or lack of sex differences, in VP and OT synthesis in the brain. We then discuss the evidence showing the presence or absence of sex differences in VP and OT receptors in rodents and humans, as well as showing new data of sexually dimorphic V1a receptor binding in the rat brain. Importantly, we find that there is lack of comprehensive analysis of sex differences in these systems in common laboratory species, and we find that, when sex differences are present, they are highly brain region- and species- specific. Interestingly, VP system parameters (VP and V1aR) are typically higher in males, while sex differences in the OT system are not always in the same direction, often showing higher OT expression in females, but higher OT receptor expression in males. Furthermore, VP and OT receptor systems show distinct and largely non-overlapping expression in the rodent brain, which may cause these receptors to have either complementary or opposing functional roles in the sex-specific regulation of social behavior. Though still in need of further research, we close by discussing how manipulations of the VP and OT systems have given important insights into the involvement of these neuropeptide systems in the sex-specific regulation of social behavior in rodents and humans. PMID:25951955

  4. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior.

    PubMed

    Dumais, Kelly M; Veenema, Alexa H

    2016-01-01

    The neuropeptides vasopressin (VP) and oxytocin (OT) and their receptors in the brain are involved in the regulation of various social behaviors and have emerged as drug targets for the treatment of social dysfunction in several sex-biased neuropsychiatric disorders. Sex differences in the VP and OT systems may therefore be implicated in sex-specific regulation of healthy as well as impaired social behaviors. We begin this review by highlighting the sex differences, or lack of sex differences, in VP and OT synthesis in the brain. We then discuss the evidence showing the presence or absence of sex differences in VP and OT receptors in rodents and humans, as well as showing new data of sexually dimorphic V1a receptor binding in the rat brain. Importantly, we find that there is lack of comprehensive analysis of sex differences in these systems in common laboratory species, and we find that, when sex differences are present, they are highly brain region- and species-specific. Interestingly, VP system parameters (VP and V1aR) are typically higher in males, while sex differences in the OT system are not always in the same direction, often showing higher OT expression in females, but higher OT receptor expression in males. Furthermore, VP and OT receptor systems show distinct and largely non-overlapping expression in the rodent brain, which may cause these receptors to have either complementary or opposing functional roles in the sex-specific regulation of social behavior. Though still in need of further research, we close by discussing how manipulations of the VP and OT systems have given important insights into the involvement of these neuropeptide systems in the sex-specific regulation of social behavior in rodents and humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Application of Tsallis Entropy to EEG: Quantifying the Presence of Burst Suppression After Asphyxial Cardiac Arrest in Rats

    PubMed Central

    Zhang, Dandan; Jia, Xiaofeng; Ding, Haiyan; Ye, Datian; Thakor, Nitish V.

    2011-01-01

    Burst suppression (BS) activity in EEG is clinically accepted as a marker of brain dysfunction or injury. Experimental studies in a rodent model of brain injury following asphyxial cardiac arrest (CA) show evidence of BS soon after resuscitation, appearing as a transitional recovery pattern between isoelectricity and continuous EEG. The EEG trends in such experiments suggest varying levels of uncertainty or randomness in the signals. To quantify the EEG data, Shannon entropy and Tsallis entropy (TsEn) are examined. More specifically, an entropy-based measure named TsEn area (TsEnA) is proposed to reveal the presence and the extent of development of BS following brain injury. The methodology of TsEnA and the selection of its parameter are elucidated in detail. To test the validity of this measure, 15 rats were subjected to 7 or 9 min of asphyxial CA. EEG recordings immediately after resuscitation from CA were investigated and characterized by TsEnA. The results show that TsEnA correlates well with the outcome assessed by evaluating the rodents after the experiments using a well-established neurological deficit score (Pearson correlation = 0.86, p ⪡ 0.01). This research shows that TsEnA reliably quantifies the complex dynamics in BS EEG, and may be useful as an experimental or clinical tool for objective estimation of the gravity of brain damage after CA. PMID:19695982

  6. Fragmentation and Unpredictability of Early-Life Experience in Mental Disorders

    PubMed Central

    Baram, Tallie Z.; Solodkin, Ana; Davis, Elysia P.; Stern, Hal; Obenaus, Andre; Sandman, Curt A.; Small, Steven L.

    2012-01-01

    Maternal sensory signals in early life play a crucial role in programming the structure and function of the developing brain, promoting vulnerability or resilience to emotional and cognitive disorders. In rodent models of early-life stress, fragmentation and unpredictability of maternally derived sensory signals provoke persistent cognitive and emotional dysfunction in offspring. Similar variability and inconsistency of maternal signals during both gestation and early postnatal human life may influence development of emotional and cognitive functions, including those that underlie later depression and anxiety. PMID:22885631

  7. Memory Retrieval in Mice and Men

    PubMed Central

    Ben-Yakov, Aya; Dudai, Yadin; Mayford, Mark R.

    2015-01-01

    Retrieval, the use of learned information, was until recently mostly terra incognita in the neurobiology of memory, owing to shortage of research methods with the spatiotemporal resolution required to identify and dissect fast reactivation or reconstruction of complex memories in the mammalian brain. The development of novel paradigms, model systems, and new tools in molecular genetics, electrophysiology, optogenetics, in situ microscopy, and functional imaging, have contributed markedly in recent years to our ability to investigate brain mechanisms of retrieval. We review selected developments in the study of explicit retrieval in the rodent and human brain. The picture that emerges is that retrieval involves coordinated fast interplay of sparse and distributed corticohippocampal and neocortical networks that may permit permutational binding of representational elements to yield specific representations. These representations are driven largely by the activity patterns shaped during encoding, but are malleable, subject to the influence of time and interaction of the existing memory with novel information. PMID:26438596

  8. Virtual endocast of the early Oligocene Cedromus wilsoni (Cedromurinae) and brain evolution in squirrels.

    PubMed

    Bertrand, Ornella C; Amador-Mughal, Farrah; Silcox, Mary T

    2017-01-01

    Extant squirrels exhibit extensive variation in brain size and shape, but published endocranial data for living squirrels are limited, and no study has ever examined brain evolution in Sciuridae from the perspective of the fossil record to understand how this diversity emerged. We describe the first virtual endocast for a fossil sciurid, Cedromus wilsoni, which is known from a complete cranium from Wyoming (Orellan, Oligocene), and make comparisons to a diverse sample of virtual endocasts for living sciurids (N = 20). The virtual endocasts were obtained from high-resolution X-ray micro-computed tomography data. Comparisons were also made with endocasts of extinct ischyromyid rodents, the most primitive rodents known from an endocranial record, which provide the opportunity to study the neuroanatomical changes occurring near the base of Sciuridae. The encephalization quotient of C. wilsoni is higher than that of Ischyromys typus from the same epoch, and falls within the range of modern terrestrial squirrel variation, but below the range of extant scansorial, arboreal and gliding sciurids when using cheek-tooth area for the estimation of body mass. In a principal components analysis, the shape of the endocast of C. wilsoni is found to be intermediate between that of primitive fossil taxa and the modern sample. Cedromus wilsoni has a more expanded neocortical surface area, especially the caudal region of the cerebrum, compared with ischyromyid rodents. Furthermore, C. wilsoni had proportionally larger paraflocculi and a more complex cerebellar morphology compared with ischyromyid rodents. These neurological differences may be associated with improvements in vision, although it is worth noting that the size of the parts of the brain most directly involved with vision [the rostral (superior) colliculi and the primary visual cortex] cannot be directly assessed on endocasts. The changes observed could also relate to balance and limb coordination. Ultimately, the available evidence suggests that early squirrels were more agile and visually oriented animals compared with more primitive rodents, which may relate to the process of becoming arboreal. Extant sciurids have an even more expanded neocortical surface area, while exhibiting proportionally smaller paraflocculi, compared with C. wilsoni. This suggests that the neocortex may continue increasing in size in more recent sciurid rodents in relation to other factors than arboreality. Despite the fact that both Primates and Rodentia exhibit neocortical expansion through time, since the adoption of arboreality preceded major increases in the neocortex in Primates, those neurological changes may be related to different ecological factors, underlining the complexity of the inter-relationship between time and ecology in shaping the brain in even closely related clades. © 2016 Anatomical Society.

  9. Assessment of variability in cerebral vasculature for neuro-anatomical surgery planning in rodent brain

    NASA Astrophysics Data System (ADS)

    Rangarajan, J. R.; Van Kuyck, K.; Himmelreich, U.; Nuttin, B.; Maes, F.; Suetens, P.

    2011-03-01

    Clinical and pre-clinical studies show that deep brain stimulation (DBS) of targeted brain regions by neurosurgical techniques ameliorate psychiatric disorder such as anorexia nervosa. Neurosurgical interventions in preclinical rodent brain are mostly accomplished manually with a 2D atlas. Considering both the large number of animals subjected to stereotactic surgical experiments and the associated imaging cost, feasibility of sophisticated pre-operative imaging based surgical path planning and/or robotic guidance is limited. Here, we spatially normalize vasculature information and assess the intra-strain variability in cerebral vasculature for a neurosurgery planning. By co-registering and subsequently building a probabilistic vasculature template in a standard space, we evaluate the risk of a user defined electrode trajectory damaging a blood vessel on its path. The use of such a method may not only be confined to DBS therapy in small animals, but also could be readily applicable to a wide range of stereotactic small animal surgeries like targeted injection of contrast agents and cell labeling applications.

  10. Toward a workbench for rodent brain image data: systems architecture and design.

    PubMed

    Moene, Ivar A; Subramaniam, Shankar; Darin, Dmitri; Leergaard, Trygve B; Bjaalie, Jan G

    2007-01-01

    We present a novel system for storing and manipulating microscopic images from sections through the brain and higher-level data extracted from such images. The system is designed and built on a three-tier paradigm and provides the research community with a web-based interface for facile use in neuroscience research. The Oracle relational database management system provides the ability to store a variety of objects relevant to the images and provides the framework for complex querying of data stored in the system. Further, the suite of applications intimately tied into the infrastructure in the application layer provide the user the ability not only to query and visualize the data, but also to perform analysis operations based on the tools embedded into the system. The presentation layer uses extant protocols of the modern web browser and this provides ease of use of the system. The present release, named Functional Anatomy of the Cerebro-Cerebellar System (FACCS), available through The Rodent Brain Workbench (http:// rbwb.org/), is targeted at the functional anatomy of the cerebro-cerebellar system in rats, and holds axonal tracing data from these projections. The system is extensible to other circuits and projections and to other categories of image data and provides a unique environment for analysis of rodent brain maps in the context of anatomical data. The FACCS application assumes standard animal brain atlas models and can be extended to future models. The system is available both for interactive use from a remote web-browser client as well as for download to a local server machine.

  11. An atlas of the prenatal mouse brain: gestational day 14.

    PubMed

    Schambra, U B; Silver, J; Lauder, J M

    1991-11-01

    A prenatal atlas of the mouse brain is presently unavailable and is needed for studies of normal and abnormal development, using techniques including immunocytochemistry and in situ hybridization. This atlas will be especially useful for researchers studying transgenic and mutant mice. This collection of photomicrographs and corresponding drawings of Gestational Day (GD) 14 mouse brain sections is an excerpt from a larger atlas encompassing GD 12-18. In composing this atlas, available published studies on the developing rodent brain were consulted to aid in the detailed labeling of embryonic brain structures. C57Bl/6J mice were mated for 1 h, and the presence of a copulation plug was designated as GD 0. GD 14 embryos were perfused transcardially with 4% paraformaldehyde in 0.1 M phosphate buffer and embedded in paraffin. Serial sections (10 microns thickness) were cut through whole heads in sagittal and horizontal planes. They were stained with hematoxylin and eosin and photographed. Magnifications were 43X and 31X for the horizontal and sagittal sections, respectively. Photographs were traced and line drawings prepared using an Adobe Illustrator on a Macintosh computer.

  12. Lactate is oxidized outside of the mitochondrial matrix in rodent brain.

    PubMed

    Herbst, Eric A F; George, Mitchell A J; Brebner, Karen; Holloway, Graham P; Kane, Daniel A

    2018-05-01

    The nature and existence of mitochondrial lactate oxidation is debated in the literature. Obscuring the issue are disparate findings in isolated mitochondria, as well as relatively low rates of lactate oxidation observed in permeabilized muscle fibres. However, respiration with lactate has yet to be directly assessed in brain tissue with the mitochondrial reticulum intact. To determine if lactate is oxidized in the matrix of brain mitochondria, oxygen consumption was measured in saponin-permeabilized mouse brain cortex samples, and rat prefrontal cortex and hippocampus (dorsal) subregions. While respiration in the presence of ADP and malate increased with the addition of lactate, respiration was maximized following the addition of exogenous NAD + , suggesting maximal lactate metabolism involves extra-matrix lactate dehydrogenase. This was further supported when NAD + -dependent lactate oxidation was significantly decreased with the addition of either low-concentration α-cyano-4-hydroxycinnamate or UK-5099, inhibitors of mitochondrial pyruvate transport. Mitochondrial respiration was comparable between glutamate, pyruvate, and NAD + -dependent lactate oxidation. Results from the current study demonstrate that permeabilized brain is a feasible model for assessing lactate oxidation, and support the interpretation that lactate oxidation occurs outside the mitochondrial matrix in rodent brain.

  13. Cellular responses to recurrent pentylenetetrazole-induced seizures in the adult zebrafish brain

    PubMed Central

    Duy, Phan Q; Berberoglu, Michael A; Beattie, Christine E; Hall, Charles W

    2017-01-01

    A seizure is a sustained increase in brain electrical activity that can result in loss of consciousness and injury. Understanding how the brain responds to seizures is important for development of new treatment strategies for epilepsy, a neurological condition characterized by recurrent and unprovoked seizures. Pharmacological induction of seizures in rodent models results in a myriad of cellular alterations, including inflammation, angiogenesis, and adult neurogenesis. The purpose of this study is to investigate the cellular responses to recurrent pentylenetetrazole seizures in the adult zebrafish brain. We subjected zebrafish to five once daily pentylenetetrazole induced seizures and characterized the cellular consequences of these seizures. In response to recurrent seizures, we found histologic evidence of vasodilatation, perivascular leukocyte egress and leukocyte proliferation suggesting seizure-induced acute CNS inflammation. We also found evidence of increased proliferation, neurogenesis, and reactive gliosis. Collectively, our results suggest that the cellular responses to seizures in the adult zebrafish brain are similar to those observed in mammalian brains. PMID:28238851

  14. Batch Immunostaining for Large-Scale Protein Detection in the Whole Monkey Brain

    PubMed Central

    Zangenehpour, Shahin; Burke, Mark W.; Chaudhuri, Avi; Ptito, Maurice

    2009-01-01

    Immunohistochemistry (IHC) is one of the most widely used laboratory techniques for the detection of target proteins in situ. Questions concerning the expression pattern of a target protein across the entire brain are relatively easy to answer when using IHC in small brains, such as those of rodents. However, answering the same questions in large and convoluted brains, such as those of primates presents a number of challenges. Here we present a systematic approach for immunodetection of target proteins in an adult monkey brain. This approach relies on the tissue embedding and sectioning methodology of NeuroScience Associates (NSA) as well as tools developed specifically for batch-staining of free-floating sections. It results in uniform staining of a set of sections which, at a particular interval, represents the entire brain. The resulting stained sections can be subjected to a wide variety of analytical procedures in order to measure protein levels, the population of neurons expressing a certain protein. PMID:19636291

  15. Contribution of β-phenethylamine, a component of chocolate and wine, to dopaminergic neurodegeneration: implications for the pathogenesis of Parkinson's disease.

    PubMed

    Borah, Anupom; Paul, Rajib; Mazumder, Muhammed Khairujjaman; Bhattacharjee, Nivedita

    2013-10-01

    While the cause of dopaminergic neuronal cell death in Parkinson's disease (PD) is not yet understood, many endogenous molecules have been implicated in its pathogenesis. β-phenethylamine (β-PEA), a component of various food items including chocolate and wine, is an endogenous molecule produced from phenylalanine in the brain. It has been reported recently that long-term administration of β-PEA in rodents causes neurochemical and behavioral alterations similar to that produced by parkinsonian neurotoxins. The toxicity of β-PEA has been linked to the production of hydroxyl radical ((·)OH) and the generation of oxidative stress in dopaminergic areas of the brain, and this may be mediated by inhibition of mitochondrial complex-I. Another significant observation is that administration of β-PEA to rodents reduces striatal dopamine content and induces movement disorders similar to those of parkinsonian rodents. However, no reports are available on the extent of dopaminergic neuronal cell death after administration of β-PEA. Based on the literature, we set out to establish β-PEA as an endogenous molecule that potentially contributes to the progressive development of PD. The sequence of molecular events that could be responsible for dopaminergic neuronal cell death in PD by consumption of β-PEA-containing foods is proposed here. Thus, long-term over-consumption of food items containing β-PEA could be a neurological risk factor having significant pathological consequences.

  16. Mechanism of Chronic Pain in Rodent Brain Imaging

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Ching

    Chronic pain is a significant health problem that greatly impacts the quality of life of individuals and imparts high costs to society. Despite intense research effort in understanding of the mechanism of pain, chronic pain remains a clinical problem that has few effective therapies. The advent of human brain imaging research in recent years has changed the way that chronic pain is viewed. To further extend the use of human brain imaging techniques for better therapies, the adoption of imaging technique onto the animal pain models is essential, in which underlying brain mechanisms can be systematically studied using various combination of imaging and invasive techniques. The general goal of this thesis is to addresses how brain develops and maintains chronic pain in an animal model using fMRI. We demonstrate that nucleus accumbens, the central component of mesolimbic circuitry, is essential in development of chronic pain. To advance our imaging technique, we develop an innovative methodology to carry out fMRI in awake, conscious rat. Using this cutting-edge technique, we show that allodynia is assoicated with shift brain response toward neural circuits associated nucleus accumbens and prefrontal cortex that regulate affective and cognitive component of pain. Taken together, this thesis provides a deeper understanding of how brain mediates pain. It builds on the existing body of knowledge through maximizing the depth of insight into brain imaging of chronic pain.

  17. An orally available, brain-penetrant CAMKK2 inhibitor reduces food intake in rodent model.

    PubMed

    Price, Daniel J; Drewry, David H; Schaller, Lee T; Thompson, Brian D; Reid, Paul R; Maloney, Patrick R; Liang, Xi; Banker, Periette; Buckholz, Richard G; Selley, Paula K; McDonald, Octerloney B; Smith, Jeffery L; Shearer, Todd W; Cox, Richard F; Williams, Shawn P; Reid, Robert A; Tacconi, Stefano; Faggioni, Federico; Piubelli, Chiara; Sartori, Ilaria; Tessari, Michela; Wang, Tony Y

    2018-06-01

    Hypothalamic CAMKK2 represents a potential mechanism for chemically affecting satiety and promoting weight loss in clinically obese patients. Single-digit nanomolar inhibitors of CAMKK2 were identified in three related ATP-competitive series. Limited optimization of kinase selectivity, solubility, and pharmacokinetic properties were undertaken on all three series, as SAR was often transferrable. Ultimately, a 2,4-diaryl 7-azaindole was optimized to afford a tool molecule that potently inhibits AMPK phosphorylation in a hypothalamus-derived cell line, is orally bioavailable, and crosses the blood-brain barrier. When dosed orally in rodents, compound 4 t limited ghrelin-induced food intake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Rodent Research on the International Space Station - A Look Forward

    NASA Technical Reports Server (NTRS)

    Kapusta, A. B.; Smithwick, M.; Wigley, C. L.

    2014-01-01

    Rodent Research on the International Space Station (ISS) is one of the highest priority science activities being supported by NASA and is planned for up to two flights per year. The first Rodent Research flight, Rodent Research-1 (RR-1) validates the hardware and basic science operations (dissections and tissue preservation). Subsequent flights will add new capabilities to support rodent research on the ISS. RR-1 will validate the following capabilities: animal husbandry for up to 30 days, video downlink to support animal health checks and scientific analysis, on-orbit dissections, sample preservation in RNA. Later and formalin, sample transfer from formalin to ethanol (hindlimbs), rapid cool-down and subsequent freezing at -80 of tissues and carcasses, sample return and recovery. RR-2, scheduled for SpX-6 (Winter 20142015) will add the following capabilities: animal husbandry for up to 60 days, RFID chip reader for individual animal identification, water refill and food replenishment, anesthesia and recovery, bone densitometry, blood collection (via cardiac puncture), blood separation via centrifugation, soft tissue fixation in formalin with transfer to ethanol, and delivery of injectable drugs that require frozen storage prior to use. Additional capabilities are also planned for future flights and these include but are not limited to male mice, live animal return, and the development of experiment unique equipment to support science requirements for principal investigators that are selected for flight. In addition to the hardware capabilities to support rodent research the Crew Office has implemented a training program in generic rodent skills for all USOS crew members during their pre-assignment training rotation. This class includes training in general animal handling, euthanasia, injections, and dissections. The dissection portion of this training focuses on the dissection of the spleen, liver, kidney with adrenals, brain, eyes, and hindlimbs. By achieving and maintaining proficiency in these basic skills as part of the nominal astronaut training curriculum this allows the rodent research program to focus the mission specific crew training on scientific requirements of research and operations flow.

  19. Expression profile and distribution of Efhc1 gene transcript during rodent brain development.

    PubMed

    Conte, Fábio F; Ribeiro, Patrícia A O; Marchesini, Rafael B; Pascoal, Vinícius D B; Silva, Joelcimar M; Oliveira, Amanda R; Gilioli, Rovílson; Sbragia, Lourenço; Bittencourt, Jackson C; Lopes-Cendes, Iscia

    2009-09-01

    One of the putative causative genes for juvenile myoclonic epilepsy (JME) is EFHC1. We report here the expression profile and distribution of Efhc1 messenger RNA (mRNA) during mouse and rat brain development. Real-time polymerase chain reaction revealed that there is no difference in the expression of Efhc1 mRNA between right and left hemispheres in both species. In addition, the highest levels of Efhc1 mRNA were found at intra-uterine stages in mouse and in adulthood in rat. In common, there was a progressive decrease in Efhc1 expression from 1-day-old neonates to 14-day-old animals in both species. In situ hybridization studies showed that rat and mouse Efhc1 mRNAs are expressed in ependymal cells of ventricle walls. Our findings suggest that Efhc1 expression is more important during initial phases of brain development and that at this stage it could be involved in key developmental mechanisms underlying JME.

  20. Live imaging of mitosis in the developing mouse embryonic cortex.

    PubMed

    Pilaz, Louis-Jan; Silver, Debra L

    2014-06-04

    Although of short duration, mitosis is a complex and dynamic multi-step process fundamental for development of organs including the brain. In the developing cerebral cortex, abnormal mitosis of neural progenitors can cause defects in brain size and function. Hence, there is a critical need for tools to understand the mechanisms of neural progenitor mitosis. Cortical development in rodents is an outstanding model for studying this process. Neural progenitor mitosis is commonly examined in fixed brain sections. This protocol will describe in detail an approach for live imaging of mitosis in ex vivo embryonic brain slices. We will describe the critical steps for this procedure, which include: brain extraction, brain embedding, vibratome sectioning of brain slices, staining and culturing of slices, and time-lapse imaging. We will then demonstrate and describe in detail how to perform post-acquisition analysis of mitosis. We include representative results from this assay using the vital dye Syto11, transgenic mice (histone H2B-EGFP and centrin-EGFP), and in utero electroporation (mCherry-α-tubulin). We will discuss how this procedure can be best optimized and how it can be modified for study of genetic regulation of mitosis. Live imaging of mitosis in brain slices is a flexible approach to assess the impact of age, anatomy, and genetic perturbation in a controlled environment, and to generate a large amount of data with high temporal and spatial resolution. Hence this protocol will complement existing tools for analysis of neural progenitor mitosis.

  1. CYP3A5 Mediates Effects of Cocaine on Human Neocorticogenesis: Studies using an In Vitro 3D Self-Organized hPSC Model with a Single Cortex-Like Unit.

    PubMed

    Lee, Chun-Ting; Chen, Jia; Kindberg, Abigail A; Bendriem, Raphael M; Spivak, Charles E; Williams, Melanie P; Richie, Christopher T; Handreck, Annelie; Mallon, Barbara S; Lupica, Carl R; Lin, Da-Ting; Harvey, Brandon K; Mash, Deborah C; Freed, William J

    2017-02-01

    Because of unavoidable confounding variables in the direct study of human subjects, it has been difficult to unravel the effects of prenatal cocaine exposure on the human fetal brain, as well as the cellular and biochemical mechanisms involved. Here, we propose a novel approach using a human pluripotent stem cell (hPSC)-based 3D neocortical organoid model. This model retains essential features of human neocortical development by encompassing a single self-organized neocortical structure, without including an animal-derived gelatinous matrix. We reported previously that prenatal cocaine exposure to rats during the most active period of neural progenitor proliferation induces cytoarchitectural changes in the embryonic neocortex. We also identified a role of CYP450 and consequent oxidative ER stress signaling in these effects. However, because of differences between humans and rodents in neocorticogenesis and brain CYP metabolism, translation of the research findings from the rodent model to human brain development is uncertain. Using hPSC 3D neocortical organoids, we demonstrate that the effects of cocaine are mediated through CYP3A5-induced generation of reactive oxygen species, inhibition of neocortical progenitor cell proliferation, induction of premature neuronal differentiation, and interruption of neural tissue development. Furthermore, knockdown of CYP3A5 reversed these cocaine-induced pathological phenotypes, suggesting CYP3A5 as a therapeutic target to mitigate the deleterious neurodevelopmental effects of prenatal cocaine exposure in humans. Moreover, 3D organoid methodology provides an innovative platform for identifying adverse effects of abused psychostimulants and pharmaceutical agents, and can be adapted for use in neurodevelopmental disorders with genetic etiologies.

  2. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models.

    PubMed Central

    Rice, D; Barone, S

    2000-01-01

    Vulnerable periods during the development of the nervous system are sensitive to environmental insults because they are dependent on the temporal and regional emergence of critical developmental processes (i.e., proliferation, migration, differentiation, synaptogenesis, myelination, and apoptosis). Evidence from numerous sources demonstrates that neural development extends from the embryonic period through adolescence. In general, the sequence of events is comparable among species, although the time scales are considerably different. Developmental exposure of animals or humans to numerous agents (e.g., X-ray irradiation, methylazoxymethanol, ethanol, lead, methyl mercury, or chlorpyrifos) demonstrates that interference with one or more of these developmental processes can lead to developmental neurotoxicity. Different behavioral domains (e.g., sensory, motor, and various cognitive functions) are subserved by different brain areas. Although there are important differences between the rodent and human brain, analogous structures can be identified. Moreover, the ontogeny of specific behaviors can be used to draw inferences regarding the maturation of specific brain structures or neural circuits in rodents and primates, including humans. Furthermore, various clinical disorders in humans (e.g., schizophrenia, dyslexia, epilepsy, and autism) may also be the result of interference with normal ontogeny of developmental processes in the nervous system. Of critical concern is the possibility that developmental exposure to neurotoxicants may result in an acceleration of age-related decline in function. This concern is compounded by the fact that developmental neurotoxicity that results in small effects can have a profound societal impact when amortized across the entire population and across the life span of humans. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 Figure 9 Figure 12 Figure 14 Figure 16 Figure 17 PMID:10852851

  3. On Expression Patterns and Developmental Origin of Human Brain Regions.

    PubMed

    Kirsch, Lior; Chechik, Gal

    2016-08-01

    Anatomical substructures of the human brain have characteristic cell-types, connectivity and local circuitry, which are reflected in area-specific transcriptome signatures, but the principles governing area-specific transcription and their relation to brain development are still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic origin of brain regions, but the processes and genes that preserve an embryonic signature in regional expression profiles were not quantified. Furthermore, it is not clear how embryonic-origin signatures of adult-brain expression interplay with changes in expression patterns during development. Here we first quantify which genes have regional expression-patterns related to the developmental origin of brain regions, using genome-wide mRNA expression from post-mortem adult human brains. We find that almost all human genes (92%) exhibit an expression pattern that agrees with developmental brain-region ontology, but that this agreement changes at multiple phases during development. Agreement is particularly strong in neuron-specific genes, but also in genes that are not spatially correlated with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in early-evolved genes. We further find that pairs of similar genes having high agreement to developmental region ontology tend to be more strongly correlated or anti-correlated, and that the strength of spatial correlation changes more strongly in gene pairs with stronger embryonic signatures. These results suggest that transcription regulation of most genes in the adult human brain is spatially tuned in a way that changes through life, but in agreement with development-determined brain regions.

  4. On Expression Patterns and Developmental Origin of Human Brain Regions

    PubMed Central

    Kirsch, Lior; Chechik, Gal

    2016-01-01

    Anatomical substructures of the human brain have characteristic cell-types, connectivity and local circuitry, which are reflected in area-specific transcriptome signatures, but the principles governing area-specific transcription and their relation to brain development are still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic origin of brain regions, but the processes and genes that preserve an embryonic signature in regional expression profiles were not quantified. Furthermore, it is not clear how embryonic-origin signatures of adult-brain expression interplay with changes in expression patterns during development. Here we first quantify which genes have regional expression-patterns related to the developmental origin of brain regions, using genome-wide mRNA expression from post-mortem adult human brains. We find that almost all human genes (92%) exhibit an expression pattern that agrees with developmental brain-region ontology, but that this agreement changes at multiple phases during development. Agreement is particularly strong in neuron-specific genes, but also in genes that are not spatially correlated with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in early-evolved genes. We further find that pairs of similar genes having high agreement to developmental region ontology tend to be more strongly correlated or anti-correlated, and that the strength of spatial correlation changes more strongly in gene pairs with stronger embryonic signatures. These results suggest that transcription regulation of most genes in the adult human brain is spatially tuned in a way that changes through life, but in agreement with development-determined brain regions. PMID:27564987

  5. Cellular Composition and Organization of the Subventricular Zone and Rostral Migratory Stream in the Adult and Neonatal Common Marmoset Brain

    PubMed Central

    Sawamoto, Kazunobu; Hirota, Yuki; Alfaro-Cervello, Clara; Soriano-Navarro, Mario; He, Xiaoping; Hayakawa-Yano, Yoshika; Yamada, Masayuki; Hikishima, Keigo; Tabata, Hidenori; Iwanami, Akio; Nakajima, Kazunori; Toyama, Yoshiaki; Itoh, Toshio; Alvarez-Buylla, Arturo; Garcia-Verdugo, Jose Manuel; Okano, Hideyuki

    2014-01-01

    The adult subventricular zone (SVZ) of the lateral ventricle contains neural stem cells. In rodents, these cells generate neuroblasts that migrate as chains toward the olfactory bulb along the rostral migratory stream (RMS). The neural-stem-cell niche at the ventricular wall is conserved in various animal species, including primates. However, it is unclear how the SVZ and RMS organization in nonhuman primates relates to that of rodents and humans. Here we studied the SVZ and RMS of the adult and neonatal common marmoset (Callithrix jacchus), a New World primate used widely in neuroscience, by electron microscopy, and immunohistochemical detection of cell-type-specific markers. The marmoset SVZ contained cells similar to type B, C, and A cells of the rodent SVZ in their marker expression and morphology. The adult marmoset SVZ had a three-layer organization, as in the human brain, with ependymal, hypocellular, and astro-cyte-ribbon layers. However, the hypocellular layer was very thin or absent in the adult-anterior and neonatal SVZ. Anti-PSA-NCAM staining of the anterior SVZ in whole-mount ventricular wall preparations of adult marmosets revealed an extensive network of elongated cell aggregates similar to the neuroblast chains in rodents. Time-lapse recordings of marmoset SVZ explants cultured in Matrigel showed the neuroblasts migrating in chains, like rodent type A cells. These results suggest that some features of neurogenesis and neuronal migration in the SVZ are common to marmosets, humans, and rodents. This basic description of the adult and neonatal marmoset SVZ will be useful for future studies on adult neurogenesis in primates. PMID:21246550

  6. Cellular mechanisms of estradiol-mediated sexual differentiation of the brain.

    PubMed

    Wright, Christopher L; Schwarz, Jaclyn S; Dean, Shannon L; McCarthy, Margaret M

    2010-09-01

    Gonadal steroids organize the developing brain during a perinatal sensitive period and have enduring consequences for adult behavior. In male rodents testicular androgens are aromatized in neurons to estrogens and initiate multiple distinct cellular processes that ultimately determine the masculine phenotype. Within specific brain regions, overall cell number and dendritic morphology are the principal targets for hormonal organization. Recent advances have been made in elucidating the cellular mechanisms by which the neurological underpinnings of sexually dimorphic physiology and behavior are determined. These include estradiol-mediated prostaglandin synthesis, presynaptic release of glutamate, postsynaptic changes in glutamate receptors and changes in cell adhesion molecules. Sex differences in cell death are mediated by hormonal modulation of survival and death factors such as TNFalpha and Bcl-2/BAX. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation

    PubMed Central

    Alia, Claudia; Spalletti, Cristina; Lai, Stefano; Panarese, Alessandro; Lamola, Giuseppe; Bertolucci, Federica; Vallone, Fabio; Di Garbo, Angelo; Chisari, Carmelo; Micera, Silvestro; Caleo, Matteo

    2017-01-01

    Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration. PMID:28360842

  8. Positron Emission Tomography studies with [11C]PBR28 in the Healthy Rodent Brain: Validating SUV as an Outcome Measure of Neuroinflammation.

    PubMed

    Tóth, Miklós; Doorduin, Janine; Häggkvist, Jenny; Varrone, Andrea; Amini, Nahid; Halldin, Christer; Gulyás, Balázs

    2015-01-01

    Molecular imaging of the 18 kD Translocator protein (TSPO) with positron emission tomography (PET) is of great value for studying neuroinflammation in rodents longitudinally. Quantification of the TSPO in rodents is, however, quite challenging. There is no suitable reference region and the use of plasma-derived input is not an option for longitudinal studies. The aim of this study was therefore to evaluate the use of the standardized uptake value (SUV) as an outcome measure for TSPO imaging in rodent brain PET studies, using [11C]PBR28. In the first part of the study, healthy male Wistar rats (n = 4) were used to determine the correlation between the distribution volume (VT, calculated with Logan graphical analysis) and the SUV. In the second part, healthy male Wistar rats (n = 4) and healthy male C57BL/6J mice (n = 4), were used to determine the test-retest variability of the SUV, with a 7-day interval between measurements. Dynamic PET scans of 63 minutes were acquired with a nanoScan PET/MRI and nanoScan PET/CT. An MRI scan was made for anatomical reference with each measurement. The whole brain VT of [11C]PBR28 in rats was 42.9 ± 1.7. A statistically significant correlation (r2 = 0.96; p < 0.01) was found between the VT and the SUV. The test-retest variability in 8 brain region ranged from 8 to 20% in rats and from 7 to 23% in mice. The interclass correlation coefficient (ICC) was acceptable to excellent for rats, but poor to acceptable for mice. The SUV of [11C]PBR28 showed a high correlation with VT as well as good test-retest variability. For future longitudinal small animal PET studies the SUV can thus be used to describe [11C]PBR28 uptake in healthy brain tissue. Based on the present observations, further studies are needed to explore the applicability of this approach in small animal disease models, with special regard to neuroinflammatory models.

  9. Restoration of stressor-induced calcium dysregulation and autophagy inhibition by polyphenol-rich acai (Euterpe sps.) fruit pulp extracts in rodent brain cells in vitro

    USDA-ARS?s Scientific Manuscript database

    Oxidative damage to lipids, proteins and nucleic acids in brain often causes progressive neuronal degeneration and death which are the focal traits of chronic and acute pathologies in the brain, including those involving cognitive decline. It has been postulated that at least part of the loss of cog...

  10. Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis

    PubMed Central

    Fan, Zheng; Sehm, Tina; Rauh, Manfred; Buchfelder, Michael

    2014-01-01

    Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc −; SLC7a11) and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G) resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage. PMID:24714627

  11. The endocannabinoid system as a target for the treatment of cannabis dependence.

    PubMed

    Clapper, Jason R; Mangieri, Regina A; Piomelli, Daniele

    2009-01-01

    The endocannabinoid system modulates neurotransmission at inhibitory and excitatory synapses in brain regions relevant to the regulation of pain, emotion, motivation, and cognition. This signaling system is engaged by the active component of cannabis, Delta9-tetrahydrocannabinol (Delta9-THC), which exerts its pharmacological effects by activation of G protein-coupled type-1 (CB1) and type-2 (CB2) cannabinoid receptors. During frequent cannabis use a series of poorly understood neuroplastic changes occur, which lead to the development of dependence. Abstinence in cannabinoid-dependent individuals elicits withdrawal symptoms that promote relapse into drug use, suggesting that pharmacological strategies aimed at alleviating cannabis withdrawal might prevent relapse and reduce dependence. Cannabinoid replacement therapy and CB1 receptor antagonism are two potential treatments for cannabis dependence that are currently under investigation. However, abuse liability and adverse side-effects may limit the scope of each of these approaches. A potential alternative stems from the recognition that (i) frequent cannabis use may cause an adaptive down-regulation of brain endocannabinoid signaling, and (ii) that genetic traits that favor hyperactivity of the endocannabinoid system in humans may decrease susceptibility to cannabis dependence. These findings suggest in turn that pharmacological agents that elevate brain levels of the endocannabinoid neurotransmitters, anandamide and 2-arachidonoylglycerol (2-AG), might alleviate cannabis withdrawal and dependence. One such agent, the fatty-acid amide hydrolase (FAAH) inhibitor URB597, selectively increases anandamide levels in the brain of rodents and primates. Preclinical studies show that URB597 produces analgesic, anxiolytic-like and antidepressant-like effects in rodents, which are not accompanied by overt signs of abuse liability. In this article, we review evidence suggesting that (i) cannabis influences brain endocannabinoid signaling and (ii) FAAH inhibitors such as URB597 might offer a possible therapeutic avenue for the treatment of cannabis withdrawal.

  12. Rodent Brain Microinjection to Study Molecular Substrates of Motivated Behavior

    PubMed Central

    Poland, Ryan S.; Bull, Cecilia; Syed, Wahab A.; Bowers, M. Scott

    2015-01-01

    Brain microinjection can aid elucidation of the molecular substrates of complex behaviors, such as motivation. For this purpose rodents can serve as appropriate models, partly because the response to behaviorally relevant stimuli and the circuitry parsing stimulus-action outcomes is astonishingly similar between humans and rodents. In studying molecular substrates of complex behaviors, the microinjection of reagents that modify, augment, or silence specific systems is an invaluable technique. However, it is crucial that the microinjection site is precisely targeted in order to aid interpretation of the results. We present a method for the manufacture of surgical implements and microinjection needles that enables accurate microinjection and unlimited customizability with minimal cost. Importantly, this technique can be successfully completed in awake rodents if conducted in conjunction with other JoVE articles that covered requisite surgical procedures. Additionally, there are many behavioral paradigms that are well suited for measuring motivation. The progressive ratio is a commonly used method that quantifies the efficacy of a reinforcer to maintain responding despite an (often exponentially) increasing work requirement. This assay is sensitive to reinforcer magnitude and pharmacological manipulations, which allows reinforcing efficacy and/ or motivation to be determined. We also present a straightforward approach to program operant software to accommodate a progressive ratio reinforcement schedule. PMID:26437131

  13. Neuroanatomical dichotomy of sexual behaviors in rodents: a special emphasis on brain serotonin.

    PubMed

    Angoa-Pérez, Mariana; Kuhn, Donald M

    2015-09-01

    Much of the social behavior in which rodents engage is related to reproduction, such as maintaining a breeding territory, seeking mates, mating, and caring for their young. Rodents belong to the internally fertilizing species that require sexual behavior for reproduction. The dyadic, heterosexual patterns of most mammalian species are sexually dimorphic, but they also share mutual components in both sexes: sexual attraction is reciprocal, sexual initiative is assumed, appetitive behavior is engaged in, and mating involves consummatory and postconsummatory phases in females as well as in males. Serotonin, a phylogenetically ancient molecule, is the most widely distributed neurotransmitter in the brain and its signaling pathways are essential for numerous functions including sexual behavior. Since the late 1960s, brain serotonergic neurotransmission has been considered to exert an inhibitory influence on the neural mechanisms mediating sexual behavior. This contention was based mainly on the observations that a decrease in central serotonergic activity facilitated the elicitation of sexual behavior, whereas an increase in central serotonergic activity attenuated it. However, the discovery of over 14 types of serotonin receptors has added numerous layers of complexity to the study of serotonin and sexual behavior. Evidence shows that, upon activation, certain receptor subtypes facilitate, whereas some others suppress, sexual behavior, as well as sexual arousal and motivation. Furthermore, the role of these receptors has been shown to be different in the male and female sexes. The use of serotonergic pharmacological interventions, mouse strains with genetic polymorphisms causing alterations in the levels of brain serotonin, and animal models with genetic manipulations of various serotonin effectors has helped delineate the fundamental role of this neurotransmitter in the regulation of sexual behavior. This review aims to examine the basics of the components of female and male sexual behavior and the participation of the serotonin system in the modulation of these behaviors, with emphasis on rodents.

  14. Perampanel, an antagonist of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, for the treatment of epilepsy: studies in human epileptic brain and nonepileptic brain and in rodent models.

    PubMed

    Zwart, R; Sher, E; Ping, X; Jin, X; Sims, J R; Chappell, A S; Gleason, S D; Hahn, P J; Gardinier, K; Gernert, D L; Hobbs, J; Smith, J L; Valli, S N; Witkin, J M

    2014-10-01

    Perampanel [Fycompa, 2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl)benzonitrile hydrate 4:3; Eisai Inc., Woodcliff Lake, NJ] is an AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor antagonist used as an adjunctive treatment of partial-onset seizures. We asked whether perampanel has AMPA receptor antagonist activity in both the cerebral cortex and hippocampus associated with antiepileptic efficacy and also in the cerebellum associated with motor side effects in rodent and human brains. We also asked whether epileptic or nonepileptic human cortex is similarly responsive to AMPA receptor antagonism by perampanel. In rodent models, perampanel decreased epileptic-like activity in multiple seizure models. However, doses of perampanel that had anticonvulsant effects were within the same range as those engendering motor side effects. Perampanel inhibited native rat and human AMPA receptors from the hippocampus as well as the cerebellum that were reconstituted into Xenopus oocytes. In addition, with the same technique, we found that perampanel inhibited AMPA receptors from hippocampal tissue that had been removed from a patient who underwent surgical resection for refractory epilepsy. Perampanel inhibited AMPA receptor-mediated ion currents from all the tissues investigated with similar potency (IC50 values ranging from 2.6 to 7.0 μM). Cortical slices from the left temporal lobe derived from the same patient were studied in a 60-microelectrode array. Large field potentials were evoked on at least 45 channels of the array, and 10 μM perampanel decreased their amplitude and firing rate. Perampanel also produced a 33% reduction in the branching parameter, demonstrating the effects of perampanel at the network level. These data suggest that perampanel blocks AMPA receptors globally across the brain to account for both its antiepileptic and side-effect profile in rodents and epileptic patients. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Neuroanatomical dichotomy of sexual behaviors in rodents: a special emphasis on brain serotonin

    PubMed Central

    Angoa-Pérez, Mariana; Kuhn, Donald M.

    2016-01-01

    Much of the social behavior in which rodents engage is related to reproduction, such as maintaining a breeding territory, seeking mates, mating, and caring for young. Rodents belong to the internally fertilizing species that require sexual behavior for reproduction. The dyadic, heterosexual patterns of most mammalian species are sexually dimorphic, but they also share mutual components in both sexes: sexual attraction is reciprocal, sexual initiative is assumed, appetitive behavior is engaged in and mating involves consummatory and postconsummatory phases in females as well as in males. Serotonin, a phylogenetically ancient molecule, is the most widely distributed neurotransmitter in the brain and its signaling pathways are essential for numerous functions including sexual behavior. Since the late 1960’s, brain serotonergic neurotransmission has been considered to exert an inhibitory influence on the neural mechanisms mediating sexual behavior. This contention was based mainly on the observations that a decrease in central serotonergic activity facilitated the elicitation of sexual behavior while an increase in central serotonergic activity attenuated it. However, the discovery of over 14 types of serotonin receptors has added numerous layers of complexity to the study of serotonin and sexual behavior. Evidence shows that upon activation, certain receptor subtypes facilitate while some others suppress sexual behavior as well as sexual arousal and motivation. Furthermore, the role of these receptors has been shown to be differential in males versus females. The use of serotonergic pharmacological interventions, mouse strains with genetic polymorphisms causing alterations in the levels of brain serotonin as well as animal models with genetic manipulations of various serotonin effectors has helped delineate the fundamental role of this neurotransmitter in the regulation of sexual behavior. This review aims to examine the basics of the components of female and male sexual behavior and the participation of the serotonin system in the modulation of these behaviors with emphasis on rodents. PMID:26110223

  16. How the amygdala affects emotional memory by altering brain network properties.

    PubMed

    Hermans, Erno J; Battaglia, Francesco P; Atsak, Piray; de Voogd, Lycia D; Fernández, Guillén; Roozendaal, Benno

    2014-07-01

    The amygdala has long been known to play a key role in supporting memory for emotionally arousing experiences. For example, classical fear conditioning depends on neural plasticity within this anterior medial temporal lobe region. Beneficial effects of emotional arousal on memory, however, are not restricted to simple associative learning. Our recollection of emotional experiences often includes rich representations of, e.g., spatiotemporal context, visceral states, and stimulus-response associations. Critically, such memory features are known to bear heavily on regions elsewhere in the brain. These observations led to the modulation account of amygdala function, which postulates that amygdala activation enhances memory consolidation by facilitating neural plasticity and information storage processes in its target regions. Rodent work in past decades has identified the most important brain regions and neurochemical processes involved in these modulatory actions, and neuropsychological and neuroimaging work in humans has produced a large body of convergent data. Importantly, recent methodological developments make it increasingly realistic to monitor neural interactions underlying such modulatory effects as they unfold. For instance, functional connectivity network modeling in humans has demonstrated how information exchanges between the amygdala and specific target regions occur within the context of large-scale neural network interactions. Furthermore, electrophysiological and optogenetic techniques in rodents are beginning to make it possible to quantify and even manipulate such interactions with millisecond precision. In this paper we will discuss that these developments will likely lead to an updated view of the amygdala as a critical nexus within large-scale networks supporting different aspects of memory processing for emotionally arousing experiences. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Neuronal Migration Dynamics in the Developing Ferret Cortex.

    PubMed

    Gertz, Caitlyn C; Kriegstein, Arnold R

    2015-10-21

    During mammalian neocortical development, newborn excitatory and inhibitory neurons must migrate over long distances to reach their final positions within the cortical plate. In the lissencephalic rodent brain, pyramidal neurons are born in the ventricular and subventricular zones of the pallium and migrate along radial glia fibers to reach the appropriate cortical layer. Although much less is known about neuronal migration in species with a gyrencephalic cortex, retroviral studies in the ferret and primate suggest that, unlike the rodent, pyramidal neurons do not follow strict radial pathways and instead can disperse horizontally. However, the means by which pyramidal neurons laterally disperse remain unknown. In this study, we identified a viral labeling technique for visualizing neuronal migration in the ferret, a gyrencephalic carnivore, and found that migration was predominantly radial at early postnatal ages. In contrast, neurons displayed more tortuous migration routes with a decreased frequency of cortical plate-directed migration at later stages of neurogenesis concomitant with the start of brain folding. This was accompanied by neurons migrating sequentially along several different radial glial fibers, suggesting a mode by which pyramidal neurons may laterally disperse in a folded cortex. These findings provide insight into the migratory behavior of neurons in gyrencephalic species and provide a framework for using nonrodent model systems for studying neuronal migration disorders. Elucidating neuronal migration dynamics in the gyrencephalic, or folded, cortex is important for understanding neurodevelopmental disorders. Similar to the rodent, we found that neuronal migration was predominantly radial at early postnatal ages in the gyrencephalic ferret cortex. Interestingly, ferret neurons displayed more tortuous migration routes and a decreased frequency of radial migration at later ages coincident with the start of cortical folding. We found that ferret neurons use several different radial glial fibers as migratory guides, including those belonging to the recently described outer radial glia, suggesting a mechanism by which ferret neurons disperse laterally. It is likely that excitatory neurons horizontally disperse in other gyrencephalic mammals, including the primate, suggesting an important modification to the current model deduced primarily from the rodent. Copyright © 2015 the authors 0270-6474/15/3514307-09$15.00/0.

  18. The cognitive cost of sleep lost

    PubMed Central

    McCoy, John G.; Strecker, Robert E.

    2013-01-01

    A substantial body of literature supports the intuitive notion that a good night’s sleep can facilitate human cognitive performance the next day. Deficits in attention, learning & memory, emotional reactivity, and higher-order cognitive processes, such as executive function and decision making, have all been documented following sleep disruption in humans. Thus, whilst numerous clinical and experimental studies link human sleep disturbance to cognitive deficits, attempts to develop valid and reliable rodent models of these phenomena are fewer, and relatively more recent. This review focuses primarily on the cognitive impairments produced by sleep disruption in rodent models of several human patterns of sleep loss/sleep disturbance. Though not an exclusive list, this review will focus on four specific types of sleep disturbance: total sleep deprivation, experimental sleep fragmentation, selective REM sleep deprivation, and chronic sleep restriction. The use of rodent models can provide greater opportunities to understand the neurobiological changes underlying sleep loss induced cognitive impairments. Thus, this review concludes with a description of recent neurobiological findings concerning the neuroplastic changes and putative brain mechanisms that may underlie the cognitive deficits produced by sleep disturbances. PMID:21875679

  19. Expensive Brains: "Brainy" Rodents have Higher Metabolic Rate.

    PubMed

    Sobrero, Raúl; May-Collado, Laura J; Agnarsson, Ingi; Hernández, Cristián E

    2011-01-01

    Brains are the centers of the nervous system of animals, controlling the organ systems of the body and coordinating responses to changes in the ecological and social environment. The evolution of traits that correlate with cognitive ability, such as relative brain size is thus of broad interest. Brain mass relative to body mass (BM) varies among mammals, and diverse factors have been proposed to explain this variation. A recent study provided evidence that energetics play an important role in brain evolution (Isler and van Schaik, 2006). Using composite phylogenies and data drawn from multiple sources, these authors showed that basal metabolic rate (BMR) correlates with brain mass across mammals. However, no such relationship was found within rodents. Here we re-examined the relationship between BMR and brain mass within Rodentia using a novel species-level phylogeny. Our results are sensitive to parameter evaluation; in particular how species mass is estimated. We detect no pattern when applying an approach used by previous studies, where each species BM is represented by two different numbers, one being the individual that happened to be used for BMR estimates of that species. However, this approach may compromise the analysis. When using a single value of BM for each species, whether representing a single individual, or available species mean, our findings provide evidence that brain mass (independent of BM) and BMR are correlated. These findings are thus consistent with the hypothesis that large brains evolve when the payoff for increased brain mass is greater than the energetic cost they incur.

  20. Propidium iodide staining: a new application in fluorescence microscopy for analysis of cytoarchitecture in adult and developing rodent brain.

    PubMed

    Hezel, Marcus; Ebrahimi, Fahim; Koch, Marco; Dehghani, Faramarz

    2012-10-01

    Immunohistochemical visualization of antigens in specimen has evolved to an indispensable technique in biomedical research for investigations of cell morphology and pathology both in bright field and fluorescence microscopy. While there are couple of staining methods that reveal entire cytoarchitecture in bright field microscopy such as Nissl or hemalaun-eosin, there are still limitations in visualizations of cytoarchitecture in fluorescence microscopy. The present study reports a simple staining method that provides the required illustration of cell allocations and cellular composition in fluorescence microscopy in adult and in developing rodent central nervous system using the fluorophore propidium iodide (PI, 5μg/mL). PI is a well-accepted marker for degenerating cells when applied prior to fixation (pre-fixation PI staining). Here, PI was added to the sections after the fixation (post-fixation PI staining). This revised labeling procedure led to similar cytoarchitectural staining patterns in fluorescence microscopy as observed with hemalaun in bright field microscopy. This finding was proven in organotypic hippocampal slice cultures (OHSC) and brain sections obtained from different postnatal developmental stages. Excitotoxically lesioned OHSC subjected to pre-fixation PI staining merely showed brightly labeled condensed nuclei of degenerating neurons. In contrast, post-fixation PI staining additionally revealed extensive labeling of neuronal cell bodies and glial cells within the OHSC, thus allowing visualization of stratification of neuronal layers and cell morphology. Furthermore, post-fixation PI staining was combined with NeuN, calbindin, calretinin, glial fibrillary acidic protein or Griffonia simplicifolia isolectin B4 (IB(4)) in post natal (p1 and p9) and adult rats. In early post-natal brain sections almost all mentioned cellular markers led to an incomplete staining of the native cell organization and resulted in an inaccurate estimation of cell morphology when compared to adult brains. In contrast, post-fixation PI staining allowed investigation of the whole cytoarchitecture independent of the developmental stage. Taken together, post-fixation PI staining provides a detailed insight in the morphology of both developing and adult brain tissues in fluorescence microscopy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders

    PubMed Central

    2014-01-01

    Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669

  2. Cerebrospinal and Interstitial Fluid Transport via the Glymphatic Pathway Modeled by Optimal Mass Transport

    PubMed Central

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-01-01

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4 min over ∼3 hrs in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. PMID:28323163

  3. Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport.

    PubMed

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-05-15

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4min over ∼3h in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. Copyright © 2017. Published by Elsevier Inc.

  4. Default mode network, motor network, dorsal and ventral basal ganglia networks in the rat brain: comparison to human networks using resting state-fMRI.

    PubMed

    Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan

    2015-01-01

    Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats.

  5. Default Mode Network, Motor Network, Dorsal and Ventral Basal Ganglia Networks in the Rat Brain: Comparison to Human Networks Using Resting State-fMRI

    PubMed Central

    Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan

    2015-01-01

    Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats. PMID:25789862

  6. Thyroid Hormone Availability and Action during Brain Development in Rodents

    PubMed Central

    Bárez-López, Soledad; Guadaño-Ferraz, Ana

    2017-01-01

    Thyroid hormones (THs) play an essential role in the development of all vertebrates; in particular adequate TH content is crucial for proper neurodevelopment. TH availability and action in the brain are precisely regulated by several mechanisms, including the secretion of THs by the thyroid gland, the transport of THs to the brain and neural cells, THs activation and inactivation by the metabolic enzymes deiodinases and, in the fetus, transplacental passage of maternal THs. Although these mechanisms have been extensively studied in rats, in the last decade, models of genetically modified mice have been more frequently used to understand the role of the main proteins involved in TH signaling in health and disease. Despite this, there is little knowledge about the mechanisms underlying THs availability in the mouse brain. This mini-review article gathers information from findings in rats, and the latest findings in mice regarding the ontogeny of TH action and the sources of THs to the brain, with special focus on neurodevelopmental stages. Unraveling TH economy and action in the mouse brain may help to better understand the physiology and pathophysiology of TH signaling in brain and may contribute to addressing the neurological alterations due to hypo and hyperthyroidism and TH resistance syndromes. PMID:28855863

  7. Postnatal Development of CB1 Receptor Expression in Rodent Somatosensory Cortex

    PubMed Central

    Deshmukh, Suvarna; Onozuka, Kaori; Bender, Kevin J.; Bender, Vanessa A.; Lutz, Beat; Mackie, Ken; Feldman, Daniel E.

    2007-01-01

    Endocannabinoids are powerful modulators of synaptic transmission that act on presynaptic cannabinoid receptors. Cannabinoid receptor type 1 (CB1) is the dominant receptor in the CNS, and is present in many brain regions, including sensory cortex. To investigate the potential role of CB1 receptors in cortical development, we examined the developmental expression of CB1 in rodent primary somatosensory (barrel) cortex, using immunohistochemistry with a CB1-specific antibody. We found that before postnatal day (P) 6, CB1 receptor staining was present exclusively in the cortical white matter, and that CB1 staining appeared in the grey matter between P6 and P20 in a specific laminar pattern. CB1 staining was confined to axons, and was most prominent in cortical layers 2/3, 5a, and 6. CB1 null (−/−) mice showed altered anatomical barrel maps in layer 4, with enlarged inter-barrel septa, but normal barrel size. These results indicate that CB1 receptors are present in early postnatal development and influence development of sensory maps. PMID:17210229

  8. Elements of episodic-like memory in animal models.

    PubMed

    Crystal, Jonathon D

    2009-03-01

    Representations of unique events from one's past constitute the content of episodic memories. A number of studies with non-human animals have revealed that animals remember specific episodes from their past (referred to as episodic-like memory). The development of animal models of memory holds enormous potential for gaining insight into the biological bases of human memory. Specifically, given the extensive knowledge of the rodent brain, the development of rodent models of episodic memory would open new opportunities to explore the neuroanatomical, neurochemical, neurophysiological, and molecular mechanisms of memory. Development of such animal models holds enormous potential for studying functional changes in episodic memory in animal models of Alzheimer's disease, amnesia, and other human memory pathologies. This article reviews several approaches that have been used to assess episodic-like memory in animals. The approaches reviewed include the discrimination of what, where, and when in a radial arm maze, dissociation of recollection and familiarity, object recognition, binding, unexpected questions, and anticipation of a reproductive state. The diversity of approaches may promote the development of converging lines of evidence on the difficult problem of assessing episodic-like memory in animals.

  9. The Programming of the Social Brain by Stress During Childhood and Adolescence: From Rodents to Humans.

    PubMed

    Tzanoulinou, Stamatina; Sandi, Carmen

    2017-01-01

    The quality and quantity of social experience is fundamental to an individual's health and well-being. Early life stress is known to be an important factor in the programming of the social brain that exerts detrimental effects on social behaviors. The peri-adolescent period, comprising late childhood and adolescence, represents a critical developmental window with regard to the programming effects of stress on the social brain. Here, we discuss social behavior and the physiological and neurobiological consequences of stress during peri-adolescence in the context of rodent paradigms that model human adversity, including social neglect and isolation, social abuse, and exposure to fearful experiences. Furthermore, we discuss peri-adolescent stress as a potent component that influences the social behaviors of individuals in close contact with stressed individuals and that can also influence future generations. We also discuss the temporal dynamics programmed by stress on the social brain and debate whether social behavior alterations are adaptive or maladaptive. By revising the existing literature and defining open questions, we aim to expand the framework in which interactions among peri-adolescent stress, the social brain, and behavior can be better conceptualized.

  10. Hypothalamic inflammation and gliosis in obesity

    PubMed Central

    Dorfman, Mauricio D.; Thaler, Joshua P.

    2015-01-01

    Structured Abstract Purpose of review Hypothalamic inflammation and gliosis are recently discovered mechanisms that may contribute to obesity pathogenesis. Current research in this area suggests that investigation of these CNS responses may provide opportunities to develop new weight loss treatments. Recent findings In rodents, hypothalamic inflammation and gliosis occur rapidly with high-fat diet consumption prior to significant weight gain. In addition, sensitivity or resistance to diet-induced obesity in rodents generally correlates with the presence or absence of hypothalamic inflammation and reactive gliosis (brain response to injury). Moreover, functional interventions that increase or decrease inflammation in neurons and glia correspondingly alter diet-associated weight gain. However, some conflicting data have recently emerged that question the contribution of hypothalamic inflammation to obesity pathogenesis. However, several studies have detected gliosis and disrupted connectivity in obese humans, highlighting the potential translational importance of this mechanism. Summary There is growing evidence that obesity is associated with brain inflammation in humans, particularly in the hypothalamus where its presence may disrupt body weight control and glucose homeostasis. More work is needed to determine whether this response is common in human obesity and to what extent it can be manipulated for therapeutic benefit. PMID:26192704

  11. Using stereotactic brain atlases for small rodents and nonhuman primates for optrode array customization

    NASA Astrophysics Data System (ADS)

    Boutte, Ronald W.; Merlin, Sam; Griffiths, Brandon; Parry, Trent; Blair, Steve

    2017-02-01

    As the optogenetic field expands its need to target with high specificity only grows more crucial. This work will show a method for customizing soda-lime glass optrode arrays so that fine structures within the brains of small rodents and nonhuman primates can be optically interrogated below the outer cortical layer. An 8 × 6 array is customized for optrode length (400 μm ), optrode width (75 μm ), optrode pitch (400 μm ), backplane thickness (500 μm ), and overall form factor (3.45 mm × 2.65 mm ). The 400 μm long optrode is capable of illuminating the cortical Layer IV of rhesus macaque ( Macaca Fascicularis ) and the motor cortex of small mice ( Mus Musculus ).

  12. Is 2-dimethylaminoethanol (deanol) indeed a precursor of brain acetylcholine? A gas chromatographic evaluation.

    PubMed

    Zahniser, N R; Chou, D; Hanin, I

    1977-03-01

    Acute administration of deanol-p-acetamidobenzoate (Deaner; deanol) has been reported to elevate brain choline (CH) and acetylcholine (ACh) levels. We have developed a specific and sensitive gas chromatographic assay to measure deanol levels in tissue and have applied this assay to our studies of the effect of acute deanol administration on deanol, ACh and Ch levels in rodent brains. Details of the method are described in this text. This procedure is quantitative and yields reproducible results over a wide range of deanol concentrations (0.30-200 nmol). Seven endogenous and pharmacological parameters have been studied using this procedure. In control rodent brain, liver, heart, lung and plasma, we detected no free endogenous deanol (less than 1 nmol/g). After deanol administration, we were able to detect deanol in tissue and have attempted to determine a relationship between these levels and values of ACh in the same tissue. Regardless of deanol pretreatment time (1-30 minutes) or doses (33.3-3000 mg/kg i.p.) used, we detected no increase in mouse whole brain ACh levels. Likewise, there was no detectable elevation in ACh levels in rat whole brain, cortex, striatum or hippocampus after a 15-minute pretreatment with 550 mg/kg of deanol (i.p.). The only elevation in ACh levels which we detected occurred selectively in the striatum of mice pretreated with a massive dose (900 mg/kg i.p.) of deanol for 30 minutes. This selective increase in striatal ACh levels oculd not, however, be related to levels of deanol in the striatum because there was no greater accumulation of deanol in the striatum than in other brain areas tested or in whole brain. These data do not confirm the results of other investigators who reported elevations in whole brain or striatal ACh levels after acute administration of lower doses of deanol. The data emphasize the need for further investigation into the mode of action of deanol and question its suggested role as an immediate precursor of ACh synthesis in the central nervous system.

  13. Gene Therapy for the Treatment of Neurological Disorders: Central Nervous System Neoplasms

    PubMed Central

    Kamran, Neha; Candolfi, Marianela; Baker, Gregory J.; Ayala, Mariela Moreno; Dzaman, Marta; Lowenstein, Pedro R.; Castro, Maria G.

    2015-01-01

    Summary Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults with a median survival of 16.2 to 21.2 months post diagnosis [1]. Because of its location, complete surgical resection is impossible; additionally because GBM is also resistant to chemotherapeutic and radiotherapy approaches, development of novel therapies is urgently needed. In this chapter we describe the development of preclinical animal models and a conditionally cytotoxic and immune-stimulatory gene therapy strategy that successfully causes tumor regression in several rodent GBM models. PMID:26611605

  14. Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: a review of rodent and human data.

    PubMed

    Rasier, G; Toppari, J; Parent, A-S; Bourguignon, J-P

    2006-07-25

    Natural hormones and some synthetic chemicals spread into our surrounding environment share the capacity to interact with hormone action and metabolism. Exposure to such compounds can cause a variety of developmental and reproductive detrimental abnormalities in wildlife species and, potentially, in human. Many experimental and epidemiological data have reported that exposure of the developing fetus or neonate to environmentally relevant concentrations of some among these endocrine disrupters induces morphological, biochemical and/or physiological disorders in brain and reproductive organs, by interfering with the hormone actions. The impact of such exposures on the hypothalamic-pituitary-gonadal axis and subsequent sexual maturation is the subject of the present review. We will highlight epidemiological human studies and the effects of early exposure during gestational, perinatal or postnatal life in female rodents.

  15. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants

    USDA-ARS?s Scientific Manuscript database

    In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. The objective of this study is to compare BDNF concentrations of subjects wi...

  16. Citrulline diet supplementation improves specific age-related raft changes in wild-type rodent hippocampus.

    PubMed

    Marquet-de Rougé, Perrine; Clamagirand, Christine; Facchinetti, Patricia; Rose, Christiane; Sargueil, Françoise; Guihenneuc-Jouyaux, Chantal; Cynober, Luc; Moinard, Christophe; Allinquant, Bernadette

    2013-10-01

    The levels of molecules crucial for signal transduction processing change in the brain with aging. Lipid rafts are membrane microdomains involved in cell signaling. We describe here substantial biophysical and biochemical changes occurring within the rafts in hippocampus neurons from aging wild-type rats and mice. Using continuous sucrose density gradients, we observed light-, medium-, and heavy raft subpopulations in young adult rodent hippocampus neurons containing very low levels of amyloid precursor protein (APP) and almost no caveolin-1 (CAV-1). By contrast, old rodents had a homogeneous age-specific high-density caveolar raft subpopulation containing significantly more cholesterol (CHOL), CAV-1, and APP. C99-APP-Cter fragment detection demonstrates that the first step of amyloidogenic APP processing takes place in this caveolar structure during physiological aging of the rat brain. In this age-specific caveolar raft subpopulation, levels of the C99-APP-Cter fragment are exponentially correlated with those of APP, suggesting that high APP concentrations may be associated with a risk of large increases in beta-amyloid peptide levels. Citrulline (an intermediate amino acid of the urea cycle) supplementation in the diet of aged rats for 3 months reduced these age-related hippocampus raft changes, resulting in raft patterns tightly close to those in young animals: CHOL, CAV-1, and APP concentrations were significantly lower and the C99-APP-Cter fragment was less abundant in the heavy raft subpopulation than in controls. Thus, we report substantial changes in raft structures during the aging of rodent hippocampus and describe new and promising areas of investigation concerning the possible protective effect of citrulline on brain function during aging.

  17. The Effects of Spaceflight on Neurocognitive Performance: Extent, Longevity, and Neural Bases

    NASA Technical Reports Server (NTRS)

    Seidler, Rachael D.; Bloomberg, Jacob; Wood, Scott; Mason, Sara; Mulavara, Ajit; Kofman, Igor; De Dios, Yiri; Gadd, Nicole; Stepanyan, Vahagn; Szecsy, Darcy

    2017-01-01

    Spaceflight effects on gait, balance, & manual motor control have been well studied; some evidence for cognitive deficits. Rodent cortical motor & sensory systems show neural structural alterations with spaceflight. We found extensive changes in behavior, brain structure & brain function following 70 days of HDBR. Specific Aim: Aim 1-Identify changes in brain structure, function, and network integrity as a function of spaceflight and characterize their time course. Aim 2-Specify relationships between structural and functional brain changes and performance and characterize their time course.

  18. Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities

    NASA Astrophysics Data System (ADS)

    El Houssaini, Kenza; Ivanov, Anton I.; Bernard, Christophe; Jirsa, Viktor K.

    2015-01-01

    Epilepsy, refractory status epilepticus, and depolarization block are pathological brain activities whose mechanisms are poorly understood. Using a generic mathematical model of seizure activity, we show that these activities coexist under certain conditions spanning the range of possible brain activities. We perform a detailed bifurcation analysis and predict strategies to escape from some of the pathological states. Experimental results using rodent data provide support of the model, highlighting the concept that these pathological activities belong to the endogenous repertoire of brain activities.

  19. The amygdala as a hub in brain networks that support social life

    PubMed Central

    Bickart, Kevin C.; Dickerson, Bradford C.; Barrett, Lisa Feldman

    2016-01-01

    A growing body of evidence suggests that the amygdala is central to handling the demands of complex social life in primates. In this paper, we synthesize extant anatomical and functional data from rodents, monkeys, and humans to describe the topography of three partially distinct large-scale brain networks anchored in the amygdala that each support unique functions for effectively managing social interactions and maintaining social relationships. These findings provide a powerful componential framework for parsing social behavior into partially distinct neural underpinnings that differ among healthy people and disintegrate or fail to develop in neuropsychiatric populations marked by social impairment, such as autism, antisocial personality disorder, and frontotemporal dementia. PMID:25152530

  20. Organotypic Slice Cultures for Studies of Postnatal Neurogenesis

    PubMed Central

    Mosa, Adam J.; Wang, Sabrina; Tan, Yao Fang; Wojtowicz, J. Martin

    2015-01-01

    Here we describe a technique for studying hippocampal postnatal neurogenesis in the rodent brain using the organotypic slice culture technique. This method maintains the characteristic topographical morphology of the hippocampus while allowing direct application of pharmacological agents to the developing hippocampal dentate gyrus. Additionally, slice cultures can be maintained for up to 4 weeks and thus, allow one to study the maturation process of newborn granule neurons. Slice cultures allow for efficient pharmacological manipulation of hippocampal slices while excluding complex variables such as uncertainties related to the deep anatomic location of the hippocampus as well as the blood brain barrier. For these reasons, we sought to optimize organotypic slice cultures specifically for postnatal neurogenesis research. PMID:25867138

  1. Minocycline exacerbates apoptotic neurodegeneration induced by the NMDA receptor antagonist MK-801 in the early postnatal mouse brain.

    PubMed

    Inta, Ioana; Vogt, Miriam A; Vogel, Anne S; Bettendorf, Markus; Gass, Peter; Inta, Dragos

    2016-10-01

    NMDA receptor (NMDAR) antagonists induce in perinatal rodent cortical apoptosis and protracted schizophrenia-like alterations ameliorated by antipsychotic treatment. The broad-spectrum antibiotic minocycline elicits antipsychotic and neuroprotective effects. Here we tested, if minocycline protects also against apoptosis triggered by the NMDAR antagonist MK-801 at postnatal day 7. Surprisingly, minocycline induced widespread cortical apoptosis and exacerbated MK-801-triggered cell death. In some areas such as the subiculum, the pro-apoptotic effect of minocycline was even more pronounced than that elicited by MK-801. These data reveal among antipsychotics unique pro-apoptotic properties of minocycline, raising concerns regarding consequences for brain development and the use in children.

  2. A systematic review on the anxiolytic effects of aromatherapy on rodents under experimentally induced anxiety models.

    PubMed

    Tsang, Hector W H; Ho, Timothy Y C

    2010-01-01

    We reviewed studies from 1999 to 2009 on anxiolytic effects of different essential oils toward rodents in anxiety-related behavioral models. Journal papers that evaluated the anxiolytic effects of essential oils for rodents were extracted from available electronic data bases. The results based on 14 studies showed that different rodent species were recruited including ICR mice and Swiss mice. Most of studies applied the Elevated Plus Maze (EPM) as the animal behavioral model. Lavender oil was the most popular within the 14 studies. Lavender and rose oils were found to be effective in some of the studies. Only one study reported the underlying neurophysiological mechanism in terms of concentrations of emotionally related neuro-transmitters such as dopamine, serotonin, and their derivatives, in various brain regions. Some essential oils are found to be effective to induce anxiolytic effect in rodents under different animal anxiety models. However, more standardized experimental procedures and outcome measures are needed in future studies. Translational research to human subjects is also recommended.

  3. Distribution of vesicular glutamate transporters in the human brain

    PubMed Central

    Vigneault, Érika; Poirel, Odile; Riad, Mustapha; Prud'homme, Josée; Dumas, Sylvie; Turecki, Gustavo; Fasano, Caroline; Mechawar, Naguib; El Mestikawy, Salah

    2015-01-01

    Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3) are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe) while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains. PMID:25798091

  4. Distribution of vesicular glutamate transporters in the human brain.

    PubMed

    Vigneault, Érika; Poirel, Odile; Riad, Mustapha; Prud'homme, Josée; Dumas, Sylvie; Turecki, Gustavo; Fasano, Caroline; Mechawar, Naguib; El Mestikawy, Salah

    2015-01-01

    Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3) are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe) while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.

  5. Brain Stimulation Reward Supports More Consistent and Accurate Rodent Decision-Making than Food Reward.

    PubMed

    McMurray, Matthew S; Conway, Sineadh M; Roitman, Jamie D

    2017-01-01

    Animal models of decision-making rely on an animal's motivation to decide and its ability to detect differences among various alternatives. Food reinforcement, although commonly used, is associated with problematic confounds, especially satiety. Here, we examined the use of brain stimulation reward (BSR) as an alternative reinforcer in rodent models of decision-making and compared it with the effectiveness of sugar pellets. The discriminability of various BSR frequencies was compared to differing numbers of sugar pellets in separate free-choice tasks. We found that BSR was more discriminable and motivated greater task engagement and more consistent preference for the larger reward. We then investigated whether rats prefer BSR of varying frequencies over sugar pellets. We found that animals showed either a clear preference for sugar reward or no preference between reward modalities, depending on the frequency of the BSR alternative and the size of the sugar reward. Overall, these results suggest that BSR is an effective reinforcer in rodent decision-making tasks, removing food-related confounds and resulting in more accurate, consistent, and reliable metrics of choice.

  6. Schizophrenia and Depression Co-Morbidity: What We have Learned from Animal Models

    PubMed Central

    Samsom, James N.; Wong, Albert H. C.

    2015-01-01

    Patients with schizophrenia are at an increased risk for the development of depression. Overlap in the symptoms and genetic risk factors between the two disorders suggests a common etiological mechanism may underlie the presentation of comorbid depression in schizophrenia. Understanding these shared mechanisms will be important in informing the development of new treatments. Rodent models are powerful tools for understanding gene function as it relates to behavior. Examining rodent models relevant to both schizophrenia and depression reveals a number of common mechanisms. Current models which demonstrate endophenotypes of both schizophrenia and depression are reviewed here, including models of CUB and SUSHI multiple domains 1, PDZ and LIM domain 5, glutamate Delta 1 receptor, diabetic db/db mice, neuropeptide Y, disrupted in schizophrenia 1, and its interacting partners, reelin, maternal immune activation, and social isolation. Neurotransmission, brain connectivity, the immune system, the environment, and metabolism emerge as potential common mechanisms linking these models and potentially explaining comorbid depression in schizophrenia. PMID:25762938

  7. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain.

    PubMed

    Saito, Mariko; Chakraborty, Goutam; Hui, Maria; Masiello, Kurt; Saito, Mitsuo

    2016-08-16

    Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD). While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy). Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7) mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  8. Towards Development of a Field-Deployable Imaging Device for TBI

    DTIC Science & Technology

    2012-03-01

    centers such as in Germany for those studies, as well as additional medical care. This is because magnetic resonance imaging is unavailable in or near...detection of stroke in areas 283 where CAT scans and magnetic resonance imaging are not readily available or appropriate. 284 285 ACKNOWLEDGEMENTS...Task (3): MR image rodent brains. 3) UVA has performed its first round of MRI studies of CCI rats – Figures 1a,b,c. Task (4): Immunohistochemical

  9. Methodological standards and interpretation of video-electroencephalography in adult control rodents. A TASK1-WG1 report of the AES/ILAE Translational Task Force of the ILAE.

    PubMed

    Kadam, Shilpa D; D'Ambrosio, Raimondo; Duveau, Venceslas; Roucard, Corinne; Garcia-Cairasco, Norberto; Ikeda, Akio; de Curtis, Marco; Galanopoulou, Aristea S; Kelly, Kevin M

    2017-11-01

    In vivo electrophysiological recordings are widely used in neuroscience research, and video-electroencephalography (vEEG) has become a mainstay of preclinical neuroscience research, including studies of epilepsy and cognition. Studies utilizing vEEG typically involve comparison of measurements obtained from different experimental groups, or from the same experimental group at different times, in which one set of measurements serves as "control" and the others as "test" of the variables of interest. Thus, controls provide mainly a reference measurement for the experimental test. Control rodents represent an undiagnosed population, and cannot be assumed to be "normal" in the sense of being "healthy." Certain physiological EEG patterns seen in humans are also seen in control rodents. However, interpretation of rodent vEEG studies relies on documented differences in frequency, morphology, type, location, behavioral state dependence, reactivity, and functional or structural correlates of specific EEG patterns and features between control and test groups. This paper will focus on the vEEG of standard laboratory rodent strains with the aim of developing a small set of practical guidelines that can assist researchers in the design, reporting, and interpretation of future vEEG studies. To this end, we will: (1) discuss advantages and pitfalls of common vEEG techniques in rodents and propose a set of recommended practices and (2) present EEG patterns and associated behaviors recorded from adult rats of a variety of strains. We will describe the defining features of selected vEEG patterns (brain-generated or artifactual) and note similarities to vEEG patterns seen in adult humans. We will note similarities to normal variants or pathological human EEG patterns and defer their interpretation to a future report focusing on rodent seizure patterns. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  10. Propagation of Aß pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies.

    PubMed

    Eisele, Yvonne S; Duyckaerts, Charles

    2016-01-01

    In brains of patients with Alzheimer's disease (AD), Aβ peptides accumulate in parenchyma and, almost invariably, also in the vascular walls. Although Aβ aggregation is, by definition, present in AD, its impact is only incompletely understood. It occurs in a stereotypical spatiotemporal distribution within neuronal networks in the course of the disease. This suggests a role for synaptic connections in propagating Aβ pathology, and possibly of axonal transport in an antero- or retrograde way-although, there is also evidence for passive, extracellular diffusion. Striking, in AD, is the conjunction of tau and Aβ pathology. Tau pathology in the cell body of neurons precedes Aβ deposition in their synaptic endings in several circuits such as the entorhino-dentate, cortico-striatal or subiculo-mammillary connections. However, genetic evidence suggests that Aβ accumulation is the first step in AD pathogenesis. To model the complexity and consequences of Aβ aggregation in vivo, various transgenic (tg) rodents have been generated. In rodents tg for the human Aβ precursor protein, focal injections of preformed Aβ aggregates can induce Aβ deposits in the vicinity of the injection site, and over time in more distant regions of the brain. This suggests that Aβ shares with α-synuclein, tau and other proteins the property to misfold and aggregate homotypic molecules. We propose to group those proteins under the term "propagons". Propagons may lack the infectivity of prions. We review findings from neuropathological examinations of human brains in different stages of AD and from studies in rodent models of Aβ aggregation and discuss putative mechanisms underlying the initiation and spread of Aβ pathology.

  11. Blood-Brain Barrier Disruption Induced by Chronic Sleep Loss: Low-Grade Inflammation May Be the Link

    PubMed Central

    Velázquez-Moctezuma, J.

    2016-01-01

    Sleep is a vital phenomenon related to immunomodulation at the central and peripheral level. Sleep deficient in duration and/or quality is a common problem in the modern society and is considered a risk factor to develop neurodegenerative diseases. Sleep loss in rodents induces blood-brain barrier disruption and the underlying mechanism is still unknown. Several reports indicate that sleep loss induces a systemic low-grade inflammation characterized by the release of several molecules, such as cytokines, chemokines, and acute-phase proteins; all of them may promote changes in cellular components of the blood-brain barrier, particularly on brain endothelial cells. In the present review we discuss the role of inflammatory mediators that increase during sleep loss and their association with general disturbances in peripheral endothelium and epithelium and how those inflammatory mediators may alter the blood-brain barrier. Finally, this manuscript proposes a hypothetical mechanism by which sleep loss may induce blood-brain barrier disruption, emphasizing the regulatory effect of inflammatory molecules on tight junction proteins. PMID:27738642

  12. Neuropeptides and the social brain: potential rodent models of autism.

    PubMed

    Lim, Miranda M; Bielsky, Isadora F; Young, Larry J

    2005-01-01

    Conducting basic scientific research on a complex psychiatric disorder, such as autism, is a challenging prospect. It is difficult to dissociate the fundamental neurological and psychological processes that are disturbed in autism and, therefore, it is a challenge to discover accurate and reliable animal models of the disease. Because of their role in animal models of social processing and social bonding, the neuropeptides oxytocin and vasopressin are strong candidates for dysregulation in autism. In this review, we discuss the current animal models which have investigated oxytocin and vasopressin systems in the brain and their effects on social behavior. For example, mice lacking the oxytocin gene have profound deficits in social processing and social recognition, as do rats lacking vasopressin or mice lacking the vasopressin V1a receptor (V1aR). In another rodent model, monogamous prairie voles are highly social and form strong pair bonds with their mates. Pair bonds can be facilitated or disrupted by perturbing the oxytocin and vasopressin systems. Non-monogamous vole species that do not pair bond have different oxytocin and V1aR distribution patterns in the brain than monogamous vole species. Potential ties from these rodent models to the human autistic condition are then discussed. Given the hallmark disturbances in social function, the study of animal models of social behavior may provide novel therapeutic targets for the treatment of autism.

  13. Material Characterization and Computer Model Simulation of Low Density Polyurethane Foam Used in a Rodent Traumatic Brain Injury Model

    PubMed Central

    Zhang, Liying; Gurao, Manish; Yang, King H.; King, Albert I.

    2011-01-01

    Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou’s impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou’s impact device, has not been fully characterized. The foam used in Marmarou’s device was tested at seven strain rates ranging from quasi-static to dynamic (0.014 ~ 42.86 s−1) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam. PMID:21459114

  14. Material characterization and computer model simulation of low density polyurethane foam used in a rodent traumatic brain injury model.

    PubMed

    Zhang, Liying; Gurao, Manish; Yang, King H; King, Albert I

    2011-05-15

    Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou's impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou's impact device, has not been fully characterized. The foam used in Marmarou's device was tested at seven strain rates ranging from quasi-static to dynamic (0.014-42.86 s⁻¹) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior

    PubMed Central

    Leclercq, Sophie; Mian, Firoz M.; Stanisz, Andrew M.; Bindels, Laure B.; Cambier, Emmanuel; Ben-Amram, Hila; Koren, Omry; Forsythe, Paul; Bienenstock, John

    2017-01-01

    There is increasing concern about potential long-term effects of antibiotics on children's health. Epidemiological studies have revealed that early-life antibiotic exposure can increase the risk of developing immune and metabolic diseases, and rodent studies have shown that administration of high doses of antibiotics has long-term effects on brain neurochemistry and behaviour. Here we investigate whether low-dose penicillin in late pregnancy and early postnatal life induces long-term effects in the offspring of mice. We find that penicillin has lasting effects in both sexes on gut microbiota, increases cytokine expression in frontal cortex, modifies blood–brain barrier integrity and alters behaviour. The antibiotic-treated mice exhibit impaired anxiety-like and social behaviours, and display aggression. Concurrent supplementation with Lactobacillus rhamnosus JB-1 prevents some of these alterations. These results warrant further studies on the potential role of early-life antibiotic use in the development of neuropsychiatric disorders, and the possible attenuation of these by beneficial bacteria. PMID:28375200

  16. Techniques for chronic monitoring of brain activity in freely moving sheep using wireless EEG recording.

    PubMed

    Perentos, N; Nicol, A U; Martins, A Q; Stewart, J E; Taylor, P; Morton, A J

    2017-03-01

    Large mammals with complex central nervous systems offer new possibilities for translational research into basic brain function. Techniques for monitoring brain activity in large mammals, however, are not as well developed as they are in rodents. We have developed a method for chronic monitoring of electroencephalographic (EEG) activity in unrestrained sheep. We describe the methods for behavioural training prior to implantation, surgical procedures for implantation, a protocol for reliable anaesthesia and recovery, methods for EEG data collection, as well as data pertaining to suitability and longevity of different types of electrodes. Sheep tolerated all procedures well, and surgical complications were minimal. Electrode types used included epidural and subdural screws, intracortical needles and subdural disk electrodes, with the latter producing the best and most reliable results. The implants yielded longitudinal EEG data of consistent quality for periods of at least a year, and in some cases up to 2 years. This is the first detailed methodology to be described for chronic brain function monitoring in freely moving unrestrained sheep. The developed method will be particularly useful in chronic investigations of brain activity during normal behaviour that can include sleep, learning and memory. As well, within the context of disease, the method can be used to monitor brain pathology or the progress of therapeutic trials in transgenic or natural disease models in sheep. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Prevalence of swine viral and bacterial pathogens in rodents and stray cats captured around pig farms in Korea.

    PubMed

    Truong, Quang Lam; Seo, Tae Won; Yoon, Byung-Il; Kim, Hyeon-Cheol; Han, Jeong Hee; Hahn, Tae-Wook

    2013-12-30

    In 2008, 102 rodents and 24 stray cats from the areas around 9 pig farms in northeast South Korea were used to determine the prevalence of the following selected swine pathogens: ten viral pathogens [porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), rotavirus, classical swine fever virus (CSFV), porcine circovirus type 2 (PCV2), encephalomyocarditis virus (EMCV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine parvovirus (PPV), pseudorabies virus (PRV) and Japanese encephalitis virus (JEV)] and four bacterial pathogens (Brucella, Leptospira, Salmonella and Lawsonia intracellularis). In total, 1,260 tissue samples from 102 rodents and 24 stray cats were examined by specific PCR and RT-PCR assays, including tissue samples of the brain, tonsils, lungs, heart, liver, kidneys, spleen, small intestine, large intestine and mesenteric lymph nodes. The percentages of PCR-positive rodents for the porcine pathogens were as follows: 63.7% for Leptospira, 39.2% for Brucella, 6.8% for Salmonella, 15.7% for L. intracellularis, 14.7% for PCV2 and 3.9% for EMCV. The percentages of PCR-positive stray cats for the swine pathogens were as follows: 62.5% for Leptospira, 25% for Brucella, 12.5% for Salmonella, 12.5% for L. intracellularis and 4.2% for PEDV. These results may be helpful for developing control measures to prevent the spread of infectious diseases of pigs.

  18. Resting Is Rusting: A Critical View on Rodent Wheel-Running Behavior.

    PubMed

    Richter, Sophie Helene; Gass, Peter; Fuss, Johannes

    2014-08-01

    Physical exercise is known to exert various beneficial effects on brain function and bodily health throughout life. In biomedical research, these effects are widely studied by introducing running wheels into the cages of laboratory rodents. Yet, although rodents start to run in the wheels immediately, and perform wheel-running excessively on a voluntary basis, the biological significance of wheel-running is still not clear. Here, we review the current literature on wheel-running and discuss potentially negative side-effects that may give cause for concern. We particularly emphasize on analogies of wheel-running with stereotypic and addictive behavior to stimulate further research on this topic. © The Author(s) 2014.

  19. Zebrafish as a systems toxicology model for developmental neurotoxicity testing.

    PubMed

    Nishimura, Yuhei; Murakami, Soichiro; Ashikawa, Yoshifumi; Sasagawa, Shota; Umemoto, Noriko; Shimada, Yasuhito; Tanaka, Toshio

    2015-02-01

    The developing brain is extremely sensitive to many chemicals. Exposure to neurotoxicants during development has been implicated in various neuropsychiatric and neurological disorders, including autism spectrum disorder, attention deficit hyperactive disorder, schizophrenia, Parkinson's disease, and Alzheimer's disease. Although rodents have been widely used for developmental neurotoxicity testing, experiments using large numbers of rodents are time-consuming, expensive, and raise ethical concerns. Using alternative non-mammalian animal models may relieve some of these pressures by allowing testing of large numbers of subjects while reducing expenses and minimizing the use of mammalian subjects. In this review, we discuss some of the advantages of using zebrafish in developmental neurotoxicity testing, focusing on central nervous system development, neurobehavior, toxicokinetics, and toxicodynamics in this species. We also describe some important examples of developmental neurotoxicity testing using zebrafish combined with gene expression profiling, neuroimaging, or neurobehavioral assessment. Zebrafish may be a systems toxicology model that has the potential to reveal the pathways of developmental neurotoxicity and to provide a sound basis for human risk assessments. © 2014 Japanese Teratology Society.

  20. Using cross-species comparisons and a neurobiological framework to understand early social deprivation effects on behavioral development.

    PubMed

    Brett, Zoë H; Humphreys, Kathryn L; Fleming, Alison S; Kraemer, Gary W; Drury, Stacy S

    2015-05-01

    Building upon the transactional model of brain development, we explore the impact of early maternal deprivation on neural development and plasticity in three neural systems: hyperactivity/impulsivity, executive function, and hypothalamic-pituitary-adrenal axis functioning across rodent, nonhuman primate, and human studies. Recognizing the complexity of early maternal-infant interactions, we limit our cross-species comparisons to data from rodent models of artificial rearing, nonhuman primate studies of peer rearing, and the relations between these two experimental approaches and human studies of children exposed to the early severe psychosocial deprivation associated with institutional care. In addition to discussing the strengths and limitations of these paradigms, we present the current state of research on the neurobiological impact of early maternal deprivation and the evidence of sensitive periods, noting methodological challenges. Integrating data across preclinical animal models and human studies, we speculate about the underlying biological mechanisms; the differential impact of deprivation due to temporal factors including onset, offset, and duration of the exposure; and the possibility and consequences of reopening of sensitive periods during adolescence.

  1. Using cross-species comparisons and a neurobiological framework to understand early social deprivation effects on behavioral development

    PubMed Central

    BRETT, ZOË H.; HUMPHREYS, KATHRYN L.; FLEMING, ALISON S.; KRAEMER, GARY W.; DRURY, STACY S.

    2017-01-01

    Building upon the transactional model of brain development, we explore the impact of early maternal deprivation on neural development and plasticity in three neural systems: hyperactivity/impulsivity, executive function, and hypothalamic–pituitary–adrenal axis functioning across rodent, nonhuman primate, and human studies. Recognizing the complexity of early maternal–infant interactions, we limit our cross-species comparisons to data from rodent models of artificial rearing, nonhuman primate studies of peer rearing, and the relations between these two experimental approaches and human studies of children exposed to the early severe psychosocial deprivation associated with institutional care. In addition to discussing the strengths and limitations of these paradigms, we present the current state of research on the neurobiological impact of early maternal deprivation and the evidence of sensitive periods, noting methodological challenges. Integrating data across preclinical animal models and human studies, we speculate about the underlying biological mechanisms; the differential impact of deprivation due to temporal factors including onset, offset, and duration of the exposure; and the possibility and consequences of reopening of sensitive periods during adolescence. PMID:25997759

  2. Neurobiological Adaptations to Violence across Development

    PubMed Central

    Mead, Hilary K.; Beauchaine, Theodore P.; Shannon, Katherine E.

    2009-01-01

    Adaptation to violent environments across development involves a multitude of cascading effects spanning many levels of analysis from genes to behavior. In this review, we (a) examine the potentiating effects of violence on genetic vulnerabilities and the functioning of neurotransmitter systems in producing both internalizing and externalizing psychopathology, (b) consider the impact of violence on the developing human stress and startle responses, and (c) brain development including the hippocampus and prefrontal cortex. This review integrates literature on the developmental effects of violence on rodents, non-human primates, and humans. Many neurobiological changes that are adaptive for survival in violent contexts become maladaptive in other environments, conferring life-long risk for psychopathology. PMID:20102643

  3. Role of maternal thyroid hormones in the developing neocortex and during human evolution

    PubMed Central

    Stenzel, Denise; Huttner, Wieland B.

    2013-01-01

    The importance of thyroid hormones during brain development has been appreciated for many decades. In humans, low levels of circulating maternal thyroid hormones, e.g., caused by maternal hypothyroidism or lack of iodine in diet, results in a wide spectrum of severe neurological defects, including neurological cretinism characterized by profound neurologic impairment and mental retardation, underlining the importance of the maternal thyroid hormone contribution. In fact, iodine intake, which is essential for thyroid hormone production in the thyroid gland, has been related to the expansion of the brain, associated with the increased cognitive capacities during human evolution. Because thyroid hormones regulate transcriptional activity of target genes via their nuclear thyroid hormone receptors (THRs), even mild and transient changes in maternal thyroid hormone levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Here we summarize how thyroid hormones may have influenced human brain evolution through the adaptation to new habitats, concomitant with changes in diet and, therefore, iodine intake. Further, we review the current picture we gained from experimental studies in rodents on the function of maternal thyroid hormones during developmental neurogenesis. We aim to evaluate the effects of maternal thyroid hormone deficiency as well as lack of THRs and transporters on brain development and function, shedding light on the cellular behavior conducted by thyroid hormones. PMID:23882187

  4. Environmental Enrichment Improves Behavior, Cognition, and Brain Functional Markers in Young Senescence-Accelerated Prone Mice (SAMP8).

    PubMed

    Griñan-Ferré, Christian; Pérez-Cáceres, David; Gutiérrez-Zetina, Sofía Martínez; Camins, Antoni; Palomera-Avalos, Verónica; Ortuño-Sahagún, Daniel; Rodrigo, M Teresa; Pallàs, M

    2016-05-01

    The environment in which organisms live can greatly influence their development. Consequently, environmental enrichment (EE) is progressively recognized as an important component in the improvement of brain function and development. It has been demonstrated that rodents raised under EE conditions exhibit favorable neuroanatomical effects that improve their learning, spatial memory, and behavioral performance. Here, by using senescence-accelerated prone mice (SAMP8) and these as a model of adverse genetic conditions for brain development, we determined the effect of EE by raising these mice during early life under favorable conditions. We found a better generalized performance of SAMP8 under EE in the results of four behavioral and learning tests. In addition, we demonstrated broad molecular correlation in the hippocampus by an increase in NeuN and Ki67 expression, as well as an increase in the expression of neurotrophic factors, such as pleiotrophin (PTN) and brain-derived neurotrophic factor (BDNF), with a parallel decrease in neurodegenerative markers such as GSK3, amyloid-beta precursor protein, and phosphorylated beta-catenin, and a reduction of SBDP120, Bax, GFAP, and interleukin-6 (IL-6), resulting in a neuroprotective panorama. Globally, it can be concluded that EE applied to SAMP8 at young ages resulted in epigenetic regulatory mechanisms that give rise to significant beneficial effects at the molecular, cellular, and behavioral levels during brain development, particularly in the hippocampus.

  5. Preparation of organotypic brain slice cultures for the study of Alzheimer’s disease

    PubMed Central

    Croft, Cara L.; Noble, Wendy

    2018-01-01

    Alzheimer's disease, the most common cause of dementia, is a progressive neurodegenerative disorder characterised by amyloid-beta deposits in extracellular plaques, intracellular neurofibrillary tangles of aggregated tau, synaptic dysfunction and neuronal death. There are no cures for AD and current medications only alleviate some disease symptoms. Transgenic rodent models to study Alzheimer’s mimic features of human disease such as age-dependent accumulation of abnormal beta-amyloid and tau, synaptic dysfunction, cognitive deficits and neurodegeneration. These models have proven vital for improving our understanding of the molecular mechanisms underlying AD and for identifying promising therapeutic approaches. However, modelling neurodegenerative disease in animals commonly involves aging animals until they develop harmful phenotypes, often coupled with invasive procedures. In vivo studies are also resource, labour, time and cost intensive. We have developed a novel organotypic brain slice culture model to study Alzheimer’ disease which brings the potential of substantially reducing the number of rodents used in dementia research from an estimated 20,000 per year. We obtain 36 brain slices from each mouse pup, considerably reducing the numbers of animals required to investigate multiple stages of disease. This tractable model also allows the opportunity to modulate multiple pathways in tissues from a single animal. We believe that this model will most benefit dementia researchers in the academic and drug discovery sectors. We validated the slice culture model against aged mice, showing that the molecular phenotype closely mimics that displayed in vivo, albeit in an accelerated timescale. We showed beneficial outcomes following treatment of slices with agents previously shown to have therapeutic effects in vivo, and we also identified new mechanisms of action of other compounds. Thus, organotypic brain slice cultures from transgenic mouse models expressing Alzheimer’s disease-related genes may provide a valid and sensitive replacement for in vivo studies that do not involve behavioural analysis. PMID:29904599

  6. Cognitive and emotional behavioural changes associated with methylphenidate treatment: a review of preclinical studies.

    PubMed

    Britton, Gabrielle B

    2012-02-01

    There is evidence from animal studies that repeated exposure to methylphenidate (MPH), a widely used psychostimulant for the treatment of attention deficit hyperactivity disorder (ADHD), produces behavioural, structural and neurochemical changes that persist long after drug administration has ended. However, the translational utility of much of this work is compromised by the use of drug doses and routes of administration that produce plasma and brain MPH levels that fall outside the clinical range, i.e. experimental parameters more relevant to drug abuse than ADHD. We used PubMed to identify pre-clinical studies that employed repeated MPH administration at low doses in young rodents and examined long-term effects on cognition, emotion, and brain structure and function. A review of this work suggests that repeated MPH treatment during early development can modify a number of cognitive, behavioural and brain processes, but these are reduced when low therapeutic doses are employed. Moreover, MPH sites of action extend beyond those implicated in ADHD. Studies that combined neurobiological and behavioural approaches provide important insights into the mechanisms underlying MPH-produced effects on cognitive and behavioural processes, which may be relevant to MPH therapeutic efficacy. There is an emerging consensus that pharmacological treatment of childhood psychiatric disorders produces persistent neuroadaptations, highlighting the need for studies that assess long-term effects of early developmental pharmacotherapy. In this regard, studies that mimic clinical therapy with rodents are useful experimental approaches for defining the behavioural and neural plasticity associated with stimulant therapy in paediatric populations.

  7. Maternal enrichment affects prenatal hippocampal proliferation and open-field behaviors in female offspring mice.

    PubMed

    Maruoka, Takashi; Kodomari, Ikuko; Yamauchi, Rena; Wada, Etsuko; Wada, Keiji

    2009-04-17

    The maternal environment is thought to be important for fetal brain development. However, the effects of maternal environment are not fully understood. Here, we investigated whether enrichment of the maternal environment can influence prenatal brain development and postnatal behaviors in mice. An enriched environment is a housing condition with several objects such as a running wheel, tube and ladder, which are thought to increase sensory, cognitive and motor stimulation in rodents compared with standard housing conditions. First, we measured the number of BrdU-positive cells in the hippocampal dentate gyrus of fetuses from pregnant dams housed in an enriched environment. Our results revealed that maternal enrichment influences cell proliferation in the hippocampus of female, but not male, fetuses. Second, we used the open-field test to investigate postnatal behaviors in the offspring of dams housed in the enriched environment during pregnancy. We found that maternal enrichment significantly affects the locomotor activity and time spent in the center of the open-field in female, but not male, offspring. These results indicate that maternal enrichment influences prenatal brain development and postnatal behaviors in female offspring.

  8. Whisking.

    PubMed

    Sofroniew, Nicholas J; Svoboda, Karel

    2015-02-16

    Eyes may be 'the window to the soul' in humans, but whiskers provide a better path to the inner lives of rodents. The brain has remarkable abilities to focus its limited resources on information that matters, while ignoring a cacophony of distractions. While inspecting a visual scene, primates foveate to multiple salient locations, for example mouths and eyes in images of people, and ignore the rest. Similar processes have now been observed and studied in rodents in the context of whisker-based tactile sensation. Rodents use their mechanosensitive whiskers for a diverse range of tactile behaviors such as navigation, object recognition and social interactions. These animals move their whiskers in a purposive manner to locations of interest. The shapes of whiskers, as well as their movements, are exquisitely adapted for tactile exploration in the dark tight burrows where many rodents live. By studying whisker movements during tactile behaviors, we can learn about the tactile information available to rodents through their whiskers and how rodents direct their attention. In this primer, we focus on how the whisker movements of rats and mice are providing clues about the logic of active sensation and the underlying neural mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Understanding the Effects of Blast Wave on the Intracranial Pressure and Traumatic Brain Injury in Rodents and Humans Using Experimental Shock Tube and Numerical Simulations

    DTIC Science & Technology

    2014-07-01

    common mechanism of injury responsible for 52% TBI cases overall [24]. The analysis also showed that intracranial injuries, particularly concussions ...about the same time Ommaya and his collegues developed scaling relations (based on Holbourn’s theory) to scale experimental concussion data on sub-human...primates to concussion threshold in man [86]. The primates were subjected to head impact and whiplash in order to produce concussions in them [87

  10. Brain Consequences of Spinal Cord Injury with and without Neuropathic Pain: Translating Animal Models of Neuroinflammation onto Human Neural Networks and Back

    DTIC Science & Technology

    2016-10-01

    During year one , we have: Obtained IRB and HRPO approval for the human studies , obtained IACUC and ACURO approval for the animal studies , refined the...human study protocol and collected PET-MR data on healthy individuals and spinal cord injured subjects, developed the rodent imaging procedures...qualtiative synthesis of the current state of the field, and 6 studies can be included in a quantitative meta-analysis. The studies eligible for inclusion in

  11. Etiology of sporadic Alzheimer's disease: somatostatin, neprilysin, and amyloid beta peptide.

    PubMed

    Hama, E; Saido, T C

    2005-01-01

    We recently demonstrated that amyloid beta peptide (Abeta) is catabolized primarily by a neutral endopeptidase, neprilysin, in the brain and that a neuropeptide, somatostatin (SST), regulates brain Abeta level via modulation of neprilysin activity. Because SST expression in the brain declines upon aging in various mammals including rodents, apes and humans, we hypothesize that the aging-dependent reduction of SST triggers accumulation of Abeta in the brain by suppressing neprilysin action. This hypothesis accounts for the fact that aging is the predominant risk factor for Sporadic Alzheimer's disease.

  12. Cell fusion in the brain: two cells forward, one cell back.

    PubMed

    Kemp, Kevin; Wilkins, Alastair; Scolding, Neil

    2014-11-01

    Adult stem cell populations, notably those which reside in the bone marrow, have been shown to contribute to several neuronal cell types in the rodent and human brain. The observation that circulating bone marrow cells can migrate into the central nervous system and fuse with, in particular, cerebellar Purkinje cells has suggested, at least in part, a potential mechanism behind this process. Experimentally, the incidence of cell fusion in the brain is enhanced with age, radiation exposure, inflammation, chemotherapeutic drugs and even selective damage to the neurons themselves. The presence of cell fusion, shown by detection of increased bi-nucleated neurons, has also been described in a variety of human central nervous system diseases, including both multiple sclerosis and Alzheimer's disease. Accumulating evidence is therefore raising new questions into the biological significance of cell fusion, with the possibility that it represents an important means of cell-mediated neuroprotection or rescue of highly complex neurons that cannot be replaced in adult life. Here, we discuss the evidence behind this phenomenon in the rodent and human brain, with a focus on the subsequent research investigating the physiological mechanisms of cell fusion underlying this process. We also highlight how these studies offer new insights into endogenous neuronal repair, opening new exciting avenues for potential therapeutic interventions against neurodegeneration and brain injury.

  13. A biopsychological review of gambling disorder

    PubMed Central

    Quintero, Gabriel C

    2017-01-01

    The present review is an overview of previous experimental work on biopsychological aspects of gambling disorder. It includes the topics 1) gambling disorder from the neuroimaging and electroencephalography (EEG) perspective, 2) cognitive, executive functioning, and neuropsychological aspects of gambling disorder, and 3) rodent models of gambling disorder. Penalties and losses in gambling can differ in terms of brain activity. Also, specific patterns of brain activity, brain anatomical traits, EEG responses, and cognitive and executive performance can discriminate pathological gamblers from nonpathological gamblers. Also, pathological gamblers can display dysfunction in such brain areas as the insula, frontal lobe, and orbitofrontal cortex. Pathological gambling is a heterogeneous disorder that can vary depending on the severity of cognition, the style of gambling (strategic or not), the prospect of recovery, proneness to relapse, and proneness to treatment withdrawal. Finally, based on rodent models of gambling, the appropriateness of gambling decision is influenced by the presence of cues, the activity of dopamine receptors, and the activity of some brain areas (infralimbic, prelimbic, or rostral agranular insular cortex). Pathological gamblers differed in terms of frontoparietal brain activation compared to nonpathological gamblers (if winning or losing a game). Pathological gamblers had dysfunctional EEG activity. The severity of gambling was linked to the magnification and content of cognitive distortions. The insula was fundamental in the distortion of cognitions linked to result analysis during gambling activity. PMID:28096672

  14. Modulation of the adaptive response to stress by brain activation of selective somatostatin receptor subtypes.

    PubMed

    Stengel, Andreas; Rivier, Jean; Taché, Yvette

    2013-04-01

    Somatostatin-14 was discovered in 1973 in the hypothalamus as a peptide inhibiting growth hormone release. Somatostatin interacts with five receptor subtypes (sst(1-5)) which are widely distributed in the brain with a distinct, but overlapping, expression pattern. During the last few years, the development of highly selective peptide agonists and antagonists provided new insight to characterize the role of somatostatin receptor subtypes in the pleiotropic actions of somatostatin. Recent evidence in rodents indicates that the activation of selective somatostatin receptor subtypes in the brain blunts stress-corticotropin-releasing factor (CRF) related ACTH release (sst2/5), sympathetic-adrenal activaton (sst5), stimulation of colonic motility (sst1), delayed gastric emptying (sst5), suppression of food intake (sst2) and the anxiogenic-like (sst2) response. These findings suggest that brain somatostatin signaling pathways may play an important role in dampening CRF-mediated endocrine, sympathetic, behavioral and visceral responses to stress. Published by Elsevier Inc.

  15. Transient activation of dopaminergic neurons during development modulates visual responsiveness, locomotion and brain activity in a dopamine ontogeny model of schizophrenia.

    PubMed

    Calcagno, B; Eyles, D; van Alphen, B; van Swinderen, B

    2013-01-08

    It has been observed that certain developmental environmental risk factors for schizophrenia when modeled in rodents alter the trajectory of dopaminergic development, leading to persistent behavioural changes in adults. This has recently been articulated as the "dopamine ontogeny hypothesis of schizophrenia". To test one aspect of this hypothesis, namely that transient dopaminergic effects during development modulate attention-like behavior and arousal in adults, we turned to a small-brain model, Drosophila melanogaster. By applying genetic tools allowing transient activation or silencing of dopaminergic neurons in the fly brain, we investigated whether a critical window exists during development when altered dopamine (DA) activity levels could lead to impairments in arousal states in adult animals. We found that increased activity in dopaminergic neurons in later stages of development significantly increased visual responsiveness and locomotion, especially in adult males. This misallocation of visual salience and hyperactivity mimicked the effect of acute methamphetamine feeding to adult flies, suggesting up-regulated DA signaling could result from developmental manipulations. Finally, brain recordings revealed significantly reduced gamma-band activity in adult animals exposed to the transient developmental insult. Together, these data support the idea that transient alterations in DA signaling during development can permanently alter behavior in adults, and that a reductionist model such as Drosophila can be used to investigate potential mechanisms underlying complex cognitive disorders such as schizophrenia.

  16. Neurogenetics of Aggressive Behavior – Studies in Rodents

    PubMed Central

    Takahashi, Aki; Miczek, Klaus A.

    2014-01-01

    Aggressive behavior is observed in many animal species, such as insects, fish, lizards, frogs, and most mammals including humans. This wide range of conservation underscores the importance of aggressive behavior in the animals’ survival and fitness, and the likely heritability of this behavior. Although typical patterns of aggressive behavior differ between species, there are several concordances in the neurobiology of aggression among rodents, primates, and humans. Studies with rodent models may eventually help us to understand the neurogenetic architecture of aggression in humans. However, it is important to recognize the difference between the ecological and ethological significance of aggressive behavior (species-typical aggression) and maladaptive violence (escalated aggression) when applying the findings of aggression research using animal models to human or veterinary medicine. Well-studied rodent models for aggressive behavior in the laboratory setting include the mouse (Mus musculus), rat (Rattus norvegicus), hamster (Mesocricetus auratus), and prairie vole (Microtus ochrogaster). The neural circuits of rodent aggression have been gradually elucidated by several techniques e.g. immunohistochemistry of immediate-early gene (c-Fos) expression, intracranial drug microinjection, in vivo microdialysis, and optogenetics techniques. Also, evidence accumulated from the analysis of gene-knockout mice shows the involvement of several genes in aggression. Here we review the brain circuits that have been implicated in aggression, such as the hypothalamus, prefrontal cortex (PFC), dorsal raphe nucleus (DRN), nucleus accumbens (NAc), and olfactory system. We then discuss the roles of glutamate and γ-aminobutyric acid (GABA), major inhibitory and excitatory amino acids in the brain, as well as their receptors, in controlling aggressive behavior, focusing mainly on recent findings. At the end of this chapter, we discuss how genes can be identified that underlie individual differences in aggression, using the so-called forward genetics approach. PMID:24318936

  17. Developing a 3-choice serial reaction time task for examining neural and cognitive function in an equine model.

    PubMed

    Roberts, Kirsty; Hemmings, Andrew J; McBride, Sebastian D; Parker, Matthew O

    2017-12-01

    Large animal models of human neurological disorders are advantageous compared to rodent models due to their neuroanatomical complexity, longevity and their ability to be maintained in naturalised environments. Some large animal models spontaneously develop behaviours that closely resemble the symptoms of neural and psychiatric disorders. The horse is an example of this; the domestic form of this species consistently develops spontaneous stereotypic behaviours akin to the compulsive and impulsive behaviours observed in human neurological disorders such as Tourette's syndrome. The ability to non-invasively probe normal and abnormal equine brain function through cognitive testing may provide an extremely useful methodological tool to assess brain changes associated with certain human neurological and psychiatric conditions. An automated operant system with the ability to present visual and auditory stimuli as well as dispense salient food reward was developed. To validate the system, ten horses were trained and tested using a standard cognitive task (three choice serial reaction time task (3-CSRTT)). All animals achieved total learning criterion and performed six probe sessions. Learning criterion was met within 16.30±0.79 sessions over a three day period. During six probe sessions, level of performance was maintained at 80.67±0.57% (mean±SEM) accuracy. This is the first mobile fully automated system developed to examine cognitive function in the horse. A fully-automated operant system for mobile cognitive function of a large animal model has been designed and validated. Horses pose an interesting complementary model to rodents for the examination of human neurological dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Removing brakes on adult brain plasticity: from molecular to behavioral interventions

    PubMed Central

    Bavelier, D.; Levi, D.M.; Li, R.W.; Dan, Y.; Hensch, T.K.

    2010-01-01

    Adult brain plasticity, although possible, remains more restricted in scope than during development. Here, we address conditions under which circuit rewiring may be facilitated in the mature brain. At a cellular and molecular level, adult plasticity is actively limited. Some of these “brakes” are structural, such as peri-neuronal nets or myelin, which inhibit neurite outgrowth. Others are functional, acting directly upon excitatory-inhibitory balance within local circuits. Plasticity in adulthood can be induced either by lifting these brakes through invasive interventions or by exploiting endogenous permissive factors, such as neuromodulators. Using the amblyopic visual system as a model, we discuss genetic, pharmacological, and environmental removal of brakes to enable recovery of vision in adult rodents. Although these mechanisms remain largely uncharted in the human, we consider how they may provide a biological foundation for the remarkable increase in plasticity after action video game play by amblyopic subjects. PMID:21068299

  19. The amygdala as a hub in brain networks that support social life.

    PubMed

    Bickart, Kevin C; Dickerson, Bradford C; Barrett, Lisa Feldman

    2014-10-01

    A growing body of evidence suggests that the amygdala is central to handling the demands of complex social life in primates. In this paper, we synthesize extant anatomical and functional data from rodents, monkeys, and humans to describe the topography of three partially distinct large-scale brain networks anchored in the amygdala that each support unique functions for effectively managing social interactions and maintaining social relationships. These findings provide a powerful componential framework for parsing social behavior into partially distinct neural underpinnings that differ among healthy people and disintegrate or fail to develop in neuropsychiatric populations marked by social impairment, such as autism, antisocial personality disorder, and frontotemporal dementia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. MRI-Guided Delivery of Viral Vectors.

    PubMed

    Salegio, Ernesto A; Bringas, John; Bankiewicz, Krystof S

    2016-01-01

    Gene therapy has emerged as a potential avenue of treatment for many neurological disorders. Technological advances in imaging techniques allow for the monitoring of real-time infusions into the brain of rodents, nonhuman primates, and humans. Here, we discuss the use of magnetic resonance imaging (MRI) as a tool in the delivery of adeno-associated viral (AAV) particles into brain of nonhuman primates.

  1. Gene Therapy for the Treatment of Neurological Disorders: Central Nervous System Neoplasms.

    PubMed

    Kamran, Neha; Candolfi, Marianela; Baker, Gregory J; Ayala, Mariela Moreno; Dzaman, Marta; Lowenstein, Pedro R; Castro, Maria G

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults with a median survival of 16.2-21.2 months post diagnosis (Stupp et al., N Engl J Med 352(10): 987-996, 2005). Because of its location, complete surgical resection is impossible; additionally because GBM is also resistant to chemotherapeutic and radiotherapy approaches, development of novel therapies is urgently needed. In this chapter we describe the development of preclinical animal models and a conditionally cytotoxic and immune-stimulatory gene therapy strategy that successfully causes tumor regression in several rodent GBM models.

  2. Early brain injury alters the blood-brain barrier phenotype in parallel with β-amyloid and cognitive changes in adulthood.

    PubMed

    Pop, Viorela; Sorensen, Dane W; Kamper, Joel E; Ajao, David O; Murphy, M Paul; Head, Elizabeth; Hartman, Richard E; Badaut, Jérôme

    2013-02-01

    Clinical studies suggest that traumatic brain injury (TBI) hastens cognitive decline and development of neuropathology resembling brain aging. Blood-brain barrier (BBB) disruption following TBI may contribute to the aging process by deregulating substance exchange between the brain and blood. We evaluated the effect of juvenile TBI (jTBI) on these processes by examining long-term alterations of BBB proteins, β-amyloid (Aβ) neuropathology, and cognitive changes. A controlled cortical impact was delivered to the parietal cortex of male rats at postnatal day 17, with behavioral studies and brain tissue evaluation at 60 days post-injury (dpi). Immunoglobulin G extravasation was unchanged, and jTBI animals had higher levels of tight-junction protein claudin 5 versus shams, suggesting the absence of BBB disruption. However, decreased P-glycoprotein (P-gp) on cortical blood vessels indicates modifications of BBB properties. In parallel, we observed higher levels of endogenous rodent Aβ in several brain regions of the jTBI group versus shams. In addition at 60 dpi, jTBI animals displayed systematic search strategies rather than relying on spatial memory during the water maze. Together, these alterations to the BBB phenotype after jTBI may contribute to the accumulation of toxic products, which in turn may induce cognitive differences and ultimately accelerate brain aging.

  3. Status epilepticus does not induce acute brain inflammatory response in the Amazon rodent Proechimys, an animal model resistant to epileptogenesis.

    PubMed

    Scorza, Carla A; Marques, Marcia J G; Gomes da Silva, Sérgio; Naffah-Mazzacoratti, Maria da Graça; Scorza, Fulvio A; Cavalheiro, Esper A

    2018-03-06

    Mesial temporal lobe epilepsy is a serious brain disorder in adults that is often preceded by an initial brain insult, such as status epilepticus (SE), that after a latent period leads to recurrent seizures. Post-SE models are widely used for studies on epileptogenic processes. Previous findings of our laboratory suggested that the Neotropical rodents Proechimys exhibit endogenous antiepileptogenic mechanisms in post-SE models. Strong body of research supports that SE triggers a rapid and dramatic upregulation of inflammatory mediators and vascular endothelial growth factor (VEGF). In this work we found that, in the epilepsy-resistant Proechimys, hippocampal and cortical levels of inflammatory cytokines (IL-1β, IL-6, IL-10, TNF-α) and VEGF remained unchanged 24h after SE, strongly contrasting to the high levels of post-SE changes observed in Wistar rats. Furthermore, substantial differences in the brain baseline levels of these proteins were encountered between animal species studied. Since inflammatory cytokines and VEGF have been recognized as major orchestrators of the epileptogenic process, our results suggest their role in the antiepileptogenic mechanisms previously described in Proechimys. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents

    PubMed Central

    Lee, Boyeon; Clarke, Douglas; Al Ahmad, Abraham; Kahle, Michael; Parham, Christi; Auckland, Lisa; Shaw, Courtney; Fidanboylu, Mehmet; Orr, Anthony Wayne; Ogunshola, Omolara; Fertala, Andrzej; Thomas, Sarah A.; Bix, Gregory J.

    2011-01-01

    Stroke is the leading cause of long-term disability and the third leading cause of death in the United States. While most research thus far has focused on acute stroke treatment and neuroprotection, the exploitation of endogenous brain self-repair mechanisms may also yield therapeutic strategies. Here, we describe a distinct type of stroke treatment, the naturally occurring extracellular matrix fragment of perlecan, domain V, which we found had neuroprotective properties and enhanced post-stroke angiogenesis, a key component of brain repair, in rodent models of stroke. In both rat and mouse models, Western blot analysis revealed elevated levels of perlecan domain V. When systemically administered 24 hours after stroke, domain V was well tolerated, reached infarct and peri-infarct brain vasculature, and restored stroke-affected motor function to baseline pre-stroke levels in these multiple stroke models in both mice and rats. Post-stroke domain V administration increased VEGF levels via a mechanism involving brain endothelial cell α5β1 integrin, and the subsequent neuroprotective and angiogenic actions of domain V were in turn mediated via VEGFR. These results suggest that perlecan domain V represents a promising approach for stroke treatment. PMID:21747167

  5. Microglia Priming with Aging and Stress.

    PubMed

    Niraula, Anzela; Sheridan, John F; Godbout, Jonathan P

    2017-01-01

    The population of aged individuals is increasing worldwide and this has significant health and socio-economic implications. Clinical and experimental studies on aging have discovered myriad changes in the brain, including reduced neurogenesis, increased synaptic aberrations, higher metabolic stress, and augmented inflammation. In rodent models of aging, these alterations are associated with cognitive decline, neurobehavioral deficits, and increased reactivity to immune challenges. In rodents, caloric restriction and young blood-induced revitalization reverses the behavioral effects of aging. The increased inflammation in the aged brain is attributed, in part, to the resident population of microglia. For example, microglia of the aged brain are marked by dystrophic morphology, elevated expression of inflammatory markers, and diminished expression of neuroprotective factors. Importantly, the heightened inflammatory profile of microglia in aging is associated with a 'sensitized' or 'primed' phenotype. Mounting evidence points to a causal link between the primed profile of the aged brain and vulnerability to secondary insults, including infections and psychological stress. Conversely, psychological stress may also induce aging-like sensitization of microglia and increase reactivity to secondary challenges. This review delves into the characteristics of neuroinflammatory signaling and microglial sensitization in aging, its implications in psychological stress, and interventions that reverse aging-associated deficits.

  6. Microglia Priming with Aging and Stress

    PubMed Central

    Niraula, Anzela; Sheridan, John F; Godbout, Jonathan P

    2017-01-01

    The population of aged individuals is increasing worldwide and this has significant health and socio-economic implications. Clinical and experimental studies on aging have discovered myriad changes in the brain, including reduced neurogenesis, increased synaptic aberrations, higher metabolic stress, and augmented inflammation. In rodent models of aging, these alterations are associated with cognitive decline, neurobehavioral deficits, and increased reactivity to immune challenges. In rodents, caloric restriction and young blood-induced revitalization reverses the behavioral effects of aging. The increased inflammation in the aged brain is attributed, in part, to the resident population of microglia. For example, microglia of the aged brain are marked by dystrophic morphology, elevated expression of inflammatory markers, and diminished expression of neuroprotective factors. Importantly, the heightened inflammatory profile of microglia in aging is associated with a ‘sensitized' or ‘primed' phenotype. Mounting evidence points to a causal link between the primed profile of the aged brain and vulnerability to secondary insults, including infections and psychological stress. Conversely, psychological stress may also induce aging-like sensitization of microglia and increase reactivity to secondary challenges. This review delves into the characteristics of neuroinflammatory signaling and microglial sensitization in aging, its implications in psychological stress, and interventions that reverse aging-associated deficits. PMID:27604565

  7. Mapping and reconstruction of domoic acid-induced neurodegeneration in the mouse brain.

    PubMed

    Colman, J R; Nowocin, K J; Switzer, R C; Trusk, T C; Ramsdell, J S

    2005-01-01

    Domoic acid, a potent neurotoxin and glutamate analog produced by certain species of the marine diatom Pseudonitzschia, is responsible for several human and wildlife intoxication events. The toxin characteristically damages the hippocampus in exposed humans, rodents, and marine mammals. Histochemical studies have identified this, and other regions of neurodegeneration, though none have sought to map all brain regions affected by domoic acid. In this study, mice exposed (i.p.) to 4 mg/kg domoic acid for 72 h exhibited behavioral and pathological signs of neurotoxicity. Brains were fixed by intracardial perfusion and processed for histochemical analysis. Serial coronal sections (50 microm) were stained using the degeneration-sensitive cupric silver staining method of DeOlmos. Degenerated axons, terminals, and cell bodies, which stained black, were identified and the areas of degeneration were mapped onto Paxinos mouse atlas brain plates using Adobe Illustrator CS. The plates were then combined to reconstruct a 3-dimensional image of domoic acid-induced neurodegeneration using Amira 3.1 software. Affected regions included the olfactory bulb, septal area, and limbic system. These findings are consistent with behavioral and pathological studies demonstrating the effects of domoic acid on cognitive function and neurodegeneration in rodents.

  8. Reliability of in vitro and in vivo methods for predicting P-glycoprotein effect on antidepressants delivery to the brain

    PubMed Central

    Zheng, Yi; Chen, Xijing; Benet, Leslie Z.

    2017-01-01

    As P-glycoprotein (P-gp) transport on antidepressant delivery has been extensively evaluated using in vitro cellular and in vivo rodent models, an increasing number of publications addressed the effect of P-gp in limiting brain penetration of antidepressants and causing treatment-resistant depression in current clinical therapies. However, contradictory results were observed in different systems. It is of vital importance to understand the potential for drug interactions related to P-gp at the blood-brain barrier (BBB), and whether co-administration of a P-gp inhibitor together with an antidepressant is a good clinical strategy for dosing of patients with treatment-resistant depression. In this review, the complicated construction of the BBB, the transport mechanisms for compounds that cross the BBB, and the basic characteristics of antidepressants are illustrated. Further, the reliability of different systems related to antidepressant brain delivery, including in vitro bidirectional transport cell lines, in vivo Mdr1 knock-out mice, and chemical inhibition studies in rodents are analyzed, supporting a low possibility that P-gp affects currently marketed antidepressants when these results are extrapolated to human BBB. These findings can also be applied to other central nervous system drugs. PMID:26293617

  9. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.

    PubMed

    Meng, Qingying; Ying, Zhe; Noble, Emily; Zhao, Yuqi; Agrawal, Rahul; Mikhail, Andrew; Zhuang, Yumei; Tyagi, Ethika; Zhang, Qing; Lee, Jae-Hyung; Morselli, Marco; Orozco, Luz; Guo, Weilong; Kilts, Tina M; Zhu, Jun; Zhang, Bin; Pellegrini, Matteo; Xiao, Xinshu; Young, Marian F; Gomez-Pinilla, Fernando; Yang, Xia

    2016-05-01

    Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons

    PubMed Central

    Kazu, Rodrigo S.; Maldonado, José; Mota, Bruno; Manger, Paul R.; Herculano-Houzel, Suzana

    2014-01-01

    Quantitative analysis of the cellular composition of rodent, primate, insectivore, and afrotherian brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of artiodactyls, a group within the order Cetartiodactyla, believed to be a relatively recent radiation from the common Eutherian ancestor. We find that artiodactyls share non-neuronal scaling rules with all groups analyzed previously. Artiodactyls share with afrotherians and rodents, but not with primates, the neuronal scaling rules that apply to the cerebral cortex and cerebellum. The neuronal scaling rules that apply to the remaining brain areas are, however, distinct in artiodactyls. Importantly, we show that the folding index of the cerebral cortex scales with the number of neurons in the cerebral cortex in distinct fashions across artiodactyls, afrotherians, rodents, and primates, such that the artiodactyl cerebral cortex is more convoluted than primate cortices of similar numbers of neurons. Our findings suggest that the scaling rules found to be shared across modern afrotherians, glires, and artiodactyls applied to the common Eutherian ancestor, such as the relationship between the mass of the cerebral cortex as a whole and its number of neurons. In turn, the distribution of neurons along the surface of the cerebral cortex, which is related to its degree of gyrification, appears to be a clade-specific characteristic. If the neuronal scaling rules for artiodactyls extend to all cetartiodactyls, we predict that the large cerebral cortex of cetaceans will still have fewer neurons than the human cerebral cortex. PMID:25429261

  11. Sleep, Plasticity and Memory from Molecules to Whole-Brain Networks

    PubMed Central

    Abel, Ted; Havekes, Robbert; Saletin, Jared M.; Walker, Matthew P.

    2014-01-01

    Despite the ubiquity of sleep across phylogeny, its function remains elusive. In this review, we consider one compelling candidate: brain plasticity associated with memory processing. Focusing largely on hippocampus-dependent memory in rodents and humans, we describe molecular, cellular, network, whole-brain and behavioral evidence establishing a role for sleep both in preparation for initial memory encoding, and in the subsequent offline consolidation ofmemory. Sleep and sleep deprivation bidirectionally alter molecular signaling pathways that regulate synaptic strength and control plasticity-related gene transcription and protein translation. At the cellular level, sleep deprivation impairs cellular excitability necessary for inducing synaptic potentiation and accelerates the decay of long-lasting forms of synaptic plasticity. In contrast, NREM and REM sleep enhance previously induced synaptic potentiation, although synaptic de-potentiation during sleep has also been observed. Beyond single cell dynamics, large-scale cell ensembles express coordinated replay of prior learning-related firing patterns during subsequent sleep. This occurs in the hippocampus, in the cortex, and between the hippocampus and cortex, commonly in association with specific NREM sleep oscillations. At the whole-brain level, somewhat analogous learning-associated hippocampal (re)activation during NREM sleep has been reported in humans. Moreover, the same cortical NREM oscillations associated with replay in rodents also promote human hippocampal memory consolidation, and this process can be manipulated using exogenous reactivation cues during sleep. Mirroring molecular findings in rodents, specific NREM sleep oscillations before encoding refresh human hippocampal learning capacity, while deprivation of sleep conversely impairs subsequent hippocampal activity and associated encoding. Together, these cross-descriptive level findings demonstrate that the unique neurobiology of sleep exert powerful effects on molecular, cellular and network mechanism of plasticity that govern both initial learning and subsequent long-term memory consolidation. PMID:24028961

  12. Excessive activation of AhR signaling disrupts neuronal migration in the hippocampal CA1 region in the developing mouse.

    PubMed

    Kimura, Eiki; Kubo, Ken-Ichiro; Endo, Toshihiro; Nakajima, Kazunori; Kakeyama, Masaki; Tohyama, Chiharu

    2017-01-01

    The aryl hydrocarbon receptor (AhR) avidly binds dioxin, a ubiquitous environmental contaminant. Disruption of downstream AhR signaling has been reported to alter neuronal development, and rodent offspring exposed to dioxin during gestation and lactation showed abnormalities in learning and memory, emotion, and social behavior. However, the mechanism behind the disrupted AhR signaling and developmental neurotoxicity induced by xenobiotic ligands remains elusive. Therefore, we studied how excessive AhR activation affects neuronal migration in the hippocampal CA1 region of the developing mouse brain. We transfected constitutively active (CA)-AhR, AhR, or control vector plasmids into neurons via in utero electroporation on gestational day 14 and analyzed neuronal positioning in the hippocampal CA1 region of offspring on postnatal day 14. CA-AhR transfection affected neuronal positioning, whereas no change was observed in AhR-transfected or control hippocampus. These results suggest that constitutively activated AhR signaling disrupts neuronal migration during hippocampal development. Further studies are needed to investigate whether such developmental disruption in the hippocampus leads to the abnormal cognition and behavior of rodent offspring upon maternal exposure to AhR xenobiotic ligands.

  13. A Role for Phosphodiesterase 11A (PDE11A) in the Formation of Social Memories and the Stabilization of Mood

    PubMed Central

    Kelly, Michy P.

    2017-01-01

    The most recently discovered 3′,5′-cyclic nucleotide phosphodiesterase family is the Phosphodiesterase 11 (PDE11) family, which is encoded by a single gene PDE11A. PDE11A is a dual-specific PDE, breaking down both cAMP and cGMP. There are four PDE11A splice variants (PDE11A1–4) with distinct tissue expression profiles and unique N-terminal regulatory regions, suggesting that each isoform could be individually targeted with a small molecule or biologic. PDE11A4 is the PDE11A isoform expressed in brain and is found in the hippocampal formation of humans and rodents. Studies in rodents show that PDE11A4 mRNA expression in brain is, in fact, restricted to the hippocampal formation (CA1, possibly CA2, subiculum, and the adjacently connected amygdalohippocampal area). Within the hippocampal formation of rodents, PDE11A4 protein is expressed in neurons but not astrocytes, with a distribution across nuclear, cytoplasmic, and membrane compartments. This subcellular localization of PDE11A4 is altered in response to social experience in mouse, and in vitro studies show the compartmentalization of PDE11A4 is controlled, at least in part, by homodimerization and N-terminal phosphorylation. PDE11A4 expression dramatically increases in the hippocampus with age in the rodent hippocampus, from early postnatal life to late aging, suggesting PDE11A4 function may evolve across the lifespan. Interestingly, PDE11A4 protein shows a 3–10-fold enrichment in the rodent ventral hippocampal formation (VHIPP; a.k.a. anterior in primates) versus dorsal hippocampal formation (DHIPP). Consistent with this enrichment in VHIPP, studies in knockout mice show that PDE11A regulates the formation of social memories and the stabilization of mood and is a critical mechanism by which social experience feeds back to modify the brain and subsequent social behaviors. PDE11A4 likely controls behavior by regulating hippocampal glutamatergic, oxytocin, and cytokine signaling, as well as protein translation. Given its unique tissue distribution and relatively selective effects on behavior, PDE11A may represent a novel therapeutic target for neuropsychiatric, neurodevelopmental, or age-related disorders. Therapeutically targeting PDE11A4 may be a way to selectively restore aberrant cyclic nucleotide signaling in the hippocampal formation while leaving the rest of the brain and periphery untouched, thus, relieving deficits while avoiding unwanted side effects. PMID:28956334

  14. Identification of MicroRNA-124-3p as a Putative Epigenetic Signature of Major Depressive Disorder

    PubMed Central

    Roy, Bhaskar; Dunbar, Michael; Shelton, Richard C; Dwivedi, Yogesh

    2017-01-01

    Major depressive disorder (MDD) is predicted to be the second leading cause of global disease burden by 2030. A large number of MDD patients do not respond to the currently available medication because of its poorly understood etiology. Recently, studies of microRNAs (miRNAs), which act as a molecular switch of gene expression, have shown promise in identifying a molecular network that could provide significant clues to various psychiatric illnesses. Using an in vitro system, a rodent depression model, and a human postmortem brain, we investigated the role of a brain-enriched, neuron-specific miRNA, miR-124-3p, whose expression is highly dysregulated in stressed rodents, and identified a set of target genes involved in stress response and neural plasticity. We also found that miR-124-3p is epigenetically regulated and its interaction with the RNA-induced silencing complex (RISC) is compromised in MDD. Using blood serum, we found similar dysregulation of miR-124-3p in antidepressant-free MDD subjects. Altogether, our study demonstrates potential contribution of miR-124-3p in the pathophysiology of MDD and suggests that this miRNA may serve as a novel target for drug development and a biomarker for MDD pathogenesis. PMID:27577603

  15. Ciproxifan, a histamine H3 receptor antagonist, reversibly inhibits monoamine oxidase A and B

    PubMed Central

    Hagenow, S.; Stasiak, A.; Ramsay, R. R.; Stark, H.

    2017-01-01

    Ciproxifan is a well-investigated histamine H3 receptor (H3R) inverse agonist/antagonist, showing an exclusively high species-specific affinity at rodent compared to human H3R. It is well studied as reference compound for H3R in rodent models for neurological diseases connected with neurotransmitter dysregulation, e.g. attention deficit hyperactivity disorder or Alzheimer’s disease. In a screening for potential monoamine oxidase A and B inhibition ciproxifan showed efficacy on both enzyme isoforms. Further characterization of ciproxifan revealed IC50 values in a micromolar concentration range for human and rat monoamine oxidases with slight preference for monoamine oxidase B in both species. The inhibition by ciproxifan was reversible for both human isoforms. Regarding inhibitory potency of ciproxifan on rat brain MAO, these findings should be considered, when using high doses in rat models for neurological diseases. As the H3R and monoamine oxidases are all capable of affecting neurotransmitter modulation in brain, we consider dual targeting ligands as interesting approach for treatment of neurological disorders. Since ciproxifan shows only moderate activity at human targets, further investigations in animals are not of primary interest. On the other hand, it may serve as starting point for the development of dual targeting ligands. PMID:28084411

  16. Stress and binge drinking: A toxic combination for the teenage brain.

    PubMed

    Goldstein, Aaron; Déry, Nicolas; Pilgrim, Malcolm; Ioan, Miruna; Becker, Suzanna

    2016-09-01

    Young adult university students frequently binge on alcohol and have high stress levels. Based on findings in rodents, we predicted that heavy current alcohol use and elevated stress and depression scores would be associated with deficits on high interference memory tasks, while early onset, prolonged binge patterns would lead to broader cognitive deficits on tests of associative encoding and executive functions. We developed the Concentration Memory Task, a novel computerized version of the Concentration card game with a high degree of interference. We found that young adults with elevated stress, depression, and alcohol consumption scores were impaired in the Concentration Memory Task. We also analyzed data from a previous study, and found that higher alcohol consumption scores were associated with impaired performance on another high interference memory task, based on Kirwan and Stark's Mnemonic Similarity Test. On the other hand, adolescent onset of binge drinking predicted poorer performance on broader range of memory tests, including a more systematic test of spatial recognition memory, and an associative learning task. Our results are broadly consistent with findings in rodents that acute alcohol and stress exposure suppress neurogenesis in the adult hippocampus, which in turn impairs performance in high interference memory tasks, while adolescent onset binge drinking causes more extensive brain damage and cognitive deficits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Functional Neuroprotection and Efficient Regulation of GDNF Using Destabilizing Domains in a Rodent Model of Parkinson's Disease

    PubMed Central

    Quintino, Luis; Manfré, Giuseppe; Wettergren, Erika Elgstrand; Namislo, Angrit; Isaksson, Christina; Lundberg, Cecilia

    2013-01-01

    Glial cell line–derived neurotrophic factor (GDNF) has great potential to treat Parkinson's disease (PD). However, constitutive expression of GDNF can over time lead to side effects. Therefore, it would be useful to regulate GDNF expression. Recently, a new gene inducible system using destabilizing domains (DD) from E. coli dihydrofolate reductase (DHFR) has been developed and characterized. The advantage of this novel DD is that it is regulated by trimethoprim (TMP), a well-characterized drug that crosses the blood–brain barrier and can therefore be used to regulate gene expression in the brain. We have adapted this system to regulate expression of GDNF. A C-terminal fusion of GDNF and a DD with an additional furin cleavage site was able to be efficiently regulated in vitro, properly processed and was able to bind to canonical GDNF receptors, inducing a signaling cascade response in target cells. In vivo characterization of the protein showed that it could be efficiently induced by TMP and it was only functional when gene expression was turned on. Further characterization in a rodent model of PD showed that the regulated GDNF protected neurons, improved motor behavior of animals and was efficiently regulated in a pathological setting. PMID:23881415

  18. Standard dose valproic acid does not cause additional cognitive impact in a rodent model of intractable epilepsy.

    PubMed

    Jellett, Adam P; Jenks, Kyle; Lucas, Marcella; Scott, Rod C

    2015-02-01

    Children with epilepsy face significant cognitive and behavioral impairments. These impairments are due to a poorly characterized interaction between the underlying etiology, the effect of seizures and the effect of medication. The large variation in these factors make understanding the main drivers of cognitive impairment in humans extremely difficult. Therefore, we investigated the cognitive effect of seizures and the antiepileptic drug valproic acid in a rodent model of cortical dysplasia. Rats were divided into seizure-receiving and non-receiving groups. Rats experienced frequent early life seizures using the flurothyl inhalation method: 50 seizures between postnatal day 5 and 15 and then one seizure a day following that. Rats were further divided into drug-treated and vehicle treated groups. Valproic acid treated animals were treated from 5 days preceding behavioral testing in the Morris water maze at a clinically relevant concentration. We show here that the main driver of cognitive impairments are the brain malformations, and that persistent seizures in animals with brain malformations and valproic acid caused no additional impact. These findings suggest that neither an appropriate dose of a standard antiepileptic drug or intractable seizures worsen cognition associated with a malformation of cortical development and that alternative treatment strategies to improve cognition are required. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Chronic sazetidine-A maintains anxiolytic effects and slower weight gain following chronic nicotine without maintaining increased density of nicotinic receptors in rodent brain.

    PubMed

    Hussmann, G Patrick; DeDominicis, Kristen E; Turner, Jill R; Yasuda, Robert P; Klehm, Jacquelyn; Forcelli, Patrick A; Xiao, Yingxian; Richardson, Janell R; Sahibzada, Niaz; Wolfe, Barry B; Lindstrom, Jon; Blendy, Julie A; Kellar, Kenneth J

    2014-05-01

    Chronic nicotine administration increases the density of brain α4β2* nicotinic acetylcholine receptors (nAChRs), which may contribute to nicotine addiction by exacerbating withdrawal symptoms associated with smoking cessation. Varenicline, a smoking cessation drug, also increases these receptors in rodent brain. The maintenance of this increase by varenicline as well as nicotine replacement may contribute to the high rate of relapse during the first year after smoking cessation. Recently, we found that sazetidine-A (saz-A), a potent partial agonist that desensitizes α4β2* nAChRs, does not increase the density of these receptors in brain at doses that decrease nicotine self-administration, increase attention in rats, and produce anxiolytic effects in mice. Here, we investigated whether chronic saz-A and varenicline maintain the density of nAChRs after their up-regulation by nicotine. In addition, we examined the effects of these drugs on a measure of anxiety in mice and weight gain in rats. After increasing nAChRs in the rodent brain with chronic nicotine, replacing nicotine with chronic varenicline maintained the increased nAChR binding, as well as the α4β2 subunit proteins measured by western blots. In contrast, replacing nicotine treatments with chronic saz-A resulted in the return of the density of nAChRs to the levels seen in saline controls. Nicotine, saz-A and varenicline each demonstrated anxiolytic effects in mice, but only saz-A and nicotine attenuated the gain of weight over a 6-week period in rats. These findings suggest that apart from its modest anxiolytic and weight control effects, saz-A, or drugs like it, may be useful in achieving long-term abstinence from smoking. © 2014 International Society for Neurochemistry.

  20. Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring.

    PubMed

    Bauman, Melissa D; Iosif, Ana-Maria; Smith, Stephen E P; Bregere, Catherine; Amaral, David G; Patterson, Paul H

    2014-02-15

    Maternal infection during pregnancy is associated with an increased risk of schizophrenia and autism in the offspring. Supporting this correlation, experimentally activating the maternal immune system during pregnancy in rodents produces offspring with abnormal brain and behavioral development. We have developed a nonhuman primate model to bridge the gap between clinical populations and rodent models of maternal immune activation (MIA). A modified form of the viral mimic, synthetic double-stranded RNA (polyinosinic:polycytidylic acid stabilized with poly-L-lysine) was delivered to two separate groups of pregnant rhesus monkeys to induce MIA: 1) late first trimester MIA (n = 6), and 2) late second trimester MIA (n = 7). Control animals (n = 11) received saline injections at the same first or second trimester time points or were untreated. Sickness behavior, temperature, and cytokine profiles of the pregnant monkeys confirmed a strong inflammatory response to MIA. Behavioral development of the offspring was studied for 24 months. Following weaning at 6 months of age, MIA offspring exhibited abnormal responses to separation from their mothers. As the animals matured, MIA offspring displayed increased repetitive behaviors and decreased affiliative vocalizations. When evaluated with unfamiliar conspecifics, first trimester MIA offspring deviated from species-typical macaque social behavior by inappropriately approaching and remaining in immediate proximity of an unfamiliar animal. In this rhesus monkey model, MIA yields offspring with abnormal repetitive behaviors, communication, and social interactions. These results extended the findings in rodent MIA models to more human-like behaviors resembling those in both autism and schizophrenia. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Testing episodic memory in animals: a new approach.

    PubMed

    Griffiths, D P; Clayton, N S

    2001-08-01

    Episodic memory involves the encoding and storage of memories concerned with unique personal experiences and their subsequent recall, and it has long been the subject of intensive investigation in humans. According to Tulving's classical definition, episodic memory "receives and stores information about temporally dated episodes or events and temporal-spatial relations among these events." Thus, episodic memory provides information about the 'what' and 'when' of events ('temporally dated experiences') and about 'where' they happened ('temporal-spatial relations'). The storage and subsequent recall of this episodic information was thought to be beyond the memory capabilities of nonhuman animals. Although there are many laboratory procedures for investigating memory for discrete past episodes, until recently there were no previous studies that fully satisfied the criteria of Tulving's definition: they can all be explained in much simpler terms than episodic memory. However, current studies of memory for cache sites in food-storing jays provide an ethologically valid model for testing episodic-like memory in animals, thereby bridging the gap between human and animal studies memory. There is now a pressing need to adapt these experimental tests of episodic memory for other animals. Given the potential power of transgenic and knock-out procedures for investigating the genetic and molecular bases of learning and memory in laboratory rodents, not to mention the wealth of knowledge about the neuroanatomy and neurophysiology of the rodent hippocampus (a brain area heavily implicated in episodic memory), an obvious next step is to develop a rodent model of episodic-like memory based on the food-storing bird paradigm. The development of a rodent model system could make an important contribution to our understanding of the neural, molecular, and behavioral mechanisms of mammalian episodic memory.

  2. System Integration of FastSPECT III, a Dedicated SPECT Rodent-Brain Imager Based on BazookaSPECT Detector Technology

    PubMed Central

    Miller, Brian W.; Furenlid, Lars R.; Moore, Stephen K.; Barber, H. Bradford; Nagarkar, Vivek V.; Barrett, Harrison H.

    2010-01-01

    FastSPECT III is a stationary, single-photon emission computed tomography (SPECT) imager designed specifically for imaging and studying neurological pathologies in rodent brain, including Alzheimer’s and Parkinsons’s disease. Twenty independent BazookaSPECT [1] gamma-ray detectors acquire projections of a spherical field of view with pinholes selected for desired resolution and sensitivity. Each BazookaSPECT detector comprises a columnar CsI(Tl) scintillator, image-intensifier, optical lens, and fast-frame-rate CCD camera. Data stream back to processing computers via firewire interfaces, and heavy use of graphics processing units (GPUs) ensures that each frame of data is processed in real time to extract the images of individual gamma-ray events. Details of the system design, imaging aperture fabrication methods, and preliminary projection images are presented. PMID:21218137

  3. Multifaceted roles for low-frequency oscillations in bottom-up and top-down processing during navigation and memory.

    PubMed

    Ekstrom, Arne D; Watrous, Andrew J

    2014-01-15

    A prominent and replicated finding is the correlation between running speed and increases in low-frequency oscillatory activity in the hippocampal local field potential. A more recent finding concerns low-frequency oscillations that increase in coherence between the hippocampus and neocortical brain areas such as prefrontal cortex during memory-related behaviors (i.e., remembering the correct location to visit). In this review, we tie together movement-related and memory-related low-frequency oscillations in the rodent with similar findings in humans. We argue that although movement-related low-frequency oscillations, in particular, may have slightly different characteristics in humans than rodents, placing important constraints on our thinking about this issue, both phenomena have similar functional foundations. We review four prominent theoretical models that provide partially conflicting accounts of movement-related low-frequency oscillations. We attempt to tie together these theoretical proposals, and existing data in rodents and humans, with memory-related low-frequency oscillations. We propose that movement-related low-frequency oscillations and memory-related low-frequency oscillatory activity, both of which show significant coherence with oscillations in other brain regions, represent different facets of "spectral fingerprints," or different resonant frequencies within the same brain networks underlying different cognitive processes. Together, movement-related and memory-related low-frequency oscillatory coupling may be linked by their distinct contributions to bottom-up, sensorimotor driven processing and top-down, controlled processing characterizing aspects of memory encoding and retrieval. Copyright © 2013. Published by Elsevier Inc.

  4. Gene Therapy for Brain Cancer: Combination Therapies Provide Enhanced Efficacy and Safety

    PubMed Central

    Candolfi, Marianela; Kroeger, Kurt M.; Muhammad, A.K.M.G.; Yagiz, Kader; Farrokhi, Catherine; Pechnick, Robert N.; Lowenstein, Pedro R.; Castro, Maria G.

    2009-01-01

    Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults. Despite significant advances in treatment and intensive research, the prognosis for patients with GBM remains poor. Therapeutic challenges for GBM include its invasive nature, the proximity of the tumor to vital brain structures often preventing total resection, and the resistance of recurrent GBM to conventional radiotherapy and chemotherapy. Gene therapy has been proposed as a useful adjuvant for GBM, to be used in conjunction with current treatment. Work from our laboratory has shown that combination of conditional cytotoxic with immunotherapeutic approaches for the treatment of GBM elicits regression of large intracranial tumor masses and anti-tumor immunological memory in syngeneic rodent models of GBM. In this review we examined the currently available animal models for GBM, including rodent transplantable models, endogenous rodent tumor models and spontaneous GBM in dogs. We discuss non-invasive surrogate end points to assess tumor progression and therapeutic efficacy, such as behavioral tests and circulating biomarkers. Growing preclinical and clinical data contradict the old dogma that cytotoxic anti-cancer therapy would lead to an immune-suppression that would impair the ability of the immune system to mount an anti-tumor response. The implications of the findings reviewed indicate that combination of cytotoxic therapy with immunotherapy will lead to synergistic antitumor efficacy with reduced neurotoxicity and supports the clinical implementation of combined cytotoxic-immunotherapeutic strategies for the treatment of patients with GBM. PMID:19860655

  5. Multifaceted roles for low-frequency oscillations in bottom-up and top-down processing during navigation and memory

    PubMed Central

    Ekstrom, Arne D.; Watrous, Andrew J.

    2014-01-01

    A prominent and replicated finding is the correlation between running speed and increases in low-frequency oscillatory activity in the hippocampal local field potential. A more recent finding concerns low-frequency oscillations that increase in coherence between the hippocampus and neocortical brain areas such as prefrontal cortex during memory-related behaviors (i.e., remembering the correct arm to explore). In this review, we tie together movement-related and memory-related low-frequency oscillations in the rodent with similar findings in humans. We argue that although movement-related low-frequency oscillations, in particular, may have slightly different characteristics in humans than rodents, placing important constraints on our thinking about this issue, both phenomena have similar functional foundations. We review four prominent theoretical models that provide partially conflicting accounts of movement-related low-frequency oscillations. We attempt to tie together these theoretical proposals, and existing data in rodents and humans, with memory-related low-frequency oscillations. We propose that movement-related low-frequency oscillations and memory-related low-frequency oscillatory activity, both of which show significant coherence with oscillations in other brain regions, represent different facets of “spectral fingerprints,” or different resonant frequencies within the same brain networks underlying different cognitive processes. Together, movement-related and memory-related low-frequency oscillatory coupling may be linked by their distinct contributions to bottom-up, sensorimotor driven processing and top-down, controlled processing characterizing aspects of memory encoding and retrieval. PMID:23792985

  6. Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition.

    PubMed

    Morris, Margaret J; Beilharz, Jessica E; Maniam, Jayanthi; Reichelt, Amy C; Westbrook, R Frederick

    2015-11-01

    Changes in food composition and availability have contributed to the dramatic increase in obesity over the past 30-40 years in developed and, increasingly, in developing countries. The brain plays a critical role in regulating energy balance. Some human studies have demonstrated increased preference for high fat and high sugar foods in people reporting greater stress exposure. We have examined neurochemical changes in the brain in rodent models during the development of obesity, including the impact of obesity on cognition, reward neurocircuitry and stress responsiveness. Using supermarket foods high in fat and sugar, we showed that such a diet leads to changes in neurotransmitters involved in the hedonic appraisal of foods, indicative of an addiction-like capacity of foods high in fat and/or sugar. Importantly, withdrawal of the palatable diet led to a stress-like response. Furthermore, access to this palatable diet attenuated the physiological effects of acute stress (restraint), indicating that it could act as a comfort food. In more chronic studies, the diet also attenuated anxiety-like behavior in rats exposed to stress (maternal separation) early in life, but these rats may suffer greater metabolic harm than rats exposed to the early life stressor but not provided with the palatable diet. Impairments in cognitive function have been associated with obesity in both people and rodents. However, as little as 1 week of exposure to a high fat, high sugar diet selectively impaired place but not object recognition memory in the rat. Excess sugar alone had similar effects, and both diets were linked to increased inflammatory markers in the hippocampus, a critical region involved in memory. Obesity-related inflammatory changes have been found in the human brain. Ongoing work examines interventions to prevent or reverse diet-induced cognitive impairments. These data have implications for minimizing harm caused by unhealthy eating. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The Therapeutic Potential of Induced Pluripotent Stem Cells After Stroke: Evidence from Rodent Models.

    PubMed

    Zents, Karlijn; Copray, Sjef

    2016-01-01

    Stroke is the second most common cause of death and the leading cause of disability in the world. About 30% of the people that are affected by stroke die within a year; 25% of the patients that survive stroke remain in need of care after a year. Therefore, stroke is a major burden for health care costs. The most common subtype is ischemic stroke. This type is characterized by a reduced and insufficient blood supply to a certain part of the brain. Despite the high prevalence of stroke, the currently used therapeutic interventions are limited. No therapies that aim to restore damaged neuronal tissue or to promote recovery are available nowadays. Transplantation of stem cell-derived cells has been investigated as a potential regenerative and protective treatment. Embryonic stem cell (ESC)-based cell therapy in rodent models of stroke has been shown to improve functional outcome. However, the clinical use of ESCs still raises ethical questions and implantation of ESC-derived cells requires continuous immunosuppression. The groundbreaking detection of induced pluripotent stem cells (iPSCs) has provided a most promising alternative. This mini-review summarizes current literature in which the potential use of iPSC-derived cells has been tested in rodent models of stroke. iPSC-based cell therapy has been demonstrated to improve motor function, decrease stroke volume, promote neurogenesis and angiogenesis and to exert immunomodulatory, anti-inflammatory effects in the brain of stroke-affected rodents.

  8. Effects of Physical Exercise Combined with Nutritional Supplements on Aging Brain Related Structures and Functions: A Systematic Review

    PubMed Central

    Schättin, Alexandra; Baur, Kilian; Stutz, Jan; Wolf, Peter; de Bruin, Eling D.

    2016-01-01

    Age-related decline in gray and white brain matter goes together with cognitive depletion. To influence cognitive functioning in elderly, several types of physical exercise and nutritional intervention have been performed. This paper systematically reviews the potential additive and complementary effects of nutrition/nutritional supplements and physical exercise on cognition. The search strategy was developed for EMBASE, Medline, PubMed, Cochrane, CINAHL, and PsycInfo databases and focused on the research question: “Is the combination of physical exercise with nutrition/nutritional supplementation more effective than nutrition/nutritional supplementation or physical exercise alone in effecting on brain structure, metabolism, and/or function?” Both mammalian and human studies were included. In humans, randomized controlled trials that evaluated the effects of nutrition/nutritional supplements and physical exercise on cognitive functioning and associated parameters in healthy elderly (>65 years) were included. The systematic search included English and German language literature without any limitation of publication date. The search strategy yielded a total of 3129 references of which 67 studies met the inclusion criteria; 43 human and 24 mammalian, mainly rodent, studies. Three out of 43 human studies investigated a nutrition/physical exercise combination and reported no additive effects. In rodent studies, additive effects were found for docosahexaenoic acid supplementation when combined with physical exercise. Although feasible combinations of physical exercise/nutritional supplements are available for influencing the brain, only a few studies evaluated which possible combinations of nutrition/nutritional supplementation and physical exercise might have an effect on brain structure, metabolism and/or function. The reason for no clear effects of combinatory approaches in humans might be explained by the misfit between the combinations of nutritional methods with the physical interventions in the sense that they were not selected on sharing of similar neuronal mechanisms. Based on the results from this systematic review, future human studies should focus on the combined effect of docosahexaenoic acid supplementation and physical exercise that contains elements of (motor) learning. PMID:27458371

  9. Reduced Cortical Activity Impairs Development and Plasticity after Neonatal Hypoxia Ischemia

    PubMed Central

    Ranasinghe, Sumudu; Or, Grace; Wang, Eric Y.; Ievins, Aiva; McLean, Merritt A.; Niell, Cristopher M.; Chau, Vann; Wong, Peter K. H.; Glass, Hannah C.; Sullivan, Joseph

    2015-01-01

    Survivors of preterm birth are at high risk of pervasive cognitive and learning impairments, suggesting disrupted early brain development. The limits of viability for preterm birth encompass the third trimester of pregnancy, a “precritical period” of activity-dependent development characterized by the onset of spontaneous and evoked patterned electrical activity that drives neuronal maturation and formation of cortical circuits. Reduced background activity on electroencephalogram (EEG) is a sensitive marker of brain injury in human preterm infants that predicts poor neurodevelopmental outcome. We studied a rodent model of very early hypoxic–ischemic brain injury to investigate effects of injury on both general background and specific patterns of cortical activity measured with EEG. EEG background activity is depressed transiently after moderate hypoxia–ischemia with associated loss of spindle bursts. Depressed activity, in turn, is associated with delayed expression of glutamate receptor subunits and transporters. Cortical pyramidal neurons show reduced dendrite development and spine formation. Complementing previous observations in this model of impaired visual cortical plasticity, we find reduced somatosensory whisker barrel plasticity. Finally, EEG recordings from human premature newborns with brain injury demonstrate similar depressed background activity and loss of bursts in the spindle frequency band. Together, these findings suggest that abnormal development after early brain injury may result in part from disruption of specific forms of brain activity necessary for activity-dependent circuit development. SIGNIFICANCE STATEMENT Preterm birth and term birth asphyxia result in brain injury from inadequate oxygen delivery and constitute a major and growing worldwide health problem. Poor outcomes are noted in a majority of very premature (<25 weeks gestation) newborns, resulting in death or life-long morbidity with motor, sensory, learning, behavioral, and language disabilities that limit academic achievement and well-being. Limited progress has been made to develop therapies that improve neurologic outcomes. The overall objective of this study is to understand the effect of early brain injury on activity-dependent brain development and cortical plasticity to develop new treatments that will optimize repair and recovery after brain injury. PMID:26311776

  10. Miniature wireless recording and stimulation system for rodent behavioural testing

    NASA Astrophysics Data System (ADS)

    Pinnell, R. C.; Dempster, J.; Pratt, J.

    2015-12-01

    Objective. Elucidation of neural activity underpinning rodent behaviour has traditionally been hampered by the use of tethered systems and human involvement. Furthermore the combination of deep-brain stimulation (DBS) and various neural recording modalities can lead to complex and time-consuming laboratory setups. For studies of this type, novel tools are required to drive forward this research. Approach. A miniature wireless system weighing 8.5 g (including battery) was developed for rodent use that combined multichannel DBS and local-field potential (LFP) recordings. Its performance was verified in a working memory task that involved 4-channel fronto-hippocampal LFP recording and bilateral constant-current fimbria-fornix DBS. The system was synchronised with video-tracking for extraction of LFP at discrete task phases, and DBS was activated intermittently at discrete phases of the task. Main results. In addition to having a fast set-up time, the system could reliably transmit continuous LFP at over 8 hours across 3-5 m distances. During the working memory task, LFP pertaining to discrete task phases was extracted and compared with well-known neural correlates of active exploratory behaviour in rodents. DBS could be wirelessly activated/deactivated at any part of the experiment during EEG recording and transmission, allowing for a seamless integration of this modality. Significance. The wireless system combines a small size with a level of robustness and versatility that can greatly simplify rodent behavioural experiments involving EEG recording and DBS. Designed for versatility and simplicity, the small size and low-cost of the system and its receiver allow for enhanced portability, fast experimental setup times, and pave the way for integration with more complex behaviour.

  11. Multiple Approaches to the Investigation of Cell Assembly in Memory Research-Present and Future.

    PubMed

    Sakurai, Yoshio; Osako, Yuma; Tanisumi, Yuta; Ishihara, Eriko; Hirokawa, Junya; Manabe, Hiroyuki

    2018-01-01

    In this review article we focus on research methodologies for detecting the actual activity of cell assemblies, which are populations of functionally connected neurons that encode information in the brain. We introduce and discuss traditional and novel experimental methods and those currently in development and briefly discuss their advantages and disadvantages for the detection of cell-assembly activity. First, we introduce the electrophysiological method, i.e., multineuronal recording, and review former and recent examples of studies showing models of dynamic coding by cell assemblies in behaving rodents and monkeys. We also discuss how the firing correlation of two neurons reflects the firing synchrony among the numerous surrounding neurons that constitute cell assemblies. Second, we review the recent outstanding studies that used the novel method of optogenetics to show causal relationships between cell-assembly activity and behavioral change. Third, we review the most recently developed method of live-cell imaging, which facilitates the simultaneous observation of firings of a large number of neurons in behaving rodents. Currently, all these available methods have both advantages and disadvantages, and no single measurement method can directly and precisely detect the actual activity of cell assemblies. The best strategy is to combine the available methods and utilize each of their advantages with the technique of operant conditioning of multiple-task behaviors in animals and, if necessary, with brain-machine interface technology to verify the accuracy of neural information detected as cell-assembly activity.

  12. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain.

    PubMed

    Eide, Per Kristian; Ringstad, Geir

    2015-11-01

    Recently, the "glymphatic system" of the brain has been discovered in rodents, which is a paravascular, transparenchymal route for clearance of excess brain metabolites and distribution of compounds in the cerebrospinal fluid. It has already been demonstrated that intrathecally administered gadolinium (Gd) contrast medium distributes along this route in rats, but so far not in humans. A 27-year-old woman underwent magnetic resonance imaging (MRI) with intrathecal administration of gadobutrol, which distributed throughout her entire brain after 1 and 4.5 h. MRI with intrathecal Gd may become a tool to study glymphatic function in the human brain.

  13. Development of a Novel Method for the Purification and Culture of Rodent Astrocytes

    PubMed Central

    Foo, Lynette C.; Allen, Nicola J.; Bushong, Eric A.; Ventura, P. Britten; Chung, Won-Suk; Zhou, Lu; Cahoy, John D.; Daneman, Richard; Zong, Hui; Ellisman, Mark H.; Barres, Ben A.

    2011-01-01

    Summary The inability to purify and culture astrocytes has long hindered studies of their function. Whereas astrocyte progenitor cells can be cultured from neonatal brain, culture of mature astrocytes from postnatal brain has not been possible. Here we report a new method to prospectively purify astrocytes by immunopanning. These astrocytes undergo apoptosis in culture, but vascular cells and HBEGF promote their survival in serum-free culture. We found that some developing astrocytes normally undergo apoptosis in vivo and that the vast majority of astrocytes contact blood vessels, suggesting that astrocytes are matched to blood vessels by competing for vascular-derived trophic factors such as HBEGF. Compared to traditional astrocyte cultures, the gene profiles of the cultured purified postnatal astrocytes much more closely resemble those of in vivo astrocytes. Although these astrocytes strongly promote synapse formation and function, they do not secrete glutamate in response to stimulation. PMID:21903074

  14. WINCS Harmoni: Closed-loop dynamic neurochemical control of therapeutic interventions

    NASA Astrophysics Data System (ADS)

    Lee, Kendall H.; Lujan, J. Luis; Trevathan, James K.; Ross, Erika K.; Bartoletta, John J.; Park, Hyung Ook; Paek, Seungleal Brian; Nicolai, Evan N.; Lee, Jannifer H.; Min, Hoon-Ki; Kimble, Christopher J.; Blaha, Charles D.; Bennet, Kevin E.

    2017-04-01

    There has been significant progress in understanding the role of neurotransmitters in normal and pathologic brain function. However, preclinical trials aimed at improving therapeutic interventions do not take advantage of real-time in vivo neurochemical changes in dynamic brain processes such as disease progression and response to pharmacologic, cognitive, behavioral, and neuromodulation therapies. This is due in part to a lack of flexible research tools that allow in vivo measurement of the dynamic changes in brain chemistry. Here, we present a research platform, WINCS Harmoni, which can measure in vivo neurochemical activity simultaneously across multiple anatomical targets to study normal and pathologic brain function. In addition, WINCS Harmoni can provide real-time neurochemical feedback for closed-loop control of neurochemical levels via its synchronized stimulation and neurochemical sensing capabilities. We demonstrate these and other key features of this platform in non-human primate, swine, and rodent models of deep brain stimulation (DBS). Ultimately, systems like the one described here will improve our understanding of the dynamics of brain physiology in the context of neurologic disease and therapeutic interventions, which may lead to the development of precision medicine and personalized therapies for optimal therapeutic efficacy.

  15. Respiratory Insufficiency Correlated Strongly with Mortality of Rodents Infected with West Nile Virus

    PubMed Central

    Morrey, John D.; Siddharthan, Venkatraman; Wang, Hong; Hall, Jeffery O.

    2012-01-01

    West Nile virus (WNV) disease can be fatal for high-risk patients. Since WNV or its antigens have been identified in multiple anatomical locations of the central nervous system of persons or rodent models, one cannot know where to investigate the actual mechanism of mortality without careful studies in animal models. In this study, depressed respiratory functions measured by plethysmography correlated strongly with mortality. This respiratory distress, as well as reduced oxygen saturation, occurred beginning as early as 4 days before mortality. Affected medullary respiratory control cells may have contributed to the animals' respiratory insufficiency, because WNV antigen staining was present in neurons located in the ventrolateral medulla. Starvation or dehydration would be irrelevant in people, but could cause death in rodents due to lethargy or loss of appetite. Animal experiments were performed to exclude this possibility. Plasma ketones were increased in moribund infected hamsters, but late-stage starvation markers were not apparent. Moreover, daily subcutaneous administration of 5% dextrose in physiological saline solution did not improve survival or other disease signs. Therefore, infected hamsters did not die from starvation or dehydration. No cerebral edema was apparent in WNV- or sham-infected hamsters as determined by comparing wet-to-total weight ratios of brains, or by evaluating blood-brain-barrier permeability using Evans blue dye penetration into brains. Limited vasculitis was present in the right atrium of the heart of infected hamsters, but abnormal electrocardiograms for several days leading up to mortality did not occur. Since respiratory insufficiency was strongly correlated with mortality more than any other pathological parameter, it is the likely cause of death in rodents. These animal data and a poor prognosis for persons with respiratory insufficiency support the hypothesis that neurological lesions affecting respiratory function may be the primary cause of human WNV-induced death. PMID:22719920

  16. Opioid Abuse after Traumatic Brain Injury: Evaluation Using Rodent Models

    DTIC Science & Technology

    2013-07-01

    acclimation to the laboratory and handling, catheterization surgery and recovery, brain injury and evaluation of acquisition, reinforcing efficacy or...subjects entered into protocol =112 (10+10+20+22+ 24+26) Total number catheterized =62 Total number undergoing sham injury =33...did not enter into the experimental protocol until after VCU IACUC and ACURO approval in July 2013. Twenty-two subjects have been catheterized and

  17. Toward a conceptual framework for early brain and behavior development in autism

    PubMed Central

    Piven, J; Elison, J T; Zylka, M J

    2017-01-01

    Studies of infant siblings of older autistic probands, who are at elevated risk for autism, have demonstrated that the defining features of autism are not present in the first year of life but emerge late in the first and into the second year. A recent longitudinal neuroimaging study of high-risk siblings revealed a specific pattern of brain development in infants later diagnosed with autism, characterized by cortical surface area hyper-expansion in the first year followed by brain volume overgrowth in the second year that is associated with the emergence of autistic social deficits. Together with new observations from genetically defined autism risk alleles and rodent model, these findings suggest a conceptual framework for the early, post-natal development of autism. This framework postulates that an increase in the proliferation of neural progenitor cells and hyper-expansion of cortical surface area in the first year, occurring during a pre-symptomatic period characterized by disrupted sensorimotor and attentional experience, leads to altered experience-dependent neuronal development and decreased elimination of neuronal processes. This process is linked to brain volume overgrowth and disruption of the refinement of neural circuit connections and is associated with the emergence of autistic social deficits in the second year of life. A better understanding of the timing of developmental brain and behavior mechanisms in autism during infancy, a period which precedes the emergence of the defining features of this disorder, will likely have important implications for designing rational approaches to early intervention. PMID:28937691

  18. Adult Neurogenesis in Sheep: Characterization and Contribution to Reproduction and Behavior

    PubMed Central

    Lévy, Frederic; Batailler, Martine; Meurisse, Maryse; Migaud, Martine

    2017-01-01

    Sheep have many advantages to study neurogenesis in comparison to the well-known rodent models. Their development and life expectancy are relatively long and they possess a gyrencephalic brain. Sheep are also seasonal breeders, a characteristic that allows studying the involvement of hypothalamic neurogenesis in the control of seasonal reproduction. Sheep are also able to individually recognize their conspecifics and develop selective and lasting bonds. Adult olfactory neurogenesis could be adapted to social behavior by supporting recognition of conspecifics. The present review reveals the distinctive features of the hippocampal, olfactory, and hypothalamic neurogenesis in sheep. In particular, the organization of the subventricular zone and the dynamic of neuronal maturation differs from that of rodents. In addition, we show that various physiological conditions, such as seasonal reproduction, gestation, and lactation differently modulate these three neurogenic niches. Last, we discuss recent evidence indicating that hypothalamic neurogenesis acts as an important regulator of the seasonal control of reproduction and that olfactory neurogenesis could be involved in odor processing in the context of maternal behavior. PMID:29109674

  19. The Origin, Development and Molecular Diversity of Rodent Olfactory Bulb Glutamatergic Neurons Distinguished by Expression of Transcription Factor NeuroD1.

    PubMed

    Roybon, Laurent; Mastracci, Teresa L; Li, Joyce; Stott, Simon R W; Leiter, Andrew B; Sussel, Lori; Brundin, Patrik; Li, Jia-Yi

    2015-01-01

    Production of olfactory bulb neurons occurs continuously in the rodent brain. Little is known, however, about cellular diversity in the glutamatergic neuron subpopulation. In the central nervous system, the basic helix-loop-helix transcription factor NeuroD1 (ND1) is commonly associated with glutamatergic neuron development. In this study, we utilized ND1 to identify the different subpopulations of olfactory bulb glutamategic neurons and their progenitors, both in the embryo and postnatally. Using knock-in mice, transgenic mice and retroviral transgene delivery, we demonstrate the existence of several different populations of glutamatergic olfactory bulb neurons, the progenitors of which are ND1+ and ND1- lineage-restricted, and are temporally and regionally separated. We show that the first olfactory bulb glutamatergic neurons produced - the mitral cells - can be divided into molecularly diverse subpopulations. Our findings illustrate the complexity of neuronal diversity in the olfactory bulb and that seemingly homogenous neuronal populations can consist of multiple subpopulations with unique molecular signatures of transcription factors and expressing neuronal subtype-specific markers.

  20. Differential expression of MHC class II and B7 costimulatory molecules by microglia in rodent gliomas.

    PubMed

    Badie, Behnam; Bartley, Becky; Schartner, Jill

    2002-12-01

    To assess the immune function of microglia and macrophages in brain tumors, the expression of MHC class II and B7 costimulatory molecules in three rodent glioma models was examined. Microglia and macrophages, which accounted for 5-12% of total cells, expressed B7.1 and MHC class II molecules in the C6 and 9L tumors, but not RG2 gliomas. Interestingly, the expression of B7.1 and MHC class II molecules by microglia and macrophage was associated with an increase in the number of tumor-infiltrating lymphocytes in C6 and 9L tumors. B7.2 expression, which was present at low levels on microglia and macrophages in normal brain, did not significantly change in tumors. Interestingly, the expression of all three surface antigens increased after microglia were isolated from intracranial C6 tumors and cultured for a short period of time. We conclude that microglia immune activity may be suppressed in gliomas and directly correlates to the immunogenecity of experimental brain tumors.

  1. Applications of the Morris water maze in translational traumatic brain injury research.

    PubMed

    Tucker, Laura B; Velosky, Alexander G; McCabe, Joseph T

    2018-05-01

    Acquired traumatic brain injury (TBI) is frequently accompanied by persistent cognitive symptoms, including executive function disruptions and memory deficits. The Morris Water Maze (MWM) is the most widely-employed laboratory behavioral test for assessing cognitive deficits in rodents after experimental TBI. Numerous protocols exist for performing the test, which has shown great robustness in detecting learning and memory deficits in rodents after infliction of TBI. We review applications of the MWM for the study of cognitive deficits following TBI in pre-clinical studies, describing multiple ways in which the test can be employed to examine specific aspects of learning and memory. Emphasis is placed on dependent measures that are available and important controls that must be considered in the context of TBI. Finally, caution is given regarding interpretation of deficits as being indicative of dysfunction of a single brain region (hippocampus), as experimental models of TBI most often result in more diffuse damage that disrupts multiple neural pathways and larger functional networks that participate in complex behaviors required in MWM performance. Published by Elsevier Ltd.

  2. Functional ultrasound imaging of intrinsic connectivity in the living rat brain with high spatiotemporal resolution

    PubMed Central

    Osmanski, Bruno-Félix; Pezet, Sophie; Ricobaraza, Ana; Lenkei, Zsolt; Tanter, Mickael

    2014-01-01

    Long-range coherences in spontaneous brain activity reflect functional connectivity. Here we propose a novel, highly resolved connectivity mapping approach, using ultrafast functional ultrasound (fUS), which enables imaging of cerebral microvascular haemodynamics deep in the anaesthetized rodent brain, through a large thinned-skull cranial window, with pixel dimensions of 100 μm × 100 μm in-plane. The millisecond-range temporal resolution allows unambiguous cancellation of low-frequency cardio-respiratory noise. Both seed-based and singular value decomposition analysis of spatial coherences in the low-frequency (<0.1 Hz) spontaneous fUS signal fluctuations reproducibly report, at different coronal planes, overlapping high-contrast, intrinsic functional connectivity patterns. These patterns are similar to major functional networks described in humans by resting-state fMRI, such as the lateral task-dependent network putatively anticorrelated with the midline default-mode network. These results introduce fUS as a powerful novel neuroimaging method, which could be extended to portable systems for three-dimensional functional connectivity imaging in awake and freely moving rodents. PMID:25277668

  3. Mechanism of West Nile Virus Neuroinvasion: A Critical Appraisal

    PubMed Central

    Suen, Willy W.; Prow, Natalie A.; Hall, Roy A.; Bielefeldt-Ohmann, Helle

    2014-01-01

    West Nile virus (WNV) is an important emerging neurotropic virus, responsible for increasingly severe encephalitis outbreaks in humans and horses worldwide. However, the mechanism by which the virus gains entry to the brain (neuroinvasion) remains poorly understood. Hypotheses of hematogenous and transneural entry have been proposed for WNV neuroinvasion, which revolve mainly around the concepts of blood-brain barrier (BBB) disruption and retrograde axonal transport, respectively. However, an over‑representation of in vitro studies without adequate in vivo validation continues to obscure our understanding of the mechanism(s). Furthermore, WNV infection in the current rodent models does not generate a similar viremia and character of CNS infection, as seen in the common target hosts, humans and horses. These differences ultimately question the applicability of rodent models for pathogenesis investigations. Finally, the role of several barriers against CNS insults, such as the blood-cerebrospinal fluid (CSF), the CSF-brain and the blood-spinal cord barriers, remain largely unexplored, highlighting the infancy of this field. In this review, a systematic and critical appraisal of the current evidence relevant to the possible mechanism(s) of WNV neuroinvasion is conducted. PMID:25046180

  4. Optimization of flow-sensitive alternating inversion recovery (FAIR) for perfusion functional MRI of rodent brain.

    PubMed

    Nasrallah, Fatima A; Lee, Eugene L Q; Chuang, Kai-Hsiang

    2012-11-01

    Arterial spin labeling (ASL) MRI provides a noninvasive method to image perfusion, and has been applied to map neural activation in the brain. Although pulsed labeling methods have been widely used in humans, continuous ASL with a dedicated neck labeling coil is still the preferred method in rodent brain functional MRI (fMRI) to maximize the sensitivity and allow multislice acquisition. However, the additional hardware is not readily available and hence its application is limited. In this study, flow-sensitive alternating inversion recovery (FAIR) pulsed ASL was optimized for fMRI of rat brain. A practical challenge of FAIR is the suboptimal global inversion by the transmit coil of limited dimensions, which results in low effective labeling. By using a large volume transmit coil and proper positioning to optimize the body coverage, the perfusion signal was increased by 38.3% compared with positioning the brain at the isocenter. An additional 53.3% gain in signal was achieved using optimized repetition and inversion times compared with a long TR. Under electrical stimulation to the forepaws, a perfusion activation signal change of 63.7 ± 6.3% can be reliably detected in the primary somatosensory cortices using single slice or multislice echo planar imaging at 9.4 T. This demonstrates the potential of using pulsed ASL for multislice perfusion fMRI in functional and pharmacological applications in rat brain. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Rodent model of direct cranial blast injury.

    PubMed

    Kuehn, Reed; Simard, Philippe F; Driscoll, Ian; Keledjian, Kaspar; Ivanova, Svetlana; Tosun, Cigdem; Williams, Alicia; Bochicchio, Grant; Gerzanich, Volodymyr; Simard, J Marc

    2011-10-01

    Traumatic brain injury resulting from an explosive blast is one of the most serious wounds suffered by warfighters, yet the effects of explosive blast overpressure directly impacting the head are poorly understood. We developed a rodent model of direct cranial blast injury (dcBI), in which a blast overpressure could be delivered exclusively to the head, precluding indirect brain injury via thoracic transmission of the blast wave. We constructed and validated a Cranium Only Blast Injury Apparatus (COBIA) to deliver blast overpressures generated by detonating .22 caliber cartridges of smokeless powder. Blast waveforms generated by COBIA replicated those recorded within armored vehicles penetrated by munitions. Lethal dcBI (LD(50) ∼ 515 kPa) was associated with: (1) apparent brainstem failure, characterized by immediate opisthotonus and apnea leading to cardiac arrest that could not be overcome by cardiopulmonary resuscitation; (2) widespread subarachnoid hemorrhages without cortical contusions or intracerebral or intraventricular hemorrhages; and (3) no pulmonary abnormalities. Sub-lethal dcBI was associated with: (1) apnea lasting up to 15 sec, with transient abnormalities in oxygen saturation; (2) very few delayed deaths; (3) subarachnoid hemorrhages, especially in the path of the blast wave; (4) abnormal immunolabeling for IgG, cleaved caspase-3, and β-amyloid precursor protein (β-APP), and staining for Fluoro-Jade C, all in deep brain regions away from the subarachnoid hemorrhages, but in the path of the blast wave; and (5) abnormalities on the accelerating Rotarod that persisted for the 1 week period of observation. We conclude that exposure of the head alone to severe explosive blast predisposes to significant neurological dysfunction.

  6. Design analysis of an MPI human functional brain scanner

    PubMed Central

    Mason, Erica E.; Cooley, Clarissa Z.; Cauley, Stephen F.; Griswold, Mark A.; Conolly, Steven M.; Wald, Lawrence L.

    2017-01-01

    MPI’s high sensitivity makes it a promising modality for imaging brain function. Functional contrast is proposed based on blood SPION concentration changes due to Cerebral Blood Volume (CBV) increases during activation, a mechanism utilized in fMRI studies. MPI offers the potential for a direct and more sensitive measure of SPION concentration, and thus CBV, than fMRI. As such, fMPI could surpass fMRI in sensitivity, enhancing the scientific and clinical value of functional imaging. As human-sized MPI systems have not been attempted, we assess the technical challenges of scaling MPI from rodent to human brain. We use a full-system MPI simulator to test arbitrary hardware designs and encoding practices, and we examine tradeoffs imposed by constraints that arise when scaling to human size as well as safety constraints (PNS and central nervous system stimulation) not considered in animal scanners, thereby estimating spatial resolutions and sensitivities achievable with current technology. Using a projection FFL MPI system, we examine coil hardware options and their implications for sensitivity and spatial resolution. We estimate that an fMPI brain scanner is feasible, although with reduced sensitivity (20×) and spatial resolution (5×) compared to existing rodent systems. Nonetheless, it retains sufficient sensitivity and spatial resolution to make it an attractive future instrument for studying the human brain; additional technical innovations can result in further improvements. PMID:28752130

  7. White matter segmentation by estimating tissue optical attenuation from volumetric OCT massive histology of whole rodent brains

    NASA Astrophysics Data System (ADS)

    Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric

    2017-02-01

    A whole rodent brain was imaged using an automated massive histology setup and an Optical Coherence Tomography (OCT) microscope. Thousands of OCT volumetric tiles were acquired, each covering a size of about 2.5x2.5x0.8 mm3 with a sampling resolution of 4.9x4.9x6.5 microns. This paper shows the techniques for reconstruction, attenuation compensation and segmentation of the sliced brains. The tile positions within the mosaic were evaluated using a displacement model of the motorized stage and pairwise coregistration. Volume blending was then performed by solving the 3D Laplace equation, and consecutive slices were assembled using the cross-correlation of their 2D image gradient. This reconstruction algorithm resulted in a 3D map of optical reflectivity for the whole brain at micrometric resolution. OCT tissue slices were then used to estimate the local attenuation coefficient based on a single scattering photon model. The attenuation map obtained exhibits a high contrast for all white matter fibres, regardless of their orientation. The tissue optical attenuation from the intrinsic OCT reflectivity contributes to better white matter tissue segmentation. The combined 3D maps of reflectivity and attenuation is a step toward the study of white matter at a microscopic scale for the whole brain in small animals.

  8. Early neuromodulation prevents the development of brain and behavioral abnormalities in a rodent model of schizophrenia.

    PubMed

    Hadar, R; Bikovski, L; Soto-Montenegro, M L; Schimke, J; Maier, P; Ewing, S; Voget, M; Wieske, F; Götz, T; Desco, M; Hamani, C; Pascau, J; Weiner, I; Winter, C

    2018-04-01

    The notion that schizophrenia is a neurodevelopmental disorder in which neuropathologies evolve gradually over the developmental course indicates a potential therapeutic window during which pathophysiological processes may be modified to halt disease progression or reduce its severity. Here we used a neurodevelopmental maternal immune stimulation (MIS) rat model of schizophrenia to test whether early targeted modulatory intervention would affect schizophrenia's neurodevelopmental course. We applied deep brain stimulation (DBS) or sham stimulation to the medial prefrontal cortex (mPFC) of adolescent MIS rats and respective controls, and investigated its behavioral, biochemical, brain-structural and -metabolic effects in adulthood. We found that mPFC-DBS successfully prevented the emergence of deficits in sensorimotor gating, attentional selectivity and executive function in adulthood, as well as the enlargement of lateral ventricle volumes and mal-development of dopaminergic and serotonergic transmission. These data suggest that the mPFC may be a valuable target for effective preventive treatments. This may have significant translational value, suggesting that targeting the mPFC before the onset of psychosis via less invasive neuromodulation approaches may be a viable preventive strategy.

  9. Protozoan Parasites of Rodents and Their Zoonotic Significance in Boyer-Ahmad District, Southwestern Iran

    PubMed Central

    Seifollahi, Zeinab; Motazedian, Mohammad Hossein; Asgari, Qasem; Ranjbar, Mohammad Javad; Abdolahi Khabisi, Samaneh

    2016-01-01

    Backgrounds. Wild rodents are reservoirs of various zoonotic diseases, such as toxoplasmosis, babesiosis, and leishmaniasis. The current study aimed to assess the protozoan infection of rodents in Boyer-Ahmad district, southwestern Iran. Materials and Methods. A total of 52 rodents were collected from different parts of Boyer-Ahmad district, in Kohgiluyeh and Boyer-Ahmad province, using Sherman live traps. Each rodent was anesthetized with ether, according to the ethics of working with animals, and was dissected. Samples were taken from various tissues and stool samples were collected from the contents of the colon and small intestines. Moreover, 2 to 5 mL of blood was taken from each of the rodents and the sera were examined for anti-Leishmania antibodies, by ELISA, or anti-T. gondii antibodies, by modified agglutination test (MAT). DNA was extracted from brain tissue samples of each rodent and PCR was used to identify the DNA of T. gondii. Results. Of the 52 stool samples of rodents studied by parasitological methods, intestinal protozoa infection was seen in 28 cases (53.8%). From 52 rodents, 19 (36.5%) were infected with Trichomonas, 10 (19.2%) with Giardia muris, and 11 (21.2%) with Entamoeba spp. Also, 10 cases (19.2%) were infected with Blastocystis, 3 (5.8%) were infected with Chilomastix, 7 (13.5%) were infected with Endolimax, 1 (1.9%) was infected with Retortamonas, 3 (5.77%) were infected with T. gondii, and 6 (11.54%) were infected with Trypanosoma lewisi. Antibodies to T. gondii were detected in the sera of 5 (9.61%) cases. Results of the molecular study showed T. gondii infection in 3 (5.77%) of the rodents. Findings of this study showed that rodents in Kohgiluyeh and Boyer-Ahmad province, southwestern Iran, are infected with several blood and intestinal parasites; some of them might be potential risks to residents and domestic animals in the region. PMID:26998380

  10. Transient postnatal fluoxetine leads to decreased brain arachidonic acid metabolism and cytochrome P450 4A in adult mice.

    PubMed

    Ramadan, Epolia; Blanchard, Helene; Cheon, Yewon; Fox, Meredith A; Chang, Lisa; Chen, Mei; Ma, Kaizong; Rapoport, Stanley I; Basselin, Mireille

    2014-05-01

    Fetal and perinatal exposure to selective serotonin (5-HT) reuptake inhibitors (SSRIs) has been reported to alter childhood behavior, while transient early exposure in rodents is reported to alter their behavior and decrease brain extracellular 5-HT in adulthood. Since 5-HT2A/2C receptor-mediated neurotransmission can involve G-protein coupled activation of cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (ARA) from synaptic membrane phospholipid, we hypothesized that transient postnatal exposure to fluoxetine would alter brain ARA metabolism in adult mice. Brain ARA incorporation coefficients k* and rates Jin were quantitatively imaged following intravenous [1-(14)C]ARA infusion of unanesthetized adult mice that had been injected daily with fluoxetine (10mg/kg i.p.) or saline during postnatal days P4-P21. Expression of brain ARA metabolic enzymes and other relevant markers also was measured. On neuroimaging, k* and Jin was decreased widely in early fluoxetine- compared to saline-treated adult mice. Of the enzymes measured, cPLA2 activity was unchanged, while Ca(2+)-independent iPLA2 activity was increased. There was a significant 74% reduced protein level of cytochrome P450 (CYP) 4A, which can convert ARA to 20-HETE. Reduced brain ARA metabolism in adult mice transiently exposed to postnatal fluoxetine, and a 74% reduction in CYP4A protein, suggest long-term effects independent of drug presence in brain ARA metabolism, and in CYP4A metabolites. These changes might contribute to reported altered behavior following early SSRI in rodents. Published by Elsevier Ltd.

  11. Substantiating In Vivo Magnetic Brain Tumor Targeting of Cationic Iron Oxide Nanocarriers via Adsorptive Surface Masking

    PubMed Central

    Chertok, Beata; David, Allan E.; Moffat, Bradford A.; Yang, Victor C.

    2009-01-01

    Cationic magnetic nanoparticles are attractive as potential vehicles for tumor drug delivery due to their favorable interactions with both the tumor milieu and the therapeutic cargo. However, systemic delivery of these nanoparticles to the tumor site is compromised by their rapid plasma clearance. We developed a simple method for in vivo protection of cationic nanocarriers, using non-covalent surface masking with a conjugate of low molecular weight heparin and polyethylene glycol. Surface masking resulted in an 11-fold increase in plasma AUC and a 2-fold increase in the magnetic capture of systemically injected nanoparticles in orthotopic rodent brain tumors. Overall, the described methodology could expand the prospective applications for cationic magnetic nanoparticles in magnetically-mediated gene/drug delivery. PMID:19782394

  12. Engineered core-shell magnetic nanoparticle for MR dual-modal tracking and safe magnetic manipulation of ependymal cells in live rodents

    NASA Astrophysics Data System (ADS)

    Peng, Yung-Kang; Lui, Cathy N. P.; Chen, Yu-Wei; Chou, Shang-Wei; Chou, Pi-Tai; Yung, Ken K. L.; Edman Tsang, S. C.

    2018-01-01

    Tagging recognition group(s) on superparamagnetic iron oxide is known to aid localisation (imaging), stimulation and separation of biological entities using magnetic resonance imaging (MRI) and magnetic agitation/separation (MAS) techniques. Despite the wide applicability of iron oxide nanoparticles in T 2-weighted MRI and MAS, the quality of the images and safe manipulation of the exceptionally delicate neural cells in a live brain are currently the key challenges. Here, we demonstrate the engineered manganese oxide clusters-iron oxide core-shell nanoparticle as an MR dual-modal contrast agent for neural stem cells (NSCs) imaging and magnetic manipulation in live rodents. As a result, using this engineered nanoparticle and associated technologies, identification, stimulation and transportation of labelled potentially multipotent NSCs from a specific location of a live brain to another by magnetic means for self-healing therapy can therefore be made possible.

  13. Common medial frontal mechanisms of adaptive control in humans and rodents

    PubMed Central

    Frank, Michael J.; Laubach, Mark

    2013-01-01

    In this report, we describe how common brain networks within the medial frontal cortex facilitate adaptive behavioral control in rodents and humans. We demonstrate that low frequency oscillations below 12 Hz are dramatically modulated after errors in humans over mid-frontal cortex and in rats within prelimbic and anterior cingulate regions of medial frontal cortex. These oscillations were phase-locked between medial frontal cortex and motor areas in both rats and humans. In rats, single neurons that encoded prior behavioral outcomes were phase-coherent with low-frequency field oscillations particularly after errors. Inactivating medial frontal regions in rats led to impaired behavioral adjustments after errors, eliminated the differential expression of low frequency oscillations after errors, and increased low-frequency spike-field coupling within motor cortex. Our results describe a novel mechanism for behavioral adaptation via low-frequency oscillations and elucidate how medial frontal networks synchronize brain activity to guide performance. PMID:24141310

  14. Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury.

    PubMed

    Fairbanks, C A; Schreiber, K L; Brewer, K L; Yu, C G; Stone, L S; Kitto, K F; Nguyen, H O; Grocholski, B M; Shoeman, D W; Kehl, L J; Regunathan, S; Reis, D J; Yezierski, R P; Wilcox, G L

    2000-09-12

    Antagonists of glutamate receptors of the N-methyl-d-aspartate subclass (NMDAR) or inhibitors of nitric oxide synthase (NOS) prevent nervous system plasticity. Inflammatory and neuropathic pain rely on plasticity, presenting a clinical opportunity for the use of NMDAR antagonists and NOS inhibitors in chronic pain. Agmatine (AG), an endogenous neuromodulator present in brain and spinal cord, has both NMDAR antagonist and NOS inhibitor activities. We report here that AG, exogenously administered to rodents, decreased hyperalgesia accompanying inflammation, normalized the mechanical hypersensitivity (allodynia/hyperalgesia) produced by chemical or mechanical nerve injury, and reduced autotomy-like behavior and lesion size after excitotoxic spinal cord injury. AG produced these effects in the absence of antinociceptive effects in acute pain tests. Endogenous AG also was detected in rodent lumbosacral spinal cord in concentrations similar to those previously detected in brain. The evidence suggests a unique antiplasticity and neuroprotective role for AG in processes underlying persistent pain and neuronal injury.

  15. Fully Implantable Deep Brain Stimulation System with Wireless Power Transmission for Long-term Use in Rodent Models of Parkinson's Disease.

    PubMed

    Heo, Man Seung; Moon, Hyun Seok; Kim, Hee Chan; Park, Hyung Woo; Lim, Young Hoon; Paek, Sun Ha

    2015-03-01

    The purpose of this study to develop new deep-brain stimulation system for long-term use in animals, in order to develop a variety of neural prostheses. Our system has two distinguished features, which are the fully implanted system having wearable wireless power transfer and ability to change the parameter of stimulus parameter. It is useful for obtaining a variety of data from a long-term experiment. To validate our system, we performed pre-clinical test in Parkinson's disease-rat models for 4 weeks. Through the in vivo test, we observed the possibility of not only long-term implantation and stability, but also free movement of animals. We confirmed that the electrical stimulation neither caused any side effect nor damaged the electrodes. We proved possibility of our system to conduct the long-term pre-clinical test in variety of parameter, which is available for development of neural prostheses.

  16. Adolescent development, hypothalamic-pituitary-adrenal function, and programming of adult learning and memory.

    PubMed

    McCormick, Cheryl M; Mathews, Iva Z

    2010-06-30

    Chronic exposure to stress is known to affect learning and memory in adults through the release of glucocorticoid hormones by the hypothalamic-pituitary-adrenal (HPA) axis. In adults, glucocorticoids alter synaptic structure and function in brain regions that express high levels of glucocorticoid receptors and that mediate goal-directed behaviour and learning and memory. In contrast to relatively transient effects of stress on cognitive function in adulthood, exposure to high levels of glucocorticoids in early life can produce enduring changes through substantial remodeling of the developing nervous system. Adolescence is another time of significant brain development and maturation of the HPA axis, thereby providing another opportunity for glucocorticoids to exert programming effects on neurocircuitry involved in learning and memory. These topics are reviewed, as is the emerging research evidence in rodent models highlighting that adolescence may be a period of increased vulnerability compared to adulthood in which exposure to high levels of glucocorticoids results in enduring changes in adult cognitive function. Copyright 2009 Elsevier Inc. All rights reserved.

  17. Language-related Cntnap2 gene is differentially expressed in sexually dimorphic song nuclei essential for vocal learning in songbirds

    PubMed Central

    Panaitof, S. Carmen; Abrahams, Brett S.; Dong, Hongmei; Geschwind, Daniel H.; White, Stephanie A.

    2010-01-01

    Multiple studies, involving distinct clinical populations, implicate contactin associated protein-like 2 (CNTNAP2) in aspects of language development and performance. While CNTNAP2 is broadly distributed in developing rodent brain, it shows a striking gradient of frontal cortical enrichment in developing human brain, consistent with a role in patterning circuits that subserve higher cognition and language. To test the hypothesis that CNTNAP2 may be important for learned vocal communication in additional species, we employed in situ hybridization to characterize transcript distribution in the zebra finch, an experimentally tractable songbird for which the neural substrate of this behavior is well-established. Consistent with an important role in learned vocalization, Cntnap2 was enriched or diminished in key song control nuclei relative to adjacent brain tissue. Importantly, this punctuated expression was observed in males, but not females, in accord with the sexual dimorphism of neural circuitry and vocal learning in this species. Ongoing functional work will provide important insights into the relationship between Cntnap2 and vocal communication in songbirds and thereby clarify mechanisms at play in disorders of human cognition and language. PMID:20394055

  18. Differential effects of minocycline on microglial activation and neurodegeneration following closed head injury in the neonate rat

    PubMed Central

    Hanlon, L.A.; Raghupathi, R.; Huh, J.W.

    2017-01-01

    The role of microglia in the pathophysiology of injury to the developing brain has been extensively studied. In children under the age of 4 who have sustained a traumatic brain injury (TBI), markers of microglial/macrophage activation were increased in the cerebrospinal fluid and were associated with worse neurologic outcome. Minocycline is an antibiotic that decreases microglial/macrophage activation following hypoxic-ischemia in neonatal rodents and TBI in adult rodents thereby reducing neurodegeneration and behavioral deficits. In study 1, 11-day-old rats received an impact to the intact skull and were treated for 3 days with minocycline. Immediately following termination of minocycline administration, microglial reactivity was reduced in the cortex and hippocampus (p<0.001) and was accompanied by an increase in the number of fluoro-Jade B profiles (p<0.001) suggestive of a reduced clearance of degenerating cells; however, this effect was not sustained at 7 days post-injury. Although microglial reactivity was reduced in the white matter tracts (p<0.001), minocycline treatment did not reduce axonal injury or degeneration. In the thalamus, minocycline treatment did not affect microglial reactivity, axonal injury and degeneration, and neurodegeneration. Injury-induced spatial learning and memory deficits were also not affected by minocycline. In study 2, to test whether extended dosing of minocycline may be necessary to reduce the ongoing pathologic alterations, a separate group of animals received minocycline for 9 days. Immediately following termination of treatment, microglial reactivity and neurodegeneration in all regions examined were exacerbated in minocycline-treated brain-injured animals compared to brain-injured animals that received vehicle (p<0.001), an effect that was only sustained in the cortex and hippocampus up to 15 days post-injury (p<0.001). Whereas injury-induced spatial learning deficits remained unaffected by minocycline treatment, memory deficits appeared to be significantly worse (p<0.05). Sex had minimal effects on either injury-induced alterations or the efficacy of minocycline treatment. Collectively, these data demonstrate the differential effects of minocycline in the immature brain following impact trauma and suggest that minocycline may not be an effective therapeutic strategy for TBI in the immature brain. PMID:28038986

  19. Assessment of sex specific endocrine disrupting effects in the prenatal and pre-pubertal rodent brain.

    PubMed

    Rebuli, Meghan E; Patisaul, Heather B

    2016-06-01

    Brain sex differences are found in nearly every region of the brain and fundamental to sexually dimorphic behaviors as well as disorders of the brain and behavior. These differences are organized during gestation and early adolescence and detectable prior to puberty. Endocrine disrupting compounds (EDCs) interfere with hormone action and are thus prenatal exposure is hypothesized to disrupt the formation of sex differences, and contribute to the increased prevalence of pediatric neuropsychiatric disorders that present with a sex bias. Available evidence for the ability of EDCs to impact the emergence of brain sex differences in the rodent brain was reviewed here, with a focus on effects detected at or before puberty. The peer-reviewed literature was searched using PubMed, and all relevant papers published by January 31, 2015 were incorporated. Endpoints of interest included molecular cellular and neuroanatomical effects. Studies on behavioral endpoints were not included because numerous reviews of that literature are available. The hypothalamus was found to be particularly affected by estrogenic EDCs in a sex, time, and exposure dependent manner. The hippocampus also appears vulnerable to endocrine disruption by BPA and PCBs although there is little evidence from the pre-pubertal literature to make any conclusions about sex-specific effects. Gestational EDC exposure can alter fetal neurogenesis and gene expression throughout the brain including the cortex and cerebellum. The available literature primarily focuses on a few, well characterized EDCs, but little data is available for emerging contaminants. The developmental EDC exposure literature demonstrates evidence of altered neurodevelopment as early as fetal life, with sex specific effects observed throughout the brain even before puberty. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Hyperpolarized 13C MR Markers of Renal Tumor Aggressiveness

    DTIC Science & Technology

    2015-12-01

    production in two human glioblastoma xenograft models where the blood–brain barrier (BBB) was disrupted relative to normal brain, suggesting that HP...rodent mammary adenocarcinoma and murine lymphoma xenografts ) has shown ample conversion to leucine.98 In this preclinical study, SNR and contrast were...4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner, Oncogene 33 (2013) 4433–4441. Real

  1. Opioid Abuse after Traumatic Brain Injury: Evaluation Using Rodent Models

    DTIC Science & Technology

    2015-09-01

    depending on the aspect of SA being assessed. This includes time for acclimation to the laboratory and handling, catheterization surgery and recovery, brain...across the three years / total number to be completed by project end. Total # subjects entered into protocol =50 Total number catheterized = 0...and acclimation before intravenous catheterization or pump implantation was performed (see below). Subjects to be used in the warm water tail

  2. Robust optical fiber patch-cords for in vivo optogenetic experiments in rats.

    PubMed

    Trujillo-Pisanty, Ivan; Sanio, Christian; Chaudhri, Nadia; Shizgal, Peter

    2015-01-01

    In vivo optogenetic experiments commonly employ long lengths of optical fiber to connect the light source (commonly a laser) to the optical fiber implants in the brain. Commercially available patch cords are expensive and break easily. Researchers have developed methods to build these cables in house for in vivo experiments with rodents [1-4]. However, the half-life of those patch cords is greatly reduced when they are used with behaving rats, which are strong enough to break the delicate cable tip and to bite through the optical fiber and furcation tubing. Based on [3] we have strengthened the patch-cord tip that connects to the optical implant, and we have incorporated multiple layers of shielding to produce more robust and resistant cladding. Here, we illustrate how to build these patch cords with FC or M3 connectors. However, the design can be adapted for use with other common optical-fiber connectors. We have saved time and money by using this design in our optical self-stimulation experiments with rats, which are commonly several months long and last four to eleven hours per session. The main advantages are: •Long half-life.•Resistant to moderate rodent bites.•Suitable for long in vivo optogenetic experiments with large rodents.

  3. The Effects of Donepezil, an Acetylcholinesterase Inhibitor, on Impaired Learning and Memory in Rodents.

    PubMed

    Shin, Chang Yell; Kim, Hae-Sun; Cha, Kwang-Ho; Won, Dong Han; Lee, Ji-Yun; Jang, Sun Woo; Sohn, Uy Dong

    2018-05-01

    A previous study in humans demonstrated the sustained inhibitory effects of donepezil on acetylcholinesterase (AChE) activity; however, the effective concentration of donepezil in humans and animals is unclear. This study aimed to characterize the effective concentration of donepezil on AChE inhibition and impaired learning and memory in rodents. A pharmacokinetic study of donepezil showed a mean peak plasma concentration of donepezil after oral treatment (3 and 10 mg/kg) of approximately 1.2 ± 0.4 h and 1.4 ± 0.5 h, respectively; absolute bioavailability was calculated as 3.6%. Further, AChE activity was inhibited by increasing plasma concentrations of donepezil, and a maximum inhibition of 31.5 ± 5.7% was observed after donepezil treatment in hairless rats. Plasma AChE activity was negatively correlated with plasma donepezil concentration. The pharmacological effects of donepezil are dependent upon its concentration and AChE activity; therefore, we assessed the effects of donepezil on learning and memory using a Y-maze in mice. Donepezil treatment (3 mg/kg) significantly prevented the progression of scopolamine-induced memory impairment in mice. As the concentration of donepezil in the brain increased, the recovery of spontaneous alternations also improved; maximal improvement was observed at 46.5 ± 3.5 ng/g in the brain. In conclusion, our findings suggest that the AChE inhibitory activity and pharmacological effects of donepezil can be predicted by the concentration of donepezil. Further, 46.5 ± 3.5 ng/g donepezil is an efficacious target concentration in the brain for treating learning and memory impairment in rodents.

  4. Evolution of cytoarchitectural landscapes in the mammalian isocortex: Sirenians (Trichechus manatus) in comparison with other mammals.

    PubMed

    Charvet, Christine J; Reep, Roger L; Finlay, Barbara L

    2016-03-01

    The isocortex of several primates and rodents shows a systematic increase in the number of neurons per unit of cortical surface area from its rostrolateral to caudomedial border. The steepness of the gradient in neuronal number and density is positively correlated with cortical volume. The relative duration of neurogenesis along the same rostrocaudal gradient predicts a substantial fraction of this variation in neuron number and laminar position, which is produced principally from layers II-IV neurons. However, virtually all of our quantitative knowledge about total and laminar variation in cortical neuron numbers and neurogenesis comes from rodents and primates, leaving whole taxonomic groups and many intermediate-sized brains unexplored. Thus, the ubiquity in mammals of the covariation of longer cortical neurogenesis and increased cortical neuron number deriving from cortical layers II-IV is undetermined. To begin to address this gap, we examined the isocortex of the manatee using the optical disector method in sectioned tissue, and also assembled partial data from published reports of the domestic cat brain. The manatee isocortex has relatively fewer neurons per total volume, and fewer II-IV neurons than primates with equivalently sized brains. The gradient in number of neurons from the rostral to the caudal pole is intermediate between primates and rodents, and, like those species, is observed only in the upper cortical layers. The cat isocortex (Felis domesticus) shows a similar structure. Key species for further tests of the origin, ubiquity, and significance of this organizational feature are discussed. © 2015 Wiley Periodicals, Inc.

  5. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain

    PubMed Central

    Ringstad, Geir

    2015-01-01

    Recently, the “glymphatic system” of the brain has been discovered in rodents, which is a paravascular, transparenchymal route for clearance of excess brain metabolites and distribution of compounds in the cerebrospinal fluid. It has already been demonstrated that intrathecally administered gadolinium (Gd) contrast medium distributes along this route in rats, but so far not in humans. A 27-year-old woman underwent magnetic resonance imaging (MRI) with intrathecal administration of gadobutrol, which distributed throughout her entire brain after 1 and 4.5 h. MRI with intrathecal Gd may become a tool to study glymphatic function in the human brain. PMID:26634147

  6. A SPECT Scanner for Rodent Imaging Based on Small-Area Gamma Cameras

    NASA Astrophysics Data System (ADS)

    Lage, Eduardo; Villena, José L.; Tapias, Gustavo; Martinez, Naira P.; Soto-Montenegro, Maria L.; Abella, Mónica; Sisniega, Alejandro; Pino, Francisco; Ros, Domènec; Pavia, Javier; Desco, Manuel; Vaquero, Juan J.

    2010-10-01

    We developed a cost-effective SPECT scanner prototype (rSPECT) for in vivo imaging of rodents based on small-area gamma cameras. Each detector consists of a position-sensitive photomultiplier tube (PS-PMT) coupled to a 30 x 30 Nal(Tl) scintillator array and electronics attached to the PS-PMT sockets for adapting the detector signals to an in-house developed data acquisition system. The detector components are enclosed in a lead-shielded case with a receptacle to insert the collimators. System performance was assessed using 99mTc for a high-resolution parallel-hole collimator, and for a 0.75-mm pinhole collimator with a 60° aperture angle and a 42-mm collimator length. The energy resolution is about 10.7% of the photopeak energy. The overall system sensitivity is about 3 cps/μCi/detector and planar spatial resolution ranges from 2.4 mm at 1 cm source-to-collimator distance to 4.1 mm at 4.5 cm with parallel-hole collimators. With pinhole collimators planar spatial resolution ranges from 1.2 mm at 1 cm source-to-collimator distance to 2.4 mm at 4.5 cm; sensitivity at these distances ranges from 2.8 to 0.5 cps/μCi/detector. Tomographic hot-rod phantom images are presented together with images of bone, myocardium and brain of living rodents to demonstrate the feasibility of preclinical small-animal studies with the rSPECT.

  7. Viral infection, inflammation and schizophrenia

    PubMed Central

    Kneeland, Rachel E.; Fatemi, S. Hossein

    2012-01-01

    Schizophrenia is a severe neurodevelopmental disorder with genetic and environmental etiologies. Prenatal viral/bacterial infections and inflammation play major roles in the genesis of schizophrenia. In this review, we describe a viral model of schizophrenia tested in mice whereby the offspring of mice prenatally infected with influenza at E7, E9, E16, and E18 show significant gene, protein, and brain structural abnormalities postnatally. Similarly, we describe data on rodents exposed to bacterial infection or injected with a synthetic viral mimic (PolyI:C) also demonstrating brain structural and behavioral abnormalities. Moreover, human serologic data has been indispensible in supporting the viral theory of schizophrenia. Individuals born seropositive for bacterial and viral agents are at a significantly elevated risk of developing schizophrenia. While the specific mechanisms of prenatal viral/bacterial infections and brain disorder are unclear, recent findings suggest that the maternal inflammatory response may be associated with fetal brain injury. Preventive and therapeutic treatment options are also proposed. This review presents data related to epidemiology, human serology, and experimental animal models which support the viral model of schizophrenia. PMID:22349576

  8. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression.

    PubMed

    Rajkumar, Ramamoorthy; Dawe, Gavin S

    2018-04-07

    Olfactory bulbectomy (OBX) has been used as a model of depression over several decades. This model presupposes a mechanism that is still not proven in clinical depression. A wealth of clinical literature has focused on the derangements in frontal cortex (prefrontal, orbitofrontal and anterior cingulate cortices) associated with depression. In this comprehensive review, anatomical, electrophysiological and molecular sequelae of bulbectomy in the rodent frontal cortex are explored and compared with findings on brains of humans with major depression. Certain commonalities in neurobiological features of the perturbed frontal cortex in the bulbectomised rodent and the depressed human brain are evident. Also, meta-analysis reports on clinical studies on depressed patients provide prima facie evidence that perturbations in the frontal cortex are associated with major depression. Analysing the pattern of perturbations in the chemical neuroanatomy of the frontal cortex will contribute to understanding of the neurobiology of depression. Revisiting the OBX model of depression to examine these neurobiological changes in frontal cortex with contemporary imaging, proteomics, lipidomics, metabolomics and epigenomics technologies is proposed as an approach to enhance the translational value of this animal model to facilitate identification of targets and biomarkers for clinical depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Adolescent Transitions in Reflexive and Non-Reflexive Behavior: Review of Fear Conditioning and Impulse Control in Rodent Models

    PubMed Central

    Hunt, Pamela S.; Burk, Joshua A.; Barnet, Robert C.

    2016-01-01

    Adolescence is a time of critical brain changes that pave the way for adult learning processes. However, the extent to which learning in adolescence is best characterized as a transitional linear progression from childhood to adulthood, or represents a period that differs from earlier and later developmental stages, remains unclear. Here we examine behavioral literature on associative fear conditioning and complex choice behavior with rodent models. Many aspects of fear conditioning are intact by adolescence and do not differ from adult patterns. Sufficient evidence, however, suggests that adolescent learning cannot be characterized simply as an immature precursor to adulthood. Across different paradigms assessing choice behavior, literature suggests that adolescent animals typically display more impulsive patterns of responding compared to adults. The extent to which the development of basic conditioning processes serves as a scaffold for later adult decision making is an additional research area that is important for theory, but also has widespread applications for numerous psychological conditions. PMID:27339692

  10. Neuropharmacological sequelae of persistent CNS viral infections: lessons from Borna disease virus.

    PubMed

    Solbrig, Marylou V; Koob, George F

    2003-03-01

    Borna Disease Virus (BDV) is a neurotropic RNA virus that is worldwide in distribution, causing movement and behavior disorders in a wide range of animal species. BDV has also been reported to be associated with neuropsychiatric diseases of humans by serologic study and by recovery of nucleic acid or virus from blood or brain. Natural infections of horses and sheep produce encephalitis with erratic excited behaviors, hyperkinetic movement or gait abnormalities; naturally infected cats have ataxic "staggering disease." Experimentally infected primates develop hyperactivity, aggression, disinhibition, then apathy; prosimians (lower primates) have hyperactivity, circadian disruption, abnormal social and dominance behaviors, and postural disorders. However, the neuropharmacological determinants of BD phenotypes in laboratory and natural hosts are incompletely understood. Here we review how experimentally infected rodents have provided models for examining behavioral, pharmacologic, and biochemical responses to viral challenge, and how rodents experimentally infected as neonates or as adolescents are providing models for examining age-specific neuropharmacological adaptations to viral injury.

  11. The Emerging Relationship Between Interstitial Fluid-Cerebrospinal Fluid Exchange, Amyloid-β, and Sleep.

    PubMed

    Boespflug, Erin L; Iliff, Jeffrey J

    2018-02-15

    Amyloid-β (Aβ) plaques are a key histopathological hallmark of Alzheimer's disease (AD), and soluble Aβ species are believed to play an important role in the clinical development of this disease. Emerging biomarker data demonstrate that Aβ plaque deposition begins decades before the onset of clinical symptoms, suggesting that understanding the biological determinants of the earliest steps in the development of AD pathology may provide key opportunities for AD treatment and prevention. Although a clinical association between sleep disruption and AD has long been appreciated, emerging clinical studies and insights from the basic neurosciences have shed important new light on how sleep and Aβ homeostasis may be connected in the setting of AD. Aβ, like many interstitial solutes, is cleared in part through the exchange of brain interstitial fluid and cerebrospinal fluid along a brain-wide network of perivascular pathways recently termed the glymphatic system. Glymphatic function is primarily a feature of the sleeping brain, rather than the waking brain, and is slowed in the aging and posttraumatic brain. These changes may underlie the diurnal fluctuations in interstitial and cerebrospinal fluid Aβ levels observed in both the rodent and the human. These and other emerging studies suggest that age-related sleep disruption may be one key factor that renders the aging brain vulnerable to Aβ deposition and the development of AD. If this is true, sleep may represent a key modifiable risk factor or therapeutic target in the preclinical phases of AD. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Early-life Exposure to the SSRI Paroxetine Exacerbates Depression-like Behavior in Anxiety/Depression-prone rats

    PubMed Central

    Glover, Matthew E.; Pugh, Phyllis C.; Jackson, Nateka L.; Cohen, Joshua L.; Fant, Andrew D.; Akil, Huda; Clinton, Sarah M.

    2014-01-01

    Selective serotonin reuptake inhibitor (SSRI) antidepressants are the mainstay treatment for the 10–20% of pregnant and postpartum women who suffer major depression, but the effects of SSRIs on their children’s developing brain and later emotional health are poorly understood. SSRI use during pregnancy can elicit antidepressant withdrawal in newborns and increase toddlers’ anxiety and social avoidance. In rodents, perinatal SSRI exposure increases adult depression- and anxiety-like behavior, although certain individuals are more vulnerable to these effects than others. Our study establishes a rodent model of individual differences in susceptibility to perinatal SSRI exposure, utilizing selectively-bred Low Responder (bLR) and High Responder (bHR) rats that were previously bred for high versus low behavioral response to novelty. Pregnant bHR/bLR females were chronically treated with the SSRI paroxetine (10 mg/kg/day p.o.) to examine its effects on offspring’s emotional behavior and gene expression in the developing brain. Paroxetine treatment had minimal effect on bHR/bLR dams’ pregnancy outcomes or maternal behavior. We found that bLR offspring, naturally prone to an inhibited/anxious temperament, were susceptible to behavioral abnormalities associated with perinatal SSRI exposure (which exacerbated their Forced Swim test immobility), while high risk-taking bHR offspring were resistant. Microarray studies revealed robust perinatal SSRI-induced gene expression changes in the developing bLR hippocampus and amygdala (postnatal days 7–21), including transcripts involved in neurogenesis, synaptic vesicle components, and energy metabolism. These results highlight the bLR/bHR model as a useful tool to explore the neurobiology of individual differences in susceptibility to perinatal SSRI exposure. PMID:25451292

  13. Xenon neurotoxicity in rat hippocampal slice cultures is similar to isoflurane and sevoflurane.

    PubMed

    Brosnan, Heather; Bickler, Philip E

    2013-08-01

    Anesthetic neurotoxicity in the developing brain of rodents and primates has raised concern. Xenon may be a nonneurotoxic alternative to halogenated anesthetics, but its toxicity has only been studied at low concentrations, where neuroprotective effects predominate in animal models. An equipotent comparison of xenon and halogenated anesthetics with respect to neurotoxicity in developing neurons has not been made. Organotypic hippocampal cultures from 7-day-old rats were exposed to 0.75, 1, and 2 minimum alveolar concentrations (MAC) partial pressures (60% xenon at 1.2, 2.67, and 3.67 atm; isoflurane at 1.4, 1.9, and 3.8%; and sevoflurane at 3.4 and 6.8%) for 6 h, at atmospheric pressure or in a pressure chamber. Cell death was assessed 24 h later with fluorojade and fluorescent dye exclusion techniques. Xenon caused death of hippocampal neurons in CA1, CA3, and dentate regions after 1 and 2 MAC exposures, but not at 0.75 MAC. At 1 MAC, xenon increased cell death 40% above baseline (P < 0.01; ANOVA with Dunnett test). Both isoflurane and sevoflurane increased neuron death at 1 but not 2 MAC. At 1 MAC, the increase in cell death compared with controls was 63% with isoflurane and 90% with sevoflurane (both P < 0.001). Pretreatment of cultures with isoflurane (0.75 MAC) reduced neuron death after 1 MAC xenon, isoflurane, and sevoflurane. Xenon causes neuronal cell death in an in vitro model of the developing rodent brain at 1 MAC, as does isoflurane and sevoflurane at similarly potent concentrations. Preconditioning with a subtoxic dose of isoflurane eliminates this toxicity.

  14. Epigenetic Mechanisms in Developmental Alcohol-Induced Neurobehavioral Deficits

    PubMed Central

    Basavarajappa, Balapal S.; Subbanna, Shivakumar

    2016-01-01

    Alcohol consumption during pregnancy and its damaging consequences on the developing infant brain are significant public health, social, and economic issues. The major distinctive features of prenatal alcohol exposure in humans are cognitive and behavioral dysfunction due to damage to the central nervous system (CNS), which results in a continuum of disarray that is collectively called fetal alcohol spectrum disorder (FASD). Many rodent models have been developed to understand the mechanisms of and to reproduce the human FASD phenotypes. These animal FASD studies have provided several molecular pathways that are likely responsible for the neurobehavioral abnormalities that are associated with prenatal alcohol exposure of the developing CNS. Recently, many laboratories have identified several immediate, as well as long-lasting, epigenetic modifications of DNA methylation, DNA-associated histone proteins and microRNA (miRNA) biogenesis by using a variety of epigenetic approaches in rodent FASD models. Because DNA methylation patterns, DNA-associated histone protein modifications and miRNA-regulated gene expression are crucial for synaptic plasticity and learning and memory, they can therefore offer an answer to many of the neurobehavioral abnormalities that are found in FASD. In this review, we briefly discuss the current literature of DNA methylation, DNA-associated histone proteins modification and miRNA and review recent developments concerning epigenetic changes in FASD. PMID:27070644

  15. Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions

    PubMed Central

    Kobayashi, Kenta; Inoue, Ken-ichi; Tanabe, Soshi; Kato, Shigeki; Takada, Masahiko; Kobayashi, Kazuto

    2017-01-01

    Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1) with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G) and vesicular stomatitis virus glycoprotein (VSV-G) enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E), which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E–pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson’s disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E–pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson’s disease. PMID:28824385

  16. Prenatal exposure to valproic acid leads to reduced expression of synaptic adhesion molecule neuroligin 3 in mice.

    PubMed

    Kolozsi, E; Mackenzie, R N; Roullet, F I; deCatanzaro, D; Foster, J A

    2009-11-10

    In rodents, a single administration of valproic acid (VPA) in utero leads to developmental delays and lifelong deficits in motor performance, social behavior, and anxiety-like behavior in the offspring. Recently, we have demonstrated that VPA mice show alterations in postnatal growth and development, and deficits in olfactory discrimination and social behavior early in development. Based on behavioral and molecular parallels between VPA rodents and individuals with autism, maternal challenge with VPA has been suggested to be a good animal model of autism. Neuroligins (NLGN) are a family of postsynaptic cell-adhesion molecules that play a role in synaptic maturation through association with their presynaptic partners, the neurexins (NRXN). Both NLGNs and NRXN members have been implicated in genetic studies of autism. In the present study, we examined changes at the level of expression of NLGN and NRXN mRNAs in the adult brain from mice exposed in utero to VPA. Mouse brain tissue was processed using in situ hybridization and analyzed with densitometry to examine expression of three NLGN genes (NLGN1, NLGN2, and NLGN3) and three NRXN genes (NRXN1, NRXN2, and NRXN3). Expression levels of NLGN1, NLGN2, NRXN1, NRXN2, and NRXN3 were observed to be similar in VPA and control mice. NLGN3 mRNA expression was found to be significantly lower in the VPA mice relative to control animals in hippocampal subregions, cornu ammonis (CA1) and dentate gyrus, and somatosensory cortex. This lowered expression may be linked to autistic-like behavioral phenotype observed in the VPA mice.

  17. Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation

    PubMed Central

    Li, Bingshuo; Virtanen, Juha P; Oeltermann, Axel; Schwarz, Cornelius; Giese, Martin A; Ziemann, Ulf

    2017-01-01

    Transcranial magnetic stimulation (TMS) is a widely used non-invasive tool to study and modulate human brain functions. However, TMS-evoked activity of individual neurons has remained largely inaccessible due to the large TMS-induced electromagnetic fields. Here, we present a general method providing direct in vivo electrophysiological access to TMS-evoked neuronal activity 0.8–1 ms after TMS onset. We translated human single-pulse TMS to rodents and unveiled time-grained evoked activities of motor cortex layer V neurons that show high-frequency spiking within the first 6 ms depending on TMS-induced current orientation and a multiphasic spike-rhythm alternating between excitation and inhibition in the 6–300 ms epoch, all of which can be linked to various human TMS responses recorded at the level of spinal cord and muscles. The advance here facilitates a new level of insight into the TMS-brain interaction that is vital for developing this non-invasive tool to purposefully explore and effectively treat the human brain. PMID:29165241

  18. Primary Cell Culture of Live Neurosurgically Resected Aged Adult Human Brain Cells and Single Cell Transcriptomics.

    PubMed

    Spaethling, Jennifer M; Na, Young-Ji; Lee, Jaehee; Ulyanova, Alexandra V; Baltuch, Gordon H; Bell, Thomas J; Brem, Steven; Chen, H Isaac; Dueck, Hannah; Fisher, Stephen A; Garcia, Marcela P; Khaladkar, Mugdha; Kung, David K; Lucas, Timothy H; O'Rourke, Donald M; Stefanik, Derek; Wang, Jinhui; Wolf, John A; Bartfai, Tamas; Grady, M Sean; Sul, Jai-Yoon; Kim, Junhyong; Eberwine, James H

    2017-01-17

    Investigation of human CNS disease and drug effects has been hampered by the lack of a system that enables single-cell analysis of live adult patient brain cells. We developed a culturing system, based on a papain-aided procedure, for resected adult human brain tissue removed during neurosurgery. We performed single-cell transcriptomics on over 300 cells, permitting identification of oligodendrocytes, microglia, neurons, endothelial cells, and astrocytes after 3 weeks in culture. Using deep sequencing, we detected over 12,000 expressed genes, including hundreds of cell-type-enriched mRNAs, lncRNAs and pri-miRNAs. We describe cell-type- and patient-specific transcriptional hierarchies. Single-cell transcriptomics on cultured live adult patient derived cells is a prime example of the promise of personalized precision medicine. Because these cells derive from subjects ranging in age into their sixties, this system permits human aging studies previously possible only in rodent systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Bi-Parental Care Contributes to Sexually Dimorphic Neural Cell Genesis in the Adult Mammalian Brain

    PubMed Central

    Mak, Gloria K.; Antle, Michael C.; Dyck, Richard H.; Weiss, Samuel

    2013-01-01

    Early life events can modulate brain development to produce persistent physiological and behavioural phenotypes that are transmissible across generations. However, whether neural precursor cells are altered by early life events, to produce persistent and transmissible behavioural changes, is unknown. Here, we show that bi-parental care, in early life, increases neural cell genesis in the adult rodent brain in a sexually dimorphic manner. Bi-parentally raised male mice display enhanced adult dentate gyrus neurogenesis, which improves hippocampal neurogenesis-dependent learning and memory. Female mice display enhanced adult white matter oligodendrocyte production, which increases proficiency in bilateral motor coordination and preference for social investigation. Surprisingly, single parent-raised male and female offspring, whose fathers and mothers received bi-parental care, respectively, display a similar enhancement in adult neural cell genesis and phenotypic behaviour. Therefore, neural plasticity and behavioural effects due to bi-parental care persist throughout life and are transmitted to the next generation. PMID:23650527

  20. A new subtype of progenitor cell in the mouse embryonic neocortex

    PubMed Central

    Wang, Xiaoqun; Tsai, Jin-Wu; LaMonica, Bridget; Kriegstein, Arnold R.

    2011-01-01

    A hallmark of mammalian brain evolution is cortical expansion, which reflects an increase in the number of cortical neurons established by the progenitor cell subtypes present and the number of their neurogenic divisions. Recent studies have revealed a new class of radial glia-like (oRG) progenitor cells in the human brain, which reside in the outer subventricular zone. Expansion of the subventricular zone and appearance of oRG cells may have been essential evolutionary steps leading from lissencephalic to gyrencephalic neocortex. Here we show that oRG-like progenitor cells are present in the mouse embryonic neocortex. They arise from asymmetric divisions of radial glia and undergo self-renewing asymmetric divisions to generate neurons. Moreover, mouse oRG cells undergo mitotic somal translocation whereby centrosome movement into the basal process during interphase preceeds nuclear translocation. Our finding of oRG cells in the developing rodent brain fills a gap in our understanding of neocortical expansion. PMID:21478886

  1. Characterization of the resting-state brain network topology in the 6-hydroxydopamine rat model of Parkinson’s disease

    PubMed Central

    Simmons, Camilla; Mesquita, Michel B.; Wood, Tobias C.; Williams, Steve C. R.; Vernon, Anthony C.; Cash, Diana

    2017-01-01

    Resting-state functional MRI (rsfMRI) is an imaging technology that has recently gained attention for its ability to detect disruptions in functional brain networks in humans, including in patients with Parkinson’s disease (PD), revealing early and widespread brain network abnormalities. This methodology is now readily applicable to experimental animals offering new possibilities for cross-species translational imaging. In this context, we herein describe the application of rsfMRI to the unilaterally-lesioned 6-hydroxydopamine (6-OHDA) rat, a robust experimental model of the dopamine depletion implicated in PD. Using graph theory to analyse the rsfMRI data, we were able to provide meaningful and translatable measures of integrity, influence and segregation of the underlying functional brain architecture. Specifically, we confirm that rats share a similar functional brain network topology as observed in humans, characterised by small-worldness and modularity. Interestingly, we observed significantly reduced functional connectivity in the 6-OHDA rats, primarily in the ipsilateral (lesioned) hemisphere as evidenced by significantly lower node degree, local efficiency and clustering coefficient in the motor, orbital and sensorimotor cortices. In contrast, we found significantly, and bilaterally, increased thalamic functional connectivity in the lesioned rats. The unilateral deficits in the cortex are consistent with the unilateral nature of this model and further support the validity of the rsfMRI technique in rodents. We thereby provide a methodological framework for the investigation of brain networks in other rodent experimental models of PD, as well as of animal models in general, for cross-comparison with human data. PMID:28249008

  2. Large-scale topology and the default mode network in the mouse connectome

    PubMed Central

    Stafford, James M.; Jarrett, Benjamin R.; Miranda-Dominguez, Oscar; Mills, Brian D.; Cain, Nicholas; Mihalas, Stefan; Lahvis, Garet P.; Lattal, K. Matthew; Mitchell, Suzanne H.; David, Stephen V.; Fryer, John D.; Nigg, Joel T.; Fair, Damien A.

    2014-01-01

    Noninvasive functional imaging holds great promise for serving as a translational bridge between human and animal models of various neurological and psychiatric disorders. However, despite a depth of knowledge of the cellular and molecular underpinnings of atypical processes in mouse models, little is known about the large-scale functional architecture measured by functional brain imaging, limiting translation to human conditions. Here, we provide a robust processing pipeline to generate high-resolution, whole-brain resting-state functional connectivity MRI (rs-fcMRI) images in the mouse. Using a mesoscale structural connectome (i.e., an anterograde tracer mapping of axonal projections across the mouse CNS), we show that rs-fcMRI in the mouse has strong structural underpinnings, validating our procedures. We next directly show that large-scale network properties previously identified in primates are present in rodents, although they differ in several ways. Last, we examine the existence of the so-called default mode network (DMN)—a distributed functional brain system identified in primates as being highly important for social cognition and overall brain function and atypically functionally connected across a multitude of disorders. We show the presence of a potential DMN in the mouse brain both structurally and functionally. Together, these studies confirm the presence of basic network properties and functional networks of high translational importance in structural and functional systems in the mouse brain. This work clears the way for an important bridge measurement between human and rodent models, enabling us to make stronger conclusions about how regionally specific cellular and molecular manipulations in mice relate back to humans. PMID:25512496

  3. Control of Domestic Rats & Mice, Training Guide--Rodent Control Series.

    ERIC Educational Resources Information Center

    Bjornson, Bayard F.; And Others

    As one booklet in a series on rodent control, this training guide has been developed to assist administrators, rodent-control operators, and others responsible for rodent-control operations in the training of employees in this field. Topics covered include rodents and human welfare, description and habits of domestic rats and mice, rodent-borne…

  4. A Long-Term BCI Study With ECoG Recordings in Freely Moving Rats.

    PubMed

    Costecalde, Thomas; Aksenova, Tetiana; Torres-Martinez, Napoleon; Eliseyev, Andriy; Mestais, Corinne; Moro, Cecile; Benabid, Alim Louis

    2018-02-01

    Brain Computer Interface (BCI) studies are performed in an increasing number of applications. Questions are raised about electrodes, data processing and effectors. Experiments are needed to solve these issues. To develop a simple BCI set-up to easier studies for improving the mathematical tools to process the ECoG to control an effector. We designed a simple BCI using transcranial electrodes (17 screws, three mechanically linked to create a common reference, 14 used as recording electrodes) to record Electro-Cortico-Graphic (ECoG) neuronal activities in rodents. The data processing is based on an online self-paced non-supervised (asynchronous) BCI paradigm. N-way partial least squares algorithm together with Continuous Wavelet Transformation of ECoG recordings detect signatures related to motor activities. Signature detection in freely moving rats may activate external effectors during a behavioral task, which involved pushing a lever to obtain a reward. After routine training, we showed that peak brain activity preceding a lever push (LP) to obtain food reward was located mostly in the cerebellar cortex with a higher correlation coefficient, suggesting a strong postural component and also in the occipital cerebral cortex. Analysis of brain activities provided a stable signature in the high gamma band (∼180Hz) occurring within 1500 msec before the lever push approximately around -400 msec to -500 msec. Detection of the signature from a single cerebellar cortical electrode triggers the effector with high efficiency (68% Offline and 30% Online) and rare false positives per minute in sessions about 30 minutes and up to one hour (∼2 online and offline). In summary, our results are original as compared to the rest of the literature, which involves rarely rodents, a simple BCI set-up has been developed in rats, the data show for the first time long-term, up to one year, unsupervised online control of an effector. © 2017 International Neuromodulation Society.

  5. Experimental Toxoplasmosis in Rats Induced Orally with Eleven Strains of Toxoplasma gondii of Seven Genotypes: Tissue Tropism, Tissue Cyst Size, Neural Lesions, Tissue Cyst Rupture without Reactivation, and Ocular Lesions.

    PubMed

    Dubey, Jitender P; Ferreira, Leandra R; Alsaad, Mohammad; Verma, Shiv K; Alves, Derron A; Holland, Gary N; McConkey, Glenn A

    2016-01-01

    The protozoan parasite Toxoplasma gondii is one of the most widely distributed and successful parasites. Toxoplasma gondii alters rodent behavior such that infected rodents reverse their fear of cat odor, and indeed are attracted rather than repelled by feline urine. The location of the parasite encysted in the brain may influence this behavior. However, most studies are based on the highly susceptible rodent, the mouse. Latent toxoplasmosis was induced in rats (10 rats per T. gondii strains) of the same age, strain, and sex, after oral inoculation with oocysts (natural route and natural stage of infection) of 11 T. gondii strains of seven genotypes. Rats were euthanized at two months post inoculation (p.i.) to investigate whether the parasite genotype affects the distribution, location, tissue cyst size, or lesions. Tissue cysts were enumerated in different regions of the brains, both in histological sections as well in saline homogenates. Tissue cysts were found in all regions of the brain. The tissue cyst density in different brain regions varied extensively between rats with many regions highly infected in some animals. Overall, the colliculus was most highly infected although there was a large amount of variability. The cerebral cortex, thalamus, and cerebellum had higher tissue cyst densities and two strains exhibited tropism for the colliculus and olfactory bulb. Histologically, lesions were confined to the brain and eyes. Tissue cyst rupture was frequent with no clear evidence for reactivation of tachyzoites. Ocular lesions were found in 23 (25%) of 92 rat eyes at two months p.i. The predominant lesion was focal inflammation in the retina. Tissue cysts were seen in the sclera of one and in the optic nerve of two rats. The choroid was not affected. Only tissue cysts, not active tachyzoite infections, were detected. Tissue cysts were seen in histological sections of tongue of 20 rats but not in myocardium and leg muscle. This study reevaluated in depth the rat model of toxoplasmosis visualizing cyst rupture and clarified many aspects of the biology of the parasite useful for future investigations.

  6. Blockade of brain stem gap junctions increases phrenic burst frequency and reduces phrenic burst synchronization in adult rat.

    PubMed

    Solomon, Irene C; Chon, Ki H; Rodriguez, Melissa N

    2003-01-01

    Recent investigations have examined the influence of gap junctional communication on generation and modulation of respiratory rhythm and inspiratory motoneuron synchronization in vitro using transverse medullary slice and en bloc brain stem-spinal cord preparations obtained from neonatal (1-5 days postnatal) mice. Gap junction proteins, however, have been identified in both neurons and glia in brain stem regions implicated in respiratory control in both neonatal and adult rodents. Here, we used an in vitro arterially perfused rat preparation to examine the role of gap junctional communication on generation and modulation of respiratory rhythm and inspiratory motoneuron synchronization in adult rodents. We recorded rhythmic inspiratory motor activity from one or both phrenic nerves before and during pharmacological blockade (i.e., uncoupling) of brain stem gap junctions using carbenoxolone (100 microM), 18alpha-glycyrrhetinic acid (25-100 microM), 18beta-glycyrrhetinic acid (25-100 microM), octanol (200-300 microM), or heptanol (200 microM). During perfusion with a gap junction uncoupling agent, we observed an increase in the frequency of phrenic bursts (~95% above baseline frequency; P < 0.001) and a decrease in peak amplitude of integrated phrenic nerve discharge (P < 0.001). The increase in frequency of phrenic bursts resulted from a decrease in both T(I) (P < 0.01) and T(E) (P < 0.01). In addition, the pattern of phrenic nerve discharge shifted from an augmenting discharge pattern to a "bell-shaped" or square-wave discharge pattern in most experiments. Spectral analyses using a fast Fourier transform (FFT) algorithm revealed a reduction in the peak power of both the 40- to 50-Hz peak (corresponding to the MFO) and 90- to 110-Hz peak (corresponding to the HFO) although spurious higher frequency activity (> or =130 Hz) was observed, suggesting an overall loss or reduction in inspiratory-phase synchronization. Although additional experiments are required to identify the specific brain stem regions and cell types (i.e., neurons, glia) mediating the observed modulations in phrenic motor output, these findings suggest that gap junction communication modulates generation of respiratory rhythm and inspiratory motoneuron synchronization in adult rodents in vitro.

  7. Topical Therapy with Mesenchymal Stem Cells Following an Acute Experimental Head Injury Has Benefits in Motor-Behavioral Tests for Rodents.

    PubMed

    Lam, P K; Wang, Kevin K W; Ip, Anthony W I; Ching, Don W C; Tong, Cindy S W; Lau, Henry C H; Kong, Themis H C S; Lai, Paul B S; Wong, George K C; Poon, W S

    2016-01-01

    The neuroprotective effects of mesenchymal stem cells (MSCs) have been reported in rodent and in preliminary clinical studies. MSCs are usually transplanted to patients by systemic infusion. However, only a few of the infused MSCs are delivered to the brain because of pulmonary trapping and the blood-brain barrier. In this study, MSCs were topically applied to the site of traumatic brain injury (TBI) and the neuroprotective effects were assessed. TBI was induced in Sprague-Dawley (SD) rats with an electromagnetically controlled cortical impact device after craniotomy was performed between the bregma and lambda, 1 mm lateral to the midline. We applied 1.5 million MSCs, derived from the adipose tissue of transgenic green fluorescent protein (GFP)-SD rats, to the exposed cerebral cortex at the injured site. The MSCs were held in position by a thin layer of fibrin. Neurological function in the test (n = 10) and control (n = 10) animals was evaluated using the rotarod test, the water maze test, and gait analysis at different time points. Within 5 days following topical application, GFP-positive cells were found in the brain parenchyma. These cells co-expressed with markers of Glial fibrillary acidic protein (GFAP), nestin, and NeuN. There was less neuronal death in CA1 and CA3 of the hippocampus in the test animals. Neurological functional recovery was significantly improved. Topically applied MSCs can migrate to the injured brain parenchyma and offer neuroprotective effects.

  8. HDAC6 Brain Mapping with [ 18 F]Bavarostat Enabled by a Ru-Mediated Deoxyfluorination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strebl, Martin G.; Campbell, Arthur J.; Zhao, Wen -Ning

    Histone deacetylase 6 (HDAC6) function and dysregulation have been implicated in the etiology of certain cancers and more recently in central nervous system (CNS) disorders including Rett syndrome, Alzheimer’s and Parkinson’s diseases, and major depressive disorder. HDAC6-selective inhibitors have therapeutic potential, but in the CNS drug space the development of highly brain penetrant HDAC inhibitors has been a persistent challenge. Moreover, no tool exists to directly characterize HDAC6 and its related biology in the living human brain. Here, we report a highly brain penetrant HDAC6 inhibitor, Bavarostat, that exhibits excellent HDAC6 selectivity (>80-fold over all other Zn-containing HDAC paralogues), modulatesmore » tubulin acetylation selectively over histone acetylation, and has excellent brain penetrance. We further demonstrate that Bavarostat can be radiolabeled with 18F by deoxyfluorination through in situ formation of a ruthenium π-complex of the corresponding phenol precursor: the only method currently suitable for synthesis of [ 18F]Bavarostat. In conclusion, by using [ 18F]Bavarostat in a series of rodent and nonhuman primate imaging experiments, we demonstrate its utility for mapping HDAC6 in the living brain, which sets the stage for first-in-human neurochemical imaging of this important target.« less

  9. HDAC6 Brain Mapping with [ 18 F]Bavarostat Enabled by a Ru-Mediated Deoxyfluorination

    DOE PAGES

    Strebl, Martin G.; Campbell, Arthur J.; Zhao, Wen -Ning; ...

    2017-09-06

    Histone deacetylase 6 (HDAC6) function and dysregulation have been implicated in the etiology of certain cancers and more recently in central nervous system (CNS) disorders including Rett syndrome, Alzheimer’s and Parkinson’s diseases, and major depressive disorder. HDAC6-selective inhibitors have therapeutic potential, but in the CNS drug space the development of highly brain penetrant HDAC inhibitors has been a persistent challenge. Moreover, no tool exists to directly characterize HDAC6 and its related biology in the living human brain. Here, we report a highly brain penetrant HDAC6 inhibitor, Bavarostat, that exhibits excellent HDAC6 selectivity (>80-fold over all other Zn-containing HDAC paralogues), modulatesmore » tubulin acetylation selectively over histone acetylation, and has excellent brain penetrance. We further demonstrate that Bavarostat can be radiolabeled with 18F by deoxyfluorination through in situ formation of a ruthenium π-complex of the corresponding phenol precursor: the only method currently suitable for synthesis of [ 18F]Bavarostat. In conclusion, by using [ 18F]Bavarostat in a series of rodent and nonhuman primate imaging experiments, we demonstrate its utility for mapping HDAC6 in the living brain, which sets the stage for first-in-human neurochemical imaging of this important target.« less

  10. A Wireless Intracranial Brain Deformation Sensing System for Blast-Induced Traumatic Brain Injury

    PubMed Central

    Song, S.; Race, N. S.; Kim, A.; Zhang, T.; Shi, R.; Ziaie, B.

    2015-01-01

    Blast-induced traumatic brain injury (bTBI) has been linked to a multitude of delayed-onset neurodegenerative and neuropsychiatric disorders, but complete understanding of their pathogenesis remains elusive. To develop mechanistic relationships between bTBI and post-blast neurological sequelae, it is imperative to characterize the initiating traumatic mechanical events leading to eventual alterations of cell, tissue, and organ structure and function. This paper presents a wireless sensing system capable of monitoring the intracranial brain deformation in real-time during the event of a bTBI. The system consists of an implantable soft magnet and an external head-mounted magnetic sensor that is able to measure the field in three dimensions. The change in the relative position of the soft magnet WITH respect to the external sensor as the result of the blast wave induces changes in the magnetic field. The magnetic field data in turn is used to extract the temporal and spatial motion of the brain under the blast wave in real-time. The system has temporal and spatial resolutions of 5 μs and 10 μm. Following the characterization and validation of the sensor system, we measured brain deformations in a live rodent during a bTBI. PMID:26586273

  11. Curcumin boosts DHA in the brain: implications for the prevention of anxiety disorders

    PubMed Central

    Wu, Aiguo; Noble, Emily E.; Tyagi, Ethika; Ying, Zhe; Zhuang, Yumei; Gomez-Pinilla, Fernando

    2015-01-01

    Dietary deficiency of docosahexaenoic acid (C22: 6n-3; DHA) is linked to the neuropathology of several cognitive disorders, including anxiety. DHA, which is essential for brain development and protection, is primarily obtained through the diet or synthesized from dietary precursors, however the conversion efficiency is low. Curcumin (diferuloylmethane), which is a principal component of the spice turmeric, complements the action of DHA in the brain, and this study was performed to determine molecular mechanisms involved. We report that curcumin enhances the synthesis of DHA from its precursor, α-linolenic acid (C18: 3n-3; ALA) and elevates levels of enzymes involved in the synthesis of DHA such as FADS2 and elongase 2 in both liver and brain tissue. Furthermore, in vivo treatment with curcumin and ALA reduced anxiety-like behavior in rodents. Taken together, these data suggest that curcumin enhances DHA synthesis, resulting in elevated brain DHA content. These findings have important implications for human health and the prevention of cognitive disease, particularly for populations eating a plant-based diet or who do not consume fish, a primary source of DHA, since DHA is essential for brain function and its deficiency is implicated in many types of neurological disorders. PMID:25550171

  12. Comparative Analysis of the Subventricular Zone in Rat, Ferret and Macaque: Evidence for an Outer Subventricular Zone in Rodents

    PubMed Central

    Camacho, Jasmin; Antczak, Jared L.; Prakash, Anish N.; Cziep, Matthew E.; Walker, Anita I.; Noctor, Stephen C.

    2012-01-01

    The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates. PMID:22272298

  13. Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents.

    PubMed

    Martínez-Cerdeño, Verónica; Cunningham, Christopher L; Camacho, Jasmin; Antczak, Jared L; Prakash, Anish N; Cziep, Matthew E; Walker, Anita I; Noctor, Stephen C

    2012-01-01

    The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates.

  14. A midas plugin to enable construction of reproducible web-based image processing pipelines

    PubMed Central

    Grauer, Michael; Reynolds, Patrick; Hoogstoel, Marion; Budin, Francois; Styner, Martin A.; Oguz, Ipek

    2013-01-01

    Image processing is an important quantitative technique for neuroscience researchers, but difficult for those who lack experience in the field. In this paper we present a web-based platform that allows an expert to create a brain image processing pipeline, enabling execution of that pipeline even by those biomedical researchers with limited image processing knowledge. These tools are implemented as a plugin for Midas, an open-source toolkit for creating web based scientific data storage and processing platforms. Using this plugin, an image processing expert can construct a pipeline, create a web-based User Interface, manage jobs, and visualize intermediate results. Pipelines are executed on a grid computing platform using BatchMake and HTCondor. This represents a new capability for biomedical researchers and offers an innovative platform for scientific collaboration. Current tools work well, but can be inaccessible for those lacking image processing expertise. Using this plugin, researchers in collaboration with image processing experts can create workflows with reasonable default settings and streamlined user interfaces, and data can be processed easily from a lab environment without the need for a powerful desktop computer. This platform allows simplified troubleshooting, centralized maintenance, and easy data sharing with collaborators. These capabilities enable reproducible science by sharing datasets and processing pipelines between collaborators. In this paper, we present a description of this innovative Midas plugin, along with results obtained from building and executing several ITK based image processing workflows for diffusion weighted MRI (DW MRI) of rodent brain images, as well as recommendations for building automated image processing pipelines. Although the particular image processing pipelines developed were focused on rodent brain MRI, the presented plugin can be used to support any executable or script-based pipeline. PMID:24416016

  15. A midas plugin to enable construction of reproducible web-based image processing pipelines.

    PubMed

    Grauer, Michael; Reynolds, Patrick; Hoogstoel, Marion; Budin, Francois; Styner, Martin A; Oguz, Ipek

    2013-01-01

    Image processing is an important quantitative technique for neuroscience researchers, but difficult for those who lack experience in the field. In this paper we present a web-based platform that allows an expert to create a brain image processing pipeline, enabling execution of that pipeline even by those biomedical researchers with limited image processing knowledge. These tools are implemented as a plugin for Midas, an open-source toolkit for creating web based scientific data storage and processing platforms. Using this plugin, an image processing expert can construct a pipeline, create a web-based User Interface, manage jobs, and visualize intermediate results. Pipelines are executed on a grid computing platform using BatchMake and HTCondor. This represents a new capability for biomedical researchers and offers an innovative platform for scientific collaboration. Current tools work well, but can be inaccessible for those lacking image processing expertise. Using this plugin, researchers in collaboration with image processing experts can create workflows with reasonable default settings and streamlined user interfaces, and data can be processed easily from a lab environment without the need for a powerful desktop computer. This platform allows simplified troubleshooting, centralized maintenance, and easy data sharing with collaborators. These capabilities enable reproducible science by sharing datasets and processing pipelines between collaborators. In this paper, we present a description of this innovative Midas plugin, along with results obtained from building and executing several ITK based image processing workflows for diffusion weighted MRI (DW MRI) of rodent brain images, as well as recommendations for building automated image processing pipelines. Although the particular image processing pipelines developed were focused on rodent brain MRI, the presented plugin can be used to support any executable or script-based pipeline.

  16. Early neural disruption and auditory processing outcomes in rodent models: implications for developmental language disability

    PubMed Central

    Fitch, R. Holly; Alexander, Michelle L.; Threlkeld, Steven W.

    2013-01-01

    Most researchers in the field of neural plasticity are familiar with the “Kennard Principle,” which purports a positive relationship between age at brain injury and severity of subsequent deficits (plateauing in adulthood). As an example, a child with left hemispherectomy can recover seemingly normal language, while an adult with focal injury to sub-regions of left temporal and/or frontal cortex can suffer dramatic and permanent language loss. Here we present data regarding the impact of early brain injury in rat models as a function of type and timing, measuring long-term behavioral outcomes via auditory discrimination tasks varying in temporal demand. These tasks were created to model (in rodents) aspects of human sensory processing that may correlate—both developmentally and functionally—with typical and atypical language. We found that bilateral focal lesions to the cortical plate in rats during active neuronal migration led to worse auditory outcomes than comparable lesions induced after cortical migration was complete. Conversely, unilateral hypoxic-ischemic (HI) injuries (similar to those seen in premature infants and term infants with birth complications) led to permanent auditory processing deficits when induced at a neurodevelopmental point comparable to human “term,” but only transient deficits (undetectable in adulthood) when induced in a “preterm” window. Convergent evidence suggests that regardless of when or how disruption of early neural development occurs, the consequences may be particularly deleterious to rapid auditory processing (RAP) outcomes when they trigger developmental alterations that extend into subcortical structures (i.e., lower sensory processing stations). Collective findings hold implications for the study of behavioral outcomes following early brain injury as well as genetic/environmental disruption, and are relevant to our understanding of the neurologic risk factors underlying developmental language disability in human populations. PMID:24155699

  17. Translational cognitive endocrinology: Designing rodent experiments with the goal to ultimately enhance cognitive health in women

    PubMed Central

    Mennenga, S.E.; Bimonte-Nelson, H.A.

    2014-01-01

    Understanding the cognitive impact of endogenously derived, and exogenously administered, hormone alterations is necessary for developing hormone treatments to support healthy brain function in women, especially during aging. The increasing number of studies in the burgeoning area of translational cognitive neuroendocrinology has revealed numerous factors that influence the extent and direction of female steroid effects on cognition. Here, we discuss the decision processes underlying the design of rodent hormone manipulation experiments evaluating learning and memory. It is noted that even when beginning with a clear hypothesis-driven question, there are numerous factors to consider in order to solidify a sound experimental design that will yield clean, interpretable results. Decisions and considerations include: age of animals at hormone administration and test, ovariectomy implementation, when to administer hormones relative to ovarian hormone loss, how and whether to monitor the estrous cycle if animals are ovary-intact, dose of hormone, administration route of hormone, hormone treatment confirmation protocols, handling procedures required for hormone administration and treatment confirmation, cognitive domains to be tested and which mazes should be utilized to test these cognitive domains, and control measures to be used. A balanced view of optimal design and realistic experimental practice and protocol is presented. The emerging results from translational cognitive neuroendocrinology studies have been diverse, but also enlightening and exciting as we realize the broad scope and powerful nature of ovarian hormone effects on the brain and its function. We must design, implement, and interpret hormone and cognition experiments with sensitivity to these tenets, acknowledging and respecting the breadth and depth of the impact gonadal hormones have on brain functioning and its rich plasticity. PMID:23391594

  18. Comparative transcriptome analysis in induced neural stem cells reveals defined neural cell identities in vitro and after transplantation into the adult rodent brain.

    PubMed

    Hallmann, Anna-Lena; Araúzo-Bravo, Marcos J; Zerfass, Christina; Senner, Volker; Ehrlich, Marc; Psathaki, Olympia E; Han, Dong Wook; Tapia, Natalia; Zaehres, Holm; Schöler, Hans R; Kuhlmann, Tanja; Hargus, Gunnar

    2016-05-01

    Reprogramming technology enables the production of neural progenitor cells (NPCs) from somatic cells by direct transdifferentiation. However, little is known on how neural programs in these induced neural stem cells (iNSCs) differ from those of alternative stem cell populations in vitro and in vivo. Here, we performed transcriptome analyses on murine iNSCs in comparison to brain-derived neural stem cells (NSCs) and pluripotent stem cell-derived NPCs, which revealed distinct global, neural, metabolic and cell cycle-associated marks in these populations. iNSCs carried a hindbrain/posterior cell identity, which could be shifted towards caudal, partially to rostral but not towards ventral fates in vitro. iNSCs survived after transplantation into the rodent brain and exhibited in vivo-characteristics, neural and metabolic programs similar to transplanted NSCs. However, iNSCs vastly retained caudal identities demonstrating cell-autonomy of regional programs in vivo. These data could have significant implications for a variety of in vitro- and in vivo-applications using iNSCs. Copyright © 2016 Roslin Cells Ltd. Published by Elsevier B.V. All rights reserved.

  19. Emotion and Mood Adaptations in the Peripartum Female: Complementary Contributions of GABA and Oxytocin

    PubMed Central

    Lonstein, J. S.; Maguire, J.; Meinlschmidt, G.; Neumann, I. D.

    2017-01-01

    Peripartum hormones and sensory cues from young modify the maternal brain in ways that can render females either at risk for, or resilient to, elevated anxiety and depression. The neurochemical systems underlying these aspects of maternal emotional and mood states include the inhibitory neurotransmitter GABA and the neuropeptide oxytocin (OXT). Data from laboratory rodents indicate that increased activity at the GABAA receptor contributes to the postpartum suppression of anxiety-related behaviour that is mediated by physical contact with offspring, whereas dysregulation in GABAergic signalling results in deficits in maternal care, as well as anxiety- and depression-like behaviours during the postpartum period. Similarly, activation of the brain OXT system accompanied by increased OXT release within numerous brain sites in response to reproductive stimuli also reduces postpartum anxiety- and depression-like behaviours. Studies of peripartum women are consistent with these findings in rodents. Given the similar consequences of elevated central GABA and OXT activity on maternal anxiety and depression, balanced and partly reciprocal interactions between these two systems may be essential for their effects on maternal emotional and mood states, in addition to other aspects of postpartum behaviour and physiology. PMID:25074620

  20. MATERNAL INFECTION AND IMMUNE INVOLVEMENT IN AUTISM

    PubMed Central

    Patterson, Paul H.

    2011-01-01

    Recent studies have highlighted a connection between infection during pregnancy and increased risk for autism in the offspring. Parallel studies of cerebral spinal fluid, blood, and postmortem brains reveal an ongoing, hyper-responsive inflammatory-like state in many young as well as adult autism subjects. There are also indications of gastrointestinal problems in at least a subset of autistic children. Work with animal models of the maternal infection risk factor indicate that aspects of brain and peripheral immune dysregulation can be begin during fetal development and be maintained through adulthood. The offspring of infected, or immune-activated dams also display cardinal behavioral features of autism, as well as neuropathology consistent with that seen in human autism. These rodent models are proving useful for the study of pathogenesis and gene-environment interaction, as well as for the exploration of potential therapeutic strategies. PMID:21482187

  1. The past, present, and future of National Aeronautics and Space Administration spaceflight diet in support of microgravity rodent experiments.

    PubMed

    Sun, Gwo-Shing; Tou, Janet C; Yu, Diane; Girten, Beverly E; Cohen, Jacob

    2014-02-01

    Rodents have been the most frequently flown animal model used to study physiological responses to the space environment. In support of future of space exploration, the National Aeronautics and Space Administration (NASA) envisions an animal research program focused on rodents. Therefore, the development of a rodent diet that is suitable for the spaceflight environment including long duration spaceflight is a high priority. Recognizing the importance of nutrition in affecting spaceflight physiological responses and ensuring reliable biomedical and biological science return, NASA developed the nutrient-upgraded rodent food bar (NuRFB) as a standard diet for rodent spaceflight. Depending on future animal habitat hardware and planned spaceflight experiments, modification of the NuRFB or development of a new diet formulation may be needed, particularly for long term spaceflights. Research in this area consists primarily of internal technical reports that are not readily accessible. Therefore, the aims of this contribution are to provide a brief history of the development of rodent spaceflight diets, to review the present diet used in rodent spaceflight studies, and to discuss some of the challenges and potential solutions for diets to be used in future long-term rodent spaceflight studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Recording and Modulation of Epileptiform Activity in Rodent Brain Slices Coupled to Microelectrode Arrays.

    PubMed

    Panuccio, Gabriella; Colombi, Ilaria; Chiappalone, Michela

    2018-05-15

    Temporal lobe epilepsy (TLE) is the most common partial complex epileptic syndrome and the least responsive to medications. Deep brain stimulation (DBS) is a promising approach when pharmacological treatment fails or neurosurgery is not recommended. Acute brain slices coupled to microelectrode arrays (MEAs) represent a valuable tool to study neuronal network interactions and their modulation by electrical stimulation. As compared to conventional extracellular recording techniques, they provide the added advantages of a greater number of observation points and a known inter-electrode distance, which allow studying the propagation path and speed of electrophysiological signals. However, tissue oxygenation may be greatly impaired during MEA recording, requiring a high perfusion rate, which comes at the cost of decreased signal-to-noise ratio and higher oscillations in the experimental temperature. Electrical stimulation further stresses the brain tissue, making it difficult to pursue prolonged recording/stimulation epochs. Moreover, electrical modulation of brain slice activity needs to target specific structures/pathways within the brain slice, requiring that electrode mapping be easily and quickly performed live during the experiment. Here, we illustrate how to perform the recording and electrical modulation of 4-aminopyridine (4AP)-induced epileptiform activity in rodent brain slices using planar MEAs. We show that the brain tissue obtained from mice outperforms rat brain tissue and is thus better suited for MEA experiments. This protocol guarantees the generation and maintenance of a stable epileptiform pattern that faithfully reproduces the electrophysiological features observed with conventional field potential recording, persists for several hours, and outlasts sustained electrical stimulation for prolonged epochs. Tissue viability throughout the experiment is achieved thanks to the use of a small-volume custom recording chamber allowing for laminar flow and quick solution exchange even at low (1 mL/min) perfusion rates. Quick MEA mapping for real-time monitoring and selection of stimulating electrodes is performed by a custom graphic user interface (GUI).

  3. Space Radiation and the Brain

    NASA Astrophysics Data System (ADS)

    Hampson, R. E.

    Solar and cosmic radiation pose a number of physiological challenges to human spaceflight outside the protective region of Earth's magnetosphere. Aside from well-described effects of radiation on the blood-forming tissues of the hematopoietic system, there is increasing evidence of direct effects of radiation on the brain as evidenced by studies showing longitudinal decline in memory and cognitive function following radiation specifically directed at brain tissue. These indications strengthen the need to more fully research effects of radiation - particular those components associated with solar wind and galactic cosmic radiation - on the nervous system of mammals from rodents to humans.

  4. Valproic acid treatment attenuates caspase-3 activation and improves survival after lethal burn injury in a rodent model.

    PubMed

    Luo, Hong-Min; Hu, Sen; Bai, Hui-Ying; Wang, Hai-Bin; Du, Ming-Hua; Lin, Zhi-Long; Ma, Li; Wang, Huan; Lv, Yi; Sheng, Zhi-Yong

    2014-01-01

    Burn injury may result in multiple organ dysfunction partially because of apoptotic cell death. The authors have previously shown that valproic acid (VPA) improves survival in a dog burn model. The aim of this study is to examine whether a VPA improves survival in a rodent burn model and whether this was because of inhibition of cell apoptosis. Rats were subjected to third-degree 55% TBSA burns and randomized to treatment with a VPA (300 mg/kg) or normal saline. One group of animals was monitored for 12 hours for survival analysis; another group was killed at 6 hours after injury, and brains, hearts, and blood samples were harvested for examination. Plasma creatine kinase (CK)-MB activities and neuron-specific enolase (NSE) levels were measured to evaluate the cardiac and brain damages. The effects of a VPA on acetylation of histone H3 and caspase-3 activation were also evaluated. Major burn injury resulted in a significant decrease in the acetylation of histone H3, and there was an increase in plasma CK-MB activities, NSE concentrations, and tissue levels of activated caspase-3. A VPA treatment significantly increased the acetylation of histone H3 and survival of the animals after major burn injury. In addition, a VPA treatment significantly attenuated the plasma CK-MB activities, an NSE concentrations, and inhibited caspase-3 activation after major burn injury. These results indicate that a VPA can attenuate cardiac and brain injury, and can improve survival in a rodent model of lethal burn injury. These protective effects may be mediated in part through the inhibition of caspase-3 activation.

  5. Neuroprotective Activity of (1S,2E,4R,6R,-7E,11E)-2,7,11-cembratriene-4,6-diol (4R) in vitro and in vivo in Rodent Models of Brain Ischemia

    PubMed Central

    Xu, Zhenfeng; Mu, Chaofeng; Alvarez, Paloma; Ford, Byron D.; El Sayed, Khalid; Eterovic, Vesna A.; Ferchmin, Pedro A.; Hao, Jiukuan

    2015-01-01

    (1S,2E,4R,6R,-7E,11E)-2,7,11-cembratriene-4,6-diol (4R) is a precursor to key flavor ingredients in leaves of Nicotiana species. The present study shows 4R decreased brain damage in rodent ischemic stroke models. The 4R-pretreated mice had lower infarct volume (26.2±9.7 mm3) than those in control groups (untreated: 63.4±4.2 mm3, DMSO: 60.2±14.2 mm3). The 4R-posttreated rats also had less infarct volume (120±65 mm3) than those in the rats of DMSO group (291±95 mm3). The results from in vitro experiments indicate that 4R decreased neuro2a cells (neuroblastoma cells) apoptosis induced by oxygen glucose deprivation (OGD), and improved the population spikes (PSs) recovery in rat acute hippocampal slices under OGD; a phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, abolished the effect of 4R on PSs recovery. Furthermore, 4R also inhibited monocyte adhesion to bEND5 cells (murine brain-derived endothelial cells) and upregulation of intercellular adhesion molecule-1(ICAM-1) induced by OGD/reoxygenation (OGD/R), and restored the p-Akt level to pre-OGD/R values in bEND5 cells. In conclusion, the present study indicates that 4R has a protective effect in rodent ischemic stroke models. Inhibition of ICAM-1 expression and restoration of Akt phosphorylation are the possible mechanisms involved in cellular protection by 4R. PMID:25677097

  6. Neuroprotective activity of (1S,2E,4R,6R,-7E,11E)-2,7,11-cembratriene-4,6-diol (4R) in vitro and in vivo in rodent models of brain ischemia.

    PubMed

    Martins, Antonio H; Hu, Jing; Xu, Zhenfeng; Mu, Chaofeng; Alvarez, Paloma; Ford, Byron D; El Sayed, Khalid; Eterovic, Vesna A; Ferchmin, Pedro A; Hao, Jiukuan

    2015-04-16

    (1S,2E,4R,6R,-7E,11E)-2,7,11-cembratriene-4,6-diol (4R) is a precursor to key flavor ingredients in leaves of Nicotiana species. The present study shows 4R decreased brain damage in rodent ischemic stroke models. The 4R-pretreated mice had lower infarct volumes (26.2±9.7 mm3) than those in control groups (untreated: 63.4±4.2 mm3, DMSO: 60.2±14.2 mm3). The 4R-posttreated rats also had less infarct volumes (120±65 mm3) than those in the rats of the DMSO group (291±95 mm3). The results from in vitro experiments indicate that 4R decreased neuro2a cell (neuroblastoma cells) apoptosis induced by oxygen-glucose deprivation (OGD), and improved the population spikes' (PSs) recovery in rat acute hippocampal slices under OGD; a phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, abolished the effect of 4R on PSs recovery. Furthermore, 4R also inhibited monocyte adhesion to murine brain-derived endothelial (bEND5) cells and upregulation of intercellular adhesion molecule-1(ICAM-1) induced by OGD/reoxygenation (OGD/R), and restored the p-Akt level to pre-OGD/R values in bEND5 cells. In conclusion, the present study indicates that 4R has a protective effect in rodent ischemic stroke models. Inhibition of ICAM-1 expression and restoration of Akt phosphorylation are the possible mechanisms involved in cellular protection by 4R. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia.

    PubMed

    Mizoguchi, Yoshito; Kato, Takahiro A; Seki, Yoshihiro; Ohgidani, Masahiro; Sagata, Noriaki; Horikawa, Hideki; Yamauchi, Yusuke; Sato-Kasai, Mina; Hayakawa, Kohei; Inoue, Ryuji; Kanba, Shigenobu; Monji, Akira

    2014-06-27

    Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Classification of neural tumors in laboratory rodents, emphasizing the rat.

    PubMed

    Weber, Klaus; Garman, Robert H; Germann, Paul-Georg; Hardisty, Jerry F; Krinke, Georg; Millar, Peter; Pardo, Ingrid D

    2011-01-01

    Neoplasms of the nervous system, whether spontaneous or induced, are infrequent in laboratory rodents and very rare in other laboratory animal species. The morphology of neural tumors depends on the intrinsic functions and properties of the cell type, the interactions between the neoplasm and surrounding normal tissue, and regressive changes. The incidence of neural neoplasms varies with sex, location, and age of tumor onset. Although the onset of spontaneous tumor development cannot be established in routine oncogenicity studies, calculations using the time of diagnosis (day of death) have revealed significant differences in tumor biology among different rat strains. In the central nervous system, granular cell tumors (a meningioma variant), followed by glial tumors, are the most common neoplasms in rats, whereas glial cell tumors are observed most frequently in mice. Central nervous system tumors usually affect the brain rather than the spinal cord. Other than adrenal gland pheochromocytomas, the most common neoplasms of the peripheral nervous system are schwannomas. Neural tumors may develop in the central nervous system and peripheral nervous system from other cell lineages (including extraneural elements like adipose tissue and lymphocytes), but such lesions are very rare in laboratory animals.

  9. Role of eNOS in water exchange index maintenance-MRI studies

    NASA Astrophysics Data System (ADS)

    Atochin, D.; Litvak, M.; Huang, S.; Kim, Y. R.; Huang, P.

    2017-08-01

    Stroke studies employ experimental models of cerebral ischemic and reperfusion injury in rodents. MRI provides valuable supravital data of cerebral blood flow and brain tissue damage. This paper presents MRI applications for cerebral blood flow research in mice lines with impaired nitric oxide production by endothelial nitric oxide synthase. Our data demonstrates that specific modifications of MRI methodology in transgenic mouse models help to evaluate the role of eNOS in the brain-blood barrier function.

  10. Oral noribogaine shows high brain uptake and anti-withdrawal effects not associated with place preference in rodents.

    PubMed

    Mash, Deborah C; Ameer, Barbara; Prou, Delphine; Howes, John F; Maillet, Emeline L

    2016-07-01

    This study investigated the effects of noribogaine, the principal metabolite of the drug ibogaine, on substance-related disorders. In the first experiment, mice chronically treated with morphine were subjected to naloxone-precipitated withdrawal two hours after oral administration of noribogaine. Oral noribogaine dose dependently decreased the global opiate withdrawal score by up to 88% of vehicle control with an ED50 of 13 mg/kg. In the second experiment, blood and brain levels of noribogaine showed a high brain penetration and a brain/blood ratio of 7±1 across all doses tested. In a third experiment, rats given oral noribogaine up to 100 mg/kg were tested for abuse liability using a standard biased conditioned place paradigm. Noribogaine-treated rats did not display place preference, suggesting that noribogaine is not perceived as a hedonic stimulus in rodents. Retrospective review of published studies assessing the efficacy of ibogaine on morphine withdrawal shows that the most likely cause of the discrepancies in the literature is the different routes of administration and time of testing following ibogaine administration. These results suggest that the metabolite noribogaine rather than the parent compound mediates the effects of ibogaine on blocking naloxone-precipitated withdrawal. Noribogaine may hold promise as a non-addicting alternative to standard opiate replacement therapies to transition patients to opiate abstinence. © The Author(s) 2016.

  11. Perinatal exposure to music protects spatial memory against callosal lesions.

    PubMed

    Amagdei, Anca; Balteş, Felicia Rodica; Avram, Julia; Miu, Andrei C

    2010-02-01

    Several studies have indicated that the exposure of rodents to music modulates brain development and neuroplasticity, by mechanisms that involve facilitated hippocampal neurogenesis, neurotrophin synthesis and glutamatergic signaling. This study focused on the potential protection that the perinatal exposure to music, between postnatal days 2 and 32, could offer against functional deficits induced by neonatal callosotomy in rats. The spontaneous alternation and marble-burying behaviors were longitudinally measured in callosotomized and control rats that had been exposed to music or not. The results indicated that the neonatal callosotomy-induced spontaneous alternation deficits that became apparent only after postnatal day 45, about the time when the rat corpus callosum reaches its maximal levels of myelination. The perinatal exposure to music efficiently protected the spontaneous alternation performance against the deficits induced by callosotomy. The present findings may offer important insights into music-induced neuroplasticity, relevant to brain development and neurorehabilitation. Copyright 2009 ISDN. Published by Elsevier Ltd. All rights reserved.

  12. Development of a method for the purification and culture of rodent astrocytes.

    PubMed

    Foo, Lynette C; Allen, Nicola J; Bushong, Eric A; Ventura, P Britten; Chung, Won-Suk; Zhou, Lu; Cahoy, John D; Daneman, Richard; Zong, Hui; Ellisman, Mark H; Barres, Ben A

    2011-09-08

    The inability to purify and culture astrocytes has long hindered studies of their function. Whereas astrocyte progenitor cells can be cultured from neonatal brain, culture of mature astrocytes from postnatal brain has not been possible. Here, we report a new method to prospectively purify astrocytes by immunopanning. These astrocytes undergo apoptosis in culture, but vascular cells and HBEGF promote their survival in serum-free culture. We found that some developing astrocytes normally undergo apoptosis in vivo and that the vast majority of astrocytes contact blood vessels, suggesting that astrocytes are matched to blood vessels by competing for vascular-derived trophic factors such as HBEGF. Compared to traditional astrocyte cultures, the gene profiles of the cultured purified postnatal astrocytes much more closely resemble those of in vivo astrocytes. Although these astrocytes strongly promote synapse formation and function, they do not secrete glutamate in response to stimulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Constraints on somatosensory map development: mutants lead the way.

    PubMed

    Gaspar, Patricia; Renier, Nicolas

    2018-05-09

    In the rodent somatosensory system, the disproportionally large whisker representation and their specialization into barrel-shaped units in the different sensory relays has offered experimentalists with an ideal tool to identify mechanisms involved in brain map formation. These combine three intertwined constraints: Firstly, fasciculation of the incoming axons; secondly, early neural activity; finally, molecular patterning. Sophisticated genetic manipulations in mice have now allowed dissecting these mechanisms with greater accuracy. Here we discuss some recent papers that provided novel insights into how these different mapping rules and constraints interact to shape the barrel map. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. PRENATAL INFECTION, MATERNAL IMMUNE ACTIVATION, AND RISK FOR SCHIZOPHRENIA.

    PubMed

    Canetta, Sarah E; Brown, Alan S

    2012-12-01

    A body of epidemiological literature has suggested an association between prenatal infection, subsequent maternal immune activation (MIA), and later risk of schizophrenia. These epidemiological studies have inspired preclinical research using rodent and primate models of prenatal infection and MIA. The findings from these preclinical studies indicate that severe infection and immune activation during pregnancy can negatively impact offspring brain development and impair adult behavior. This review aims to summarize the major epidemiological and preclinical findings addressing the connection between prenatal infection and immune activation and later risk of developing schizophrenia, as well as the more limited literature addressing the mechanisms by which this gestational insult might affect offspring neurodevelopment. Finally, directions for future research will be discussed.

  15. Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders.

    PubMed

    Schubert, D; Martens, G J M; Kolk, S M

    2015-07-01

    The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.

  16. Dendrimer-driven neurotrophin expression differs in temporal patterns between rodent and human stem cells.

    PubMed

    Shakhbazau, Antos; Shcharbin, Dzmitry; Seviaryn, Ihar; Goncharova, Natalya; Kosmacheva, Svetlana; Potapnev, Mihail; Bryszewska, Maria; Kumar, Ranjan; Biernaskie, Jeffrey; Midha, Rajiv

    2012-05-07

    This study reports the use of a nonviral expression system based on polyamidoamine dendrimers for time-restricted neurotrophin overproduction in mesenchymal stem cells and skin precursor-derived Schwann cells. The dendrimers were used to deliver plasmids for brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3) expression in both rodent and human stem cells, and the timelines of expression were studied. We have found that, despite the fact that transfection efficiencies and protein expression levels were comparable, dendrimer-driven expression in human mesenchymal stem cells was characterized by a more rapid decline compared to rodent cells. Transient expression systems can be beneficial for some neurotrophins, which were earlier reported to cause unwanted side effects in virus-based long-term expression models. Nonviral neurotrophin expression is a biologically safe and accessible alternative to increase the therapeutic potential of autologous adult stem cells and stem cell-derived functional differentiated cells.

  17. The touchscreen operant platform for testing learning and memory in rats and mice

    PubMed Central

    Horner, Alexa E.; Heath, Christopher J.; Hvoslef-Eide, Martha; Kent, Brianne A.; Kim, Chi Hun; Nilsson, Simon R. O.; Alsiö, Johan; Oomen, Charlotte A.; Holmes, Andrew; Saksida, Lisa M.; Bussey, Timothy J.

    2014-01-01

    Summary An increasingly popular method of assessing cognitive functions in rodents is the automated touchscreen platform, on which a number of different cognitive tests can be run in a manner very similar to touchscreen methods currently used to test human subjects. This methodology is low stress (using appetitive, rather than aversive reinforcement), has high translational potential, and lends itself to a high degree of standardisation and throughput. Applications include the study of cognition in rodent models of psychiatric and neurodegenerative diseases (e.g., Alzheimer’s disease, schizophrenia, Huntington’s disease, frontotemporal dementia), and characterisation of the role of select brain regions, neurotransmitter systems and genes in rodents. This protocol describes how to perform four touchscreen assays of learning and memory: Visual Discrimination, Object-Location Paired-Associates Learning, Visuomotor Conditional Learning and Autoshaping. It is accompanied by two further protocols using the touchscreen platform to assess executive function, working memory and pattern separation. PMID:24051959

  18. Oligodendrocytes as Regulators of Neuronal Networks during Early Postnatal Development

    PubMed Central

    Ramos, Maria; Ikrar, Taruna; Kinoshita, Chisato; De Mei, Claudia; Tirotta, Emanuele; Xu, Xiangmin; Borrelli, Emiliana

    2011-01-01

    Oligodendrocytes are the glial cells responsible for myelin formation. Myelination occurs during the first postnatal weeks and, in rodents, is completed during the third week after birth. Myelin ensures the fast conduction of the nerve impulse; in the adult, myelin proteins have an inhibitory role on axon growth and regeneration after injury. During brain development, oligodendrocytes precursors originating in multiple locations along the antero-posterior axis actively proliferate and migrate to colonize the whole brain. Whether the initial interactions between oligodendrocytes and neurons might play a functional role before the onset of myelination is still not completely elucidated. In this article, we addressed this question by transgenically targeted ablation of proliferating oligodendrocytes during cerebellum development. Interestingly, we show that depletion of oligodendrocytes at postnatal day 1 (P1) profoundly affects the establishment of cerebellar circuitries. We observed an impressive deregulation in the expression of molecules involved in axon growth, guidance and synaptic plasticity. These effects were accompanied by an outstanding increase of neurofilament staining observed 4 hours after the beginning of the ablation protocol, likely dependent from sprouting of cerebellar fibers. Oligodendrocyte ablation modifies localization and function of ionotropic glutamate receptors in Purkinje neurons. These results show a novel oligodendrocyte function expressed during early postnatal brain development, where these cells participate in the formation of cerebellar circuitries, and influence its development. PMID:21589880

  19. Unveiling molecular events in the brain by noninvasive imaging.

    PubMed

    Klohs, Jan; Rudin, Markus

    2011-10-01

    Neuroimaging allows researchers and clinicians to noninvasively assess structure and function of the brain. With the advances of imaging modalities such as magnetic resonance, nuclear, and optical imaging; the design of target-specific probes; and/or the introduction of reporter gene assays, these technologies are now capable of visualizing cellular and molecular processes in vivo. Undoubtedly, the system biological character of molecular neuroimaging, which allows for the study of molecular events in the intact organism, will enhance our understanding of physiology and pathophysiology of the brain and improve our ability to diagnose and treat diseases more specifically. Technical/scientific challenges to be faced are the development of highly sensitive imaging modalities, the design of specific imaging probe molecules capable of penetrating the CNS and reporting on endogenous cellular and molecular processes, and the development of tools for extracting quantitative, biologically relevant information from imaging data. Today, molecular neuroimaging is still an experimental approach with limited clinical impact; this is expected to change within the next decade. This article provides an overview of molecular neuroimaging approaches with a focus on rodent studies documenting the exploratory state of the field. Concepts are illustrated by discussing applications related to the pathophysiology of Alzheimer's disease.

  20. Morphological and functional maturation of Leydig cells: from rodent models to primates.

    PubMed

    Teerds, Katja J; Huhtaniemi, Ilpo T

    2015-01-01

    Leydig cells (LC) are the sites of testicular androgen production. Development of LC occurs in the testes of most mammalian species as two distinct growth phases, i.e. as fetal and pubertal/adult populations. In primates there are indications of a third neonatal growth phase. LC androgen production begins in embryonic life and is crucial for the intrauterine masculinization of the male fetal genital tract and brain, and continues until birth after which it rapidly declines. A short post-natal phase of LC activity in primates (including human) termed 'mini-puberty' precedes the period of juvenile quiescence. The adult population of LC evolves, depending on species, in mid- to late-prepuberty upon reawakening of the hypothalamic-pituitary-testicular axis, and these cells are responsible for testicular androgen production in adult life, which continues with a slight gradual decline until senescence. This review is an updated comparative analysis of the functional and morphological maturation of LC in model species with special reference to rodents and primates. Pubmed, Scopus, Web of Science and Google Scholar databases were searched between December 2012 and October 2014. Studies published in languages other than English or German were excluded, as were data in abstract form only. Studies available on primates were primarily examined and compared with available data from specific animal models with emphasis on rodents. Expression of different marker genes in rodents provides evidence that at least two distinct progenitor lineages give rise to the fetal LC (FLC) population, one arising from the coelomic epithelium and the other from specialized vascular-associated cells along the gonad-mesonephros border. There is general agreement that the formation and functioning of the FLC population in rodents is gonadotrophin-responsive but not gonadotrophin-dependent. In contrast, although there is in primates some controversy on the role of gonadotrophins in the formation of the FLC population, there is consensus about the essential role of gonadotrophins in testosterone production. Like the FLC population, adult Leydig cells (ALC) in rodents arise from stem cells, which have their origin in the fetal testis. In contrast, in primates the ALC population is thought to originate from FLC, which undergo several cycles of regression and redifferentiation before giving rise to the mature ALC population, as well as from differentiation of stem cells/precursor cells. Despite this difference in origin, both in primates and rodents the formation of the mature and functionally active ALC population is critically dependent on the pituitary gonadotrophin, LH. From studies on rodents considerable knowledge has emerged on factors that are involved besides LH in the regulation of this developmental process. Whether the same factors also play a role in the development of the mature primate LC population awaits further investigation. Distinct populations of LC develop along the life span of males, including fetal, neonatal (primates) and ALC. Despite differences in the LC lineages of rodents and primates, the end product is a mature population of LC with the main function to provide androgens necessary for the maintenance of spermatogenesis and extra-gonadal androgen actions. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Could Cord Blood Cell Therapy Reduce Preterm Brain Injury?

    PubMed Central

    Li, Jingang; McDonald, Courtney A.; Fahey, Michael C.; Jenkin, Graham; Miller, Suzanne L.

    2014-01-01

    Major advances in neonatal care have led to significant improvements in survival rates for preterm infants, but this occurs at a cost, with a strong causal link between preterm birth and neurological deficits, including cerebral palsy (CP). Indeed, in high-income countries, up to 50% of children with CP were born preterm. The pathways that link preterm birth and brain injury are complex and multifactorial, but it is clear that preterm birth is strongly associated with damage to the white matter of the developing brain. Nearly 90% of preterm infants who later develop spastic CP have evidence of periventricular white matter injury. There are currently no treatments targeted at protecting the immature preterm brain. Umbilical cord blood (UCB) contains a diverse mix of stem and progenitor cells, and is a particularly promising source of cells for clinical applications, due to ethical and practical advantages over other potential therapeutic cell types. Recent studies have documented the potential benefits of UCB cells in reducing brain injury, particularly in rodent models of term neonatal hypoxia–ischemia. These studies indicate that UCB cells act via anti-inflammatory and immuno-modulatory effects, and release neurotrophic growth factors to support the damaged and surrounding brain tissue. The etiology of brain injury in preterm-born infants is less well understood than in term infants, but likely results from episodes of hypoperfusion, hypoxia–ischemia, and/or inflammation over a developmental period of white matter vulnerability. This review will explore current knowledge about the neuroprotective actions of UCB cells and their potential to ameliorate preterm brain injury through neonatal cell administration. We will also discuss the characteristics of UCB-derived from preterm and term infants for use in clinical applications. PMID:25346720

  2. Mild Developmental Hypothyroidism and Trace Fear Conditioning: Role of Gender and Shock Duration.

    EPA Science Inventory

    Rodent models of developmental thyroid hormone (TH) deficiency aptly reflect the deleterious effects of severe TH deficiencies on brain structure and function in humans. However, the impact of moderate TH insufficiencies on neurodevelopmental outcomes has proven more difficult to...

  3. Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury

    PubMed Central

    Fairbanks, Carolyn A.; Schreiber, Kristin L.; Brewer, Kori L.; Yu, Chen-Guang; Stone, Laura S.; Kitto, Kelley F.; Nguyen, H. Oanh; Grocholski, Brent M.; Shoeman, Don W.; Kehl, Lois J.; Regunathan, Soundararajan; Reis, Donald J.; Yezierski, Robert P.; Wilcox, George L.

    2000-01-01

    Antagonists of glutamate receptors of the N-methyl-d-aspartate subclass (NMDAR) or inhibitors of nitric oxide synthase (NOS) prevent nervous system plasticity. Inflammatory and neuropathic pain rely on plasticity, presenting a clinical opportunity for the use of NMDAR antagonists and NOS inhibitors in chronic pain. Agmatine (AG), an endogenous neuromodulator present in brain and spinal cord, has both NMDAR antagonist and NOS inhibitor activities. We report here that AG, exogenously administered to rodents, decreased hyperalgesia accompanying inflammation, normalized the mechanical hypersensitivity (allodynia/hyperalgesia) produced by chemical or mechanical nerve injury, and reduced autotomy-like behavior and lesion size after excitotoxic spinal cord injury. AG produced these effects in the absence of antinociceptive effects in acute pain tests. Endogenous AG also was detected in rodent lumbosacral spinal cord in concentrations similar to those previously detected in brain. The evidence suggests a unique antiplasticity and neuroprotective role for AG in processes underlying persistent pain and neuronal injury. PMID:10984543

  4. SEROPREVALENCE AND GENETIC CHARACTERIZATION OF TOXOPLASMA GONDII IN NATURALLY-INFECTED SYNANTHROPIC RODENTS IN YUNNAN PROVINCE, SOUTHWESTERN CHINA.

    PubMed

    Wang, Xin-Lei; Dong, Ling; Zhang, Li; Lv, Yan; Li, Qian; Li, Hailong

    2018-05-03

    Rodents play important rule in the transmission of Toxoplasma gondii, however, little is known of the seroprevalence and genetic diversity of T. gondii infection in rodents in Yunnan, southwestern China. In this study, we examined the seroprevalence and genetically characterized T. gondii infection in naturally-infected rodents in Yunnan Province, southwestern China between March and July 2016. A total of 261 serum samples were collected from rodents in Jingha district, Xishuangbanna Dai Autonomous Prefecture, Yunnan province, and examined for T. gondii antibodies by modified agglutination test (MAT) at a 1:20 cut-off, with titers of 1:20 in 24, 1:40 in 10, 1:80 in 10, 1:160 in 4. Thirty-two of 261 (12.26%) serum samples were positive for T. gondii by MAT. A total of 751 rodent brain samples were examined by semi-nested-PCR, 46 (6.13%) were positive for the T. gondii B1 gene, 2 of them showed complete genotyping results for all 11 polymorphic loci (SAG1, SAG2, alt.SAG2, SAG3, BTUB, GRA6, L358, PK1, C22-8, C29-2 and Apico). The two samples were characterized to represent ToxoDB Genotype #137 (http://toxodb.org/toxo/). These findings enriched the epidemiological and genetic diversity of T. gondii in China, and implications for the better prevention and control of T. gondii infection in humans and animals.

  5. Visual landmarks facilitate rodent spatial navigation in virtual reality environments

    PubMed Central

    Youngstrom, Isaac A.; Strowbridge, Ben W.

    2012-01-01

    Because many different sensory modalities contribute to spatial learning in rodents, it has been difficult to determine whether spatial navigation can be guided solely by visual cues. Rodents moving within physical environments with visual cues engage a variety of nonvisual sensory systems that cannot be easily inhibited without lesioning brain areas. Virtual reality offers a unique approach to ask whether visual landmark cues alone are sufficient to improve performance in a spatial task. We found that mice could learn to navigate between two water reward locations along a virtual bidirectional linear track using a spherical treadmill. Mice exposed to a virtual environment with vivid visual cues rendered on a single monitor increased their performance over a 3-d training regimen. Training significantly increased the percentage of time avatars controlled by the mice spent near reward locations in probe trials without water rewards. Neither improvement during training or spatial learning for reward locations occurred with mice operating a virtual environment without vivid landmarks or with mice deprived of all visual feedback. Mice operating the vivid environment developed stereotyped avatar turning behaviors when alternating between reward zones that were positively correlated with their performance on the probe trial. These results suggest that mice are able to learn to navigate to specific locations using only visual cues presented within a virtual environment rendered on a single computer monitor. PMID:22345484

  6. Ionotropic glutamate receptor expression in human white matter.

    PubMed

    Christensen, Pia Crone; Samadi-Bahrami, Zahra; Pavlov, Vlady; Stys, Peter K; Moore, G R Wayne

    2016-09-06

    Glutamate is the key excitatory neurotransmitter of the central nervous system (CNS). Its role in human grey matter transmission is well understood, but this is less clear in white matter (WM). Ionotropic glutamate receptors (iGluR) are found on both neuronal cell bodies and glia as well as on myelinated axons in rodents, and rodent WM tissue is capable of glutamate release. Thus, rodent WM expresses many of the components of the traditional grey matter neuron-to-neuron synapse, but to date this has not been shown for human WM. We demonstrate the presence of iGluRs in human WM by immunofluorescence employing high-resolution spectral confocal imaging. We found that the obligatory N-methyl-d-aspartic acid (NMDA) receptor subunit GluN1 and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA4 co-localized with myelin, oligodendroglial cell bodies and processes. Additionally, GluA4 colocalized with axons, often in distinct clusters. These findings may explain why human WM is vulnerable to excitotoxic events following acute insults such as stroke and traumatic brain injury and in more chronic inflammatory conditions such as multiple sclerosis (MS). Further exploration of human WM glutamate signalling could pave the way for developing future therapies modulating the glutamate-mediated damage in these and other CNS disorders. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Construction and Evaluation of Rodent-Specific rTMS Coils.

    PubMed

    Tang, Alexander D; Lowe, Andrea S; Garrett, Andrew R; Woodward, Robert; Bennett, William; Canty, Alison J; Garry, Michael I; Hinder, Mark R; Summers, Jeffery J; Gersner, Roman; Rotenberg, Alexander; Thickbroom, Gary; Walton, Joseph; Rodger, Jennifer

    2016-01-01

    Rodent models of transcranial magnetic stimulation (TMS) play a crucial role in aiding the understanding of the cellular and molecular mechanisms underlying TMS induced plasticity. Rodent-specific TMS have previously been used to deliver focal stimulation at the cost of stimulus intensity (12 mT). Here we describe two novel TMS coils designed to deliver repetitive TMS (rTMS) at greater stimulation intensities whilst maintaining spatial resolution. Two circular coils (8 mm outer diameter) were constructed with either an air or pure iron-core. Peak magnetic field strength for the air and iron-cores were 90 and 120 mT, respectively, with the iron-core coil exhibiting less focality. Coil temperature and magnetic field stability for the two coils undergoing rTMS, were similar at 1 Hz but varied at 10 Hz. Finite element modeling of 10 Hz rTMS with the iron-core in a simplified rat brain model suggests a peak electric field of 85 and 12.7 V/m, within the skull and the brain, respectively. Delivering 10 Hz rTMS to the motor cortex of anaesthetized rats with the iron-core coil significantly increased motor evoked potential amplitudes immediately after stimulation (n = 4). Our results suggest these novel coils generate modest magnetic and electric fields, capable of altering cortical excitability and provide an alternative method to investigate the mechanisms underlying rTMS-induced plasticity in an experimental setting.

  8. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler

    PubMed Central

    Errico, Claudia; Osmanski, Bruno-Félix; Pezet, Sophie; Couture, Olivier; Lenkei, Zsolt; Tanter, Mickael

    2016-01-01

    Functional ultrasound (fUS) is a novel neuroimaging technique, based on high-sensitivity ultrafast Doppler imaging of cerebral blood volume, capable of measuring brain activation and connectivity in rodents with high spatiotemporal resolution (100 μm, 1 ms). However, the skull attenuates acoustic waves, so fUS in rats currently requires craniotomy or a thinned-skull window. Here we propose a non-invasive approach by enhancing the fUS signal with a contrast agent, inert gas microbubbles. Plane-wave illumination of the brain at high frame rate (500 Hz compounded sequence with three tilted plane waves, PRF = 1500Hz with a 128 element 15 MHz linear transducer), yields highly-resolved neurovascular maps. We compared fUS imaging performance through the intact skull bone (transcranial fUS) versus a thinned-skull window in the same animal. First, we show that the vascular network of the adult rat brain can be imaged transcranially only after a bolus intravenous injection of microbubbles, which leads to a 9 dB gain in the contrast-to-tissue ratio. Next, we demonstrate that functional increase in the blood volume of the primary sensory cortex after targeted electrical-evoked stimulations of the sciatic nerve is observable transcranially in presence of contrast agents, with high reproducibility (Pearson's coefficient ρ = 0.7 ± 0.1, p = 0.85). Our work demonstrates that the combination of ultrafast Doppler imaging and injection of contrast agent allows non-invasive functional brain imaging through the intact skull bone in rats. These results should ease non-invasive longitudinal studies in rodents and open a promising perspective for the adoption of highly resolved fUS approaches for the adult human brain. PMID:26416649

  9. Histone deacetylase inhibition reduces hypothyroidism-induced neurodevelopmental defects in rats.

    PubMed

    Kumar, Praveen; Mohan, Vishwa; Sinha, Rohit Anthony; Chagtoo, Megha; Godbole, Madan M

    2015-11-01

    Thyroid hormone (TH) through its receptor (TRα/β) influences spatio-temporal regulation of its target gene repertoire during brain development. Though hypothyroidism in WT rodent models of perinatal hypothyroidism severely impairs neurodevelopment, its effect on TRα/β knockout mice is less severe. An explanation to this paradox is attributed to a possible repressive action of unliganded TRs during development. Since unliganded TRs suppress gene expression through the recruitment of histone deacetylase (HDACs) via co-repressor complexes, we tested whether pharmacological inhibition of HDACs may prevent the effects of hypothyroidism on brain development. Using valproate, an HDAC inhibitor, we show that HDAC inhibition significantly blocks the deleterious effects of hypothyroidism on rat cerebellum, evident by recovery of TH target genes like Bdnf, Pcp2 and Mbp as well as improved dendritic structure of cerebellar Purkinje neurons. Together with this, HDAC inhibition also rescues hypothyroidism-induced motor and cognitive defects. This study therefore provides an insight into the role of HDACs in TH insufficiency during neurodevelopment and their inhibition as a possible therapeutics for treatment. © 2015 Society for Endocrinology.

  10. Finding influential nodes for integration in brain networks using optimal percolation theory.

    PubMed

    Del Ferraro, Gino; Moreno, Andrea; Min, Byungjoon; Morone, Flaviano; Pérez-Ramírez, Úrsula; Pérez-Cervera, Laura; Parra, Lucas C; Holodny, Andrei; Canals, Santiago; Makse, Hernán A

    2018-06-11

    Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and pharmacogenetic interventions in vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function.

  11. Chronic Unpredictable Stress (CUS)-Induced Anxiety and Related Mood Disorders in a Zebrafish Model: Altered Brain Proteome Profile Implicates Mitochondrial Dysfunction

    PubMed Central

    Chakravarty, Sumana; Reddy, Bommana R.; Sudhakar, Sreesha R.; Saxena, Sandeep; Das, Tapatee; Meghah, Vuppalapaty; Brahmendra Swamy, Cherukuvada V.; Kumar, Arvind; Idris, Mohammed M.

    2013-01-01

    Anxiety and depression are major chronic mood disorders, and the etiopathology for each appears to be repeated exposure to diverse unpredictable stress factors. Most of the studies on anxiety and related mood disorders are performed in rodents, and a good model is chronic unpredictable stress (CUS). In this study, we have attempted to understand the molecular basis of the neuroglial and behavioral changes underlying CUS-induced mood disorders in the simplest vertebrate model, the zebrafish, Danio rerio. Zebrafish were subjected to a CUS paradigm in which two different stressors were used daily for 15 days, and thorough behavioral analyses were performed to assess anxiety and related mood disorder phenotypes using the novel tank test, shoal cohesion and scototaxis. Fifteen days of exposure to chronic stressors appears to induce an anxiety and related mood disorder phenotype. Decreased neurogenesis, another hallmark of anxiety and related disorders in rodents, was also observed in this zebrafish model. The common molecular markers of rodent anxiety and related disorders, corticotropin-releasing factor (CRF), calcineurin (ppp3r1a) and phospho cyclic AMP response element binding protein (pCREB), were also replicated in the fish model. Finally, using 2DE FTMS/ITMSMS proteomics analyses, 18 proteins were found to be deregulated in zebrafish anxiety and related disorders. The most affected process was mitochondrial function, 4 of the 18 differentially regulated proteins were mitochondrial proteins: PHB2, SLC25A5, VDAC3 and IDH2, as reported in rodent and clinical samples. Thus, the zebrafish CUS model and proteomics can facilitate not only uncovering new molecular targets of anxiety and related mood disorders but also the routine screening of compounds for drug development. PMID:23691016

  12. The effects of probiotics on mood and emotion.

    PubMed

    Kane, Lindsey; Kinzel, Julie

    2018-05-01

    Preliminary research in humans and rodents demonstrates that various probiotic formulations of Lactobacillus and Bifidobacterium have a clinical and neurochemical anxiolytic effect on the central nervous system (CNS). Further research is warranted to more extensively examine the theorized connection between the gastrointestinal tract and the CNS; however, initial evidence suggests probiotics affect various mechanisms of the gut-brain connection that modulate anxiety-like behaviors. This article describes the wider-reaching effects of probiotics, specifically related to behavior and brain function.

  13. The Effects of Spaceflight and Head Down Tilt Bed Rest on Neurocognitive Performance: Extent, Longevity, and Neural Bases

    NASA Technical Reports Server (NTRS)

    Seidler, Rachael D.; Bloomberg, Jacob; Wood, Scott; Mulavara, Ajit; Kofman, Igor; De Dios, Yiri; Gadd, Nicole; Stepanyan, Vahagn

    2017-01-01

    Spaceflight effects on gait, balance, & manual motor control have been well studied; some evidence for cognitive deficits. Rodent cortical motor & sensory systems show neural structural alterations with spaceflight. specific Aims: Aim 1-Identify changes in brain structure, function, and network integrity as a function of head down tilt bed rest and spaceflight, and characterize their time course. Aim 2-Specify relationships between structural and functional brain changes and performance and characterize their time course.

  14. Protective role of brain water channel AQP4 in murine cerebral malaria

    PubMed Central

    Promeneur, Dominique; Lunde, Lisa Kristina; Amiry-Moghaddam, Mahmood; Agre, Peter

    2013-01-01

    Tragically common among children in sub-Saharan Africa, cerebral malaria is characterized by rapid progression to coma and death. In this study, we used a model of cerebral malaria appearing in C57BL/6 WT mice after infection with the rodent malaria parasite Plasmodium berghei ANKA. Expression and cellular localization of the brain water channel aquaporin-4 (AQP4) was investigated during the neurological syndrome. Semiquantitative real-time PCR comparing uninfected and infected mice showed a reduction of brain AQP4 transcript in cerebral malaria, and immunoblots revealed reduction of brain AQP4 protein. Reduction of brain AQP4 protein was confirmed in cerebral malaria by quantitative immunogold EM; however, polarized distribution of AQP4 at the perivascular and subpial astrocyte membranes was not altered. To further examine the role of AQP4 in cerebral malaria, WT mice and littermates genetically deficient in AQP4 were infected with P. berghei. Upon development of cerebral malaria, WT and AQP4-null mice exhibited similar increases in width of perivascular astroglial end-feet in brain. Nevertheless, the AQP4-null mice exhibited more severe signs of cerebral malaria with greater brain edema, although disruption of the blood–brain barrier was similar in both groups. In longitudinal studies, cerebral malaria appeared nearly 1 d earlier in the AQP4-null mice, and reduced survival was noted when chloroquine rescue was attempted. We conclude that the water channel AQP4 confers partial protection against cerebral malaria. PMID:23277579

  15. Multiple infections of rodents with zoonotic pathogens in Austria.

    PubMed

    Schmidt, Sabrina; Essbauer, Sandra S; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald; Ulrich, Rainer G

    2014-07-01

    Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host-pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.

  16. Multiple Infections of Rodents with Zoonotic Pathogens in Austria

    PubMed Central

    Schmidt, Sabrina; Essbauer, Sandra S.; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H.; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald

    2014-01-01

    Abstract Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host–pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans. PMID:24915446

  17. Differential effects of minocycline on microglial activation and neurodegeneration following closed head injury in the neonate rat.

    PubMed

    Hanlon, L A; Raghupathi, R; Huh, J W

    2017-04-01

    The role of microglia in the pathophysiology of injury to the developing brain has been extensively studied. In children under the age of 4 who have sustained a traumatic brain injury (TBI), markers of microglial/macrophage activation were increased in the cerebrospinal fluid and were associated with worse neurologic outcome. Minocycline is an antibiotic that decreases microglial/macrophage activation following hypoxic-ischemia in neonatal rodents and TBI in adult rodents thereby reducing neurodegeneration and behavioral deficits. In study 1, 11-day-old rats received an impact to the intact skull and were treated for 3days with minocycline. Immediately following termination of minocycline administration, microglial reactivity was reduced in the cortex and hippocampus (p<0.001) and was accompanied by an increase in the number of fluoro-Jade B profiles (p<0.001) suggestive of a reduced clearance of degenerating cells; however, this effect was not sustained at 7days post-injury. Although microglial reactivity was reduced in the white matter tracts (p<0.001), minocycline treatment did not reduce axonal injury or degeneration. In the thalamus, minocycline treatment did not affect microglial reactivity, axonal injury and degeneration, and neurodegeneration. Injury-induced spatial learning and memory deficits were also not affected by minocycline. In study 2, to test whether extended dosing of minocycline may be necessary to reduce the ongoing pathologic alterations, a separate group of animals received minocycline for 9days. Immediately following termination of treatment, microglial reactivity and neurodegeneration in all regions examined were exacerbated in minocycline-treated brain-injured animals compared to brain-injured animals that received vehicle (p<0.001), an effect that was only sustained in the cortex and hippocampus up to 15days post-injury (p<0.001). Whereas injury-induced spatial learning deficits remained unaffected by minocycline treatment, memory deficits appeared to be significantly worse (p<0.05). Sex had minimal effects on either injury-induced alterations or the efficacy of minocycline treatment. Collectively, these data demonstrate the differential effects of minocycline in the immature brain following impact trauma and suggest that minocycline may not be an effective therapeutic strategy for TBI in the immature brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Intracranial microcapsule chemotherapy delivery for the localized treatment of rodent metastatic breast adenocarcinoma in the brain.

    PubMed

    Upadhyay, Urvashi M; Tyler, Betty; Patta, Yoda; Wicks, Robert; Spencer, Kevin; Scott, Alexander; Masi, Byron; Hwang, Lee; Grossman, Rachel; Cima, Michael; Brem, Henry; Langer, Robert

    2014-11-11

    Metastases represent the most common brain tumors in adults. Surgical resection alone results in 45% recurrence and is usually accompanied by radiation and chemotherapy. Adequate chemotherapy delivery to the CNS is hindered by the blood-brain barrier. Efforts at delivering chemotherapy locally to gliomas have shown modest increases in survival, likely limited by the infiltrative nature of the tumor. Temozolomide (TMZ) is first-line treatment for gliomas and recurrent brain metastases. Doxorubicin (DOX) is used in treating many types of breast cancer, although its use is limited by severe cardiac toxicity. Intracranially implanted DOX and TMZ microcapsules are compared with systemic administration of the same treatments in a rodent model of breast adenocarcinoma brain metastases. Outcomes were animal survival, quantified drug exposure, and distribution of cleaved caspase 3. Intracranial delivery of TMZ and systemic DOX administration prolong survival more than intracranial DOX or systemic TMZ. Intracranial TMZ generates the more robust induction of apoptotic pathways. We postulate that these differences may be explained by distribution profiles of each drug when administered intracranially: TMZ displays a broader distribution profile than DOX. These microcapsule devices provide a safe, reliable vehicle for intracranial chemotherapy delivery and have the capacity to be efficacious and superior to systemic delivery of chemotherapy. Future work should include strategies to improve the distribution profile. These findings also have broader implications in localized drug delivery to all tissue, because the efficacy of a drug will always be limited by its ability to diffuse into surrounding tissue past its delivery source.

  19. Elucidating the Role of Compression Waves and Impact Duration for Generating mild Traumatic Brain Injury in Rats

    PubMed Central

    Lucke-Wold, Brandon P.; Phillips, Michael; Turner, Ryan C.; Logsdon, Aric F.; Smith, Kelly E.; Huber, Jason D.; Rosen, Charles L.; Regele, Jonathan D.

    2016-01-01

    3 million concussions occur each year in the United States. The mechanisms linking acute injury to chronic deficits are poorly understood. Mild traumatic brain injury has been described clinically in terms of acute functional deficits, but the underlying histopathologic changes that occur are relatively unknown due to limited high-function imaging modalities. In order to improve our understanding of acute injury mechanisms, appropriately designed preclinical models must be utilized. The clinical relevance of compression wave injury models revolves around the ability to produce consistent histopathologic deficits. Repetitive mild traumatic brain injuries activate similar neuroinflammatory cascades, cell death markers, and increases in amyloid precursor protein in both humans and rodents. Humans however infrequently succumb to mild traumatic brain injuries and therefore the intensity and magnitude of impacts must be inferred. Understanding compression wave properties and mechanical loading could help link the histopathologic deficits seen in rodents to what might be happening in human brains following repetitive concussions. Advances in mathematical and computer modeling can help characterize the wave properties generated by the compression wave model. While this concept of linking duration and intensity of impact to subsequent histopathologic deficits makes sense, numerical modeling of compression waves has not been performed in this context. In this collaborative interdisciplinary work, numerical simulations were performed to study the creation of compression waves in our experimental model. This work was conducted in conjunction with a repetitive compression wave injury paradigm in rats in order to better understand how the wave generation correlates with validated histopathologic deficits. PMID:27880054

  20. Dissecting gene expression at the blood-brain barrier

    PubMed Central

    Huntley, Melanie A.; Bien-Ly, Nga; Daneman, Richard; Watts, Ryan J.

    2014-01-01

    The availability of genome-wide expression data for the blood-brain barrier is an invaluable resource that has recently enabled the discovery of several genes and pathways involved in the development and maintenance of the blood-brain barrier, particularly in rodent models. The broad distribution of published data sets represents a viable starting point for the molecular dissection of the blood-brain barrier and will further direct the discovery of novel mechanisms of blood-brain barrier formation and function. Technical advances in purifying brain endothelial cells, the key cell that forms the critical barrier, have allowed for greater specificity in gene expression comparisons with other central nervous system cell types, and more systematic characterizations of the molecular composition of the blood-brain barrier. Nevertheless, our understanding of how the blood-brain barrier changes during aging and disease is underrepresented. Blood-brain barrier data sets from a wider range of experimental paradigms and species, including invertebrates and primates, would be invaluable for investigating the function and evolution of the blood-brain barrier. Newer technologies in gene expression profiling, such as RNA-sequencing, now allow for finer resolution of transcriptomic changes, including isoform specificity and RNA-editing. As our field continues to utilize more advanced expression profiling in its ongoing efforts to elucidate the blood-brain barrier, including in disease and drug delivery, we will continue to see rapid advances in our understanding of the molecular mediators of barrier biology. We predict that the recently published data sets, combined with forthcoming genomic and proteomic blood-brain barrier data sets, will continue to fuel the molecular genetic revolution of blood-brain barrier biology. PMID:25414634

  1. Dopamine Innervation in the Thalamus: Monkey versus Rat

    PubMed Central

    García-Cabezas, Miguel Ángel; Martínez-Sánchez, Patricia; Sánchez-González, Miguel Ángel; Garzón, Miguel

    2009-01-01

    We recently identified the thalamic dopaminergic system in the human and macaque monkey brains, and, based on earlier reports on the paucity of dopamine in the rat thalamus, hypothesized that this dopaminergic system was particularly developed in primates. Here we test this hypothesis using immunohistochemistry against the dopamine transporter (DAT) in adult macaque and rat brains. The extent and density of DAT-immunoreactive (-ir) axons were remarkably greater in the macaque dorsal thalamus, where the mediodorsal association nucleus and the ventral motor nuclei held the densest immunolabeling. In contrast, sparse DAT immunolabeling was present in the rat dorsal thalamus; it was mainly located in the mediodorsal, paraventricular, ventral medial, and ventral lateral nuclei. The reticular nucleus, zona incerta, and lateral habenular nucleus held numerous DAT-ir axons in both species. Ultrastructural analysis in the macaque mediodorsal nucleus revealed that thalamic interneurons are a main postsynaptic target of DAT-ir axons; this suggests that the marked expansion of the dopamine innervation in the primate in comparison to the rodent thalamus may be related to the presence of a sizable interneuron population in primates. We remark that it is important to be aware of brain species differences when using animal models of human brain disease. PMID:18550594

  2. Pharmacokinetic analysis and drug delivery efficiency of the focused ultrasound-induced blood-brain barrier opening in non-human primates

    PubMed Central

    Samiotaki, Gesthimani; Karakatsani, Maria Eleni; Buch, Amanda; Papadopoulos, Stephanos; Wu, Shih Ying; Jambawalikar, Sachin; Konofagou, Elisa E.

    2016-01-01

    Purpose Focused Ultrasound (FUS) in conjunction with systemically administered microbubbles has been shown to open the Blood-Brain Barrier (BBB) locally, non-invasively and reversibly in rodents and non-human primates (NHP), suggesting the immense potential of this technique. The objective of this study entailed the investigation of the physiologic changes in the brain following the FUS-induced BBB opening and their relationship with the underlying anatomy. Materials and Methods Pharmacokinetic analysis was implemented in NHP’s that received FUS at various acoustic pressures. Relaxivity mapping enabled the robust quantitative detection of the BBB opening as well as gray and white matter segmentation. Drug delivery efficiency was measured for pre-clinical validation of the technique. Results Based on our results, the opening volume and the amount of the gadolinium delivered were found mostly contained in the grey matter, while FUS-induced permeability and drug concentration varied depending upon the underlying brain inhomogeneity, and increased with the acoustic pressure. Conclusions Overall, apart from the in vivo protocols for BBB analysis developed here, this study also suggests the important role that FUS can have in efficient drug delivery via localized and transient BBB opening. PMID:27916657

  3. Intrauterine Exposure to Maternal Stress Alters Bdnf IV DNA Methylation and Telomere Length in the Brain of Adult Rat Offspring

    NASA Technical Reports Server (NTRS)

    Blaze, Jennifer; Asok, Arun; Borrelli, Kristyn; Tulbert, Christine; Bollinger, Justin; Ronca Finco, April E.; Roth, Tania L.

    2017-01-01

    DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could contribute to the long-term effects of intrauterine exposure to maternal stress on offspring behavioral outcomes. Here, we measured methylation of Brain-derived neurotrophic factor (Bdnf), a gene important in development and plasticity, and telomere length in the brains of adult rat male and female offspring whose mothers were exposed to unpredictable and variable stressors throughout gestation. Males exposed to prenatal stress had greater methylation (Bdnf IV) in the medial prefrontal cortex (mPFC) compared to non-stressed controls. Further, prenatally-stressed males had shorter telomeres than controls in the mPFC. This study provides the first evidence in a rodent model of an association between prenatal stress exposure and subsequent shorter brain telomere length. Together findings indicate a long-term impact of prenatal stress on DNA methylation and telomere biology with relevance for behavioral and health outcomes, and contribute to a growing literature linking stress to intergenerational epigenetic alterations and changes in telomere length.

  4. Brain-gut-microbiota axis: challenges for translation in psychiatry.

    PubMed

    Kelly, John R; Clarke, Gerard; Cryan, John F; Dinan, Timothy G

    2016-05-01

    The accruing data linking the gut microbiome to the development and function of the central nervous system has been proposed as a paradigm shift in neuroscience. The gut microbiota can communicate with the brain via neuroimmune, neuroendocrine, and neural pathways comprising the brain-gut-microbiota axis. Dysfunctional neuroimmune pathways are implicated in stress-related psychiatric disorders. Using depression as our primary example, we review both the preclinical and clinical evidence supporting the possible role played by the gut microbiota in stress-related psychiatric disorders. We consider how this can inform future treatment strategies and outline the challenges and necessary studies for moving the field forward. The role played by the gut microbiota has not been fully elucidated in psychiatric populations. Although tempting to speculate that psychiatric patients may benefit from therapeutic modulation of the brain-gut-microbiota axis, the translational applications of the results obtained in rodent studies have yet to be demonstrated. Evidence of altered gut microbiota composition and function in psychiatric patients is limited and cannot be regarded as proven. Moreover the efficacy of targeting the gut microbiota has not yet been established, and needs further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Confocal microscopy for astrocyte in vivo imaging: Recycle and reuse in microscopy

    PubMed Central

    Pérez-Alvarez, Alberto; Araque, Alfonso; Martín, Eduardo D.

    2013-01-01

    In vivo imaging is one of the ultimate and fundamental approaches for the study of the brain. Two-photon laser scanning microscopy (2PLSM) constitutes the state-of-the-art technique in current neuroscience to address questions regarding brain cell structure, development and function, blood flow regulation and metabolism. This technique evolved from laser scanning confocal microscopy (LSCM), which impacted the field with a major improvement in image resolution of live tissues in the 1980s compared to widefield microscopy. While nowadays some of the unparalleled features of 2PLSM make it the tool of choice for brain studies in vivo, such as the possibility to image deep within a tissue, LSCM can still be useful in this matter. Here we discuss the validity and limitations of LSCM and provide a guide to perform high-resolution in vivo imaging of the brain of live rodents with minimal mechanical disruption employing LSCM. We describe the surgical procedure and experimental setup that allowed us to record intracellular calcium variations in astrocytes evoked by sensory stimulation, and to monitor intact neuronal dendritic spines and astrocytic processes as well as blood vessel dynamics. Therefore, in spite of certain limitations that need to be carefully considered, LSCM constitutes a useful, convenient, and affordable tool for brain studies in vivo. PMID:23658537

  6. Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics.

    PubMed

    Becker, J Sabine; Matusch, Andreas; Palm, Christoph; Salber, Dagmar; Morton, Kathryn A; Becker, J Susanne

    2010-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.

  7. Invasive Procedures in Preterm Children: Brain and Cognitive Development at School Age

    PubMed Central

    Vinall, Jillian; Miller, Steven P.; Bjornson, Bruce H.; Fitzpatrick, Kevin P.V.; Poskitt, Kenneth J.; Brant, Rollin; Synnes, Anne R.; Cepeda, Ivan L.

    2014-01-01

    BACKGROUND: Very preterm infants (born 24–32 weeks’ gestation) undergo numerous invasive procedures during neonatal care. Repeated skin-breaking procedures in rodents cause neuronal cell death, and in human preterm neonates higher numbers of invasive procedures from birth to term-equivalent age are associated with abnormal brain development, even after controlling for other clinical risk factors. It is unknown whether higher numbers of invasive procedures are associated with long-term alterations in brain microstructure and cognitive outcome at school age in children born very preterm. METHODS: Fifty children born very preterm underwent MRI and cognitive testing at median age 7.6 years (interquartile range, 7.5–7.7). T1- and T2-weighted images were assessed for the severity of brain injury. Magnetic resonance diffusion tensor sequences were used to measure fractional anisotropy (FA), an index of white matter (WM) maturation, from 7 anatomically defined WM regions. Child cognition was assessed using the Wechsler Intelligence Scale for Children–IV. Multivariate modeling was used to examine relationships between invasive procedures, brain microstructure, and cognition, adjusting for clinical confounders (eg, infection, ventilation, brain injury). RESULTS: Greater numbers of invasive procedures were associated with lower FA values of the WM at age 7 years (P = .01). The interaction between the number of procedures and FA was associated with IQ (P = .02), such that greater numbers of invasive procedures and lower FA of the superior WM were related to lower IQ. CONCLUSIONS: Invasive procedures during neonatal care contribute to long-term abnormalities in WM microstructure and lower IQ. PMID:24534406

  8. Signaling pathways relevant to cognition-enhancing drug targets.

    PubMed

    Ménard, Caroline; Gaudreau, Pierrette; Quirion, Rémi

    2015-01-01

    Aging is generally associated with a certain cognitive decline. However, individual differences exist. While age-related memory deficits can be observed in humans and rodents in the absence of pathological conditions, some individuals maintain intact cognitive functions up to an advanced age. The mechanisms underlying learning and memory processes involve the recruitment of multiple signaling pathways and gene expression, leading to adaptative neuronal plasticity and long-lasting changes in brain circuitry. This chapter summarizes the current understanding of how these signaling cascades could be modulated by cognition-enhancing agents favoring memory formation and successful aging. It focuses on data obtained in rodents, particularly in the rat as it is the most common animal model studied in this field. First, we will discuss the role of the excitatory neurotransmitter glutamate and its receptors, downstream signaling effectors [e.g., calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), extracellular signal-regulated kinases (ERK), mammalian target of rapamycin (mTOR), cAMP response element-binding protein (CREB)], associated immediate early gene (e.g., Homer 1a, Arc and Zif268), and growth factors [insulin-like growth factors (IGFs) and brain-derived neurotrophic factor (BDNF)] in synaptic plasticity and memory formation. Second, the impact of the cholinergic system and related modulators on memory will be briefly reviewed. Finally, since dynorphin neuropeptides have recently been associated with memory impairments in aging, it is proposed as an attractive target to develop novel cognition-enhancing agents.

  9. fMRat: an extension of SPM for a fully automatic analysis of rodent brain functional magnetic resonance series.

    PubMed

    Chavarrías, Cristina; García-Vázquez, Verónica; Alemán-Gómez, Yasser; Montesinos, Paula; Pascau, Javier; Desco, Manuel

    2016-05-01

    The purpose of this study was to develop a multi-platform automatic software tool for full processing of fMRI rodent studies. Existing tools require the usage of several different plug-ins, a significant user interaction and/or programming skills. Based on a user-friendly interface, the tool provides statistical parametric brain maps (t and Z) and percentage of signal change for user-provided regions of interest. The tool is coded in MATLAB (MathWorks(®)) and implemented as a plug-in for SPM (Statistical Parametric Mapping, the Wellcome Trust Centre for Neuroimaging). The automatic pipeline loads default parameters that are appropriate for preclinical studies and processes multiple subjects in batch mode (from images in either Nifti or raw Bruker format). In advanced mode, all processing steps can be selected or deselected and executed independently. Processing parameters and workflow were optimized for rat studies and assessed using 460 male-rat fMRI series on which we tested five smoothing kernel sizes and three different hemodynamic models. A smoothing kernel of FWHM = 1.2 mm (four times the voxel size) yielded the highest t values at the somatosensorial primary cortex, and a boxcar response function provided the lowest residual variance after fitting. fMRat offers the features of a thorough SPM-based analysis combined with the functionality of several SPM extensions in a single automatic pipeline with a user-friendly interface. The code and sample images can be downloaded from https://github.com/HGGM-LIM/fmrat .

  10. A Postnatal Diet Containing Phospholipids, Processed to Yield Large, Phospholipid-Coated Lipid Droplets, Affects Specific Cognitive Behaviors in Healthy Male Mice.

    PubMed

    Schipper, Lidewij; van Dijk, Gertjan; Broersen, Laus M; Loos, Maarten; Bartke, Nana; Scheurink, Anton Jw; van der Beek, Eline M

    2016-06-01

    Infant cognitive development can be positively influenced by breastfeeding rather than formula feeding. The composition of breast milk, especially lipid quality, and the duration of breastfeeding have been linked to this effect. We investigated whether the physical properties and composition of lipid droplets in milk may contribute to cognitive development. From postnatal day (P) 16 to P44, healthy male C57BL/6JOlaHsd mice were fed either a control or a concept rodent diet, in which the dietary lipid droplets were large and coated with milk phospholipids, resembling more closely the physical properties and composition of breast milk lipids. Thereafter, all mice were fed an AIN-93M semisynthetic rodent diet. The mice were subjected to various cognitive tests during adolescence (P35-P44) and adulthood (P70-P101). On P102, mice were killed and brain phospholipids were analyzed. The concept diet improved performance in short-term memory tasks that rely on novelty exploration during adolescence (T-maze; spontaneous alternation 87% in concept-fed mice compared with 74% in mice fed control diet; P < 0.05) and adulthood (novel object recognition; preference index 0.48 in concept-fed mice compared with 0.05 in control-fed mice; P < 0.05). Cognitive performance in long-term memory tasks, however, was unaffected by diet. Brain phospholipid composition at P102 was not different between diet groups. Exposure to a diet with lipids mimicking more closely the structure and composition of lipids in breast milk improved specific cognitive behaviors in mice. These data suggest that lipid structure should be considered as a relevant target to improve dietary lipid quality in infant milk formulas. © 2016 American Society for Nutrition.

  11. In vivo detection of inducible nitric oxide synthase in rodent gliomas.

    PubMed

    Towner, Rheal A; Smith, Nataliya; Doblas, Sabrina; Garteiser, Philippe; Watanabe, Yasuko; He, Ting; Saunders, Debra; Herlea, Oana; Silasi-Mansat, Robert; Lupu, Florea

    2010-03-01

    Increased iNOS expression is often found in brain tumors, such as gliomas. The goal of this study was to develop and assess a novel molecular MRI (mMRI) probe for in vivo detection of iNOS in rodent models for gliomas (intracerebral implantation of rat C6 or RG2 cells or ethyl nitrosourea-induced glioma). The probe we used incorporated a Gd-DTPA (gadolinium(III) complex of diethylenetriamine-N,N,N',N'',N''-pentaacetate) backbone with albumin and biotin moieties and covalent binding of an anti-iNOS antibody (Ab) to albumin (anti-iNOS probe). We used mMRI with the anti-iNOS probe to detect in vivo iNOS levels in gliomas. Nonimmune normal rat IgG coupled to albumin-Gd-DTPA-biotin was used as a control nonspecific contrast agent. By targeting the biotin component of the anti-iNOS probe with streptavidin Cy3, fluorescence imaging confirmed the specificity of the probe for iNOS in glioma tissue. iNOS levels in glioma tumors were also confirmed via Western blots and immunohistochemistry. The presence of plasma membrane-associated iNOS in glioma cells was established by transmission electron microscopy and gold-labeled anti-iNOS Ab. The more aggressive RG2 glioma was not found to have higher levels of iNOS compared to C6. Differences in glioma vascularization and blood-brain barrier permeability between the C6 and the RG2 gliomas are discussed. In vivo assessment of iNOS levels associated with tumor development is quite feasible in heterogeneous tissues with mMRI. (c) 2009 Elsevier Inc. All rights reserved.

  12. Food restriction affects Y-maze spatial recognition memory in developing mice.

    PubMed

    Fu, Yu; Chen, Yanmei; Li, Liane; Wang, Yumei; Kong, Xiangyang; Wang, Jianhong

    2017-08-01

    The ambiguous effects of food restriction (FR) on cognition in rodents have been mostly explored in the aged brain by a variety of paradigms, in which either rewards or punishments are involved. This study aims to examine the effects of chronic and acute FR with varying intensities on spatial recognition memory in developing mice. We have used a Y-maze task that is based on the innate tendency of rodents to explore novel environments. In chronic FR, mice had 70-30% chow of control for seven weeks. In acute FR, mice were food restricted for 12-48h before the tests. We found that chronic FR had no effect on the preference of mice for novelty in the Y-maze, but severe FR (50-30% of control) caused impairment on spatial recognition memory. The impairment significantly correlated with the slow weight growth induced by FR. Acute FR also did not affect the novelty preference of mice, but either improved or impaired the memory retention. These data suggest chronic FR impairs Y-maze spatial recognition memory in developing mice depending on FR intensity and individual tolerability of the FR. Moreover, acute FR exerts diverse effects on the memory, either positive or negative. Our findings have revealed new insights on the effects of FR on spatial recognition memory in developing animals. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  13. Toward a 3D model of human brain development for studying gene/environment interactions

    PubMed Central

    2013-01-01

    This project aims to establish and characterize an in vitro model of the developing human brain for the purpose of testing drugs and chemicals. To accurately assess risk, a model needs to recapitulate the complex interactions between different types of glial cells and neurons in a three-dimensional platform. Moreover, human cells are preferred over cells from rodents to eliminate cross-species differences in sensitivity to chemicals. Previously, we established conditions to culture rat primary cells as three-dimensional aggregates, which will be humanized and evaluated here with induced pluripotent stem cells (iPSCs). The use of iPSCs allows us to address gene/environment interactions as well as the potential of chemicals to interfere with epigenetic mechanisms. Additionally, iPSCs afford us the opportunity to study the effect of chemicals during very early stages of brain development. It is well recognized that assays for testing toxicity in the developing brain must consider differences in sensitivity and susceptibility that arise depending on the time of exposure. This model will reflect critical developmental processes such as proliferation, differentiation, lineage specification, migration, axonal growth, dendritic arborization and synaptogenesis, which will probably display differences in sensitivity to different types of chemicals. Functional endpoints will evaluate the complex cell-to-cell interactions that are affected in neurodevelopment through chemical perturbation, and the efficacy of drug intervention to prevent or reverse phenotypes. The model described is designed to assess developmental neurotoxicity effects on unique processes occurring during human brain development by leveraging human iPSCs from diverse genetic backgrounds, which can be differentiated into different cell types of the central nervous system. Our goal is to demonstrate the feasibility of the personalized model using iPSCs derived from individuals with neurodevelopmental disorders caused by known mutations and chromosomal aberrations. Notably, such a human brain model will be a versatile tool for more complex testing platforms and strategies as well as research into central nervous system physiology and pathology. PMID:24564953

  14. An Evo-Devo Approach to Thyroid Hormones in Cerebral and Cerebellar Cortical Development: Etiological Implications for Autism

    PubMed Central

    Berbel, Pere; Navarro, Daniela; Román, Gustavo C.

    2014-01-01

    The morphological alterations of cortical lamination observed in mouse models of developmental hypothyroidism prompted the recognition that these experimental changes resembled the brain lesions of children with autism; this led to recent studies showing that maternal thyroid hormone deficiency increases fourfold the risk of autism spectrum disorders (ASD), offering for the first time the possibility of prevention of some forms of ASD. For ethical reasons, the role of thyroid hormones on brain development is currently studied using animal models, usually mice and rats. Although mammals have in common many basic developmental principles regulating brain development, as well as fundamental basic mechanisms that are controlled by similar metabolic pathway activated genes, there are also important differences. For instance, the rodent cerebral cortex is basically a primary cortex, whereas the primary sensory areas in humans account for a very small surface in the cerebral cortex when compared to the associative and frontal areas that are more extensive. Associative and frontal areas in humans are involved in many neurological disorders, including ASD, attention deficit-hyperactive disorder, and dyslexia, among others. Therefore, an evo-devo approach to neocortical evolution among species is fundamental to understand not only the role of thyroid hormones and environmental thyroid disruptors on evolution, development, and organization of the cerebral cortex in mammals but also their role in neurological diseases associated to thyroid dysfunction. PMID:25250016

  15. What is CAR doing in the middle of the adult neurogenic road?

    PubMed Central

    Junyent, Felix; Coré, Nathalie; Cremer, Harold

    2017-01-01

    ABSTRACT The molecular and cellular basis of adult neurogenesis has attracted considerable attention for fundamental and clinical applications because neural stem cells and newborn neurons may, one day, be harnessed to replace neurons and allow cognitive improvement in the diseased brain. In rodents, neural progenitors are located in the dentate gyrus and the sub/periventricular zone. In the dentate gyrus the generation of newborn neurons is associated with plasticity, including regulation of memory. The role of subventricular zone neural precursors that migrate to the olfactory bulb is less characterized. Identifying factors that impact neural stem cell proliferation, migration and differentiation is therefore sine qua non before we can harness their potential. Here, we expand upon our recent results showing that CAR, the coxsackievirus and adenovirus receptor, is among the developing list of key players when it comes to the complex process of integrating newborn neurons into existing circuits in the mature brain. PMID:28516108

  16. Development and aging of a brain neural stem cell niche.

    PubMed

    Conover, Joanne C; Todd, Krysti L

    2017-08-01

    In the anterior forebrain, along the lateral wall of the lateral ventricles, a neurogenic stem cell niche is found in a region referred to as the ventricular-subventricular zone (V-SVZ). In rodents, robust V-SVZ neurogenesis provides new neurons to the olfactory bulb throughout adulthood; however, with increasing age stem cell numbers are reduced and neurogenic capacity is significantly diminished, but new olfactory bulb neurons continue to be produced even in old age. Humans, in contrast, show little to no new neurogenesis after two years of age and whether V-SVZ neural stem cells persist in the adult human brain remains unclear. Here, we review functional and organizational differences in the V-SVZ stem cell niche of mice and humans, and examine how aging affects the V-SVZ niche and its associated functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Optogenetics through windows on the brain in the nonhuman primate

    PubMed Central

    Ruiz, Octavio; Lustig, Brian R.; Nassi, Jonathan J.; Cetin, Ali; Reynolds, John H.; Albright, Thomas D.; Callaway, Edward M.; Stoner, Gene R.

    2013-01-01

    Optogenetics combines optics and genetics to control neuronal activity with cell-type specificity and millisecond temporal precision. Its use in model organisms such as rodents, Drosophila, and Caenorhabditis elegans is now well-established. However, application of this technology in nonhuman primates (NHPs) has been slow to develop. One key challenge has been the delivery of viruses and light to the brain through the thick dura mater of NHPs, which can only be penetrated with large-diameter devices that damage the brain. The opacity of the NHP dura prevents visualization of the underlying cortex, limiting the spatial precision of virus injections, electrophysiological recordings, and photostimulation. Here, we describe a new optogenetics approach in which the native dura is replaced with an optically transparent artificial dura. This artificial dura can be penetrated with fine glass micropipettes, enabling precisely targeted injections of virus into brain tissue with minimal damage to cortex. The expression of optogenetic agents can be monitored visually over time. Most critically, this optical window permits targeted, noninvasive photostimulation and concomitant measurements of neuronal activity via intrinsic signal imaging and electrophysiological recordings. We present results from both anesthetized-paralyzed (optical imaging) and awake-behaving NHPs (electrophysiology). The improvements over current methods made possible by the artificial dura should enable the widespread use of optogenetic tools in NHP research, a key step toward the development of therapies for neuropsychiatric and neurological diseases in humans. PMID:23761700

  18. Serial transmission in rodents of neurodegeneration from transgenic mice expressing mutant prion protein.

    PubMed Central

    Hsiao, K K; Groth, D; Scott, M; Yang, S L; Serban, H; Rapp, D; Foster, D; Torchia, M; Dearmond, S J; Prusiner, S B

    1994-01-01

    Two lines of transgenic (Tg) mice expressing high (H) levels of the mutant P101L prion protein (PrP) developed a neurologic illness and central nervous system pathology indistinguishable from experimental murine scrapie; these mice were designated Tg(MoPrP-P101L)H. Brain homogenates from Tg(MoPrP-P101L)H mice were inoculated intracerebrally into CD-1 Swiss mice, Syrian hamsters, and Tg196 mice, Tg mice expressing the MoPrP-P101L transgene at low levels. None of the CD-1 mice developed central nervous system dysfunction, whereas approximately 10% of hamsters and approximately 40% of the Tg196 mice manifested neurologic signs between 117 and 639 days after inoculation. Serial transmission of neurodegeneration in Tg196 mice and Syrian hamsters was initiated with brain extracts, producing incubation times of approximately 400 and approximately 75 days, respectively. Although the Tg(MoPrP-P101L)H mice appear to accumulate only low levels of infections prions in their brains, the serial transmission of disease to inoculated recipients argues that prion formation occurs de novo in the brains of these uninoculated animals. These Tg mouse studies, taken together with similar findings in humans dying of inherited prion diseases, provide additional evidence that prions lack a foreign nucleic acid. Images PMID:7916462

  19. A review on potential neurotoxicity of titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Song, Bin; Liu, Jia; Feng, Xiaoli; Wei, Limin; Shao, Longquan

    2015-08-01

    As the rapid development of nanotechnology in the past three decades, titanium dioxide nanoparticles (TiO2 NPs), for their peculiar physicochemical properties, are widely applied in consumer products, food additives, cosmetics, drug carriers, and so on. However, little is known about their potential exposure and neurotoxic effects. Once NPs are unintentionally exposed to human beings, they could be absorbed, and then accumulated in the brain regions by passing through the blood-brain barrier (BBB) or through the nose-to-brain pathway, potentially leading to dysfunctions of central nerve system (CNS). Besides, NPs may affect the brain development of embryo by crossing the placental barrier. A few in vivo and in vitro researches have demonstrated that the morphology and function of neuronal or glial cells could be impaired by TiO2 NPs which might induce cell necrosis. Cellular components, such as mitochondrial, lysosome, and cytoskeleton, could also be influenced as well. The recognition ability, spatial memory, and learning ability of TiO2 NPs-treated rodents were significantly impaired, which meant that accumulation of TiO2 NPs in the brain could lead to neurodegeneration. However, conclusions obtained from those studies were not consistent with each other as researchers may choose different experimental parameters, including administration ways, dosage, size, and crystal structure of TiO2 NPs. Therefore, in order to fully understand the potential risks of TiO2 NPs to brain health, figure out research areas where further studies are required, and improve its bio-safety for applications in the near future, how TiO2 NPs interact with the brain is investigated in this review by summarizing the current researches on neurotoxicity induced by TiO2 NPs.

  20. Hemodynamic resuscitation with arginine vasopressin reduces lung injury after brain death in the transplant donor.

    PubMed

    Rostron, Anthony J; Avlonitis, Vassilios S; Cork, David M W; Grenade, Danielle S; Kirby, John A; Dark, John H

    2008-02-27

    The autonomic storm accompanying brain death leads to neurogenic pulmonary edema and triggers development of systemic and pulmonary inflammatory responses. Neurogenic vasoplegia exacerbates the pulmonary injury caused by brain death and primes the lung for ischemia reperfusion injury and primary graft dysfunction in the recipient. Donor resuscitation with norepinephrine ameliorates the inflammatory response to brain death, however norepinephrine has deleterious effects, particularly on the heart. We tested the hypothesis that arginine vasopressin is a suitable alternative to norepinephrine in managing the hypotensive brain dead donor. Brain death was induced in Wistar rats by intracranial balloon inflation. Pulmonary capillary leak was estimated using radioiodinated albumin. Development of pulmonary edema was assessed by measurement of wet and dry lung weights. Cell surface expression of CD11b/CD18 by neutrophils was determined using flow cytometry. Enzyme-linked immunosorbent assays were used to measure the levels of TNFalpha, IL-1beta, CINC-1, and CINC-3 in serum and bronchoalveolar lavage. Quantitative reverse-transcription polymerase chain reaction was used to determine the expression of cytokine mRNA (IL-1beta, CINC-1 and CINC-3) in lung tissue. There was a significant increase in pulmonary capillary permeability, wet/dry lung weight ratios, neutrophil integrin expression and pro-inflammatory cytokines in serum (TNFalpha, IL-1beta, CINC-1 and CINC-3), bronchoalveolar lavage (TNFalpha and IL-1beta) and lung tissue (IL-1beta and CINC-1) in braindead animals compared to controls. Correction of neurogenic hypotension with either arginine vasopressin or norepinephrine limits edema, reduces pulmonary capillary leak, and modulates systemic and pulmonary inflammatory responses to brain death. Arginine vasopressin and norepinephrine are equally effective in treating the hypotensive pulmonary donor in this rodent model.

  1. Toxicogenomic profiling in maternal and fetal rodent brains following gestational exposure to chlorpyrifos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, Estefania G.; Department of Physiological Sciences, State University of Londrina, Londrina, PR; Yu Xiaozhong

    2010-06-15

    Considering the wide variety of effects that have been reported to occur in the developmental neurotoxicity of chlorpyrifos (CP) and the lack of consensus on their dependence of brain acetylcholinesterase (AChE) activity inhibition, we applied microarray technology to explore dose-dependent alterations in transcriptional response in the fetal and maternal C57BL/6 mouse brain after daily gestational exposure (days 6 to 17) to CP (2, 4, 10, 12 or 15 mg/kg, sc). We identified significantly altered genes across doses and assessed for overrepresentation of Gene Ontology (GO) biological processes and KEGG pathways. We further clustered genes based on their expression profiles acrossmore » doses and repeated the GO/pathways analysis for each cluster. The dose-effect relationship of CP on gene expression, both at the gene and pathway levels was non-monotonic and not necessarily related to brain AChE inhibition. The largest impact was observed in the 10 mg/kg dose group which was also the LOAEL for brain AChE inhibition. In the maternal brain, lower doses (4 mg/kg) influenced GO categories and pathways such as cell adhesion, behavior, lipid metabolism, long-term potentiation, nervous system development, neurogenesis, synaptic transmission. In the fetal brain, lower doses (2 and/or 4 mg/kg) significantly altered cell division, translation, transmission of nerve impulse, chromatin modification, long-term potentiation. In addition, some genes involved in nervous system development and signaling were shown to be specifically influenced by these lower CP doses. Our approach was sensitive and reflected the diversity of responses known to be disrupted by CP and highlighted possible additional consequences of CP neurotoxicity, such as disturbance of the ubiquitin proteasome system.« less

  2. Testosterone affects language areas of the adult human brain.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert

    2016-05-01

    Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high-dose hormone application in adult female-to-male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel-based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting-state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone-dependent neuroplastic adaptations in adulthood within language-specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738-1748, 2016. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  3. Quantitation of heavy ion damage to the mammalian brain - Some preliminary findings

    NASA Technical Reports Server (NTRS)

    Cox, A. B.; Kraft, L. M.

    1984-01-01

    For several years, studies have been conducted regarding late effects of particulate radiations in mammalian tissues, taking into account the brains of rodents and lagomorphs. Recently, it has become feasible to quantify pathological damage and morpho-physiologic alterations accurately in large numbers of histological specimens. New investigative procedures make use of computer-assisted automated image analysis systems. Details regarding the employed methodology are discussed along with the results of the information. The radiations of high linear energy transfer (LET) cause apparently earlier and more dramatic shrinkage of olfactory glomeruli in exposed rabbit brains than comparable doses of Co-60 gamma photons.

  4. Bridging animal and human models of exercise-induced brain plasticity

    PubMed Central

    Voss, Michelle W.; Vivar, Carmen; Kramer, Arthur F.; van Praag, Henriette

    2015-01-01

    Significant progress has been made in understanding the neurobiological mechanisms through which exercise protects and restores the brain. In this feature review, we integrate animal and human research, examining physical activity effects across multiple levels of description (neurons up to inter-regional pathways). We evaluate the influence of exercise on hippocampal structure and function, addressing common themes such as spatial memory and pattern separation, brain structure and plasticity, neurotrophic factors, and vasculature. Areas of research focused more within species, such as hippocampal neurogenesis in rodents, also provide crucial insight into the protective role of physical activity. Overall, converging evidence suggests exercise benefits brain function and cognition across the mammalian lifespan, which may translate into reduced risk for Alzheimer’s disease (AD) in humans. PMID:24029446

  5. Epigenetic memory: the Lamarckian brain

    PubMed Central

    Fischer, Andre

    2014-01-01

    Recent data support the view that epigenetic processes play a role in memory consolidation and help to transmit acquired memories even across generations in a Lamarckian manner. Drugs that target the epigenetic machinery were found to enhance memory function in rodents and ameliorate disease phenotypes in models for brain diseases such as Alzheimer's disease, Chorea Huntington, Depression or Schizophrenia. In this review, I will give an overview on the current knowledge of epigenetic processes in memory function and brain disease with a focus on Morbus Alzheimer as the most common neurodegenerative disease. I will address the question whether an epigenetic therapy could indeed be a suitable therapeutic avenue to treat brain diseases and discuss the necessary steps that should help to take neuroepigenetic research to the next level. PMID:24719207

  6. Preclinical studies of alcohol binge drinking

    PubMed Central

    Crabbe, John C.; Harris, R. Adron; Koob, George F.

    2011-01-01

    Binge drinking is prevalent and has serious biomedical consequences. In children, adolescents, and young adults, it is a prominent risk factor for later development of alcohol-use disorders. Many preclinical models have been employed to study the genetic risks for and biomedical consequences of alcohol drinking. However, these models historically did not result in blood-alcohol concentrations (BACs) exceding 80 mg%; this relatively modest level is the threshold that currently defines a binge session, according to the NIAAA and CDC. Nevertheless, in alcohol-dependent rodents, binge drinking has been well documented. Key neurobiological substrates localized to brain reward and stress systems have been identified. Studies of newer models of binge drinking without dependence are reviewed here. In these models, rodents, non-human primates, and flies will drink enough to reach high BACs. They often display observable signs of intoxication. The neurobiological consequences of these episodes of binge drinking without dependence are reviewed, preliminary evidence for roles for GABA, glutamate, opioid peptides, and corticotropin releasing factor are discussed, as is the need for more work to identify the antecedents and consequences of binge drinking in both animal models and humans. PMID:21272009

  7. Adolescent transitions in reflexive and non-reflexive behavior: Review of fear conditioning and impulse control in rodent models.

    PubMed

    Hunt, Pamela S; Burk, Joshua A; Barnet, Robert C

    2016-11-01

    Adolescence is a time of critical brain changes that pave the way for adult learning processes. However, the extent to which learning in adolescence is best characterized as a transitional linear progression from childhood to adulthood, or represents a period that differs from earlier and later developmental stages, remains unclear. Here we examine behavioral literature on associative fear conditioning and complex choice behavior with rodent models. Many aspects of fear conditioning are intact by adolescence and do not differ from adult patterns. Sufficient evidence, however, suggests that adolescent learning cannot be characterized simply as an immature precursor to adulthood. Across different paradigms assessing choice behavior, literature suggests that adolescent animals typically display more impulsive patterns of responding compared to adults. The extent to which the development of basic conditioning processes serves as a scaffold for later adult decision making is an additional research area that is important for theory, but also has widespread applications for numerous psychological conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Modeling Autistic Features in Animals

    PubMed Central

    Patterson, Paul H.

    2011-01-01

    A variety of features of autism can be simulated in rodents, including the core behavioral hallmarks of stereotyped and repetitive behaviors, and deficits in social interaction and communication. Other behaviors frequently found in autism spectrum disorders (ASD) such as neophobia, enhanced anxiety, abnormal pain sensitivity and eye blink conditioning, disturbed sleep patterns, seizures, and deficits in sensorimotor gating are also present in some of the animal models. Neuropathology and some characteristic neurochemical changes that are frequently seen in autism, as well as alterations in the immune status in the brain and periphery are also found in some of the models. Several known environmental risk factors for autism have been successfully established in rodents, including maternal infection and maternal valproate administration. Also under investigation are a number of mouse models based on genetic variants associated with autism or on syndromic disorders with autistic features. This review briefly summarizes recent developments in this field, highlighting models with face and/or construct validity, and noting the potential for investigation of pathogenesis and early progress towards clinical testing of potential therapeutics. Wherever possible, reference is made to reviews rather than primary articles. PMID:21289542

  9. Brivaracetam, a selective high-affinity synaptic vesicle protein 2A (SV2A) ligand with preclinical evidence of high brain permeability and fast onset of action.

    PubMed

    Nicolas, Jean-Marie; Hannestad, Jonas; Holden, Daniel; Kervyn, Sophie; Nabulsi, Nabeel; Tytgat, Dominique; Huang, Yiyun; Chanteux, Hugues; Staelens, Ludovicus; Matagne, Alain; Mathy, François-Xavier; Mercier, Joël; Stockis, Armel; Carson, Richard E; Klitgaard, Henrik

    2016-02-01

    Rapid distribution to the brain is a prerequisite for antiepileptic drugs used for treatment of acute seizures. The preclinical studies described here investigated the high-affinity synaptic vesicle glycoprotein 2A (SV2A) antiepileptic drug brivara-cetam (BRV) for its rate of brain penetration and its onset of action. BRV was compared with levetiracetam (LEV). In vitro permeation studies were performed using Caco-2 cells. Plasma and brain levels were measured over time after single oral dosing to audiogenic mice and were correlated with anticonvulsant activity. Tissue distribution was investigated after single dosing to rat (BRV and LEV) and dog (LEV only). Positron emission tomography (PET) displacement studies were performed in rhesus monkeys using the SV2A PET tracer [11C]UCB-J. The time course of PET tracer displacement was measured following single intravenous (IV) dosing with LEV or BRV. Rodent distribution data and physiologically based pharmacokinetic (PBPK) modeling were used to compute blood-brain barrier permeability (permeability surface area product, PS) values and then predict brain kinetics in man. In rodents, BRV consistently showed a faster entry into the brain than LEV; this correlated with a faster onset of action against seizures in audiogenic susceptible mice. The higher permeability of BRV was also demonstrated in human cells in vitro. PBPK modeling predicted that, following IV dosing to human subjects, BRV might distribute to the brain within a few minutes compared with approximately 1 h for LEV (PS of 0.315 and 0.015 ml/min/g for BRV and LEV, respectively). These data were supported by a nonhuman primate PET study showing faster SV2A occupancy by BRV compared with LEV. These preclinical data demonstrate that BRV has rapid brain entry and fast brain SV2A occupancy, consistent with the fast onset of action in the audiogenic seizure mice assay. The potential benefit of BRV for treatment of acute seizures remains to be confirmed in clinical studies. © 2015 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.

  10. Multi-object model-based multi-atlas segmentation for rodent brains using dense discrete correspondences

    NASA Astrophysics Data System (ADS)

    Lee, Joohwi; Kim, Sun Hyung; Styner, Martin

    2016-03-01

    The delineation of rodent brain structures is challenging due to low-contrast multiple cortical and subcortical organs that are closely interfacing to each other. Atlas-based segmentation has been widely employed due to its ability to delineate multiple organs at the same time via image registration. The use of multiple atlases and subsequent label fusion techniques has further improved the robustness and accuracy of atlas-based segmentation. However, the accuracy of atlas-based segmentation is still prone to registration errors; for example, the segmentation of in vivo MR images can be less accurate and robust against image artifacts than the segmentation of post mortem images. In order to improve the accuracy and robustness of atlas-based segmentation, we propose a multi-object, model-based, multi-atlas segmentation method. We first establish spatial correspondences across atlases using a set of dense pseudo-landmark particles. We build a multi-object point distribution model using those particles in order to capture inter- and intra- subject variation among brain structures. The segmentation is obtained by fitting the model into a subject image, followed by label fusion process. Our result shows that the proposed method resulted in greater accuracy than comparable segmentation methods, including a widely used ANTs registration tool.

  11. The brain acid-base homeostasis and serotonin: A perspective on the use of carbon dioxide as human and rodent experimental model of panic.

    PubMed

    Leibold, N K; van den Hove, D L A; Esquivel, G; De Cort, K; Goossens, L; Strackx, E; Buchanan, G F; Steinbusch, H W M; Lesch, K P; Schruers, K R J

    2015-06-01

    Panic attacks (PAs), the core feature of panic disorder, represent a common phenomenon in the general adult population and are associated with a considerable decrease in quality of life and high health care costs. To date, the underlying pathophysiology of PAs is not well understood. A unique feature of PAs is that they represent a rare example of a psychopathological phenomenon that can be reliably modeled in the laboratory in panic disorder patients and healthy volunteers. The most effective techniques to experimentally trigger PAs are those that acutely disturb the acid-base homeostasis in the brain: inhalation of carbon dioxide (CO2), hyperventilation, and lactate infusion. This review particularly focuses on the use of CO2 inhalation in humans and rodents as an experimental model of panic. Besides highlighting the different methodological approaches, the cardio-respiratory and the endocrine responses to CO2 inhalation are summarized. In addition, the relationships between CO2 level, changes in brain pH, the serotonergic system, and adaptive physiological and behavioral responses to CO2 exposure are presented. We aim to present an integrated psychological and neurobiological perspective. Remaining gaps in the literature and future perspectives are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. An image warping technique for rodent brain MRI-histology registration based on thin-plate splines with landmark optimization

    NASA Astrophysics Data System (ADS)

    Liu, Yutong; Uberti, Mariano; Dou, Huanyu; Mosley, R. Lee; Gendelman, Howard E.; Boska, Michael D.

    2009-02-01

    Coregistration of in vivo magnetic resonance imaging (MRI) with histology provides validation of disease biomarker and pathobiology studies. Although thin-plate splines are widely used in such image registration, point landmark selection is error prone and often time-consuming. We present a technique to optimize landmark selection for thin-plate splines and demonstrate its usefulness in warping rodent brain MRI to histological sections. In this technique, contours are drawn on the corresponding MRI slices and images of histological sections. The landmarks are extracted from the contours by equal spacing then optimized by minimizing a cost function consisting of the landmark displacement and contour curvature. The technique was validated using simulation data and brain MRI-histology coregistration in a murine model of HIV-1 encephalitis. Registration error was quantified by calculating target registration error (TRE). The TRE of approximately 8 pixels for 20-80 landmarks without optimization was stable at different landmark numbers. The optimized results were more accurate at low landmark numbers (TRE of approximately 2 pixels for 50 landmarks), while the accuracy decreased (TRE approximately 8 pixels for larger numbers of landmarks (70- 80). The results demonstrated that registration accuracy decreases with the increasing landmark numbers offering more confidence in MRI-histology registration using thin-plate splines.

  13. Evaluation of molecular brain changes associated with environmental stress in rodent models compared to human major depressive disorder: A proteomic systems approach.

    PubMed

    Cox, David Alan; Gottschalk, Michael Gerd; Stelzhammer, Viktoria; Wesseling, Hendrik; Cooper, Jason David; Bahn, Sabine

    2016-11-25

    Rodent models of major depressive disorder (MDD) are indispensable when screening for novel treatments, but assessing their translational relevance with human brain pathology has proved difficult. Using a novel systems approach, proteomics data obtained from post-mortem MDD anterior prefrontal cortex tissue (n = 12) and matched controls (n = 23) were compared with equivalent data from three commonly used preclinical models exposed to environmental stressors (chronic mild stress, prenatal stress and social defeat). Functional pathophysiological features associated with depression-like behaviour were identified in these models through enrichment of protein-protein interaction networks. A cross-species comparison evaluated which model(s) represent human MDD pathology most closely. Seven functional domains associated with MDD and represented across at least two models such as "carbohydrate metabolism and cellular respiration" were identified. Through statistical evaluation using kernel-based machine learning techniques, the social defeat model was found to represent MDD brain changes most closely for four of the seven domains. This is the first study to apply a method for directly evaluating the relevance of the molecular pathology of multiple animal models to human MDD on the functional level. The methodology and findings outlined here could help to overcome translational obstacles of preclinical psychiatric research.

  14. Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain-computer interface

    NASA Astrophysics Data System (ADS)

    Widge, Alik S.; Moritz, Chet T.

    2014-04-01

    Objective. There is great interest in closed-loop neurostimulators that sense and respond to a patient's brain state. Such systems may have value for neurological and psychiatric illnesses where symptoms have high intraday variability. Animal models of closed-loop stimulators would aid preclinical testing. We therefore sought to demonstrate that rodents can directly control a closed-loop limbic neurostimulator via a brain-computer interface (BCI). Approach. We trained rats to use an auditory BCI controlled by single units in prefrontal cortex (PFC). The BCI controlled electrical stimulation in the medial forebrain bundle, a limbic structure involved in reward-seeking. Rigorous offline analyses were performed to confirm volitional control of the neurostimulator. Main results. All animals successfully learned to use the BCI and neurostimulator, with closed-loop control of this challenging task demonstrated at 80% of PFC recording locations. Analysis across sessions and animals confirmed statistically robust BCI control and specific, rapid modulation of PFC activity. Significance. Our results provide a preliminary demonstration of a method for emotion-regulating closed-loop neurostimulation. They further suggest that activity in PFC can be used to control a BCI without pre-training on a predicate task. This offers the potential for BCI-based treatments in refractory neurological and mental illness.

  15. Stress modulation of cognitive and affective processes

    PubMed Central

    CAMPEAU, SERGE; LIBERZON, ISRAEL; MORILAK, DAVID; RESSLER, KERRY

    2012-01-01

    This review summarizes the major discussion points of a symposium on stress modulation of cognitive and affective processes, which was held during the 2010 workshop on the neurobiology of stress (Boulder, CO, USA). The four discussants addressed a number of specific cognitive and affective factors that are modulated by exposure to acute or repeated stress. Dr David Morilak discussed the effects of various repeated stress situations on cognitive flexibility, as assessed with a rodent model of attentional set-shifting task, and how performance on slightly different aspects of this test is modulated by different prefrontal regions through monoaminergic neurotransmission. Dr Serge Campeau summarized the findings of several studies exploring a number of factors and brain regions that regulate habituation of various autonomic and neuroendocrine responses to repeated audiogenic stress exposures. Dr Kerry Ressler discussed a body of work exploring the modulation and extinction of fear memories in rodents and humans, especially focusing on the role of key neurotransmitter systems including excitatory amino acids and brain-derived neurotrophic factor. Dr Israel Liberzon presented recent results on human decision-making processes in response to exogenous glucocorticoid hormone administration. Overall, these discussions are casting a wider framework on the cognitive/affective processes that are distinctly regulated by the experience of stress and some of the brain regions and neurotransmitter systems associated with these effects. PMID:21790481

  16. Tumor necrosis factor-alpha during neonatal brain development affects anxiety- and depression-related behaviors in adult male and female mice.

    PubMed

    Babri, Shirin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar

    2014-03-15

    A nascent literature suggests that neonatal infection is a risk factor for the development of brain, behavior and hypothalamic-pituitary-adrenal axis which can affect anxiety- and depression-related behaviors in later life. It has been documented that neonatal infection raises the concentrations of tumor necrosis factor-alpha (TNF-α) in neonate rodents and such infections may result in neonatal brain injury, at least in part, through pro-inflammatory cytokines. In addition, previous studies have shown that TNF-α is involved in cellular differentiation, neurogenesis and programmed cell death during the development of the central nervous system. We investigated for the first time whether neonatal exposure to TNF-α can affect body weight, stress-induced corticosterone (COR), anxiety- and depression-related behaviors in adult mice. In the present study, neonatal mice were treated to recombinant mouse TNF-α (0.2, 0.4, 0.7 and 1 μg/kg) or saline on postnatal days 3 and 5, then adult male and female mice were exposed to different behavioral tests. The results indicated that neonatal TNF-α treatment reduced body weight in neonatal period in both sexes. In addition, this study presents findings indicating that high doses of TNF- increase stress-induced COR levels, anxiety- and depression-related behaviors in adult males, but increase levels of anxiety without significantly influencing depression in adult female mice [corrected]. Our findings suggest that TNF-α exposure during neonatal period can alter brain and behavior development in a dose and sex-dependent manner in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. State-dependent μ-opioid modulation of social motivation

    PubMed Central

    Loseth, Guro E.; Ellingsen, Dan-Mikael; Leknes, Siri

    2014-01-01

    Social mammals engage in affiliative interactions both when seeking relief from negative affect and when searching for pleasure and joy. These two motivational states are both modulated by μ-opioid transmission. The μ-opioid receptor (MOR) system in the brain mediates pain relief and reward behaviors, and is implicated in social reward processing and affiliative bonding across mammalian species. However, pharmacological manipulation of the μ-opioid system has yielded opposite effects on rodents and primates: in rodents, social motivation is generally increased by MOR agonists and reduced by antagonists, whereas the opposite pattern has been shown in primates. Here, we address this paradox by taking into account differences in motivational state. We first review evidence for μ-opioid mediation of reward processing, emotion regulation, and affiliation in humans, non-human primates, rodents and other species. Based on the consistent cross-species similarities in opioid functioning, we propose a unified, state-dependent model for μ-opioid modulation of affiliation across the mammalian species. Finally, we show that this state-dependent model is supported by evidence from both rodent and primate studies, when species and age differences in social separation response are taken into account. PMID:25565999

  18. Effects of diabetes on brain metabolism--is brain glycogen a significant player?

    PubMed

    Sickmann, Helle M; Waagepetersen, Helle S

    2015-02-01

    Brain glycogen, being an intracellular glucose reservoir, contributes to maintain energy and neurotransmitter homeostasis under physiological as well as pathological conditions. Under conditions with a disturbance in systemic glucose metabolism such as in diabetes, the supply of glucose to the brain may be affected and have important impacts on brain metabolism and neurotransmission. This also implies that brain glycogen may serve an essential role in the diabetic state to sustain appropriate brain function. There are two main types of diabetes; type 1 and type 2 diabetes and both types may be associated with brain impairments e.g. cognitive decline and dementia. It is however, not clear how these impairments on brain function are linked to alterations in brain energy and neurotransmitter metabolism. In this review, we will illuminate how rodent diabetes models have contributed to a better understanding of how brain energy and neurotransmitter metabolism is affected in diabetes. There will be a particular focus on the role of brain glycogen to support glycolytic and TCA cycle activity as well as glutamate-glutamine cycle in type 1 and type 2 diabetes.

  19. Fetal Alcohol Spectrum Disorders: An Overview from the Glia Perspective.

    PubMed

    Wilhelm, Clare J; Guizzetti, Marina

    2015-01-01

    Alcohol consumption during pregnancy can produce a variety of central nervous system (CNS) abnormalities in the offspring resulting in a broad spectrum of cognitive and behavioral impairments that constitute the most severe and long-lasting effects observed in fetal alcohol spectrum disorders (FASD). Alcohol-induced abnormalities in glial cells have been suspected of contributing to the adverse effects of alcohol on the developing brain for several years, although much research still needs to be done to causally link the effects of alcohol on specific brain structures and behavior to alterations in glial cell development and function. Damage to radial glia due to prenatal alcohol exposure may underlie observations of abnormal neuronal and glial migration in humans with Fetal Alcohol Syndrome (FAS), as well as primate and rodent models of FAS. A reduction in cell number and altered development has been reported for several glial cell types in animal models of FAS. In utero alcohol exposure can cause microencephaly when alcohol exposure occurs during the brain growth spurt a period characterized by rapid astrocyte proliferation and maturation; since astrocytes are the most abundant cells in the brain, microenchephaly may be caused by reduced astrocyte proliferation or survival, as observed in in vitro and in vivo studies. Delayed oligodendrocyte development and increased oligodendrocyte precursor apoptosis has also been reported in experimental models of FASD, which may be linked to altered myelination/white matter integrity found in FASD children. Children with FAS exhibit hypoplasia of the corpus callosum and anterior commissure, two areas requiring guidance from glial cells and proper maturation of oligodendrocytes. Finally, developmental alcohol exposure disrupts microglial function and induces microglial apoptosis; given the role of microglia in synaptic pruning during brain development, the effects of alcohol on microglia may be involved in the abnormal brain plasticity reported in FASD. The consequences of prenatal alcohol exposure on glial cells, including radial glia and other transient glial structures present in the developing brain, astrocytes, oligodendrocytes and their precursors, and microglia contributes to abnormal neuronal development, reduced neuron survival and disrupted brain architecture and connectivity. This review highlights the CNS structural abnormalities caused by in utero alcohol exposure and outlines which abnormalities are likely mediated by alcohol effects on glial cell development and function.

  20. A simple rapid process for semi-automated brain extraction from magnetic resonance images of the whole mouse head.

    PubMed

    Delora, Adam; Gonzales, Aaron; Medina, Christopher S; Mitchell, Adam; Mohed, Abdul Faheem; Jacobs, Russell E; Bearer, Elaine L

    2016-01-15

    Magnetic resonance imaging (MRI) is a well-developed technique in neuroscience. Limitations in applying MRI to rodent models of neuropsychiatric disorders include the large number of animals required to achieve statistical significance, and the paucity of automation tools for the critical early step in processing, brain extraction, which prepares brain images for alignment and voxel-wise statistics. This novel timesaving automation of template-based brain extraction ("skull-stripping") is capable of quickly and reliably extracting the brain from large numbers of whole head images in a single step. The method is simple to install and requires minimal user interaction. This method is equally applicable to different types of MR images. Results were evaluated with Dice and Jacquard similarity indices and compared in 3D surface projections with other stripping approaches. Statistical comparisons demonstrate that individual variation of brain volumes are preserved. A downloadable software package not otherwise available for extraction of brains from whole head images is included here. This software tool increases speed, can be used with an atlas or a template from within the dataset, and produces masks that need little further refinement. Our new automation can be applied to any MR dataset, since the starting point is a template mask generated specifically for that dataset. The method reliably and rapidly extracts brain images from whole head images, rendering them useable for subsequent analytical processing. This software tool will accelerate the exploitation of mouse models for the investigation of human brain disorders by MRI. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Experimental Toxoplasmosis in Rats Induced Orally with Eleven Strains of Toxoplasma gondii of Seven Genotypes: Tissue Tropism, Tissue Cyst Size, Neural Lesions, Tissue Cyst Rupture without Reactivation, and Ocular Lesions

    PubMed Central

    Dubey, Jitender P.; Ferreira, Leandra R.; Alsaad, Mohammad; Verma, Shiv K.; Alves, Derron A.; Holland, Gary N.; McConkey, Glenn A.

    2016-01-01

    Background The protozoan parasite Toxoplasma gondii is one of the most widely distributed and successful parasites. Toxoplasma gondii alters rodent behavior such that infected rodents reverse their fear of cat odor, and indeed are attracted rather than repelled by feline urine. The location of the parasite encysted in the brain may influence this behavior. However, most studies are based on the highly susceptible rodent, the mouse. Methodology/Principal Findings Latent toxoplasmosis was induced in rats (10 rats per T. gondii strains) of the same age, strain, and sex, after oral inoculation with oocysts (natural route and natural stage of infection) of 11 T. gondii strains of seven genotypes. Rats were euthanized at two months post inoculation (p.i.) to investigate whether the parasite genotype affects the distribution, location, tissue cyst size, or lesions. Tissue cysts were enumerated in different regions of the brains, both in histological sections as well in saline homogenates. Tissue cysts were found in all regions of the brain. The tissue cyst density in different brain regions varied extensively between rats with many regions highly infected in some animals. Overall, the colliculus was most highly infected although there was a large amount of variability. The cerebral cortex, thalamus, and cerebellum had higher tissue cyst densities and two strains exhibited tropism for the colliculus and olfactory bulb. Histologically, lesions were confined to the brain and eyes. Tissue cyst rupture was frequent with no clear evidence for reactivation of tachyzoites. Ocular lesions were found in 23 (25%) of 92 rat eyes at two months p.i. The predominant lesion was focal inflammation in the retina. Tissue cysts were seen in the sclera of one and in the optic nerve of two rats. The choroid was not affected. Only tissue cysts, not active tachyzoite infections, were detected. Tissue cysts were seen in histological sections of tongue of 20 rats but not in myocardium and leg muscle. Conclusion/Significance This study reevaluated in depth the rat model of toxoplasmosis visualizing cyst rupture and clarified many aspects of the biology of the parasite useful for future investigations. PMID:27228262

  2. The role of brain somatostatin receptor 2 in the regulation of feeding and drinking behavior.

    PubMed

    Stengel, Andreas; Karasawa, Hiroshi; Taché, Yvette

    2015-07-01

    Somatostatin was discovered four decades ago as hypothalamic factor inhibiting growth hormone release. Subsequently, somatostatin was found to be widely distributed throughout the brain and to exert pleiotropic actions via interaction with five somatostatin receptors (sst1-5) that are also widely expressed throughout the brain. Interestingly, in contrast to the predominantly inhibitory actions of peripheral somatostatin, the activation of brain sst2 signaling by intracerebroventricular injection of stable somatostatin agonists potently stimulates food intake and independently, drinking behavior in rodents. The orexigenic response involves downstream orexin-1, neuropeptide Y1 and μ receptor signaling while the dipsogenic effect is mediated through the activation of the brain angiotensin 1 receptor. Brain sst2 activation is part of mechanisms underlying the stimulation of feeding and more prominently water intake in the dark phase and is able to counteract the anorexic response to visceral stressors. Published by Elsevier Inc.

  3. PRENATAL INFECTION, MATERNAL IMMUNE ACTIVATION, AND RISK FOR SCHIZOPHRENIA

    PubMed Central

    Canetta, Sarah E.; Brown, Alan S.

    2013-01-01

    A body of epidemiological literature has suggested an association between prenatal infection, subsequent maternal immune activation (MIA), and later risk of schizophrenia. These epidemiological studies have inspired preclinical research using rodent and primate models of prenatal infection and MIA. The findings from these preclinical studies indicate that severe infection and immune activation during pregnancy can negatively impact offspring brain development and impair adult behavior. This review aims to summarize the major epidemiological and preclinical findings addressing the connection between prenatal infection and immune activation and later risk of developing schizophrenia, as well as the more limited literature addressing the mechanisms by which this gestational insult might affect offspring neurodevelopment. Finally, directions for future research will be discussed. PMID:23956839

  4. In Utero Alcohol Exposure, Epigenetic Changes, and Their Consequences

    PubMed Central

    Ungerer, Michelle; Knezovich, Jaysen; Ramsay, Michele

    2013-01-01

    Exposure to alcohol has serious consequences for the developing fetus, leading to a range of conditions collectively known as fetal alcohol spectrum disorders (FASD). Most importantly, alcohol exposure affects the development of the brain during critical periods of differentiation and growth, leading to cognitive and behavioral deficits. The molecular mechanisms and processes underlying the teratogenic effects of alcohol exposure remain poorly understood and are complex, because the specific effects depend on the timing, amount, and duration of exposure as well as genetic susceptibility. Accumulating evidence from studies on DNA methylation and histone modification that affect chromatin structure, as well as on the role of microRNAs in regulating mRNA levels supports the contribution of epigenetic mechanisms to the development of FASD. These epigenetic effects are difficult to study, however, because they often are cell-type specific and transient in nature. Rodent models play an important role in FASD research. Although recent studies using these models have yielded some insight into epigenetic mechanisms affecting brain development, they have generated more questions than they have provided definitive answers. Researchers are just beginning to explore the intertwined roles of different epigenetic mechanisms in neurogenesis and how this process is affected by exposure to alcohol, causing FASD. PMID:24313163

  5. Sexual differentiation of the adolescent rat brain: A longitudinal voxel-based morphometry study.

    PubMed

    Sumiyoshi, Akira; Nonaka, Hiroi; Kawashima, Ryuta

    2017-03-06

    The sexual differentiation of the rat brain during the adolescent period has been well documented in post-mortem histological studies. However, to further understand the morphological changes occurring in the entire brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the sexual differentiation of the rat brain during the adolescent period using longitudinal voxel-based morphometry (VBM) analysis. Male and female Wistar rats (n=12 of each) were scanned in a 7.0-T MRI scanner at five time points from 6 to 10 weeks of age. The T2-weighted MRI images were segmented using the rat brain tissue priors that have been published by our laboratory. At the global level, the results of the VBM analysis showed greater increases in total gray matter volume in the males during the adolescent period, although we did not find significant differences in total white matter volume. At the voxel level, we found significant increases in the regional gray matter volume of the occipital cortex, amygdala, hippocampal formation, and cerebellum. At the regional level, only the occipital cortex in the females exhibited decreases during the adolescent period. These results were, at least in part, consistent with those of previous longitudinal VBM studies in humans, thus providing translational evidence of the sexual differentiation of the developing brain between rodents and humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Critical role of androgen receptor in the postnatal period in male sexual behavior in rats.

    PubMed

    Yamada, Shunji; Ohoya, Miku; Takanami, Keiko; Matsuda, Ken Ichi; Kawata, Mitsuhiro

    2015-11-16

    Gonadal hormones have a developmental role in organization of the nervous system that regulates sexually dimorphic behavior. It is well known that androgen secreted from testes in the perinatal period is converted to estrogen by aromatase in rodent brain, and that estrogen and its receptor play a pivotal role in masculinization of brain structure and function. Treatment with flutamide, an androgen receptor (AR) antagonist, during the perinatal period inhibits development of malespecific brain structure and function, suggesting that androgen signaling via AR also influences brain masculinization. In this study, we investigated which stage during the postnatal period is critical for androgen signaling in brain masculinization. The postnatal period was designated as postnatal days (PD) 0-22, and divided into stages I (PD 0-7), II (PD 8-14), and III (PD 15-22). Newborn male rats were given flutamide subcutaneously in each stage. After adulthood, the effects of postnatal flutamide treatment on brain masculinization were evaluated byanalysis of male sexual behavior. Continuous inhibition of AR throughout stages I and II caused a robust reduction of the intromission ratio and ejaculation frequency compared with other groups. AR inhibition in stage I, II, or III did not cause any change. AR inhibition had no effect onmount behavior. These results show that stage-specific AR activation in the first two postnatal weeks may contribute to brain masculinization mediating male sexual behavior in adulthood. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Lateral Fluid Percussion: Model of Traumatic Brain Injury in Mice

    PubMed Central

    Alder, Janet; Fujioka, Wendy; Lifshitz, Jonathan; Crockett, David P.; Thakker-Varia, Smita

    2011-01-01

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes 1,2. Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement 3,4. The resulting hematomas and lacerations cause a vascular response 3,5, and the morphological and functional damage of the white matter leads to diffuse axonal injury 6-8. Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure 9. Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals 10-12, which ultimately result in long-term neurological disabilities 13,14. Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration 1. The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue 1,15. Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure 16,17. The weight drop/impact model is characterized by the fall of a rod with a specific mass on the closed skull 18. Among the TBI models, LFP is the most established and commonly used model to evaluate mixed focal and diffuse brain injury 19. It is reproducible and is standardized to allow for the manipulation of injury parameters. LFP recapitulates injuries observed in humans, thus rendering it clinically relevant, and allows for exploration of novel therapeutics for clinical translation 20. We describe the detailed protocol to perform LFP procedure in mice. The injury inflicted is mild to moderate, with brain regions such as cortex, hippocampus and corpus callosum being most vulnerable. Hippocampal and motor learning tasks are explored following LFP. PMID:21876530

  8. Lateral fluid percussion: model of traumatic brain injury in mice.

    PubMed

    Alder, Janet; Fujioka, Wendy; Lifshitz, Jonathan; Crockett, David P; Thakker-Varia, Smita

    2011-08-22

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes (1,2). Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement (3,4). The resulting hematomas and lacerations cause a vascular response (3,5), and the morphological and functional damage of the white matter leads to diffuse axonal injury (6-8). Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure (9). Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals (10-12), which ultimately result in long-term neurological disabilities (13,14). Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration (1). The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue (1,15). Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure (16,17). The weight drop/impact model is characterized by the fall of a rod with a specific mass on the closed skull (18). Among the TBI models, LFP is the most established and commonly used model to evaluate mixed focal and diffuse brain injury (19). It is reproducible and is standardized to allow for the manipulation of injury parameters. LFP recapitulates injuries observed in humans, thus rendering it clinically relevant, and allows for exploration of novel therapeutics for clinical translation (20). We describe the detailed protocol to perform LFP procedure in mice. The injury inflicted is mild to moderate, with brain regions such as cortex, hippocampus and corpus callosum being most vulnerable. Hippocampal and motor learning tasks are explored following LFP.

  9. Building the Ferretome

    PubMed Central

    Sukhinin, Dmitrii I.; Engel, Andreas K.; Manger, Paul; Hilgetag, Claus C.

    2016-01-01

    Databases of structural connections of the mammalian brain, such as CoCoMac (cocomac.g-node.org) or BAMS (https://bams1.org), are valuable resources for the analysis of brain connectivity and the modeling of brain dynamics in species such as the non-human primate or the rodent, and have also contributed to the computational modeling of the human brain. Another animal model that is widely used in electrophysiological or developmental studies is the ferret; however, no systematic compilation of brain connectivity is currently available for this species. Thus, we have started developing a database of anatomical connections and architectonic features of the ferret brain, the Ferret(connect)ome, www.Ferretome.org. The Ferretome database has adapted essential features of the CoCoMac methodology and legacy, such as the CoCoMac data model. This data model was simplified and extended in order to accommodate new data modalities that were not represented previously, such as the cytoarchitecture of brain areas. The Ferretome uses a semantic parcellation of brain regions as well as a logical brain map transformation algorithm (objective relational transformation, ORT). The ORT algorithm was also adopted for the transformation of architecture data. The database is being developed in MySQL and has been populated with literature reports on tract-tracing observations in the ferret brain using a custom-designed web interface that allows efficient and validated simultaneous input and proofreading by multiple curators. The database is equipped with a non-specialist web interface. This interface can be extended to produce connectivity matrices in several formats, including a graphical representation superimposed on established ferret brain maps. An important feature of the Ferretome database is the possibility to trace back entries in connectivity matrices to the original studies archived in the system. Currently, the Ferretome contains 50 reports on connections comprising 20 injection reports with more than 150 labeled source and target areas, the majority reflecting connectivity of subcortical nuclei and 15 descriptions of regional brain architecture. We hope that the Ferretome database will become a useful resource for neuroinformatics and neural modeling, and will support studies of the ferret brain as well as facilitate advances in comparative studies of mesoscopic brain connectivity. PMID:27242503

  10. Building the Ferretome.

    PubMed

    Sukhinin, Dmitrii I; Engel, Andreas K; Manger, Paul; Hilgetag, Claus C

    2016-01-01

    Databases of structural connections of the mammalian brain, such as CoCoMac (cocomac.g-node.org) or BAMS (https://bams1.org), are valuable resources for the analysis of brain connectivity and the modeling of brain dynamics in species such as the non-human primate or the rodent, and have also contributed to the computational modeling of the human brain. Another animal model that is widely used in electrophysiological or developmental studies is the ferret; however, no systematic compilation of brain connectivity is currently available for this species. Thus, we have started developing a database of anatomical connections and architectonic features of the ferret brain, the Ferret(connect)ome, www.Ferretome.org. The Ferretome database has adapted essential features of the CoCoMac methodology and legacy, such as the CoCoMac data model. This data model was simplified and extended in order to accommodate new data modalities that were not represented previously, such as the cytoarchitecture of brain areas. The Ferretome uses a semantic parcellation of brain regions as well as a logical brain map transformation algorithm (objective relational transformation, ORT). The ORT algorithm was also adopted for the transformation of architecture data. The database is being developed in MySQL and has been populated with literature reports on tract-tracing observations in the ferret brain using a custom-designed web interface that allows efficient and validated simultaneous input and proofreading by multiple curators. The database is equipped with a non-specialist web interface. This interface can be extended to produce connectivity matrices in several formats, including a graphical representation superimposed on established ferret brain maps. An important feature of the Ferretome database is the possibility to trace back entries in connectivity matrices to the original studies archived in the system. Currently, the Ferretome contains 50 reports on connections comprising 20 injection reports with more than 150 labeled source and target areas, the majority reflecting connectivity of subcortical nuclei and 15 descriptions of regional brain architecture. We hope that the Ferretome database will become a useful resource for neuroinformatics and neural modeling, and will support studies of the ferret brain as well as facilitate advances in comparative studies of mesoscopic brain connectivity.

  11. Imaging axonal transport in the rat visual pathway.

    PubMed

    Abbott, Carla J; Choe, Tiffany E; Lusardi, Theresa A; Burgoyne, Claude F; Wang, Lin; Fortune, Brad

    2013-02-01

    A technique was developed for assaying axonal transport in retinal ganglion cells using 2 µl injections of 1% cholera toxin b-subunit conjugated to AlexaFluor488 (CTB). In vivo retinal and post-mortem brain imaging by confocal scanning laser ophthalmoscopy and post-mortem microscopy were performed. The transport of CTB was sensitive to colchicine, which disrupts axonal microtubules. The bulk rates of transport were determined to be approximately 80-90 mm/day (anterograde) and 160 mm/day (retrograde). Results demonstrate that axonal transport of CTB can be monitored in vivo in the rodent anterior visual pathway, is dependent on intact microtubules, and occurs by active transport mechanisms.

  12. Effect of blood vessels on light distribution in optogenetic stimulation of cortex.

    PubMed

    Azimipour, Mehdi; Atry, Farid; Pashaie, Ramin

    2015-05-15

    In this Letter, the impact of blood vessels on light distribution during photostimulation of cortical tissue in small rodents is investigated. Brain optical properties were extracted using a double-integrating sphere setup, and optical coherence tomography was used to image cortical vessels and capillaries to generate a three-dimensional angiogram of the cortex. By combining these two datasets, a complete volumetric structure of the cortical tissue was developed and linked to a Monte Carlo code which simulates light propagation in this inhomogeneous structure and illustrates the effect of blood vessels on the penetration depth and pattern preservation in optogenetic stimulation.

  13. Enhanced brain penetration of hexamethonium in complexes with derivatives of fullerene C60.

    PubMed

    Piotrovskiy, L B; Litasova, E V; Dumpis, M A; Nikolaev, D N; Yakovleva, E E; Dravolina, O A; Bespalov, A Yu

    2016-05-01

    The present report describes development of hexamethonium complexes based on fullerene C60. Hexamethonium has a limited penetration into CNS and therefore can antagonize central effects of nicotine only when given at high doses. In the present studies conducted in laboratory rodents, intraperitoneal administration of hexamethonium-fullerene complexes blocked effects of nicotine (convulsions and locomotor stimulation). When compared to equimolar doses of hexamethonium, complexes of hexamethonium with derivatives of fullerene C60 were 40 times more potent indicating an enhanced ability to interact with central nicotine receptors. Thus, fullerene C60 derivatives should be explored further as potential carrier systems for polar drug delivery into CNS.

  14. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers.

    PubMed

    Hirvonen, J; Goodwin, R S; Li, C-T; Terry, G E; Zoghbi, S S; Morse, C; Pike, V W; Volkow, N D; Huestis, M A; Innis, R B

    2012-06-01

    Chronic cannabis (marijuana, hashish) smoking can result in dependence. Rodent studies show reversible downregulation of brain cannabinoid CB(1) (cannabinoid receptor type 1) receptors after chronic exposure to cannabis. However, whether downregulation occurs in humans who chronically smoke cannabis is unknown. Here we show, using positron emission tomography imaging, reversible and regionally selective downregulation of brain cannabinoid CB(1) receptors in human subjects who chronically smoke cannabis. Downregulation correlated with years of cannabis smoking and was selective to cortical brain regions. After ∼4 weeks of continuously monitored abstinence from cannabis on a secure research unit, CB(1) receptor density returned to normal levels. This is the first direct demonstration of cortical cannabinoid CB(1) receptor downregulation as a neuroadaptation that may promote cannabis dependence in human brain.

  15. Endocranial morphology of Palaeocene Plesiadapis tricuspidens and evolution of the early primate brain.

    PubMed

    Orliac, Maeva J; Ladevèze, Sandrine; Gingerich, Philip D; Lebrun, Renaud; Smith, Thierry

    2014-04-22

    Expansion of the brain is a key feature of primate evolution. The fossil record, although incomplete, allows a partial reconstruction of changes in primate brain size and morphology through time. Palaeogene plesiadapoids, closest relatives of Euprimates (or crown-group primates), are crucial for understanding early evolution of the primate brain. However, brain morphology of this group remains poorly documented, and major questions remain regarding the initial phase of euprimate brain evolution. Micro-CT investigation of the endocranial morphology of Plesiadapis tricuspidens from the Late Palaeocene of Europe--the most complete plesiadapoid cranium known--shows that plesiadapoids retained a very small and simple brain. Plesiadapis has midbrain exposure, and minimal encephalization and neocorticalization, making it comparable with that of stem rodents and lagomorphs. However, Plesiadapis shares a domed neocortex and downwardly shifted olfactory-bulb axis with Euprimates. If accepted phylogenetic relationships are correct, then this implies that the euprimate brain underwent drastic reorganization during the Palaeocene, and some changes in brain structure preceded brain size increase and neocortex expansion during evolution of the primate brain.

  16. Functional atlas of the awake rat brain: A neuroimaging study of rat brain specialization and integration.

    PubMed

    Ma, Zhiwei; Perez, Pablo; Ma, Zilu; Liu, Yikang; Hamilton, Christina; Liang, Zhifeng; Zhang, Nanyin

    2018-04-15

    Connectivity-based parcellation approaches present an innovative method to segregate the brain into functionally specialized regions. These approaches have significantly advanced our understanding of the human brain organization. However, parallel progress in animal research is sparse. Using resting-state fMRI data and a novel, data-driven parcellation method, we have obtained robust functional parcellations of the rat brain. These functional parcellations reveal the regional specialization of the rat brain, which exhibited high within-parcel homogeneity and high reproducibility across animals. Graph analysis of the whole-brain network constructed based on these functional parcels indicates that the rat brain has a topological organization similar to humans, characterized by both segregation and integration. Our study also provides compelling evidence that the cingulate cortex is a functional hub region conserved from rodents to humans. Together, this study has characterized the rat brain specialization and integration, and has significantly advanced our understanding of the rat brain organization. In addition, it is valuable for studies of comparative functional neuroanatomy in mammalian brains. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The biology of mammalian parenting and its effect on offspring social development.

    PubMed

    Rilling, James K; Young, Larry J

    2014-08-15

    Parents know the transformative nature of having and caring for a child. Among many mammals, giving birth leads from an aversion to infant stimuli to irresistible attraction. Here, we review the biological mechanisms governing this shift in parental motivation in mammals. Estrogen and progesterone prepare the uterus for embryo implantation and placental development. Prolactin stimulates milk production, whereas oxytocin initiates labor and triggers milk ejection during nursing. These same molecules, interacting with dopamine, also activate specific neural pathways to motivate parents to nurture, bond with, and protect their offspring. Parenting in turn shapes the neural development of the infant social brain. Recent work suggests that many of the principles governing parental behavior and its effect on infant development are conserved from rodent to humans. Copyright © 2014, American Association for the Advancement of Science.

  18. Optimising nutrition to improve growth and reduce neurodisabilities in neonates at risk of neurological impairment, and children with suspected or confirmed cerebral palsy.

    PubMed

    Andrew, Morag J; Parr, Jeremy R; Montague-Johnson, Chris; Braddick, Oliver; Laler, Karen; Williams, Nicola; Baker, Bonny; Sullivan, Peter B

    2015-03-17

    Neurological impairment is a common sequelae of perinatal brain injury. Plasticity of the developing brain is due to a rich substrate of developing neurones, synaptic elements and extracellular matrix. Interventions supporting this inherent capacity for plasticity may improve the developmental outcome of infants following brain injury. Nutritional supplementation with combination docosahexaenoic acid, uridine and choline has been shown to increase synaptic elements, dendritic density and neurotransmitter release in rodents, improving performance on cognitive tests. It remains elusive whether such specific 'neurotrophic' supplementation enhances brain plasticity and repair after perinatal brain injury. This is a two year double-blind, randomised placebo controlled study with two cohorts to investigate whether nutritional intervention with a neurotrophic dietary supplement improves growth and neurodevelopmental outcomes in neonates at significant risk of neurological impairment (the D1 cohort), and infants with suspected or confirmed cerebral palsy (the D2 cohort). 120 children will be randomised to receive dietetic and nutritional intervention, and either active supplement or placebo. Eligible D1 neonates are those born <30(+6) weeks gestation with weight <9(th) centile, ≤ 30(+6) weeks gestation and Grade II, III or IV Intra-Ventricular Haemorrhage or periventricular white matter injury, or those born at 31-40(+28) weeks gestation, with Sarnat grade I or II or III Hypoxic Ischaemic Encephalopathy or neuroimaging changes compatible with perinatal brain injury. Eligible D2 infants are those aged 1-18 months with a suspected or confirmed clinical diagnosis of cerebral palsy. The primary outcome measure is composite cognitive score on the Bayley Scales of Infant and Toddler Development III at 24 months. Secondary outcomes include visuobehavioural and visual neurophysiological assessments, and growth parameters including weight, height, and head circumference. This is the first study to supplement neonates and infants with perinatal brain injury with the combination of factors required for healthy brain development, throughout the period of maximal brain growth. A further study strength is the comprehensive range of outcome measures employed. If beneficial, supplementation with brain phosphatide precursors could improve the quality of life of thousands of children with perinatal brain injury. Current Controlled trials: ISRCTN39264076 (registration assigned 09/11/2012), ISRCTN15239951 (registration assigned 23/04/2010).

  19. Rodent Auditory Perception: Critical Band Limitations and Plasticity

    PubMed Central

    King, Julia; Insanally, Michele; Jin, Menghan; Martins, Ana Raquel O.; D'amour, James A.; Froemke, Robert C.

    2015-01-01

    What do animals hear? While it remains challenging to adequately assess sensory perception in animal models, it is important to determine perceptual abilities in model systems to understand how physiological processes and plasticity relate to perception, learning, and cognition. Here we discuss hearing in rodents, reviewing previous and recent behavioral experiments querying acoustic perception in rats and mice, and examining the relation between behavioral data and electrophysiological recordings from the central auditory system. We focus on measurements of critical bands, which are psychoacoustic phenomena that seem to have a neural basis in the functional organization of the cochlea and the inferior colliculus. We then discuss how behavioral training, brain stimulation, and neuropathology impact auditory processing and perception. PMID:25827498

  20. Low Level Primary Blast Injury in Rodent Brain

    PubMed Central

    Pun, Pamela B. L.; Kan, Enci Mary; Salim, Agus; Li, Zhaohui; Ng, Kian Chye; Moochhala, Shabbir M.; Ling, Eng-Ang; Tan, Mui Hong; Lu, Jia

    2011-01-01

    The incidence of blast attacks and resulting traumatic brain injuries has been on the rise in recent years. Primary blast is one of the mechanisms in which the blast wave can cause injury to the brain. The aim of this study was to investigate the effects of a single sub-lethal blast over pressure (BOP) exposure of either 48.9 kPa (7.1 psi) or 77.3 kPa (11.3 psi) to rodents in an open-field setting. Brain tissue from these rats was harvested for microarray and histopathological analyses. Gross histopathology of the brains showed that cortical neurons were “darkened” and shrunken with narrowed vasculature in the cerebral cortex day 1 after blast with signs of recovery at day 4 and day 7 after blast. TUNEL-positive cells were predominant in the white matter of the brain at day 1 after blast and double-labeling of brain tissue showed that these DNA-damaged cells were both oligodendrocytes and astrocytes but were mainly not apoptotic due to the low caspase-3 immunopositivity. There was also an increase in amyloid precursor protein immunoreactive cells in the white matter which suggests acute axonal damage. In contrast, Iba-1 staining for macrophages or microglia was not different from control post-blast. Blast exposure altered the expression of over 5786 genes in the brain which occurred mostly at day 1 and day 4 post-blast. These genes were narrowed down to 10 overlapping genes after time-course evaluation and functional analyses. These genes pointed toward signs of repair at day 4 and day 7 post-blast. Our findings suggest that the BOP levels in the study resulted in mild cellular injury to the brain as evidenced by acute neuronal, cerebrovascular, and white matter perturbations that showed signs of resolution. It is unclear whether these perturbations exist at a milder level or normalize completely and will need more investigation. Specific changes in gene expression may be further evaluated to understand the mechanism of blast-induced neurotrauma. PMID:21541261

  1. Altered dopamine ontogeny in the developmentally vitamin D deficient rat and its relevance to schizophrenia.

    PubMed

    Kesby, James P; Cui, Xiaoying; Burne, Thomas H J; Eyles, Darryl W

    2013-01-01

    Schizophrenia is a heterogeneous group of disorders with unknown etiology. Although abnormalities in multiple neurotransmitter systems have been linked to schizophrenia, alterations in dopamine (DA) neurotransmission remain central to the treatment of this disorder. Given that schizophrenia is considered a neurodevelopmental disorder we have hypothesized that abnormal DA signaling in the adult patient may result from altered DA signaling during fetal brain development. Environmental and genetic risk factors can be modeled in rodents to allow for the investigation of early neurodevelopmental pathogenesis that may lead to clues into the etiology of schizophrenia. To address this we created an animal model of one such risk factor, developmental vitamin D (DVD) deficiency. DVD-deficient adult rats display an altered behavioral profile in response to DA releasing and blocking agents that are reminiscent of that seen in schizophrenia patients. Furthermore, developmental studies revealed that DVD deficiency also altered cell proliferation, apoptosis, and neurotransmission across the embryonic brain. In particular, DVD deficiency reduces the expression of crucial dopaminergic specification factors and alters DA metabolism in the developing brain. We speculate such alterations in fetal brain development may change the trajectory of DA neuron ontogeny to induce the behavioral abnormalities observed in adult offspring. The widespread evidence that both dopaminergic and structural changes are present in people who develop schizophrenia prior to onset also suggest that early alterations in development are central to the disease. Taken together, early alterations in DA ontogeny may represent a core feature in the pathology of schizophrenia. Such a mechanism could bring together evidence from multiple risk factors and genetic vulnerabilities to form a convergent pathway in disease pathophysiology.

  2. DEVELOPING A PREDICTIVE SIMULATION MODEL FOR ANTIANDROGEN IMPACTS ON RODENT PROSTATE

    EPA Science Inventory

    Developing a predictive simulation model for antiandrogen impacts on rodent prostate
    HA Barton1, RW Setzer1, LK Potter1,2
    1US EPA, ORD, NHEERL, ETD, PKB, Research Triangle Park, NC and 2Curriculum in Toxicology, UNC, Chapel Hill, NC

    Alterations in rodent prostate wei...

  3. rno-miR-665 targets BCL2L1 (Bcl-xl) and increases vulnerability to propofol in developing astrocytes.

    PubMed

    Sun, Wen-Chong; Pei, Ling

    2016-07-01

    Propofol exerts a cytotoxic influence over immature neurocytes. Our previous study revealed that clinically relevant doses of propofol accelerated apoptosis of primary cultured astrocytes of developing rodent brains via rno-miR-665 regulation. However, the role of rno-miR-665 during the growth spurt of neonatal rodent brains in vivo is still uncertain. Post-natal day 7 (P7) rats received a single injection of propofol 30 mg/kg intraperitoneally (i.p.), and neuroapoptosis of hippocampal astrocytes was analyzed by immunofluorescence and scanning electron microscopy. The differential expression of rno-miR-665, BCL2L1 (Bcl-xl), and cleaved caspase 3 (CC3) was surveyed by qRT-PCR and western blotting. In addition, the utility of A-1155463, a highly potent and BCL2L1-selective antagonist, was aimed to assess the contribution of BCL2L1 for neuroglial survival. Following the intraventricular injection of lentivirus rno-miR-665, neuroprotection was detected by 5-point scale measurement. The single dose of propofol 30 mg/kg triggered dose-dependent apoptosis of developing hippocampal astrocytes. Meanwhile, propofol triggered both rno-miR-665 and CC3, and depressed BCL2L1, which was predicted as one target gene of rno-miR-665. Combination treatment with A-1155463 and propofol induced lower mRNA and protein levels of BCL2L1 and more CC3 activation than propofol treatment alone in vivo. The lentivirus-mediated knockdown of rno-miR-665 elevated BCL2L1 and attenuated CC3 levels, whereas up-regulation of rno-miR-665 suppressed BCL2L1 and induced CC3 expression in vivo. More importantly, rno-miR-665 antagomir infusion improved neurological outcomes of pups receiving propofol during the brain growth spurt. Rno-miR-665, providing a potential target for alternative therapeutics for pediatric anesthesia, is susceptible to propofol by negatively targeting antiapoptotic BCL2L1. Relatively little is known about the association between exposure of astrocytes to brief propofol anaesthesia and risk for impairment. Here, it revealed that propofol-related neurotoxicity of neonatal astrocytes was under rno-miR-665 regulation during the brain growth spurt. Rno-miR-665 might act as a clinically alternative therapeutic target for treatment of neurological disorders in peadiatric anesthesia or sedation with propofol in future. © 2016 International Society for Neurochemistry.

  4. The touchscreen operant platform for testing learning and memory in rats and mice.

    PubMed

    Horner, Alexa E; Heath, Christopher J; Hvoslef-Eide, Martha; Kent, Brianne A; Kim, Chi Hun; Nilsson, Simon R O; Alsiö, Johan; Oomen, Charlotte A; Holmes, Andrew; Saksida, Lisa M; Bussey, Timothy J

    2013-10-01

    An increasingly popular method of assessing cognitive functions in rodents is the automated touchscreen platform, on which a number of different cognitive tests can be run in a manner very similar to touchscreen methods currently used to test human subjects. This methodology is low stress (using appetitive rather than aversive reinforcement), has high translational potential and lends itself to a high degree of standardization and throughput. Applications include the study of cognition in rodent models of psychiatric and neurodegenerative diseases (e.g., Alzheimer's disease, schizophrenia, Huntington's disease, frontotemporal dementia), as well as the characterization of the role of select brain regions, neurotransmitter systems and genes in rodents. This protocol describes how to perform four touchscreen assays of learning and memory: visual discrimination, object-location paired-associates learning, visuomotor conditional learning and autoshaping. It is accompanied by two further protocols (also published in this issue) that use the touchscreen platform to assess executive function, working memory and pattern separation.

  5. Emergence of transformation-tolerant representations of visual objects in rat lateral extrastriate cortex

    PubMed Central

    Tafazoli, Sina; Safaai, Houman; De Franceschi, Gioia; Rosselli, Federica Bianca; Vanzella, Walter; Riggi, Margherita; Buffolo, Federica; Panzeri, Stefano; Zoccolan, Davide

    2017-01-01

    Rodents are emerging as increasingly popular models of visual functions. Yet, evidence that rodent visual cortex is capable of advanced visual processing, such as object recognition, is limited. Here we investigate how neurons located along the progression of extrastriate areas that, in the rat brain, run laterally to primary visual cortex, encode object information. We found a progressive functional specialization of neural responses along these areas, with: (1) a sharp reduction of the amount of low-level, energy-related visual information encoded by neuronal firing; and (2) a substantial increase in the ability of both single neurons and neuronal populations to support discrimination of visual objects under identity-preserving transformations (e.g., position and size changes). These findings strongly argue for the existence of a rat object-processing pathway, and point to the rodents as promising models to dissect the neuronal circuitry underlying transformation-tolerant recognition of visual objects. DOI: http://dx.doi.org/10.7554/eLife.22794.001 PMID:28395730

  6. Chronic Posttraumatic Epilepsy following Neocortical Undercut Lesion in Mice

    PubMed Central

    Ping, Xingjie; Jin, Xiaoming

    2016-01-01

    Posttraumatic epilepsy (PTE) usually develops in a small percentage of patients of traumatic brain injury after a varying latent period. Modeling this chronic neurological condition in rodents is time consuming and inefficient, which constitutes a significant obstacle in studying its mechanism and discovering novel therapeutics for its prevention and treatment. Partially isolated neocortex, or undercut, is known to induce cortical hyperexcitability and epileptiform activity in vitro, and has been used extensively for studying the neurophysiological mechanism of posttraumatic epileptogenesis. However, whether the undercut lesion in rodents causes chronic epileptic seizures has not been systematically characterized. Here we used a miniature telemetry system to continuously monitor electroencephalography (EEG) in adult C57BL mice for up to 3 months after undercut surgery. We found that 50% of animals developed spontaneous seizures between 16–50 days after injury. The mean seizure duration was 8.9±3.6 seconds, and the average seizure frequency was 0.17±0.17 times per day. There was no progression in seizure frequency and duration over the recording period. Video monitoring revealed behavioral arrests and clonic limb movement during seizure attacks. A pentylenetetrazol (PTZ) test further showed increased seizure susceptibility in the undercut mice. We conclude that undercut lesion in mice is a model of chronic PTE that involves spontaneous epileptic seizures. PMID:27348225

  7. Long-term effects of exposure to methamphetamine in adolescent rats.

    PubMed

    Ye, Tony; Pozos, Hilda; Phillips, Tamara J; Izquierdo, Alicia

    2014-05-01

    Flexible cognition is a set of processes mediated by the prefrontal cortex (PFC), an area of the brain that continues to develop during adolescence and into adulthood. Adult rodents exhibit impairments specific to reversal learning across various dosing regimens of methamphetamine (mAMPH). For adolescent rodents, ongoing PFC development can be assessed by discrimination reversal learning, a task dependent on frontostriatal integrity. The task may also index an increased vulnerability for mAMPH sampling in adulthood. The purpose of the present study was to investigate the long-term effects of escalating, adolescent mAMPH exposure on reversal learning, a PFC-dependent task (Experiment 1) and the likelihood of later sampling of mAMPH in adulthood (Experiment 2). Unlike previous research in adult-treated rats, our results show more generalized learning impairments after adolescent mAMPH exposure to include both attenuated visual discrimination as well as reversal learning. Additionally, we found that rats pre-exposed to mAMPH during adolescence consumed significantly more drug in adulthood. Intake of mAMPH was positively correlated with this learning. Taken together, these findings show that even modest exposure to mAMPH during adolescence may induce general learning impairments in adulthood, and an enduring sensitivity to the effects of mAMPH. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Long-term effects of exposure to methamphetamine in adolescent rats

    PubMed Central

    Ye, Tony; Pozos, Hilda; Phillips, Tamara J.; Izquierdo, Alicia

    2014-01-01

    Background Flexible cognition is a set of processes mediated by the prefrontal cortex (PFC), an area of the brain that continues to develop during adolescence and into adulthood. Adult rodents exhibit impairments specific to reversal learning across various dosing regimens of methamphetamine (mAMPH). For adolescent rodents, ongoing PFC development can be assessed by discrimination reversal learning, a task dependent on frontostriatal integrity. The task may also index an increased vulnerability for mAMPH sampling in adulthood. Methods The purpose of the present study was to investigate the long-term effects of escalating, adolescent mAMPH exposure on reversal learning, a PFC-dependent task (Experiment 1) and the likelihood of later sampling of mAMPH in adulthood (Experiment 2). Results Unlike previous research in adult-treated rats, our results show more generalized learning impairments after adolescent mAMPH exposure to include both attenuated visual discrimination as well as reversal learning. Additionally, we found that rats pre-exposed to mAMPH during adolescence consumed significantly more drug in adulthood. Intake of mAMPH was positively correlated with this learning. Conculsion Taken together, these findings show that even modest exposure to mAMPH during adolescence may induce general learning impairments in adulthood, and an enduring sensitivity to the effects of mAMPH. PMID:24629630

  9. Long-term effects of in utero and lactational exposure to butyl paraben in female rats.

    PubMed

    Guerra, Marina Trevizan; Sanabria, Marciana; Cagliarani, Stephannie Vieira; Leite, Gabriel Adan Araújo; Borges, Cibele Dos Santos; De Grava Kempinas, Wilma

    2017-03-01

    Parabens are used as preservatives in cosmetic, pharmaceutical, and food industries, and are frequently detected as contaminants in human fluids and tissues. The endocrine disrupting effects of parabens in female rodents include uterotrophic response, steroidogenesis impairment, and ovarian disturbances. The objective of this study was to determine the effects of maternal butyl paraben (BP) exposure on female sexual development. Pregnant Wistar rats were treated subcutaneously with either corn oil or BP at doses of 10, 100, or 200 mg/kg, from gestational day (GD) 12 until GD 20 for female foetal gonad evaluation, and from GD 12 until the end of lactation to evaluate sexual parameters on the female offspring. Immature female rats were also used in the uterotrophic assay to evaluate the possible estrogenic action of parabens. Our results revealed that, in this experimental protocol, BP did not show estrogenic activity at the doses used and did not impair sexual development and fertility capacity in the female rats, but impaired sexual behavior. We conclude that brain sexual development may be more sensitive to BP effects and we speculate that doses higher than 100 mg/kg (the male lowest observed adverse effect level (LOAEL) for rodent reproductive parameters) would be necessary to promote damages in the female reproduction, regarding the same protocol of exposure. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 776-788, 2017. © 2016 Wiley Periodicals, Inc.

  10. Effects of Excitotoxic Lesion with Inhaled Anesthetics on Nervous System Cells of Rodents.

    PubMed

    Quiroz-Padilla, Maria Fernanda; Guillazo-Blanch, Gemma; Sanchez, Magdy Y; Dominguez-Sanchez, Maria Andrea; Gomez, Rosa Margarita

    2018-01-01

    Different anesthesia methods can variably influence excitotoxic lesion effects on the brain. The main purpose of this review is to identify potential differences in the toxicity to nervous system cells of two common inhalation anesthesia methods, isoflurane and sevoflurane, used in combination with an excitotoxic lesion procedure in rodents. The use of bioassays in animal models has provided the opportunity to examine the role of specific molecules and cellular interactions that underlie important aspects of neurotoxic effects relating to calcium homeostasis and apoptosis activation. Processes induced by NMDA antagonist drugs involve translocation of Bax protein to mitochondrial membranes, allowing extra-mitochondrial leakage of cytochrome C, followed by sequence of changes that ending in activation of CASP-3. The literature demonstrates that the use of these anesthetics in excitotoxic surgery increases neuroinflammation activity facilitating the effects of apoptosis and necrosis on nervous system cells, depending on the concentration and exposure duration of the anesthetic. High numbers of microglia and astrocytes and high levels of proinflammatory cytokines and caspase activation possibly mediate these inflammatory responses. However, it is necessary to continue studies in rodents to understand the effect of the use of inhaled anesthetics with excitotoxic lesions in different developmental stages, including newborns, juveniles and adults. Understanding the mechanisms of regulation of cell death during development can potentially provide tools to promote neuroprotection and eventually achieve the repair of the nervous system in pathological conditions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. The Association of Specific Constituents of the Fecal Microbiota with Immune-Mediated Brain Disease in Dogs

    PubMed Central

    Jeffery, Nick D.; Barker, Andrew K.; Alcott, Cody J.; Levine, Jon M.; Meren, Ilyssa; Wengert, Jane; Jergens, Albert E.; Suchodolski, Jan S.

    2017-01-01

    Meningoencephalomyelitis of unknown origin (MUO) is a common, naturally-occurring, clinical disease of pet dogs. It is an immune-mediated condition that has many similarities with experimental autoimmune encephalitis (EAE) in rodents and so investigation of its pathogenesis may aid in understanding factors that contribute to development of multiple sclerosis in people. Gut microbiota are known to modulate immune responses that influence susceptibility to immune-mediated brain disease. In this study we aimed to compare abundance of specific constituents of the fecal microbiota, namely Faecalibacterium prausnitzii and Prevotellaceae, between dogs diagnosed with MUO and matched controls. Fecal samples were obtained from 20 dogs diagnosed with MUO and 20 control dogs matched for breed, age and gender. Bacterial abundance was measured using qPCR and 16S rRNA sequencing. We found that Prevotellaceae were significantly less abundant in cases compared with controls (p = 0.003) but there was no difference in abundance of F.prausnitzii. There was no evidence of other differences in gut microbiota between groups. These data, derived from this naturally-occurring canine clinical model, provide strong corroborative evidence that high abundance of Prevotellaceae in the gut is associated with reduced risk for developing immune-mediated brain disease. PMID:28125651

  12. The Association of Specific Constituents of the Fecal Microbiota with Immune-Mediated Brain Disease in Dogs.

    PubMed

    Jeffery, Nick D; Barker, Andrew K; Alcott, Cody J; Levine, Jon M; Meren, Ilyssa; Wengert, Jane; Jergens, Albert E; Suchodolski, Jan S

    2017-01-01

    Meningoencephalomyelitis of unknown origin (MUO) is a common, naturally-occurring, clinical disease of pet dogs. It is an immune-mediated condition that has many similarities with experimental autoimmune encephalitis (EAE) in rodents and so investigation of its pathogenesis may aid in understanding factors that contribute to development of multiple sclerosis in people. Gut microbiota are known to modulate immune responses that influence susceptibility to immune-mediated brain disease. In this study we aimed to compare abundance of specific constituents of the fecal microbiota, namely Faecalibacterium prausnitzii and Prevotellaceae, between dogs diagnosed with MUO and matched controls. Fecal samples were obtained from 20 dogs diagnosed with MUO and 20 control dogs matched for breed, age and gender. Bacterial abundance was measured using qPCR and 16S rRNA sequencing. We found that Prevotellaceae were significantly less abundant in cases compared with controls (p = 0.003) but there was no difference in abundance of F.prausnitzii. There was no evidence of other differences in gut microbiota between groups. These data, derived from this naturally-occurring canine clinical model, provide strong corroborative evidence that high abundance of Prevotellaceae in the gut is associated with reduced risk for developing immune-mediated brain disease.

  13. Methylphenidate and the Juvenile Brain: Enhancement of Attention at the Expense of Cortical Plasticity?

    PubMed Central

    Urban, Kimberly R.; Gao, Wen-Jun

    2013-01-01

    Methylphenidate (Ritalin) is the most commonly prescribed psychoactive drug for juveniles and adolescents. Used to treat attention-deficit/hyperactivity disorder (ADHD) and for cognitive enhancement in healthy individuals, it has been regarded as a relatively safe medication for the past several decades. However, a thorough review of the literature reveals that the age-dependent activities of the drug, as well as potential developmental effects, are largely ignored. In addition, the diagnosis of ADHD is subjective, leaving open the possibility of misdiagnosis and excessive prescription of the drug. Recent studies have suggested that early life exposure of healthy rodent models to methylphenidate resulted in altered sleep/wake cycle, heightened stress reactivity, and, in fact, a dosage previously thought of as therapeutic depressed neuronal function in juvenile rats. Furthermore, juvenile rats exposed to low-dose methylphenidate displayed alterations in neural markers of plasticity, indicating that the drug might alter the basic properties of prefrontal cortical circuits. In this review of the current literature, we propose that juvenile exposure to methylphenidate may cause abnormal prefrontal function and impaired plasticity in the healthy brain, strengthening the case for developing a more thorough understanding of methylphenidate’s actions on the developing, juvenile brain, as well as better diagnostic measures for ADHD. PMID:24095262

  14. Controlled Striatal DOPA Production From a Gene Delivery System in a Rodent Model of Parkinson's Disease.

    PubMed

    Cederfjäll, Erik; Broom, Lauren; Kirik, Deniz

    2015-05-01

    Conventional symptomatic treatment for Parkinson's disease (PD) with long-term L-3,4-dihydroxyphenylalanine (DOPA) is complicated with development of drug-induced side effects. In vivo viral vector-mediated gene expression encoding tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1) provides a drug delivery strategy of DOPA with distinct advantages over pharmacotherapy. Since the brain alterations made with current gene transfer techniques are irreversible, the therapeutic approaches taken to the clinic should preferably be controllable to match the needs of each individual during the course of their disease. We used a recently described tunable gene expression system based on the use of destabilized dihydrofolate reductase (DD) and generated a N-terminally coupled GCH1 enzyme (DD-GCH1) while the TH enzyme was constitutively expressed, packaged in adeno-associated viral (AAV) vectors. Expression of DD-GCH1 was regulated by the activating ligand trimethoprim (TMP) that crosses the blood-brain barrier. We show that the resulting intervention provides a TMP-dose-dependent regulation of DOPA synthesis that is closely linked to the magnitude of functional effects. Our data constitutes the first proof of principle for controlled reconstitution of dopamine capacity in the brain and suggests that such next-generation gene therapy strategies are now mature for preclinical development toward use in patients with PD.

  15. Optimizing a Rodent Model of Parkinson's Disease for Exploring the Effects and Mechanisms of Deep Brain Stimulation

    PubMed Central

    Nowak, Karl; Mix, Eilhard; Gimsa, Jan; Strauss, Ulf; Sriperumbudur, Kiran Kumar; Benecke, Reiner; Gimsa, Ulrike

    2011-01-01

    Deep brain stimulation (DBS) has become a treatment for a growing number of neurological and psychiatric disorders, especially for therapy-refractory Parkinson's disease (PD). However, not all of the symptoms of PD are sufficiently improved in all patients, and side effects may occur. Further progress depends on a deeper insight into the mechanisms of action of DBS in the context of disturbed brain circuits. For this, optimized animal models have to be developed. We review not only charge transfer mechanisms at the electrode/tissue interface and strategies to increase the stimulation's energy-efficiency but also the electrochemical, electrophysiological, biochemical and functional effects of DBS. We introduce a hemi-Parkinsonian rat model for long-term experiments with chronically instrumented rats carrying a backpack stimulator and implanted platinum/iridium electrodes. This model is suitable for (1) elucidating the electrochemical processes at the electrode/tissue interface, (2) analyzing the molecular, cellular and behavioral stimulation effects, (3) testing new target regions for DBS, (4) screening for potential neuroprotective DBS effects, and (5) improving the efficacy and safety of the method. An outlook is given on further developments of experimental DBS, including the use of transgenic animals and the testing of closed-loop systems for the direct on-demand application of electric stimulation. PMID:21603182

  16. Transplacental cocaine exposure. 1: A rodent model.

    PubMed

    Wilkins, A S; Genova, L M; Posten, W; Kosofsky, B E

    1998-01-01

    To characterize the transplacental effects of cocaine on the developing brain, we have developed a mouse model of gestational cocaine exposure. Pharmacokinetic analysis revealed that cocaine and its metabolites (BE, BNE, and NC) were found in fetal brain and plasma at 30 and 120 min following SC administration to embryonic day (E) 17 pregnant Swiss Webster mice. Pregnant dams injected twice daily with cocaine HCl at 20 mg/kg SC from gestational day E8 to E17 (COC) demonstrated less food intake and lower percentage weight gain than vehicle-injected dams allowed access to food ad lib (SAL). A nutritionally paired control group of dams injected with saline vehicle and pair-fed with the COC dams (SPF) demonstrated the lowest percentage weight gain of all three groups. The surrogate fostered offspring of COC and SPF dams demonstrated persistent growth retardation [on postnatal days (P) 1, P9, and P50] and transient brain growth retardation (on P1 and P9) when compared to pups born to SAL dams. We conducted behavioral tests that allowed us to dissociate the indirect effect of cocaine-induced malnutrition from a direct effect of prenatal cocaine administration in altering postnatal behavior. Pups from all three groups were tested for first-order Pavlovian conditioning on P9 or P12, or for the ability to ignore redundant information in a blocking paradigm on P50 or P100. Unlike the SPF and SAL controls, COC mice (i.e., mice born to COC dams) were unable to acquire an aversion to an odor previously paired with shock on P9. This learning deficit was transient because on P12, COC mice trained on the same conditioning task displayed an aversion to the odor that was indistinguishable from the SPF and SAL controls. P50 and P100 COC mice (and to a lesser extent, SPF mice) demonstrated a persistent behavioral deficit in the blocking paradigm, which may reflect alterations in selective attention. We discuss how these findings in our rodent model have developmental implications for human infants exposed to cocaine in utero.

  17. An overview of butanol-induced developmental neurotoxicity and the potential mechanisms related to these observed effects.

    PubMed

    Bale, Ambuja S; Lee, Janice S

    2016-01-01

    The purpose of this article is to briefly review the published literature on the developmental neurotoxic effects, including potential mechanisms, of four butanols: n-butanol, sec-butanol, tert-butanol, isobutanol, and identify data gaps and research needs for evaluation of human health risks in this area. Exposure potential to these four butanols is considerable given the high production volume (>1 billion lb) of n- and tert-butanol and moderate production volumes (100-500 million lb) of sec- and isobutanol. With the impetus to derive cleaner gasoline blends, butanols are being considered for use as fuel oxygenates. Notable signs of neurotoxicity and developmental neurotoxicity have been observed in some studies where laboratory animals (rodents) were gestationally exposed to n- or tert-butanol. Mechanistic data relevant to the observed developmental neurotoxicity endpoints were also reviewed to hypothesize potential mechanisms associated with the developmental neurotoxicity outcome. Data from the related and highly characterized alcohol, ethanol, were included to examine consistencies between this compound and the four butanols. It is widely known that alcohols, including butanols, interact with several ion channels and modulate the function of these targets following both acute and chronic exposures. In addition, n- and sec-butanol have been demonstrated to inhibit fetal rat brain astroglial cell proliferation. Further, rat pups exposed to n-butanol in utero were also reported to have significant increases in brain levels of dopamine and serotonin, but decreases in serotonin levels were noted with gestational exposure to tert-butanol. tert-Butanol was reported to inhibit muscarinic receptor-stimulated phosphoinositide metabolism which has been hypothesized to be a possible target for the neurotoxic effects of ethanol during brain development. The mechanistic data for the butanols support developmental neurotoxicity that has been observed in some of the rodent studies. However, careful studies evaluating the neurobehavior of developing pups in sensitive strains, as well as characterizing the plausible mechanisms involved, need to be conducted in order to further elucidate the neurodevelopmental effects of butanols for risk evaluation. Published by Elsevier Inc.

  18. Bisphenol A in Relation to Behavior and Learning of School-Age Children

    ERIC Educational Resources Information Center

    Hong, Soon-Beom; Hong, Yun-Chul; Kim, Jae-Won; Park, Eun-Jin; Shin, Min-Sup; Kim, Boong-Nyun; Yoo, Hee-Jeong; Cho, In-Hee; Bhang, Soo-Young; Cho, Soo-Churl

    2013-01-01

    Bisphenol A (BPA) has been shown to affect brain and behavior in rodents and nonhuman primates, but there are few studies focusing on its relationship to human neurobehavior. We aimed to investigate the relationship between environmental exposure to BPA and childhood neurobehavior. Methods: Urinary BPA concentrations and behavioral and learning…

  19. The Comparative Reach of Play and Brain: Perspective, Evidence, and Implications

    ERIC Educational Resources Information Center

    Burghardt, Gordon M.

    2010-01-01

    Scholars interested in play in humans should take note of the growing literature on play in other species, especially in light of the application of evolutionary approaches to virtually all areas of psychology. Although most research on animal play deals with mammals--particularly rodents, carnivores, and primates--studies have recorded play of…

  20. Research Review: A Neuroscience Framework for Pediatric Anxiety Disorders

    ERIC Educational Resources Information Center

    Pine, Daniel S.

    2007-01-01

    Across a range of mammalian species, early developmental variations in fear-related behaviors constrain patterns of anxious behavior throughout life. Individual differences in anxiety among rodents and non-human primates have been shown to reflect early-life influences of genes and the environment on brain circuitry. However, in humans, the manner…

  1. Experiential Learning in Rodents: Past Experience Enables Rapid Learning and Localized Encoding in Hippocampus

    ERIC Educational Resources Information Center

    Cox, Conor D.; Palmer, Linda C.; Pham, Danielle T.; Trieu, Brian H.; Gall, Christine M.; Lynch, Gary

    2017-01-01

    Humans routinely use past experience with complexity to deal with novel, challenging circumstances. This fundamental aspect of real-world behavior has received surprisingly little attention in animal studies, and the underlying brain mechanisms are unknown. The present experiments tested for transfer from past experience in rats and then used…

  2. A Genomic Response to Trace Fear Conditioning in the Amygdala of Female Rats After Developmental Exposure to Manganese

    EPA Science Inventory

    Increases in brain-derived neurotrophic factor (Bdnf), Ca2+/calmodulin-dependent protein kinase II alpha (Camk2a), and cyclic adenosine monophosphate (cAMP) response element binding (Creb1) gene expression have been associated with learning in a variety of different rodent studie...

  3. Higher Brain Functions Served by the Lowly Rodent Primary Visual Cortex

    ERIC Educational Resources Information Center

    Gavornik, Jeffrey P.; Bear, Mark F.

    2014-01-01

    It has been more than 50 years since the first description of ocular dominance plasticity--the profound modification of primary visual cortex (V1) following temporary monocular deprivation. This discovery immediately attracted the intense interest of neurobiologists focused on the general question of how experience and deprivation modify the brain…

  4. MicroRNA Profiling Reveals Marker of Motor Neuron Disease in ALS Models.

    PubMed

    Hoye, Mariah L; Koval, Erica D; Wegener, Amy J; Hyman, Theodore S; Yang, Chengran; O'Brien, David R; Miller, Rebecca L; Cole, Tracy; Schoch, Kathleen M; Shen, Tao; Kunikata, Tomonori; Richard, Jean-Philippe; Gutmann, David H; Maragakis, Nicholas J; Kordasiewicz, Holly B; Dougherty, Joseph D; Miller, Timothy M

    2017-05-31

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder marked by the loss of motor neurons (MNs) in the brain and spinal cord, leading to fatally debilitating weakness. Because this disease predominantly affects MNs, we aimed to characterize the distinct expression profile of that cell type to elucidate underlying disease mechanisms and to identify novel targets that inform on MN health during ALS disease time course. microRNAs (miRNAs) are short, noncoding RNAs that can shape the expression profile of a cell and thus often exhibit cell-type-enriched expression. To determine MN-enriched miRNA expression, we used Cre recombinase-dependent miRNA tagging and affinity purification in mice. By defining the in vivo miRNA expression of MNs, all neurons, astrocytes, and microglia, we then focused on MN-enriched miRNAs via a comparative analysis and found that they may functionally distinguish MNs postnatally from other spinal neurons. Characterizing the levels of the MN-enriched miRNAs in CSF harvested from ALS models of MN disease demonstrated that one miRNA (miR-218) tracked with MN loss and was responsive to an ALS therapy in rodent models. Therefore, we have used cellular expression profiling tools to define the distinct miRNA expression of MNs, which is likely to enrich future studies of MN disease. This approach enabled the development of a novel, drug-responsive marker of MN disease in ALS rodents. SIGNIFICANCE STATEMENT Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons (MNs) in the brain and spinal cord are selectively lost. To develop tools to aid in our understanding of the distinct expression profiles of MNs and, ultimately, to monitor MN disease progression, we identified small regulatory microRNAs (miRNAs) that were highly enriched or exclusive in MNs. The signal for one of these MN-enriched miRNAs is detectable in spinal tap biofluid from an ALS rat model, where its levels change as disease progresses, suggesting that it may be a clinically useful marker of disease status. Furthermore, rats treated with ALS therapy have restored expression of this MN RNA marker, making it an MN-specific and drug-responsive marker for ALS rodents. Copyright © 2017 the authors 0270-6474/17/375574-13$15.00/0.

  5. Brain sites involved in fear memory reconsolidation and extinction of rodents.

    PubMed

    Baldi, Elisabetta; Bucherelli, Corrado

    2015-06-01

    Fear memory is a motivational system essential for organisms survival having a central role in organization of defensive behaviors to threat. In the last years there has been a growing interest on conditioned fear memory reconsolidation and extinction, two specific phases of memorization process, both induced by memory retrieval. Understanding the mechanisms underlying these two mnemonic processes may allow to work out therapeutic interventions for treatment of human fear and anxiety disorders, such as specific phobias and post-traumatic stress disorder. Based on the use of one-trial conditioning paradigms, which allow to follow the evolution of a mnemonic trace in its various phases, the present paper has attempted to reorganize the current literature relative to the rodents highlighting both the role of several brain structures in conditioned fear memory reconsolidation and extinction and the selective cellular processes involved. A crucial role seems to be play by medial prefrontal cortex, in particular by prelimbic and infralimbic cortices, and by distinct connections between them and the amygdala, hippocampus and entorhinal cortex. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Impact of aging, Alzheimer's disease and Parkinson's disease on the blood-brain barrier transport of therapeutics.

    PubMed

    Pan, Yijun; Nicolazzo, Joseph A

    2018-04-14

    Older people are at a greater risk of medicine-induced toxicity resulting from either increased drug sensitivity or age-related pharmacokinetic changes. The scenario is further complicated with the two most prevalent age-related neurodegenerative diseases, Alzheimer's disease (AD) and Parkinson's disease (PD). With aging, AD and PD, there is growing evidence of altered structure and function of the blood-brain barrier (BBB), including modifications to tight junctions and efflux transporters, such as P-glycoprotein. The subsequent impact on CNS drug exposure and risk of neurotoxicity from systemically-acting medicines is less well characterized. The purpose of this review, therefore, is to provide an overview of the multiple changes that occur to the BBB as a result of aging, AD and PD, and the impact that such changes have on CNS exposure of drugs, based on studies conducted in aged rodents or rodent models of disease, and in elderly people with and without AD or PD. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  7. In vitro and in vivo evaluation of N-{2-[4-(3-Cyanopyridin-2-yl)piperazin-1-yl]ethyl}-3-[(11) C]methoxybenz-amide, a positron emission tomography (PET) radioligand for dopamine D4 receptors, in rodents.

    PubMed

    Leopoldo, Marcello; Selivanova, Svetlana V; Müller, Adrienne; Lacivita, Enza; Schetz, John A; Ametamey, Simon M

    2014-09-01

    The D4 dopamine receptor belongs to the D2 -like family of dopamine receptors, and its exact regional distribution in the central nervous system is still a matter of considerable debate. The availability of a selective radioligand for the D4 receptor with suitable properties for positron emission tomography (PET) would help resolve issues of D4 receptor localization in the brain, and the presumed diurnal change of expressed protein in the eye and pineal gland. We report here on in vitro and in vivo characteristics of the high-affinity D4 receptor-selective ligand N-{2-[4-(3-cyanopyridin-2-yl)piperazin-1-yl]ethyl}-3-[(11) C]methoxybenzamide ([(11) C]2) in rat. The results provide new insights on the in vitro properties that a brain PET dopamine D4 radioligand should possess in order to have improved in vivo utility in rodents. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  8. REVISITING GLYCOGEN CONTENT IN THE HUMAN BRAIN

    PubMed Central

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R.

    2015-01-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3–4 µmol/g brain glycogen content using in vivo 13C magnetic resonance spectroscopy (MRS) in conjunction with [1-13C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3–5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state 13C labeling in glycogen, here we administered [1-13C]glucose to healthy volunteers for 80 hours. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-13C]glucose administration and 13C-glycogen levels in the occipital lobe were measured by 13C MRS approximately every 12 hours. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the 13C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain. PMID:26202425

  9. Revisiting Glycogen Content in the Human Brain.

    PubMed

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R

    2015-12-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain.

  10. Psychedelics.

    PubMed

    Nichols, David E

    2016-04-01

    Psychedelics (serotonergic hallucinogens) are powerful psychoactive substances that alter perception and mood and affect numerous cognitive processes. They are generally considered physiologically safe and do not lead to dependence or addiction. Their origin predates written history, and they were employed by early cultures in many sociocultural and ritual contexts. After the virtually contemporaneous discovery of (5R,8R)-(+)-lysergic acid-N,N-diethylamide (LSD)-25 and the identification of serotonin in the brain, early research focused intensively on the possibility that LSD and other psychedelics had a serotonergic basis for their action. Today there is a consensus that psychedelics are agonists or partial agonists at brain serotonin 5-hydroxytryptamine 2A receptors, with particular importance on those expressed on apical dendrites of neocortical pyramidal cells in layer V. Several useful rodent models have been developed over the years to help unravel the neurochemical correlates of serotonin 5-hydroxytryptamine 2A receptor activation in the brain, and a variety of imaging techniques have been employed to identify key brain areas that are directly affected by psychedelics. Recent and exciting developments in the field have occurred in clinical research, where several double-blind placebo-controlled phase 2 studies of psilocybin-assisted psychotherapy in patients with cancer-related psychosocial distress have demonstrated unprecedented positive relief of anxiety and depression. Two small pilot studies of psilocybin-assisted psychotherapy also have shown positive benefit in treating both alcohol and nicotine addiction. Recently, blood oxygen level-dependent functional magnetic resonance imaging and magnetoencephalography have been employed for in vivo brain imaging in humans after administration of a psychedelic, and results indicate that intravenously administered psilocybin and LSD produce decreases in oscillatory power in areas of the brain's default mode network. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Estradiol Membrane-Initiated Signaling in the Brain Mediates Reproduction.

    PubMed

    Micevych, Paul E; Mermelstein, Paul G; Sinchak, Kevin

    2017-11-01

    Over the past few years our understanding of estrogen signaling in the brain has expanded rapidly. Estrogens are synthesized in the periphery and in the brain, acting on multiple receptors to regulate gene transcription, neural function, and behavior. Various estrogen-sensitive signaling pathways often operate in concert within the same cell, increasing the complexity of the system. In females, estrogen concentrations fluctuate over the estrous/menstrual cycle, dynamically modulating estrogen receptor (ER) expression, activity, and trafficking. These dynamic changes influence multiple behaviors but are particularly important for reproduction. Using the female rodent model, we review our current understanding of estradiol signaling in the regulation of sexual receptivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma.

    PubMed

    Smith, Alex J; Yao, Xiaoming; Dix, James A; Jin, Byung-Ju; Verkman, Alan S

    2017-08-21

    Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed 'glymphatic' clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the glymphatic mechanism were re-examined by measurements of solute movement in mouse brain following intracisternal or intraparenchymal solute injection. We found that: (i) transport of fluorescent dextrans in brain parenchyma depended on dextran size in a manner consistent with diffusive rather than convective transport; (ii) transport of dextrans in the parenchymal extracellular space, measured by 2-photon fluorescence recovery after photobleaching, was not affected just after cardiorespiratory arrest; and (iii) Aqp4 gene deletion did not impair transport of fluorescent solutes from sub-arachnoid space to brain in mice or rats. Our results do not support the proposed glymphatic mechanism of convective solute transport in brain parenchyma.

  13. Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma

    PubMed Central

    Yao, Xiaoming; Dix, James A; Jin, Byung-Ju

    2017-01-01

    Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed ‘glymphatic’ clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the glymphatic mechanism were re-examined by measurements of solute movement in mouse brain following intracisternal or intraparenchymal solute injection. We found that: (i) transport of fluorescent dextrans in brain parenchyma depended on dextran size in a manner consistent with diffusive rather than convective transport; (ii) transport of dextrans in the parenchymal extracellular space, measured by 2-photon fluorescence recovery after photobleaching, was not affected just after cardiorespiratory arrest; and (iii) Aqp4 gene deletion did not impair transport of fluorescent solutes from sub-arachnoid space to brain in mice or rats. Our results do not support the proposed glymphatic mechanism of convective solute transport in brain parenchyma. PMID:28826498

  14. The Fas Ligand/Fas Death Receptor Pathways Contribute to Propofol-Induced Apoptosis and Neuroinflammation in the Brain of Neonatal Rats.

    PubMed

    Milanovic, Desanka; Pesic, Vesna; Loncarevic-Vasiljkovic, Natasa; Pavkovic, Zeljko; Popic, Jelena; Kanazir, Selma; Jevtovic-Todorovic, Vesna; Ruzdijic, Sabera

    2016-10-01

    A number of experimental studies have reported that exposure to common, clinically used anesthetics induce extensive neuroapoptosis and cognitive impairment when applied to young rodents, up to 2 weeks old, in phase of rapid synaptogenesis. Propofol is the most used general anesthetic in clinical practice whose mechanisms of neurotoxicity on the developing brain remains to be examined in depth. This study investigated effects of different exposures to propofol anesthesia on Fas receptor and Fas ligand expressions, which mediate proapoptotic and proinflammation signaling in the brain. Propofol (20 mg/kg) was administered to 7-day-old rats in multiple doses sufficient to maintain 2-, 4- and 6-h duration of anesthesia. Animals were sacrificed at 0, 4, 16 and 24 h after termination of anesthesia. It was found that propofol anesthesia induced Fas/FasL and downstream caspase-8 expression more prominently in the thalamus than in the cortex. Opposite, Bcl-2 and caspase-9, markers of intrinsic pathway activation, were shown to be more influenced by propofol treatment in the cortex. Further, we have established upregulation of caspase-1 and IL-1β cytokine transcription as well as subsequent activation of microglia that is potentially associated with brain inflammation. Behavioral analyses revealed that P35 and P60 animals, neonatally exposed to propofol, had significantly higher motor activity during three consecutive days of testing in the open field, though formation of the intersession habituation was not prevented. This data, together with our previous results, contributes to elucidation of complex mechanisms of propofol toxicity in developing brain.

  15. Rodents and humans are able to detect the odour of L-Lactate.

    PubMed

    Mosienko, Valentina; Chang, Andy J; Alenina, Natalia; Teschemacher, Anja G; Kasparov, Sergey

    2017-01-01

    L-Lactate (LL) is an essential cellular metabolite which can be used to generate energy. In addition, accumulating evidence suggests that LL is used for inter-cellular signalling. Some LL-sensitive receptors have been identified but we recently proposed that there may be yet another unknown G-protein coupled receptor (GPCR) sensitive to LL in the brain. Olfactory receptors (ORs) represent the largest family of GPCRs and some of them are expressed outside the olfactory system, including brain, making them interesting candidates for non-olfactory LL signalling. One of the "ectopically" expressed ORs, Olfr78 in mice (Olr59 in rats and OR51E2 in humans), reportedly can be activated by LL. This implies that both rodents and humans should be able to detect the LL odour. Surprisingly, this has never been demonstrated. Here we show that mice can detect the odour of LL in odour detection and habituation-dishabituation tasks, and discriminate it from peppermint and vanilla odours. Behaviour of the Olfr78 null mice and wildtype mice in odour detection task was not different, indicating that rodents are equipped with more than one LL-sensitive OR. Rats were also able to use the smell of LL as a cue in an odour-reward associative learning task. When presented to humans, more than 90% of participants detected a smell of LL in solution. Interestingly, LL was perceived differently than acetate or propionate-LL was preferentially reported as a pleasant sweet scent while acetate and propionate were perceived as repulsive sour/acid smells. Subjective perception of LL smell was different in men and women. Taken together, our data demonstrate that both rodents and humans are able to detect the odour of LL. Moreover, in mice, LL perception is not purely mediated by Olfr78. Discovery of further LL-sensitive OR might shed the light on their contribution to LL signalling in the body.

  16. Monkey alcohol tissue research resource: banking tissues for alcohol research.

    PubMed

    Daunais, James B; Davenport, April T; Helms, Christa M; Gonzales, Steven W; Hemby, Scott E; Friedman, David P; Farro, Jonathan P; Baker, Erich J; Grant, Kathleen A

    2014-07-01

    An estimated 18 million adults in the United States meet the clinical criteria for diagnosis of alcohol abuse or alcoholism, a disorder ranked as the third leading cause of preventable death. In addition to brain pathology, heavy alcohol consumption is comorbid with damage to major organs including heart, lungs, liver, pancreas, and kidneys. Much of what is known about risk for and consequences of heavy consumption derive from rodent or retrospective human studies. The neurobiological effects of chronic intake in rodent studies may not easily translate to humans due to key differences in brain structure and organization between species, including a lack of higher-order cognitive functions, and differences in underlying prefrontal cortical neural structures that characterize the primate brain. Further, rodents do not voluntarily consume large quantities of ethanol (EtOH) and they metabolize it more rapidly than primates. The basis of the Monkey Alcohol Tissue Research Resource (MATRR) is that nonhuman primates, specifically monkeys, show a range of drinking excessive amounts of alcohol (>3.0 g/kg or a 12 drink equivalent per day) over long periods of time (12 to 30 months) with concomitant pathological changes in endocrine, hepatic, and central nervous system (CNS) processes. The patterns and range of alcohol intake that monkeys voluntarily consume parallel what is observed in humans with alcohol use disorders and the longitudinal experimental design spans stages of drinking from the EtOH-naïve state to early exposure through chronic abuse. Age- and sex-matched control animals self-administer an isocaloric solution under identical operant procedures. The MATRR is a unique postmortem tissue bank that provides CNS and peripheral tissues, and associated bioinformatics from monkeys that self-administer EtOH using a standardized experimental paradigm to the broader alcohol research community. This resource provides a translational platform from which we can better understand the disease processes associated with alcoholism. Copyright © 2014 by the Research Society on Alcoholism.

  17. Trans-cranial opening of the blood-brain barrier in targeted regions using a stereotaxic brain atlas and focused ultrasound energy.

    PubMed

    Bing, Chenchen; Ladouceur-Wodzak, Michelle; Wanner, Clinton R; Shelton, John M; Richardson, James A; Chopra, Rajiv

    2014-01-01

    The blood-brain barrier (BBB) protects the brain by preventing the entry of large molecules; this poses a major obstacle for the delivery of drugs to the brain. A novel technique using focused ultrasound (FUS) energy combined with microbubble contrast agents has been widely used for non-invasive trans-cranial BBB opening. Traditionally, FUS research is conducted with magnetic resonance imaging (MRI) guidance, which is expensive and poses physical limitations due to the magnetic field. A system that could allow researchers to test brain therapies without MR intervention could facilitate and accelerate translational research. In this study, we present a novel FUS system that uses a custom-built FUS generator mounted on a motorized stereotaxic apparatus with embedded brain atlas to locally open the BBB in rodents. The system was initially characterized using a tissue-mimicking phantom. Rodent studies were also performed to evaluate whether non-invasive, localized BBB opening could be achieved using brain atlas-based targeting. Brains were exposed to pulsed focused ultrasound energy at 1.06 MHz in rats and 3.23 MHz in mice, with the focal pressure estimated to be 0.5-0.6 MPa through the skull. BBB opening was confirmed in gross tissue sections by the presence of Evans blue leakage in the exposed region of the brain and by histological assessment. The targeting accuracy of the stereotaxic system was better than 0.5 mm in the tissue-mimicking phantom. Reproducible localized BBB opening was verified with Evans blue dye leakage in 32/33 rats and had a targeting accuracy of ±0.3 mm. The use of higher frequency exposures in mice enabled a similar precision of localized BBB opening as was observed with the low frequency in the rat model. With this dedicated small-animal motorized stereotaxic-FUS system, we achieved accurate targeting of focused ultrasound exposures in the brain for non-invasive opening of the BBB. This system can be used as an alternative to MR-guided FUS and offers researchers the ability to perform efficient studies (30 min per experiment including preparation) at a reduced cost in a conventional laboratory environment.

  18. Transport of cryptotanshinone, a major active triterpenoid in Salvia miltiorrhiza Bunge widely used in the treatment of stroke and Alzheimer's disease, across the blood-brain barrier.

    PubMed

    Yu, Xi-Yong; Lin, Shu-Guang; Chen, Xiao; Zhou, Zhi-Wei; Liang, Jun; Duan, Wei; Chowbay, Balram; Wen, Jing-Yuan; Chan, Eli; Cao, Jie; Li, Chun-Guang; Zhou, Shu-Feng

    2007-05-01

    Cryptotanshinone (CTS), a major constituent from the roots of Salvia miltiorrhiza (Danshen), is widely used in the treatment of coronary heart disease, stroke and less commonly Alzheimer's disease. Our recent study indicates that CTS is a substrate for P-glycoprotein (PgP/MDR1/ABCB1). This study has investigated the nature of the brain distribution of CTS across the brain-blood barrier (BBB) using several in vitro and in vivo rodent models. A polarized transport of CTS was found in rat primary microvascular endothelial cell (RBMVEC) monolayers, with facilitated efflux from the abluminal side to luminal side. Addition of a PgP (e.g. verapamil and quinidine) or multi-drug resistance protein 1/2 (MRP1/2) inhibitor (e.g. probenecid and MK-571) in both luminal and abluminal sides attenuated the polarized transport. In a bilateral in situ brain perfusion model, the uptake of CTS into the cerebrum increased from 0.52 +/- 0.1% at 1 min to 11.13 +/- 2.36 ml/100 g tissue at 30 min and was significantly greater than that of sucrose. Co-perfusion of a PgP/MDR1 (e.g. verapamil) or MRP1/2 inhibitor (e.g. probenecid) significantly increased the brain distribution of CTS by 35.1-163.6%. The brain levels of CTS were only about 21% of those in plasma, and were significantly increased when coadministered with verapamil or probenecid in rats. The brain levels of CTS in rats subjected to middle cerebral artery occlusion and rats treated with quinolinic acid (a neurotoxin) were about 2- to 2.5-fold higher than the control rats. Moreover, the brain levels in mdr1a(-/-) and mrp1(-/-) mice were 10.9- and 1.5-fold higher than those in the wild-type mice, respectively. Taken collectively, these findings indicate that PgP and Mrp1 limit the brain penetration of CTS in rodents, suggesting a possible role of PgP and MRP1 in limiting the brain penetration of CTS in patients and causing drug resistance to Danshen therapy and interactions with conventional drugs that are substrates of PgP and MRP1. Further studies are needed to explore the role of other drug transporters in restricting the brain penetration of CTS and the clinical relevance.

  19. Sex-dependent differences in voluntary physical activity.

    PubMed

    Rosenfeld, Cheryl S

    2017-01-02

    Numbers of overweight and obese individuals are increasing in the United States and globally, and, correspondingly, the associated health care costs are rising dramatically. More than one-third of children are currently considered obese with a predisposition to type 2 diabetes, and it is likely that their metabolic conditions will worsen with age. Physical inactivity has also risen to be the leading cause of many chronic, noncommunicable diseases (NCD). Children are more physically inactive now than they were in past decades, which may be due to intrinsic and extrinsic factors. In rodents, the amount of time engaged in spontaneous activity within the home cage is a strong predictor of later adiposity and weight gain. Thus, it is important to understand primary motivators stimulating physical activity (PA). There are normal sex differences in PA levels in rodents and humans. The perinatal environment can induce sex-dependent differences in PA disturbances. This Review considers the current evidence for sex differences in PA in rodents and humans. The rodent studies showing that early exposure to environmental chemicals can shape later adult PA responses are discussed. Next, whether there are different motivators stimulating exercise in male vs. female humans are examined. Finally, the brain regions, genes, and pathways that modulate PA in rodents, and possibly by translation in humans, are described. A better understanding of why each sex remains physically active through the life span could open new avenues for preventing and treating obesity in children and adults. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Impaired capacity for upregulation of MHC class II in tumor-associated microglia.

    PubMed

    Schartner, Jill M; Hagar, Aaron R; Van Handel, Michelle; Zhang, Leying; Nadkarni, Nivedita; Badie, Behnam

    2005-09-01

    Immunotherapy for malignant gliomas is being studied as a possible adjunctive therapy for this highly fatal disease. Thus far, inadequate understanding of brain tumor immunology has hindered the design of such therapies. For instance, the role of microglia and macrophages, which comprise a significant proportion of tumor-infiltrating inflammatory cells, in the regulation of the local anti-tumor immune response is poorly understood. To study the response of microglia and macrophages to known activators in brain tumors, we injected CpG oligodeoxynucleotide (ODN), interferon-gamma (IFN-gamma), and IFN-gamma/LPS into normal and intracranial RG2 glioma-bearing rodents. Microglia/macrophage infiltration and their surface expression of MHC class II B7.1 and B7.2 was examined by flow cytometry. Each agent evaluated yielded a distinct microglia/macrophage response: CpG ODN was the most potent inducer of microglia/macrophage infiltration and B7.1 expression, while IFN-gamma resulted in the highest MHC-II expression in both normal and tumors. Regardless of the agent injected, however, MHC-II induction was significantly muted in tumor microglia/macrophage as compared with normal brain. These data suggest that microglia/macrophage responsiveness to activators can vary in brain tumors when compared with normal brain. Understanding the mechanism of these differences may be critical in the development of novel immunotherapies for malignant glioma. (c) 2005 Wiley-Liss, Inc.

  1. Testosterone affects language areas of the adult human brain

    PubMed Central

    Hahn, Andreas; Kranz, Georg S.; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.

    2016-01-01

    Abstract Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high‐dose hormone application in adult female‐to‐male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel‐based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting‐state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone‐dependent neuroplastic adaptations in adulthood within language‐specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738–1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303

  2. Expression of small cytoplasmic transcripts of the rat identifier element in vivo and in cultured cells.

    PubMed Central

    McKinnon, R D; Danielson, P; Brow, M A; Bloom, F E; Sutcliffe, J G

    1987-01-01

    We examined the level of expression of small RNA transcripts hybridizing to a rodent repetitive DNA element, the identifier (ID) sequence, in a variety of cell types in vivo and in cultured mammalian cells. A 160-nucleotide (160n) cytoplasmic poly(A)+ RNA (BC1) appeared in late embryonic and early postnatal rat brain development, was enriched in the cerebral cortex, and appeared to be restricted to neural tissue and the anterior pituitary gland. A 110n RNA (BC2) was specifically enriched in brain, especially the postnatal cortex, but was detectable at low levels in peripheral tissues. A third, related 75n poly(A)- RNA (T3) was found in rat brain and at lower levels in peripheral tissues but was very abundant in the testes. The BC RNAs were found in a variety of rat cell lines, and their level of expression was dependent upon cell culture conditions. A rat ID probe detected BC-like RNAs in mouse brain but not liver and detected a 200n RNA in monkey brain but not liver at lower hybridization stringencies. These RNAs were expressed by mouse and primate cell lines. Thus, tissue-specific expression of small ID-sequence-related transcripts is conserved among mammals, but the tight regulation found in vivo is lost by cells in culture. Images PMID:2439903

  3. Identification of Novel Rodent Herpesviruses, Including the First Gammaherpesvirus of Mus musculus▿

    PubMed Central

    Ehlers, Bernhard; Küchler, Judit; Yasmum, Nezlisah; Dural, Güzin; Voigt, Sebastian; Schmidt-Chanasit, Jonas; Jäkel, Thomas; Matuschka, Franz-Rainer; Richter, Dania; Essbauer, Sandra; Hughes, David J.; Summers, Candice; Bennett, Malcolm; Stewart, James P.; Ulrich, Rainer G.

    2007-01-01

    Rodent herpesviruses such as murine cytomegalovirus (host, Mus musculus), rat cytomegalovirus (host, Rattus norvegicus), and murine gammaherpesvirus 68 (hosts, Apodemus species) are important tools for the experimental study of human herpesvirus diseases. However, alphaherpesviruses, roseoloviruses, and lymphocryptoviruses, as well as rhadinoviruses, that naturally infect Mus musculus (house mouse) and other Old World mice are unknown. To identify hitherto-unknown rodent-associated herpesviruses, we captured M. musculus, R. norvegicus, and 14 other rodent species in several locations in Germany, the United Kingdom, and Thailand. Samples of trigeminal ganglia, dorsal root ganglia, brains, spleens, and other organs, as well as blood, were analyzed with a degenerate panherpesvirus PCR targeting the DNA polymerase (DPOL) gene. Herpesvirus-positive samples were subjected to a second degenerate PCR targeting the glycoprotein B (gB) gene. The sequences located between the partial DPOL and gB sequences were amplified by long-distance PCR and sequenced, resulting in a contiguous sequence of approximately 3.5 kbp. By DPOL PCR, we detected 17 novel betaherpesviruses and 21 novel gammaherpesviruses but no alphaherpesvirus. Of these 38 novel herpesviruses, 14 were successfully analyzed by the complete bigenic approach. Most importantly, the first gammaherpesvirus of Mus musculus was discovered (Mus musculus rhadinovirus 1 [MmusRHV1]). This virus is a member of a novel group of rodent gammaherpesviruses, which is clearly distinct from murine herpesvirus 68-like rodent gammaherpesviruses. Multigenic phylogenetic analysis, using an 8-kbp locus, revealed that MmusRHV1 diverged from the other gammaherpesviruses soon after the evolutionary separation of Epstein-Barr virus-like lymphocryptoviruses from human herpesvirus 8-like rhadinoviruses and alcelaphine herpesvirus 1-like macaviruses. PMID:17507487

  4. A discrimination task used as a novel method of testing decision-making behavior following traumatic brain injury.

    PubMed

    Martens, Kris M; Vonder Haar, Cole; Hutsell, Blake A; Hoane, Michael R

    2012-10-10

    Traumatic brain injury (TBI) results in a multitude of deficits following injury. Some of the most pervasive in humans are the changes that affect frontally-mediated cognitive functioning, such as decision making. The assessment of decision-making behavior in rodents has been extensively tested in the field of the experimental analysis of behavior. However, due to the narrow therapeutic window following TBI, time-intensive operant paradigms are rarely incorporated into the battery of tests traditionally used, the majority of which assess motor and sensory functioning. The cognitive measures that are used are frequently limited to memory and do not account for changes in decision-making behavior. The purpose of the present study was to develop a simplified discrimination task that can assess deficits in decision-making behavior in rodents. For the task, rats were required to dig in cocoa-scented sand (versus unscented sand) for a reinforcer. Rats were given 12 sessions per day until a criterion level of 80% accuracy for 3 days straight was reached. Once the criterion was achieved, cortical contusion injuries were induced (frontal, parietal, or sham). Following a recovery period, the rats were re-tested on cocoa versus unscented sand. Upon reaching criterion, a reversal discrimination was evaluated in which the reinforcer was placed in unscented sand. Finally, a novel scent discrimination (basil versus coffee with basil reinforced), and a reversal (coffee) were evaluated. The results indicated that the Dig task is a simple experimental preparation that can be used to assess deficits in decision-making behavior following TBI.

  5. Effects of developmental alcohol and valproic acid exposure on play behavior of ferrets

    PubMed Central

    Krahe, Thomas E.; Filgueiras, Claudio C.; Medina, Alexandre E.

    2017-01-01

    Exposure to alcohol and valproic acid (VPA) during pregnancy can lead to fetal alcohol spectrum disorders and fetal valproate syndrome, respectively. Altered social behavior is a hallmark of both these conditions and there is ample evidence showing that developmental exposure to alcohol and VPA affect social behavior in rodents. However, results from rodent models are somewhat difficult to translate to humans owing to the substantial differences in brain development, morphology, and connectivity. Since the cortex folding pattern is closely related to its specialization and that social behavior is strongly influenced by cortical structures, here we studied the effects of developmental alcohol and VPA exposure on the play behavior of the ferret, a gyrencephalic animal known for its playful nature. Animals were injected with alcohol (3.5 g/kg, i.p.), VPA (200 mg/kg, i.p.) or saline (i.p) every other day during the brain growth spurt period, between postnatal days 10 and 30. The play behavior of pairs of the same experimental group was evaluated 3 weeks later. Both treatments induced significant behavioral differences compared to controls. Alcohol and VPA exposed ferrets played less than saline treated ones, but while animals from the alcohol group displayed a delay in start playing with each other, VPA treated ones spent most of the time close to one another without playing. These findings not only extend previous results on the effects of developmental exposure to alcohol and VPA on social behavior, but make the ferret a great model to study the underlying mechanisms of social interaction. PMID:27208641

  6. NeuroPhysics: Studying how neurons create the perception of space-time using Physics' tools and techniques

    NASA Astrophysics Data System (ADS)

    Dhingra, Shonali; Sandler, Roman; Rios, Rodrigo; Vuong, Cliff; Mehta, Mayank

    All animals naturally perceive the abstract concept of space-time. A brain region called the Hippocampus is known to be important in creating these perceptions, but the underlying mechanisms are unknown. In our lab we employ several experimental and computational techniques from Physics to tackle this fundamental puzzle. Experimentally, we use ideas from Nanoscience and Materials Science to develop techniques to measure the activity of hippocampal neurons, in freely-behaving animals. Computationally, we develop models to study neuronal activity patterns, which are point processes that are highly stochastic and multidimensional. We then apply these techniques to collect and analyze neuronal signals from rodents while they're exploring space in Real World or Virtual Reality with various stimuli. Our findings show that under these conditions neuronal activity depends on various parameters, such as sensory cues including visual and auditory, and behavioral cues including, linear and angular, position and velocity. Further, neuronal networks create internally-generated rhythms, which influence perception of space and time. In totality, these results further our understanding of how the brain develops a cognitive map of our surrounding space, and keep track of time.

  7. CoCoMac 2.0 and the future of tract-tracing databases

    PubMed Central

    Bakker, Rembrandt; Wachtler, Thomas; Diesmann, Markus

    2012-01-01

    The CoCoMac database contains the results of several hundred published axonal tract-tracing studies in the macaque monkey brain. The combined results are used for constructing the macaque macro-connectome. Here we discuss the redevelopment of CoCoMac and compare it to six connectome-related projects: two online resources that provide full access to raw tracing data in rodents, a connectome viewer for advanced 3D graphics, a partial but highly detailed rat connectome, a brain data management system that generates custom connectivity matrices, and a software package that covers the complete pipeline from connectivity data to large-scale brain simulations. The second edition of CoCoMac features many enhancements over the original. For example, a search wizard is provided for full access to all tables and their nested dependencies. Connectivity matrices can be computed on demand in a user-selected nomenclature. A new data entry system is available as a preview, and is to become a generic solution for community-driven data entry in manually collated databases. We conclude with the question whether neuronal tracing will remain the gold standard to uncover the wiring of brains, thereby highlighting developments in human connectome construction, tracer substances, polarized light imaging, and serial block-face scanning electron microscopy. PMID:23293600

  8. CoCoMac 2.0 and the future of tract-tracing databases.

    PubMed

    Bakker, Rembrandt; Wachtler, Thomas; Diesmann, Markus

    2012-01-01

    The CoCoMac database contains the results of several hundred published axonal tract-tracing studies in the macaque monkey brain. The combined results are used for constructing the macaque macro-connectome. Here we discuss the redevelopment of CoCoMac and compare it to six connectome-related projects: two online resources that provide full access to raw tracing data in rodents, a connectome viewer for advanced 3D graphics, a partial but highly detailed rat connectome, a brain data management system that generates custom connectivity matrices, and a software package that covers the complete pipeline from connectivity data to large-scale brain simulations. The second edition of CoCoMac features many enhancements over the original. For example, a search wizard is provided for full access to all tables and their nested dependencies. Connectivity matrices can be computed on demand in a user-selected nomenclature. A new data entry system is available as a preview, and is to become a generic solution for community-driven data entry in manually collated databases. We conclude with the question whether neuronal tracing will remain the gold standard to uncover the wiring of brains, thereby highlighting developments in human connectome construction, tracer substances, polarized light imaging, and serial block-face scanning electron microscopy.

  9. In vivo bioluminescence imaging validation of a human biopsy-derived orthotopic mouse model of glioblastoma multiforme.

    PubMed

    Jarzabek, Monika A; Huszthy, Peter C; Skaftnesmo, Kai O; McCormack, Emmet; Dicker, Patrick; Prehn, Jochen H M; Bjerkvig, Rolf; Byrne, Annette T

    2013-05-01

    Glioblastoma multiforme (GBM), the most aggressive brain malignancy, is characterized by extensive cellular proliferation, angiogenesis, and single-cell infiltration into the brain. We have previously shown that a xenograft model based on serial xenotransplantation of human biopsy spheroids in immunodeficient rodents maintains the genotype and phenotype of the original patient tumor. The present work further extends this model for optical assessment of tumor engraftment and growth using bioluminescence imaging (BLI). A method for successful lentiviral transduction of the firefly luciferase gene into multicellular spheroids was developed and implemented to generate optically active patient tumor cells. Luciferase-expressing spheroids were injected into the brains of immunodeficient mice. BLI photon counts and tumor volumes from magnetic resonance imaging (MRI) were correlated. Luciferase-expressing tumors recapitulated the histopathologic hallmarks of human GBMs and showed proliferation rates and microvessel density counts similar to those of wild-type xenografts. Moreover, we detected widespread invasion of luciferase-positive tumor cells in the mouse brains. Herein we describe a novel optically active model of GBM that closely mimics human pathology with respect to invasion, angiogenesis, and proliferation indices. The model may thus be routinely used for the assessment of novel anti-GBM therapeutic approaches implementing well-established and cost-effective optical imaging strategies.

  10. Cooperation between brain and islet in glucose homeostasis and diabetes

    PubMed Central

    Schwartz, Michael W.; Seeley, Randy J.; Tschöp, Matthias H.; Woods, Stephen C.; Morton, Gregory J.; Myers, Martin G.; D'Alessio, David

    2014-01-01

    Although a prominent role for the brain in glucose homeostasis was proposed by scientists in the nineteenth century, research throughout most of the twentieth century focused on evidence that the function of pancreatic islets is both necessary and sufficient to explain glucose homeostasis, and that diabetes results from defects of insulin secretion, action or both. However, insulin-independent mechanisms, referred to as ‘glucose effectiveness’, account for roughly 50% of overall glucose disposal, and reduced glucose effectiveness also contributes importantly to diabetes pathogenesis. Although mechanisms underlying glucose effectiveness are poorly understood, growing evidence suggests that the brain can dynamically regulate this process in ways that improve or even normalize glycaemia in rodent models of diabetes. Here we present evidence of a brain-centred glucoregulatory system (BCGS) that can lower blood glucose levels via both insulin-dependent and -independent mechanisms, and propose a model in which complex and highly coordinated interactions between the BCGS and pancreatic islets promote normal glucose homeostasis. Because activation of either regulatory system can compensate for failure of the other, defects in both may be required for diabetes to develop. Consequently, therapies that target the BCGS in addition to conventional approaches based on enhancing insulin effects may have the potential to induce diabetes remission, whereas targeting just one typically does not. PMID:24201279

  11. Aerobic fitness relates to learning on a virtual Morris Water Task and hippocampal volume in adolescents.

    PubMed

    Herting, Megan M; Nagel, Bonnie J

    2012-08-01

    In rodents, exercise increases hippocampal neurogenesis and allows for better learning and memory performance on water maze tasks. While exercise has also been shown to be beneficial for the brain and behavior in humans, no study has examined how exercise impacts spatial learning using a directly translational water maze task, or if these relationships exist during adolescence--a developmental period which the animal literature has shown to be especially vulnerable to exercise effects. In this study, we investigated the influence of aerobic fitness on hippocampal size and subsequent learning and memory, including visuospatial memory using a human analogue of the Morris Water Task, in 34 adolescents. Results showed that higher aerobic fitness predicted better learning on the virtual Morris Water Task and larger hippocampal volumes. No relationship between virtual Morris Water Task memory recall and aerobic fitness was detected. Aerobic fitness, however, did not relate to global brain volume or verbal learning, which might suggest some specificity of the influence of aerobic fitness on the adolescent brain. This study provides a direct translational approach to the existing animal literature on exercise, as well as adds to the sparse research that exists on how aerobic exercise impacts the developing human brain and memory. Published by Elsevier B.V.

  12. Glyburide is associated with attenuated vasogenic edema in stroke patients.

    PubMed

    Kimberly, W Taylor; Battey, Thomas W K; Pham, Ly; Wu, Ona; Yoo, Albert J; Furie, Karen L; Singhal, Aneesh B; Elm, Jordan J; Stern, Barney J; Sheth, Kevin N

    2014-04-01

    Brain edema is a serious complication of ischemic stroke that can lead to secondary neurological deterioration and death. Glyburide is reported to prevent brain swelling in preclinical rodent models of ischemic stroke through inhibition of a non-selective channel composed of sulfonylurea receptor 1 and transient receptor potential cation channel subfamily M member 4. However, the relevance of this pathway to the development of cerebral edema in stroke patients is not known. Using a case-control design, we retrospectively assessed neuroimaging and blood markers of cytotoxic and vasogenic edema in subjects who were enrolled in the glyburide advantage in malignant edema and stroke-pilot (GAMES-Pilot) trial. We compared serial brain magnetic resonance images (MRIs) to a cohort with similar large volume infarctions. We also compared matrix metalloproteinase-9 (MMP-9) plasma level in large hemispheric stroke. We report that IV glyburide was associated with T2 fluid-attenuated inversion recovery signal intensity ratio on brain MRI, diminished the lesional water diffusivity between days 1 and 2 (pseudo-normalization), and reduced blood MMP-9 level. Several surrogate markers of vasogenic edema appear to be reduced in the setting of IV glyburide treatment in human stroke. Verification of these potential imaging and blood biomarkers is warranted in the context of a randomized, placebo-controlled trial.

  13. Aerobic fitness relates to learning on a virtual morris water task and hippocampal volume in adolescents

    PubMed Central

    Herting, Megan M.; Nagel, Bonnie J.

    2012-01-01

    In rodents, exercise increases hippocampal neurogenesis and allows for better learning and memory performance on water maze tasks. While exercise has also been shown to be beneficial for the brain and behavior in humans, no study has examined how exercise impacts spatial learning using a directly translational water maze task, or if these relationships exist during adolescence – a developmental period which the animal literature has shown to be especially vulnerable to exercise effects. In this study, we investigated the influence of aerobic fitness on hippocampal size and subsequent learning and memory, including visuospatial memory using a human analogue of the Morris Water Task, in 34 adolescents. Results showed that higher aerobic fitness predicted better learning on the virtual Morris Water Task and larger hippocampal volumes. No relationship between virtual Morris Water Task memory recall and aerobic fitness was detected. Aerobic fitness, however, did not relate to global brain volume, or verbal learning, which might suggest some specificity of the influence of aerobic fitness on the adolescent brain. This study provides a direct translational approach to the existing animal literature on exercise, as well as adds to the sparse research that exists on how aerobic exercise impacts the developing human brain and memory. PMID:22610054

  14. Formononetin protects TBI rats against neurological lesions and the underlying mechanism.

    PubMed

    Li, Zhengzhao; Dong, Xianhong; Zhang, Jianfeng; Zeng, Guang; Zhao, Huimin; Liu, Yun; Qiu, Rubiao; Mo, Linjian; Ye, Yu

    2014-03-15

    Traumatic brain injury (TBI) is a major cause of disability or death worldwide, especially in the young. Thus, effective medication with few side effects needs to be developed. This work aimed to explore the potential benefits of formononetin (FN) on TBI rodent model and to discuss the regarding mechanism. These findings showed that FN effectively increased the activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in brain tissue of TBI rats (P<0.01), while it reduced intracephalic malonaldehyde (MDA), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) concentrations (P<0.01). Meanwhile, the hydrocephalus in the TBI rat was alleviated, and the injured nerve cell of the lesioned brain was reduced as showed in hematoxylin-eosin (HE) staining assay. In addition, the endogenous mRNA level of cyclooxygenase-2 (COX-2) in the brain of the TBI rat was significantly down-regulated (P<0.01). Furthermore, the protein expression of nuclear factor E2-related factor 2 (Nrf2) was effectively up-regulated (P<0.01). Taken together, we conclude that formononetin mediates the promising anti-TBI effects against neurocyte damage, which the underlying mechanisms are associated with inhibiting intracephalic inflammatory response and oxidative stress for neuroprotection. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Simultaneous Determination of Seven Neuroactive Steroids Associated with Depression in Rat Plasma and Brain by High Performance Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Wang, Youqiong; Tang, Lipeng; Yin, Wei; Chen, Jiesi; Leng, Tiandong; Zheng, Xiaoke; Zhu, Wenbo; Zhang, Haipeng; Qiu, Pengxin; Yang, Xiaoxiao; Yan, Guangmei; Hu, Haiyan

    2016-01-01

    Sensitive and specific biomarkers are required for the diagnosis and treatment of depression because the existing diagnostic criteria are subjective and could produce false positives or negatives. Some endogenous neuroactive steroids that have shown either antidepressant effects or concentration changes in individuals with depression could provide potential biomarkers. In this study, a simple and specific method was developed to simultaneously determine seven endogenous neuroactive steroids in biological samples: cortisone, cortisol, dehydroepiandrosterone, estradiol, progesterone, pregnenolone, and testosterone. After liquid-liquid extraction, chromatographic separation was achieved on a C18 column with gradient elution using water-methanol at a flow rate of 300 μL min(-1). Detection and quantitation were performed by tandem mass spectrometry with atmospheric pressure chemical ionization and selected reaction monitoring. Plasma and brain neuroactive steroid levels were then determined in control rats and rats exposed to forced swimming, a classical rodent model of depression. The results showed that the plasma concentrations of testosterone, pregnenolone, and progesterone significantly increased in rats exposed to the forced swimming test. In contrast, brain homogenate levels of cortisol, estradiol, and progesterone decreased, while pregnenolone levels were elevated in this model of depression. In conclusion, a new method to quantify neuroactive steroids was successfully developed and applied to their investigation in rat plasma and brain. The findings of this study indicated that plasma testosterone, pregnenolone, and progesterone levels could provide potential biomarkers for the diagnosis and treatment of depression.

  16. Adolescent Maturational Transitions in the Prefrontal Cortex and Dopamine Signaling as a Risk Factor for the Development of Obesity and High Fat/High Sugar Diet Induced Cognitive Deficits

    PubMed Central

    Reichelt, Amy C.

    2016-01-01

    Adolescence poses as both a transitional period in neurodevelopment and lifestyle practices. In particular, the developmental trajectory of the prefrontal cortex (PFC), a critical region for behavioral control and self-regulation, is enduring, not reaching functional maturity until the early 20 s in humans. Furthermore, the neurotransmitter dopamine is particularly abundant during adolescence, tuning the brain to rapidly learn about rewards and regulating aspects of neuroplasticity. Thus, adolescence is proposed to represent a period of vulnerability towards reward-driven behaviors such as the consumption of palatable high fat and high sugar diets. This is reflected in the increasing prevalence of obesity in children and adolescents as they are the greatest consumers of “junk foods”. Excessive consumption of diets laden in saturated fat and refined sugars not only leads to weight gain and the development of obesity, but experimental studies with rodents indicate they evoke cognitive deficits in learning and memory process by disrupting neuroplasticity and altering reward processing neurocircuitry. Consumption of these high fat and high sugar diets have been reported to have a particularly pronounced impact on cognition when consumed during adolescence, demonstrating a susceptibility of the adolescent brain to enduring cognitive deficits. The adolescent brain, with heightened reward sensitivity and diminished behavioral control compared to the mature adult brain, appears to be a risk for aberrant eating behaviors that may underpin the development of obesity. This review explores the neurodevelopmental changes in the PFC and mesocortical dopamine signaling that occur during adolescence, and how these potentially underpin the overconsumption of palatable food and development of obesogenic diet-induced cognitive deficits. PMID:27790098

  17. Examination of Physiological Function and Biochemical Disorders in a Rat Model of Prolonged Asphyxia-Induced Cardiac Arrest followed by Cardio Pulmonary Bypass Resuscitation

    PubMed Central

    Kim, Junhwan; Yin, Tai; Yin, Ming; Zhang, Wei; Shinozaki, Koichiro; Selak, Mary A.; Pappan, Kirk L.; Lampe, Joshua W.; Becker, Lance B.

    2014-01-01

    Background Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. Method A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. Results After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. Conclusion The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage. PMID:25383962

  18. Examination of physiological function and biochemical disorders in a rat model of prolonged asphyxia-induced cardiac arrest followed by cardio pulmonary bypass resuscitation.

    PubMed

    Kim, Junhwan; Yin, Tai; Yin, Ming; Zhang, Wei; Shinozaki, Koichiro; Selak, Mary A; Pappan, Kirk L; Lampe, Joshua W; Becker, Lance B

    2014-01-01

    Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage.

  19. A rodent model for the study of invariant visual object recognition

    PubMed Central

    Zoccolan, Davide; Oertelt, Nadja; DiCarlo, James J.; Cox, David D.

    2009-01-01

    The human visual system is able to recognize objects despite tremendous variation in their appearance on the retina resulting from variation in view, size, lighting, etc. This ability—known as “invariant” object recognition—is central to visual perception, yet its computational underpinnings are poorly understood. Traditionally, nonhuman primates have been the animal model-of-choice for investigating the neuronal substrates of invariant recognition, because their visual systems closely mirror our own. Meanwhile, simpler and more accessible animal models such as rodents have been largely overlooked as possible models of higher-level visual functions, because their brains are often assumed to lack advanced visual processing machinery. As a result, little is known about rodents' ability to process complex visual stimuli in the face of real-world image variation. In the present work, we show that rats possess more advanced visual abilities than previously appreciated. Specifically, we trained pigmented rats to perform a visual task that required them to recognize objects despite substantial variation in their appearance, due to changes in size, view, and lighting. Critically, rats were able to spontaneously generalize to previously unseen transformations of learned objects. These results provide the first systematic evidence for invariant object recognition in rats and argue for an increased focus on rodents as models for studying high-level visual processing. PMID:19429704

  20. Spinal Cord Injury Causes Brain Inflammation Associated with Cognitive and Affective Changes: Role of Cell Cycle Pathways

    PubMed Central

    Zhao, Zaorui; Sabirzhanov, Boris; Stoica, Bogdan A.; Kumar, Alok; Luo, Tao; Skovira, Jacob; Faden, Alan I.

    2014-01-01

    Experimental spinal cord injury (SCI) causes chronic neuropathic pain associated with inflammatory changes in thalamic pain regulatory sites. Our recent studies examining chronic pain mechanisms after rodent SCI showed chronic inflammatory changes not only in thalamus, but also in other regions including hippocampus and cerebral cortex. Because changes appeared similar to those in our rodent TBI models that are associated with neurodegeneration and neurobehavioral dysfunction, we examined effects of mouse SCI on cognition, depressive-like behavior, and brain inflammation. SCI caused spatial and retention memory impairment and depressive-like behavior, as evidenced by poor performance in the Morris water maze, Y-maze, novel objective recognition, step-down passive avoidance, tail suspension, and sucrose preference tests. SCI caused chronic microglial activation in the hippocampus and cerebral cortex, where microglia with hypertrophic morphologies and M1 phenotype predominated. Stereological analyses showed significant neuronal loss in the hippocampus at 12 weeks but not 8 d after injury. Increased cell-cycle-related gene (cyclins A1, A2, D1, E2F1, and PCNA) and protein (cyclin D1 and CDK4) expression were found chronically in hippocampus and cerebral cortex. Systemic administration of the selective cyclin-dependent kinase inhibitor CR8 after SCI significantly reduced cell cycle gene and protein expression, microglial activation and neurodegeneration in the brain, cognitive decline, and depression. These studies indicate that SCI can initiate a chronic brain neurodegenerative response, likely related to delayed, sustained induction of M1-type microglia and related cell cycle activation, which result in cognitive deficits and physiological depression. PMID:25122899

Top