Sample records for developing simple bio-impedance

  1. Method and device for bio-impedance measurement with hard-tissue applications.

    PubMed

    Guimerà, A; Calderón, E; Los, P; Christie, A M

    2008-06-01

    Bio-impedance measurements can be used to detect and monitor several properties of living hard-tissues, some of which include bone mineral density, bone fracture healing or dental caries detection. In this paper a simple method and hardware architecture for hard tissue bio-impedance measurement is proposed. The key design aspects of such architecture are discussed and a commercial handheld ac impedance device is presented that is fully certified to international medical standards. It includes a 4-channel multiplexer and is capable of measuring impedances from 10 kOmega to 10 MOmega across a frequency range of 100 Hz to 100 kHz with a maximum error of 5%. The device incorporates several user interface methods and a Bluetooth link for bi-directional wireless data transfer. Low-power design techniques have been implemented, ensuring the device exceeds 8 h of continuous use. Finally, bench test results using dummy cells consisting of parallel connected resistors and capacitors, from 10 kOmega to 10 MOmega and from 20 pF to 100 pF, are discussed.

  2. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring

    PubMed Central

    Ren, Lei; Jiang, Qing; Chen, Keyun; Chen, Zhipeng; Pan, Chengfeng; Jiang, Lelun

    2016-01-01

    A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG), electrocardiography (ECG), and electroencephalograph (EEG) were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring. PMID:27322278

  3. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring.

    PubMed

    Ren, Lei; Jiang, Qing; Chen, Keyun; Chen, Zhipeng; Pan, Chengfeng; Jiang, Lelun

    2016-06-17

    A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG), electrocardiography (ECG), and electroencephalograph (EEG) were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  4. Dry electrode bio-potential recordings.

    PubMed

    Gargiulo, Gaetano; Bifulco, Paolo; McEwan, Alistair; Nasehi Tehrani, Joubin; Calvo, Rafael A; Romano, Maria; Ruffo, Mariano; Shephard, Richard; Cesarelli, Mario; Jin, Craig; Mohamed, Armin; van Schaik, André

    2010-01-01

    As wireless bio-medical long term monitoring moves towards personal monitoring it demands very high input impedance systems capable to extend the reading of bio-signal during the daily activities offering a kind of "stress free", convenient connection, with no need for skin preparation. In particular we highlight the development and broad applications of our own circuits for wearable bio-potential sensor systems enabled by the use of an FET based amplifier circuit with sufficiently high impedance to allow the use of passive dry electrodes which overcome the significant barrier of gel based contacts. In this paper we present the ability of dry electrodes in long term monitoring of ECG, EEG and fetal ECG.

  5. PREFACE: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT)

    NASA Astrophysics Data System (ADS)

    Pliquett, Uwe

    2013-04-01

    Over recent years advanced measurement methods have facilitated outstanding achievements not only in medical instrumentation but also in biotechnology. Impedance measurement is a simple and innocuous way to characterize materials. For more than 40 years biological materials, most of them based on cells, have been characterized by means of electrical impedance for quality control of agricultural products, monitoring of biotechnological or food processes or in health care. Although the list of possible applications is long, very few applications successfully entered the market before the turn of the century. This was, on the one hand, due to the low specificity of electrical impedance with respect to other material properties because it is influenced by multiple factors. On the other hand, equipment and methods for many potential applications were not available. With the appearance of microcontrollers that could be easily integrated in applications at the beginning of the 1980s, impedance measurement advanced as a valuable tool in process optimization and lab automation. However, established methods and data processing were mostly used in a new environment. This has changed significantly during the last 10 years with a dramatic growth of the market for medical instrumentation and also for biotechnological applications. Today, advanced process monitoring and control require fast and highly parallel electrical characterization which in turn yields incredible data volumes that must be handled in real time. Many newer developments require miniaturized but precise sensing methods which is one of the main parts of Lab-on-Chip technology. Moreover, biosensors increasingly use impedometric transducers, which are not compatible with the large expensive measurement devices that are common in the laboratory environment. Following the achievements in the field of bioimpedance measurement, we will now witness a dramatic development of new electrode structures and electronics. Structures down to sub-micrometer range and complex impedance measurements tools integrated at single chips are now affordable. Moreover, the introduction of alternative signals and data processing algorithms focuses on very fast and parallel electrical characterization which in turn pushes this technique to new applications and markets. Electrical impedance tomography today yields pictures in real time with a resolution that was impossible 10 years ago. The XVth International Conference on Electrical Bio-Impedance in conjunction with the XIVth Electrical Impedance Tomography ICEBI/EIT 2013 organized by the Institute for Bioprocessing and Analytical Measurement Techniques, Heilbad Heiligenstadt, Germany, together with the EIT-group at the University of Göttingen, Germany, brings world leading scientists in these fields together. It is a platform to present the latest developments in instrumentation and signal processing but also points to new applications, especially in the field of biosensors and non-linear phenomena. Two Keynote lectures will extend the view of the participants above the mainstream of bio-impedance measurement. Friederich Kremer (University of Leipzig) delivers the plenary lecture on broad bandwidth dielectric spectroscopy. New achievements in the research of ligand gated ionic channels will be presented by Klaus Benndorf (University of Jena). Leading scientists in the field of bio-impedance measurement, such as, Sverre Grimnes, Orjan Martinsen, Andrea Robitzki, Richard Bayford, Jan Gimsa and Mart Min will give lectures for students but also more experienced scientists in a pre-conference tutorial which is a good opportunity to learn or refresh the basics. List of committees Conference Chair Dr Uwe Pliquett Professor Dieter Beckmann Institut für Bioprozess- und Analysenmesstechnik eV, Rosenhof, Heilbad Heiligenstadt, Germany Technical Program Chair Maik Hiller Conventus Congressmanagement & Marketing GmbH, Carl-Pulfrich-Str. 1 - 07745 Jena Pre-Conference Tutorial Coordinator Uwe Pliquett International Advisory committee Kenneth R Foster, USA Sverre Grimnes, Norway David Holder, UK Alexander V Korjenewski, Russia Ørjan G Martinsen, Norway Mart Min, Estonia Stig Ollmar, Sweden Tadeusz Palko, Poland Pere J Riu, Spain Andrea Robitzki, Germany Hermann Scharfetter, Austria Leigh C Ward, Australia Conference logo Conference logo Sponsor logos Sponsor logos

  6. [Research on Detection Method with Wearable Respiration Device Based on the Theory of Bio-impedance].

    PubMed

    Liu, Guangda; Wang, Xianzhong; Cai, Jing; Wang, Wei; Zha, Yutong

    2016-12-01

    Considering the importance of the human respiratory signal detection and based on the Cole-Cole bio-impedance model,we developed a wearable device for detecting human respiratory signal.The device can be used to analyze the impedance characteristics of human body at different frequencies based on the bio-impedance theory.The device is also based on the method of proportion measurement to design a high signal to noise ratio(SNR)circuit to get human respiratory signal.In order to obtain the waveform of the respiratory signal and the value of the respiration rate,we used the techniques of discrete Fourier transform(DFT)and dynamic difference threshold peak detection.Experiments showed that this system was valid,and we could see that it could accurately detect the waveform of respiration and the detection accuracy rate of respiratory wave peak point detection results was over 98%.So it can meet the needs of the actual breath test.

  7. On the use of The Bio-Impedance technique for Body Composition Measurements

    NASA Astrophysics Data System (ADS)

    Huerta-Franco, R.; Vargas-Luna, M.; González-Solís, J. L.; Gutiérrez-Juárez, G.

    2003-09-01

    Reviewing the methods and physical principles used in body composition measurements (BCM), it is evident that more accurate, reliable, and easily handled methods are required. The use of bio-impedance analysis (BIA) has been very useful in BCM. This technique, in the single frequency mode, has some commercial versions to perform BCM. However these apparatus have significant variability in the BCM values. The multi-frequency option of the bio-impedance technique has still a lot of challenges to overcome. We studied the variability of the body impedance spectrum (from 1 Hz to 1 MHz) in a group of subjects compared to the values obtained from commercial apparatus. We compared different anatomical body regions, some of them with less subcutaneous body fat (frontal, anterior tibial, knee, and frontal regions); others with more subcutaneous body fat (pectoral, abdominal, and internal calf regions). In order to model the bio-impedance spectrum, we analyzed layered samples with different thickness and material composition.

  8. Bioimpedance imaging: an overview of potential clinical applications.

    PubMed

    Bayford, Richard; Tizzard, Andrew

    2012-10-21

    Electrical Impedance Tomography (EIT) is an imaging technique based on multiple bio impedance measurements to produce a map (image) of impedance or changes in impedance across a region. Its origins lay in geophysics where it is still used to today. This review highlights potential clinical applications of EIT. Beginning with a brief overview of the underlying principles behind the modality, it describes the background research leading towards the development of the application of EIT for monitoring pulmonary function, detecting and localising tumours and monitoring brain function.

  9. Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement

    NASA Astrophysics Data System (ADS)

    O'Toole, M. D.; Marsh, L. A.; Davidson, J. L.; Tan, Y. M.; Armitage, D. W.; Peyton, A. J.

    2015-03-01

    Biological tissues have a complex impedance, or bio-impedance, profile which changes with respect to frequency. This is caused by dispersion mechanisms which govern how the electromagnetic field interacts with the tissue at the cellular and molecular level. Measuring the bio-impedance spectra of a biological sample can potentially provide insight into the sample’s properties and its cellular structure. This has obvious applications in the medical, pharmaceutical and food-based industrial domains. However, measuring the bio-impedance spectra non-destructively and in a way which is practical at an industrial scale presents substantial challenges. The low conductivity of the sample requires a highly sensitive instrument, while the demands of industrial-scale operation require a fast high-throughput sensor of rugged design. In this paper, we describe a multi-frequency magnetic induction spectroscopy (MIS) system suitable for industrial-scale, non-contact, spectroscopic bio-impedance measurement over a bandwidth of 156 kHz-2.5 MHz. The system sensitivity and performance are investigated using calibration and known reference samples. It is shown to yield rapid and consistently sensitive results with good long-term stability. The system is then used to obtain conductivity spectra of a number of biological test samples, including yeast suspensions of varying concentration and a range of agricultural produce, such as apples, pears, nectarines, kiwis, potatoes, oranges and tomatoes.

  10. Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase

    PubMed Central

    Cai, Yuanheng; Zhang, Kewei; Kim, Hoon; Hou, Guichuan; Zhang, Xuebin; Yang, Huijun; Feng, Huan; Miller, Lisa; Ralph, John; Liu, Chang-Jun

    2016-01-01

    Producing cellulosic biofuels and bio-based chemicals from woody biomass is impeded by the presence of lignin polymer in the plant cell wall. Manipulating the monolignol biosynthetic pathway offers a promising approach to improved processability, but often impairs plant growth and development. Here, we show that expressing an engineered 4-O-methyltransferase that chemically modifies the phenolic moiety of lignin monomeric precursors, thus preventing their incorporation into the lignin polymer, substantially alters hybrid aspens' lignin content and structure. Woody biomass derived from the transgenic aspens shows a 62% increase in the release of simple sugars and up to a 49% increase in the yield of ethanol when the woody biomass is subjected to enzymatic digestion and yeast-mediated fermentation. Moreover, the cell wall structural changes do not affect growth and biomass production of the trees. Our study provides a useful strategy for tailoring woody biomass for bio-based applications. PMID:27349324

  11. Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase

    DOE PAGES

    Cai, Yuanheng; Zhang, Kewei; Kim, Hoon; ...

    2016-06-28

    Producing cellulosic biofuels and bio-based chemicals from woody biomass is impeded by the presence of lignin polymer in the plant cell wall. Manipulating the monolignol biosynthetic pathway offers a promising approach to improved processability, but often impairs plant growth and development. Here, we show that expressing an engineered 4-O-methyltransferase that chemically modifies the phenolic moiety of lignin monomeric precursors, thus preventing their incorporation into the lignin polymer, substantially alters hybrid aspens’ lignin content and structure. Woody biomass derived from the transgenic aspens shows a 62% increase in the release of simple sugars and up to a 49% increase in themore » yield of ethanol when the woody biomass is subjected to enzymatic digestion and yeast-mediated fermentation. Furthermore, the cell wall structural changes do not affect growth and biomass production of the trees. Our study provides a useful strategy for tailoring woody biomass for bio-based applications.« less

  12. Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related Pathogens Using an Impedance-Based Technology

    PubMed Central

    Gutiérrez, Diana; Hidalgo-Cantabrana, Claudio; Rodríguez, Ana; García, Pilar

    2016-01-01

    Bacteria found in diverse ecosystems grow in a community of aggregated cells that favors their survival and colonization. Different extracellular polymeric substances are used to entrap this multispecies community forming a biofilm, which can be associated to biotic and abiotic surfaces. This widespread and successful way of bacterial life, however, can lead to negative effects for human activity since many pathogen and spoiling bacteria form biofilms which are not easy to eradicate. Therefore, the search for novel anti-biofilm bio-active molecules is a very active research area for which simple, reliable, and fast screening methods are demanded. In this work we have successfully validated an impedance-based method, initially developed for the study of adherent eukaryotic cells, to monitor the formation of single-species biofilms of three model bacteria in real time. The xCelligence real time cell analyzer (RTCA) equipment uses specific microtiter E-plates coated with gold-microelectrodes that detect the attachment of adherent cells, thus modifying the impedance signal. In the current study, this technology allowed the distinction between biofilm-producers and non-producers of Staphylococcus aureus and Staphylococcus epidermidis, as well as the formation of Streptococcus mutans biofilms only when sucrose was present in the culture medium. Besides, different impedance values permitted discrimination among the biofilm-producing strains tested regardless of the nature of the polymeric biofilm matrix. Finally, we have continuously monitored the inhibition of staphylococcal biofilm formation by the bacteriophage phi-IPLA7 and the bacteriophage-encoded endolysin LysH5, as well as the removal of a preformed biofilm by this last antimicrobial treatment. Results observed with the impedance-based method showed high correlation with those obtained with standard approaches, such as crystal violet staining and bacteria enumeration, as well as with those obtained upon other abiotic surfaces (polystyrene and stainless steel). Therefore, this RTCA technology opens new opportunities in the biofilm research arena and its application could be further explored for other bacterial genera as well as for different bio-active molecules. PMID:27695058

  13. Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related Pathogens Using an Impedance-Based Technology.

    PubMed

    Gutiérrez, Diana; Hidalgo-Cantabrana, Claudio; Rodríguez, Ana; García, Pilar; Ruas-Madiedo, Patricia

    2016-01-01

    Bacteria found in diverse ecosystems grow in a community of aggregated cells that favors their survival and colonization. Different extracellular polymeric substances are used to entrap this multispecies community forming a biofilm, which can be associated to biotic and abiotic surfaces. This widespread and successful way of bacterial life, however, can lead to negative effects for human activity since many pathogen and spoiling bacteria form biofilms which are not easy to eradicate. Therefore, the search for novel anti-biofilm bio-active molecules is a very active research area for which simple, reliable, and fast screening methods are demanded. In this work we have successfully validated an impedance-based method, initially developed for the study of adherent eukaryotic cells, to monitor the formation of single-species biofilms of three model bacteria in real time. The xCelligence real time cell analyzer (RTCA) equipment uses specific microtiter E-plates coated with gold-microelectrodes that detect the attachment of adherent cells, thus modifying the impedance signal. In the current study, this technology allowed the distinction between biofilm-producers and non-producers of Staphylococcus aureus and Staphylococcus epidermidis, as well as the formation of Streptococcus mutans biofilms only when sucrose was present in the culture medium. Besides, different impedance values permitted discrimination among the biofilm-producing strains tested regardless of the nature of the polymeric biofilm matrix. Finally, we have continuously monitored the inhibition of staphylococcal biofilm formation by the bacteriophage phi-IPLA7 and the bacteriophage-encoded endolysin LysH5, as well as the removal of a preformed biofilm by this last antimicrobial treatment. Results observed with the impedance-based method showed high correlation with those obtained with standard approaches, such as crystal violet staining and bacteria enumeration, as well as with those obtained upon other abiotic surfaces (polystyrene and stainless steel). Therefore, this RTCA technology opens new opportunities in the biofilm research arena and its application could be further explored for other bacterial genera as well as for different bio-active molecules.

  14. Interface design for CMOS-integrated Electrochemical Impedance Spectroscopy (EIS) biosensors.

    PubMed

    Manickam, Arun; Johnson, Christopher Andrew; Kavusi, Sam; Hassibi, Arjang

    2012-10-29

    Electrochemical Impedance Spectroscopy (EIS) is a powerful electrochemical technique to detect biomolecules. EIS has the potential of carrying out label-free and real-time detection, and in addition, can be easily implemented using electronic integrated circuits (ICs) that are built through standard semiconductor fabrication processes. This paper focuses on the various design and optimization aspects of EIS ICs, particularly the bio-to-semiconductor interface design. We discuss, in detail, considerations such as the choice of the electrode surface in view of IC manufacturing, surface linkers, and development of optimal bio-molecular detection protocols. We also report experimental results, using both macro- and micro-electrodes to demonstrate the design trade-offs and ultimately validate our optimization procedures.

  15. Investigation of voltage source design's for Electrical Impedance Mammography (EIM) Systems.

    PubMed

    Qureshi, Tabassum R; Chatwin, Chris R; Zhou, Zhou; Li, Nan; Wang, W

    2012-01-01

    According to Jossient, interesting characteristics of breast tissues mostly lie above 1MHz; therefore a wideband excitation source covering higher frequencies (i.e. above 1MHz) is required. The main objective of this research is to establish a feasible bandwidth envelope that can be used to design a constant EIM voltage source over a wide bandwidth with low output impedance for practical implementation. An excitation source is one of the major components in bio-impedance measurement systems. In any bio-impedance measurement system the excitation source can be achieved either by injecting current and measuring the resulting voltages, or by applying voltages and measuring the current developed. This paper describes three voltage source architectures and based on their bandwidth comparison; a differential voltage controlled voltage source (VCVS) is proposed, which can be used over a wide bandwidth (>15MHz). This paper describes the performance of the designed EIM voltage source for different load conditions and load capacitances reporting signal-to-noise ratio of approx 90dB at 10MHz frequency, signal phase and maximum of 4.75kΩ source output impedance at 10MHz. Optimum data obtained using Pspice® is used to demonstrate the high-bandwidth performance of the source.

  16. Development of Bio-impedance Analyzer (BIA) for Body Fat Calculation

    NASA Astrophysics Data System (ADS)

    Riyadi, Munawar A.; Nugraha, A.; Santoso, M. B.; Septaditya, D.; Prakoso, T.

    2017-04-01

    Common weight scales cannot assess body composition or determine fat mass and fat-fress mass that make up the body weight. This research propose bio-impedance analysis (BIA) tool capable to body composition assessment. This tool uses four electrodes, two of which are used for 50 kHz sine wave current flow to the body and the rest are used to measure the voltage produced by the body for impedance analysis. Parameters such as height, weight, age, and gender are provided individually. These parameters together with impedance measurements are then in the process to produce a body fat percentage. The experimental result shows impressive repeatability for successive measurements (stdev ≤ 0.25% fat mass). Moreover, result on the hand to hand node scheme reveals average absolute difference of total subjects between two analyzer tools of 0.48% (fat mass) with maximum absolute discrepancy of 1.22% (fat mass). On the other hand, the relative error normalized to Omron’s HBF-306 as comparison tool reveals less than 2% relative error. As a result, the system performance offers good evaluation tool for fat mass in the body.

  17. Predicting burst pressure of radiofrequency-induced colorectal anastomosis by bio-impedance measurement.

    PubMed

    Zhao, Lingxi; Zhou, Yu; Song, Chengli; Wang, Zhigang; Cuschieri, Alfred

    2017-03-01

    The present study investigates the relationship between bio-impedance and burst pressure of colorectal anastomosis created by radiofrequency (RF)-induced tissue fusion. Colorectal anastomosis were created with ex vivo porcine colorectal segments, during which 5 levels of compression pressure were applied by a custom-made bipolar prototype, with 5 replicate experiments at each compression pressure. Instant anastomotic tensile strength was assessed by burst pressure. Bio-impedance of fused tissue was measured by Impedance Analyzer across frequency that 100 Hz to 3 MHz. Statistical analysis shows only a weak correlation between bio-impedance modulus and burst pressures at frequency of 445 kHz ([Formula: see text]  =  -0.426, P  =  0.099  >  0.05). In contrast, results demonstrated a highly significant negative correlation between reactance modulus and burst pressures ([Formula: see text]  =  -0.812, P  =  0.000  <  0.05). The decrease in mean reactance modulus with increasing burst pressures was highly significant (P  =  0.019  <  0.05). The observed strong negative correlation between reactance modulus and burst pressures at frequency of 445 kHz indicates that reactance is likely to be a good index for tensile strength of RF-induced colorectal anastomosis, and should be considered for inclusion in a feedback loops in devices design.

  18. Acoustic Treatment Design Scaling Methods. Volume 2; Advanced Treatment Impedance Models for High Frequency Ranges

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Yu, J.; Kwan, H. W.

    1999-01-01

    The primary purpose of this study is to develop improved models for the acoustic impedance of treatment panels at high frequencies, for application to subscale treatment designs. Effects that cause significant deviation of the impedance from simple geometric scaling are examined in detail, an improved high-frequency impedance model is developed, and the improved model is correlated with high-frequency impedance measurements. Only single-degree-of-freedom honeycomb sandwich resonator panels with either perforated sheet or "linear" wiremesh faceplates are considered. The objective is to understand those effects that cause the simple single-degree-of- freedom resonator panels to deviate at the higher-scaled frequency from the impedance that would be obtained at the corresponding full-scale frequency. This will allow the subscale panel to be designed to achieve a specified impedance spectrum over at least a limited range of frequencies. An advanced impedance prediction model has been developed that accounts for some of the known effects at high frequency that have previously been ignored as a small source of error for full-scale frequency ranges.

  19. New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria

    PubMed Central

    Wang, Yixian; Ye, Zunzhong; Ying, Yibin

    2012-01-01

    The development of a rapid, sensitive, specific method for the foodborne pathogenic bacteria detection is of great importance to ensure food safety and security. In recent years impedimetric biosensors which integrate biological recognition technology and impedance have gained widespread application in the field of bacteria detection. This paper presents an overview on the progress and application of impedimetric biosensors for detection of foodborne pathogenic bacteria, particularly the new trends in the past few years, including the new specific bio-recognition elements such as bacteriophage and lectin, the use of nanomaterials and microfluidics techniques. The applications of these new materials or techniques have provided unprecedented opportunities for the development of high-performance impedance bacteria biosensors. The significant developments of impedimetric biosensors for bacteria detection in the last five years have been reviewed according to the classification of with or without specific bio-recognition element. In addition, some microfluidics systems, which were used in the construction of impedimetric biosensors to improve analytical performance, are introduced in this review. PMID:22737018

  20. Design and Development of Non-Contact Bio-Potential Electrodes for Pervasive Health Monitoring Applications.

    PubMed

    Portelli, Anthony J; Nasuto, Slawomir J

    2017-01-01

    For the advent of pervasive bio-potential monitoring, it will be necessary to utilize a combination of cheap, quick to apply, low-noise electrodes and compact electronics with wireless technologies. Once available, all electrical activity resulting from the processes of the human body could be actively and constantly monitored without the need for cumbersome application and maintenance. This could significantly improve the early diagnosis of a range of different conditions in high-risk individuals, opening the possibility for new treatments and interventions as conditions develop. This paper presents the design and implementation of compact, non-contact capacitive bio-potential electrodes utilising a low impedance current-to-voltage configuration and a bootstrapped voltage follower, demonstrating results applicable to research applications for capacitive electrocardiography and capacitive electromyography. The presented electrodes use few components, have a small surface area and are capable of acquiring a range of bio-potential signals.

  1. Design and Development of Non-Contact Bio-Potential Electrodes for Pervasive Health Monitoring Applications

    PubMed Central

    Portelli, Anthony J.; Nasuto, Slawomir J.

    2017-01-01

    For the advent of pervasive bio-potential monitoring, it will be necessary to utilize a combination of cheap, quick to apply, low-noise electrodes and compact electronics with wireless technologies. Once available, all electrical activity resulting from the processes of the human body could be actively and constantly monitored without the need for cumbersome application and maintenance. This could significantly improve the early diagnosis of a range of different conditions in high-risk individuals, opening the possibility for new treatments and interventions as conditions develop. This paper presents the design and implementation of compact, non-contact capacitive bio-potential electrodes utilising a low impedance current-to-voltage configuration and a bootstrapped voltage follower, demonstrating results applicable to research applications for capacitive electrocardiography and capacitive electromyography. The presented electrodes use few components, have a small surface area and are capable of acquiring a range of bio-potential signals. PMID:28045439

  2. A Longitudinal Approach to Building Theory for Studying Socialization.

    ERIC Educational Resources Information Center

    McCord, Joan

    Theories of socialization have developed independently of established facts against which to measure their adequacy. Studies showing low levels of skin conductance and slow latency of response among criminals have supported a bio-social theory that criminals inherit neurological systems that impede reduction of fear and interfere with learning.…

  3. Equivalent circuit models for interpreting impedance perturbation spectroscopy data

    NASA Astrophysics Data System (ADS)

    Smith, R. Lowell

    2004-07-01

    As in-situ structural integrity monitoring disciplines mature, there is a growing need to process sensor/actuator data efficiently in real time. Although smaller, faster embedded processors will contribute to this, it is also important to develop straightforward, robust methods to reduce the overall computational burden for practical applications of interest. This paper addresses the use of equivalent circuit modeling techniques for inferring structure attributes monitored using impedance perturbation spectroscopy. In pioneering work about ten years ago significant progress was associated with the development of simple impedance models derived from the piezoelectric equations. Using mathematical modeling tools currently available from research in ultrasonics and impedance spectroscopy is expected to provide additional synergistic benefits. For purposes of structural health monitoring the objective is to use impedance spectroscopy data to infer the physical condition of structures to which small piezoelectric actuators are bonded. Features of interest include stiffness changes, mass loading, and damping or mechanical losses. Equivalent circuit models are typically simple enough to facilitate the development of practical analytical models of the actuator-structure interaction. This type of parametric structure model allows raw impedance/admittance data to be interpreted optimally using standard multiple, nonlinear regression analysis. One potential long-term outcome is the possibility of cataloging measured viscoelastic properties of the mechanical subsystems of interest as simple lists of attributes and their statistical uncertainties, whose evolution can be followed in time. Equivalent circuit models are well suited for addressing calibration and self-consistency issues such as temperature corrections, Poisson mode coupling, and distributed relaxation processes.

  4. Distillation and isolation of commodity chemicals from Bio-oil made by tail-gas reactive prolysis

    USDA-ARS?s Scientific Manuscript database

    Owing to instabilities, very little has been accomplished with regards to simple cost-effective separations of fast-pyrolysis bio-oil. However, recent developments in the use of tail-gas reactive pyrolysis (TGRP) (Mullen and Boateng 2013) provide higher quality bio-oils that are thermally stable. We...

  5. Rough Gold Electrodes for Decreasing Impedance at the Electrolyte/Electrode Interface

    PubMed Central

    Koklu, Anil; Sabuncu, Ahmet C.; Beskok, Ali

    2016-01-01

    Electrode polarization at the electrolyte/electrode interface is often undesirable for bio-sensing applications, where charge accumulated over an electrode at constant potential causes large potential drop at the interface and low measurement sensitivity. In this study, novel rough electrodes were developed for decreasing electrical impedance at the interface. The electrodes were fabricated using electrochemical deposition of gold and sintering of gold nanoparticles. The performances of the gold electrodes were compared with platinum black electrodes. A constant phase element model was used to describe the interfacial impedance. Hundred folds of decrease in interfacial impedance were observed for fractal gold electrodes and platinum black. Biotoxicity, contact angle, and surface morphology of the electrodes were investigated. Relatively low toxicity and hydrophilic nature of the fractal and granulated gold electrodes make them suitable for bioimpedance and cell electromanipulation studies compared to platinum black electrodes which are both hydrophobic and toxic. PMID:27695132

  6. SynBioSS-aided design of synthetic biological constructs.

    PubMed

    Kaznessis, Yiannis N

    2011-01-01

    We present walkthrough examples of using SynBioSS to design, model, and simulate synthetic gene regulatory networks. SynBioSS stands for Synthetic Biology Software Suite, a platform that is publicly available with Open Licenses at www.synbioss.org. An important aim of computational synthetic biology is the development of a mathematical modeling formalism that is applicable to a wide variety of simple synthetic biological constructs. SynBioSS-based modeling of biomolecular ensembles that interact away from the thermodynamic limit and not necessarily at steady state affords for a theoretical framework that is generally applicable to known synthetic biological systems, such as bistable switches, AND gates, and oscillators. Here, we discuss how SynBioSS creates links between DNA sequences and targeted dynamic phenotypes of these simple systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Development of a wearable multi-frequency impedance cardiography device.

    PubMed

    Weyer, Sören; Menden, Tobias; Leicht, Lennart; Leonhardt, Steffen; Wartzek, Tobias

    2015-02-01

    Cardiovascular diseases as well as pulmonary oedema can be early diagnosed using vital signs and thoracic bio-impedance. By recording the electrocardiogram (ECG) and the impedance cardiogram (ICG), vital parameters are captured continuously. The aim of this study is the continuous monitoring of ECG and multi-frequency ICG by a mobile system. A mobile measuring system, based on 'low-power' ECG, ICG and an included radio transmission is described. Due to the high component integration, a board size of only 6.5 cm×5 cm could be realized. The measured data can be transmitted via Bluetooth and visualized on a portable monitor. By using energy-efficient hardware, the system can operate for up to 18 hs with a 3 V battery, continuously sending data via Bluetooth. Longer operating times can be realized by decreased transfer rates. The relative error of the impedance measurement was less than 1%. The ECG and ICG measurements allow an approximate calculation of the heart stroke volume. The ECG and the measured impedance showed a high correlation to commercial devices (r=0.83, p<0.05). In addition to commercial devices, the developed system allows a multi-frequency measurement of the thoracic impedance between 5-150 kHz.

  8. Active Electrodes for Wearable EEG Acquisition: Review and Electronics Design Methodology.

    PubMed

    Xu, Jiawei; Mitra, Srinjoy; Van Hoof, Chris; Yazicioglu, Refet Firat; Makinwa, Kofi A A

    2017-01-01

    Active electrodes (AEs), i.e., electrodes with built-in readout circuitry, are increasingly being implemented in wearable healthcare and lifestyle applications due to AEs' robustness to environmental interference. An AE locally amplifies and buffers μV-level EEG signals before driving any cabling. The low output impedance of an AE mitigates cable motion artifacts, thus enabling the use of high-impedance dry electrodes for greater user comfort. However, developing a wearable EEG system, with medical grade signal quality on noise, electrode offset tolerance, common-mode rejection ratio, input impedance, and power dissipation, remains a challenging task. This paper reviews state-of-the-art bio-amplifier architectures and low-power analog circuits design techniques intended for wearable EEG acquisition, with a special focus on an AE system interfaced with dry electrodes.

  9. Tracking of electrochemical impedance of batteries

    NASA Astrophysics Data System (ADS)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  10. Application of a low level, uniform ultrasound field for the acceleration of enzymatic bio-processing of cotton

    USDA-ARS?s Scientific Manuscript database

    Enzymatic bio-processing of cotton generates significantly less hazardous wastewater effluents, which are readily biodegradable, but it also has several critical shortcomings that impede its acceptance by industries: expensive processing costs and slow reaction rates. Our research has found that th...

  11. Application of Low Level, Uniform Ultrasound Field for Acceleration of Enzymatic Bio-processing of Cotton

    USDA-ARS?s Scientific Manuscript database

    Enzymatic bio-processing of cotton generates significantly less hazardous wastewater effluents, which are readily biodegradable, but it also has several critical shortcomings that impede its acceptance by industries: expensive processing costs and slow reaction rates. Our research has found that th...

  12. The Evolution of Psychology as a Basic Bio-behavioral Science in Healthcare Education.

    PubMed

    Carr, John E

    2017-12-01

    For over a century, researchers and educators have called for the integration of psychological science into medical school curricula, but such efforts have been impeded by barriers within medicine and psychology. In addressing these barriers, Psychology has re-examined its relationship to Medicine, incorporated psychological practices into health care, and redefined its parameters as a science. In response to interdisciplinary research into the mechanisms of bio-behavioral interaction, Psychology evolved from an ancillary social science to a bio-behavioral science that is fundamental to medicine and health care. However, in recent medical school curriculum innovations, psychological science is being reduced to a set of "clinical skills," and once again viewed as an ancillary social science. These developments warrant concern and consideration of new approaches to integrating psychological science in medical education.

  13. The Effects of a Low-Level Uniform Ultrasound Field on Enzymatic Bio-Processing of Cotton: An Investigation of Three Fabric Weights

    USDA-ARS?s Scientific Manuscript database

    Enzymatic bio-processing of cotton generates significantly less hazardous wastewater effluents, which are readily biodegradable, but it also has several critical shortcomings that impede its acceptance by industries: expensive processing costs and slow reaction rates. Our research has found that t...

  14. Influence of Co content on the biocompatibility and bio-corrosion of super ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Yoo, Y. R.; Jang, S. G.; Nam, H. S.; Shim, G. T.; Cho, H. H.; Kim, J. G.; Kim, Y. S.

    2008-12-01

    Bio-metals require high corrosion resistance, because their biocompatibility is closely related to this parameter. Bio-metals release metal ions into the human body, leading to deleterious effects. Allergies, dermatitis, and asthma are the predominant systemic effects resulting in the human body. In particular, Ni is one of the most common causes of allergic contact dermatitis. In the present work, we designed new ferritic stainless steels wherein Ni is replaced with Co under consideration of allergic respondes and microstructural stability. This work focuses on the effect of Co content on the biocompatibility and corrosion resistance of high PRE super ferritic stainless steels in bio-solution and acidic chloride solution. In the case of the acidic chloride solution, with increasing Co content in the ferritic stainless steels, passive current density increased and critical pitting temperature (CPT) decreased. Also, in the passive state, AC impedance and repassivation rate were reduced. These results are attributed to the thermodynamic stability of cobalt ions, as indicated in the EpH diagram for a Co-H2O system. However, in the case of bio-solutions, with increasing Co content of the alloys, the passive current density decreased. AC impedance and repassivation rate meanwhile increased in the passive state. This is due to the increased ratios of Cr2O3/Cr(OH)3 and [Metal Oxide]/Metal + Metal Oxide] of the passive film formed in bio-solution.

  15. Microengineered Conductive Elastomeric Electrodes for Long-Term Electrophysiological Measurements with Consistent Impedance under Stretch

    PubMed Central

    Hu, Dinglong; Cheng, Tin Kei; Xie, Kai; Lam, Raymond H. W.

    2015-01-01

    In this research, we develop a micro-engineered conductive elastomeric electrode for measurements of human bio-potentials with the absence of conductive pastes. Mixing the biocompatible polydimethylsiloxane (PDMS) silicone with other biocompatible conductive nano-particles further provides the material with an electrical conductivity. We apply micro-replica mold casting for the micro-structures, which are arrays of micro-pillars embedded between two bulk conductive-PDMS layers. These micro-structures can reduce the micro-structural deformations along the direction of signal transmission; therefore the corresponding electrical impedance under the physical stretch by the movement of the human body can be maintained. Additionally, we conduct experiments to compare the electrical properties between the bulk conductive-PDMS material and the microengineered electrodes under stretch. We also demonstrate the working performance of these micro-engineered electrodes in the acquisition of the 12-lead electrocardiographs (ECG) of a healthy subject. Together, the presented gel-less microengineered electrodes can provide a more convenient and stable bio-potential measurement platform, making tele-medical care more achievable with reduced technical barriers for instrument installation performed by patients/users themselves. PMID:26512662

  16. BioPCD - A Language for GUI Development Requiring a Minimal Skill Set.

    PubMed

    Alvare, Graham Gm; Roche-Lima, Abiel; Fristensky, Brian

    2012-11-01

    BioPCD is a new language whose purpose is to simplify the creation of Graphical User Interfaces (GUIs) by biologists with minimal programming skills. The first step in developing BioPCD was to create a minimal superset of the language referred to as PCD (Pythonesque Command Description). PCD defines the core of terminals and high-level nonterminals required to describe data of almost any type. BioPCD adds to PCD the constructs necessary to describe GUI components and the syntax for executing system commands. BioPCD is implemented using JavaCC to convert the grammar into code. BioPCD is designed to be terse and readable and simple enough to be learned by copying and modifying existing BioPCD files. We demonstrate that BioPCD can easily be used to generate GUIs for existing command line programs. Although BioPCD was designed to make it easier to run bioinformatics programs, it could be used in any domain in which many useful command line programs exist that do not have GUI interfaces.

  17. Dead simple OWL design patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osumi-Sutherland, David; Courtot, Melanie; Balhoff, James P.

    Bio-ontologies typically require multiple axes of classification to support the needs of their users. Development of such ontologies can only be made scalable and sustainable by the use of inference to automate classification via consistent patterns of axiomatization. Many bio-ontologies originating in OBO or OWL follow this approach. These patterns need to be documented in a form that requires minimal expertise to understand and edit and that can be validated and applied using any of the various programmatic approaches to working with OWL ontologies. We describe a system, Dead Simple OWL Design Patterns (DOS-DPs), which fulfills these requirements, illustrating themore » system with examples from the Gene Ontology. In conclusion, the rapid adoption of DOS-DPs by multiple ontology development projects illustrates both the ease-of use and the pressing need for the simple design pattern system we have developed.« less

  18. Dead simple OWL design patterns

    DOE PAGES

    Osumi-Sutherland, David; Courtot, Melanie; Balhoff, James P.; ...

    2017-06-05

    Bio-ontologies typically require multiple axes of classification to support the needs of their users. Development of such ontologies can only be made scalable and sustainable by the use of inference to automate classification via consistent patterns of axiomatization. Many bio-ontologies originating in OBO or OWL follow this approach. These patterns need to be documented in a form that requires minimal expertise to understand and edit and that can be validated and applied using any of the various programmatic approaches to working with OWL ontologies. We describe a system, Dead Simple OWL Design Patterns (DOS-DPs), which fulfills these requirements, illustrating themore » system with examples from the Gene Ontology. In conclusion, the rapid adoption of DOS-DPs by multiple ontology development projects illustrates both the ease-of use and the pressing need for the simple design pattern system we have developed.« less

  19. Functionalized Thick Film Impedance Sensors for Use in In Vitro Cell Culture.

    PubMed

    Bartsch, Heike; Baca, Martin; Fernekorn, Uta; Müller, Jens; Schober, Andreas; Witte, Hartmut

    2018-04-05

    Multi-electrode arrays find application in electrophysiological recordings. The quality of the captured signals depends on the interfacial contact between electrogenic cells and the electronic system. Therefore, it requires reliable low-impedance electrodes. Low-temperature cofired ceramic technology offers a suitable platform for rapid prototyping of biological reactors and can provide both stable fluid supply and integrated bio-hardware interfaces for recordings in electrogenic cell cultures. The 3D assembly of thick film gold electrodes in in vitro bio-reactors has been demonstrated for neuronal recordings. However, especially when dimensions become small, their performance varies strongly. This work investigates the influence of different coatings on thick film gold electrodes with regard to their influence on impedance behavior. PSS layer, titanium oxynitride and laminin coatings are deposited on LTCC gold electrodes using different 2D and 3D MEA chip designs. Their impedance characteristics are compared and discussed. Titanium oxynitride layers emerged as suitable functionalization. Small 86-µm-electrodes have a serial resistance R s of 32 kOhm and serial capacitance C s of 4.1 pF at 1 kHz. Thick film gold electrodes with such coatings are thus qualified for signal recording in 3-dimensional in vitro cell cultures.

  20. A bio-impedance probe to assess liver steatosis during transplant surgery.

    PubMed

    Smith, Penny Probert; You, Fusheng; Vogel, Thomas; Silva, Michael

    2011-01-01

    This work addresses the design of a bioimpedance probe to assess steatosis on the exposed liver in the donor during liver transplant surgery. Whereas typically bioimpedance uses needle probes to avoid surface effects, for clinical reasons a non-penetrative probe is required. In addition the need to ensure that the measurement is representative of the bulk tissue suggests a larger probe than is normally used to ensure a sufficiently large measurement volume. Using a simple model, simulations and tests on bovine liver, this paper investigates the relationship between probe dimensions and depth of measurement penetration and investigates the accuracy which might be expected in a configuration suitable for use in the operating theatre on intact but exposed livers. A probe using ECG electrodes is proposed and investigated.

  1. Time-domain representation of frequency-dependent foundation impedance functions

    USGS Publications Warehouse

    Safak, E.

    2006-01-01

    Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.

  2. Recirculation: A New Concept to Drive Innovation in Sustainable Product Design for Bio-Based Products.

    PubMed

    Sherwood, James; Clark, James H; Farmer, Thomas J; Herrero-Davila, Lorenzo; Moity, Laurianne

    2016-12-29

    Bio-based products are made from renewable materials, offering a promising basis for the production of sustainable chemicals, materials, and more complex articles. However, biomass is not a limitless resource or one without environmental and social impacts. Therefore, while it is important to use biomass and grow a bio-based economy, displacing the unsustainable petroleum basis of energy and chemical production, any resource must be used effectively to reduce waste. Standards have been developed to support the bio-based product market in order to achieve this aim. However, the design of bio-based products has not received the same level of attention. Reported here are the first steps towards the development of a framework of understanding which connects product design to resource efficiency. Research and development scientists and engineers are encouraged to think beyond simple functionality and associate value to the potential of materials in their primary use and beyond.

  3. Simple re-instantiation of small databases using cloud computing.

    PubMed

    Tan, Tin Wee; Xie, Chao; De Silva, Mark; Lim, Kuan Siong; Patro, C Pawan K; Lim, Shen Jean; Govindarajan, Kunde Ramamoorthy; Tong, Joo Chuan; Choo, Khar Heng; Ranganathan, Shoba; Khan, Asif M

    2013-01-01

    Small bioinformatics databases, unlike institutionally funded large databases, are vulnerable to discontinuation and many reported in publications are no longer accessible. This leads to irreproducible scientific work and redundant effort, impeding the pace of scientific progress. We describe a Web-accessible system, available online at http://biodb100.apbionet.org, for archival and future on demand re-instantiation of small databases within minutes. Depositors can rebuild their databases by downloading a Linux live operating system (http://www.bioslax.com), preinstalled with bioinformatics and UNIX tools. The database and its dependencies can be compressed into an ".lzm" file for deposition. End-users can search for archived databases and activate them on dynamically re-instantiated BioSlax instances, run as virtual machines over the two popular full virtualization standard cloud-computing platforms, Xen Hypervisor or vSphere. The system is adaptable to increasing demand for disk storage or computational load and allows database developers to use the re-instantiated databases for integration and development of new databases. Herein, we demonstrate that a relatively inexpensive solution can be implemented for archival of bioinformatics databases and their rapid re-instantiation should the live databases disappear.

  4. Simple re-instantiation of small databases using cloud computing

    PubMed Central

    2013-01-01

    Background Small bioinformatics databases, unlike institutionally funded large databases, are vulnerable to discontinuation and many reported in publications are no longer accessible. This leads to irreproducible scientific work and redundant effort, impeding the pace of scientific progress. Results We describe a Web-accessible system, available online at http://biodb100.apbionet.org, for archival and future on demand re-instantiation of small databases within minutes. Depositors can rebuild their databases by downloading a Linux live operating system (http://www.bioslax.com), preinstalled with bioinformatics and UNIX tools. The database and its dependencies can be compressed into an ".lzm" file for deposition. End-users can search for archived databases and activate them on dynamically re-instantiated BioSlax instances, run as virtual machines over the two popular full virtualization standard cloud-computing platforms, Xen Hypervisor or vSphere. The system is adaptable to increasing demand for disk storage or computational load and allows database developers to use the re-instantiated databases for integration and development of new databases. Conclusions Herein, we demonstrate that a relatively inexpensive solution can be implemented for archival of bioinformatics databases and their rapid re-instantiation should the live databases disappear. PMID:24564380

  5. BioPCD - A Language for GUI Development Requiring a Minimal Skill Set

    PubMed Central

    Alvare, Graham GM; Roche-Lima, Abiel; Fristensky, Brian

    2016-01-01

    BioPCD is a new language whose purpose is to simplify the creation of Graphical User Interfaces (GUIs) by biologists with minimal programming skills. The first step in developing BioPCD was to create a minimal superset of the language referred to as PCD (Pythonesque Command Description). PCD defines the core of terminals and high-level nonterminals required to describe data of almost any type. BioPCD adds to PCD the constructs necessary to describe GUI components and the syntax for executing system commands. BioPCD is implemented using JavaCC to convert the grammar into code. BioPCD is designed to be terse and readable and simple enough to be learned by copying and modifying existing BioPCD files. We demonstrate that BioPCD can easily be used to generate GUIs for existing command line programs. Although BioPCD was designed to make it easier to run bioinformatics programs, it could be used in any domain in which many useful command line programs exist that do not have GUI interfaces. PMID:27818582

  6. Gastric Emptying Assessment in Frequency and Time Domain Using Bio-impedance: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Huerta-Franco, R.; Vargas-Luna, M.; Hernández, E.; Córdova, T.; Sosa, M.; Gutiérrez, G.; Reyes, P.; Mendiola, C.

    2006-09-01

    The impedance assessment to measure gastric emptying and in general gastric activity has been reported since 1985. The physiological interpretation of these measurements, is still under research. This technique usually uses a single frequency, and the conductivity parameter. The frequency domain and the Fourier analysis of the time domain behavior of the gastric impedance in different gastric conditions (fasting state, and after food administration) has not been explored in detail. This work presents some insights of the potentiality of these alternative methodologies to measure gastric activity.

  7. The role of bio-physical cohesive substrates on sediment winnowing and bedform development

    NASA Astrophysics Data System (ADS)

    Ye, Leiping; Parsons, Daniel; Manning, Andrew

    2017-04-01

    Existing sediment transport and bedform size predictions for natural open-channel flows in many environments are seriously impeded by a lack of process-based knowledge concerning the dynamics of complex bed sediment mixtures comprising cohesionless sand and biologically-active cohesive muds. A series of flume experiments (14 experimental runs) with different substrate mixtures of sand-clay-EPS (Extracellular Polymeric Substance) are combined with a detailed estuarine field survey (Dee estuary, NW England) to investigate the development of bedform morphologies and characteristics of suspended sediment over bio-physical cohesive substrates. The experimental results indicate that winnowing and sediment sorting can occur pervasively in bio-physical cohesive sediment - flow systems. Importantly however, the evolution of the bed and bedform dynamics, and hence turbulence production, is significantly reduced as bed substrate cohesivity increases. The estuarine subtidal zone survey also revealed that the bio-physical cohesion provided by both the clay and microorganism fractions in the bed plays a significant role in controlling the interactions between bed substrate and sediment suspension, deposition and bedform generation. The work will be presented here concludes by outlining the need to extend and revisit the effects of cohesivity in morphodynamic systems and the sets of parameters presently used in numerical modelling, particularly in the context of the impact of climate change on estuarine and coastal systems.

  8. Smart Sensing and Dynamic Fitting for Enhanced Comfort and Performance of Prosthetics

    DTIC Science & Technology

    2017-10-01

    studying microstrip resonators for bio- impedance measurement. For actuation, we have 1) improved and de -bugged the prosthetic interface control ...studying microstrip resonators for bio‐impedance measurement. For actuation, we have 1) improved and de -bugged the prosthetic interface control ...shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number

  9. BioMEMS for mitochondria medicine

    NASA Astrophysics Data System (ADS)

    Padmaraj, Divya

    A BioMEMS device to study cell-mitochondrial physiological functionalities was developed. The pathogenesis of many diseases including obesity, diabetes and heart failure as well as aging has been linked to functional defects of mitochondria. The synthesis of Adenosine Tri Phosphate (ATP) is determined by the electrical potential across the inner mitochondrial membrane and by the pH difference due to proton flux across it. Therefore, electrical characterization by E-fields with complementary chemical testing was used here. The BioMEMS device was fabricated as an SU-8 based microfluidic system with gold electrodes on SiO2/Si wafers for electromagnetic interrogation. Ion Sensitive Field Effect Transistors (ISFETs) were incorporated for proton studies important in the electron transport chain, together with monitoring Na+, K+ and Ca++ ions for ion channel studies. ISFETs are chemically sensitive Metal Oxide Semiconductor Field Effect Transistor (MOSFET) devices and their threshold voltage is directly proportional to the electrolytic H+ ion variation. These ISFETs (sensitivity ˜55 mV/pH for H+) were further realized as specific ion sensitive Chemical Field Effect Transistors (CHEMFETs) by depositing a specific ion sensitive membrane on the gate. Electrodes for dielectric spectroscopy studies of mitochondria were designed as 2- and 4-probe structures for optimized operation over a wide frequency range. In addition, to limit polarization effects, a 4-electrode set-up with unique meshed pickup electrodes (7.5x7.5 mum2 loops with 4 mum wires) was fabricated. Sensitivity of impedance spectroscopy to membrane potential changes was confirmed by studying the influence of uncouplers and glucose on mitochondria. An electrical model was developed for the mitochondrial sample, and its frequency response correlated with impedance spectroscopy experiments of sarcolemmal mitochondria. Using the mesh electrode structure, we obtained a reduction of 83.28% in impedance at 200 Hz. COMSOL simulations of selected electrical structures in this sensor were compared with experimental results to better understand the physical system. A broadband permittivity analysis tool consisting of lumped and distributed structures was also developed. The frequency range of this device is from 100 Hz to 40 GHz and utilizes an interdigitated capacitor and coplanar waveguide. The simultaneous measurement of membrane potential, ion concentrations and pH would enhance diagnostics and studies of mitochondrial diseases.

  10. Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY Ni and Nafion/SiO2 catalysts.

    PubMed

    Zhao, Chen; Kou, Yuan; Lemonidou, Angeliki A; Li, Xuebing; Lercher, Johannes A

    2010-01-21

    A simple, green, cost- and energy-efficient route for converting phenolic components in bio-oil to hydrocarbons and methanol has been developed, with nearly 100% yields. In the heterogeneous catalysts, RANEY Ni acts as the hydrogenation catalyst and Nafion/SiO(2) acts as the Brønsted solid acid for hydrolysis and dehydration.

  11. In Vitro and In Vivo Studies for a Bio-Impedance Vital-Sign Monitor

    DTIC Science & Technology

    2006-10-01

    O V SD SAP 0.83 0.11 0.12 0.03 PWV TM2204 1.87 0.73 0.13 0.03 PWV SP776 1.17 0.31 0.14 0.01 EEG F 1.10 0.10 0.52 0.02 EEG P 1.64 0.56...monitoring heart rate, PWV of the soldiers. 30 Impedance Cuff Pressure (max 200 mm Hg) Accelerometer signal (Actigraph) Ultrasound

  12. Non-Cell-Adhesive Substrates for Printing of Arrayed Biomaterials

    PubMed Central

    Appel, Eric A.; Larson, Benjamin L.; Luly, Kathryn M.; Kim, Jinseong D.

    2015-01-01

    Cellular microarrays have become extremely useful in expediting the investigation of large libraries of (bio)materials for both in vitro and in vivo biomedical applications. We have developed an exceedingly simple strategy for the fabrication of non-cell-adhesive substrates supporting the immobilization of diverse (bio)material features, including both monomeric and polymeric adhesion molecules (e.g. RGD and polylysine), hydrogels, and polymers. PMID:25430948

  13. Optimal concentrations in transport systems

    PubMed Central

    Jensen, Kaare H.; Kim, Wonjung; Holbrook, N. Michele; Bush, John W. M.

    2013-01-01

    Many biological and man-made systems rely on transport systems for the distribution of material, for example matter and energy. Material transfer in these systems is determined by the flow rate and the concentration of material. While the most concentrated solutions offer the greatest potential in terms of material transfer, impedance typically increases with concentration, thus making them the most difficult to transport. We develop a general framework for describing systems for which impedance increases with concentration, and consider material flow in four different natural systems: blood flow in vertebrates, sugar transport in vascular plants and two modes of nectar drinking in birds and insects. The model provides a simple method for determining the optimum concentration copt in these systems. The model further suggests that the impedance at the optimum concentration μopt may be expressed in terms of the impedance of the pure (c = 0) carrier medium μ0 as μopt∼2αμ0, where the power α is prescribed by the specific flow constraints, for example constant pressure for blood flow (α = 1) or constant work rate for certain nectar-drinking insects (α = 6). Comparing the model predictions with experimental data from more than 100 animal and plant species, we find that the simple model rationalizes the observed concentrations and impedances. The model provides a universal framework for studying flows impeded by concentration, and yields insight into optimization in engineered systems, such as traffic flow. PMID:23594815

  14. Inhibitors removal from bio-oil aqueous fraction for increased ethanol production.

    PubMed

    Sukhbaatar, Badamkhand; Li, Qi; Wan, Caixia; Yu, Fei; Hassan, El-Barbary; Steele, Philip

    2014-06-01

    Utilization of 1,6-anhydro-β-d-glucopyranose (levoglucosan) present (11% w/v) in the water fraction of bio-oil for ethanol production will facilitate improvement in comprehensive utilization of total carbon in biomass. One of the major challenges for conversion of anhydrous sugars from the bio-oil water fraction to bio-ethanol is the presence of inhibitory compounds that slow or impede the microbial fermentation process. Removal of inhibitory compounds was first approached by n-butanol extraction. Optimal ratio of n-butanol and bio-oil water fraction was 1.8:1. Removal of dissolved n-butanol was completed by evaporation. Concentration of sugars in the bio-oil water fraction was performed by membrane filtration and freeze drying. Fermentability of the pyrolytic sugars was tested by fermentation of hydrolyzed sugars with Saccharomyces pastorianus lager yeast. The yield of ethanol produced from pyrolytic sugars in the bio-oil water fraction reached a maximum of 98% of the theoretical yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A brief review of extrusion-based tissue scaffold bio-printing.

    PubMed

    Ning, Liqun; Chen, Xiongbiao

    2017-08-01

    Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion-based bio-printing for scaffold fabrication, focusing on the prior-printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to-date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi-materials/cells manipulation, and process-induced cell damage in extrusion-based bio-printing. The key issue and challenges for extrusion-based bio-printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio-printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio-printing. The address of these challenges will significantly enhance the capability of extrusion-based bio-printing. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Comprehensive Physical Impedance Model of Polymer Electrolyte Fuel Cell Cathodes in Oxygen-free Atmosphere.

    PubMed

    Obermaier, Michael; Bandarenka, Aliaksandr S; Lohri-Tymozhynsky, Cyrill

    2018-03-21

    Electrochemical impedance spectroscopy (EIS) is an indispensable tool for non-destructive operando characterization of Polymer Electrolyte Fuel Cells (PEFCs). However, in order to interpret the PEFC's impedance response and understand the phenomena revealed by EIS, numerous semi-empirical or purely empirical models are used. In this work, a relatively simple model for PEFC cathode catalyst layers in absence of oxygen has been developed, where all the equivalent circuit parameters have an entire physical meaning. It is based on: (i) experimental quantification of the catalyst layer pore radii, (ii) application of De Levie's analytical formula to calculate the response of a single pore, (iii) approximating the ionomer distribution within every pore, (iv) accounting for the specific adsorption of sulfonate groups and (v) accounting for a small H 2 crossover through ~15 μm ionomer membranes. The derived model has effectively only 6 independent fitting parameters and each of them has clear physical meaning. It was used to investigate the cathode catalyst layer and the double layer capacitance at the interface between the ionomer/membrane and Pt-electrocatalyst. The model has demonstrated excellent results in fitting and interpretation of the impedance data under different relative humidities. A simple script enabling fitting of impedance data is provided as supporting information.

  17. Measurement of bio-impedance with a smart needle to confirm percutaneous kidney access.

    PubMed

    Hernandez, D J; Sinkov, V A; Roberts, W W; Allaf, M E; Patriciu, A; Jarrett, T W; Kavoussi, L R; Stoianovici, D

    2001-10-01

    The traditional method of percutaneous renal access requires freehand needle placement guided by C-arm fluoroscopy, ultrasonography, or computerized tomography. This approach provides limited objective means for verifying successful access. We developed an impedance based percutaneous Smart Needle system and successfully used it to confirm collecting system access in ex vivo porcine kidneys. The Smart Needle consists of a modified 18 gauge percutaneous access needle with the inner stylet electrically insulated from the outer sheath. Impedance is measured between the exposed stylet tip and sheath using Model 4275 LCR meter (Hewlett-Packard, Sunnyvale, California). An ex vivo porcine kidney was distended by continuous gravity infusion of 100 cm. water saline from a catheter passed through the parenchyma into the collecting system. The Smart Needle was gradually inserted into the kidney to measure depth precisely using a robotic needle placement system, while impedance was measured continuously. The Smart Needle was inserted 4 times in each of 4 kidneys. When the needle penetrated the distended collecting system in 11 of 16 attempts, a characteristic sharp drop in resistivity was noted from 1.9 to 1.1 ohm m. Entry into the collecting system was confirmed by removing the stylet and observing fluid flow from the sheath. This characteristic impedance change was observed only at successful entry into the collecting system. A characteristic sharp drop in impedance signifies successful entry into the collecting system. The Smart Needle system may prove useful for percutaneous kidney access.

  18. BioWord: A sequence manipulation suite for Microsoft Word

    PubMed Central

    2012-01-01

    Background The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. Results BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. Conclusions BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms. PMID:22676326

  19. BioWord: a sequence manipulation suite for Microsoft Word.

    PubMed

    Anzaldi, Laura J; Muñoz-Fernández, Daniel; Erill, Ivan

    2012-06-07

    The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms.

  20. Development of a Multisensory Wearable System for Monitoring Cigarette Smoking Behavior in Free-Living Conditions

    PubMed Central

    Imtiaz, Masudul Haider; Ramos-Garcia, Raul I.; Senyurek, Volkan Yusuf; Tiffany, Stephen; Sazonov, Edward

    2017-01-01

    This paper presents the development and validation of a novel multi-sensory wearable system (Personal Automatic Cigarette Tracker v2 or PACT2.0) for monitoring of cigarette smoking in free-living conditions. The contributions of the PACT2.0 system are: (1) the implementation of a complete sensor suite for monitoring of all major behavioral manifestations of cigarette smoking (lighting events, hand-to-mouth gestures, and smoke inhalations); (2) a miniaturization of the sensor hardware to enable its applicability in naturalistic settings; and (3) an introduction of new sensor modalities that may provide additional insight into smoking behavior e.g., Global Positioning System (GPS), pedometer and Electrocardiogram(ECG) or provide an easy-to-use alternative (e.g., bio-impedance respiration sensor) to traditional sensors. PACT2.0 consists of three custom-built devices: an instrumented lighter, a hand module, and a chest module. The instrumented lighter is capable of recording the time and duration of all lighting events. The hand module integrates Inertial Measurement Unit (IMU) and a Radio Frequency (RF) transmitter to track the hand-to-mouth gestures. The module also operates as a pedometer. The chest module monitors the breathing (smoke inhalation) patterns (inductive and bio-impedance respiratory sensors), cardiac activity (ECG sensor), chest movement (three-axis accelerometer), hand-to-mouth proximity (RF receiver), and captures the geo-position of the subject (GPS receiver). The accuracy of PACT2.0 sensors was evaluated in bench tests and laboratory experiments. Use of PACT2.0 for data collection in the community was validated in a 24 h study on 40 smokers. Of 943 h of recorded data, 98.6% of the data was found usable for computer analysis. The recorded information included 549 lighting events, 522/504 consumed cigarettes (from lighter data/self-registered data, respectively), 20,158/22,207 hand-to-mouth gestures (from hand IMU/proximity sensor, respectively) and 114,217/112,175 breaths (from the respiratory inductive plethysmograph (RIP)/bio-impedance sensor, respectively). The proposed system scored 8.3 ± 0.31 out of 10 on a post-study acceptability survey. The results suggest that PACT2.0 presents a reliable platform for studying of smoking behavior at the community level. PMID:29607211

  1. Electrochemical MIP-Sensors for Drugs.

    PubMed

    Yarman, Aysu; Kurbanoglu, Sevinc; Jetzschmann, Katharina J; Ozkan, Sibel A; Wollenberger, Ulla; Scheller, Frieder

    2017-10-05

    In order to replace bio-macromolecules by stable synthetic materials in separation techniques and bioanalysis biomimetic receptors and catalysts have been developed: Functional monomers are polymerized together with the target analyte and after template removal cavities are formed in the "molecularly imprinted polymer" (MIP) which resemble the active sites of antibodies and enzymes. Staring almost 80 years ago, around 1,100 papers on MIPs were published in 2016. Electropolymerization allows to deposit MIPs directly on voltammetric electrodes or chips for quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). For the readout of MIPs for drugs amperometry, differential pulse voltammetry (DPV) and impedance spectroscopy (EIS) offer higher sensitivity as compared with QCM or SPR. Application of simple electrochemical devices allows both the reproducible preparation of MIP sensors, but also the sensitive signal generation. Electrochemical MIP-sensors for the whole arsenal of drugs, e.g. the most frequently used analgesics, antibiotics and anticancer drugs have been presented in literature and tested under laboratory conditions. These biomimetic sensors typically have measuring ranges covering the lower nano- up to millimolar concentration range and they are stable under extreme pH and in organic solvents like non-aqueous extracts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. High sensitivity and label-free detection of Enterovirus 71 by nanogold modified electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Fang-Yu; Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Yang, Jyh-Yuan; Chang, Chia-Ching

    2013-03-01

    Enterovirus 71 (EV71), which is the most fulminant and invasive species of enterovirus, can cause children neurologic complications and death within 2-3 days after fever and rash developed. Besides, EV71 has high sequence similarity with Coxsackie A 16 (CA16) that makes differential diagnosis difficult in clinic and laboratory. Since conventional viral diagnostic method cannot diagnose EV71 quickly and EV71 can transmit at low viral titer, the patients might delay in treatment. A quick, high sensitive, and high specific test for EV71 detection is pivotal. Electrochemical impedance spectroscopy (EIS) has been applied for detecting bio-molecules as biosensors recently. In this study, we try to build a detection platform for EV71 detection by nanogold modified EIS probe. The result shows that our probe can detect 3.6 VP1/50 μl (one EV71 particle has 60 VP1) in 3 minutes. The test can also distinguish EV71 from CA16 and lysozyme. Diagnosis of enterovirus 71 by electrochemical impedance spectroscopy has the potential to apply in clinic.

  3. A New Frontier for Cardiac Monitoring

    NASA Technical Reports Server (NTRS)

    2001-01-01

    CardioDynamics International Corporation (CDIC) has created the BioZ(TM) System through a Small Business Innovation Research (SBIR) award from Johnson Space Center, providing patients and physicians with a cost-effective and highly accurate monitoring system.The BioZ non-invasive heart monitor is based on a technology known as Impedance Cardiography (ICG). BioZ provides the physician with vital information about the heart's ability to deliver blood to the body, the force one's heart exerts with each beat, and the amount of fluid in the chest. Specially designed bioimpedance sensors placed on the neck and chest monitor 12 different parameters, including cardiac output, contractility, systemic vascular resistance, and thoracic fluid content. These sensors monitor the electrical conductivity of the body-information that is converted into blood flow data and is displayed in real time on a monitoring screen. BioZ.com(TM) and BioZ.pc(TM) are two additional products that incorporate the same sensors present in the original BioZ system. The "com" in BioZ.com stands for cardiac output monitor. This fully integrated system is essentially a smaller version of the BioZ, combining the same abilities with a compact, lightweight design, while providing greater portability.

  4. Bioelectrical impedance analysis of bovine milk fat

    NASA Astrophysics Data System (ADS)

    Veiga, E. A.; Bertemes-Filho, P.

    2012-12-01

    Three samples of 250ml at home temperature of 20°C were obtained from whole, low fat and fat free bovine UHT milk. They were analysed by measuring both impedance spectra and dc conductivity in order to establish the relationship between samples related to fat content. An impedance measuring system was developed, which is based on digital oscilloscope, a current source and a FPGA. Data was measured by the oscilloscope in the frequency 1 kHz to 100 kHz. It was showed that there is approximately 7.9% difference in the conductivity between whole and low fat milk whereas 15.9% between low fat and free fat one. The change of fatness in the milk can be significantly sensed by both impedance spectra measurements and dc conductivity. This result might be useful for detecting fat content of milk in a very simple way and also may help the development of sensors for measuring milk quality, as for example the detection of mastitis.

  5. A new hybrid active/passive sound absorber with variable surface impedance

    NASA Astrophysics Data System (ADS)

    Betgen, Benjamin; Galland, Marie-Annick

    2011-07-01

    The context of the present paper is the wall treatment of flow ducts, notably aero-engine nacelle intakes and outlets. For this purpose, hybrid active/passive absorbers have been developed at the LMFA for about 15 years. A hybrid cell combines passive absorbent properties of a porous layer and active control at its rear face. Active control is mainly used to increase absorption at low frequencies by cancelling the imaginary part of the surface impedance presented by the absorber. However, the optimal impedance (i.e. the one that produces the highest noise reduction) of an absorber for flow duct applications is generally complex and frequency dependent. A new hybrid absorber intended to realise any of impedance has therefore been developed. The new cell uses one microphone on each side of a resistive cloth. Normal velocity can then be deduced by a simple pressure difference, which allows an estimation of the surface impedance of the absorber. In order to obtain an error signal related to a target impedance, the target impedance has to be reproduced in time domain. The design of a stable and causal filter is a difficult task, considering the kind of frequency response we seek. An alternative way of representing the impedance in time domain is therefore given. The new error signal is integrated into a feedback control structure. Fast convergence and good stability are observed for a wide range of target impedances. Typical optimal impedances with a positive increasing real part and a negative decreasing imaginary part have been successfully realised. Measurements in a grazing-incidence tube show that the new complex impedance absorber clearly outperforms the former active absorber.

  6. The characterisation and design improvement of a paper-based E.coli impedimetric sensor

    NASA Astrophysics Data System (ADS)

    Bezuidenhout, P.; Kumar, S.; Wiederoder, M.; Schoeman, J.; Land, K.; Joubert, T.-H.

    2016-02-01

    This paper describes the development and optimisation of a paper-based E. coli impedimetric biosensor for water quality monitoring. Impedimetric biosensing is advantageous because it is a highly sensitive, label-free, real-time method for the detection of biological species. An impedimetric biosensor measures the change in impedance caused by specific capture of a target on the sensor surface. Each biosensor consists of a pair of photo paper-based inkjet printed electrodes. An impedance analyser was used to measure the impedance at frequencies ranging from 1 kHz to 1 MHz at 1V. The parameters that were investigated to achieve enhanced sensor performance were buffer type, antibody attachment method, measurement frequency, electrode layout, and conductive material. A 0.04M PBS (phosphate buffered saline) solution achieves better results compared to a less conductive 0.04M PB (potassium phosphate dibasic) solution. The direct adsorption of anti-E. coli antibodies onto the sensor surface yielded better results than attaching the sensor to a lateral flow test. The resistive component had a greater impact on the detected impedance, therefore an optimal frequency of 1 MHz was identified. Geometrical electrode designs that maximise the resistive change between the electrodes were utilised. Both lower cost silver and bio-compatible gold ink were validated as electrode materials. The impedance change generated by the selective capture of E. coli K-12, ranging in concentration from 103 to 107 colony forming units per millilitre (cfu/ml), showed a detection limit of 105 cfu/ml.

  7. A current-excited triple-time-voltage oversampling method for bio-impedance model for cost-efficient circuit system.

    PubMed

    Yan Hong; Yong Wang; Wang Ling Goh; Yuan Gao; Lei Yao

    2015-08-01

    This paper presents a mathematic method and a cost-efficient circuit to measure the value of each component of the bio-impedance model at electrode-electrolyte interface. The proposed current excited triple-time-voltage oversampling (TTVO) method deduces the component values by solving triple simultaneous electric equation (TSEE) at different time nodes during a current excitation, which are the voltage functions of time. The proposed triple simultaneous electric equations (TSEEs) allows random selections of the time nodes, hence numerous solutions can be obtained during a single current excitation. Following that, the oversampling approach is engaged by averaging all solutions of multiple TSEEs acquired after a single current excitation, which increases the practical measurement accuracy through the improvement of the signal-to-noise ratio (SNR). In addition, a print circuit board (PCB) that consists a switched current exciter and an analog-to-digital converter (ADC) is designed for signal acquisition. This presents a great cost reduction when compared against other instrument-based measurement data reported [1]. Through testing, the measured values of this work is proven to be in superb agreements on the true component values of the electrode-electrolyte interface model. This work is most suited and also useful for biological and biomedical applications, to perform tasks such as stimulations, recordings, impedance characterizations, etc.

  8. Simplified signal processing for impedance spectroscopy with spectrally sparse sequences

    NASA Astrophysics Data System (ADS)

    Annus, P.; Land, R.; Reidla, M.; Ojarand, J.; Mughal, Y.; Min, M.

    2013-04-01

    Classical method for measurement of the electrical bio-impedance involves excitation with sinusoidal waveform. Sinusoidal excitation at fixed frequency points enables wide variety of signal processing options, most general of them being Fourier transform. Multiplication with two quadrature waveforms at desired frequency could be easily accomplished both in analogue and in digital domains, even simplest quadrature square waves can be considered, which reduces signal processing task in analogue domain to synchronous switching followed by low pass filter, and in digital domain requires only additions. So called spectrally sparse excitation sequences (SSS), which have been recently introduced into bio-impedance measurement domain, are very reasonable choice when simultaneous multifrequency excitation is required. They have many good properties, such as ease of generation and good crest factor compared to similar multisinusoids. Typically, the usage of discrete or fast Fourier transform in signal processing step is considered so far. Usage of simplified methods nevertheless would reduce computational burden, and enable simpler, less costly and less energy hungry signal processing platforms. Accuracy of the measurement with SSS excitation when using different waveforms for quadrature demodulation will be compared in order to evaluate the feasibility of the simplified signal processing. Sigma delta modulated sinusoid (binary signal) is considered to be a good alternative for a synchronous demodulation.

  9. The performance of integrated transconductance amplifiers as variable current sources for bio-electric impedance measurements.

    PubMed

    Smith, D N

    1992-01-01

    Multiple applied current impedance measurement systems require numbers of current sources which operate simultaneously at the same frequency and within the same phase but at variable amplitudes. Investigations into the performance of some integrated operational transconductance amplifiers as variable current sources are described. Measurements of breakthrough, non-linearity and common-mode output levels for LM13600, NE5517 and CA3280 were carried out. The effects of such errors on the overall performance and stability of multiple current systems when driving floating loads are considered.

  10. A simple method using on-line continuous leaching and ion exchange chromatography coupled to inductively coupled plasma mass spectrometry for the speciation analysis of bio-accessible arsenic in rice.

    PubMed

    Horner, Nolan S; Beauchemin, Diane

    2012-03-02

    A simple method for the speciation analysis of bio-accessible arsenic (As) in rice was developed using a continuous on-line leaching method to release the bio-accessible fraction. The continuous on-line leaching method has several advantages over commonly used batch methods including quicker and easier sample preparation, reduced risk of contamination and access to real time leaching data. The bio-accessibility of As in the samples was monitored using inductively coupled plasma mass spectrometry (ICP-MS). Results from a certified reference material as well as cooked and uncooked white rice showed that the majority of As was leached by saliva. Results obtained using the continuous on-line leaching method were comparable to those obtained using a batch method. Speciation analysis of the saliva leachate was performed using ion exchange chromatography coupled to ICP-MS. The four most toxic forms of As (As(III), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and As(V)) were clearly separated within 5 min in a single chromatographic run. Over 92% of bio-accessible As in the certified reference material and uncooked white rice sample was in the form of DMA and As(V), whereas it was present as DMA and As(III) in the cooked white rice. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Biotactile Sensors: Self-Powered Electronic Skin with Biotactile Selectivity (Adv. Mater. 18/2016).

    PubMed

    Hu, Kesong; Xiong, Rui; Guo, Hengyu; Ma, Ruilong; Zhang, Shuaidi; Wang, Zhong Lin; Tsukruk, Vladimir V

    2016-05-01

    On page 3549, V. V. Tsukruk and co-workers develop self-powered ultrathin flexible films for bio-tactile detection. Graphene oxide materials are engineered for robust self-powered tactile sensing applications harnessing their electrochemical reactivity. The simple quadruple electronic skin sensor can recognize nine spatial bio-tactile positions with high sensitivity and selectivity-an approach that can be expanded towards large-area flexible skin arrays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mapping Earth's electromagnetic dimensionality

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Kelbert, A.; Bedrosian, P.

    2017-12-01

    The form of a magnetotelluric impedance tensor, obtained for a given geographic site through simultaneous measurement of geomagnetic and geoelectric field variation, is affected by electrical conductivity structure beneath the measurement site. Building on existing methods for characterizing the symmetry of magnetotelluric impedance tensors, a simple scalar measure is developed for measuring the (frequency dependent) proportion of the impedance tensor that is not just a one-dimensional (1D) function of depth ("non-1D-ness"). These measures are applied to nearly 1000 impedance tensors obtained during magnetotelluric surveys, those for the continental United States and obtained principally through the National Science Foundation's EarthScope project. Across geomagnetic/geoelectric variational periods ranging from 30 s to 3,000 s, corresponding to crustal and upper mantle depths, it is shown that local Earth structure is very often not simply 1D-depth-dependent - often less than 50% of magnetotelluric impedance is 1D. For selected variational frequencies, non-1D-ness is mapped and the relationship between electromagnetic dimensionality and known geological and tectonic structures is discussed. The importance of using realistic surface impedances to accurately evaluate magnetic-storm geoelectric hazards is emphasized.

  13. Development of an Algorithm for Automatic Analysis of the Impedance Spectrum Based on a Measurement Model

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kiyoshi; Suzuki, Tohru S.

    2018-03-01

    A new algorithm for the automatic estimation of an equivalent circuit and the subsequent parameter optimization is developed by combining the data-mining concept and complex least-squares method. In this algorithm, the program generates an initial equivalent-circuit model based on the sampling data and then attempts to optimize the parameters. The basic hypothesis is that the measured impedance spectrum can be reproduced by the sum of the partial-impedance spectra presented by the resistor, inductor, resistor connected in parallel to a capacitor, and resistor connected in parallel to an inductor. The adequacy of the model is determined by using a simple artificial-intelligence function, which is applied to the output function of the Levenberg-Marquardt module. From the iteration of model modifications, the program finds an adequate equivalent-circuit model without any user input to the equivalent-circuit model.

  14. Simulating Reflex Induced Changes in the Acoustic Impedance of the Ear.

    ERIC Educational Resources Information Center

    Sirlin, Mindy W.; Levitt, Harry

    1991-01-01

    A simple procedure for measuring changes in the acoustic impedance of the ear is described. The technique has several applications, including simulation using a standard coupler of changes in real ear impedance produced by the acoustic reflex, and calibration of response time of an otoadmittance meter. (Author/DB)

  15. Prototype development of an electrical impedance based simultaneous respiratory and cardiac monitoring system for gated radiotherapy.

    PubMed

    Kohli, Kirpal; Liu, Jeff; Schellenberg, Devin; Karvat, Anand; Parameswaran, Ash; Grewal, Parvind; Thomas, Steven

    2014-10-14

    In radiotherapy, temporary translocations of the internal organs and tumor induced by respiratory and cardiac activities can undesirably lead to significantly lower radiation dose on the targeted tumor but more harmful radiation on surrounding healthy tissues. Respiratory and cardiac gated radiotherapy offers a potential solution for the treatment of tumors located in the upper thorax. The present study focuses on the design and development of simultaneous acquisition of respiratory and cardiac signal using electrical impedance technology for use in dual gated radiotherapy. An electronic circuitry was developed for monitoring the bio-impedance change due to respiratory and cardiac motions and extracting the cardiogenic ECG signal. The system was analyzed in terms of reliability of signal acquisition, time delay, and functionality in a high energy radiation environment. The resulting signal of the system developed was also compared with the output of the commercially available Real-time Position Management™ (RPM) system in both time and frequency domains. The results demonstrate that the bioimpedance-based method can potentially provide reliable tracking of respiratory and cardiac motion in humans, alternative to currently available methods. When compared with the RPM system, the impedance-based system developed in the present study shows similar output pattern but different sensitivities in monitoring different respiratory rates. The tracking of cardiac motion was more susceptible to interference from other sources than respiratory motion but also provided synchronous output compared with the ECG signal extracted. The proposed hardware-based implementation was observed to have a worst-case time delay of approximately 33 ms for respiratory monitoring and 45 ms for cardiac monitoring. No significant effect on the functionality of the system was observed when it was tested in a radiation environment with the electrode lead wires directly exposed to high-energy X-Rays. The developed system capable of rendering quality signals for tracking both respiratory and cardiac motions can potentially provide a solution for simultaneous dual-gated radiotherapy.

  16. Electricity generation by Pyrococcus furiosus in microbial fuel cells operated at 90°C.

    PubMed

    Sekar, Narendran; Wu, Chang-Hao; Adams, Michael W W; Ramasamy, Ramaraja P

    2017-07-01

    Hyperthermophiles are microorganisms that thrive in extremely hot environments with temperatures near and even above 100°C. They are the most deeply rooted microorganisms on phylogenetic trees suggesting they may have evolved to survive in the early hostile earth. The simple respiratory systems of some of these hyperthermophiles make them potential candidates to develop microbial fuel cells (MFC) that can generate power at temperatures approaching the boiling point. We explored extracellular electron transfer in the hyperthermophilic archaeon Pyrococcus furiosus (Pf) by studying its ability to generate electricity in a two-chamber MFC. Pf growing in defined medium functioned as an anolyte in a MFC operated at 90°C, generating a maximum current density of 2 A m -2 and a peak power density of 225 mW m -2 without the addition of any external redox mediator. Electron microscopy and electrochemical impedance spectroscopy of the anode with the attached Pf biofilm demonstrated bio-electrochemical behavior that led to electricity generation in the MFC via direct electron transfer. This proof of concept study reveals for the first time that a hyperthermophile such as Pf can generate electricity in MFC at extreme temperatures. Biotechnol. Bioeng. 2017;114: 1419-1427. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    NASA Astrophysics Data System (ADS)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  18. Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans

    PubMed Central

    Tan, Li; Showalter, Allan M.; Egelund, Jack; Hernandez-Sanchez, Arianna; Doblin, Monika S.; Bacic, Antony

    2012-01-01

    Arabinogalactan-proteins (AGPs) are complex glycoconjugates that are commonly found at the cell surface and in secretions of plants. Their location and diversity of structures have made them attractive targets as modulators of plant development but definitive proof of their direct role(s) in biological processes remains elusive. Here we overview the current state of knowledge on AGPs, identify key challenges impeding progress in the field and propose approaches using modern bioinformatic, (bio)chemical, cell biological, molecular and genetic techniques that could be applied to redress these gaps in our knowledge. PMID:22754559

  19. Acceleration of the Enzymatic Hydrolysis of Cotton Waste Celluloses by Low Intensity Uniform Ultrasound Field

    USDA-ARS?s Scientific Manuscript database

    The cost-competitive production of bio-ethanol and other biofuels is currently impeded, mostly by high cost and low efficiency of enzymatic hydrolysis of feedstock biomass and especially plant celluloses. Despite substantial reduction in the cost of production of cellulolytic enzymes in recent times...

  20. Improvement of the matching speed of AIMS for development of an automatic totally tuning system for hyperthermia treatment using a resonant cavity applicator.

    PubMed

    Shindo, Y; Kato, K; Tsuchiya, K; Hirashima, T; Suzuki, M

    2009-01-01

    In this paper, we discuss the improvement of the speed of AIMS (Automatic Impedance Matching System) to automatically make impedance matching for a re-entrant resonant cavity applicator for non-invasive deep brain tumors hyperthermia treatments. We have already discussed the effectiveness of the heating method using the AIMS, with experiments of heating agar phantoms. However, the operating time of AIMS was about 30 minutes. To develop the ATT System (Automatic Totally Tuning System) including the automatic frequency tuning system, we must improve this problem. Because, when using the ATTS, the AIMS is used repeatedly to find the resonant frequency. In order to improve the speed of impedance matching, we developed the new automatic impedance matching system program (AIMS2). In AIMS, the stepping motors were connected to the impedance matching unit's dials. These dials were turned to reduce the reflected power. AIMS consists of two phases: all range searching and detailed searching. We focused on the three factors affecting the operating speed and improved them. The first factor is the interval put between the turning of the motors and AD converter. The second factor is how the steps of the motor when operating all range searching. The third factor is the starting position of the motor when detail searching. We developed the simple ATT System (ATT-beta) based on the AIMS2. To evaluate the developed AIMS2 and ATT- beta, experiments with an agar phantom were performed. From these results, we found that the operating time of the AIMS2 is about 4 minutes, which was approximately 12% of AIMS. From ATT-beta results, it was shown that it is possible to tune frequency and automatically match impedance with the program based on the AIMS2.

  1. Bio-Corrosion of Magnesium Alloys for Orthopaedic Applications

    PubMed Central

    Brooks, Emily K.; Ehrensberger, Mark T.

    2017-01-01

    Three Mg alloys, Mg–1.34% Ca–3% Zn (MCZ), Mg–1.34% Ca–3% Zn–0.2% Sr (MCZS), and Mg–2% Sr (MS), were examined to understand their bio-corrosion behavior. Electrochemical impedance spectroscopy and polarization scans were performed after 6 days of immersion in cell culture medium, and ion release and changes in media pH were tracked over a 28 day time period. Scanning electron microscopy (SEM) of alloy microstructure was performed to help interpret the results of the electrochemical testing. Results indicate that corrosion resistance of the alloys is as follows: MCZ > MCZS > MS. PMID:28862647

  2. Biofuels from microalgae.

    PubMed

    Li, Yanqun; Horsman, Mark; Wu, Nan; Lan, Christopher Q; Dubois-Calero, Nathalie

    2008-01-01

    Microalgae are a diverse group of prokaryotic and eukaryotic photosynthetic microorganisms that grow rapidly due to their simple structure. They can potentially be employed for the production of biofuels in an economically effective and environmentally sustainable manner. Microalgae have been investigated for the production of a number of different biofuels including biodiesel, bio-oil, bio-syngas, and bio-hydrogen. The production of these biofuels can be coupled with flue gas CO2 mitigation, wastewater treatment, and the production of high-value chemicals. Microalgal farming can also be carried out with seawater using marine microalgal species as the producers. Developments in microalgal cultivation and downstream processing (e.g., harvesting, drying, and thermochemical processing) are expected to further enhance the cost-effectiveness of the biofuel from microalgae strategy.

  3. An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring.

    PubMed

    Baptista, Fabricio G; Budoya, Danilo E; de Almeida, Vinicius A D; Ulson, Jose Alfredo C

    2014-01-10

    The electromechanical impedance (EMI) technique is considered to be one of the most promising methods for developing structural health monitoring (SHM) systems. This technique is simple to implement and uses small and inexpensive piezoelectric sensors. However, practical problems have hindered its application to real-world structures, and temperature effects have been cited in the literature as critical problems. In this paper, we present an experimental study of the effect of temperature on the electrical impedance of the piezoelectric sensors used in the EMI technique. We used 5H PZT (lead zirconate titanate) ceramic sensors, which are commonly used in the EMI technique. The experimental results showed that the temperature effects were strongly frequency-dependent, which may motivate future research in the SHM field.

  4. Reducing Cultural Barriers via Internet Courses

    ERIC Educational Resources Information Center

    Xing, Minjie; Spencer, Ken

    2008-01-01

    A Web-based learning environment has been developed to support students from China who are studying in the UK and are confronted by many cultural barriers, which may impede their academic studies. The electronic environment incorporates a number of approaches to support learning, ranging from a simple text-based presentation to more active…

  5. Acceleration of the Enzymatic Hydrolysis of Corn Stover and Sugar Cane Bagasse Celluloses by Low Intensity Uniform Ultrasound

    USDA-ARS?s Scientific Manuscript database

    The cost-competitive production of bio-ethanol and other biofuels is currently impeded, mostly by high cost and low efficiency of enzymatic hydrolysis of feedstock biomass and especially plant celluloses. Despite substantial reduction in the cost of production of cellulolytic enzymes in recent times...

  6. Bio-based products via microwave-assisted maleation of tung oil

    USDA-ARS?s Scientific Manuscript database

    A simple “green” and convenient chemical modification of tung oil for maleinized tung oil (TOMA) was developed via microwave-assisted one-step maleation. The mechanism of this microwave-assisted maleation was investigated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). T...

  7. Microwave-assisted maleation of tung oil for bio-based products

    USDA-ARS?s Scientific Manuscript database

    In this work, a simple, “green” and convenient chemical modification of tung oil for maleinized tung oil (TOMA) was developed via microwave-assisted one-step maleation. This modifying process did not involve any solvent, catalyst, or initiator, but demonstrated the most efficiency of functionalizing...

  8. Effect of lignin derivatives in the bio-polyols from microwave liquefied bamboo on the properties of polyurethane foams

    Treesearch

    Jiulong Xie; Jinqiu Qi; Chung-Yun Hse; Todd F. Shupe

    2014-01-01

    Bamboo residues were subjected to a microwave-assisted liquefaction process for the production of crude bio-polyols (CBP). The fractionated bio-polyols (FBP) were obtained by the removal of lignin derivatives from the crude bio-polyols (CBP) using a simple method. Polyurethane (PU) foams were successfully prepared from both CBP and FBP. The object of this study was to...

  9. Highly Stable Lyophilized Homogeneous Bead-Based Immunoassays for On-Site Detection of Bio Warfare Agents from Complex Matrices.

    PubMed

    Mechaly, Adva; Marx, Sharon; Levy, Orly; Yitzhaki, Shmuel; Fisher, Morly

    2016-06-21

    This study shows the development of dry, highly stable immunoassays for the detection of bio warfare agents in complex matrices. Thermal stability was achieved by the lyophilization of the complete, homogeneous, bead-based immunoassay in a special stabilizing buffer, resulting in a ready-to-use, simple assay, which exhibited long shelf and high-temperature endurance (up to 1 week at 100 °C). The developed methodology was successfully implemented for the preservation of time-resolved fluorescence, Alexa-fluorophores, and horse radish peroxidase-based bead assays, enabling multiplexed detection. The multiplexed assay was successfully implemented for the detection of Bacillus anthracis, botulinum B, and tularemia in complex matrices.

  10. Direct Antimicrobial Susceptibility Testing of Gram-Negative Bacilli in Blood Cultures by an Electrochemical Method

    PubMed Central

    Huang, Ay Huey; Wu, Jiunn Jong; Weng, Yu Mei; Ding, Hwia Cheng; Chang, Tsung Chain

    1998-01-01

    Nonfastidious aerobic gram-negative bacilli (GNB) are commonly isolated from blood cultures. The feasibility of using an electrochemical method for direct antimicrobial susceptibility testing of GNB in positive blood cultures was evaluated. An aliquot (10 μl) of 1:10-diluted positive blood cultures containing GNB was inoculated into the Bactometer module well (bioMérieux Vitek, Hazelwood, Mo.) containing 1 ml of Mueller-Hinton broth supplemented with an antibiotic. Susceptibility tests were performed in a breakpoint broth dilution format, with the results being categorized as resistant, intermediate, or susceptible. Seven antibiotics (ampicillin, cephalothin, gentamicin, amikacin, cefamandole, cefotaxime, and ciprofloxacin) were used in this study, with each agent being tested at the two interpretive breakpoint concentrations. The inoculated modules were incubated at 35°C, and the change in impedance in each well was continuously monitored for 24 h by the Bactometer. The MICs of the seven antibiotics for each blood isolate were also determined by the standardized broth microdilution method. Of 146 positive blood cultures (1,022 microorganism-antibiotic combinations) containing GNB tested by the direct method, the rates of very major, major, and minor errors were 0, 1.1, and 2.5%, respectively. The impedance method was simple; no centrifugation, preincubation, or standardization of the inocula was required, and the susceptibility results were normally available within 3 to 6 h after inoculation. The rapid method may allow proper antimicrobial treatment almost 30 to 40 h before the results of the standard methods are available. PMID:9738038

  11. Electrical study on Carboxymethyl Cellulose-Polyvinyl alcohol based bio-polymer blend electrolytes

    NASA Astrophysics Data System (ADS)

    Saadiah, M. A.; Samsudin, A. S.

    2018-04-01

    The present work deals with the formulation of bio-materials namely carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) for bio-polymer blend electrolytes (BBEs) system which was successfully carried out with different ratio of polymer blend. The biopolymer blend was prepared via economical & classical technique that is solution casting technique and was characterized by using impedance spectroscopy (EIS). The ionic conductivity was achieved to optimum value 9.12 x 10-6 S/cm at room temperature for sample containing ratio 80:20 of CMC:PVA. The highest conducting sample was found to obey the Arrhenius behaviour with a function of temperature. The electrical properties were analyzed using complex permittivity ε* and complex electrical modulus M* for BBEs system and it shows the non-Debye characteristics where no single relaxation time has observed.

  12. Calibrated complex impedance of CHO cells and E. coli bacteria at GHz frequencies using scanning microwave microscopy

    NASA Astrophysics Data System (ADS)

    Tuca, Silviu-Sorin; Badino, Giorgio; Gramse, Georg; Brinciotti, Enrico; Kasper, Manuel; Oh, Yoo Jin; Zhu, Rong; Rankl, Christian; Hinterdorfer, Peter; Kienberger, Ferry

    2016-04-01

    The application of scanning microwave microscopy (SMM) to extract calibrated electrical properties of cells and bacteria in air is presented. From the S 11 images, after calibration, complex impedance and admittance images of Chinese hamster ovary cells and E. coli bacteria deposited on a silicon substrate have been obtained. The broadband capabilities of SMM have been used to characterize the bio-samples between 2 GHz and 20 GHz. The resulting calibrated cell and bacteria admittance at 19 GHz were Y cell = 185 μS + j285 μS and Y bacteria = 3 μS + j20 μS, respectively. A combined circuitry-3D finite element method EMPro model has been developed and used to investigate the frequency response of the complex impedance and admittance of the SMM setup. Based on a proposed parallel resistance-capacitance model, the equivalent conductance and parallel capacitance of the cells and bacteria were obtained from the SMM images. The influence of humidity and frequency on the cell conductance was experimentally studied. To compare the cell conductance with bulk water properties, we measured the imaginary part of the bulk water loss with a dielectric probe kit in the same frequency range resulting in a high level of agreement.

  13. Microwave-assisted maleation of tung oil for bio-based products with versatile applications

    USDA-ARS?s Scientific Manuscript database

    In this work, a simple, “green” and convenient chemical modification of tung oil for maleinized tung oil (TOMA) was developed via microwave-assisted one-step maleation. This modifying process did not involve any solvent, catalyst, or initiator, but demonstrated the most efficiency of functionalizing...

  14. Bio-inspired passive actuator simulating an abalone shell mechanism for structural control

    NASA Astrophysics Data System (ADS)

    Yang, Henry T. Y.; Lin, Chun-Hung; Bridges, Daniel; Randall, Connor J.; Hansma, Paul K.

    2010-10-01

    An energy dispersion mechanism called 'sacrificial bonds and hidden length', which is found in some biological systems, such as abalone shells and bones, is the inspiration for new strategies for structural control. Sacrificial bonds and hidden length can substantially increase the stiffness and enhance energy dissipation in the constituent molecules of abalone shells and bone. Having been inspired by the usefulness and effectiveness of such a mechanism, which has evolved over millions of years and countless cycles of evolutions, the authors employ the conceptual underpinnings of this mechanism to develop a bio-inspired passive actuator. This paper presents a fundamental method for optimally designing such bio-inspired passive actuators for structural control. To optimize the bio-inspired passive actuator, a simple method utilizing the force-displacement-velocity (FDV) plots based on LQR control is proposed. A linear regression approach is adopted in this research to find the initial values of the desired parameters for the bio-inspired passive actuator. The illustrative examples, conducted by numerical simulation with experimental validation, suggest that the bio-inspired passive actuator based on sacrificial bonds and hidden length may be comparable in performance to state-of-the-art semi-active actuators.

  15. The SeaWiFS Bio-Optical Archive and Storage System (SeaBASS): Current Architecture and Implementation

    NASA Technical Reports Server (NTRS)

    Werdell, P. Jeremy; Fargion, Giulietta S. (Editor); McClain, Charles R. (Editor); Bailey, Sean W.

    2002-01-01

    Satellite ocean color missions require an abundance of high-quality in situ measurements for bio-optical and atmospheric algorithm development and post-launch product validation and sensor calibration. To facilitate the assembly of a global data set, the NASA Sea-viewing Wide Field-of-view (SeaWiFS) Project developed the Seafaring Bio-optical Archive and Storage System (SeaBASS), a local repository for in situ data regularly used in their scientific analyses. The system has since been expanded to contain data sets collected by the NASA Sensor Intercalibration and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project, as part of NASA Research Announcements NRA-96-MTPE-04 and NRA-99-OES-99. SeaBASS is a well moderated and documented hive for bio-optical data with a simple, secure mechanism for locating and extracting data based on user inputs. Its holdings are available to the general public with the exception of the most recently collected data sets. Extensive quality assurance protocols, comprehensive data and system documentation, and the continuation of an archive and relational database management system (RDBMS) suitable for bio-optical data all contribute to the continued success of SeaBASS. This document provides an overview of the current operational SeaBASS system.

  16. Measurement of intestinal edema using an impedance analyzer circuit.

    PubMed

    Radhakrishnan, Ravi S; Shah, Kunal; Xue, Hasen; Moore-Olufemi, Stacey D; Moore, Frederick A; Weisbrodt, Norman W; Allen, Steven J; Gill, Brijesh; Cox, Charles S

    2007-03-01

    Acute intestinal edema adversely affects intestinal transit, permeability, and contractility. Current resuscitation modalities, while effective, are associated with development of acute intestinal edema. Knowledge of levels of tissue edema would allow clinicians to monitor intestinal tissue water and may help prevent the detrimental effects of edema. However, there is no simple method to measure intestinal tissue water without biopsy. We sought to develop a tissue impedance analyzer to measure tissue edema, without the need for invasive biopsy. Oscillating voltage input was applied to the analyzer circuit and an oscilloscope measured the voltage output across any load. Rats were randomized to three groups: sham, mild edema (80 mL/kg of NS resuscitation), and severe edema (80 mL/kg of NS resuscitation with intestinal venous hypertension). Intestinal edema was measured by wet-to-dry tissue weight ratio. Bowel impedance was measured and converted to capacitance using a standard curve. Acute intestinal edema causes a significant increase in bowel capacitance. This capacitance can be used to predict tissue water concentration. Using an impedance analyzer circuit, it is possible to measure intestinal edema reliably and quickly. This may prove to be a useful tool in the resuscitation of critically ill patients.

  17. Stochastic Estimation of Arm Mechanical Impedance During Robotic Stroke Rehabilitation

    PubMed Central

    Palazzolo, Jerome J.; Ferraro, Mark; Krebs, Hermano Igo; Lynch, Daniel; Volpe, Bruce T.; Hogan, Neville

    2009-01-01

    This paper presents a stochastic method to estimate the multijoint mechanical impedance of the human arm suitable for use in a clinical setting, e.g., with persons with stroke undergoing robotic rehabilitation for a paralyzed arm. In this context, special circumstances such as hypertonicity and tissue atrophy due to disuse of the hemiplegic limb must be considered. A low-impedance robot was used to bring the upper limb of a stroke patient to a test location, generate force perturbations, and measure the resulting motion. Methods were developed to compensate for input signal coupling at low frequencies apparently due to human–machine interaction dynamics. Data was analyzed by spectral procedures that make no assumption about model structure. The method was validated by measuring simple mechanical hardware and results from a patient's hemiplegic arm are presented. PMID:17436881

  18. Object impedance control for cooperative manipulation - Theory and experimental results

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Cannon, Robert H., Jr.

    1992-01-01

    This paper presents the dynamic control module of the Dynamic and Strategic Control of Cooperating Manipulators (DASCCOM) project at Stanford University's Aerospace Robotics Laboratory. First, the cooperative manipulation problem is analyzed from a systems perspective, and the desirable features of a control system for cooperative manipulation are discussed. Next, a control policy is developed that enforces a controlled impedance not of the individual arm endpoints, but of the manipulated object itself. A parallel implementation for a multiprocessor system is presented. The controller fully compensates for the system dynamics and directly controls the object internal forces. Most importantly, it presents a simple, powerful, intuitive interface to higher level strategic control modules. Experimental results from a dual two-link-arm robotic system are used to compare the object impedance controller with other strategies, both for free-motion slews and environmental contact.

  19. BioMEMS to bionanotechnology: state of the art in integrated biochips and future prospects

    NASA Astrophysics Data System (ADS)

    Gupta, Amit; Li, H.; Gomez, Rafael; Chang, W.-J.; Koo, Y. M.; Chang, H.; Andreadakis, G.; Akin, Demir; Bashir, Rashid

    2004-12-01

    Biomedical or Biological Micro-Electro-Mechanical- Systems (BioMEMS) have in recent years become increasingly prevalent and have found widespread use in a wide variety of applications such as diagnostics, therapeutics and tissue engineering. This paper reviews the interdisciplinary work performed in our group in recent years to develop micro-integrated devices to characterize biological entities. We present the use of electrical and mechanically based phenomena to perform characterization and various functions needed for integrated biochips. One sub-system takes advantage of the dielectrophoretic effect to sort and concentrate bacterial cells and viruses within a micro-fluidic biochip. Another sub-system measures impedance changes produced by the metabolic activity of bacterial cells to determine their viability. A third sub-system is used to detect the mass of viruses as they bind to micro-mechanical sensors. The last sub-system described has been used to detect the charge on DNA molecules as it translocates through nanopore channels. These devices with an electronic or mechanical signal output can be very useful in producing practical systems for rapid detection and characterization of cells for a wide variety of applications in the food safety and health diagnostics industries. The paper will also briefly discuss future prospects of BioMEMS and its possible impact and on bionanotechnology.

  20. Fabrication of Micro-Needle Electrodes for Bio-Signal Recording by a Magnetization-Induced Self-Assembly Method

    PubMed Central

    Chen, Keyun; Ren, Lei; Chen, Zhipeng; Pan, Chengfeng; Zhou, Wei; Jiang, Lelun

    2016-01-01

    Micro-needle electrodes (MEs) have attracted more and more attention for monitoring physiological electrical signals, including electrode-skin interface impedance (EII), electromyography (EMG) and electrocardiography (ECG) recording. A magnetization-induced self-assembling method (MSM) was developed to fabricate a microneedle array (MA). A MA coated with Ti/Au film was assembled as a ME. The fracture and insertion properties of ME were tested by experiments. The bio-signal recording performance of the ME was measured and compared with a typical commercial wet electrode (Ag/AgCl electrode). The results show that the MA self-assembled from the magnetic droplet array under the sum of gravitational surface tension and magnetic potential energies. The ME had good toughness and could easily pierce rabbit skin without being broken or buckling. When the compression force applied on the ME was larger than 2 N, ME could stably record EII, which was a lower value than that measured by Ag/AgCl electrodes. EMG signals collected by ME varied along with the contraction of biceps brachii muscle. ME could record static ECG signals with a larger amplitude and dynamic ECG signals with more distinguishable features in comparison with a Ag/AgCl electrode, therefore, ME is an alternative electrode for bio-signal monitoring in some specific situations. PMID:27657072

  1. A microsensor for the detection of a single pathogenic bacterium using magnetotactic bacteria-based bio-carriers: simulations and preliminary experiments.

    PubMed

    Denomme, Ryan C; Lu, Zhao; Martel, Sylvain

    2007-01-01

    The proposed Magnetotactic Bacteria (MTB) based bio-carrier has the potential to greatly improve pathogenic bacteria detection time, specificity, and sensitivity. Microbeads are attached to the MTB and are modified with a coating of an antibody or phage that is specific to the target pathogenic bacteria. Using magnetic fields, the modified MTB are swept through a solution and the target bacteria present become attached to the microbeads (due to the coating). Then, the MTB are brought to the detection region and the number of pathogenic bacteria is determined. The high swimming speed and controllability of the MTB make this method ideal for the fast detection of small concentrations of specific bacteria. This paper focuses on an impedimetric detection system that will be used to identify if a target bacterium is attached to the microbead. The proposed detection system measures changes in electrical impedance as objects (MTB, microbeads, and pathogenic bacteria) pass through a set of microelectrodes embedded in a microfluidic device. FEM simulation is used to acquire the optimized parameters for the design of such a system. Specifically, factors such as electrode/detection channel geometry, object size and position, which have direct effects on the detection sensitivity for a single bacterium or microparticle, are investigated. Polymer microbeads and the MTB system with an E. coli bacterium are considered to investigate their impedance variations. Furthermore, preliminary experimental data using a microfabricated microfluidic device connected to an impedance analyzer are presented.

  2. Foundations of Neuromorphic Computing

    DTIC Science & Technology

    2013-05-01

    make informed decisions quicker than our adversaries. 2.0 INTRODUCTION The increasing resolution and speed of today’s advanced sensor ...limited information about the location, access to global positioning satellite information (GPS) to aid in navigation is impeded, and communications...more autonomous capability. This is where neuromorphic computing and other bio -inspired technologies for SWaP constrained environments can play a

  3. Investigation of piezoelectric impedance-based health monitoring of structure interface debonding

    NASA Astrophysics Data System (ADS)

    Xiao, Li; Chen, Guofeng; Chen, Xiaoming; Qu, Wenzhong

    2016-04-01

    Various damages might occur during the solid rocket motor (SRM) manufacturing/operational phase, and the debonding of propellant/insulator/composite case interfaces is one of damage types which determine the life of a motor. The detection of such interface debonding damage will be beneficial for developing techniques for reliable nondestructive evaluation (NDE) and structural health monitoring (SHM). Piezoelectric sensors are widely used for structural health monitoring technique. In particular, electromechanical impedance (EMI) techniques give simple and low-cost solutions for detecting damage in various structures. In this work, piezoelectric EMI structural health monitoring technique is applied to identify the debonding condition of propellant/insulator interface structure using finite element method and experimental investigation. A three-dimensional coupled field finite element model is developed using the software ANSYS and the harmonic analysis is conducted for high-frequency impedance analysis procedure. In the experimental study, the impedance signals were measured from PZT and MFC sensors outside attached to composite case monitoring the different debonding conditions between the propellant and insulator. Root mean square deviation (RMSD) based damage index is conducted to quantify the changes i n impedance for different de bonding conditions and frequency range. Simulation and experimental results confirmed that the EMI technique can be used effectively for detecting the debonding damage in SRM and is expected to be useful for future application of real SRM's SHM.

  4. Correcting ligands, metabolites, and pathways

    PubMed Central

    Ott, Martin A; Vriend, Gert

    2006-01-01

    Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry) and that a considerable number (about one third) had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect) reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and visualization. It is freely available at provided that the copyright notice of all original data is cited. The database will be useful for querying and browsing biochemical pathways, and to obtain reference information for identifying compounds. However, these applications require that the underlying data be correct, and that is the focus of BioMeta. PMID:17132165

  5. Self-assembled hierarchically structured organic-inorganic composite systems.

    PubMed

    Tritschler, Ulrich; Cölfen, Helmut

    2016-05-13

    Designing bio-inspired, multifunctional organic-inorganic composite materials is one of the most popular current research objectives. Due to the high complexity of biocomposite structures found in nacre and bone, for example, a one-pot scalable and versatile synthesis approach addressing structural key features of biominerals and affording bio-inspired, multifunctional organic-inorganic composites with advanced physical properties is highly challenging. This article reviews recent progress in synthesizing organic-inorganic composite materials via various self-assembly techniques and in this context highlights a recently developed bio-inspired synthesis concept for the fabrication of hierarchically structured, organic-inorganic composite materials. This one-step self-organization concept based on simultaneous liquid crystal formation of anisotropic inorganic nanoparticles and a functional liquid crystalline polymer turned out to be simple, fast, scalable and versatile, leading to various (multi-)functional composite materials, which exhibit hierarchical structuring over several length scales. Consequently, this synthesis approach is relevant for further progress and scientific breakthrough in the research field of bio-inspired and biomimetic materials.

  6. NMRbot: Python scripts enable high-throughput data collection on current Bruker BioSpin NMR spectrometers.

    PubMed

    Clos, Lawrence J; Jofre, M Fransisca; Ellinger, James J; Westler, William M; Markley, John L

    2013-06-01

    To facilitate the high-throughput acquisition of nuclear magnetic resonance (NMR) experimental data on large sets of samples, we have developed a simple and straightforward automated methodology that capitalizes on recent advances in Bruker BioSpin NMR spectrometer hardware and software. Given the daunting challenge for non-NMR experts to collect quality spectra, our goal was to increase user accessibility, provide customized functionality, and improve the consistency and reliability of resultant data. This methodology, NMRbot, is encoded in a set of scripts written in the Python programming language accessible within the Bruker BioSpin TopSpin ™ software. NMRbot improves automated data acquisition and offers novel tools for use in optimizing experimental parameters on the fly. This automated procedure has been successfully implemented for investigations in metabolomics, small-molecule library profiling, and protein-ligand titrations on four Bruker BioSpin NMR spectrometers at the National Magnetic Resonance Facility at Madison. The investigators reported benefits from ease of setup, improved spectral quality, convenient customizations, and overall time savings.

  7. Bioimpedance profiling of the limbs: Update

    NASA Astrophysics Data System (ADS)

    Ward, L. C.; Essex, T.; Bartlett, M.; Kilbreath, S.; Brookes, D.

    2010-04-01

    Bioelectrical impedance spectroscopy (BIS) is now commonly used to assess breast cancer-related lymphoedema. Typically, the ratio of impedances of the two arms, determined at zero frequency (Z0), is used as a quantitative index of the presence of excess lymph. Measurement uses skin electrodes spanning the whole limb. However, lymphoedema may be highly localised and may involve changes other than simple fluid accumulation, e.g. increased fat and fibrosis, that also give rise to changes in impedance-related parameters such as capacitance. We have previously reported (13th ICEBI, Graz, 2007) a prototype mobile electrode probe that replaces the distal sense electrode which, when moved proximally along the arm, provides an impedance profile. We report here the further development of this technology to incorporate real-time measurement of impedance integrated with a digital measuring wheel. This allows exact synchronisation of impedance with position on the arm. A commercial BIS instrument (ImpediMed SFB7) was modified to collect impedance (R and Xc) data every msec and the mean impedance computed for each 10-mm slice. The apparent resistivity values for arm tissue were used to calculate slice volumes. These computed volumes were compared to equivalent slice volumes from perometry and DXA. The system is being further validated by correlating slice impedance parameters with lean tissue volume determined by pQCT (StraTec XCT 3000), for multiple positions along the arm. Ultimately, it is hoped that such measurements will not only allow localised tissue volume measurement but will also provide information of tissue composition in conditions such as lymphoedema.

  8. Establishment of a cell-based wound healing assay for bio-relevant testing of wound therapeutics.

    PubMed

    Planz, Viktoria; Wang, Jing; Windbergs, Maike

    Predictive in vitro testing of novel wound therapeutics requires adequate cell-based bio-assays. Such assays represent an integral part during preclinical development as pre-step before entering in vivo studies. Simple "scratch tests" based on defected skin cell monolayers exist, however these can solely be used for testing liquids, as cell monolayer destruction and excessive hydration limit their applicability for (semi-)solid systems like wound dressings. In this context, a cell-based wound healing assay is introduced for rapid and predictive testing of wound therapeutics independent of their physical state in a bio-relevant environment. A novel wound healing assay was established for bio-relevant and predictive testing of (semi-) solid wound therapeutics. The assay allows for physiologically relevant hydration of the tested wound therapeutics at the air-liquid interface and their removal without cell monolayer disruption. In a proof-of-concept study, the applicability and discriminative power could be demonstrated by examining unloaded and drug-loaded wound dressings with two different established wound healing actives (dexpanthenol and metyrapone) and their effect on skin cell behavior. The influence of the released drug on the cells´ healing behavior could successfully be monitored over time. Wound size assessment after 96h resulted in an eight fold smaller wound area for drug treated models compared to the ones treated with unloaded fibers and non-treated wounds. This assay provides valuable first insights towards the establishment of a valid screening and evaluation tool for preclinical wound therapeutic development from liquid to (semi-)solid systems to improve predictability in a simple, yet standardized way. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials.

    PubMed

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2015-01-15

    As heavy metal ions severely harm human health, it is important to develop simple, sensitive and accurate methods for their detection in environment and food. Electrochemical detection featured with short analytical time, low power cost, high sensitivity and easy adaptability for in-situ measurement is one of the most developed methods. This review introduces briefly the recent achievements in electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials modified electrodes. In particular, the unique properties of inorganic nanomaterials, organic small molecules or their polymers, enzymes and nucleic acids for detection of heavy metal ions are highlighted. By employing some representative examples, the design and sensing mechanisms of these electrodes are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Research on seamless development of surgical instruments based on biological mechanisms using CAD and 3D printer.

    PubMed

    Yamamoto, Ikuo; Ota, Ren; Zhu, Rui; Lawn, Murray; Ishimatsu, Takakazu; Nagayasu, Takeshi; Yamasaki, Naoya; Takagi, Katsunori; Koji, Takehiko

    2015-01-01

    In the area of manufacturing surgical instruments, the ability to rapidly design, prototype and test surgical instruments is critical. This paper provides a simple case study of the rapid development of two bio-mechanism based surgical instruments which are ergonomic, aesthetic and were successfully designed, prototyped and conceptually tested in a very short period of time.

  11. Development of Rapid Diagnostic Kit for Identification of Hanwoo (Korean Native Cattle) Brand Meat by Detecting BIO-TAG

    PubMed Central

    Park, Sung Kwon; Lee, Myung Hoon; Cho, Soo Hyun

    2014-01-01

    This study was performed to develop a rapid immuno-assay kit, by using a specific antigen to detect Hanwoo brand meat. We selected a synthetic antigen specific to our target antibody, named BIO-TAG (Tyr-D-Ala-Phe), by utilizing a computer-based analysis and literature review. BIO-TAG tagged with adjuvant was subcutaneously injected in sheep and Hanwoo. The serum and meat juice of the immunized or non-immunized animal were then analyzed, to measure the titer of antibody by ELISA and Western blot. The amount of antibodies against the BIO-TAG increased (p<0.05) in serum by vaccination. Furthermore, meat juice from the immunized Hanwoo showed greater (p<0.05) antibody titer, compared with those from non-immunized groups. To optimze the dilution factor, we performed dot-ELISA, with various combination levels of BIO-TAG. Results from dot-ELISA showed that 2 mg/mL BIO-TAG was sufficient to distinguish the immunized meat from non-immunized groups. These results support our hypothesis that simple immunization of Hanwoo generates a sufficient amount of antibodies to be detectable in the meat juice by means of the immune-assay. Therefore, specific Hanwoo brand meat can be more precisely identified by our rapid diagnostic kit. This technology can deter possible fraud of counterfeit meat brands in the Korean domestic market with ease and rapidity; and offers a new tool that guarantees consumers high quality Hanwoo brand beef. PMID:26761175

  12. Novel platinum black electroplating technique improving mechanical stability.

    PubMed

    Kim, Raeyoung; Nam, Yoonkey

    2013-01-01

    Platinum black microelectrodes are widely used as an effective neural signal recording sensor. The simple fabrication process, high quality signal recording and proper biocompatibility are the main advantages of platinum black microelectrodes. When microelectrodes are exposed to actual biological system, various physical stimuli are applied. However, the porous structure of platinum black is vulnerable to external stimuli and destroyed easily. The impedance level of the microelectrode increases when the microelectrodes are damaged resulting in decreased recording performance. In this study, we developed mechanically stable platinum black microelectrodes by adding polydopamine. The polydopamine layer was added between the platinum black structures by electrodeposition method. The initial impedance level of platinum black only microelectrodes and polydopamine added microelectrodes were similar but after applying ultrasonication the impedance value dramatically increased for platinum black only microelectrodes, whereas polydopamine added microelectrodes showed little increase which were nearly retained initial values. Polydopamine added platinum black microelectrodes are expected to extend the availability as neural sensors.

  13. [Bioimpedometry and its utilization in dialysis therapy].

    PubMed

    Lopot, František

    2016-01-01

    Measurement of living tissue impedance - bioimpedometry - started to be used in medicine some 50 years ago, first exclusively for estimation of extracellular and intracellular compartment volumes. Its most simple single frequency (50 kHz) version works directly with the measured impedance vector. Technically more sophisticated versions convert the measured impedance in values of volumes of different compartments of body fluids and calculate also principal markers of nutritional status (lean body mass, adipose tissue mass). The latest version specifically developed for application in dialysis patients includes body composition modelling and provides even absolute value of overhydration (excess fluid). Still in experimental phase is the bioimpedance exploitation for more precise estimation of residual glomerular filtration. Not yet standardized is also segmental bioimpedance measurement which should enable separate assessment of hydration status of the trunk segment and ultrafiltration capacity of peritoneum in peritoneal dialysis patients.Key words: assessment - bioimpedance - excess fluid - fluid status - glomerular filtration - haemodialysis - nutritional status - peritoneal dialysis.

  14. Repeated oxidative degradation of methyl orange through bio-electro-Fenton in bioelectrochemical system (BES).

    PubMed

    Ling, Ting; Huang, Bin; Zhao, Mingxing; Yan, Qun; Shen, Wei

    2016-03-01

    Composite Fe2O3/ACF electrode facilitated methyl orange (MO) oxidative degradation using bio-electro-Fenton in bioelectrochemical system (BES) was investigated. Characterized by both XPS and FT-IR techniques, it was found that the composite Fe2O3/ACF electrode with highest Fe loading capacity of 11.02% could be prepared after the carbon felt was oxidized with nitric acid. Moreover, hydrogen peroxide production reached steadily at 88.63 μmol/L with the external resistance as 100 Ω, cathodic aeration rate at 750 mL/min, and the pH of the bio-electro-Fenton system adjusted to 2. Significantly, not only the electrochemical profiles of the BES reactor as electrochemical impedance spectroscopy (EIS) was bettered, but the MO oxidative degradation could be accomplished for eight repeated batches, with the MO removal efficiency varied slightly from 73.9% to 86.7%. It indicated that the bio-electro-Fenton might be a promising eco-friendly AOP method for Azo-dye wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.

    PubMed

    Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A

    2005-11-01

    While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.

  16. FPGA Based High Speed Data Acquisition System for Electrical Impedance Tomography

    PubMed Central

    Khan, S; Borsic, A; Manwaring, Preston; Hartov, Alexander; Halter, Ryan

    2014-01-01

    Electrical Impedance Tomography (EIT) systems are used to image tissue bio-impedance. EIT provides a number of features making it attractive for use as a medical imaging device including the ability to image fast physiological processes (>60 Hz), to meet a range of clinical imaging needs through varying electrode geometries and configurations, to impart only non-ionizing radiation to a patient, and to map the significant electrical property contrasts present between numerous benign and pathological tissues. To leverage these potential advantages for medical imaging, we developed a modular 32 channel data acquisition (DAQ) system using National Instruments’ PXI chassis, along with FPGA, ADC, Signal Generator and Timing and Synchronization modules. To achieve high frame rates, signal demodulation and spectral characteristics of higher order harmonics were computed using dedicated FFT-hardware built into the FPGA module. By offloading the computing onto FPGA, we were able to achieve a reduction in throughput required between the FPGA and PC by a factor of 32:1. A custom designed analog front end (AFE) was used to interface electrodes with our system. Our system is wideband, and capable of acquiring data for input signal frequencies ranging from 100 Hz to 12 MHz. The modular design of both the hardware and software will allow this system to be flexibly configured for the particular clinical application. PMID:24729790

  17. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William H. Morrison; Jon P. Christophersen; Patrick Bald

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Batterymore » Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.« less

  18. Assessing the global potential and regional implications of promoting bio-energy

    EPA Science Inventory

    There is no simple answer to the question “are materials from bio-based feedstocks environmentally, and socially, preferable?” Bioenergy as an alternative energy source might be effective in reducing fossil fuel use, slowing global warming effects, and providing increased revenue...

  19. BioC implementations in Go, Perl, Python and Ruby

    PubMed Central

    Liu, Wanli; Islamaj Doğan, Rezarta; Kwon, Dongseop; Marques, Hernani; Rinaldi, Fabio; Wilbur, W. John; Comeau, Donald C.

    2014-01-01

    As part of a communitywide effort for evaluating text mining and information extraction systems applied to the biomedical domain, BioC is focused on the goal of interoperability, currently a major barrier to wide-scale adoption of text mining tools. BioC is a simple XML format, specified by DTD, for exchanging data for biomedical natural language processing. With initial implementations in C++ and Java, BioC provides libraries of code for reading and writing BioC text documents and annotations. We extend BioC to Perl, Python, Go and Ruby. We used SWIG to extend the C++ implementation for Perl and one Python implementation. A second Python implementation and the Ruby implementation use native data structures and libraries. BioC is also implemented in the Google language Go. BioC modules are functional in all of these languages, which can facilitate text mining tasks. BioC implementations are freely available through the BioC site: http://bioc.sourceforge.net. Database URL: http://bioc.sourceforge.net/ PMID:24961236

  20. Simple and robust strategy for potentiometric detection of glucose using fluorinated phenylboronic acid self-assembled monolayer.

    PubMed

    Matsumoto, Akira; Matsumoto, Hiroko; Maeda, Yasuhiro; Miyahara, Yuji

    2013-09-01

    Field effect transistor (FET) based signal-transduction (Bio-FET) is an emerging technique for label-free and real-time basis biosensors for a wide range of targets. Glucose has constantly been of interest due to its clinical relevance. Use of glucose oxidase (GOD) and a lectin protein Concanavalin A are two common strategies to generate glucose-dependent electrochemical events. However, these protein-based materials are intolerant of long-term usage and storage due to their inevitable denaturing. A phenylboronic acid (PBA) modified self-assembled monolayer (SAM) on a gold electrode with an optimized disassociation constant of PBA, that is, 3-fluoro-4-carbamoyl-PBA possessing its pKa of 7.1, was prepared and utilized as an extended gate electrode for Bio-FET. The prepared electrode showed a glucose-dependent change in the surface potential under physiological conditions, thus providing a remarkably simple rationale for the glyco-sensitive Bio-FET. Importantly, the PBA modified electrode showed tolerance to relatively severe heat and drying treatments; conditions under which protein based materials would surely be denatured. A PBA modified SAM with optimized disassociation constant (pKa) can exhibit a glucose-dependent change in the surface potential under physiological conditions, providing a remarkably simple but robust method for the glyco-sensing. This protein-free, totally synthetic glyco-sensing strategy may offer cheap, robust and easily accessible platform that may be useful in developing countries. This article is part of a Special Issue entitled Organic Bioelectronics-Novel Applications in Biomedicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Cost-effective broad-band electrical impedance spectroscopy measurement circuit and signal analysis for piezo-materials and ultrasound transducers

    PubMed Central

    Lewis, George K; Lewis, George K; Olbricht, William

    2008-01-01

    This paper explains the circuitry and signal processing to perform electrical impedance spectroscopy on piezoelectric materials and ultrasound transducers. Here, we measure and compare the impedance spectra of 2−5 MHz piezoelectrics, but the methodology applies for 700 kHz–20 MHz ultrasonic devices as well. Using a 12 ns wide 5 volt pulsing circuit as an impulse, we determine the electrical impedance curves experimentally using Ohm's law and fast Fourier transform (FFT), and compare results with mathematical models. The method allows for rapid impedance measurement for a range of frequencies using a narrow input pulse, digital oscilloscope and FFT techniques. The technique compares well to current methodologies such as network and impedance analyzers while providing additional versatility in the electrical impedance measurement. The technique is theoretically simple, easy to implement and completed with ordinary laboratory instrumentation for minimal cost. PMID:19081773

  2. Efficient Simultaneous Reconstruction of Time-Varying Images and Electrode Contact Impedances in Electrical Impedance Tomography.

    PubMed

    Boverman, Gregory; Isaacson, David; Newell, Jonathan C; Saulnier, Gary J; Kao, Tzu-Jen; Amm, Bruce C; Wang, Xin; Davenport, David M; Chong, David H; Sahni, Rakesh; Ashe, Jeffrey M

    2017-04-01

    In electrical impedance tomography (EIT), we apply patterns of currents on a set of electrodes at the external boundary of an object, measure the resulting potentials at the electrodes, and, given the aggregate dataset, reconstruct the complex conductivity and permittivity within the object. It is possible to maximize sensitivity to internal conductivity changes by simultaneously applying currents and measuring potentials on all electrodes but this approach also maximizes sensitivity to changes in impedance at the interface. We have, therefore, developed algorithms to assess contact impedance changes at the interface as well as to efficiently and simultaneously reconstruct internal conductivity/permittivity changes within the body. We use simple linear algebraic manipulations, the generalized singular value decomposition, and a dual-mesh finite-element-based framework to reconstruct images in real time. We are also able to efficiently compute the linearized reconstruction for a wide range of regularization parameters and to compute both the generalized cross-validation parameter as well as the L-curve, objective approaches to determining the optimal regularization parameter, in a similarly efficient manner. Results are shown using data from a normal subject and from a clinical intensive care unit patient, both acquired with the GE GENESIS prototype EIT system, demonstrating significantly reduced boundary artifacts due to electrode drift and motion artifact.

  3. Material requirements for bio-inspired sensing systems

    NASA Astrophysics Data System (ADS)

    Biggins, Peter; Lloyd, Peter; Salmond, David; Kusterbeck, Anne

    2008-10-01

    The aim of developing bio-inspired sensing systems is to try and emulate the amazing sensitivity and specificity observed in the natural world. These capabilities have evolved, often for specific tasks, which provide the organism with an advantage in its fight to survive and prosper. Capabilities cover a wide range of sensing functions including vision, temperature, hearing, touch, taste and smell. For some functions, the capabilities of natural systems are still greater than that achieved by traditional engineering solutions; a good example being a dog's sense of smell. Furthermore, attempting to emulate aspects of biological optics, processing and guidance may lead to more simple and effective devices. A bio-inspired sensing system is much more than the sensory mechanism. A system will need to collect samples, especially if pathogens or chemicals are of interest. Other functions could include the provision of power, surfaces and receptors, structure, locomotion and control. In fact it is possible to conceive of a complete bio-inspired system concept which is likely to be radically different from more conventional approaches. This concept will be described and individual component technologies considered.

  4. A novel and simple cell-based electrochemical impedance biosensor for evaluating the combined toxicity of DON and ZEN.

    PubMed

    Gu, Wenshu; Zhu, Pei; Jiang, Donglei; He, Xingxing; Li, Yun; Ji, Jian; Zhang, Lijuan; Sun, Yange; Sun, Xiulan

    2015-08-15

    In this study, a novel and simple cell-based electrochemical biosensor was developed to assess the individual and combined toxicity of deoxynivalenol (DON) and zearalenone (ZEN) on BEL-7402 cells. The sensor was fabricated by modification with AuNPs, p-aminothiophenol, and folic acid in succession. The BEL-7402 cells which had a good activity were adhered on the electrode through the high affinity between the folate receptor and folic acid selectivity. We used the collagen to maintain the cell adhesion and viability. Electrochemical impedance spectroscopy (EIS) was developed to evaluate the individual and combined toxicity of DON and ZEN. Our results indicate that DON and ZEN caused a marked decrease in the cell viability in a dose-dependent manner. The value of electrochemical impedance spectroscopy decreased with the concentration of DON and ZEN in range of 0.1-20, 0.1-50 μg/ml with the detection limit as 0.03, 0.05 μg/ml, respectively, the IC50 for DON and ZEN as obtained by the proposed electrochemical method were 7.1 μg/ml and 24.6 μg/ml, respectively, and the combination of two mycotoxins appears to generate an additive response. The electrochemical cytotoxicity evaluation result was confirmed by biological assays. Compared to conventional methods, this electrochemical test is inexpensive, highly sensitive, and fast to respond, with long-term monitoring and real-time measurements. The proposed method provides a new avenue for evaluating the toxicity of mycotoxins. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Bio-active synthesis of tin oxide nanoparticles using eggshell membrane for energy storage application

    NASA Astrophysics Data System (ADS)

    Celina Selvakumari, J.; Nishanthi, S. T.; Dhanalakshmi, J.; Ahila, M.; Pathinettam Padiyan, D.

    2018-05-01

    Nano-sized tin oxide (SnO2) particles were synthesized using eggshell membrane (ESM), a natural bio-waste from the chicken eggshell. The crystallization of SnO2 into the tetragonal structure was confirmed from powder X-ray diffraction and the crystallite size ranged from 13 to 40 nm. Various shapes including rod, hexagonal and spherical SnO2 nanoparticles were observed from the morphological studies. The electrochemical impedance study revealed a lower charge transfer resistance (Rct) of 8.565 Ω and the presence of a constant phase element which arised due to surface roughness and porosity. Capacitive behavior seen in the cyclic voltammetry curve of the prepared SnO2 nanoparticles, find future applications in supercapacitors.

  6. Impedance Biosensing to detect food allergens, endocrine disrupting chemicals, and food pathogens

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Rajeswaran

    Electrochemical impedance biosensors can be viewed as an AC electroanalytical method for the analyte detection in the fields of biomedicine, environmental monitoring, and food and agriculture, amongst others. The most common format for AC impedance biosensing involves surface immobilization of an antibody, receptor protein, DNA strand, or other species capable of bio-recognition, and AC impedance detection of the binding event. Technological application of AC impedance biosensors has been hindered by several obstacles, including the more complex circuitry required for AC relative to DC electrochemistry, chemical and physical interference arising from non-specific adsorption, and the stability and reproducibility of protein immobilization. One focus of these PhD studies is on methods to reduce or compensate for non-specific adsorption, including sample dilution, site blocking with BSA, and the use of control electrodes onto which reference antibodies are immobilized. Examples that will be presented include impedance detection of food pathogens, such as Listeria monocytogenes, using a mouse monoclonal antibody immobilized onto an Au electrode. This yields detection limits of 5 CFU/ml and 4 CFU/ml for ideal solutions and filtered tomato extract, respectively. Control experiments with an Au electrode onto which a mouse monoclonal antibody to GAPDH is immobilized demonstrate that non-specific adsorption is insignificant for the system and methodology studied here. Control experiments with Salmonella enterica demonstrate no cross-reactivity to this food pathogen. In addition, Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/ml for norfluoxetine and BDE-47, respectively. Additional research has focused on alternative substrates and linker chemistries for protein immobilization, including the use of degenerate (highly doped) Si and bidendate thiol monolayer onto Au. Advantages of degenerate Si include a simpler equivalent circuit, simple and reproducible surface preparation, easy incorporation into ULSI devices, and the greater strength of Si-C bonds (~520 kJ/mole) relative to Au-S bonds (125-150 kJ/mole). New results demonstrating antibody regeneration atop degenerate (highly doped) Si are also reported. Using 0.2 M KSCN and 10 mM HF for antibody regeneration, peanut protein Ara h 1 is detected daily during a thirty-day trial. An impedance biosensor is reported that employs the bidentate thiol 16-[3,5-bis(mercaptomethyl)phenoxy]-hexadecanoic acid (BMPHA) to immobilize the mouse monoclonal antibody to peanut protein Ara h 1. The detection limit for Ara h 1 is approximately 0.71 ng/mL (0.01 nM), which is about one order of magnitude lower than that obtained for antibody immobilization atop the monodendate thiol, 16-mercaptohexadecanoic acid (16 MHA). Antibody regeneration was studied daily using a gentle denaturing agent, 0.2 M KSCN at pH 7.3. The antibody-coated on Au electrodes retained activity towards Ara h1 for 10 and 20 days of regeneration of the monodendate- and BMPHA-coated Au electrodes, respectively. This prolonged activity illustrates the superior stability of protein films atop the BMPHA bidentate thiol- coated Au electrode relative to the 16-MHA monodendate thiol-coated Au electrode.

  7. Sensitive SERS detection of lead ions via DNAzyme based quadratic signal amplification.

    PubMed

    Tian, Aihua; Liu, Yu; Gao, Jian

    2017-08-15

    Highly sensitive detection of Pb 2+ is very necessary for water quality control, clinical toxicology, and industrial monitoring. In this work, a simple and novel DNAzyme-based SERS quadratic amplification method is developed for the detection of Pb 2+ . This strategy possesses some remarkable features compared to the conventional DNAzyme-based SERS methods, which are as follows: (i) Coupled DNAzyme-activated hybridization chain reaction (HCR) with bio barcodes; a quadratic amplification method is designed using the unique catalytic selectivity of DNAzyme. The SERS signal is significantly amplified. This method is rapid with a detection time of 2h. (ii) The problem of high background induced by excess bio barcodes is circumvented by using magnetic beads (MBs) as the carrier of signal-output products, and this sensing system is simple in design and can easily be carried out by simple mixing and incubation. Given the unique and attractive characteristics, a simple and universal strategy is designed to accomplish sensitive detection of Pb 2+ . The detection limit of Pb 2+ via SERS detection is 70 fM, with the linear range from 1.0×10 -13 M to 1.0×10 -7 M. The method can be further extended to the quantitative detection of a variety of targets by replacing the lead-responsive DNAzyme with other functional DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording.

    PubMed

    Ren, Lei; Xu, Shujia; Gao, Jie; Lin, Zi; Chen, Zhipeng; Liu, Bin; Liang, Liang; Jiang, Lelun

    2018-04-13

    Laser-direct writing (LDW) and magneto-rheological drawing lithography (MRDL) have been proposed for the fabrication of a flexible microneedle array electrode (MAE) for wearable bio-signal monitoring. Conductive patterns were directly written onto the flexible polyethylene terephthalate (PET) substrate by LDW. The microneedle array was rapidly drawn and formed from the droplets of curable magnetorheological fluid with the assistance of an external magnetic field by MRDL. A flexible MAE can maintain a stable contact interface with curved human skin due to the flexibility of the PET substrate. Compared with Ag/AgCl electrodes and flexible dry electrodes (FDE), the electrode-skin interface impedance of flexible MAE was the minimum even after a 50-cycle bending test. Flexible MAE can record electromyography (EMG), electroencephalography (EEG) and static electrocardiography (ECG) signals with good fidelity. The main features of the dynamic ECG signal recorded by flexible MAE are the most distinguishable with the least moving artifacts. Flexible MAE is an attractive candidate electrode for wearable bio-signal monitoring.

  9. Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording

    PubMed Central

    Ren, Lei; Xu, Shujia; Gao, Jie; Lin, Zi; Chen, Zhipeng; Liu, Bin; Liang, Liang; Jiang, Lelun

    2018-01-01

    Laser-direct writing (LDW) and magneto-rheological drawing lithography (MRDL) have been proposed for the fabrication of a flexible microneedle array electrode (MAE) for wearable bio-signal monitoring. Conductive patterns were directly written onto the flexible polyethylene terephthalate (PET) substrate by LDW. The microneedle array was rapidly drawn and formed from the droplets of curable magnetorheological fluid with the assistance of an external magnetic field by MRDL. A flexible MAE can maintain a stable contact interface with curved human skin due to the flexibility of the PET substrate. Compared with Ag/AgCl electrodes and flexible dry electrodes (FDE), the electrode–skin interface impedance of flexible MAE was the minimum even after a 50-cycle bending test. Flexible MAE can record electromyography (EMG), electroencephalography (EEG) and static electrocardiography (ECG) signals with good fidelity. The main features of the dynamic ECG signal recorded by flexible MAE are the most distinguishable with the least moving artifacts. Flexible MAE is an attractive candidate electrode for wearable bio-signal monitoring. PMID:29652835

  10. Body fat measurement by bioelectrical impedance and air displacement plethysmography: a cross-validation study to design bioelectrical impedance equations in Mexican adults

    PubMed Central

    Macias, Nayeli; Alemán-Mateo, Heliodoro; Esparza-Romero, Julián; Valencia, Mauro E

    2007-01-01

    Background The study of body composition in specific populations by techniques such as bio-impedance analysis (BIA) requires validation based on standard reference methods. The aim of this study was to develop and cross-validate a predictive equation for bioelectrical impedance using air displacement plethysmography (ADP) as standard method to measure body composition in Mexican adult men and women. Methods This study included 155 male and female subjects from northern Mexico, 20–50 years of age, from low, middle, and upper income levels. Body composition was measured by ADP. Body weight (BW, kg) and height (Ht, cm) were obtained by standard anthropometric techniques. Resistance, R (ohms) and reactance, Xc (ohms) were also measured. A random-split method was used to obtain two samples: one was used to derive the equation by the "all possible regressions" procedure and was cross-validated in the other sample to test predicted versus measured values of fat-free mass (FFM). Results and Discussion The final model was: FFM (kg) = 0.7374 * (Ht2 /R) + 0.1763 * (BW) - 0.1773 * (Age) + 0.1198 * (Xc) - 2.4658. R2 was 0.97; the square root of the mean square error (SRMSE) was 1.99 kg, and the pure error (PE) was 2.96. There was no difference between FFM predicted by the new equation (48.57 ± 10.9 kg) and that measured by ADP (48.43 ± 11.3 kg). The new equation did not differ from the line of identity, had a high R2 and a low SRMSE, and showed no significant bias (0.87 ± 2.84 kg). Conclusion The new bioelectrical impedance equation based on the two-compartment model (2C) was accurate, precise, and free of bias. This equation can be used to assess body composition and nutritional status in populations similar in anthropometric and physical characteristics to this sample. PMID:17697388

  11. Split-Waveguide Mounts For Submillimeter-Wave Multipliers And Harmonic Mixers

    NASA Technical Reports Server (NTRS)

    Raisanen, Antti; Choudhury, Debabani; Dengler, Robert J.; Oswald, John E.; Siegel, Peter H.

    1996-01-01

    Novel variation of split-waveguide mount for millimeter-and submillimeter-wavelength frequency multipliers and harmonic mixers developed. Designed to offer wide range of available matching impedances, while maintaining relatively simple fabrication sequence. Wide tuning range achieved with separate series and parallel elements, consisting of two pairs of noncontacting sliding backshorts, at fundamental and harmonic frequencies. Advantages include ease of fabrication, reliability, and tunability.

  12. Simple Analytic Formula for the Period of the Nonlinear Pendulum via the Struve Function: Connection to Acoustical Impedance Matching

    ERIC Educational Resources Information Center

    Douvropoulos, Theodosios G.

    2012-01-01

    An approximate formula for the period of pendulum motion beyond the small amplitude regime is obtained based on physical arguments. Two different schemes of different accuracy are developed: in the first less accurate scheme, emphasis is given on the non-quadratic form of the potential in connection to isochronism, and a specific form of a generic…

  13. Measuring acoustic impedances using a semi-infinite waveguide reference: Applications to wind instruments and vocal tracts

    NASA Astrophysics Data System (ADS)

    Wolfe, Joe; Smith, John; Tann, John; France, Ryan

    2002-11-01

    Acoustic pressures may generally be measured with much greater sensitivity, dynamic range, and frequency response than acoustic currents. Consequently, most measurements of acoustic impedance consist of comparison with standard impedances. The method reported here uses a semi-infinite waveguide as the reference because its impedance is purely resistive, frequency independent and accurately known, independent of theories of the boundary layer. Waveguides are effectively infinite for pulses shorter than the echo return time, or if the attenuation due to wall losses (typically 80 dB) exceeds the dynamic range of the experiment. The measurement signal from a high output impedance source is calibrated to have Fourier components proportional to fn, where n may be 1 for convenience or chosen to improve the signal:noise ratio. The method has been used on diverse systems over the range 50 Hz to 13 kHz. When applied to systems with simple geometries, the technique yields results with a little higher wall losses than those expected from the calculations of Rayleigh and Benade. Discontinuities introduce further losses as well as the expected departures from simple one-dimensional models. Measurements on musical wind instruments and on the human vocal tract are reported. [Work supported by the Australian Research Council.

  14. Evolution of computational models in BioModels Database and the Physiome Model Repository.

    PubMed

    Scharm, Martin; Gebhardt, Tom; Touré, Vasundra; Bagnacani, Andrea; Salehzadeh-Yazdi, Ali; Wolkenhauer, Olaf; Waltemath, Dagmar

    2018-04-12

    A useful model is one that is being (re)used. The development of a successful model does not finish with its publication. During reuse, models are being modified, i.e. expanded, corrected, and refined. Even small changes in the encoding of a model can, however, significantly affect its interpretation. Our motivation for the present study is to identify changes in models and make them transparent and traceable. We analysed 13734 models from BioModels Database and the Physiome Model Repository. For each model, we studied the frequencies and types of updates between its first and latest release. To demonstrate the impact of changes, we explored the history of a Repressilator model in BioModels Database. We observed continuous updates in the majority of models. Surprisingly, even the early models are still being modified. We furthermore detected that many updates target annotations, which improves the information one can gain from models. To support the analysis of changes in model repositories we developed MoSt, an online tool for visualisations of changes in models. The scripts used to generate the data and figures for this study are available from GitHub https://github.com/binfalse/BiVeS-StatsGenerator and as a Docker image at https://hub.docker.com/r/binfalse/bives-statsgenerator/ . The website https://most.bio.informatik.uni-rostock.de/ provides interactive access to model versions and their evolutionary statistics. The reuse of models is still impeded by a lack of trust and documentation. A detailed and transparent documentation of all aspects of the model, including its provenance, will improve this situation. Knowledge about a model's provenance can avoid the repetition of mistakes that others already faced. More insights are gained into how the system evolves from initial findings to a profound understanding. We argue that it is the responsibility of the maintainers of model repositories to offer transparent model provenance to their users.

  15. Validity of segmental bioelectrical impedance analysis for estimating fat-free mass in children including overweight individuals.

    PubMed

    Ohta, Megumi; Midorikawa, Taishi; Hikihara, Yuki; Masuo, Yoshihisa; Sakamoto, Shizuo; Torii, Suguru; Kawakami, Yasuo; Fukunaga, Tetsuo; Kanehisa, Hiroaki

    2017-02-01

    This study examined the validity of segmental bioelectrical impedance (BI) analysis for predicting the fat-free masses (FFMs) of whole-body and body segments in children including overweight individuals. The FFM and impedance (Z) values of arms, trunk, legs, and whole body were determined using a dual-energy X-ray absorptiometry and segmental BI analyses, respectively, in 149 boys and girls aged 6 to 12 years, who were divided into model-development (n = 74), cross-validation (n = 35), and overweight (n = 40) groups. Simple regression analysis was applied to (length) 2 /Z (BI index) for each of the whole-body and 3 segments to develop the prediction equations of the measured FFM of the related body part. In the model-development group, the BI index of each of the 3 segments and whole body was significantly correlated to the measured FFM (R 2 = 0.867-0.932, standard error of estimation = 0.18-1.44 kg (5.9%-8.7%)). There was no significant difference between the measured and predicted FFM values without systematic error. The application of each equation derived in the model-development group to the cross-validation and overweight groups did not produce significant differences between the measured and predicted FFM values and systematic errors, with an exception that the arm FFM in the overweight group was overestimated. Segmental bioelectrical impedance analysis is useful for predicting the FFM of each of whole-body and body segments in children including overweight individuals, although the application for estimating arm FFM in overweight individuals requires a certain modification.

  16. Simple scaling of cooperation in donor-recipient games.

    PubMed

    Berger, Ulrich

    2009-09-01

    We present a simple argument which proves a general version of the scaling phenomenon recently observed in donor-recipient games by Tanimoto [Tanimoto, J., 2009. A simple scaling of the effectiveness of supporting mutual cooperation in donor-recipient games by various reciprocity mechanisms. BioSystems 96, 29-34].

  17. Investigation of the Impedance Characteristic of Human Arm for Development of Robots to Cooperate with Humans

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Mozasser; Ikeura, Ryojun; Mizutani, Kazuki

    In the near future many aspects of our lives will be encompassed by tasks performed in cooperation with robots. The application of robots in home automation, agricultural production and medical operations etc. will be indispensable. As a result robots need to be made human-friendly and to execute tasks in cooperation with humans. Control systems for such robots should be designed to work imitating human characteristics. In this study, we have tried to achieve these goals by means of controlling a simple one degree-of-freedom cooperative robot. Firstly, the impedance characteristic of the human arm in a cooperative task is investigated. Then, this characteristic is implemented to control a robot in order to perform cooperative task with humans. A human followed the motion of an object, which is moved through desired trajectories. The motion is actuated by the linear motor of the one degree-of-freedom robot system. Trajectories used in the experiments of this method were minimum jerk (the rate of change of acceleration) trajectory, which was found during human and human cooperative task and optimum for muscle movement. As the muscle is mechanically analogous to a spring-damper system, a simple second-order equation is used as models for the arm dynamics. In the model, we considered mass, stiffness and damping factor. Impedance parameter is calculated from the position and force data obtained from the experiments and based on the “Estimation of Parametric Model”. Investigated impedance characteristic of human arm is then implemented to control a robot, which performed cooperative task with human. It is observed that the proposed control methodology has given human like movements to the robot for cooperating with human.

  18. Spectroscopic and photoacoustic characterization of encapsulated iron oxide super-paramagnetic nanoparticles as a new multiplatform contrast agent

    NASA Astrophysics Data System (ADS)

    Armanetti, Paolo; Flori, Alessandra; Avigo, Cinzia; Conti, Luca; Valtancoli, Barbara; Petroni, Debora; Doumett, Saer; Cappiello, Laura; Ravagli, Costanza; Baldi, Giovanni; Bencini, Andrea; Menichetti, Luca

    2018-06-01

    Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets.

  19. Development of an enrofloxacin immunosensor based on label-free electrochemical impedance spectroscopy.

    PubMed

    Wu, Ching-Chou; Lin, Chia-Hung; Wang, Way-Shyan

    2009-06-30

    Enrofloxacin is the most widespread antibiotic in the fluoroquinolone family. As such, the development of a rapid and sensitive method for the determination of trace amounts of enrofloxacin is an important issue in the health field. The interaction of the enrofloxacin antigen to a specific antibody (Ab) immobilized on an 11-mercapto-undecanoic acid-coated gold electrode was quantified by electrochemical impedance spectroscopy. Two equivalent circuits were separately used to interpret the obtained impedance spectra. These circuits included one resistor in series with one parallel circuit comprised of a resistor and a capacitor (1R//C), and one resistor in series with two parallel RC circuits (2R//C). The results indicate that the antigen-antibody reaction analyzed using the 1R//C circuit provided a more sensitive resistance increment against the enrofloxacin concentration than that of the 2R//C circuit. However, the 2R//C circuit provided a better fitting for impedance spectra, and therefore supplies more detailed results of the enrofloxacin-antibody interaction, causing the increase of electron transfer resistance selectively to the modified layer, and not the electrical double layer. The antibody-modified electrode allowed for analysis of the dynamic linear range of 1-1000 ng/ml enrofloxacin with a detection limit of 1 ng/ml. The reagentless and label-free impedimetric immunosensors provide a simple and sensitive detection method for the specific determination of enrofloxacin.

  20. Analysis of the electromagnetic scattering from an inlet geometry with lossy walls

    NASA Technical Reports Server (NTRS)

    Myung, N. H.; Pathak, P. H.; Chunang, C. D.

    1985-01-01

    One of the primary goals is to develop an approximate but sufficiently accurate analysis for the problem of electromagnetic (EM) plane wave scattering by an open ended, perfectly-conducting, semi-infinite hollow circular waveguide (or duct) with a thin, uniform layer of lossy or absorbing material on its inner wall, and with a simple termination inside. The less difficult but useful problem of the EM scattering by a two-dimensional (2-D), semi-infinite parallel plate waveguide with an impedance boundary condition on the inner walls was chosen initially for analysis. The impedance boundary condition in this problem serves to model a thin layer of lossy dielectric/ferrite coating on the otherwise perfectly-conducting interior waveguide walls. An approximate but efficient and accurate ray solution was obtained recently. That solution is presently being extended to the case of a moderately thick dielectric/ferrite coating on the walls so as to be valid for situations where the impedance boundary condition may not remain sufficiently accurate.

  1. Recent advances in diagnostic testing for gastroesophageal reflux disease.

    PubMed

    Naik, Rishi D; Vaezi, Michael F

    2017-06-01

    Gastroesophageal reflux disease (GERD) has a large economic burden with important complications that include esophagitis, Barrett's esophagus, and adenocarcinoma. Despite endoscopy, validated patient questionnaires, and traditional ambulatory pH monitoring, the diagnosis of GERD continues to be challenging. Areas covered: This review will explore the difficulties in diagnosing GERD with a focus on new developments, ranging from basic fundamental changes (histology and immunohistochemistry) to direct patient care (narrow-band imaging, impedance, and response to anti-reflux surgery). We searched PubMed using the noted keywords. We included data from full-text articles published in English. Further relevant articles were identified from the reference lists of review articles. Expert commentary: Important advances in novel parameters in intraluminal impedance monitoring such as baseline impedance monitoring has created some insight into alternative diagnostic strategies in GERD. Recent advances in endoscopic assessment of esophageal epithelial integrity via mucosal impedance measurement is questioning the paradigm of prolonged ambulatory testing for GERD. The future of reflux diagnosis may very well be without the need for currently employed technologies and could be as simple as assessing changes in epithelia integrity as a surrogate marker for GERD. However, future studies must validate such an approach.

  2. Abdominal fat thickness measurement using Focused Impedance Method (FIM) - phantom study

    NASA Astrophysics Data System (ADS)

    Haowlader, Salahuddin; Baig, Tanveer Noor; Siddique-e Rabbani, K.

    2010-04-01

    Abdominal fat thickness is a risk indicator of heart diseases, diabetes, etc., and its measurement is therefore important from the point of view of preventive care. Tetrapolar electrical impedance measurements (TPIM) could offer a simple and low cost alternative for such measurement compared to conventional techniques using CT scan and MRI, and has been tried by different groups. Focused Impedance Method (FIM) appears attractive as it can give localised information. An intuitive physical model was developed and experimental work was performed on a phantom designed to simulate abdominal subcutaneous fat layer in a body. TPIM measurements were performed with varying electrode separations. For small separations of current and potential electrodes, the measured impedance changed little, but started to decrease sharply beyond a certain separation, eventually diminishing gradually to negligible values. The finding could be explained using the intuitive physical model and gives an important practical information. TPIM and FIM may be useful for measurement of SFL thickness only if the electrode separations are within a certain specific range, and will fail to give reliable results if beyond this range. Further work, both analytical and experimental, are needed to establish this technique on a sound footing.

  3. Location, location, location: utilizing pipelines and services to more effectively georeference the world's biodiversity data

    PubMed Central

    Hill, Andrew W; Guralnick, Robert; Flemons, Paul; Beaman, Reed; Wieczorek, John; Ranipeta, Ajay; Chavan, Vishwas; Remsen, David

    2009-01-01

    Background Increasing the quantity and quality of data is a key goal of biodiversity informatics, leading to increased fitness for use in scientific research and beyond. This goal is impeded by a legacy of geographic locality descriptions associated with biodiversity records that are often heterogeneous and not in a map-ready format. The biodiversity informatics community has developed best practices and tools that provide the means to do retrospective georeferencing (e.g., the BioGeomancer toolkit), a process that converts heterogeneous descriptions into geographic coordinates and a measurement of spatial uncertainty. Even with these methods and tools, data publishers are faced with the immensely time-consuming task of vetting georeferenced localities. Furthermore, it is likely that overlap in georeferencing effort is occurring across data publishers. Solutions are needed that help publishers more effectively georeference their records, verify their quality, and eliminate the duplication of effort across publishers. Results We have developed a tool called BioGeoBIF, which incorporates the high throughput and standardized georeferencing methods of BioGeomancer into a beginning-to-end workflow. Custodians who publish their data to the Global Biodiversity Information Facility (GBIF) can use this system to improve the quantity and quality of their georeferences. BioGeoBIF harvests records directly from the publishers' access points, georeferences the records using the BioGeomancer web-service, and makes results available to data managers for inclusion at the source. Using a web-based, password-protected, group management system for each data publisher, we leave data ownership, management, and vetting responsibilities with the managers and collaborators of each data set. We also minimize the georeferencing task, by combining and storing unique textual localities from all registered data access points, and dynamically linking that information to the password protected record information for each publisher. Conclusion We have developed one of the first examples of services that can help create higher quality data for publishers mediated through the Global Biodiversity Information Facility and its data portal. This service is one step towards solving many problems of data quality in the growing field of biodiversity informatics. We envision future improvements to our service that include faster results returns and inclusion of more georeferencing engines. PMID:19900299

  4. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip.

    PubMed

    Li, Pan; Yu, Haibo; Liu, Na; Wang, Feifei; Lee, Gwo-Bin; Wang, Yuechao; Liu, Lianqing; Li, Wen Jung

    2018-05-23

    The development of microengineered hydrogels co-cultured with cells in vitro could advance in vivo bio-systems in both structural complexity and functional hierarchy, which holds great promise for applications in regenerative tissues or organs, drug discovery and screening, and bio-sensors or bio-actuators. Traditional hydrogel microfabrication technologies such as ultraviolet (UV) laser or multiphoton laser stereolithography and three-dimensional (3D) printing systems have advanced the development of 3D hydrogel micro-structures but need either expensive and complex equipment, or harsh material selection with limited photoinitiators. Herein, we propose a simple and flexible hydrogel microfabrication method based on a ubiquitous visible-light projection system combined with a custom-designed photosensitive microfluidic chip, to rapidly (typically several to tens of seconds) fabricate various two-dimensional (2D) hydrogel patterns and 3D hydrogel constructs. A theoretical layer-by-layer model that involves continuous polymerizing-delaminating-polymerizing cycles is presented to explain the polymerization and structural formation mechanism of hydrogels. A large area of hydrogel patterns was efficiently fabricated without the usage of costly laser systems or photoinitiators, i.e., a stereoscopic mesh-like hydrogel network with intersecting hydrogel micro-belts was fabricated via a series of dynamic-changing digital light projections. The pores and gaps of the hydrogel network are tunable, which facilitates the supply of nutrients and discharge of waste in the construction of 3D thick bio-models. Cell co-culture experiments showed the effective regulation of cell spreading by hydrogel scaffolds fabricated by the new method presented here. This visible light enabled hydrogel microfabrication method may provide new prospects for designing cell-based units for advanced biomedical studies, e.g., for 3D bio-models or bio-actuators in the future.

  5. BioC implementations in Go, Perl, Python and Ruby.

    PubMed

    Liu, Wanli; Islamaj Doğan, Rezarta; Kwon, Dongseop; Marques, Hernani; Rinaldi, Fabio; Wilbur, W John; Comeau, Donald C

    2014-01-01

    As part of a communitywide effort for evaluating text mining and information extraction systems applied to the biomedical domain, BioC is focused on the goal of interoperability, currently a major barrier to wide-scale adoption of text mining tools. BioC is a simple XML format, specified by DTD, for exchanging data for biomedical natural language processing. With initial implementations in C++ and Java, BioC provides libraries of code for reading and writing BioC text documents and annotations. We extend BioC to Perl, Python, Go and Ruby. We used SWIG to extend the C++ implementation for Perl and one Python implementation. A second Python implementation and the Ruby implementation use native data structures and libraries. BioC is also implemented in the Google language Go. BioC modules are functional in all of these languages, which can facilitate text mining tasks. BioC implementations are freely available through the BioC site: http://bioc.sourceforge.net. Database URL: http://bioc.sourceforge.net/ Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.

  6. Participatory Development and Analysis of a Fuzzy Cognitive Map of the Establishment of a Bio-Based Economy in the Humber Region

    PubMed Central

    Penn, Alexandra S.; Knight, Christopher J. K.; Lloyd, David J. B.; Avitabile, Daniele; Kok, Kasper; Schiller, Frank; Woodward, Amy; Druckman, Angela; Basson, Lauren

    2013-01-01

    Fuzzy Cognitive Mapping (FCM) is a widely used participatory modelling methodology in which stakeholders collaboratively develop a ‘cognitive map’ (a weighted, directed graph), representing the perceived causal structure of their system. This can be directly transformed by a workshop facilitator into simple mathematical models to be interrogated by participants by the end of the session. Such simple models provide thinking tools which can be used for discussion and exploration of complex issues, as well as sense checking the implications of suggested causal links. They increase stakeholder motivation and understanding of whole systems approaches, but cannot be separated from an intersubjective participatory context. Standard FCM methodologies make simplifying assumptions, which may strongly influence results, presenting particular challenges and opportunities. We report on a participatory process, involving local companies and organisations, focussing on the development of a bio-based economy in the Humber region. The initial cognitive map generated consisted of factors considered key for the development of the regional bio-based economy and their directional, weighted, causal interconnections. A verification and scenario generation procedure, to check the structure of the map and suggest modifications, was carried out with a second session. Participants agreed on updates to the original map and described two alternate potential causal structures. In a novel analysis all map structures were tested using two standard methodologies usually used independently: linear and sigmoidal FCMs, demonstrating some significantly different results alongside some broad similarities. We suggest a development of FCM methodology involving a sensitivity analysis with different mappings and discuss the use of this technique in the context of our case study. Using the results and analysis of our process, we discuss the limitations and benefits of the FCM methodology in this case and in general. We conclude by proposing an extended FCM methodology, including multiple functional mappings within one participant-constructed graph. PMID:24244303

  7. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    NASA Astrophysics Data System (ADS)

    Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.

    2015-10-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.

  8. Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects

    NASA Astrophysics Data System (ADS)

    Gomez, Jamie; Nelson, Ruben; Kalu, Egwu E.; Weatherspoon, Mark H.; Zheng, Jim P.

    2011-05-01

    Equivalent circuit model (EMC) of a high-power Li-ion battery that accounts for both temperature and state of charge (SOC) effects known to influence battery performance is presented. Electrochemical impedance measurements of a commercial high power Li-ion battery obtained in the temperature range 20 to 50 °C at various SOC values was used to develop a simple EMC which was used in combination with a non-linear least squares fitting procedure that used thirteen parameters for the analysis of the Li-ion cell. The experimental results show that the solution and charge transfer resistances decreased with increase in cell operating temperature and decreasing SOC. On the other hand, the Warburg admittance increased with increasing temperature and decreasing SOC. The developed model correlations that are capable of being used in process control algorithms are presented for the observed impedance behavior with respect to temperature and SOC effects. The predicted model parameters for the impedance elements Rs, Rct and Y013 show low variance of 5% when compared to the experimental data and therefore indicates a good statistical agreement of correlation model to the actual experimental values.

  9. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    NASA Astrophysics Data System (ADS)

    Chai, M. N.; Isa, M. I. N.

    2016-06-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10-4 S cm-1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.

  10. Matching network for RF plasma source

    DOEpatents

    Pickard, Daniel S.; Leung, Ka-Ngo

    2007-11-20

    A compact matching network couples an RF power supply to an RF antenna in a plasma generator. The simple and compact impedance matching network matches the plasma load to the impedance of a coaxial transmission line and the output impedance of an RF amplifier at radio frequencies. The matching network is formed of a resonantly tuned circuit formed of a variable capacitor and an inductor in a series resonance configuration, and a ferrite core transformer coupled to the resonantly tuned circuit. This matching network is compact enough to fit in existing compact focused ion beam systems.

  11. A simple formula for the effective complex conductivity of periodic fibrous composites with interfacial impedance and applications to biological tissues

    NASA Astrophysics Data System (ADS)

    Bisegna, Paolo; Caselli, Federica

    2008-06-01

    This paper presents a simple analytical expression for the effective complex conductivity of a periodic hexagonal arrangement of conductive circular cylinders embedded in a conductive matrix, with interfaces exhibiting a capacitive impedance. This composite material may be regarded as an idealized model of a biological tissue comprising tubular cells, such as skeletal muscle. The asymptotic homogenization method is adopted, and the corresponding local problem is solved by resorting to Weierstrass elliptic functions. The effectiveness of the present analytical result is proved by convergence analysis and comparison with finite-element solutions and existing models.

  12. In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid.

    PubMed

    Ezhil Vilian, A T; Rajkumar, Muniyandi; Chen, Shen-Ming

    2014-03-01

    Highly loaded zirconium oxide (ZrO2) nanoparticles were supported on graphene oxide (ERGO/ZrO2) via an in situ, simple and clean strategy on the basis of the electrochemical redox reaction between zirconyl chloride and graphene oxide (ZrOCl2 and GO). The electrochemical measurements and surface morphology of the as prepared nanocomposite were studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and field emission scanning electron microscopy (FESEM). This ZrO2 decorated reduced graphene oxide nanocomposite modified GCE (ERGO/ZrO2) exhibits a prominent electrocatalytic activity toward the selective detection and determination of dopamine (DA) and paracetamol (PA) in presence of ascorbic acid (AA). The peaks of linear sweep voltammetry (LSV) for DA and PA oxidation at ERGO/ZrO2 modified electrode surface were clearly separated from each other when they co-existed in the physiological pH (pH 7.0) with a potential value of 140 mV (between AA and DA) and 330 mV (between AA and PA). It was, therefore, possible to simultaneously determine DA and PA in the samples at ERGO/ZrO2 nanocomposite modified GCE. Linear calibration curves were obtained for 9-237 μM of PA and DA. The ERGO/ZrO2 nanocomposite electrode has been satisfactorily used for the determination of DA and PA in the presence of AA at pharmaceutical formulations in human urine samples with a linear range of 3-174 μM. The proposed biosensor shows a wide linear range, low detection limit, good reproducibility and acceptable stability, providing a biocompatible platform for bio sensing and bio catalysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. A versatile bio-based material for efficiently removing toxic dyes, heavy metal ions and emulsified oil droplets from water simultaneously.

    PubMed

    Li, Daikun; Li, Qing; Mao, Daoyong; Bai, Ningning; Dong, Hongzhou

    2017-12-01

    Developing versatile materials for effective water purification is significant for environment and water source protection. Herein, a versatile bio-based material (CH-PAA-T) was reported by simple thermal cross-linking chitosan and polyacrylic acid which exhibits excellent performances for removing insoluble oil, soluble toxic dyes and heavy metal ions from water, simultaneously. The adsorption capacities are 990.1mgg -1 for methylene blue (MB) and 135.9mgg -1 for Cu 2+ , which are higher than most of present advanced absorbents. The adsorption towards organic dyes possesses high selectivity which makes CH-PAA-T be able to efficiently separate dye mixtures. The stable superoleophobicity under water endows CH-PAA-T good performance to separate toluene-in-water emulsion stabilized by Tween 80. Moreover, CH-PAA-T can be recycled for 10 times with negligible reduction of efficiency. Such versatile bio-based material is a potential candidate for water purification. Copyright © 2017. Published by Elsevier Ltd.

  14. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.

    PubMed

    Bacek, Tomislav; Moltedo, Marta; Langlois, Kevin; Prieto, Guillermo Asin; Sanchez-Villamanan, Maria Carmen; Gonzalez-Vargas, Jose; Vanderborght, Bram; Lefeber, Dirk; Moreno, Juan C

    2017-07-01

    This paper presents design of a novel modular lower-limb gait exoskeleton built within the FP7 BioMot project. Exoskeleton employs a variable stiffness actuator in all 6 joints, a directional-flexibility structure and a novel physical humanrobot interfacing, which allows it to deliver the required output while minimally constraining user's gait by providing passive degrees of freedom. Due to modularity, the exoskeleton can be used as a full lower-limb orthosis, a single-joint orthosis in any of the three joints, and a two-joint orthosis in a combination of any of the two joints. By employing a simple torque control strategy, the exoskeleton can be used to deliver user-specific assistance, both in gait rehabilitation and in assisting people suffering musculoskeletal impairments. The result of the presented BioMot efforts is a low-footprint exoskeleton with powerful compliant actuators, simple, yet effective torque controller and easily adjustable flexible structure.

  15. THz Discrimination of Materials: Development of an Apparatus Based on Room Temperature Detection and Metasurfaces Selective Filters

    NASA Astrophysics Data System (ADS)

    Carelli, P.; Chiarello, F.; Torrioli, G.; Castellano, M. G.

    2017-03-01

    We present an apparatus for terahertz discrimination of materials designed to be fast, simple, compact, and economical in order to be suitable for preliminary on-field analysis. The system working principles, bio-inspired by the human vision of colors, are based on the use of an incoherent source, a room temperature detector, a series of microfabricated metamaterials selective filters, a very compact optics based on metallic ellipsoidal mirrors in air, and a treatment of the mirrors' surfaces that select the frequency band of interest. We experimentally demonstrate the operation of the apparatus in discriminating simple substances such as salt, staple foods, and grease. We present the system and the obtained results and discuss issues and possible developments.

  16. Diamond Nanoparticles Modify Curcumin Activity: In Vitro Studies on Cancer and Normal Cells and In Ovo Studies on Chicken Embryo Model

    PubMed Central

    Strojny, Barbara; Grodzik, Marta; Sawosz, Ewa; Winnicka, Anna; Kurantowicz, Natalia; Jaworski, Sławomir; Kutwin, Marta; Urbańska, Kaja; Hotowy, Anna; Wierzbicki, Mateusz; Chwalibog, André

    2016-01-01

    Curcumin has been studied broadly for its wide range of biological activities, including anticancer properties. The major problem with curcumin is its poor bioavailability, which can be improved by the addition of carriers, such as diamond nanoparticles (DN). They are carbon allotropes, and are therefore biocompatible and easily taken up by cells. DN are non-toxic and have antiangiogenic properties with potential applications in cancer therapy. Their large surface makes them promising compounds in a drug delivery system for bioactive agents, as DN create bio-complexes in a fast and simple process of self-organisation. We investigated the cytotoxicity of such bio-complexes against liver cancer cells and normal fibroblasts, revealing that conjugation of curcumin with DN significantly improves its activity. The experiment performed in a chicken embryo model demonstrated that neither curcumin nor DN nor bio-complexes affect embryo development, even though DN can form deposits in tissues. Preliminary results confirmed the applicability of DN as an efficient carrier of curcumin, which improves its performance against cancer cells in vitro, yet is not toxic to an organism, which makes the bio-complex a promising anticancer agent. PMID:27736939

  17. Integrative Bioengineering Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddington, David; Magin,L,Richard; Hetling, John

    2009-01-09

    Microfabrication enables many exciting experimental possibilities for medicine and biology that are not attainable through traditional methods. However, in order for microfabricated devices to have an impact they must not only provide a robust solution to a current unmet need, but also be simple enough to seamlessly integrate into standard protocols. Broad dissemination of bioMEMS has been stymied by the common aim of replacing established and well accepted protocols with equally or more complex devices, methods, or materials. The marriage of a complex, difficult to fabricate bioMEMS device with a highly variable biological system is rarely successful. Instead, the designmore » philosophy of my lab aims to leverage a beneficial microscale phenomena (e.g. fast diffusion at the microscale) within a bioMEMS device and adapt to established methods (e.g. multiwell plate cell culture) and demonstrate a new paradigm for the field (adapt instead of replace). In order for the field of bioMEMS to mature beyond novel proof-of-concept demonstrations, researchers must focus on developing systems leveraging these phenomena and integrating into standard labs, which have largely been ignored. Towards this aim, the Integrative Bioengineering Institute has been established.« less

  18. Diamond Nanoparticles Modify Curcumin Activity: In Vitro Studies on Cancer and Normal Cells and In Ovo Studies on Chicken Embryo Model.

    PubMed

    Strojny, Barbara; Grodzik, Marta; Sawosz, Ewa; Winnicka, Anna; Kurantowicz, Natalia; Jaworski, Sławomir; Kutwin, Marta; Urbańska, Kaja; Hotowy, Anna; Wierzbicki, Mateusz; Chwalibog, André

    2016-01-01

    Curcumin has been studied broadly for its wide range of biological activities, including anticancer properties. The major problem with curcumin is its poor bioavailability, which can be improved by the addition of carriers, such as diamond nanoparticles (DN). They are carbon allotropes, and are therefore biocompatible and easily taken up by cells. DN are non-toxic and have antiangiogenic properties with potential applications in cancer therapy. Their large surface makes them promising compounds in a drug delivery system for bioactive agents, as DN create bio-complexes in a fast and simple process of self-organisation. We investigated the cytotoxicity of such bio-complexes against liver cancer cells and normal fibroblasts, revealing that conjugation of curcumin with DN significantly improves its activity. The experiment performed in a chicken embryo model demonstrated that neither curcumin nor DN nor bio-complexes affect embryo development, even though DN can form deposits in tissues. Preliminary results confirmed the applicability of DN as an efficient carrier of curcumin, which improves its performance against cancer cells in vitro, yet is not toxic to an organism, which makes the bio-complex a promising anticancer agent.

  19. Detection of trinitrotoluene (TNT) extracted from soil using a surface plasmon resonance (SPR)-based sensor platform

    NASA Astrophysics Data System (ADS)

    Strong, Anita A.; Stimpson, Donald I.; Bartholomew, Dwight U.; Jenkins, Thomas F.; Elkind, Jerome L.

    1999-08-01

    An antibody-based competition assay has been developed using a surface plasmon resonance (SPR) sensor platform for the detection of trinitrotoluene (TNT) in soil extract solutions. The objective of this work is to develop a sensor-based assay technology to use in the field for real- time detection of land mines. This immunoassay combines very simple bio-film attachment procedures and a low-cost SPR sensor design to detect TNT in soil extracts. The active bio-surface is a coating of bovine serum albumin that has been decorated with trinitrobenzene groups. A blind study on extracts from a large soil matrix was recently performed and result from this study will be presented. Potential interferant studied included 2,4-dinitrophenol, 2,4- dinitrotoluene, ammonium nitrate, and 2,4- dichlorophenoxyacetic acid. Cross-reactivity with dinitrotoluene will be discussed. Also, plans to reach sensitivity levels of 1ppb TNT in soil will be described.

  20. Spectroscopic and photoacoustic characterization of encapsulated iron oxide super-paramagnetic nanoparticles as a new multiplatform contrast agent.

    PubMed

    Armanetti, Paolo; Flori, Alessandra; Avigo, Cinzia; Conti, Luca; Valtancoli, Barbara; Petroni, Debora; Doumett, Saer; Cappiello, Laura; Ravagli, Costanza; Baldi, Giovanni; Bencini, Andrea; Menichetti, Luca

    2018-06-15

    Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. An HF coaxial bridge for measuring impedance ratios up to 1 MHz

    NASA Astrophysics Data System (ADS)

    Kucera, J.; Sedlacek, R.; Bohacek, J.

    2012-08-01

    A four-terminal pair coaxial ac bridge developed for calibrating both resistance and capacitance ratios and working in the frequency range from 100 kHz up to 1 MHz is described. A reference inductive voltage divider (IVD) makes it possible to calibrate ratios 1:1 and 10:1 with uncertainty of a few parts in 105. The IVD is calibrated by means of a series-parallel capacitance device (SPCD). Use of the same ac bridge with minimal changes for calibrating the SPCD, IVD and unknown impedances simplifies the whole calibration process. The bridge balance conditions are fulfilled with simple capacitance and resistance decades and by injecting voltage supplied from the auxiliary direct digital synthesizer. Bridge performance was checked on the basis of resistance ratio measurements and also capacitance ratio measurements.

  2. Epoxy composites coating with Fe3O4 decorated graphene oxide: Modified bio-inspired surface chemistry, synergistic effect and improved anti-corrosion performance

    NASA Astrophysics Data System (ADS)

    Zhan, Yingqing; Zhang, Jieming; Wan, Xinyi; Long, Zhihang; He, Shuangjiang; He, Yi

    2018-04-01

    To obtain graphene or graphene derivatives based epoxy composite coatings with high anti-corrosion performance, the morphology of nanostructures, dispersion, and interfacial adhesion are key factors that need to be considered. We here demonstrated the bio-inspired co-modification of graphene oxide/Fe3O4 hybrid (GO-Fe3O4@ poly (DA+KH550)) and its synergistic effect on the anti-corrosion performance of epoxy coating. For this purpose, graphene oxide/Fe3O4 hybrid obtained from hydrothermal route was modified by self-polymerization between dopamine and secondary functional monomer (KH550), which led to the modified bio-inspired surface functionalization. This novel modified bio-inspired functionalization was quite distinct from conventional surface modification or decoration. Namely, abundant amino groups were introduced by modified bio-inspired functionalization, which allowed the graphene oxide/Fe3O4 hybrid to disperse well in epoxy resin and enhanced the interfacial adhesion between modified nanofiller and epoxy resin through chemical crosslinking reaction. The electrochemical impedance spectroscopy (EIS) test revealed that anti-corrosive performance of epoxy coatings was significantly enhanced by addition of 0.5 wt% modified bio-inspired functionalized GO-Fe3O4 hybrid compared with neat epoxy and other nanofillers/epoxy composite coatings. Moreover, the micro-hardness of epoxy coating was enhanced by 71.8% compared with pure epoxy coating at the same loading content. In addition, the anticorrosion mechanism of GO-Fe3O4@poly (DA+KH550) was tentatively discussed.

  3. Motion generation of peristaltic mobile robot with particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Homma, Takahiro; Kamamichi, Norihiro

    2015-03-01

    In developments of robots, bio-mimetics is attracting attention, which is a technology for the design of the structure and function inspired from biological system. There are a lot of examples of bio-mimetics in robotics such as legged robots, flapping robots, insect-type robots, fish-type robots. In this study, we focus on the motion of earthworm and aim to develop a peristaltic mobile robot. The earthworm is a slender animal moving in soil. It has a segmented body, and each segment can be shorted and lengthened by muscular actions. It can move forward by traveling expanding motions of each segment backward. By mimicking the structure and motion of the earthworm, we can construct a robot with high locomotive performance against an irregular ground or a narrow space. In this paper, to investigate the motion analytically, a dynamical model is introduced, which consist of a series-connected multi-mass model. Simple periodic patterns which mimic the motions of earthworms are applied in an open-loop fashion, and the moving patterns are verified through numerical simulations. Furthermore, to generate efficient motion of the robot, a particle swarm optimization algorithm, one of the meta-heuristic optimization, is applied. The optimized results are investigated by comparing to simple periodic patterns.

  4. Cross-calibrating interferon-γ detection by using eletrochemical impedance spectroscopy and paraboloidal mirror enabled surface plasmon resonance interferometer

    NASA Astrophysics Data System (ADS)

    Liu, Meng-Wei; Chang, Hao-Jung; Lee, Shu-sheng; Lee, Chih-Kung

    2016-03-01

    Tuberculosis is a highly contagious disease such that global latent patient can be as high as one third of the world population. Currently, latent tuberculosis was diagnosed by stimulating the T cells to produce the biomarker of tuberculosis, i.e., interferon-γ. In this paper, we developed a paraboloidal mirror enabled surface plasmon resonance (SPR) interferometer that has the potential to also integrate ellipsometry to analyze the antibody and antigen reactions. To examine the feasibility of developing a platform for cross calibrating the performance and detection limit of various bio-detection techniques, electrochemical impedance spectroscopy (EIS) method was also implemented onto a biochip that can be incorporated into this newly developed platform. The microfluidic channel of the biochip was functionalized by coating the interferon-γ antibody so as to enhance the detection specificity. To facilitate the processing steps needed for using the biochip to detect various antigen of vastly different concentrations, a kinetic mount was also developed to guarantee the biochip re-positioning accuracy whenever the biochip was removed and placed back for another round of detection. With EIS being utilized, SPR was also adopted to observe the real-time signals on the computer in order to analyze the success of each biochip processing steps such as functionalization, wash, etc. Finally, the EIS results and the optical signals obtained from the newly developed optical detection platform was cross-calibrated. Preliminary experimental results demonstrate the accuracy and performance of SPR and EIS measurement done at the newly integrated platform.

  5. A simple automated instrument for DNA extraction in forensic casework.

    PubMed

    Montpetit, Shawn A; Fitch, Ian T; O'Donnell, Patrick T

    2005-05-01

    The Qiagen BioRobot EZ1 is a small, rapid, and reliable automated DNA extraction instrument capable of extracting DNA from up to six samples in as few as 20 min using magnetic bead technology. The San Diego Police Department Crime Laboratory has validated the BioRobot EZ1 for the DNA extraction of evidence and reference samples in forensic casework. The BioRobot EZ1 was evaluated for use on a variety of different evidence sample types including blood, saliva, and semen evidence. The performance of the BioRobot EZ1 with regard to DNA recovery and potential cross-contamination was also assessed. DNA yields obtained with the BioRobot EZ1 were comparable to those from organic extraction. The BioRobot EZ1 was effective at removing PCR inhibitors, which often co-purify with DNA in organic extractions. The incorporation of the BioRobot EZ1 into forensic casework has streamlined the DNA analysis process by reducing the need for labor-intensive phenol-chloroform extractions.

  6. Detection of High-impedance Arcing Faults in Radial Distribution DC Systems

    NASA Technical Reports Server (NTRS)

    Gonzalez, Marcelo C.; Button, Robert M.

    2003-01-01

    High voltage, low current arcing faults in DC power systems have been researched at the NASA Glenn Research Center in order to develop a method for detecting these 'hidden faults', in-situ, before damage to cables and components from localized heating can occur. A simple arc generator was built and high-speed and low-speed monitoring of the voltage and current waveforms, respectively, has shown that these high impedance faults produce a significant increase in high frequency content in the DC bus voltage and low frequency content in the DC system current. Based on these observations, an algorithm was developed using a high-speed data acquisition system that was able to accurately detect high impedance arcing events induced in a single-line system based on the frequency content of the DC bus voltage or the system current. Next, a multi-line, radial distribution system was researched to see if the arc location could be determined through the voltage information when multiple 'detectors' are present in the system. It was shown that a small, passive LC filter was sufficient to reliably isolate the fault to a single line in a multi-line distribution system. Of course, no modification is necessary if only the current information is used to locate the arc. However, data shows that it might be necessary to monitor both the system current and bus voltage to improve the chances of detecting and locating high impedance arcing faults

  7. Line scanning time-of-flight laser sensor for intelligent transport systems, combining wide field-of-view optics of 30 deg, high scanning speed of 0.9 ms/line, and simple sensor configuration

    NASA Astrophysics Data System (ADS)

    Imaki, Masaharu; Kameyama, Shumpei; Ishimura, Eitaro; Nakaji, Masaharu; Yoshinaga, Hideo; Hirano, Yoshihito

    2017-03-01

    We developed a line scanning time-of-flight (TOF) laser sensor for an intelligent transport system (ITS), which combines wide field-of-view (FOV) receiving optics of 30 deg and a high-speed microelectro mechanical system scanner of 0.9 ms/line with a simple sensor configuration. The newly developed high-aspect ratio photodiode realizes the scanless and wide FOV receiver. The sinusoidal wave intensity modulation method is used for the TOF measurement. This enables the noise reduction of the trans-impedance amplifier by applying the LC-resonant method. The vehicle detection and axle counting, which are the important functions in ITS, are also demonstrated.

  8. BioImageXD: an open, general-purpose and high-throughput image-processing platform.

    PubMed

    Kankaanpää, Pasi; Paavolainen, Lassi; Tiitta, Silja; Karjalainen, Mikko; Päivärinne, Joacim; Nieminen, Jonna; Marjomäki, Varpu; Heino, Jyrki; White, Daniel J

    2012-06-28

    BioImageXD puts open-source computer science tools for three-dimensional visualization and analysis into the hands of all researchers, through a user-friendly graphical interface tuned to the needs of biologists. BioImageXD has no restrictive licenses or undisclosed algorithms and enables publication of precise, reproducible and modifiable workflows. It allows simple construction of processing pipelines and should enable biologists to perform challenging analyses of complex processes. We demonstrate its performance in a study of integrin clustering in response to selected inhibitors.

  9. Robust real-time cell analysis method for determining viral infectious titers during development of a viral vaccine production process.

    PubMed

    Charretier, Cédric; Saulnier, Aure; Benair, Loïc; Armanet, Corinne; Bassard, Isabelle; Daulon, Sandra; Bernigaud, Bertrand; Rodrigues de Sousa, Emanuel; Gonthier, Clémence; Zorn, Edouard; Vetter, Emmanuelle; Saintpierre, Claire; Riou, Patrice; Gaillac, David

    2018-02-01

    The classical cell-culture methods, such as cell culture infectious dose 50% (CCID 50 ) assays, are time-consuming, end-point assays currently used during the development of a viral vaccine production process to measure viral infectious titers. However, they are not suitable for handling the large number of tests required for high-throughput and large-scale screening analyses. Impedance-based bio-sensing techniques used in real-time cell analysis (RTCA) to assess cell layer biological status in vitro, provide real-time data. In this proof-of-concept study, we assessed the correlation between the results from CCID 50 and RTCA assays and compared time and costs using monovalent and tetravalent chimeric yellow fever dengue (CYD) vaccine strains. For the RTCA assay, Vero cells were infected with the CYD sample and real-time impedance was recorded, using the dimensionless cell index (CI). The CI peaked just after infection and decreased as the viral cytopathic effect occurred in a dose-dependent manner. The time to the median CI (CIT med ) was correlated with viral titers determined by CCID 50 over a range of about 4-5log 10 CCID 50 /ml. This in-house RTCA virus-titration assay was shown to be a robust method for determining real-time viral infectious titers, and could be an alternative to the classical CCID 50 assay during the development of viral vaccine production process. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Coupling IR Thermography and BIA to analyse body reaction after one acupuncture session

    NASA Astrophysics Data System (ADS)

    Piquemal, M.

    2013-04-01

    Coupling both thermography and bio-Impedance, some biophysical acupuncture mechanisms are statically studied on a small population of 18 subjects. Results show that a possible way of understanding acupuncture, in an electrical way, should be to consider ionic flux redistribution between vascular and extra cell compartments. This is a two steps mechanism. The first one is starting with needles insertion and the second one is lasting with more intensity after removing them from skin.

  11. Bio-amplifier with Driven Shield Inputs to Reduce Electrical Noise and its Application to Laboratory Teaching of Electrophysiology

    PubMed Central

    Matsuzaka, Yoshiya; Ichihara, Toshiaki; Abe, Toshihiko; Mushiake, Hajime

    2012-01-01

    We describe a custom-designed bio-amplifier and its use in teaching neurophysiology to undergraduate students. The amplifier has the following features: 1) differential amplification with driven shield inputs, which makes it workable even in electrically unshielded environments, 2) high input impedance to allow recordings of small signals through high signal source impedance, 3) dual fixed frequency bandpass filters (1–340Hz for surface EMG, EEG, local field potential etc and 320Hz – 3.4kHz for neuronal action potential recording) and independent gain controllers (up to x107,000) to allow the recording of different signals from the same source (e.g., local field potential and spiking activity of neurons), and 4) printed circuit board technology for easy replication with consistent quality. We compared its performance with a commercial amplifier in an electrically noisy environment. Even without any electrostatic shield, it recorded clear electromyographic activity with little interference from other electric appliances. In contrast, the commercial amplifier’s performance severely deteriorated under the same condition. We used this amplifier to build a computer-controlled stimulation and measurement system for electroencephalographic recordings by undergraduate students. The students successfully recorded various sensory evoked potentials with clarity that otherwise would have required costly instruments. This amplifier is a low-cost yet reliable instrument for electro-physiological recording both in education and research. PMID:23504543

  12. Copeptin Levels Remain Unchanged during the Menstrual Cycle

    PubMed Central

    Blum, Claudine A.; Mirza, Uzma; Christ-Crain, Mirjam; Mueller, Beat; Schindler, Christian; Puder, Jardena J.

    2014-01-01

    Background Copeptin, a surrogate marker for arginin vasopressin production, is evaluated as an osmo-dependent stress and inflammatory biomarker in different diseases. We investigated copeptin during the menstrual cycle and its relationship to sex hormones, markers of subclinical inflammation and estimates of body fluid. Methods In 15 healthy women with regular menstrual cycles, blood was drawn on fifteen defined days of their menstrual cycle and was assayed for copeptin, progesterone, estradiol, luteinizing hormone, high-sensitive C-reactive protein, tumor necrosis factor-alpha and procalcitonin. Symptoms of fluid retention were assessed on each visit, and bio impedance analysis was measured thrice to estimate body fluid changes. Mixed linear model analysis was performed to assess the changes of copeptin across the menstrual cycle and the relationship of sex hormones, markers of subclinical inflammation and estimates of body fluid with copeptin. Results Copeptin levels did not significantly change during the menstrual cycle (p = 0.16). Throughout the menstrual cycle, changes in estradiol (p = 0.002) and in the physical premenstrual symptom score (p = 0.01) were positively related to copeptin, but changes in other sex hormones, in markers of subclinical inflammation or in bio impedance analysis-estimated body fluid were not (all p = ns). Conclusion Although changes in estradiol and the physical premenstrual symptom score appear to be related to copeptin changes, copeptin does not significantly change during the menstrual cycle. PMID:24866705

  13. BioServices: a common Python package to access biological Web Services programmatically.

    PubMed

    Cokelaer, Thomas; Pultz, Dennis; Harder, Lea M; Serra-Musach, Jordi; Saez-Rodriguez, Julio

    2013-12-15

    Web interfaces provide access to numerous biological databases. Many can be accessed to in a programmatic way thanks to Web Services. Building applications that combine several of them would benefit from a single framework. BioServices is a comprehensive Python framework that provides programmatic access to major bioinformatics Web Services (e.g. KEGG, UniProt, BioModels, ChEMBLdb). Wrapping additional Web Services based either on Representational State Transfer or Simple Object Access Protocol/Web Services Description Language technologies is eased by the usage of object-oriented programming. BioServices releases and documentation are available at http://pypi.python.org/pypi/bioservices under a GPL-v3 license.

  14. Application of plant impedance for diagnosing plant disease

    NASA Astrophysics Data System (ADS)

    Xu, Huirong; Jiang, Xuesong; Zhu, Shengpan; Ying, Yibin

    2006-10-01

    Biological cells have components acting as electrical elements that maintain the health of the cell by regulation of the electrical charge content. Plant impedance is decided by the state of plant physiology and pathology. Plant physiology and pathology can be studies by measuring plant impedance. The effect of Cucumber Mosaic Virus red bean isolate (CMV-RB) on electrical resistance of tomato leaves was studied by the method of impedance measurement. It was found that the value of resistance of tomato leaves infected with CMV-RB was smaller than that in sound plant leaves. This decrease of impedances in leaf tissue was occurred with increased severity of disease. The decrease of resistance of tomato leaves infected with CMV-RB could be detected by electrical resistance detecting within 4 days after inoculation even though significant visible differences between the control and the infected plants were not noted, so that the technique for measurement of tomato leaf tissue impedance is a rapid, clever, simple method on diagnosis of plant disease.

  15. Impedance of the Grape Berry Cuticle as a Novel Phenotypic Trait to Estimate Resistance to Botrytis Cinerea

    PubMed Central

    Herzog, Katja; Wind, Rolf; Töpfer, Reinhard

    2015-01-01

    Warm and moist weather conditions during berry ripening provoke Botrytis cinerea (B. cinerea) causing notable bunch rot on susceptible grapevines with the effect of reduced yield and wine quality. Resistance donors of genetic loci to increase B. cinerea resistance are widely unknown. Promising traits of resistance are represented by physical features like the thickness and permeability of the grape berry cuticle. Sensor-based phenotyping methods or genetic markers are rare for such traits. In the present study, the simple-to-handle I-sensor was developed. The sensor enables the fast and reliable measurement of electrical impedance of the grape berry cuticles and its epicuticular waxes (CW). Statistical experiments revealed highly significant correlations between relative impedance of CW and the resistance of grapevines to B. cinerea. Thus, the relative impedance Zrel of CW was identified as the most important phenotypic factor with regard to the prediction of grapevine resistance to B. cinerea. An ordinal logistic regression analysis revealed a R2McFadden of 0.37 and confirmed the application of Zrel of CW for the prediction of bunch infection and in this way as novel phenotyping trait. Applying the I-sensor, a preliminary QTL region was identified indicating that the novel phenotypic trait is as well a valuable tool for genetic analyses. PMID:26024417

  16. Rapid Quantitative Detection of Brucella melitensis by a Label-Free Impedance Immunosensor Based on a Gold Nanoparticle-Modified Screen-Printed Carbon Electrode

    PubMed Central

    Wu, Haiyun; Zuo, Yueming; Cui, Chuanjin; Yang, Wei; Ma, Haili; Wang, Xiaowen

    2013-01-01

    A rapid and simple method for quantitative monitoring of Brucella melitensis using electrochemical impedance spectroscopy (EIS) is reported for the first time. The label-free immunosensors were fabricated by immobilizing Brucella melitensis antibody on the surface of gold nanoparticle-modified screen-printed carbon electrodes (GNP-SPCEs). Cyclic voltammetry (CV) and EIS were used to characterize the Brucella melitensis antigen interaction on the surface of GNP-SPCEs with antibody. A general electronic equivalent model of an electrochemical cell was introduced for interpretation of the impedance components of the system. The results showed that the change in electron-transfer resistance (Rct) was significantly different due to the binding of Brucella melitensis cells. A linear relationship between the Rct variation and logarithmic value of the cell concentration was found from 4 × 104 to 4 × 106 CFU/mL in pure culture. The label-free impedance biosensor was able to detect as low as 1 × 104 and 4 × 105 CFU/mL of Brucella melitensis in pure culture and milk samples, respectively, in less than 1.5 h. Moreover, a good selectivity versus Escherichia coli O157:H7 and Staphylococcus aureus cells was obtained for our developed immunosensor demonstrating its specificity towards only Brucella melitensis. PMID:23881126

  17. Modeling, Analysis and Mitigation of Sub-Synchronous Interactions between Full- and Partial-Scale Voltage-Source Converters and Power Networks

    NASA Astrophysics Data System (ADS)

    Alawasa, Khaled Mohammad

    Voltage-source converters (VSCs) have gained widespread acceptance in modern power systems. The stability and dynamics of power systems involving these devices have recently become salient issues. In the small-signal sense, the dynamics of VSC-based systems is dictated by its incremental output impedance, which is formed by a combination of 'passive' circuit components and 'active' control elements. Control elements such as control parameters, control loops, and control topologies play a significant role in shaping the impedance profile. Depending on the control schemes and strategies used, VSC-based systems can exhibit different incremental impedance dynamics. As the control elements and dynamics are involved in the impedance structure, the frequency-dependent output impedance might have a negative real-part (i.e., a negative resistance). In the grid-connected mode, the negative resistance degrades the system damping and negatively impacts the stability. In high-voltage networks where high-power VSC-based systems are usually employed and where sub-synchronous dynamics usually exist, integrating large VSC-based systems might reduce the overall damping and results in unstable dynamics. The objectives of this thesis are to (1) investigate and analyze the output impedance properties under different control strategies and control functions, (2) identify and characterize the key contributors to the impedance and sub-synchronous damping profiles, and (3) propose mitigation techniques to minimize and eliminate the negative impact associated with integrating VSC-based systems into power systems. Different VSC configurations are considered in this thesis; in particular, the full-scale and partial-scale topologies (doubly fed-induction generators) are addressed. Additionally, the impedance and system damping profiles are studied under two different control strategies: the standard vector control strategy and the recently-developed power synchronization control strategy. Furthermore, this thesis proposes a simple and robust technique for damping the sub-synchronous resonance in a power system.

  18. Review of the Pyrolysis Platform for Producing Bio-oil and Biochar: Technology, Logistics, and Potential Impacts on Greenhouse Gas Emissions, Water Quality, Soil Quality, and Agricultural Productivity

    USDA-ARS?s Scientific Manuscript database

    Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio-oil, biochar, and syngas. The robust nature of the pyrolysis technology, which allows considerable flexibility in both the type and quality of the biomass feedstock, combined with a ...

  19. Digital synthetic impedance for application in vibration damping.

    PubMed

    Nečásek, J; Václavík, J; Marton, P

    2016-02-01

    In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass.

  20. Digital synthetic impedance for application in vibration damping

    NASA Astrophysics Data System (ADS)

    Nečásek, J.; Václavík, J.; Marton, P.

    2016-02-01

    In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass.

  1. One-port portable SAW sensor system

    NASA Astrophysics Data System (ADS)

    Hoa Nguyen, Vu; Peters, Oliver; Schnakenberg, Uwe

    2018-01-01

    A portable device using the SAW-based impedance sensor type based on one interdigital transducer simultaneously as SAW generator and sensor element (1-port approach) is introduced. As a novelty, the so far required expensive vector network analyzer (VNA) is replaced by a hand-held device to measure the impedance spectrum of the SAW sensor by RF-gain-phase meters. Hence, some of the best features from the conventional oscillator and VNA approaches are combined to develop a low-cost and self-contained measurement system, including signal in- and output ability for real-time measurements. The pivotal aspect of the portable system is the transfer of the sophisticated high frequency approach into a quasi-static one. This enables the use of simple lumped electronics without the need of impedance matching circuits. Proof-of-concept was carried out by measuring conductivities of phosphate-buffered solutions and viscosities of glycerin. Sensitivities for temperature of 0.3%/°C, viscosity of 10.1% (mPa s)-1 and conductivity of 0.5% (S cm)-1 have been determined, respectively, which are competitive results compared to the benchmark approaches.

  2. A catalyst layer optimisation approach using electrochemical impedance spectroscopy for PEM fuel cells operated with pyrolysed transition metal-N-C catalysts

    NASA Astrophysics Data System (ADS)

    Malko, Daniel; Lopes, Thiago; Ticianelli, Edson A.; Kucernak, Anthony

    2016-08-01

    The effect of the ionomer to carbon (I/C) ratio on the performance of single cell polymer electrolyte fuel cells is investigated for three different types of non-precious metal cathodic catalysts. Polarisation curves as well as impedance spectra are recorded at different potentials in the presence of argon or oxygen at the cathode and hydrogen at the anode. It is found that a optimised ionomer content is a key factor for improving the performance of the catalyst. Non-optimal ionomer loading can be assessed by two different factors from the impedance spectra. Hence this observation could be used as a diagnostic element to determine the ideal ionomer content and distribution in newly developed catalyst-electrodes. An electrode morphology based on the presence of inhomogeneous resistance distribution within the porous structure is suggested to explain the observed phenomena. The back-pressure and relative humidity effect on this feature is also investigated and supports the above hypothesis. We give a simple flowchart to aid optimisation of electrodes with the minimum number of trials.

  3. Design and implementation of low profile antenna for dual-band applications using rotated e-shaped conductor-backed plane.

    PubMed

    Jalali, Mahdi; Sedghi, Tohid; Shafei, Shahin

    2014-01-01

    A novel configuration of a printed monopole antenna with a very compact size for satisfying WLAN operations at the 5.2/5.8 GHz and also for X-band operations at the 10 GHz has been proposed. The antenna includes a simple square-shaped patch as the radiator, the rotated U-shaped conductor back plane element with embedded strip on it, and the partial rectangular ground surface. By using the rotated U-shaped conductor-backed plane with proper values, good impedance matching and improvement in bandwidth can be achieved, at the lower and upper bands. The impedance bandwidth for S11 < -10 dB is about 1.15 GHz for 5 GHz band and 5.3 GHz for X-band. The measured peak gains are about 1.9 dBi at WLAN-band and 4.2 dBi at X-band. The experimental results represent that the realized antenna with good omnidirectional radiation characteristics, enough impedance bandwidth, and reasonable gains can be appropriate for various applications of the future developed technologies and handheld devices.

  4. RF Testing Of Microwave Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.

    1988-01-01

    Fixtures and techniques are undergoing development. Four test fixtures and two advanced techniques developed in continuing efforts to improve RF characterization of MMIC's. Finline/waveguide test fixture developed to test submodules of 30-GHz monolithic receiver. Universal commercially-manufactured coaxial test fixture modified to enable characterization of various microwave solid-state devices in frequency range of 26.5 to 40 GHz. Probe/waveguide fixture is compact, simple, and designed for non destructive testing of large number of MMIC's. Nondestructive-testing fixture includes cosine-tapered ridge, to match impedance wavequide to microstrip. Advanced technique is microwave-wafer probing. Second advanced technique is electro-optical sampling.

  5. Cyclic loading of rotator cuff reconstructions: single-row repair with modified suture configurations versus double-row repair.

    PubMed

    Lorbach, Olaf; Bachelier, Felix; Vees, Jochen; Kohn, Dieter; Pape, Dietrich

    2008-08-01

    Double-row repair is suggested to have superior biomechanical properties in rotator cuff reconstruction compared with single-row repair. However, double-row rotator cuff repair is frequently compared with simple suture repair and not with modified suture configurations. Single-row rotator cuff repairs with modified suture configurations have similar failure loads and gap formations as double-row reconstructions. Controlled laboratory study. We created 1 x 2-cm defects in 48 porcine infraspinatus tendons. Reconstructions were then performed with 4 single-row repairs and 2 double-row repairs. The single-row repairs included transosseous simple sutures; double-loaded corkscrew anchors in either a double mattress or modified Mason-Allen suture repair; and the Magnum Knotless Fixation Implant with an inclined mattress. Double-row repairs were either with Bio-Corkscrew FT using modified Mason-Allen stitches or a combination of Bio-Corkscrew FT and PushLock anchors using the SutureBridge Technique. During cyclic load (10 N to 60-200 N), gap formation was measured, and finally, ultimate load to failure and type of failure were recorded. Double-row double-corkscrew anchor fixation had the highest ultimate tensile strength (398 +/- 98 N) compared to simple sutures (105 +/- 21 N; P < .0001), single-row corkscrews using a modified Mason-Allen stitch (256 +/- 73 N; P = .003) or double mattress repair (290 +/- 56 N; P = .043), the Magnum Implant (163 +/- 13 N; P < .0001), and double-row repair with PushLock and Bio-Corkscrew FT anchors (163 +/- 59 N; P < .0001). Single-row double mattress repair was superior to transosseous sutures (P < .0001), the Magnum Implant (P = .009), and double-row repair with PushLock and Bio-Corkscrew FT anchors (P = .009). Lowest gap formation was found for double-row double-corkscrew repair (3.1 +/- 0.1 mm) compared to simple sutures (8.7 +/- 0.2 mm; P < .0001), the Magnum Implant (6.2 +/- 2.2 mm; P = .002), double-row repair with PushLock and Bio-Corkscrew FT anchors (5.9 +/- 0.9 mm; P = .008), and corkscrews with modified Mason-Allen sutures (6.4 +/- 1.3 mm; P = .001). Double-row double-corkscrew anchor rotator cuff repair offered the highest failure load and smallest gap formation and provided the most secure fixation of all tested configurations. Double-loaded suture anchors using modified suture configurations achieved superior results in failure load and gap formation compared to simple suture repair and showed similar loads and gap formation with double-row repair using PushLock and Bio-Corkscrew FT anchors. Single-row repair with modified suture configurations may lead to results comparable to several double-row fixations. If double-row repair is used, modified stitches might further minimize gap formation and increase failure load.

  6. Physics Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles describe a method of introducing the study of simple harmonic motion, and suggest models that are analogues for impedence matching, electrical transformers, and birefringent crystals. (AL)

  7. Addressing the unmet need for visualizing conditional random fields in biological data

    PubMed Central

    2014-01-01

    Background The biological world is replete with phenomena that appear to be ideally modeled and analyzed by one archetypal statistical framework - the Graphical Probabilistic Model (GPM). The structure of GPMs is a uniquely good match for biological problems that range from aligning sequences to modeling the genome-to-phenome relationship. The fundamental questions that GPMs address involve making decisions based on a complex web of interacting factors. Unfortunately, while GPMs ideally fit many questions in biology, they are not an easy solution to apply. Building a GPM is not a simple task for an end user. Moreover, applying GPMs is also impeded by the insidious fact that the “complex web of interacting factors” inherent to a problem might be easy to define and also intractable to compute upon. Discussion We propose that the visualization sciences can contribute to many domains of the bio-sciences, by developing tools to address archetypal representation and user interaction issues in GPMs, and in particular a variety of GPM called a Conditional Random Field(CRF). CRFs bring additional power, and additional complexity, because the CRF dependency network can be conditioned on the query data. Conclusions In this manuscript we examine the shared features of several biological problems that are amenable to modeling with CRFs, highlight the challenges that existing visualization and visual analytics paradigms induce for these data, and document an experimental solution called StickWRLD which, while leaving room for improvement, has been successfully applied in several biological research projects. Software and tutorials are available at http://www.stickwrld.org/ PMID:25000815

  8. Impedimetric DNA biosensor based on a nanoporous alumina membrane for the detection of the specific oligonucleotide sequence of dengue virus.

    PubMed

    Deng, Jiajia; Toh, Chee-Seng

    2013-06-17

    A novel and integrated membrane sensing platform for DNA detection is developed based on an anodic aluminum oxide (AAO) membrane. Platinum electrodes (~50-100 nm thick) are coated directly on both sides of the alumina membrane to eliminate the solution resistance outside the nanopores. The electrochemical impedance technique is employed to monitor the impedance changes within the nanopores upon DNA binding. Pore resistance (Rp) linearly increases in response towards the increasing concentration of the target DNA in the range of 1 × 10⁻¹² to 1 × 10⁻⁶ M. Moreover, the biosensor selectively differentiates the complementary sequence from single base mismatched (MM-1) strands and non-complementary strands. This study reveals a simple, selective and sensitive method to fabricate a label-free DNA biosensor.

  9. Multiple Strategy Bio-Detection Sensor Platforms Made From Carbon and Polymer Materials

    DTIC Science & Technology

    2006-01-31

    strands for detection purposes using the cyclic voltammetry (impedance) method. 6. Design of an actual set (Au patttern) to best detect the DNA binding. 7...chronoamperometry and cyclic voltammetry are used for electropolymerization. When chronoamperometry is used, the applied potential was kept at 0.8V, and the...others remained constant. When cyclic voltammetry is used, the scan rate is kept at 1OOmV/s with a scan range from -0.4V tol.OV. The thickness or the

  10. The effect of cooking and washing rice on the bio-accessibility of As, Cu, Fe, V and Zn using an on-line continuous leaching method.

    PubMed

    Horner, Nolan S; Beauchemin, Diane

    2013-01-03

    A previously developed method based on continuous on-line leaching with artificial gastro-intestinal fluids was used to determine the bio-accessible fraction of As, Cu, Fe, V and Zn in brown and white rice from California by inductively coupled mass spectrometry (ICP-MS). Saliva generally accounted for the largest percentage of total element leached in comparison to gastric and intestinal juices. Arsenic speciation analysis was performed on the saliva and gastric juice leachates using ion exchange chromatography coupled to ICP-MS. The four most toxic species of As (As(III), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and As(V)), as well as Cl(-) in the gastric juice leachate, were successfully separated within 5.5min using a simple nitric acid gradient. While cooking rice had relatively little effect on total bio-accessibility, a change in species from As(V) and DMA to As(III) was observed for both types of rice. On the other hand, washing the rice with doubly deionized water prior to cooking removed a large percentage of the total bio-accessible fraction of As, Cu, Fe, V and Zn. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. The BioStudies database-one stop shop for all data supporting a life sciences study.

    PubMed

    Sarkans, Ugis; Gostev, Mikhail; Athar, Awais; Behrangi, Ehsan; Melnichuk, Olga; Ali, Ahmed; Minguet, Jasmine; Rada, Juan Camillo; Snow, Catherine; Tikhonov, Andrew; Brazma, Alvis; McEntyre, Johanna

    2018-01-04

    BioStudies (www.ebi.ac.uk/biostudies) is a new public database that organizes data from biological studies. Typically, but not exclusively, a study is associated with a publication. BioStudies offers a simple way to describe the study structure, and provides flexible data deposition tools and data access interfaces. The actual data can be stored either in BioStudies or remotely, or both. BioStudies imports supplementary data from Europe PMC, and is a resource for authors and publishers for packaging data during the manuscript preparation process. It also can support data management needs of collaborative projects. The growth in multiomics experiments and other multi-faceted approaches to life sciences research mean that studies result in a diversity of data outputs in multiple locations. BioStudies presents a solution to ensuring that all these data and the associated publication(s) can be found coherently in the longer term. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Bio-inspired Edible Superhydrophobic Interface for Reducing Residual Liquid Food.

    PubMed

    Li, Yao; Bi, Jingran; Wang, Siqi; Zhang, Tan; Xu, Xiaomeng; Wang, Haitao; Cheng, Shasha; Zhu, Bei-Wei; Tan, Mingqian

    2018-03-07

    Significant wastage of residual liquid food, such as milk, yogurt, and honey, in food containers has attracted great attention. In this work, a bio-inspired edible superhydrophobic interface was fabricated using U.S. Food and Drug Administration-approved and edible honeycomb wax, arabic gum, and gelatin by a simple and low-cost method. The bio-inspired edible superhydrophobic interface showed multiscale structures, which were similar to that of a lotus leaf surface. This bio-inspired edible superhydrophobic interface displayed high contact angles for a variety of liquid foods, and the residue of liquid foods could be effectively reduced using the bio-inspired interface. To improve the adhesive force of the superhydrophobic interface, a flexible edible elastic film was fabricated between the interface and substrate material. After repeated folding and flushing for a long time, the interface still maintained excellent superhydrophobic property. The bio-inspired edible superhydrophobic interface showed good biocompatibility, which may have potential applications as a functional packaging interface material.

  13. One Primer To Rule Them All: Universal Primer That Adds BBa_B0034 Ribosomal Binding Site to Any Coding Standard 10 BioBrick

    PubMed Central

    2015-01-01

    Here, we present a universal, simple, efficient, and reliable way to add small BioBrick parts to any BioBrick via PCR that is compatible with BioBrick assembly standard 10. As a proof of principle, we have designed a universal primer, rbs_B0034, that contains a ribosomal binding site (RBS; BBa_B0034) and that can be used in PCR to amplify any coding BioBrick that starts with ATG. We performed test PCRs with rbs_B0034 on 31 different targets and found it to be 93.6% efficient. Moreover, when supplemented with a complementary primer, addition of RBS can be accomplished via whole plasmid site-directed mutagenesis, thus reducing the time required for further assembly of composite parts. The described method brings simplicity to the addition of small parts, such as regulatory elements to existing BioBricks. The final product of the PCR assembly is indistinguishable from the standard or 3A BioBrick assembly. PMID:25524097

  14. Starch-based bio-elastomers functionalized with red beetroot natural antioxidant.

    PubMed

    Tran, Thi Nga; Athanassiou, Athanassia; Basit, Abdul; Bayer, Ilker S

    2017-02-01

    Red beetroot (RB) powder was incorporated into starch-based bio-elastomers to obtain flexible biocomposites with tunable antioxidant properties. Starch granules within the bio-elastomers affected the release of the antioxidant molecule betanin in the RB powder. The bio-elastomers were hydrophobic and resisted dissolution in water, hence the release of betanin was due to diffusion rather than polymer matrix disintegration. Hydrophobicity was maintained even after water immersion. Released betanin demonstrated highly efficient antioxidant scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS(+)). RB powder was also found to increase the Young's modulus of the bio-elastomers without compromising their elongation ability. Infrared spectral analysis indicated weak interactions through hydrogen bonding among starch granules, RB powder and PDMS polymer within the bio-elastomers. Hence, as a simple but intelligent biomaterial consisting of mainly edible starch and RB powder the present bio-elastomers can be used in active packaging for a variety of pharmaceutical, medical, and food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Physical and Chemical Properties of Bio-Oils From Microwave Pyrolysis of Corn Stover

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Deng, Shaobo; Chen, Paul; Liu, Yuhuan; Wan, Yiqin; Olson, Andrew; Kittelson, David; Ruan, Roger

    This study was aimed to understand the physical and chemical properties of pyrolytic bio-oils produced from microwave pyrolysis of corn stover regarding their potential use as gas turbine and home heating fuels. The ash content, solids content, pH, heating value, minerals, elemental ratio, moisture content, and viscosity of the bio-oils were determined. The water content was approx 15.2 wt%, solids content 0.22 wt%, alkali metal content 12 parts per million, dynamic viscosity 185 mPa·s at 40°C, and gross high heating value 17.5 MJ/kg for a typical bio-oil produced. Our aging tests showed that the viscosity and water content increased and phase separation occurred during the storage at different temperatures. Adding methanol and/or ethanol to the bio-oils reduced the viscosity and slowed down the increase in viscosity and water content during the storage. Blending of methanol or ethanol with the bio-oils may be a simple and cost-effective approach to making the pyrolytic bio-oils into a stable gas turbine or home heating fuels.

  16. Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover.

    PubMed

    Yu, Fei; Deng, Shaobo; Chen, Paul; Liu, Yuhuan; Wan, Yiqin; Olson, Andrew; Kittelson, David; Ruan, Roger

    2007-04-01

    This study was aimed to understand the physical and chemical properties of pyrolytic bio-oils produced from microwave pyrolysis of corn stover regarding their potential use as gas turbine and home heating fuels. The ash content, solids content, pH, heating value, minerals, elemental ratio, moisture content, and viscosity of the bio-oils were determined. The water content was approx 15.2 wt%, solids content 0.22 wt%, alkali metal content 12 parts per million, dynamic viscosity 185 mPa.s at 40 degrees C, and gross high heating value 17.5 MJ/kg for a typical bio-oil produced. Our aging tests showed that the viscosity and water content increased and phase separation occurred during the storage at different temperatures. Adding methanol and/or ethanol to the bio-oils reduced the viscosity and slowed down the increase in viscosity and water content during the storage. Blending of methanol or ethanol with the bio-oils may be a simple and cost-effective approach to making the pyrolytic bio-oils into a stable gas turbine or home heating fuels.

  17. KISS for STRAP: user extensions for a protein alignment editor.

    PubMed

    Gille, Christoph; Lorenzen, Stephan; Michalsky, Elke; Frömmel, Cornelius

    2003-12-12

    The Structural Alignment Program STRAP is a comfortable comprehensive editor and analyzing tool for protein alignments. A wide range of functions related to protein sequences and protein structures are accessible with an intuitive graphical interface. Recent features include mapping of mutations and polymorphisms onto structures and production of high quality figures for publication. Here we address the general problem of multi-purpose program packages to keep up with the rapid development of bioinformatical methods and the demand for specific program functions. STRAP was remade implementing a novel design which aims at Keeping Interfaces in STRAP Simple (KISS). KISS renders STRAP extendable to bio-scientists as well as to bio-informaticians. Scientists with basic computer skills are capable of implementing statistical methods or embedding existing bioinformatical tools in STRAP themselves. For bio-informaticians STRAP may serve as an environment for rapid prototyping and testing of complex algorithms such as automatic alignment algorithms or phylogenetic methods. Further, STRAP can be applied as an interactive web applet to present data related to a particular protein family and as a teaching tool. JAVA-1.4 or higher. http://www.charite.de/bioinf/strap/

  18. Polydopamine-Functionalized CA-(PCL-ran-PLA) Nanoparticles for Target Delivery of Docetaxel and Chemo-photothermal Therapy of Breast Cancer

    PubMed Central

    Kong, Na; Deng, Mei; Sun, Xiu-Na; Chen, Yi-Ding; Sui, Xin-Bing

    2018-01-01

    Current limitations of cancer therapy include the lack of effective strategy for target delivery of chemotherapeutic drugs, and the difficulty of achieving significant efficacy by single treatment. Herein, we reported a synergistic chemo-photothermal strategy based on aptamer (Apt)-polydopamine (pD) functionalized CA-(PCL-ran-PLA) nanoparticles (NPs) for effective delivery of docetaxel (DTX) and enhanced therapeutic effect. The developed DTX-loaded Apt-pD-CA-(PCL-ran-PLA) NPs achieved promising advantages, such as (i) improved drug loading content (LC) and encapsulation efficiency (EE) initiated by star-shaped copolymer CA-(PCL-ran-PLA); (ii) effective target delivery of drugs to tumor sites by incorporating AS1411 aptamers; (iii) significant therapeutic efficacy caused by synergistic chemo-photothermal treatment. In addition, the pD coating strategy with simple procedures could address the contradiction between targeting modification and maintaining formerly excellent bio-properties. Therefore, with excellent bio-properties and simple preparation procedures, the DTX-loaded Apt-pD-CA-(PCL-ran-PLA) NPs effectively increased the local drug concentration in tumor sites, minimized side effects, and significantly eliminated tumors, indicating the promising application of these NPs for cancer therapy. PMID:29527167

  19. Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation.

    PubMed

    Koberg, Miri; Cohen, Moshe; Ben-Amotz, Ami; Gedanken, Aharon

    2011-03-01

    This work offers an optimized method for the direct conversion of harvested Nannochloropsis algae into bio-diesel using two novel techniques. The first is a unique bio-technology-based environmental system utilizing flue gas from coal burning power stations for microalgae cultivation. This method reduces considerably the cost of algae production. The second technique is the direct transesterification (a one-stage method) of the Nannochloropsis biomass to bio-diesel production using microwave and ultrasound radiation with the aid of a SrO catalyst. These two techniques were tested and compared to identify the most effective bio-diesel production method. Based on our results, it is concluded that the microwave oven method appears to be the most simple and efficient method for the one-stage direct transesterification of the as-harvested Nannochloropsis algae. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. The Influence of Segmental Impedance Analysis in Predicting Validity of Consumer Grade Bioelectrical Impedance Analysis Devices

    NASA Astrophysics Data System (ADS)

    Sharp, Andy; Heath, Jennifer; Peterson, Janet

    2008-05-01

    Consumer grade bioelectric impedance analysis (BIA) instruments measure the body's impedance at 50 kHz, and yield a quick estimate of percent body fat. The frequency dependence of the impedance gives more information about the current pathway and the response of different tissues. This study explores the impedance response of human tissue at a range of frequencies from 0.2 - 102 kHz using a four probe method and probe locations standard for segmental BIA research of the arm. The data at 50 kHz, for a 21 year old healthy Caucasian male (resistance of 180φ±10 and reactance of 33φ±2) is in agreement with previously reported values [1]. The frequency dependence is not consistent with simple circuit models commonly used in evaluating BIA data, and repeatability of measurements is problematic. This research will contribute to a better understanding of the inherent difficulties in estimating body fat using consumer grade BIA devices. [1] Chumlea, William C., Richard N. Baumgartner, and Alex F. Roche. ``Specific resistivity used to estimate fat-free mass from segmental body measures of bioelectrical impedance.'' Am J Clin Nutr 48 (1998): 7-15.

  1. [Monitoring of extra- and intra-cellular compartment through total body impedance (author's transl)].

    PubMed

    Raggueneau, J L; Gambini, D; Levante, A; Riche, F; de Vernejoul, P; Echter, E

    1979-01-01

    To evaluate the extra-cellular space, we measure the impedance (or resistance) of the extra-cellular electrolyte compartment with an alternating current at a fixed frequency of 5 kHz that can't pass through the cellular membrane. Total water is measured by the impedance to a current of 1 MHz which is conducted by extra and intra cellular hydro-electrolytic space. There is a good correlation between electrical impedance measurements and distribution of isotopic markers. The extra-cellular compartment was evaluated by diffusion of D.T.P.A. marked with 99mTc or with 111In and the total water by the diffusion of Antipyrin marked with 1,311 or 1,231. The findings indicate that there is not a significant difference between the results of the size of extra-cellular water measured by electrical impedance and D.T.P.A. diffusion (r = 0.75). Comparable results have been obtained in the determination of total water by electrical impedance measure and diffusion of Antipyrin (r = 0.90). We have also studied by method of electric impedance:--The state of hydratation in head injured patients and after pituitary surgery.--The lean body mass and hydro-electrolyte compartments in pregnancy. Electrical impedance measure seems to be a simple and reliable method to assess the hydric state of patients.

  2. Investigation of a Bio-Inspired Liner Concept

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2017-01-01

    Four samples of natural reeds, Phragmites australis, were tested in the NASA Langley and Glenn Normal Incidence Impedance Tubes in order to experimentally determine the acoustic absorption coefficients as a function of frequency from 400 to 3000 Hz. Six samples that mimicked the geometry of the assemblies of natural reeds were also designed and additively manufactured from ASA thermoplastic and tested. Results indicate that structures can be manufactured of synthetic materials that mimic the geometry and the low frequency acoustic absorption of natural reeds. This accomplishment demonstrates that a new class of structures can now be considered for a wide range of industrial products that need thin, lightweight, broadband acoustic absorption effective at frequencies below 1000 Hz. Aircraft engine acoustic liners and aircraft cabin acoustic liners, in particular, are two aviation applications that might benefit from further development of this concept.

  3. A device for emulating cuff recordings of action potentials propagating along peripheral nerves.

    PubMed

    Rieger, Robert; Schuettler, Martin; Chuang, Sheng-Chih

    2014-09-01

    This paper describes a device that emulates propagation of action potentials along a peripheral nerve, suitable for reproducible testing of bio-potential recording systems using nerve cuff electrodes. The system is a microcontroller-based stand-alone instrument which uses established nerve and electrode models to represent neural activity of real nerves recorded with a nerve cuff interface, taking into consideration electrode impedance, voltages picked up by the electrodes, and action potential propagation characteristics. The system emulates different scenarios including compound action potentials with selectable propagation velocities and naturally occurring nerve traffic from different velocity fiber populations. Measured results from a prototype implementation are reported and compared with in vitro recordings from Xenopus Laevis frog sciatic nerve, demonstrating that the electrophysiological setting is represented to a satisfactory degree, useful for the development, optimization and characterization of future recording systems.

  4. High performance liquid chromatographic determination of caffeine in decaffeinated coffee, tea, and beverage products.

    PubMed

    Ashoor, S H; Seperich, G J; Monte, W C; Welty, J

    1983-05-01

    A method was developed for determining caffeine in decaffeinated coffee, tea, and beverage products by high performance liquid chromatography (HPLC). The HPLC system consisted of a Bio-Sil ODS-5S C18 column, methanol-water (25 + 75) mobile phase at 1 mL/min, and a UV detector. The method is simple and specific. Caffeine recoveries were 93.8-98.3% and coefficients of variation were 0.90-2.25%.

  5. Novel wireless health monitor with acupuncture bio-potentials obtained by using a replaceable salt-water-wetted foam-rubber cushions on RFID-tag.

    PubMed

    Lin, Jium-Ming; Lu, Hung-Han; Lin, Cheng-Hung

    2014-01-01

    This paper proposes a bio-potential measurement apparatus including a wireless device for transmitting acupuncture bio-potential information to a remote control station for health conditions analysis and monitor. The key technology of this system is to make replaceable foam-rubber cushions, double-side conducting tapes, chip and antenna on the radio frequency identification (RFID) tag. The foam-rubber cushions can be wetted with salt-water and contact with the acupuncture points to reduce contact resistance. Besides, the double-side conducting tapes are applied to fix foam-rubber cushions. Thus, one can peel the used cushions or tapes away and supply new ones quickly. Since the tag is a flexible plastic substrate, it is easy to deploy on the skin. Besides, the amplifier made by CMOS technology on RFID chip could amplify the signals to improve S/N ratio and impedance matching. Thus, cloud server can wirelessly monitor the health conditions. An example shows that the proposed system can be used as a wireless health condition monitor, the numerical method and the criteria are given to analyze eleven bio-potentials for the important acupunctures of eleven meridians on a person's hands and legs. Then a professional doctor can know the performance of an individual and the cross-linking effects of the organs.

  6. Preparation of silver-hydroyapatite/PVA nanocomposites: Giant dielectric material for industrial and clinical applications

    NASA Astrophysics Data System (ADS)

    Uddin, Md Jamal; Middya, T. R.; Chaudhuri, B. K.

    2015-02-01

    Pure hydroxyappatite Ca10(PO4)6(OH)2 (or HAP) was prepared from eggshell and potassium dihydrogen phosphate (KH2PO4) by a simple self-chemical reaction method. The clean eggshell was heated at 800 °C in air giving the source of CaO. Appropriate amount of CaO was dissolved in KH2PO4 solution at 37°C for few days. The PH value decreases with increasing the duration of preparation of HAP. Silver nanoparticles derived from silver nitrate solution using black tea leaf extract had been introduced to hydroxyapatite due to its biocompatibility. The unique size- dependent properties of nanomaterials make them superior and indispensable. In this work, hydroxyapatite-silver nanoparticles/polyvinyl alcohol (PVA) composites with 4 different concentrations of hydroxyapatite (1-4 wt %) were prepared by bio-reduction method. Several techniques like XRD and SEM were used to characterize the prepared samples. Frequency dependent capacitance and conductance of the samples were measured using an impedance analyzer. The results showed a remarkable increase in dielectric permittivity (~5117) with low loss (~0.23) at1000 HZ and room temperature (300K) for 4wt% Hydroxapatie-Silver/PVA nanocomposite. Such nanocomposite might be directly applied in manufacturing clinical devices and also for embedding capacitor applications.

  7. Smart Multi-Frequency Bioelectrical Impedance Spectrometer for BIA and BIVA Applications.

    PubMed

    Harder, Rene; Diedrich, Andre; Whitfield, Jonathan S; Buchowski, Macie S; Pietsch, John B; Baudenbacher, Franz J

    2016-08-01

    Bioelectrical impedance analysis (BIA) is a noninvasive and commonly used method for the assessment of body composition including body water. We designed a small, portable and wireless multi-frequency impedance spectrometer based on the 12 bit impedance network analyzer AD5933 and a precision wide-band constant current source for tetrapolar whole body impedance measurements. The impedance spectrometer communicates via Bluetooth with mobile devices (smart phone or tablet computer) that provide user interface for patient management and data visualization. The export of patient measurement results into a clinical research database facilitates the aggregation of bioelectrical impedance analysis and biolectrical impedance vector analysis (BIVA) data across multiple subjects and/or studies. The performance of the spectrometer was evaluated using a passive tissue equivalent circuit model as well as a comparison of body composition changes assessed with bioelectrical impedance and dual-energy X-ray absorptiometry (DXA) in healthy volunteers. Our results show an absolute error of 1% for resistance and 5% for reactance measurements in the frequency range of 3 kHz to 150 kHz. A linear regression of BIA and DXA fat mass estimations showed a strong correlation (r(2)=0.985) between measures with a maximum absolute error of 6.5%. The simplicity of BIA measurements, a cost effective design and the simple visual representation of impedance data enables patients to compare and determine body composition during the time course of a specific treatment plan in a clinical or home environment.

  8. Rapid quantitative detection of Brucella melitensis by a label-free impedance immunosensor based on a gold nanoparticle-modified screen-printed carbon electrode.

    PubMed

    Wu, Haiyun; Zuo, Yueming; Cui, Chuanjin; Yang, Wei; Ma, Haili; Wang, Xiaowen

    2013-07-04

    A rapid and simple method for quantitative monitoring of Brucella melitensis using electrochemical impedance spectroscopy (EIS) is reported for the first time. The label-free immunosensors were fabricated by immobilizing Brucella melitensis antibody on the surface of gold nanoparticle-modified screen-printed carbon electrodes (GNP-SPCEs). Cyclic voltammetry (CV) and EIS were used to characterize the Brucella melitensis antigen interaction on the surface of GNP-SPCEs with antibody. A general electronic equivalent model of an electrochemical cell was introduced for interpretation of the impedance components of the system. The results showed that the change in electron-transfer resistance (Rct) was significantly different due to the binding of Brucella melitensis cells. A linear relationship between the Rct variation and logarithmic value of the cell concentration was found from 4 × 10(4) to 4 × 10(6) CFU/mL in pure culture. The label-free impedance biosensor was able to detect as low as 1 × 10(4) and 4 × 10(5) CFU/mL of Brucella melitensis in pure culture and milk samples, respectively, in less than 1.5 h. Moreover, a good selectivity versus Escherichia coli O157:H7 and Staphylococcus aureus cells was obtained for our developed immunosensor demonstrating its specificity towards only Brucella melitensis.

  9. Impedance microflow cytometry for viability studies of microorganisms

    NASA Astrophysics Data System (ADS)

    Di Berardino, Marco; Hebeisen, Monika; Hessler, Thomas; Ziswiler, Adrian; Largiadèr, Stephanie; Schade, Grit

    2011-02-01

    Impedance-based Coulter counters and its derivatives are widely used cell analysis tools in many laboratories and use normally DC or low frequency AC to perform these electrical analyses. The emergence of micro-fabrication technologies in the last decade, however, provides a new means of measuring electrical properties of cells. Microfluidic approaches combined with impedance spectroscopy measurements in the radio frequency (RF) range increase sensitivity and information content and thus push single cell analyses beyond simple cell counting and sizing applications towards multiparametric cell characterization. Promising results have been shown already in the fields of cell differentiation and blood analysis. Here we emphasize the potential of this technology by presenting new data obtained from viability studies on microorganisms. Impedance measurements of several yeast and bacteria strains performed at frequencies around 10 MHz enable an easy discrimination between dead and viable cells. Moreover, cytotoxic effects of antibiotics and other reagents, as well as cell starvation can also be monitored easily. Control analyses performed with conventional flow cytometers using various fluorescent dyes (propidium iodide, oxonol) indicate a good correlation and further highlight the capability of this device. The label-free approach makes on the one hand the use of usually expensive fluorochromes obsolete, on the other hand practically eliminates laborious sample preparation procedures. Until now, online cell monitoring was limited to the determination of viable biomass, which provides rather poor information of a cell culture. Impedance microflow cytometry, besides other aspects, proposes a simple solution to these limitations and might become an important tool for bioprocess monitoring applications in the biotech industry.

  10. TRANSVERSE ELECTRIC IMPEDANCE OF THE SQUID GIANT AXON

    PubMed Central

    Curtis, Howard J.; Cole, Kenneth S.

    1938-01-01

    The impedance of the excised giant axon from hindmost stellar nerve of Loligo pealii has been measured over the frequency range from 1 to 2500 kilocycles per second. The measurements have been made with the current flow perpendicular to the axis of the axon to permit a relatively simple analysis of the data. It has been found that the axon membrane has a polarization impedance with an average phase angle of 76° and an average capacity of 1.1µf./cm2 at 1 kilocycle. The direct current resistance of the membrane could not be measured, but was greater than 3 ohm cm.2 and the average internal specific resistance was four times that of sea water. There was no detectable change in the membrane impedance when the axon lost excitability, but some time later it decreased to zero. PMID:19873081

  11. Assistive-as-needed strategy for upper-limb robotic systems: A preliminary evaluation of the impedance control architecture

    NASA Astrophysics Data System (ADS)

    Khairuddin, I. M.; Sidek, S. N.; Yusof, H. Md; Majeed, A. P. P. Abdul; Puzi, A. Ahmad; Mat Rosly, H.

    2018-04-01

    Rehabilitation is a necessary restoration process of recovering impaired joint motion and muscle strength. Recent trends of rehabilitation have also moved towards providing more participation of the patient in therapy rather than simple passive treatments as it has been demonstrated to be non-trivial in promoting neural plasticity meant to promote motor recovery process. This paper presents an assistive control strategy based on impedance control technique. Dynamic modelling of upper arm is obtained by utilising the Euler-Lagrange formulation. The proportional-derivative (PD), computed torque control (CTC) impedance based framework is applied to examine its effectiveness in performing joint-space control with objectives specified in rehabilitating the elbow joint along the sagittal plane. A feasibility study through simulation was carried out to investigate the efficacy of the proposed controller on acceleration-based impedance model. The results show that impedance controller is more suitable as it allows the cooperative effort of the patient.

  12. Shape-controlled solvothermal synthesis of bismuth subcarbonate nanomaterials

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Yang, Hanmin; Rong, Kaifeng; Lu, Zhong; Yu, Xianglin; Chen, Rong

    2010-08-01

    Much effort has been devoted to the synthesis of novel nanostructured materials because of their unique properties and potential applications. Bismuth subcarbonate ((BiO) 2CO 3) is one of commonly used antibacterial agents against Helicobacter pylori ( H. pylori). Different (BiO) 2CO 3 nanostructures such as cube-like nanoparticles, nanobars and nanoplates, were fabricated from bismuth nitrate via a simple solvothermal method. The nanostructures were characterized by powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). It was found that the solvents and precursors have an influence on the morphologies of (BiO) 2CO 3 nanostructures. The possible formation mechanism of different (BiO) 2CO 3 nanostructures fabricated under different conditions was also discussed.

  13. Bio-jETI: a service integration, design, and provisioning platform for orchestrated bioinformatics processes.

    PubMed

    Margaria, Tiziana; Kubczak, Christian; Steffen, Bernhard

    2008-04-25

    With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way.

  14. WE-H-BRA-04: Biological Geometries for the Monte Carlo Simulation Toolkit TOPASNBio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNamara, A; Held, K; Paganetti, H

    2016-06-15

    Purpose: New advances in radiation therapy are most likely to come from the complex interface of physics, chemistry and biology. Computational simulations offer a powerful tool for quantitatively investigating radiation interactions with biological tissue and can thus help bridge the gap between physics and biology. The aim of TOPAS-nBio is to provide a comprehensive tool to generate advanced radiobiology simulations. Methods: TOPAS wraps and extends the Geant4 Monte Carlo (MC) simulation toolkit. TOPAS-nBio is an extension to TOPAS which utilizes the physics processes in Geant4-DNA to model biological damage from very low energy secondary electrons. Specialized cell, organelle and molecularmore » geometries were designed for the toolkit. Results: TOPAS-nBio gives the user the capability of simulating biological geometries, ranging from the micron-scale (e.g. cells and organelles) to complex nano-scale geometries (e.g. DNA and proteins). The user interacts with TOPAS-nBio through easy-to-use input parameter files. For example, in a simple cell simulation the user can specify the cell type and size as well as the type, number and size of included organelles. For more detailed nuclear simulations, the user can specify chromosome territories containing chromatin fiber loops, the later comprised of nucleosomes on a double helix. The chromatin fibers can be arranged in simple rigid geometries or within factual globules, mimicking realistic chromosome territories. TOPAS-nBio also provides users with the capability of reading protein data bank 3D structural files to simulate radiation damage to proteins or nucleic acids e.g. histones or RNA. TOPAS-nBio has been validated by comparing results to other track structure simulation software and published experimental measurements. Conclusion: TOPAS-nBio provides users with a comprehensive MC simulation tool for radiobiological simulations, giving users without advanced programming skills the ability to design and run complex simulations.« less

  15. BioModels.net Web Services, a free and integrated toolkit for computational modelling software.

    PubMed

    Li, Chen; Courtot, Mélanie; Le Novère, Nicolas; Laibe, Camille

    2010-05-01

    Exchanging and sharing scientific results are essential for researchers in the field of computational modelling. BioModels.net defines agreed-upon standards for model curation. A fundamental one, MIRIAM (Minimum Information Requested in the Annotation of Models), standardises the annotation and curation process of quantitative models in biology. To support this standard, MIRIAM Resources maintains a set of standard data types for annotating models, and provides services for manipulating these annotations. Furthermore, BioModels.net creates controlled vocabularies, such as SBO (Systems Biology Ontology) which strictly indexes, defines and links terms used in Systems Biology. Finally, BioModels Database provides a free, centralised, publicly accessible database for storing, searching and retrieving curated and annotated computational models. Each resource provides a web interface to submit, search, retrieve and display its data. In addition, the BioModels.net team provides a set of Web Services which allows the community to programmatically access the resources. A user is then able to perform remote queries, such as retrieving a model and resolving all its MIRIAM Annotations, as well as getting the details about the associated SBO terms. These web services use established standards. Communications rely on SOAP (Simple Object Access Protocol) messages and the available queries are described in a WSDL (Web Services Description Language) file. Several libraries are provided in order to simplify the development of client software. BioModels.net Web Services make one step further for the researchers to simulate and understand the entirety of a biological system, by allowing them to retrieve biological models in their own tool, combine queries in workflows and efficiently analyse models.

  16. Effect of psychological stress on gastric motility assessed by electrical bio-impedance.

    PubMed

    Huerta-Franco, María Raquel; Vargas-Luna, Miguel; Montes-Frausto, Juana Berenice; Morales-Mata, Ismael; Ramirez-Padilla, Lorena

    2012-09-28

    To evaluate gastric motility using electrical bio-impedance (EBI) and gastric changes as a result of stress induced by psychological tests. A group of 57 healthy women, aged 40-60 years, was recruited, and a clinical history and physical examination were performed. The women were free from severe anxiety, chronic or acute stress, severe depression, mental diseases and conditions that affect gastric activity. The women were evaluated under fasting conditions, and using a four-electrode configuration, the gastric signals were obtained through a BIOPAC MP-150 system. The volunteers were evaluated using the following paradigm: basal state, recording during the Stroop Test, intermediate resting period, recording during the Raven Test, and a final resting period. We analyzed the relative areas of the frequency spectrum: A1 (1-2 cpm), A2 (2-4 cpm), A3 (4-8 cpm), and A4 (8-12 cpm), as well as the median of area A2 + A3. The data were analyzed by an autoregressive method using a Butterworth filter with MatLab and Origin. Analysis of variance (ANOVA) and Friedman ANOVA (for nonparametric variables) were performed; in addition, pairs of groups were compared using the T dependent and Wilcoxon T tests. The results of the main values of area A2 were not significantly different comparing the five steps of the experimental paradigm. Nevertheless, there was a tendency of this A2 region to decrease during the stress tests, with recuperation at the final resting step. When an extended gastric region was considered (1-4 cpm), significant differences with the psychological stress tests were present (F = 3.85, P = 0.005). The A3 region also showed significant changes when the stress psychological tests were administered (F = 7.25, P < 0.001). These differences were influenced by the changes in the adjacent gastric region of A2. The parameter that we proposed in previous studies for the evaluation of gastric motility by electrical bio-impedance (EBI) was the median of the area under the region from 2 to 8 cpm (A2 + A3). The mean values of these frequencies (median of the A2 + A3 area) with the stress test showed significant changes (F = 5.5, P < 0.001). The results of the Wilcoxon T test for the A4 area parameter, which is influenced by the breathing response, changed significantly during the Raven stress test (P < 0.05). We confirm that the gastric response to acute psychological stress can be evaluated by short-term EBI.

  17. Invasive Intraneural Interfaces: Foreign Body Reaction Issues

    PubMed Central

    Lotti, Fiorenza; Ranieri, Federico; Vadalà, Gianluca; Zollo, Loredana; Di Pino, Giovanni

    2017-01-01

    Intraneural interfaces are stimulation/registration devices designed to couple the peripheral nervous system (PNS) with the environment. Over the last years, their use has increased in a wide range of applications, such as the control of a new generation of neural-interfaced prostheses. At present, the success of this technology is limited by an electrical impedance increase, due to an inflammatory response called foreign body reaction (FBR), which leads to the formation of a fibrotic tissue around the interface, eventually causing an inefficient transduction of the electrical signal. Based on recent developments in biomaterials and inflammatory/fibrotic pathologies, we explore and select the biological solutions that might be adopted in the neural interfaces FBR context: modifications of the interface surface, such as organic and synthetic coatings; the use of specific drugs or molecular biology tools to target the microenvironment around the interface; the development of bio-engineered-scaffold to reduce immune response and promote interface-tissue integration. By linking what we believe are the major crucial steps of the FBR process with related solutions, we point out the main issues that future research has to focus on: biocompatibility without losing signal conduction properties, good reproducible in vitro/in vivo models, drugs exhaustion and undesired side effects. The underlined pros and cons of proposed solutions show clearly the importance of a better understanding of all the molecular and cellular pathways involved and the need of a multi-target action based on a bio-engineered combination approach. PMID:28932181

  18. [Development and perspective of bio-based chemical fiber industry].

    PubMed

    Li, Zengjun

    2016-06-25

    Bio-based fiber is environment friendly, reproducible, easily biodegradable. Therefore, rapid development of bio-based fiber industry is an obvious in progress to replace petrochemical resources, develop sustainable economy, build resource saving and environment friendly society. This article describes the current development of bio-based fiber industry, analyzes existing problems, indicates the trends and objectives of bio-based fiber materials technology innovation and recommends developing bio-based fibers industry of our country.

  19. On impedance measurement of reinforced concrete on the surface for estimate of corroded rebar

    NASA Astrophysics Data System (ADS)

    Sasamoto, Akira; Yu, Jun; Harada, Yoshihisa; Iwata, Masahiro; Noguchi, Kazuhiro

    2017-04-01

    In an estimate of health monitoring for reinforced concrete, corrosion degree of rebar is important parameter but is not easy to be estimated by non destructive testing. A few test method such as half cell method or polarization resistance method could be a 'perfect' nondestructive method if luckily having had wired connection to rebar without destructing target concrete. In this presentation it is reported the experimental result that an impedance measurement on surface of reinforced concretes is able to distinguish corroded rebar from healthy rebar. The contact electrode on concrete surface are simple structure made of urethane sponge and needle. Impedance measurement are carried out with frequency response analyzer with frequency range from 0.01Hz to 1MHz, typical amplitude of imposed voltage are 10 volt. We made concrete specimens under two different corrosion process. One process(pre corrosion) has rebars corroded by electrolysis in salty water before concrete casting and another process (post corrosion) has concrete specimens being corroded during the curing. The results of application of developed method to these corroded specimens show the method is useful to estimate corrosion level of rebars.

  20. A Two-dimensional Version of the Niblett-Bostick Transformation for Magnetotelluric Interpretations

    NASA Astrophysics Data System (ADS)

    Esparza, F.

    2005-05-01

    An imaging technique for two-dimensional magnetotelluric interpretations is developed following the well known Niblett-Bostick transformation for one-dimensional profiles. The algorithm uses a Hopfield artificial neural network to process series and parallel magnetotelluric impedances along with their analytical influence functions. The adaptive, weighted average approximation preserves part of the nonlinearity of the original problem. No initial model in the usual sense is required for the recovery of a functional model. Rather, the built-in relationship between model and data considers automatically, all at the same time, many half spaces whose electrical conductivities vary according to the data. The use of series and parallel impedances, a self-contained pair of invariants of the impedance tensor, avoids the need to decide on best angles of rotation for TE and TM separations. Field data from a given profile can thus be fed directly into the algorithm without much processing. The solutions offered by the Hopfield neural network correspond to spatial averages computed through rectangular windows that can be chosen at will. Applications of the algorithm to simple synthetic models and to the COPROD2 data set illustrate the performance of the approximation.

  1. Design and Implementation of Low Profile Antenna for Dual-Band Applications Using Rotated E-Shaped Conductor-Backed Plane

    PubMed Central

    Jalali, Mahdi; Sedghi, Tohid; Shafei, Shahin

    2014-01-01

    A novel configuration of a printed monopole antenna with a very compact size for satisfying WLAN operations at the 5.2/5.8 GHz and also for X-band operations at the 10 GHz has been proposed. The antenna includes a simple square-shaped patch as the radiator, the rotated U-shaped conductor back plane element with embedded strip on it, and the partial rectangular ground surface. By using the rotated U-shaped conductor-backed plane with proper values, good impedance matching and improvement in bandwidth can be achieved, at the lower and upper bands. The impedance bandwidth for S 11 < −10 dB is about 1.15 GHz for 5 GHz band and 5.3 GHz for X-band. The measured peak gains are about 1.9 dBi at WLAN-band and 4.2 dBi at X-band. The experimental results represent that the realized antenna with good omnidirectional radiation characteristics, enough impedance bandwidth, and reasonable gains can be appropriate for various applications of the future developed technologies and handheld devices. PMID:24711732

  2. Validity of body composition assessment methods for older men with cardiac disease.

    PubMed

    Young, H; Porcari, J; Terry, L; Brice, G

    1998-01-01

    This study was designed to determine which of several body composition assessment methods was most accurate for patients with cardiac disease for the purpose of outcome measurement. Six body composition assessment methods were administered to each of 24 men with cardiac disease. Methods included circumference measurement, skinfold measurement, near-infrared interactance via the Futrex-5000, bioelectrical impedance via the BioAnalogics ElectroLipoGraph and Tanita TBF-150, and hydrostatic weighing, the criterion measure. A repeated measures analysis of variance indicated no significant (P > .05) difference between circumference and skinfold measurements compared to hydrostatic weighing. Near-infrared interactance presented the best standard error of estimates (3.5%) and the best correlation (r = .84) with hydrostatic weighing; however, the constant error was 3.76%. Bioelectrical impedance measured by the ElectroLipoGraph and TBF-150 instruments significantly underestimated percent body fat by 8.81% and 4.8%, respectively. In this study of middle-aged to older men with cardiac disease, the best method for determining body fat was circumferences. This technique was accurate, easy to administer, inexpensive, and had a lower error potential than the other techniques. Skinfold measurements were also closely related to hydrostatic weighing, but should be performed only by experienced practitioners because there is a greater potential for tester error in certain patients. In the future, near-infrared interactance measurements may be a viable technique for body composition assessment in patients with cardiac disease. However, algorithms specific to the population of patients with cardiac disease being tested must be developed before this technique can be routinely recommended for body composition assessment. Bioelectrical impedance assessment by either method is not recommended for patients with cardiac disease, as it consistently underestimated percent body fat when compared to hydrostatic weighing in this population.

  3. Production of 2-deoxyribose 5-phosphate from fructose to demonstrate a potential of artificial bio-synthetic pathway using thermophilic enzymes.

    PubMed

    Honda, Kohsuke; Maya, Shohei; Omasa, Takeshi; Hirota, Ryuichi; Kuroda, Akio; Ohtake, Hisao

    2010-08-02

    Six thermophilic enzymes from Thermus thermophilus were used to construct an 'artificial bio-synthetic pathway' for the production of 2-deoxyribose 5-phosphate from fructose. By a simple operation using six recombinant Escherichia coli strains producing the thermophilic enzymes, respectively, fructose was converted to 2-deoxyribose 5-phosphate with a molar yield of 55%. Copyright 2010 Elsevier B.V. All rights reserved.

  4. A low-cost and miniaturized potentiostat for sensing of biomolecular species such as TNF-α by electrochemical impedance spectroscopy.

    PubMed

    Pruna, Raquel; Palacio, Francisco; Baraket, Abdoullatif; Zine, Nadia; Streklas, Angelos; Bausells, Joan; Errachid, Abdelhamid; López, Manel

    2018-02-15

    Miniaturizing potentiostats, keeping their cost low and yet preserving full measurement characteristics (e.g. bandwidth, determination of capacitive/inductive contribution to sensor's impedance and parallel screening) is still an unresolved challenge in bioelectronics. In this work, the combination of simple analogue circuitry together with powerful microcontrollers and a digital filter implementation is presented as an alternative to complex and incomplete architectures reported in the literature. A low-cost acquisition electronic system fully integrated with a biosensors platform containing eight gold working microelectrodes and integrated reference and counter electrodes was developed and validated. The manufacturing cost of the prototype was kept below 300 USD. The performance of the proposed device was benchmarked against a commercial impedance analyzer through the electrochemical analysis of a highly sensitive biosensor for the detection of tumor necrosis factor α (TNF-α) within the randomly chosen range of 266pg/mL to 666ng/mL in physiological medium (PBS). A strong correlation between the outputs of both devices was found in a critical range of frequencies (1-10Hz), and several TNF-α cytokine concentrations were properly discriminated. These results are very promising for the development of low-cost, portable and miniaturized electrochemical systems for point-of-care and environmental diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Nanotechnology and potential of microorganisms.

    PubMed

    Bhattacharya, Debaditya; Gupta, Rajinder K

    2005-01-01

    There is a growing need to develop clean, nontoxic and environmentally friendly ("green chemistry") procedures for synthesis and assembly of nanoparticles. The use of biological organisms in this area is rapidly gaining importance due to its growing success and ease of formation of nanoparticles. Presently, the potential of bio-organisms ranges from simple prokaryotic bacterial cells to eukaryotic fungus and even live plants. In this article we have reviewed some of these biological systems, which have revolutionized the art of nano-material synthesis.

  6. BioModels Database: a repository of mathematical models of biological processes.

    PubMed

    Chelliah, Vijayalakshmi; Laibe, Camille; Le Novère, Nicolas

    2013-01-01

    BioModels Database is a public online resource that allows storing and sharing of published, peer-reviewed quantitative, dynamic models of biological processes. The model components and behaviour are thoroughly checked to correspond the original publication and manually curated to ensure reliability. Furthermore, the model elements are annotated with terms from controlled vocabularies as well as linked to relevant external data resources. This greatly helps in model interpretation and reuse. Models are stored in SBML format, accepted in SBML and CellML formats, and are available for download in various other common formats such as BioPAX, Octave, SciLab, VCML, XPP and PDF, in addition to SBML. The reaction network diagram of the models is also available in several formats. BioModels Database features a search engine, which provides simple and more advanced searches. Features such as online simulation and creation of smaller models (submodels) from the selected model elements of a larger one are provided. BioModels Database can be accessed both via a web interface and programmatically via web services. New models are available in BioModels Database at regular releases, about every 4 months.

  7. Electrode-Skin contact impedance: In vivo measurements on an ovine model

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Kosobrodov, R.; Barry, M. A.; Chik, W.; Jin, C.; Oh, T. I.; Thiagalingam, A.; McEwan, A.

    2013-04-01

    The problem of electrical impedance between the skin and the electrode is an on-going challenge in bio-electronics. This is particularly true in the case of Electrical Impedance Tomography (EIT), which uses a large number of skin-contact electrodes and is very sensitive to noise. In the present article, contact impedance is measured and compared for a range of electrodes placed on the thorax of an ovine model. The study has been approved by the Westmead Hospital Animal Ethics Committee. The electrode models that were employed in the research are Ag/AgCl electrodes (E1), commonly used for ECG and EIT measurements in both humans and animal models, stainless steel crocodile clips (E2), typically used on animal models, and novel multi-point dry electrodes in two modifications: bronze plated (E3) and nickel plated (E4). Further, since the contact impedance is mostly attributed to the acellular outer layer of the skin, in our experiment, we attempted to study the effect of this layer by comparing the results when the skin is intact and when electrodes are introduced underneath the skin through small cuts. This boundary effect was assessed by comparison of measurements obtained during E2 skin surface contact, and sub-cutaneous contact (E5). Twelve gauge intradermal needles were also tested as an electrode (E6). The full impedance spectrum, from 500 Hz to 300 kHz, was recorded, analysed and compared. As expected, the contact impedance in the more invasive cases, i.e the electrodes under the skin, is significantly lower than in the non-invasive cases. At the frequency of 50 kHz which is commonly used in lung EIT acquisition, electrodes E3, E4 and E6 demonstrated contact impedance of less than 200 Ω, compared to more than 400 Ω measured for electrodes E1, E2 and E5. In conclusion, the novel multipoint electrodes proved to be best suited for EIT purposes, because they are non-invasive and have lower contact impedance than Ag/AgCl and crocodile clips, in both invasive and non-invasive cases. This further prompted us to design a flexible electrode belt using the novel multi-point electrodes for lung EIT on animal models.

  8. Challenges and trends in glucose monitoring technologies

    NASA Astrophysics Data System (ADS)

    Batra, Padma; Tomar, Reena; Kapoor, Rajiv

    2016-03-01

    It is known that diabetes is a very serious disease as it may lead to heart attack, kidney failure and neuro diseases. The present study was aimed to review and compare various techniques useful for detecting diabetes or hypoglycemia in human body. In this paper we discuss the invasive and non-invasive techniques which are used for early detection of hypoglycemia or hyperglycemia and highlight their advantages as well as limitations. The use of bio impedance measurement technology has been described as it is an emerging non-invasive technique useful for the same purpose.

  9. Sequential pretreatment for cell disintegration of municipal sludge in a neutral Bio-electro-Fenton system.

    PubMed

    Yu, Qilin; Jin, Xiaochen; Zhang, Yaobin

    2018-05-15

    Sludge cell disruption was generally considered as the rate-limiting step for the anaerobic digestion of waste activated sludge (WAS). Advanced oxidation processes and bio-electro-chemical systems were recently reported to enhance the hydrolysis of WAS and sludge cell disruption, while the cell-breaking processes of these systems remain unclear yet. In this study, an innovative Bio-electro-Fenton system was developed to pretreat the WAS sequentially with cathode Fenton process and anode anaerobic digestion. Significant cell disruption and dissolution intracellular organics were founded after the treatment. X-ray photoelectron spectroscopy (XPS) analysis and fourier transform infrared spectroscopy (FT-IR) spectra indicated that Gram-negative bacteria were more sensitive to free radicals yielded in cathode to induce a chain reaction that destroyed the lipid-contained outer membrane, while Gram-positive bacteria with thick peptidoglycan layer were liable to be biologically decomposed in the anode. Compared with the oxidation of organic matters in the cathode Fenton, the secretion of enzyme increased in the anode which was beneficial to break down the complex matters (peptidoglycans) into simples that were available for anode oxidation by exoelectrogens. The results also showed a possible prospect for the application of this sequential pretreatment in bio-electro-Fenton systems to disrupt sludge cells and enhance the anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Transfer impedance measurements of the space shuttle Solid Rocket Motor (SRM) joints, wire meshes and a carbon graphite motor case

    NASA Technical Reports Server (NTRS)

    Papazian, Peter B.; Perala, Rodney A.; Curry, John D.; Lankford, Alan B.; Keller, J. David

    1988-01-01

    Using three different current injection methods and a simple voltage probe, transfer impedances for Solid Rocket Motor (SRM) joints, wire meshes, aluminum foil, Thorstrand and a graphite composite motor case were measured. In all cases, the surface current distribution for the particular current injection device was calculated analytically or by finite difference methods. The results of these calculations were used to generate a geometric factor which was the ratio of total injected current to surface current density. The results were validated in several ways. For wire mesh measurements, results showed good agreement with calculated results for a 14 by 18 Al screen. SRM joint impedances were independently verified. The filiment wound case measurement results were validated only to the extent that their curve shape agrees with the expected form of transfer impedance for a homogeneous slab excited by a plane wave source.

  11. Development of a simple and convenient cell-based electrochemical biosensor for evaluating the individual and combined toxicity of DON, ZEN, and AFB1.

    PubMed

    Xia, Shuang; Zhu, Pei; Pi, Fuwei; Zhang, Yinzhi; Li, Yun; Wang, Jiasheng; Sun, Xiulan

    2017-11-15

    A simple and convenient cell-based electrochemical biosensor was developed to assess the individual and combined toxicity of deoxynivalenol (DON), zearalenone (ZEN), and Aflatoxin B 1 (AFB 1 ) on Hep G2 cells. The sensor was modified in succession with AuNPs (gold nanoparticles), cysteamine, and laminin. The cells interacting with laminin formed tight cell-to-electrode contacts, and collagen was used to maintain cell adhesion and viability. Electrochemical impedance spectroscopy (EIS) was developed to evaluate mycotoxin toxicity. Experimental results show that DON, ZEN, and AFB 1 caused a significant decrease in cell viability in a dose dependent manner. The EIS value decreased with concentrations of DON, ZEN, and AFB 1 in the range of 0.01-20, 0.1-50, and 0.1-3.5μg/mL, and IC 50 obtained using the developed method was 48.5, 59.0, and 3.10μg/mL, respectively. A synergistic effect was observed between DON and ZEN, an additive effect was observed between DON and AFB 1 , and an antagonism effect was found in the binary mixtures of ZEN and AFB 1 and ternary mixtures. These results were confirmed via CCK-8 assay. Utilizing SEM, we found that cells treated with mycotoxins caused significant changes in cell morphology, thus lessening cell adsorption and impedance reduction. Biological assay indicated that EIS patterns correlated with [Ca 2+ ] i concentrations and apoptosis and necrotic cells ratios, thus effecting electrochemical signals. This method is simpler, more convenient, sensitive, and has a quicker response rate than most conventional cytotoxicity evaluation methods. Copyright © 2017. Published by Elsevier B.V.

  12. Quantifying characteristic growth dynamics in a semiarid grassland ecosystem by predicting short-term NDVI phenology from daily rainfall: a simple 4 parameter coupled-reservoir model

    USDA-ARS?s Scientific Manuscript database

    Predicting impacts of the magnitude and seasonal timing of rainfall pulses in water-limited grassland ecosystems concerns ecologists, climate scientists, hydrologists, and a variety of stakeholders. This report describes a simple, effective procedure to emulate the seasonal response of grassland bio...

  13. Body fatness or anthropometry for assessment of unhealthy weight status? Comparison between methods in South African children and adolescents.

    PubMed

    Craig, Eva; Reilly, John; Bland, Ruth

    2013-11-01

    A variety of methods are available for defining undernutrition (thinness/underweight/under-fat) and overnutrition (overweight/obesity/over-fat). The extent to which these definitions agree is unclear. The present cross-sectional study aimed to assess agreement between widely used methods of assessing nutritional status in children and adolescents, and to examine the benefit of body composition estimates. The main objective of the cross-sectional study was to assess underweight, overweight and obesity using four methods: (i) BMI-for-age using WHO (2007) reference data; (ii) BMI-for-age using Cole et al. and International Obesity Taskforce cut-offs; (iii) weight-for-age using the National Centre for Health Statistics/WHO growth reference 1977; and (iv) body fat percentage estimated by bio-impedance (body fat reference curves for children of McCarthy et al., 2006). Comparisons were made between methods using weighted kappa analyses. Rural South Africa. Individuals (n 1519) in three age groups (school grade 1, mean age 7 years; grade 5, mean age 11 years; grade 9, mean age 15 years). In boys, prevalence of unhealthy weight status (both under- and overnutrition) was much higher at all ages with body fatness measures than with simple anthropometric proxies for body fatness; agreement between fatness and weight-based measures was fair or slight using Landis and Koch categories. In girls, prevalence of unhealthy weight status was also higher with body fatness than with proxies, although agreement between measures ranged from fair to substantial. Methods for defining under- and overnutrition should not be considered equivalent. Weight-based measures provide highly conservative estimates of unhealthy weight status, possibly more conservative in boys. Simple body composition measures may be more informative than anthropometry for nutritional surveillance of children and adolescents.

  14. Bio-jETI: a service integration, design, and provisioning platform for orchestrated bioinformatics processes

    PubMed Central

    Margaria, Tiziana; Kubczak, Christian; Steffen, Bernhard

    2008-01-01

    Background With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Methods Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. Conclusions As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way. PMID:18460173

  15. Novel and simple route to fabricate fully biocompatible plasmonic mushroom arrays adhered on silk biopolymer

    NASA Astrophysics Data System (ADS)

    Park, Joonhan; Choi, Yunkyoung; Lee, Myungjae; Jeon, Heonsu; Kim, Sunghwan

    2014-12-01

    A fully biocompatible plasmonic quasi-3D nanostructure is demonstrated by a simple and reliable fabrication method using strong adhesion between gold and silk fibroin. The quasi-3D nature gives rise to complex photonic responses in reflectance that are prospectively useful in bio/chemical sensing applications. Laser interference lithography is utilized to fabricate large-area plasmonic nanostructures.A fully biocompatible plasmonic quasi-3D nanostructure is demonstrated by a simple and reliable fabrication method using strong adhesion between gold and silk fibroin. The quasi-3D nature gives rise to complex photonic responses in reflectance that are prospectively useful in bio/chemical sensing applications. Laser interference lithography is utilized to fabricate large-area plasmonic nanostructures. Electronic supplementary information (ESI) available: The incident angle dependence of reflectance spectra and the atomic force microscopy image of the Au nanoparticle array on a silk film after 1 hour of ultrasonication. See DOI: 10.1039/c4nr05172f

  16. Modular assembly of proteins on nanoparticles.

    PubMed

    Ma, Wenwei; Saccardo, Angela; Roccatano, Danilo; Aboagye-Mensah, Dorothy; Alkaseem, Mohammad; Jewkes, Matthew; Di Nezza, Francesca; Baron, Mark; Soloviev, Mikhail; Ferrari, Enrico

    2018-04-16

    Generally, the high diversity of protein properties necessitates the development of unique nanoparticle bio-conjugation methods, optimized for each different protein. Here we describe a universal bio-conjugation approach which makes use of a new recombinant fusion protein combining two distinct domains. The N-terminal part is Glutathione S-Transferase (GST) from Schistosoma japonicum, for which we identify and characterize the remarkable ability to bind gold nanoparticles (GNPs) by forming gold-sulfur bonds (Au-S). The C-terminal part of this multi-domain construct is the SpyCatcher from Streptococcus pyogenes, which provides the ability to capture recombinant proteins encoding a SpyTag. Here we show that SpyCatcher can be immobilized covalently on GNPs through GST without the loss of its full functionality. We then show that GST-SpyCatcher activated particles are able to covalently bind a SpyTag modified protein by simple mixing, through the spontaneous formation of an unusual isopeptide bond.

  17. Hybrid organic semiconductor lasers for bio-molecular sensing.

    PubMed

    Haughey, Anne-Marie; Foucher, Caroline; Guilhabert, Benoit; Kanibolotsky, Alexander L; Skabara, Peter J; Burley, Glenn; Dawson, Martin D; Laurand, Nicolas

    2014-01-01

    Bio-functionalised luminescent organic semiconductors are attractive for biophotonics because they can act as efficient laser materials while simultaneously interacting with molecules. In this paper, we present and discuss a laser biosensor platform that utilises a gain layer made of such an organic semiconductor material. The simple structure of the sensor and its operation principle are described. Nanolayer detection is shown experimentally and analysed theoretically in order to assess the potential and the limits of the biosensor. The advantage conferred by the organic semiconductor is explained, and comparisons to laser sensors using alternative dye-doped materials are made. Specific biomolecular sensing is demonstrated, and routes to functionalisation with nucleic acid probes, and future developments opened up by this achievement, are highlighted. Finally, attractive formats for sensing applications are mentioned, as well as colloidal quantum dots, which in the future could be used in conjunction with organic semiconductors.

  18. Accelerating wave propagation modeling in the frequency domain using Python

    NASA Astrophysics Data System (ADS)

    Jo, Sang Hoon; Park, Min Jun; Ha, Wan Soo

    2017-04-01

    Python is a dynamic programming language adopted in many science and engineering areas. We used Python to simulate wave propagation in the frequency domain. We used the Pardiso matrix solver to solve the impedance matrix of the wave equation. Numerical examples shows that Python with numpy consumes longer time to construct the impedance matrix using the finite element method when compared with Fortran; however we could reduce the time significantly to be comparable to that of Fortran using a simple Numba decorator.

  19. BPERM version 3.0: A 2-D wakepotential/impedance code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barts, T.; Chou, W.

    1996-10-01

    BPERM 3.0 is an improved version of a previous release. The main purpose of this version is to make it more user friendly. Following a simple 1-2-3 procedure, one obtains both text and graphical output of the wakepotential and impedance for a given geometry. The calculation is based on a boundary perturbation method, which is significantly faster than numerical simulations. It is accurate when the discontinuities are small. In particular, it works well for tapered structures. 5 refs., 3 figs.

  20. Use of a small overpotential approximation to analyze Geobacter sulfurreducens biofilm impedance

    NASA Astrophysics Data System (ADS)

    Babauta, Jerome T.; Beyenal, Haluk

    2017-07-01

    The electrochemical impedance of Geobacter sulfurreducens biofilms reflects the extracellular electron transfer mechanisms determining the rate of current output. Binned into two characteristic parameters, conductance and capacitance, biofilm impedance has received significant attention. The goal of this study was to evaluate a small overpotential approximation for extracellular electron transfer in G. sulfurreducens biofilms. Our motivation was to determine whether conductance over biofilm growth behaved linearly with respect to limiting current. Biofilm impedance was tracked during growth using electrochemical impedance spectroscopy (EIS) and electrochemical quartz crystal microbalance (eQCM). We showed that normalization of the biofilm impedance is useful for characterizing the changes during growth. When the conductance and capacitance were compared to the biofilm current, we found that: 1) conductance had a linear response and 2) constant phase elements (CPE) had a saturating response that coincided with the limiting current. We provided a framework using a simple iV relationship that predicted the conductance-current slope to be 9.57 V-1. CPEs showed more variability across biofilm replicates than conductance values. Although G. sulfurreducens biofilms were used here, other electrochemically active biofilms exhibiting catalytic waves could be studied using the same methods.

  1. A dual amplification strategy for DNA detection combining bio-barcode assay and metal-enhanced fluorescence modality.

    PubMed

    Zhou, Zhenpeng; Li, Tian; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Chengzhi; Li, Na

    2014-11-11

    Silver-enhanced fluorescence was coupled with a bio-barcode assay to facilitate a dual amplification assay to demonstrate a non-enzymatic approach for simple and sensitive detection of DNA. In the assay design, magnetic nanoparticles seeded with silver nanoparticles were modified with the capture DNA, and silver nanoparticles were modified with the binding of ssDNA and the fluorescently labeled barcode dsDNA. Upon introduction of the target DNA, a sandwich structure was formed because of the hybridization reaction. By simple magnetic separation, silver-enhanced fluorescence of barcode DNAs could be readily measured without the need of a further step to liberate barcode DNAs from silver nanoparticles, endowing the method with simplicity and high sensitivity with a detection limit of 1 pM.

  2. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film.

    PubMed

    Shrestha, Bishnu Kumar; Ahmad, Rafiq; Mousa, Hamouda M; Kim, In-Gi; Kim, Jeong In; Neupane, Madhav Prasad; Park, Chan Hee; Kim, Cheol Sang

    2016-11-15

    A highly electroactive bio-nanohybrid film of polypyrrole (PPy)-Nafion (Nf)-functionalized multi-walled carbon nanotubes (fMWCNTs) nanocomposite was prepared on the glassy carbon electrode (GCE) by a facile one-step electrochemical polymerization technique followed by chitosan-glucose oxidase (CH-GOx) immobilization on its surface to achieve a high-performance glucose biosensor. The as-fabricated nanohybrid composite provides high surface area for GOx immobilization and thus enhances the enzyme-loading efficiency. The structural characterization revealed that the PPy-Nf-fMWCNTs nanocomposite films were uniformly formed on GCE and after GOx immobilization, the surface porosities of the film were decreased due to enzyme encapsulation inside the bio-nanohybrid composite materials. The electrochemical behavior of the fabricated biosensor was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry measurements. The results indicated an excellent catalytic property of bio-nanohybrid film for glucose detection with improved sensitivity of 2860.3μAmM(-1)cm(-2), the linear range up to 4.7mM (R(2)=0.9992), and a low detection limit of 5μM under a signal/noise (S/N) ratio of 3. Furthermore, the resulting biosensor presented reliable selectivity, better long-term stability, good repeatability, reproducibility, and acceptable measurement of glucose concentration in real serum samples. Thus, this fabricated biosensor provides an efficient and highly sensitive platform for glucose sensing and can open up new avenues for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Development of a Bio-inspired Microflap Array for Passive Control of Flow Separation

    NASA Astrophysics Data System (ADS)

    Devey, Sean; Morris, Jackson; Hubner, Paul; Lang, Amy

    2017-11-01

    The shortfin mako shark benefits from its flexible microscopic scales, or denticles; which can passively limit flow separation in water. These denticles can be passively actuated by incipient reversing flow in the lower 5% of the boundary layer, thereby impeding further flow reversal and promoting increased momentum exchange. In air, an array of flow actuated microflaps has the potential to provide similar benefits to man-made systems. Multiple iterations of microflap arrays have been developed and tested in the University of Alabama's Boundary Layer Tunnel. A variety of 3D-printed flaps derived from mako denticle geometries were arranged in rows with freedom to rotate, like mako denticles, to angles up to 50 degrees. Placing the microflap array in separated flow regions allowed for direct observation of the microflap response. Like mako denticles, microflaps with lengths of about 4 mm have been shown to actuate in response to reversing surface flows. This presentation will focus on the development and implementation of passive microflap arrays. This research was supported by Boeing, the US Army, and the National Science Foundation REU program.

  4. Analysis and Simple Circuit Design of Double Differential EMG Active Electrode.

    PubMed

    Guerrero, Federico Nicolás; Spinelli, Enrique Mario; Haberman, Marcelo Alejandro

    2016-06-01

    In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources.

  5. Microwave impedance matching strategies of an applicator supplied by a bi-directional magnetron waveguide launcher.

    PubMed

    Roussy, Georges; Kongmark, Nils

    2003-01-01

    It is shown that a bi-directional waveguide launcher can be used advantageously for reducing the reflection coefficient mismatch of an input impedance of an applicator. In a simple bi-directional waveguide launcher, the magnetron is placed in the waveguide and generates a nominal field distribution with significant output impedance in both directions of the waveguide. If a standing wave is tolerated in the torus, which connects the launcher and the applicator, the power transfer from the magnetron to the applicator can be optimal, without using special matching devices. It is also possible to match the bi-directional launcher with two inductance stubs near the antenna of the magnetron and use them for supplying a two-input applicator without reflection.

  6. Bioelectrochemical Detection of Mycobacterium tuberculosis ESAT-6 in an Antibody-Based Biomicrosystem

    PubMed Central

    Sepulveda, Danna; Varela, Andres; Del Portillo, Patricia

    2017-01-01

    Bioelectrochemical sensing of Mycobacterium tuberculosis through electro-immunosensors is a promising technique to detect relevant analytes. In general, immunosensors require the formation of organic assemblies by the adsorption of molecular constituents. Moreover, they depend on the correct immobilization of the bio-recognition element in the biosensor. These procedures cannot be easily monitored without the use of invasive methods. In this work, an impedance analysis technique was used, as a non-invasive method, to measure and differentiate the manufacturing stages of the sensors. Biomicrosystems were fabricated through physical vapor deposition (PVD) of 80 nm Au nanolayers on 35 µm copper surfaces. Later, the surface was modified through thiolation methods generating a self-assembled-monolayer (SAM) with 20 mM 4-aminothiophenol (4-ATP) on which a polyclonal antibody (pAb) was covalently attached. Using impedance analysis, every step of the electro-immunosensor fabrication protocol was characterized using 40 independent replicas. Results showed that, compared to the negative controls, distilled water, and 0.5 µg/mL HSA, a maximum variation of 171% between each replica was achieved when compared to samples containing 0.5 µg/mL of ESAT-6 M. tuberculosis immunodominant protein. Therefore, this development validates a non-invasive method to electrically monitor the assembly process of electro-immunosensors and a tool for its further measure for detection of relevant antigens. PMID:28937645

  7. Modeling and Dynamic Analysis of Paralleled dc/dc Converters With Master-Slave Current Sharing Control

    NASA Technical Reports Server (NTRS)

    Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce

    1996-01-01

    A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.

  8. Surface electromyographic electrode pair with built-in buffer-amplifiers.

    PubMed

    Fujisawa, M; Uchida, K; Yamada, Y; Ishibashi, K

    1990-03-01

    By means of a surface electrode with an operational amplifier, a new electrode unit suitable for an electromyographic-biofeedback apparatus and for portable electromyography used outside a Faraday cage was developed. The operational amplifier, which has an output impedance lower than 10 ohms, functions as an efficient buffer amplifier and is able to protect the EMG signals from background noises. This new electrode unit is small (32 x 12 x 5 mm), waterproof, and inexpensive. Because its structure is simple, it can be built in any laboratory.

  9. [Current status of bio-based materials industry in China].

    PubMed

    Diao, Xiaoqian; Weng, Yunxuan; Huang, Zhigang; Yang, Nan; Wang, Xiyuan; Zhang, Min; Jin, Yujuan

    2016-06-25

    In recent years, bio-based materials are becoming a new dominant industry leading the scientific and technological innovation, and economic development of the world. We reviewed the new development of bio-based materials industry in China, analyzed the entire market of bio-based materials products comprehensively, and also stated the industry status of bio-based chemicals, such as lactic acid, 1,3-propanediol, and succinic acid; biodegradable bio-based polymers, such as co-polyester of diacid and diol, polylactic acid, carbon dioxide based copolymer, polyhydroxyalknoates, polycaprolactone, and thermoplastic bio-based plastics; non-biodegradable bio-based polymers, such as bio-based polyamide, polytrimethylene terephthalate, bio-based polyurethane, and bio-based fibers.

  10. Bio-inert interfaces via biomimetic anchoring of a zwitterionic copolymer on versatile substrates.

    PubMed

    Dizon, Gian Vincent; Chou, Ying-Nien; Yeh, Lu-Chen; Venault, Antoine; Huang, James; Chang, Yung

    2018-05-22

    Bio-inert biomaterial design is vital for fields like biosensors, medical implants, and drug delivery systems. Bio-inert materials are generally hydrophilic and electrical neutral. One limitation faced in the design of bio-inert materials is that most of the modifiers used are specific to their substrate. In this work, we synthesized a novel zwitterionic copolymer containing a catechol group, a non-substrate dependent biomimetic anchoring segment, that can form a stable coating on various materials. No previous study was conducted using a grafting-to approach and determined the critical amount of catechol groups needed to effectively modify a material. The synthesized copolymers of sulfobetaine acrylamide (SBAA) and dopamine methacrylamide (DMA) in this work contains varying numbers of catechol groups, in which the critical number of catechol groups that had effectively modified substrates to have the bio-inert property was determined. The bio-inert property and capability to do coating on versatile substrates were evaluated in contact with human blood by coating different material groups such as ceramic, metallic, and polymeric groups. The novel structure and the simple grafting-to approach provides bio-inert property on various materials, giving them non-specific adsorption and attachment of biomolecules such as plasma proteins, erythrocytes, thrombocytes, bacteria, and tissue cells (85-95% reduction). Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Enhanced UV-visible response of bismuth subcarbonate nanowires for degradation of xanthate and photocatalytic reaction mechanism.

    PubMed

    Cui, Kuixin; He, Yuehui; Jin, Shengming

    2016-04-01

    (BiO)2CO3 nanowires were prepared by simple hydrothermal treatment of commercial Bi2O3 powders and characterized by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of (BiO)2CO3 nanowires was studied through degradation of sodium isopropyl xanthate. Photocatalytic experimental results indicated that the as-prepared (BiO)2CO3 nanowires show high photocatalytic efficiency. Photocatalytic activity increased after two cycles. Time-dependent UV-vis spectra demonstrated that the final degradation products included isopropyl alcohol and carbon disulfide. UV-vis diffuse reflection spectra showed that the band gap of the as-prepared (BiO)2CO3 nanowires and recycled (BiO)2CO3 nanowires were 2.75 eV and 1.15 eV, respectively. XPS results indicated that formation of Bi2S3@(BiO)2CO3 core-shell nanowires occurred after recycled photodegradation of isopropyl xanthate owing to existence of two types of Bi configurations in the recycled (BiO)2CO3 nanowires. A probable degradation mechanism of isopropyl xanthate was also proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Noninvasive pulmonary artery pressure monitoring by EIT: a model-based feasibility study.

    PubMed

    Proença, Martin; Braun, Fabian; Solà, Josep; Thiran, Jean-Philippe; Lemay, Mathieu

    2017-06-01

    Current monitoring modalities for patients with pulmonary hypertension (PH) are limited to invasive solutions. A novel approach for the noninvasive and unsupervised monitoring of pulmonary artery pressure (PAP) in patients with PH was proposed and investigated. The approach was based on the use of electrical impedance tomography (EIT), a noninvasive and safe monitoring technique, and was tested through simulations on a realistic 4D bio-impedance model of the human thorax. Changes in PAP were induced in the model by simulating multiple types of hypertensive conditions. A timing parameter physiologically linked to the PAP via the so-called pulse wave velocity principle was automatically estimated from the EIT data. It was found that changes in PAP could indeed be reliably monitored by EIT, irrespective of the pathophysiological condition that caused them. If confirmed clinically, these findings could open the way for a new generation of noninvasive PAP monitoring solutions for the follow-up of patients with PH.

  13. Impedance and modulus spectroscopic study of nano hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  14. [Current status and prospects of biobutanol manufacturing technology].

    PubMed

    Gu, Yang; Jiang, Yu; Wu, Hui; Liu, Xudong; Li, Zhilin; Li, Jian; Xiao, Han; Shen, Zhaobing; Zhao, Jingbo; Yang, Yunliu; Jiang, Weihong; Yang, Sheng

    2010-07-01

    Butanol is not only an important chemical feedstock but also expected to become a new generation biofuel. Thus, biological butanol production using renewable feedstocks has attracted renewed attention due to the worries of global oil supply and its impact on social and economic development. However, compared with petrochemical-derived butanol, biological butanol production is still not economically competition, because of its major drawbacks: high cost of the feedstocks, low butanol concentration in the fermentation broth and the co-production of low-value byproducts acetone and ethanol. Recently, Shanghai cooperative bio-butanol group (SCBG) developed a simple-to-complex technical route to improve bio-butanol production with a focus on: increasing butanol ratio in the solvent through metabolic engineering of Clostridia spp.; introducing and optimizing the butanol synthetic pathway in the species with high butanol tolerance; overcoming the glucose repression effect to utilize low-cost non-grain based feedstocks. SCBG believes that, through extensive domestic and international industry-university-research cooperation, a sustainable and economically viable process for biological butanol production can be established in the near future.

  15. A study of a new TSM bio-mimetic sensor using a molecularly imprinted polymer coating and its application for the determination of nicotine in human serum and urine.

    PubMed

    Tan, Y; Yin, J; Liang, C; Peng, H; Nie, L; Yao, S

    2001-03-01

    A new bio-mimetic quartz crystal thickness-shear-mode (TSM) sensor, using an imprinted polymer coating as the sensitive material, has been fabricated and applied to the determination of nicotine (NIC) in human serum and urine. The molecularly imprinted polymer (MIP) was synthesized using NIC as the template molecule and methacrylic acid (MAA) as the functional monomer. The sensor showed high selectivity and a sensitive response to NIC in aqueous system. The linear response range of the sensor was between 5.0 x 10(-8) and 1.0 x 10(-4) M with a detection limit of 2.5 x 10(-8) M. The viscoelasticity of the coating in the air and in liquid has been studied by the impedance spectrum. The MIP sensor was stable and exhibited effective reproducibility. Satisfactory results were achieved in the detection of the real samples.

  16. Development of a microimpedance pump for pulsatile flow transport - Part : Flow characteristics of the microimpedance pump. Part 2: A systematic study of steady and pulsatile transport in microscale cavities

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Derek

    Microfluidics offers an effective means to carry out a wide range of transport processes within a controlled microenvironment by drawing on the benefits imparted by increasing surface area to volume ratio at the microscale. Critical to the impact of microfluidics on integrated devices in the fields of bioengineering and biomedicine is the ability to transport fluids and biomolecules effectively particularly at the size scales involved. In this context a bio-inspired pumping mechanism, the valveless impedance pump, was explored for applications in microfluidics ranging from micro total analysis systems to microchannel cooling. Adhering to the basic principles of the impedance pump mechanism, pumps have been constructed at a variety of size scales from a few centimeters to a few hundred microns. The micro impedance pump is valveless, bidirectional, and can be constructed simply from a wide range of materials. Depending on the size of the pump flow rates range from nL/min to mL/min and pressures can be generated that exceed 20 kPa. Another benefit of the impedance pump is the pulsatile flow output which can be used in the context of microfluidic applications to enhance transport at low Reynolds numbers as well as metering in drug delivery. Pulsatile flow was therefore investigated as a method of augmenting transport in microfluidic systems. Micro PIV was used to study the affect of both steady and pulsatile flows on transport at low Reynolds number was examined in microscale rectangular cavities. Ventilation of the cavity contents was examined in terms of the residence time or average time a particle remains in the cavity region. Lagrangian coherent structures (LCS) were applied to empirical velocity fields to determine the impact of unsteadiness on time dependent boundaries to fluid transport present in the flow. Experimental results show that there are both frequencies which are beneficial and detrimental to cavity ventilation as well as certain frequencies which more evenly distribute particles originating in the cavity throughout the freestream.

  17. Actuation of chitosan-aptamer nanobrush borders for pathogen sensing.

    PubMed

    Hills, Katherine D; Oliveira, Daniela A; Cavallaro, Nicholas D; Gomes, Carmen L; McLamore, Eric S

    2018-03-26

    We demonstrate a sensing mechanism for rapid detection of Listeria monocytogenes in food samples using the actuation of chitosan-aptamer nanobrush borders. The bio-inspired soft material and sensing strategy mimic natural symbiotic systems, where low levels of bacteria are selectively captured from complex matrices. To engineer this biomimetic system, we first develop reduced graphene oxide/nanoplatinum (rGO-nPt) electrodes, and characterize the fundamental electrochemical behavior in the presence and absence of chitosan nanobrushes during actuation (pH-stimulated osmotic swelling). We then characterize the electrochemical behavior of the nanobrush when receptors (antibodies or DNA aptamers) are conjugated to the surface. Finally, we test various techniques to determine the most efficient capture strategy based on nanobrush actuation, and then apply the biosensors in a food product. Maximum cell capture occurs when aptamers conjugated to the nanobrush bind cells in the extended conformation (pH < 6), followed by impedance measurement in the collapsed nanobrush conformation (pH > 6). The aptamer-nanobrush hybrid material was more efficient than the antibody-nanobrush material, which was likely due to the relatively high adsorption capacity for aptamers. The biomimetic material was used to develop a rapid test (17 min) for selectively detecting L. monocytogenes at concentrations ranging from 9 to 107 CFU mL-1 with no pre-concentration, and in the presence of other Gram-positive cells (Listeria innocua and Staphylococcus aureus). Use of this bio-inspired material is among the most efficient for L. monocytogenes sensing to date, and does not require sample pretreatment, making nanobrush borders a promising new material for rapid pathogen detection in food.

  18. Bio-electrical impedance spectroscopy: alternatives for the conventional hand-to-foot measurements.

    PubMed

    Cox-Reijven, P L M; Van Kreel, B; Soeters, P B

    2002-04-01

    Bio-impedance spectroscopy (BIS) is a very attractive method for measuring body composition. The standard method measures impedance from hand to foot. However, in patients a hand or foot is not always accessible. In these cases alternative methods would be helpful. The objective of this study was to compare BIS measurements from hand to foot (HF) with foot to foot (FF) and hand to hand (HH) measurements as alternatives. Aims were firstly, to assess the relationship between resistance (R) values measured by the different methods, secondly, to study the influence of body geometry on this relationship and lastly, to assess the predictive capacity of the methods for measuring body fluid volumes. In 53 subjects with different degrees of obesity (mean BMI = 38; SD = 9 kg/m(2)) three BIS measurements were performed from HF, HH and FF with a Xitron 4000B machine. Resistances of extracellular (Recw) and intracellular water (Ricw) were extrapolated by fitting the data to a Cole-Cole plot. Total body water (TBW) and extracellular water (ECW) were measured by deuterium and bromide dilution respectively. Intracellular water (ICW) was calculated as TBW-ECW. Anthropometric measurements, including length and circumference of limbs and trunk, were performed as measures for body geometry. The Recw, Ricw and R50 values of HF measurements could be accurately described as a function of the Recw, Ricw and R50 values of HH or FF measurements. The relative circumference of arms and legs and the length of the trunk influenced the relationship between R values of the three different measurements. The degree of overweight did not affect this relationship. The precision of the predictions of TBW, ECW and ICW based on R values of the HH measurements were comparable with the traditional HF measurements while the FF measurements gave slightly less accurate results. Under circumstances where total body BIS measurements cannot be performed, FF or HH measurements may be used as alternatives. However, for clinical use the effect of changes in fluid distribution on the accuracy of these methods needs to be studied further. Copyright 2002 Elsevier Science Ltd. All rights reserved.

  19. Electrical behavior of natural manganese dioxide (NMD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorgulho, H.F.; Fernandes, R.Z.D.; Pernaut, J.M.

    NMD samples from Brazil have been submitted to magnetic and particle size separations and characterized by X-ray diffraction and fluorescence and thermogravimetric analyses. Results showed that simple physical treatments can lead to more than 60% enriched MnO{sub 2} materials which could satisfy some electrochemical applications. The electrical properties of the samples conditioned as pressed pellets have been investigated by four-points direct current probe and impedance spectroscopy, varying the conditions of preparation and measurement. It is proposed that the higher frequency impedance is equivalent to the intrinsic electronic resistance of the MnO{sub 2} phases while at lower frequencies occurs an interphasemore » charge separation coupled with a possible ionic transport. The corresponding contact resistance depends on the particle size distribution of the material, the compactation pressure of pellets and the iron content of the materials. The interphase dielectric relaxation does not behave ideally; the depression of the impedance semicircles as shown in the Nyquist plane is assumed to be related to the roughness of the bulk interfaces. Recent developments have shown the possibility of using manganese oxides as reversible electrodes for battery or supercapacitor applications for electrical vehicle. In these perspectives it is important to study the electrical and electrochemical properties of NMD in order to estimate its suitability for this kind of applications.« less

  20. Temperature dependence of acoustic impedance for specific fluorocarbon liquids

    NASA Astrophysics Data System (ADS)

    Marsh, Jon N.; Hall, Christopher S.; Wickline, Samuel A.; Lanza, Gregory M.

    2002-12-01

    Recent studies by our group have demonstrated the efficacy of perfluorocarbon liquid nanoparticles for enhancing the reflectivity of tissuelike surfaces to which they are bound. The magnitude of this enhancement depends in large part on the difference in impedances of the perfluorocarbon, the bound substrate, and the propagating medium. The impedance varies directly with temperature because both the speed of sound and the mass density of perfluorocarbon liquids are highly temperature dependent. However, there are relatively little data in the literature pertaining to the temperature dependence of the acoustic impedance of these compounds. In this study, the speed of sound and density of seven different fluorocarbon liquids were measured at specific temperatures between 20 °C and 45 °C. All of the samples demonstrated negative, linear dependencies on temperature for both speed of sound and density and, consequently, for the acoustic impedance. The slope of sound speed was greatest for perfluorohexane (-278+/-1.5 cm/s-°C) and lowest for perfluorodichlorooctane (-222+/-0.9 cm/s-°C). Of the compounds measured, perfluorohexane exhibited the lowest acoustic impedance at all temperatures, and perfluorodecalin the highest at all temperatures. Computations from a simple transmission-line model used to predict reflectivity enhancement from surface-bound nanoparticles are discussed in light of these results.

  1. Large-field high-contrast hard x-ray Zernike phase-contrast nano-imaging beamline at Pohang Light Source.

    PubMed

    Lim, Jun; Park, So Yeong; Huang, Jung Yun; Han, Sung Mi; Kim, Hong-Tae

    2013-01-01

    We developed an off-axis-illuminated zone-plate-based hard x-ray Zernike phase-contrast microscope beamline at Pohang Light Source. Owing to condenser optics-free and off-axis illumination, a large field of view was achieved. The pinhole-type Zernike phase plate affords high-contrast images of a cell with minimal artifacts such as the shade-off and halo effects. The setup, including the optics and the alignment, is simple and easy, and allows faster and easier imaging of large bio-samples.

  2. Solvatochromism in highly luminescent environmental friendly carbon quantum dots for sensing applications: Conversion of bio-waste into bio-asset

    NASA Astrophysics Data System (ADS)

    Pramanik, A.; Biswas, S.; Kumbhakar, P.

    2018-02-01

    Recently studies on synthesis and fluorescence based sensing in biocompatible carbon quantum dots (CQDs) have become a widely spoken topic of research due to the several advantageous properties of CQDs in compared to semiconductor quantum dots. In this work, we have reported the rarely reported solvatochromism along-with a high photoluminescence (PL) quantum yield (PLQY) of 22%. Samples have been synthesized by using a simple process of hydrothermal carbonization of a naturally occurring bio-waste i.e. Aegle marmelos leaves powder. The linear absorption and PL emission characteristics of CQDs have been studied in different solvent environments to explore the origin of the observed excitation dependent PL emissions characteristics of the sample. The interesting solvatochromic PL (SPL) behavior of CQDs are observed at an excitation wavelength of 325 nm by dispersing them in different polar protic and aprotic solvents, which suggest their possible applications as a replacement of solvatochromic dye molecules for sensing applications. Different polarity functions and molecular-microscopic solvent polarity parameter (ETN) are used to calculate the change in dipole moment (Δδ) of the solute-solvent system and the origin of SPL in CQDs has been explained. The SPL behavior of CQDs has been utilized for fluorescence sensing of organic liquids (Ethanol and Tetrahydrofuran) in water. Whereas, the photo-induced electron transfer mediated quenching in PL of aqueous dispersion of CQDs has led to development of ;turn off; fluorescence Fe3 + ion sensor with a detection limit of 0.12 μM. Therefore, this work may open a new avenue of conversion of a bio-waste into a fluorescent bio-asset.

  3. Estimation of the bio-accessible fraction of Cr, As, Cd and Pb in locally available bread using on-line continuous leaching method coupled to inductively coupled plasma mass spectrometry.

    PubMed

    Lamsal, Ram P; Beauchemin, Diane

    2015-03-31

    A previously developed, efficient and simple on-line leaching method was used to assess the maximum bio-accessible fraction (assuming no synergistic effect from other food and beverage) of potentially toxic elements (Cr, As, Cd and Pb) in whole wheat brown and white bread samples. Artificial saliva, gastric juice and intestinal juice were successively pumped into a mini-column, packed with bread (maintained at 37 °C) connected on-line to the nebulizer of an inductively coupled plasma mass spectrometry (ICP-MS) instrument equipped with a collision-reaction interface (CRI) using hydrogen as reaction gas to minimize carbon- and chlorine-based polyatomic interferences. In contrast to the conventional batch method to which it was compared, this approach provides real-time monitoring of potentially toxic elements that are continuously released during leaching. Mass balance for both methods was verified at the 95% confidence level. Results obtained from the whole wheat brown and white bread showed that the majority of Cr, Cd and Pb was leached by gastric juice but, in contrast, the majority of As was leached by saliva. While there was higher total content for elements in whole wheat bread than in white bread, a higher percentage of elements were bio-accessible in white bread than in whole wheat bread. Both the on-line and batch methods indicate that 40-98% of toxic elements in bread samples are bio-accessible. While comparison of total analyte concentrations with provisional tolerable daily intake values may indicate some serious health concern for children, when accounting for the bio-accessibility of these elements, bread consumption is found to be safe for all ages. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. An Effective Electrical Resonance-Based Method to Detect Delamination in Thermal Barrier Coating

    NASA Astrophysics Data System (ADS)

    Kim, Jong Min; Park, Jae-Ha; Lee, Ho Girl; Kim, Hak-Joon; Song, Sung-Jin; Seok, Chang-Sung; Lee, Young-Ze

    2017-12-01

    This research proposes a simple yet highly sensitive method based on electrical resonance of an eddy-current probe to detect delamination of thermal barrier coating (TBC). This method can directly measure the mechanical characteristics of TBC compared to conventional ultrasonic testing and infrared thermography methods. The electrical resonance-based method can detect the delamination of TBC from the metallic bond coat by shifting the electrical impedance of eddy current testing (ECT) probe coupling with degraded TBC, and, due to this shift, the resonant frequencies near the peak impedance of ECT probe revealed high sensitivity to the delamination. In order to verify the performance of the proposed method, a simple experiment is performed with degraded TBC specimens by thermal cyclic exposure. Consequently, the delamination with growth of thermally grown oxide in a TBC system is experimentally identified. Additionally, the results are in good agreement with the results obtained from ultrasonic C-scanning.

  5. An Effective Electrical Resonance-Based Method to Detect Delamination in Thermal Barrier Coating

    NASA Astrophysics Data System (ADS)

    Kim, Jong Min; Park, Jae-Ha; Lee, Ho Girl; Kim, Hak-Joon; Song, Sung-Jin; Seok, Chang-Sung; Lee, Young-Ze

    2018-02-01

    This research proposes a simple yet highly sensitive method based on electrical resonance of an eddy-current probe to detect delamination of thermal barrier coating (TBC). This method can directly measure the mechanical characteristics of TBC compared to conventional ultrasonic testing and infrared thermography methods. The electrical resonance-based method can detect the delamination of TBC from the metallic bond coat by shifting the electrical impedance of eddy current testing (ECT) probe coupling with degraded TBC, and, due to this shift, the resonant frequencies near the peak impedance of ECT probe revealed high sensitivity to the delamination. In order to verify the performance of the proposed method, a simple experiment is performed with degraded TBC specimens by thermal cyclic exposure. Consequently, the delamination with growth of thermally grown oxide in a TBC system is experimentally identified. Additionally, the results are in good agreement with the results obtained from ultrasonic C-scanning.

  6. Novel and simple route to fabricate fully biocompatible plasmonic mushroom arrays adhered on silk biopolymer.

    PubMed

    Park, Joonhan; Choi, Yunkyoung; Lee, Myungjae; Jeon, Heonsu; Kim, Sunghwan

    2015-01-14

    A fully biocompatible plasmonic quasi-3D nanostructure is demonstrated by a simple and reliable fabrication method using strong adhesion between gold and silk fibroin. The quasi-3D nature gives rise to complex photonic responses in reflectance that are prospectively useful in bio/chemical sensing applications. Laser interference lithography is utilized to fabricate large-area plasmonic nanostructures.

  7. SeaWiFS technical report series. Volume 20: The SeaWiFS bio-optical archive and storage system (SeaBASS), part 1

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Mcclain, Charles R.; Firestone, James K.; Westphal, Todd L.; Yeh, Eueng-Nan; Ge, Yuntao; Firestone, Elaine R.

    1994-01-01

    This document provides an overview of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-Optical Archive and Storage System (SeaBASS), which will serve as a repository for numerous data sets of interest to the SeaWiFS Science Team and other approved investigators in the oceanographic community. The data collected will be those data sets suitable for the development and evaluation of bio-optical algorithms which include results from SeaWiFS Intercalibration Round-Robin Experiments (SIRREXs), prelaunch characterization of the SeaWiFS instrument by its manufacturer -- Hughes/Santa Barbara Research Center (SBRC), Marine Optical Characterization Experiment (MOCE) cruises, Marine Optical Buoy (MOBY) deployments and refurbishments, and field studies of other scientists outside of NASA. The primary goal of the data system is to provide a simple mechanism for querying the available archive and requesting specific items, while assuring that the data is made available only to authorized users. The design, construction, and maintenance of SeaBASS is the responsibility of the SeaWiFS Calibration and Validation Team (CVT). This report is concerned with documenting the execution of this task by the CVT and consists of a series of chapters detailing the various data sets involved. The topics presented are as follows: 1) overview of the SeaBASS file architecture, 2) the bio-optical data system, 3) the historical pigment database, 4) the SIRREX database, and 5) the SBRC database.

  8. A study on the selection of indigenous leaching-bacteria for effective bioleaching

    NASA Astrophysics Data System (ADS)

    Oh, S. J.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    Bioleaching technology, which is based on the ability of microorganisms to transform solid compounds into soluble and extractable valuable elements that can be recovered, has been rapidly developed in recent decades for its advantages, which include mild reaction condition, low energy consumption, simple process, low environmental impact and being suitable for low grade mine tailings and residues. The bacteria activities (survival, adaptation of toxically environments etc.) in the bioleaching technology play a key role in the solubilization of metals. The purpose of this study was to selection of optimal leaching-bacteria through changed pH and redox potential on bio-oxidation in batch experiments for successful bioleaching technology. Twenty three indigenous bacteria used throughout this study, leaching-bacteria were obtained from various geochemical conditions; bacteria inhabitation type (acid mine drainage, mine wastes leachate and sulfur hot springs) and base-metal type (sulfur, sulfide, iron and coal). Bio-oxidation experiment result was showed that 9 cycles (1 cycle - 28days) after the leaching-bacteria were inoculated to a leaching medium, pH was observed decreasing and redox potential increased. In the bacteria inhabitation type, bio-oxidation of sulfur hot springs bacteria was greater than other types (acid mine drainage and mine wastes leachate). In addition, bio-oxidation on base-metal type was appeared sulfur was greater than other types (sulfide, iron and coal). This study informs basic knowledge when bacteria apply to eco-/economic resources utilization studies including the biomining and the recycling of mine waste system.

  9. Cell adhesion monitoring of human induced pluripotent stem cell based on intrinsic molecular charges

    NASA Astrophysics Data System (ADS)

    Sugimoto, Haruyo; Sakata, Toshiya

    2014-01-01

    We have shown a simple way for real-time, quantitative, non-invasive, and non-label monitoring of human induced pluripotent stem (iPS) cell adhesion by use of a biologically coupled-gate field effect transistor (bio-FET), which is based on detection of molecular charges at cell membrane. The electrical behavior revealed quantitatively the electrical contacts of integrin-receptor at the cell membrane with RGDS peptide immobilized at the gate sensing surface, because that binding site was based on cationic α chain of integrin. The platform based on the bio-FET would provide substantial information to evaluate cell/material bio-interface and elucidate biding mechanism of adhesion molecules, which could not be interpreted by microscopic observation.

  10. Reference Centile Curves for Body Fat Percentage, Fat-free Mass, Muscle Mass and Bone Mass Measured by Bioelectrical Impedance in Asian Indian Children and Adolescents.

    PubMed

    Chiplonkar, Shashi; Kajale, Neha; Ekbote, Veena; Mandlik, Rubina; Parthasarathy, Lavanya; Borade, Ashwin; Patel, Pinal; Patel, Prerna; Khadilkar, Vaman; Khadilkar, Anuradha

    2017-12-15

    To create gender-specific percentile curves for percent body fat (%BF) by Bio electrical Impedance Analysis (BIA) for screening adiposity and risk of hypertension in Indian children and generate reference curves for percent fat-free mass (%FFM), muscle mass (%LM) and bone mineral content (BMC) by using bioelectrical impedance. Secondary analysis of data from previous multicenter cross-sectional studies. Private schools from five regions of India. A random sample of 3850 healthy school children (2067 boys) (5-17 yr) from private schools in five major Indian cities. Anthropometry, blood pressure (BP) and body composition were measured by bioelectrical impedance. Reference curves were generated by the LMS method. %BF, %FFM, %LM, BMC and BP. Median %BF increased by 6% from 5 to 13 years of age and declined (around 2%) up to 17 years in boys. In girls, %BF increased by 8% from 5 to 14 years and thereafter declined by 3%. Based upon the risk of hypertension, the new cut-offs of 75th and 85th percentile of %BF were proposed for detecting over fatness and excess fatness in children. Median %FFM was 90% at 5 yrs and decreased till 12 years, and then showed a slight increase to 84% at 17 yrs in boys. In girls, it was 86% at 5 yrs and decreased till 15 yrs, and plateaued at 71.8% at 17 yrs. Reference curves for percent body fat for Indian children would be useful to screen children for health risk in clinical set up.

  11. Dynamic model of open shell structures buried in poroelastic soils

    NASA Astrophysics Data System (ADS)

    Bordón, J. D. R.; Aznárez, J. J.; Maeso, O.

    2017-08-01

    This paper is concerned with a three-dimensional time harmonic model of open shell structures buried in poroelastic soils. It combines the dual boundary element method (DBEM) for treating the soil and shell finite elements for modelling the structure, leading to a simple and efficient representation of buried open shell structures. A new fully regularised hypersingular boundary integral equation (HBIE) has been developed to this aim, which is then used to build the pair of dual BIEs necessary to formulate the DBEM for Biot poroelasticity. The new regularised HBIE is validated against a problem with analytical solution. The model is used in a wave diffraction problem in order to show its effectiveness. It offers excellent agreement for length to thickness ratios greater than 10, and relatively coarse meshes. The model is also applied to the calculation of impedances of bucket foundations. It is found that all impedances except the torsional one depend considerably on hydraulic conductivity within the typical frequency range of interest of offshore wind turbines.

  12. Prediction of fat-free body mass from bioelectrical impedance and anthropometry among 3-year-old children using DXA

    PubMed Central

    Ejlerskov, Katrine T.; Jensen, Signe M.; Christensen, Line B.; Ritz, Christian; Michaelsen, Kim F.; Mølgaard, Christian

    2014-01-01

    For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height2/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2–4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity. PMID:24463487

  13. Prediction of fat-free body mass from bioelectrical impedance and anthropometry among 3-year-old children using DXA.

    PubMed

    Ejlerskov, Katrine T; Jensen, Signe M; Christensen, Line B; Ritz, Christian; Michaelsen, Kim F; Mølgaard, Christian

    2014-01-27

    For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height(2)/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2-4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity.

  14. A Compact Inductive Position Sensor Made by Inkjet Printing Technology on a Flexible Substrate

    PubMed Central

    Jeranče, Nikola; Vasiljević, Dragana; Samardžić, Nataša; Stojanović, Goran

    2012-01-01

    This paper describes the design, simulation and fabrication of an inductive angular position sensor on a flexible substrate. The sensor is composed of meandering silver coils printed on a flexible substrate (Kapton film) using inkjet technology. The flexibility enables that after printing in the plane, the coils could be rolled and put inside each other. By changing the angular position of the internal coil (rotor) related to the external one (stator), the mutual inductance is changed and consequently the impedance. It is possible to determine the angular position from the measured real and imaginary part of the impedance, in our case in the frequency range from 1 MHz to 10 MHz. Experimental results were compared with simulation results obtained by in-house developed software tool, and very good agreement has been achieved. Thanks to the simple design and fabrication, smaller package space requirements and weight, the presented sensor represents a cost-effective alternative to the other sensors currently used in series production applications. PMID:22438710

  15. How do clarinet players adjust the resonances of their vocal tracts for different playing effects?

    NASA Astrophysics Data System (ADS)

    Fritz, Claudia; Wolfe, Joe

    2005-11-01

    In a simple model, the reed of the clarinet is mechanically loaded by the series combination of the acoustical impedances of the instrument itself and of the player's airway. Here we measure the complex impedance spectrum of players' airways using an impedance head adapted to fit inside a clarinet mouthpiece. A direct current shunt with high acoustical resistance allows players to blow normally, so the players can simulate the tract condition under playing conditions. The reproducibility of the results suggest that the players' ``muscle memory'' is reliable for this task. Most players use a single, highly stable vocal tract configuration over most of the playing range, except for the altissimo register. However, this ``normal'' configuration varies substantially among musicians. All musicians change the configuration, often drastically for ``special effects'' such as glissandi and slurs: the tongue is lowered and the impedance magnitude reduced when the player intends to lower the pitch or to slur downwards, and vice versa.

  16. Offline impedance measurements for detection and mitigation of dangerous implant interactions: an RF safety prescreen.

    PubMed

    Ellenor, Christopher W; Stang, Pascal P; Etezadi-Amoli, Maryam; Pauly, John M; Scott, Greig C

    2015-03-01

    The concept of a "radiofrequency safety prescreen" is investigated, wherein dangerous interactions between radiofrequency fields used in MRI, and conductive implants in patients are detected through impedance changes in the radiofrequency coil. The behavior of coupled oscillators is reviewed, and the resulting, observable impedance changes are discussed. A birdcage coil is loaded with a static head phantom and a wire phantom with a wire close to its resonant length, the shape, position, and orientation of which can be changed. Interactions are probed with a current sensor and network analyzer. Impedance spectra show dramatic, unmistakable splitting in cases of strong coupling, and strong correlation is observed between induced current and scattering parameters. The feasibility of a new, low-power prescreening technique has been demonstrated in a simple phantom experiment, which can unambiguously detect resonant interactions between an implanted wire and an imaging coil. A new technique has also been presented which can detect parallel transmit null modes for the wire. © 2014 Wiley Periodicals, Inc.

  17. Method, system and computer-readable media for measuring impedance of an energy storage device

    DOEpatents

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.; Motloch, Chester G.

    2016-01-26

    Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. A time profile of this sampled signal has a duration that is a few periods of the lowest frequency. A voltage response of the battery, average deleted, is an impedance of the battery in a time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time profile by rectifying relative to sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.

  18. Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content.

    PubMed

    Du, Zhenyi; Mohr, Michael; Ma, Xiaochen; Cheng, Yanling; Lin, Xiangyang; Liu, Yuhuan; Zhou, Wenguang; Chen, Paul; Ruan, Roger

    2012-09-01

    Microalgae can be converted to an energy-dense bio-oil via pyrolysis; however, the relatively high nitrogen content of this bio-oil presents a challenge for its direct use as fuels. Therefore, hydrothermal pretreatment was employed to reduce the N content in Nannochloropsis oculata feedstock by removing proteins without requiring significant energy inputs. The effects of reaction conditions on the yield and composition of pretreated algae were investigated by varying the temperature (150-225°C) and reaction time (10-60 min). Compared with untreated algae, pretreated samples had higher carbon contents and enhanced heating values under all reaction conditions and 6-42% lower N contents at 200-225°C for 30-60 min. The pyrolytic bio-oil from pretreated algae contained less N-containing compounds than that from untreated samples and the bio-oil contained mainly (44.9% GC-MS peak area) long-chain fatty acids (C14-C18) which can be more readily converted into hydrocarbon fuels in the presence of simple catalysts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Two-way Coupling of a Process-Based Crop Growth Model (BioCro) and a Biogeochemistry Model (DayCent) and its Application to an Energy Crop Site in the mid-west USA

    NASA Astrophysics Data System (ADS)

    Jaiswal, D.; Long, S.; Parton, W. J.; Hartman, M.

    2012-12-01

    A coupled modeling system of crop growth model (BioCro) and biogeochemical model (DayCent) has been developed to assess the two-way interactions between plant growth and biogeochemistry. Crop growth in BioCro is simulated using a detailed mechanistic biochemical and biophysical multi-layer canopy model and partitioning of dry biomass into different plant organs according to phenological stages. Using hourly weather records, the model partitions light between dynamically changing sunlit and shaded portions of the canopy and computes carbon and water exchange with the atmosphere and through the canopy for each hour of the day, each day of the year. The model has been parameterized for the bioenergy crops sugarcane, Miscanthus and switchgrass, and validation has shown it to predict growth cycles and partitioning of biomass to a high degree of accuracy. As such it provides an ideal input for a soil biogeochemical model. DayCent is an established model for predicting long-term changes in soil C & N and soil-atmosphere exchanges of greenhouse gases. At present, DayCent uses a relatively simple productivity model. In this project BioCro has replaced this simple model to provide DayCent with a productivity and growth model equal in detail to its biogeochemistry. Dynamic coupling of these two models to produce CroCent allows for differential C: N ratios of litter fall (based on rates of senescence of different plant organs) and calibration of the model for realistic plant productivity in a mechanistic way. A process-based approach to modeling plant growth is needed for bioenergy crops because research on these crops (especially second generation feedstocks) has started only recently, and detailed agronomic information for growth, yield and management is too limited for effective empirical models. The coupled model provides means to test and improve the model against high resolution data, such as that obtained by eddy covariance and explore yield implications of different crop and soil management.

  20. Circuit Impedance Could Be a Crucial Factor Influencing Radiofrequency Ablation Efficacy and Safety: A Myocardial Phantom Study of the Problem and its Correction.

    PubMed

    Bhaskaran, Abhishek; Barry, M A; Pouliopoulos, Jim; Nalliah, Chrishan; Qian, Pierre; Chik, William; Thavapalachandran, Sujitha; Davis, Lloyd; McEwan, Alistair; Thomas, Stuart; Kovoor, Pramesh; Thiagalingam, Aravinda

    2016-03-01

    Circuit impedance could affect the safety and efficacy of radiofrequency (RF) ablation. To perform irrigated RF ablations with graded impedance to compare (1) lesion dimensions and overheated dimensions in fixed power ablations (2) and in power corrected ablations. Ablations were performed with irrigated Navistar Thermocool catheter and Stockert EP shuttle generator at settings of 40 W power for 60 seconds, in a previously validated myocardial phantom. The impedance of the circuit was set at 60 Ω, 80 Ω, 100 Ω, 120 Ω, 140 Ω, and 160 Ω. The lesion and overheated dimensions were measured at 53 °C and 80 °C isotherms, respectively. In the second set of ablations, power was corrected according to circuit impedance. In total, 70 ablations were performed. The lesion volume was 72.0 ± 4.8% and 44.7 ± 4.6% higher at 80 Ω and 100 Ω, respectively, compared to that at 120 Ω and it was 15.4 ± 1.2%, 28.1 ± 2.0%, and 38.0 ± 1.8% lower at 140 Ω, 160 Ω, and 180 Ω, respectively. The overheated volume was four times larger when impedance was reduced to 80 Ω from 100 Ω. It was absent at 120 Ω and above. In the power corrected ablations, the lesion volumes were similar to that of 40 W/120 Ω ablations and there was no evidence of overheating. The lesion and overheated dimensions were significantly larger with lower circuit impedance during irrigated RF ablation and the lesion size was smaller in high impedance ablations. Power delivery adjusted to impedance using a simple equation improved the consistency of lesion formation and prevented overheating. © 2015 Wiley Periodicals, Inc.

  1. Security enhanced BioEncoding for protecting iris codes

    NASA Astrophysics Data System (ADS)

    Ouda, Osama; Tsumura, Norimichi; Nakaguchi, Toshiya

    2011-06-01

    Improving the security of biometric template protection techniques is a key prerequisite for the widespread deployment of biometric technologies. BioEncoding is a recently proposed template protection scheme, based on the concept of cancelable biometrics, for protecting biometric templates represented as binary strings such as iris codes. The main advantage of BioEncoding over other template protection schemes is that it does not require user-specific keys and/or tokens during verification. Besides, it satisfies all the requirements of the cancelable biometrics construct without deteriorating the matching accuracy. However, although it has been shown that BioEncoding is secure enough against simple brute-force search attacks, the security of BioEncoded templates against more smart attacks, such as record multiplicity attacks, has not been sufficiently investigated. In this paper, a rigorous security analysis of BioEncoding is presented. Firstly, resistance of BioEncoded templates against brute-force attacks is revisited thoroughly. Secondly, we show that although the cancelable transformation employed in BioEncoding might be non-invertible for a single protected template, the original iris code could be inverted by correlating several templates used in different applications but created from the same iris. Accordingly, we propose an important modification to the BioEncoding transformation process in order to hinder attackers from exploiting this type of attacks. The effectiveness of adopting the suggested modification is validated and its impact on the matching accuracy is investigated empirically using CASIA-IrisV3-Interval dataset. Experimental results confirm the efficacy of the proposed approach and show that it preserves the matching accuracy of the unprotected iris recognition system.

  2. Differential tissue growth and cell adhesion alone drive early tooth morphogenesis: An ex vivo and in silico study

    PubMed Central

    Savriama, Yoland; Jernvall, Jukka

    2018-01-01

    From gastrulation to late organogenesis animal development involves many genetic and bio-mechanical interactions between epithelial and mesenchymal tissues. Ectodermal organs, such as hairs, feathers and teeth are well studied examples of organs whose development is based on epithelial-mesenchymal interactions. These develop from a similar primordium through an epithelial folding and its interaction with the mesenchyme. Despite extensive knowledge on the molecular pathways involved, little is known about the role of bio-mechanical processes in the morphogenesis of these organs. We propose a simple computational model for the biomechanics of one such organ, the tooth, and contrast its predictions against cell-tracking experiments, mechanical relaxation experiments and the observed tooth shape changes over developmental time. We found that two biomechanical processes, differential tissue growth and differential cell adhesion, were enough, in the model, for the development of the 3D morphology of the early tooth germ. This was largely determined by the length and direction of growth of the cervical loops, lateral folds of the enamel epithelium. The formation of these cervical loops was found to require accelerated epithelial growth relative to other tissues and their direction of growth depended on specific differential adhesion between the three tooth tissues. These two processes and geometrical constraints in early tooth bud also explained the shape asymmetry between the lateral cervical loops and those forming in the anterior and posterior of the tooth. By performing mechanical perturbations ex vivo and in silico we inferred the distribution and direction of tensile stresses in the mesenchyme that restricted cervical loop lateral growth and forced them to grow downwards. Overall our study suggests detailed quantitative explanations for how bio-mechanical processes lead to specific morphological 3D changes over developmental time. PMID:29481561

  3. Simple diazonium chemistry to develop specific gene sensing platforms.

    PubMed

    Revenga-Parra, M; García-Mendiola, T; González-Costas, J; González-Romero, E; Marín, A García; Pau, J L; Pariente, F; Lorenzo, E

    2014-02-27

    A simple strategy for covalent immobilizing DNA sequences, based on the formation of stable diazonized conducting platforms, is described. The electrochemical reduction of 4-nitrobenzenediazonium salt onto screen-printed carbon electrodes (SPCE) in aqueous media gives rise to terminal grafted amino groups. The presence of primary aromatic amines allows the formation of diazonium cations capable to react with the amines present at the DNA capture probe. As a comparison a second strategy based on the binding of aminated DNA capture probes to the developed diazonized conducting platforms through a crosslinking agent was also employed. The resulting DNA sensing platforms were characterized by cyclic voltammetry, electrochemical impedance spectroscopy and spectroscopic ellipsometry. The hybridization event with the complementary sequence was detected using hexaamineruthenium (III) chloride as electrochemical indicator. Finally, they were applied to the analysis of a 145-bp sequence from the human gene MRP3, reaching a detection limit of 210 pg μL(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.

    2014-02-01

    A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.

  5. A Computational Study of the Development of Epithelial Acini: II. Necessary Conditions for Structure and Lumen Stability

    PubMed Central

    Rejniak, Katarzyna A.; Anderson, Alexander R.A.

    2013-01-01

    Simple epithelial tissues are organized as single layers of tightly packed cells that surround hollow lumens and form selective barriers separating different internal compartments of the body. The maintenance of epithelial structure and its function requires tight coordination and control of all the life processes of epithelial cells via cell-to-cell communication and signaling. These well-balanced cellular systems are, however, quite often disturbed by genetic or environmental cues that may lead to the formation of epithelial tumors (carcinomas). In fact, more than a half of all diagnosed tumors are initiated from epithelial cells. It is, therefore, important to gain a greater understanding of the factors that form and maintain the epithelial structure, as well as the features of the acinar structure that are modified during cancer development as observable in experimental and clinical research. We address these questions using the bio-mechanical model of the developing hollow epithelial acini introduced in Rejniak and Anderson (Bull. Math. Biol. 70:677–712, 2008). Here, we propose several scenarios involving various bio-mechanical interactions between neighboring cells that result in abnormal acinar development. Whenever possible, we compare our computational results with known experimental cases of mutant acini. PMID:18401665

  6. Novel method to form adaptive internal impedance profiles in walkers.

    PubMed

    Escudero Morland, Maximilano F; Althoefer, Kaspar; Nanayakkara, Thrishantha

    2015-01-01

    This paper proposes a novel approach to improve walking in prosthetics, orthotics and robotics without closed loop controllers. The approach requires impedance profiles to be formed in a walker and uses state feedback to update the profiles in real-time via a simple policy. This approach is open loop and inherently copes with the challenge of uncertain environment. In application it could be used either online for a walker to adjust its impedance profiles in real-time to compensate for environmental changes, or offline to learn suitable profiles for specific environments. So far we have conducted simulations and experiments to investigate the transient and steady state gaits obtained using two simple update policies to form damping profiles in a passive dynamic walker known as the rimless wheel (RW). The damping profiles are formed in the motor that moves the RW vertically along a rail, analogous to a knee joint, and the two update equations were designed to a) control the angular velocity profile and b) minimise peak collision forces. Simulation results show that the velocity update equation works within limits and can cope with varying ground conditions. Experiment results show the angular velocity average reaching the target as well as the peak force update equation reducing peak collision forces in real-time.

  7. What can law do for the development of bio-economy?

    PubMed

    Chang-Qiu, Liu

    2012-03-01

    Bio-technology has become a new impeller to the development of the world economy since the 1970's. The development of bio-economy has two sides for mankind which calls for intervention by law. During the legislation of bioeconomy, some special principles should be esteemed and observed by legislators. It is necessary for the healthy development of bio-economy.

  8. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sara Bergan, Executive Director; Brendan Jordan, Program Manager; Subcontractors as listed on the report.

    2007-06-06

    The following report contributes to our knowledge of how to economically produce wildlife-friendly grass mixtures for future fuel feedstocks in the northern plains. It investigates northern-adapted cultivars; management and harvest regimes that are good for yields, soils and wildlife; comparative analysis of monocultures and simple mixtures of native grasses; economic implications of growing grasses for fuel feedstocks in specific locations in the northern plains; and conversion options for turning the grasses into useful chemicals and fuels. The core results of this study suggest the following; Native grasses, even simple grass mixtures, can be produced profitably in the northern plains asmore » far west as the 100th meridian with yields ranging from 2 to 6 tons per acre; Northern adapted cultivars may yield less in good years, but have much greater long-term sustainable yield potential than higher-yielding southern varieties; Grasses require very little inputs and stop economically responding to N applications above 56kg/hectare; Harvesting after a killing frost may reduce the yield available in that given year but will increase overall yields averaged throughout multiple years; Harvesting after a killing frost or even in early spring reduces the level of ash and undesirable molecules like K which cause adverse reactions in pyrolysis processing. Grasses can be managed for biomass harvest and maintain or improve overall soil-health and carbon sequestration benefits of idled grassland; The carbon sequestration activity of the grasses seems to follow the above ground health of the biomass. In other words plots where the above ground biomass is regularly removed can continue to sequester carbon at the rate of 2 tons/acre/year if the stand health is strong and yielding significant amounts of biomass; Managing grasses for feedstock quality in a biomass system requires some of the same management strategies as managing for wildlife benefit. We believe that biomass development can be done in such a way that also maximizes or improves upon conservation and other environmental goals (in some cases even when compared to idled land); Switchgrass and big bluestem work well together in simple mixture plots where big bluestem fills in around the switchgrass which alone grows in bunches and leaves patches of bare soil open and susceptible to erosion; Longer-term studies in the northern plains may also find that every other year harvest schemes produce as much biomass averaged over the years as annual harvests; Grasses can be grown for between $23 and $54/ton in the northern plains at production rates between 3 and 5 tons/acre; Land costs, yields, and harvest frequency are the largest determining factors in the farm scale economics. Without any land rent offset or incentive for production, and with annual harvesting, grass production is likely to be around $35/ton in the northern plains (farm gate); Average transportation costs range from $3 to $10/ton delivered to the plant gate. Average distance from the plant is the biggest factor - $3/ton at 10 miles, $10/ton at 50 miles; There is a substantial penalty paid on a per unit of energy produced basis when one converts grasses to bio-oil, but the bio-oil can then compete in higher priced fuel markets whereas grasses alone compete directly with relatively cheap coal; Bio oil or modified bio-oil (without the HA or other chemical fraction) is a suitable fuel for boiler and combustion turbines that would otherwise use residual fuel oil or number 2 diesel; Ensyn has already commercialized the use of HA in smokey flavorants for the food industry but that market is rather small. HA, however, is also found to be a suitable replacement for the much larger US market for ethanolamines and ethalyne oxides that are used as dispersants; Unless crude oil prices rise, the highest and best use of grass based bio-oil is primarily as a direct fuel. As prices rise, HA, phenol and other chemical fractions may become more attractive; Although we were able to create available glucose from the AHG fraction in the bio-oil it proved recalcitrant to fermentation by yeast. Although fermentation results were much more positive with wood based bio-oil sugars, ethanol does not appear to be a likely product from grass based bio-oil; and A package of policy recommendations has been developed with roughly 75 key stakeholders from throughout the region that would support the transition to greater development of advanced biofuels and products in the region, as well as a strong role for native grass agriculture to support those industries.« less

  9. Engineering Halomonas spp. as A Low-Cost Production Host for Production of Bio-surfactant Protein PhaP.

    PubMed

    Lan, Lu-Hong; Zhao, Han; Chen, Jin-Chun; Chen, Guo-Qiang

    2016-12-01

    Halomonas spp. have been studied as a low cost production host for producing bulk materials such as polyhydroxyalkanoates (PHA) bioplastics, since they are able to grow at high pH and high NaCl concentration under unsterile and continuous conditions without microbial contamination. In this paper, Halomonas strain TD is used as a host to produce a protein named PHA phasin or PhaP which has a potential to be developed into a bio-surfactant. Four Halomonas TD expression strains are constructed based on a strong T7-family expression system. Of these, the strain with phaC deletion and chromosomal expression system resulted in the highest production of PhaP in soluble form, reaching 19% of total cellular soluble proteins and with a yield of 1.86 g/L in an open fed-batch fermentation process. A simple "heat lysis and salt precipitation" method is applied to allow rapid PhaP purification from a mixture of cellular proteins with a PhaP recovery rate of 63%. It clearly demonstrated that Halomonas TD could be used for high yield expression of a bio-surfactant protein PhaP for industrial application in an economical way. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. One-to-one neuron-electrode interfacing.

    PubMed

    Greenbaum, Alon; Anava, Sarit; Ayali, Amir; Shein, Mark; David-Pur, Moshe; Ben-Jacob, Eshel; Hanein, Yael

    2009-09-15

    The question of neuronal network development and organization is a principle one, which is closely related to aspects of neuronal and network form-function interactions. In-vitro two-dimensional neuronal cultures have proved to be an attractive and successful model for the study of these questions. Research is constraint however by the search for techniques aimed at culturing stable networks, whose electrical activity can be reliably and consistently monitored. A simple approach to form small interconnected neuronal circuits while achieving one-to-one neuron-electrode interfacing is presented. Locust neurons were cultured on a novel bio-chip consisting of carbon-nanotube multi-electrode-arrays. The cells self-organized to position themselves in close proximity to the bio-chip electrodes. The organization of the cells on the electrodes was analyzed using time lapse microscopy, fluorescence imaging and scanning electron microscopy. Electrical recordings from well identified cells is presented and discussed. The unique properties of the bio-chip and the specific neuron-nanotube interactions, together with the use of relatively large insect ganglion cells, allowed long-term stabilization (as long as 10 days) of predefined neural network topology as well as high fidelity electrical recording of individual neuron firing. This novel preparation opens ample opportunity for future investigation into key neurobiological questions and principles.

  11. Grafting odorant binding proteins on diamond bio-MEMS.

    PubMed

    Manai, R; Scorsone, E; Rousseau, L; Ghassemi, F; Possas Abreu, M; Lissorgues, G; Tremillon, N; Ginisty, H; Arnault, J-C; Tuccori, E; Bernabei, M; Cali, K; Persaud, K C; Bergonzo, P

    2014-10-15

    Odorant binding proteins (OBPs) are small soluble proteins found in olfactory systems that are capable of binding several types of odorant molecules. Cantilevers based on polycrystalline diamond surfaces are very promising as chemical transducers. Here two methods were investigated for chemically grafting porcine OBPs on polycrystalline diamond surfaces for biosensor development. The first approach resulted in random orientation of the immobilized proteins over the surface. The second approach based on complexing a histidine-tag located on the protein with nickel allowed control of the proteins' orientation. Evidence confirming protein grafting was obtained using electrochemical impedance spectroscopy, fluorescence imaging and X-ray photoelectron spectroscopy. The chemical sensing performances of these OBP modified transducers were assessed. The second grafting method led to typically 20% more sensitive sensors, as a result of better access of ligands to the proteins active sites and also perhaps a better yield of protein immobilization. This new grafting method appears to be highly promising for further investigation of the ligand binding properties of OBPs in general and for the development of arrays of non-specific biosensors for artificial olfaction applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effective immobilization of alcohol dehydrogenase on carbon nanoscaffolds for ethanol biofuel cell.

    PubMed

    Umasankar, Yogeswaran; Adhikari, Bal-Ram; Chen, Aicheng

    2017-12-01

    An efficient approach for immobilizing alcohol dehydrogenase (ADH) while enhancing its electron transfer ability has been developed using poly(2-(trimethylamino)ethyl methacrylate) (MADQUAT) cationic polymer and carbon nanoscaffolds. The carbon nanoscaffolds were comprised of single-walled carbon nanotubes (SWCNTs) wrapped with reduced graphene oxide (rGO). The ADH entrapped within the MADQUAT that was present on the carbon nanoscaffolds exhibited a high electron exchange capability with the electrode through its cofactor β-nicotinamide adenine dinucleotide hydrate and β-nicotinamide adenine dinucleotide reduced disodium salt hydrate (NAD + /NADH) redox reaction. The advantages of the carbon nanoscaffolds used as the support matrix and the MADQUAT employed for the entrapment of ADH versus physisorption were demonstrated via cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Our experimental results showed a higher electron transfer, electrocatalytic activity, and rate constant for MADQUAT entrapped ADH on the carbon nanoscaffolds. The immobilization of ADH using both MADQUAT and carbon nanoscaffolds exhibited strong potential for the development of an efficient bio-anode for ethanol powered biofuel cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Tunable thermoresponsive pyrrolidone-based polymers from pyroglutamic acid, a bio-derived resource.

    PubMed

    Bhat, Rajani; Pietrangelo, Agostino

    2013-03-12

    A series of pyrrolidone-based polymers is prepared from pyroglutamic acid, a bio-derived resource. Polymers bearing simple alkoxy substituents (e.g., methoxy, ethoxy, and butoxy) are soluble in common organic solvents and possess glass transition temperatures that are dependent on the length of the alkoxy residue. Replacing these substituents with an ether moiety (CH3 OCH2 CH2 O-) affords a highly sensitive and reversible thermoresponsive polymer with a lower critical solution temperature (LCST) of 42 °C in water. Copolymers composed of repeat units bearing both the ether and simple alkoxy residues are found to exhibit LCSTs that are highly dependent on the nature of the hydrophobic alkoxy residue suggesting that the LCSTs of these polymers can be successfully tuned by simply tailoring the copolymer structure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Modeling and Dynamic Analysis of Paralleled of dc/dc Converters with Master-Slave Current Sharing Control

    NASA Technical Reports Server (NTRS)

    Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce

    1996-01-01

    A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.

  15. An Application of Epidemiological Modeling to Information Diffusion

    NASA Astrophysics Data System (ADS)

    McCormack, Robert; Salter, William

    Messages often spread within a population through unofficial - particularly web-based - media. Such ideas have been termed "memes." To impede the flow of terrorist messages and to promote counter messages within a population, intelligence analysts must understand how messages spread. We used statistical language processing technologies to operationalize "memes" as latent topics in electronic text and applied epidemiological techniques to describe and analyze patterns of message propagation. We developed our methods and applied them to English-language newspapers and blogs in the Arab world. We found that a relatively simple epidemiological model can reproduce some dynamics of observed empirical relationships.

  16. Comparative study of P19 EC stem cell differentiation in between conventional hanging drop and the zebrafish chorion as a bio-derived material.

    PubMed

    Dae Seok Na; Lee, Hwang; Sun Uk Kim; Chang Nam Hwang; Sang Ho Lee; Ji Yoon Kang; Jai Kyeong Kim; James Jungho Pak

    2008-07-01

    Various materials including glass and polymers have been widely used for stem cell culture due to their biocompatibility. However, the roles of these materials are fundamentally limited because they cannot realize or imitate the complex biological functions of living tissues, except in very simple cases. Here, the development of a bio-derived material suitable for stem cell culture and improvement of differentiation efficiency to specific cell lineages with no stimulating agents by using a chorion obtained from a fertilized zebrafish egg through the removal of the yolk and embryonic cell mass from the egg is reported. Mouse P19 EC stem cells introduced into the empty chorion form a uniform embryoid body (EB) without addition of any inducing agent. It is demonstrated that the zebrafish chorion with nanopores improves efficiencies greatly in the EB formation, cell proliferation, and lineage-specific differentiations compared to those of the conventional hanging drop culture method.

  17. The role of fractional calculus in modeling biological phenomena: A review

    NASA Astrophysics Data System (ADS)

    Ionescu, C.; Lopes, A.; Copot, D.; Machado, J. A. T.; Bates, J. H. T.

    2017-10-01

    This review provides the latest developments and trends in the application of fractional calculus (FC) in biomedicine and biology. Nature has often showed to follow rather simple rules that lead to the emergence of complex phenomena as a result. Of these, the paper addresses the properties in respiratory lung tissue, whose natural solutions arise from the midst of FC in the form of non-integer differ-integral solutions and non-integer parametric models. Diffusion of substances in human body, e.g. drug diffusion, is also a phenomena well known to be captured with such mathematical models. FC has been employed in neuroscience to characterize the generation of action potentials and spiking patters but also in characterizing bio-systems (e.g. vegetable tissues). Despite the natural complexity, biological systems belong as well to this class of systems, where FC has offered parsimonious yet accurate models. This review paper is a collection of results and literature reports who are essential to any versed engineer with multidisciplinary applications and bio-medical in particular.

  18. One-Pot Evolution of Ageladine A through a Bio-Inspired Cascade towards Selective Modulators of Neuronal Differentiation.

    PubMed

    Iwata, Takayuki; Otsuka, Satoshi; Tsubokura, Kazuki; Kurbangalieva, Almira; Arai, Daisuke; Fukase, Koichi; Nakao, Yoichi; Tanaka, Katsunori

    2016-10-04

    A bio-inspired cascade reaction has been developed for the construction of the marine natural product ageladine A and a de novo array of its N1-substituted derivatives. This cascade features a 2-aminoimidazole formation that is modeled after an arginine post-translational modification and an aza-electrocyclization. It can be effectively carried out in a one-pot procedure from simple anilines or guanidines, leading to structural analogues of ageladine A that had been otherwise synthetically inaccessible. We found that some compounds out of this structurally novel library show a significant activity in modulating the neural differentiation. Namely, these compounds selectively activate or inhibit the differentiation of neural stem cells to neurons, while being negligible in the differentiation to astrocytes. This study represents a successful case in which the native biofunction of a natural product could be altered by structural modifications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The effect of antenatal lifestyle advice for women who are overweight or obese on secondary measures of neonatal body composition: the LIMIT randomised trial

    PubMed Central

    Dodd, Jodie M; Deussen, Andrea R; Mohomad, Izyan; Rifas-Shiman, Sheryl L; Yelland, Lisa N; Louise, Jennie; McPhee, Andrew J; Grivell, Rosalie M; Owens, Julie A; Gillman, Matthew W; Robinson, Jeffrey S

    2016-01-01

    Objective To evaluate the effect of providing antenatal dietary and lifestyle advice on neonatal anthropometry, and to determine the inter-observer variability in obtaining anthropometric measurements. Design Randomised controlled trial Setting Public maternity hospitals across metropolitan Adelaide, South Australia Population Pregnant women with a singleton gestation between 10+0–20+0, and body mass index (BMI) ≥25kg/m2. Methods Women were randomised to either Lifestyle Advice (comprehensive dietary and lifestyle intervention over the course of pregnancy including dietary, exercise and behavioral strategies, delivered by a research dietician and research assistants) or continued Standard Care. Analyses were conducted using intention to treat principles. Main Outcome Measures Secondary outcome measures for the trial included assessment of infant body composition using body circumference and skinfold thickness measurements (SFTM), percentage body fat, and bio-impedance analysis of fat free mass. Results Anthropometric measurements were obtained from 970 neonates (488 Lifestyle Advice Group, and 482 Standard Care Group). In 394 of these neonates (215 Lifestyle Advice Group, and 179 Standard Care Group) bio-impedance analysis was also obtained. There were no statistically significant differences identified between those neonates born to women receiving Lifestyle Advice and those receiving Standard Care, in terms of body circumference measures, SFTM, percentage body fat, fat mass, or fat free mass. The intra-class correlation coefficient for SFTM was moderate to excellent (ICC 0.55 to 0.88). Conclusions Among neonates born to women who are overweight or obese, anthropometric measures of body composition were not modified by an antenatal dietary and lifestyle intervention. PMID:26841217

  20. Do people with anorexia nervosa use sauna baths? A reconsideration of heat-treatment in anorexia nervosa.

    PubMed

    Gutierrez, Emilio; Vazquez, Reyes; Beumont, Peter J V

    2002-01-01

    The paper addresses the absence of reports about the sauna use among the weight loss strategies of patients with anorexia nervosa (AN). Because AN entails a relentless pursuit of thinness, it might be expected that these patients would frequently resort to saunas. The paper sustains that the absence of reports should not be taken to mean that sauna use is irrelevant to AN. Support for this possibility is founded in the apparent progress shown by AN patients whose treatment consisted of different strategies of heat supply, which included a protocol of sauna sessions. First recommended by W. Gull, heat-treatment may be relevant to hyperactivity, a significant clinical characteristic in AN. This treatment was developed as an extrapolation from animal research model, where a simple manipulation of ambient temperature (AT) was found to impede and reverse excessive running in food-restricted rats. Sauna use may have been unreported either because it impedes the development of the syndrome, or its benefits have been attributed to conventional treatments. The elucidation of sauna experience among AN patients may have potential implications for the role of heat in the treatment of AN.

  1. Post-prandial reflux suppression by a raft-forming alginate (Gaviscon Advance) compared to a simple antacid documented by magnetic resonance imaging and pH-impedance monitoring: mechanistic assessment in healthy volunteers and randomised, controlled, double-blind study in reflux patients.

    PubMed

    Sweis, R; Kaufman, E; Anggiansah, A; Wong, T; Dettmar, P; Fried, M; Schwizer, W; Avvari, R K; Pal, A; Fox, M

    2013-06-01

    Alginates form a raft above the gastric contents, which may suppress gastro-oesophageal reflux; however, inconsistent effects have been reported in mechanistic and clinical studies. To visualise reflux suppression by an alginate-antacid [Gaviscon Advance (GA), Reckitt Benckiser, UK] compared with a nonraft-forming antacid using magnetic resonance imaging (MRI), and to determine the feasibility of pH-impedance monitoring for assessment of reflux suppression by alginates. Two studies were performed: (i) GA and antacid (Alucol, Wander Ltd, Switzerland) were visualised in the stomach after ingestion in 12 healthy volunteers over 30 min after a meal by MRI, with reflux events documented by manometry. (ii) A randomised controlled, double-blind cross-over trial of post-prandial reflux suppression documented by pH-impedance in 20 patients randomised to GA or antacid (Milk of Magnesia; Boots, UK) after two meals taken 24 h apart. MRI visualized a "mass" of GA form at the oesophago-gastric junction (OGJ); simple antacid sank to the distal stomach. The number of post-prandial common cavity reflux events was less with GA than antacid [median 2 (0-5) vs. 5 (1-11); P < 0.035]. Distal reflux events and acid exposure measured by pH-impedance were similar after GA and antacid. There was a trend to reduced proximal reflux events with GA compared with antacid [10.5 (8.9) vs. 13.9 (8.3); P = 0.070]. Gaviscon Advance forms a 'mass' close to the OGJ and significantly suppresses reflux compared with a nonraft-forming antacid. Standard pH-impedance monitoring is suitable for clinical studies of GA in gastro-oesophageal reflux disease patients where proximal reflux is the primary outcome. © 2013 Blackwell Publishing Ltd.

  2. Direct N-alkylation of unprotected amino acids with alcohols

    PubMed Central

    Yan, Tao; Feringa, Ben L.; Barta, Katalin

    2017-01-01

    N-alkyl amino acids find widespread application as highly valuable, renewable building blocks. However, traditional synthesis methodologies to obtain these suffer from serious limitations, providing a major challenge to develop sustainable alternatives. We report the first powerful catalytic strategy for the direct N-alkylation of unprotected α-amino acids with alcohols. This method is highly selective, produces water as the only side product leading to a simple purification procedure, and a variety of α-amino acids are mono- or di-N-alkylated, in most cases with excellent retention of optical purity. The hydrophobicity of the products is tunable, and even simple peptides are selectively alkylated. An iron-catalyzed route to mono-N-alkyl amino acids using renewable fatty alcohols is also described that represents an ideal green transformation for obtaining fully bio-based surfactants. PMID:29226249

  3. A bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Miao, Yue-E.; Yan, Jiajie; Ouyang, Yue; Lu, Hengyi; Lai, Feili; Wu, Yue; Liu, Tianxi

    2018-06-01

    The bio-inspired hierarchical "grape cluster" superstructure provides an effective integration of one-dimensional carbon nanofibers (CNF) with isolated carbonaceous nanoparticles into three-dimensional (3D) conductive frameworks for efficient electron and mass transfer. Herein, a 3D N-doped porous carbon electrocatalyst consisting of carbon nanofibers with grape-like N-doped hollow carbon particles (CNF@NC) has been prepared through a simple electrospinning strategy combined with in-situ growth and carbonization processes. Such a bio-inspired hierarchically organized conductive network largely facilitates both the mass diffusion and electron transfer during the oxygen reduction reactions (ORR). Therefore, the metal-free CNF@NC catalyst demonstrates superior catalytic activity with an absolute four-electron transfer mechanism, strong methanol tolerance and good long-term stability towards ORR in alkaline media.

  4. Application of a Label-Free Immunosensor for White Spot Syndrome Virus (WSSV) in Shrimp Cultivation Water.

    PubMed

    Waiyapoka, Thanyaporn; Deachamag, Panchalika; Chotigeat, Wilaiwan; Bunsanong, Nittaya; Kanatharana, Proespichaya; Thavarungkul, Panote; Loyprasert-Thananimit, Suchera

    2015-10-01

    White spot syndrome virus (WSSV) is a major pathogen affecting the shrimp industry worldwide. In a preliminary study, WSSV binding protein (WBP) was specifically bound to the VP26 protein of WSSV. Therefore, we have developed the label-free affinity immunosensor using the WBP together with anti-GST-VP26 for quantitative detection of WSSV in shrimp pond water. When the biological molecules were immobilized on a gold electrode to form a self-assembled monolayer, it was then used to detect WSSV using a flow injection system with optimized conditions. Binding between the different copies of WSSV and the immobilized biological molecules was detected by an impedance change (ΔZ″) in real time. The sensitivity of the developed immunosensor was in the linear range of 1.6 × 10(1)-1.6 × 10(6) copies/μl. The system was highly sensitive for the analysis of WSSV as shown by the lack of impedance change when using yellow head virus (YHV). The developed immunosensor could be reused up to 37 times (relative standard deviation (RSD), 3.24 %) with a good reproducibility of residual activity (80-110 %). The immunosensor was simple to operate, reliable, reproducible, and could be applied for the detection and quantification of WSSV in water during shrimp cultivation.

  5. Simulation of a current source with a Cole-Cole load for multi-frequency electrical impedance tomography.

    PubMed

    Aguiar Santos, Susana; Schlebusch, Thomas; Leonhardt, Steffen

    2013-01-01

    An accurate current source is one of the keys in the hardware of Electrical impedance Tomography systems. Limitations appear mainly at higher frequencies and for non-simple resistive loads. In this paper, we simulate an improved Howland current source with a Cole-Cole load. Simulations comparing two different op-amps (THS4021 and OPA843) were performed at 1 kHz to 1 MHz. Results show that the THS4021 performed better than the OPA843. The current source with THS4021 reaches an output impedance of 20 MΩ at 1 kHz and above 320 kΩ at 1 MHz, it provides a constant and stable output current up to 4 mA, in the complete range of frequencies, and for Cole-Cole (resistive and capacitive) load.

  6. A Power-Efficient Bio-Potential Acquisition Device with DS-MDE Sensors for Long-Term Healthcare Monitoring Applications

    PubMed Central

    Chang, Chia-Lin; Chang, Chih-Wei; Huang, Hong-Yi; Hsu, Chen-Ming; Huang, Chia-Hsuan; Chiou, Jin-Chern; Luo, Ching-Hsing

    2010-01-01

    This work describes a power-efficient bio-potential acquisition device for long-term healthcare applications that is implemented using novel microelectromechanical dry electrodes (MDE) and a low power bio-potential processing chip. Using micromachining technology, an attempt is also made to enhance the sensing reliability and stability by fabricating a diamond-shaped MDE (DS-MDE) that has a satisfactory self-stability capability and superior electric conductivity when attached onto skin without any extra skin tissue injury technology. To acquire differential bio-potentials such as ECG signals, the proposed processing chip fabricated in a standard CMOS process has a high common mode rejection ratio (C.M.R.R.) differential amplifier and a 12-bit analog-to-digital converter (ADC). Use of the proposed system and integrate simple peripheral commercial devices can obtain the ECG signal efficiently without additional skin tissue injury and ensure continuous monitoring more than 70 hours with a 400 mAh battery. PMID:22399907

  7. A power-efficient bio-potential acquisition device with DS-MDE sensors for long-term healthcare monitoring applications.

    PubMed

    Chang, Chia-Lin; Chang, Chih-Wei; Huang, Hong-Yi; Hsu, Chen-Ming; Huang, Chia-Hsuan; Chiou, Jin-Chern; Luo, Ching-Hsing

    2010-01-01

    This work describes a power-efficient bio-potential acquisition device for long-term healthcare applications that is implemented using novel microelectromechanical dry electrodes (MDE) and a low power bio-potential processing chip. Using micromachining technology, an attempt is also made to enhance the sensing reliability and stability by fabricating a diamond-shaped MDE (DS-MDE) that has a satisfactory self-stability capability and superior electric conductivity when attached onto skin without any extra skin tissue injury technology. To acquire differential bio-potentials such as ECG signals, the proposed processing chip fabricated in a standard CMOS process has a high common mode rejection ratio (C.M.R.R.) differential amplifier and a 12-bit analog-to-digital converter (ADC). Use of the proposed system and integrate simple peripheral commercial devices can obtain the ECG signal efficiently without additional skin tissue injury and ensure continuous monitoring more than 70 hours with a 400 mAh battery.

  8. Measurements of plasma loading in the presence of electrostatic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riccardi, C.; Agostini, E.; Fontanesi, M.

    1995-10-01

    An experimental analysis of the plasma impedance with respect to the coupling of ES (electrostatic) waves is described in this paper. The waves are excited through a slow-wave antenna and the experiment performed in a toroidal device [C. Riccardi {ital et} {ital al}., Plasma Phys. {bold 36}, 1791 (1994)]. The measured impedance is compared with a simple theoretical model for magnetized homogeneous plasma, in order to establish the presence of bulk or surface waves and of some nonlinear effects when power is raised. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  9. New Approaches in Force-Limited Vibration Testing of Flight Hardware

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Kern, Dennis L.

    2012-01-01

    To qualify flight hardware for random vibration environments the following methods are used to limit the loads in the aerospace industry: (1) Response limiting and notching (2) Simple TDOF model (3) Semi-empirical force limits (4) Apparent mass, etc. and (5) Impedance method. In all these methods attempts are made to remove conservatism due to the mismatch in impedances between the test and the flight configurations of the hardware that are being qualified. Assumption is the hardware interfaces have correlated responses. A new method that takes into account the un-correlated hardware interface responses are described in this presentation.

  10. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    PubMed Central

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  11. [Preface for special issue on bio-based materials (2016)].

    PubMed

    Weng, Yunxuan

    2016-06-25

    Bio-based materials are new materials or chemicals with renewable biomass as raw materials such as grain, legume, straw, bamboo and wood powder. This class of materials includes bio-based polymer, biobased fiber, glycotechnology products, biobased rubber and plastics produced by biomass thermoplastic processing and basic biobased chemicals, for instance, bio-alcohols, organic acids, alkanes, and alkenes, obtained by bio-synthesis, bio-processing and bio-refinery. Owing to its environmental friendly and resource conservation, bio-based materials are becoming a new dominant industry taking the lead in the world scientific and technological innovation and economic development. An overview of bio-based materials development is reported in this special issue, and the industrial status and research progress of the following aspects, including biobased fiber, polyhydroxyalkanoates, biodegradable mulching film, bio-based polyamide, protein based biomedical materials, bio-based polyurethane, and modification and processing of poly(lactic acid), are introduced.

  12. Analysis of the resistive network in a bio-inspired CMOS vision chip

    NASA Astrophysics Data System (ADS)

    Kong, Jae-Sung; Sung, Dong-Kyu; Hyun, Hyo-Young; Shin, Jang-Kyoo

    2007-12-01

    CMOS vision chips for edge detection based on a resistive circuit have recently been developed. These chips help develop neuromorphic systems with a compact size, high speed of operation, and low power dissipation. The output of the vision chip depends dominantly upon the electrical characteristics of the resistive network which consists of a resistive circuit. In this paper, the body effect of the MOSFET for current distribution in a resistive circuit is discussed with a simple model. In order to evaluate the model, two 160×120 CMOS vision chips have been fabricated by using a standard CMOS technology. The experimental results have been nicely matched with our prediction.

  13. Simple two-electrode biosignal amplifier.

    PubMed

    Dobrev, D; Neycheva, T; Mudrov, N

    2005-11-01

    A simple, cost effective circuit for a two-electrode non-differential biopotential amplifier is proposed. It uses a 'virtual ground' transimpedance amplifier and a parallel RC network for input common mode current equalisation, while the signal input impedance preserves its high value. With this innovative interface circuit, a simple non-inverting amplifier fully emulates high CMRR differential. The amplifier equivalent CMRR (typical range from 70-100 dB) is equal to the open loop gain of the operational amplifier used in the transimpedance interface stage. The circuit has very simple structure and utilises a small number of popular components. The amplifier is intended for use in various two-electrode applications, such as Holter-type monitors, defibrillators, ECG monitors, biotelemetry devices etc.

  14. Transforming Pain Medicine: Adapting to Science and Society

    PubMed Central

    Borsook, David; Kalso, Eija

    2013-01-01

    The field of chronic pain medicine is currently facing enormous challenges. The incidence of chronic pain is increasing worldwide, particularly in the developed world. As a result, chronic pain is imposing a growing burden on Western societies in terms of cost of medical care and lost productivity. This burden is exacerbated by the fact that despite research efforts and a huge expenditure on treatment for chronic pain, clinicians have no highly effective treatments or definitive diagnostic measures for patients. The lack of an objective measure for pain impedes basic research into the biological and psychological mechanisms of chronic pain and clinical research into treatment efficacy. The development of objective measurements of pain and ability to predict treatment responses in the individual patient is critical to improving pain management. Finally, pain medicine must embrace the development of a new evidence-based therapeutic model that recognizes the highly individual nature of responsiveness to pain treatments, integrates bio-psycho-behavioral approaches, and requires proof of clinical effectiveness for the various treatments we offer our patients. In the long-term these approaches will contribute to providing better diagnoses and more effective treatments to lessen the current challenges in pain medicine. PMID:23468059

  15. A powerful and flexible approach to the analysis of RNA sequence count data.

    PubMed

    Zhou, Yi-Hui; Xia, Kai; Wright, Fred A

    2011-10-01

    A number of penalization and shrinkage approaches have been proposed for the analysis of microarray gene expression data. Similar techniques are now routinely applied to RNA sequence transcriptional count data, although the value of such shrinkage has not been conclusively established. If penalization is desired, the explicit modeling of mean-variance relationships provides a flexible testing regimen that 'borrows' information across genes, while easily incorporating design effects and additional covariates. We describe BBSeq, which incorporates two approaches: (i) a simple beta-binomial generalized linear model, which has not been extensively tested for RNA-Seq data and (ii) an extension of an expression mean-variance modeling approach to RNA-Seq data, involving modeling of the overdispersion as a function of the mean. Our approaches are flexible, allowing for general handling of discrete experimental factors and continuous covariates. We report comparisons with other alternate methods to handle RNA-Seq data. Although penalized methods have advantages for very small sample sizes, the beta-binomial generalized linear model, combined with simple outlier detection and testing approaches, appears to have favorable characteristics in power and flexibility. An R package containing examples and sample datasets is available at http://www.bios.unc.edu/research/genomic_software/BBSeq yzhou@bios.unc.edu; fwright@bios.unc.edu Supplementary data are available at Bioinformatics online.

  16. Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle.

    PubMed

    Schmitt, S; Haeufle, D F B; Blickhan, R; Günther, M

    2012-09-01

    The biological muscle is a powerful, flexible and versatile actuator. Its intrinsic characteristics determine the way how movements are generated and controlled. Robotic and prosthetic applications expect to profit from relying on bio-inspired actuators which exhibit natural (muscle-like) characteristics. As of today, when constructing a technical actuator, it is not possible to copy the exact molecular structure of a biological muscle. Alternatively, the question may be put how its characteristics can be realized with known mechanical components. Recently, a mechanical construct for an artificial muscle was proposed, which exhibits hyperbolic force-velocity characteristics. In this paper, we promote the constructing concept which is made by substantiating the mechanical design of biological muscle by a simple model, proving the feasibility of its real-world implementation, and checking their output both for mutual consistency and agreement with biological measurements. In particular, the relations of force, enthalpy rate and mechanical efficiency versus contraction velocity of both the construct's technical implementation and its numerical model were determined in quick-release experiments. All model predictions for these relations and the hardware results are now in good agreement with the biological literature. We conclude that the construct represents a mechanical concept of natural actuation, which is suitable for laying down some useful suggestions when designing bio-inspired actuators.

  17. Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors

    PubMed Central

    Miodek, Anna; Regan, Edward M.; Bhalla, Nikhil; Hopkins, Neal A.E.; Goodchild, Sarah A.; Estrela, Pedro

    2015-01-01

    An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples. PMID:26426017

  18. Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors.

    PubMed

    Miodek, Anna; Regan, Edward M; Bhalla, Nikhil; Hopkins, Neal A E; Goodchild, Sarah A; Estrela, Pedro

    2015-09-29

    An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples.

  19. Disposable amperometric biosensor based on nanostructured bacteriophages for glucose detection

    NASA Astrophysics Data System (ADS)

    Kang, Yu Ri; Hwang, Kyung Hoon; Kim, Ju Hwan; Nam, Chang Hoon; Kim, Soo Won

    2010-10-01

    The selection of electrode material profoundly influences biosensor science and engineering, as it heavily influences biosensor sensitivity. Here we propose a novel electrochemical detection method using a working electrode consisting of bio-nanowires from genetically modified filamentous phages and nanoparticles. fd-tet p8MMM filamentous phages displaying a three-methionine (MMM) peptide on the major coat protein pVIII (designated p8MMM phages) were immobilized on the active area of an electrochemical sensor through physical adsorption and chemical bonding. Bio-nanowires composed of p8MMM phages and silver nanoparticles facilitated sensitive, rapid and selective detection of particular molecules. We explored whether the composite electrode with bio-nanowires was an effective platform to detect the glucose oxidase. The current response of the bio-nanowire sensor was high at various glucose concentrations (0.1 µm-0.1 mM). This method provides a considerable advantage to demonstrate analyte detection over low concentration ranges. Especially, phage-enabled bio-nanowires can serve as receptors with high affinity and specificity for the detection of particular biomolecules and provide a convenient platform for designing site-directed multifunctional scaffolds based on bacteriophages and may serve as a simple method for label-free detection.

  20. Synthetic biology: ensuring the greatest global value.

    PubMed

    Hollis, Aidan

    2013-09-01

    Synthetic biology (SynBio) has tremendous, transformative potential. Like other technologies, it can be used for good or ill. Currently, the structure of the allocation of potential benefits and risks is biased in favor of richer countries. The underlying problem is simple: most risks from SynBio are universal and affect both the rich and the poor with equal force; but benefits from SynBio can be expected to accrue chiefly to the rich. The risk/benefit balance is therefore skewed in a way that may lead to inefficient and unfair decisions. One potential solution is presented in this paper, using the principles that underlie the Health Impact Fund (HIF). The HIF is designed to reward companies based on assessed health impact, no matter where it occurs in the world, so that extending the life of a poor person is as profitable as extending the life of a rich person. This paper considers both the potential benefits and costs of SynBio; examines how the current global pharmaceutical industry is structured; introduces the HIF proposal; and finally explores how the principles underlying the HIF could be used productively with SynBio for global health.

  1. Optimal solutions for a bio mathematical model for the evolution of smoking habit

    NASA Astrophysics Data System (ADS)

    Sikander, Waseem; Khan, Umar; Ahmed, Naveed; Mohyud-Din, Syed Tauseef

    In this study, we apply Variation of Parameter Method (VPM) coupled with an auxiliary parameter to obtain the approximate solutions for the epidemic model for the evolution of smoking habit in a constant population. Convergence of the developed algorithm, namely VPM with an auxiliary parameter is studied. Furthermore, a simple way is considered for obtaining an optimal value of auxiliary parameter via minimizing the total residual error over the domain of problem. Comparison of the obtained results with standard VPM shows that an auxiliary parameter is very feasible and reliable in controlling the convergence of approximate solutions.

  2. Addressing of LnCaP Cell Using Magnetic Particles Assisted Impedimetric Microelectrode.

    PubMed

    Nguyen, Dung Thi Xuan; Tran, Trong Binh; Nguyen, Phuong-Diem; Min, Junhong

    2016-03-01

    In this study, we provide a facile, effective technique for a simple isolation and enrichment of low metastatic prostate tumor cell LNCaP using biocompatible, magnetic particles asissted impedimetric sensing system. Hydrophobic cell membrane anchors (BAM) were generated onto magnetic particles which diameters vary from 50 nm to 5 μm and were used to capture LNCaP cells from the suspension. Finally, magnetic particle-LNCaP complex were addressed onto the surface of the interdigitated microelectrode (IDM). Cell viability was monitored by our laboratory developed-technique Electrical Cell Substrate Impedance Sensing (ECIS). The results reavealed that 50 nm-magnetic particles showed best performance in terms of cell separation and cell viability. This technique provides a simple and efficient method for the direct addressing of LNCaP cell on the surface and enhances better understanding of cell behavior for cancer management in the near future.

  3. Biofuel from biomass via photo-electrochemical reactions: An overview

    NASA Astrophysics Data System (ADS)

    Ibrahim, N.; Kamarudin, S. K.; Minggu, L. J.

    2014-08-01

    Biomass is attracting a great deal of attention as a renewable energy resource to reduce carbon dioxide (CO2) emissions. Converting biomass from municipal, agricultural and livestock into biofuel and electrical power has significant environmental and economic advantages. The conversion of biomass into practical energy requires elegant designs and further investigation. Thus, biomass is a promising renewable energy source due to its low production cost and simple manufacturing processes. Biofuel (hydrogen and methanol) from biomass will be possible to be used for transportation with near-zero air pollution, involves efficient uses of land and major contribution to reduce dependence on insecure source of petroleum. Photoelectrochemical (PEC) reactions study has potential pathway for producing fuel from biomass and bio-related compound in the near future. This review highlights recent work related to the PEC conversion of biomass and bio-related compounds into useful biofuels and electricity. This review covers different types of photochemical reaction cells utilizing various types of organic and inorganic waste. It also presents recent developments in photoelectrodes, photocatalysts and electrolytes as well as the production of different types of fuel from PEC cells and highlights current developments and problems in PEC reactions.

  4. Bio-analytical method development and validation of Rasagiline by high performance liquid chromatography tandem mass spectrometry detection and its application to pharmacokinetic study

    PubMed Central

    Konda, Ravi Kumar; Chandu, Babu Rao; Challa, B.R.; Kothapalli, Chandrasekhar B.

    2012-01-01

    The most suitable bio-analytical method based on liquid–liquid extraction has been developed and validated for quantification of Rasagiline in human plasma. Rasagiline-13C3 mesylate was used as an internal standard for Rasagiline. Zorbax Eclipse Plus C18 (2.1 mm×50 mm, 3.5 μm) column provided chromatographic separation of analyte followed by detection with mass spectrometry. The method involved simple isocratic chromatographic condition and mass spectrometric detection in the positive ionization mode using an API-4000 system. The total run time was 3.0 min. The proposed method has been validated with the linear range of 5–12000 pg/mL for Rasagiline. The intra-run and inter-run precision values were within 1.3%–2.9% and 1.6%–2.2% respectively for Rasagiline. The overall recovery for Rasagiline and Rasagiline-13C3 mesylate analog was 96.9% and 96.7% respectively. This validated method was successfully applied to the bioequivalence and pharmacokinetic study of human volunteers under fasting condition. PMID:29403764

  5. Tantalum Nitride-Decorated Titanium with Enhanced Resistance to Microbiologically Induced Corrosion and Mechanical Property for Dental Application.

    PubMed

    Zhang, Yifei; Zheng, Yunfei; Li, Yongliang; Wang, Lixin; Bai, Yanjie; Zhao, Qiang; Xiong, Xiaoling; Cheng, Yan; Tang, Zhihui; Deng, Yi; Wei, Shicheng

    2015-01-01

    Microbiologically induced corrosion (MIC) of metallic devices/implants in the oral region is one major cause of implant failure and metal allergy in patients. Therefore, it is crucial to develop practical approaches which can effectively prevent MIC for broad clinical applications of these materials. In the present work, tantalum nitride (TaN)-decorated titanium with promoted bio-corrosion and mechanical property was firstly developed via depositing TaN layer onto pure Ti using magnetron sputtering. The microstructure and chemical constituent of TaN coatings were characterized, and were found to consist of a hard fcc-TaN outer layer. Besides, the addition of TaN coatings greatly increased the hardness and modulus of pristine Ti from 2.54 ± 0.20 to 29.88 ± 2.59 GPa, and from 107.19 ± 6.98 to 295.46 ± 19.36 GPa, respectively. Potentiodynamic polarization and electrochemical impedance spectroscopy studies indicated that TaN coating exhibited higher MIC resistance in comparison to bare Ti and TiN-coated coating in two bacteria-containing artificial saliva solutions. Moreover, the biofilm experiment showed that the TaN-decorated Ti sample possessed good antibacterial performance. The SEM and XPS results after biofilm removal demonstrated that TaN film remained its integrity and stability, while TiN layer detached from Ti surface in the bio-corrosion tests, demonstrating the anti-MIC behavior and the strong binding property of TaN coating to Ti substrate. Considering all these results, TaN-decorated Ti material exhibits the optimal comprehensive performance and holds great potential as implant material for dental applications.

  6. Tantalum Nitride-Decorated Titanium with Enhanced Resistance to Microbiologically Induced Corrosion and Mechanical Property for Dental Application

    PubMed Central

    Li, Yongliang; Wang, Lixin; Bai, Yanjie; Zhao, Qiang; Xiong, Xiaoling; Cheng, Yan; Tang, Zhihui; Deng, Yi; Wei, Shicheng

    2015-01-01

    Microbiologically induced corrosion (MIC) of metallic devices/implants in the oral region is one major cause of implant failure and metal allergy in patients. Therefore, it is crucial to develop practical approaches which can effectively prevent MIC for broad clinical applications of these materials. In the present work, tantalum nitride (TaN)-decorated titanium with promoted bio-corrosion and mechanical property was firstly developed via depositing TaN layer onto pure Ti using magnetron sputtering. The microstructure and chemical constituent of TaN coatings were characterized, and were found to consist of a hard fcc-TaN outer layer. Besides, the addition of TaN coatings greatly increased the hardness and modulus of pristine Ti from 2.54 ± 0.20 to 29.88 ± 2.59 GPa, and from 107.19 ± 6.98 to 295.46 ± 19.36 GPa, respectively. Potentiodynamic polarization and electrochemical impedance spectroscopy studies indicated that TaN coating exhibited higher MIC resistance in comparison to bare Ti and TiN-coated coating in two bacteria-containing artificial saliva solutions. Moreover, the biofilm experiment showed that the TaN-decorated Ti sample possessed good antibacterial performance. The SEM and XPS results after biofilm removal demonstrated that TaN film remained its integrity and stability, while TiN layer detached from Ti surface in the bio-corrosion tests, demonstrating the anti-MIC behavior and the strong binding property of TaN coating to Ti substrate. Considering all these results, TaN-decorated Ti material exhibits the optimal comprehensive performance and holds great potential as implant material for dental applications. PMID:26107177

  7. The transport phase of pyrolytic oil exiting a fast fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Daugaard, Daren Einar

    An unresolved and debated aspect in the fast pyrolysis of biomass is whether the bio-oil exits as a vapor or as an aerosol from the pyrolytic reactor. The determination of the bio-oil transport phase will have direct and significant impact on the design of fast pyrolysis systems. Optimization of both the removal of particulate matter and collection of bio-oil will require this information. In addition, the success of catalytic reforming of bio-oil to high-value chemicals will depend upon this transport phase. A variety of experimental techniques were used to identify the transport phase. Some tests were as simple as examining the catch of an inline filter while others attempted to deduce whether vapor or aerosol predominated by examining the pressure drop across a flow restriction. In supplementary testing, the effect of char on aerosol formation and the potential impact of cracking during direct contact filtering are evaluated. The study indicates that for pyrolysis of red oak approximately 90 wt-% of the collected bio-oil existed as a liquid aerosol. Conversely, the pyrolysis of corn starch produced bio-oil predominately in the vapor phase at the exit of the reactor. Furthermore, it was determined that the addition of char promotes the production of aerosols during pyrolysis of corn starch. Direct contact filtering of the product stream did not collect any liquids and the bio-oil yield was not significantly reduced indicating measurable cracking or coking did not occur.

  8. Offline Impedance Measurements for Detection and Mitigation of Dangerous Implant Interactions: An RF Safety Prescreen

    PubMed Central

    Ellenor, Christopher W; Stang, Pascal P; Etezadi-Amoli, Maryam; Pauly, John M; Scott, Greig C

    2015-01-01

    Purpose The concept of a “radiofrequency safety prescreen” is investigated, wherein dangerous interactions between radiofrequency fields used in MRI, and conductive implants in patients are detected through impedance changes in the radiofrequency coil. Theory The behavior of coupled oscillators is reviewed, and the resulting, observable impedance changes are discussed. Methods A birdcage coil is loaded with a static head phantom and a wire phantom with a wire close to its resonant length, the shape, position, and orientation of which can be changed. Interactions are probed with a current sensor and network analyzer. Results Impedance spectra show dramatic, unmistakable splitting in cases of strong coupling, and strong correlation is observed between induced current and scattering parameters. Conclusions The feasibility of a new, low-power prescreening technique has been demonstrated in a simple phantom experiment, which can unambiguously detect resonant interactions between an implanted wire and an imaging coil. A new technique has also been presented which can detect parallel transmit null modes for the wire. Magn Reson Med 73:1328–1339, 2015. © 2014 Wiley Periodicals, Inc. PMID:24623586

  9. Modeling of the Near Field Coupling Between an External Loop and an Implantable Spiral Chip Antennas in Biosensor Systems

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Miranda, Felix A.

    2006-01-01

    In this paper, the near field coupling between an external hand-held loop antenna and an implantable miniature (1x1 mm) printed square spiral chip antenna used in bio-MEMS sensors for contact-less powering and RF telemetry is investigated. The loop and the spiral are inductively coupled and effectively form a transformer. The numerical results include the quasi-stationary magnetic field pattern of the implanted antenna, near zone wave impedance as a function of the radial distance and the values of the lumped elements in the equivalent circuit model for the transformer.

  10. Novel method of using dynamic electrical impedance signals for noninvasive diagnosis of knee osteoarthritis.

    PubMed

    Gajre, Suhas S; Anand, Sneh; Singh, U; Saxena, Rajendra K

    2006-01-01

    Osteoarthritis (OA) of knee is the most commonly occurring non-fatal irreversible disease, mainly in the elderly population and particularly in female. Various invasive and non-invasive methods are reported for the diagnosis of this articular cartilage pathology. Well known techniques such as X-ray, computed tomography, magnetic resonance imaging, arthroscopy and arthrography are having their disadvantages, and diagnosis of OA in early stages with simple effective noninvasive method is still a biomedical engineering problem. Analyzing knee joint noninvasive signals around knee might give simple solution for diagnosis of knee OA. We used electrical impedance data from knees to compare normal and osteoarthritic subjects during the most common dynamic conditions of the knee, i.e. walking and knee swing. It was found that there is substantial difference in the properties of the walking cycle (WC) and knee swing cycle (KS) signals. In experiments on 90 pathological (combined for KS and WC signals) and 72 normal signals (combined), suitable features were drawn. Then signals were used to classify as normal or pathological. Artificial multilayer feed forward neural network was trained using back propagation algorithm for the classification. On a training data set of 54 signals for KS signals, the classification efficiency for a test set of 54 was 70.37% and 85.19% with and without normalization respectively wrt base impedance. Similarly, the training set of 27 WC signals and test set of 27 signals resulted in 77.78% and 66.67% classification efficiency. The results indicate that dynamic electrical impedance signals have potential to be used as a novel method for noninvasive diagnosis of knee OA.

  11. Biomedical Implementation of Liquid Metal Ink as Drawable ECG Electrode and Skin Circuit

    PubMed Central

    Yu, Yang; Zhang, Jie; Liu, Jing

    2013-01-01

    Background Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG) electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs). Methods Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. Results With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as −0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs) were lit and emitted colorful lights. Conclusions The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and biological circuit manufacturing technique in a large extent. PMID:23472220

  12. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit.

    PubMed

    Yu, Yang; Zhang, Jie; Liu, Jing

    2013-01-01

    Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG) electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs). Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as -0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs) were lit and emitted colorful lights. The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and biological circuit manufacturing technique in a large extent.

  13. Changes in transthoracic electrical impedance at high altitude.

    PubMed

    Hoon, R S; Balasubramanian, V; Tiwari, S C; Mathew, O P; Behl, A; Sharma, S C; Chadha, K S

    1977-01-01

    Mean transthoracic electrical impedance (impedance) which is inversely related to intrathoracic extravascular fluid volume was measured in 121 normal healthy volunteers at sea-level and at 3658 metres altitude. Fifty (group A) reached the high altitude location after an hour's journey in a pressurised aircraft. Twenty-five (group D) underwent slow road ascent including acclimatisation en route. Thirty permanent residents (group B) and 16 temporary residents at high altitude (group C) were also studied. Serial studies in the 30 subjects of group A who developed symptoms of high altidue sickness showed a significant decrease of impedance up to the fourth day of exposure to high altitude which later returned to normal. The 4 volunteers who developed severe symptoms showed the largest drop in impedance. A case of acute pulmonary oedema developing at 4300 metres showed an impedance value of 24-1 ohms on admission. After effective treatment the impedance increased by 11-9 to 36-0 ohms. Twenty asymptomatic subjects of group A and 25 of group D showed a small average increase in impedance values at high altitude. These obstructions suggest that measurement of transthoracic electrical impedance may be a valuable means of detecting incipient high altitude pulmonary oedema.

  14. Electrochemical Impedance Spectroscopy—A Simple Method for the Characterization of Polymer Inclusion Membranes Containing Aliquat 336

    PubMed Central

    O'Rourke, Michelle; Duffy, Noel; De Marco, Roland; Potter, Ian

    2011-01-01

    Electrochemical impedance spectroscopy (EIS) has been used to estimate the non-frequency dependent (static) dielectric constants of base polymers such as poly(vinyl chloride) (PVC), cellulose triacetate (CTA) and polystyrene (PS). Polymer inclusion membranes (PIMs) containing different amounts of PVC or CTA, along with the room temperature ionic liquid Aliquat 336 and plasticizers such as trisbutoxyethyl phosphate (TBEP), dioctyl sebecate (DOS) and 2-nitrophenyloctyl ether (NPOE) have been investigated. In this study, the complex and abstract method of EIS has been applied in a simple and easy to use way, so as to make the method accessible to membrane scientists and engineers who may not possess the detailed knowledge of electrochemistry and interfacial science needed for a rigorous interpretation of EIS results. The EIS data reported herein are internally consistent with a percolation threshold in the dielectric constant at high concentrations of Aliquat 336, which illustrates the suitability of the EIS technique since membrane percolation with ion exchangers is a well-known phenomenon. PMID:24957616

  15. Synthesis of resistive tapers to control scattering patterns of strips

    NASA Astrophysics Data System (ADS)

    Haupt, Randy L.

    Scattering occurs when an electromagnetic wave impinges on an object and creates currents in that object which reradiate other electromagnetic waves. Three primary methods exist to reduce microwave scattering from an object: covering it with absorber, changing its shape, and detuning it through impedance loading. Absorbers convert unwanted electromagnetic energy into heat. An example is lining an anechoic chamber with absorbers. Changing its shape channels energy from one direction to another, changes dominant scattering centers, or causes returns from one direction to another, changes dominant scattering centers, or causes returns from various parts to coherently add and cancel the total return. Impedance loading alters the resonant frequency of an object. Absorbers have the most attractive features. They have a broad bandwidth, attenuate the return in many directions, and may be used to reduce scattering from an object after the object is designed. Before trying to control scattering from complex shapes, such as an antenna or airplane, one should try to develop methods to control scattering from simple objects. A very simple object is two dimensional strip. It is infinitely thin, has a finite width, and an infinite length. The scattering pattern of the strip depends upon its width and material composition. Varying these two factors provides a means for controlling the radar cross-section (RCS) of the strip. The goal of this thesis is to synthesize resistive tapers for the strip that produce desired bistatic scattering and backscattering patterns.

  16. [Progress in bio-based polyamides].

    PubMed

    Huang, Zhengqiang; Cui, Zhe; Zhang, Heming; Fu, Peng; Zhao, Qingxiang; Liu, Minying

    2016-06-25

    Bio-based polyamides are environment-friendly polymers. The precursors of bio-based polyamides come from bio-based materials such as castor oil, glucose and animal oil. Bio-based polyamides precursors include bio-based amino acids, bio-based lactams, bio-based diprotic acid and bio-based diamines. In this paper, we discussed the route of the precursors of bio-based polyamides that come from bio-based materials. We discussed the properties of bio-based polyamides. Bio-based PA11and bio-based PA1010 are well-known bio-based polyamides; we discussed the origin materials of the precursors, the route of manufacturing bio-based PA11 and PA1010, and their modifications status. The variety, classification and commercial production of bio-based polyamides were described in details, as well as bio-based polyamides development in China.

  17. Towards an implantable bio-sensor platform for continuous real-time monitoring of anti-epileptic drugs.

    PubMed

    Hammoud, Abbas; Chamseddine, Ahmad; Nguyen, Dang K; Sawan, Mohamad

    2016-08-01

    The need of continuous real-time monitoring device for in-vivo drug level detection has been widely articulated lately. Such monitoring could guide drug posology and timing of intake, detect low or high drug levels, in order to take adequate measures, and give clinicians a valuable window into patients' health and their response to therapeutics. This paper presents a novel implantable bio-sensor based on impedance measurement capable of continuously monitoring various antiepileptic drug levels. This portable point-of-care microsystem replaces large and stationary conventional macrosystems, and is a one of a kind system designed with an array of electrodes to monitor various anti-epileptic drugs rather than one drug. The micro-system consists of (i) the front-end circuit including an inductive coil to receive energy from an external base station, and to exchange data with the latter; (ii) the power management block; (iii) the readout and control block; and (iv) the biosensor array. The electrical circuitry was designed using the 0.18-um CMOS process technology intended to be miniature and consume ultra-low power.

  18. High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Maharjan, Makhan; Bhattarai, Arjun; Ulaganathan, Mani; Wai, Nyunt; Oo, Moe Ohnmar; Wang, Jing-Yuan; Lim, Tuti Mariana

    2017-09-01

    Activated carbon (AC) with high surface area (1901 m2 g-1) is synthesized from low cost bio-waste orange (Citrus sinensis) peel for vanadium redox flow battery (VRB). The composition, structure and electrochemical properties of orange peel derived AC (OP-AC) are characterized by elemental analyzer, field emission-scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy. CV results show that OP-AC coated bipolar plate demonstrates improved electro-catalytic activity in both positive and negative side redox couples than the pristine bipolar plate electrode and this is ascribed to the high surface area of OP-AC which provides effective electrode area and better contact between the porous electrode and bipolar plate. Consequently, the performance of VRB in a static cell shows higher energy efficiency for OP-AC electrode than the pristine electrode at all current densities tested. The results suggest the OP-AC to be a promising electrode for VRB applications and can be incorporated into making conducting plastics electrode to lower the VRB cell stack weight and cost.

  19. [A cold/heat property classification strategy based on bio-effects of herbal medicines].

    PubMed

    Jiang, Miao; Lv, Ai-Ping

    2014-06-01

    The property theory of Chinese herbal medicine (CHM) is regarded as the core and basic of Chinese medical theory, however, the underlying mechanism of the properties in CHMs remains unclear, which impedes a barrier for the modernization of Chinese herbal medicine. The properties of CHM are often categorized into cold and heat according to the theory of Chinese medicine, which are essential to guide the clinical application of CHMs. There is an urgent demand to build a cold/heat property classification model to facilitate the property theory of Chinese herbal medicine, as well as to clarify the controversial properties of some herbs. Based on previous studies on the cold/heat properties of CHM, in this paper, we described a novel strategy on building a cold/heat property classification model based on herbal bio-effect. The interdisciplinary cooperation of systems biology, pharmacological network, and pattern recognition technique might lighten the study on cold/heat property theory, provide a scientific model for determination the cold/heat property of herbal medicines, and a new strategy for expanding the Chinese herbal medicine resources as well.

  20. Electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes: FFT-impedance spectroscopy of the growth process and magnetic properties.

    PubMed

    Gerngross, Mark-Daniel; Carstensen, Jürgen; Föll, Helmut

    2014-01-01

    The electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes has been investigated by fast Fourier transform-impedance spectroscopy (FFT-IS) in the frequency range from 75 Hz to 18.5 kHz. The impedance data could be fitted very well using an electric circuit equivalent model with a series resistance connected in series to a simple resistor-capacitor (RC) element and a Maxwell element. Based on the impedance data, the Co deposition in ultra-high aspect ratio InP membranes can be divided into two different Co deposition processes. The corresponding share of each process on the overall Co deposition can be determined directly from the transfer resistances of the two processes. The impedance data clearly show the beneficial impact of boric acid on the Co deposition and also indicate a diffusion limitation of boric acid in ultra-high aspect ratio InP membranes. The grown Co nanowires are polycrystalline with a very small grain size. They show a narrow hysteresis loop with a preferential orientation of the easy magnetization direction along the long nanowire axis due to the arising shape anisotropy of the Co nanowires.

  1. Phase Competition Induced Bio-Electrochemical Resistance and Bio-Compatibility Effect in Nanocrystalline Zr x -Cu100-x Thin Films.

    PubMed

    Badhirappan, Geetha Priyadarshini; Nallasivam, Vignesh; Varadarajan, Madhuri; Leobeemrao, Vasantha Priya; Bose, Sivakumar; Venugopal, Elakkiya; Rajendran, Selvakumar; Angleo, Peter Chrysologue

    2018-07-01

    Nano-crystalline Zrx-Cu100-x (x = 20-100 at.%) thin films with thickness ranging from 50 to 185 nm were deposited by magnetron co-sputtering with individual Zr and Cu targets. The as-sputtered thin films were characterized by Field Emission Scanning Electron Microscope (FE-SEM), Atomic Force Microscopy (AFM) and Glancing Incidence X-ray Diffraction (GIXRD) for structural and morphological properties. The crystallite size was found to decrease from 57 nm to 37 nm upon increasing the Zr content from 20 to 30 at.% with slight increase in the lattice strain from 0.17 to 0.33%. Further, increase in Zr content to 40 at.% leads to increase in the crystallite size to 57 nm due to stabilization of C10Zr7 phase along with the presence of nanocrystalline Cu-Zr phase. A bimodal distribution of grain size was observed from FE-SEM micrograph was attributed to the highest surface roughness in Zr30Cu70 thin films comprised of Cu10Zr7, Cu9Zr2, Cu-Zr intermetallic phases. In-vitro electrochemical behaviors of nano-crystalline Zrx-Cu100-x thin films in simulated body fluid (SBF) were investigated using potentiodynamic polarization studies. Electrochemical impedance spectroscopy (EIS) data fitting by equivalent electrical circuit fit model suggests that inner bulk layer contributes to high bio-corrosion resistance in Zrx-Cu100-x thin films with increase in Zr content. The results of cyto-compatibility assay suggested that Zr-Cu thin film did not introduce cytotoxicity to osteoblast cells, indicating its suitability as a bio-coating for minimally invasive medical devices.

  2. Advancing sustainable forestry by using engineered wood or bio-composites

    Treesearch

    Jerrold E. Winandy

    2005-01-01

    As worldwide demand for timber and bio-fiber resources grows, sustainable resource management and industrial utilization must collaborate to develop a shared vision for both long-term sustainable management of forest and bio-resources and sustainable economic development. Engineered wood- and bio-composites offer a tool that can both achieve resource sustainability and...

  3. Method of detecting system function by measuring frequency response

    NASA Technical Reports Server (NTRS)

    Morrison, John L. (Inventor); Morrison, William H. (Inventor); Christophersen, Jon P. (Inventor)

    2012-01-01

    Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.

  4. Method of detecting system function by measuring frequency response

    DOEpatents

    Morrison, John L [Butte, MT; Morrison, William H [Manchester, CT; Christophersen, Jon P [Idaho Falls, ID

    2012-04-03

    Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.

  5. Human Aorta Is a Passive Pump

    NASA Astrophysics Data System (ADS)

    Pahlevan, Niema; Gharib, Morteza

    2012-11-01

    Impedance pump is a simple valveless pumping mechanism that operates based on the principles of wave propagation and reflection. It has been shown in a zebrafish that a similar mechanism is responsible for the pumping action in the embryonic heart during early stages before valve formation. Recent studies suggest that the cardiovascular system is designed to take advantage of wave propagation and reflection phenomena in the arterial network. Our aim in this study was to examine if the human aorta is a passive pump working like an impedance pump. A hydraulic model with different compliant models of artificial aorta was used for series of in-vitro experiments. The hydraulic model includes a piston pump that generates the waves. Our result indicates that wave propagation and reflection can create pumping mechanism in a compliant aorta. Similar to an impedance pump, the net flow and the flow direction depends on the frequency of the waves, compliance of the aorta, and the piston stroke.

  6. Can Total Body Resistance Measured Using Bioelectrical Impedance Analysis Be the Index of Dehydration in Older Japanese Patients?

    PubMed

    Shimizu, Miyuki; Kinoshita, Kensuke; Maeno, Takami; Kobayashi, Hiroyuki; Maeno, Tetsuhiro

    2017-11-01

    Dehydration in older patients has long been considered a significant health problem because it implies increased morbidity and mortality. However, dehydration is detected by a combination of physical signs and blood tests. For older people dwelling at home and in nursing homes, a simple and non-invasive method for detecting dehydration by caregivers is needed. The total body resistance is measured using bioelectrical impedance analysis and is known as an indicator of dehydration. There are no data from older Japanese patients on this issue. We performed this study to examine the relationship between dehydration and total body resistance in Japan. We performed blood tests and measured bioelectrical impedance in older outpatients aged ≥ 65 years from the Internal Medicine Department at Mito Kyodo General Hospital. Patients were classified as dehydrated and non-dehydrated using the dehydration index with a blood urea nitrogen/creatinine ratio > 20, and the mean total body resistance was compared between the two groups. Eighty-one patients were recruited in the study. In the dehydrated group, the mean total body resistance was 439 Ω at 50 kHz, which was significantly higher than that in the non-dehydrated group (408 Ω, P = 0.038). The total body resistance measurements can be used for simple assessment of dehydration among older Japanese patients.

  7. Measurement of thermal conductivity and thermal diffusivity using a thermoelectric module

    NASA Astrophysics Data System (ADS)

    Beltrán-Pitarch, Braulio; Márquez-García, Lourdes; Min, Gao; García-Cañadas, Jorge

    2017-04-01

    A proof of concept of using a thermoelectric module to measure both thermal conductivity and thermal diffusivity of bulk disc samples at room temperature is demonstrated. The method involves the calculation of the integral area from an impedance spectrum, which empirically correlates with the thermal properties of the sample through an exponential relationship. This relationship was obtained employing different reference materials. The impedance spectroscopy measurements are performed in a very simple setup, comprising a thermoelectric module, which is soldered at its bottom side to a Cu block (heat sink) and thermally connected with the sample at its top side employing thermal grease. Random and systematic errors of the method were calculated for the thermal conductivity (18.6% and 10.9%, respectively) and thermal diffusivity (14.2% and 14.7%, respectively) employing a BCR724 standard reference material. Although errors are somewhat high, the technique could be useful for screening purposes or high-throughput measurements at its current state. This new method establishes a new application for thermoelectric modules as thermal properties sensors. It involves the use of a very simple setup in conjunction with a frequency response analyzer, which provides a low cost alternative to most of currently available apparatus in the market. In addition, impedance analyzers are reliable and widely spread equipment, which facilities the sometimes difficult access to thermal conductivity facilities.

  8. Life science research and drug discovery at the turn of the 21st century: the experience of SwissBioGrid.

    PubMed

    den Besten, Matthijs; Thomas, Arthur J; Schroeder, Ralph

    2009-04-22

    It is often said that the life sciences are transforming into an information science. As laboratory experiments are starting to yield ever increasing amounts of data and the capacity to deal with those data is catching up, an increasing share of scientific activity is seen to be taking place outside the laboratories, sifting through the data and modelling "in silico" the processes observed "in vitro." The transformation of the life sciences and similar developments in other disciplines have inspired a variety of initiatives around the world to create technical infrastructure to support the new scientific practices that are emerging. The e-Science programme in the United Kingdom and the NSF Office for Cyberinfrastructure are examples of these. In Switzerland there have been no such national initiatives. Yet, this has not prevented scientists from exploring the development of similar types of computing infrastructures. In 2004, a group of researchers in Switzerland established a project, SwissBioGrid, to explore whether Grid computing technologies could be successfully deployed within the life sciences. This paper presents their experiences as a case study of how the life sciences are currently operating as an information science and presents the lessons learned about how existing institutional and technical arrangements facilitate or impede this operation. SwissBioGrid gave rise to two pilot projects: one for proteomics data analysis and the other for high-throughput molecular docking ("virtual screening") to find new drugs for neglected diseases (specifically, for dengue fever). The proteomics project was an example of a data management problem, applying many different analysis algorithms to Terabyte-sized datasets from mass spectrometry, involving comparisons with many different reference databases; the virtual screening project was more a purely computational problem, modelling the interactions of millions of small molecules with a limited number of protein targets on the coat of the dengue virus. Both present interesting lessons about how scientific practices are changing when they tackle the problems of large-scale data analysis and data management by means of creating a novel technical infrastructure. In the experience of SwissBioGrid, data intensive discovery has a lot to gain from close collaboration with industry and harnessing distributed computing power. Yet the diversity in life science research implies only a limited role for generic infrastructure; and the transience of support means that researchers need to integrate their efforts with others if they want to sustain the benefits of their success, which are otherwise lost.

  9. Design and analysis of unequal split Bagley power dividers

    NASA Astrophysics Data System (ADS)

    Abu-Alnadi, Omar; Dib, Nihad; Al-Shamaileh, Khair; Sheta, Abdelfattah

    2015-03-01

    In this article, we propose a general design procedure to develop unequal split Bagley power dividers (BPDs). Based on the mathematical approach carried out in the insight of simple circuit and transmission line theories, exact design equations for 3-way and 5-way BPDs are derived. Utilising the developed equations leads to power dividers with the ability of offering different output power ratios through a suitable choice of the characteristic impedances of the interconnecting transmission lines. For verification purposes, a 1:2:1 3-way, 1:2:1:2:1 5-way and 1:3:1:3:1 5-way BPDs are designed and fabricated. The experimental and full-wave simulation results prove the validity of the designed unequal split BPDs.

  10. Transmission Electron Microscopy as a Tool to Image Bio-Inorganic Nanohybrids: The Case of Phage-Gold Nanocomposites

    PubMed Central

    Cao, Binrui; Xu, Hong; Mao, Chuanbin

    2011-01-01

    In recent years, bio-inorganic nanohybrids composed of biological macromolecules and functional inorganic nanomaterials have revealed many unique properties that show promise for the future. Transmission electron microscopy (TEM) is a popular and relatively simple tool that can offer a direct visualization of the nanomaterials with high resolutions. When TEM is applied to visualize bio-inorganic nanohybrids, a treatment of negative staining is necessary due to the presence of biological molecules in the nanohybrids except for those with densely packed inorganic materials. However, the conventional negative-staining procedure for regular biological samples cannot be directly applied to such bio-inorganic nanohybrids. To image a specific bio-inorganic nanohybrid, negative-staining factors such as negative stain type, working pH, staining time, and drying method, should be identified. Currently, no detailed studies have been done to investigate how to adjust negative-staining factors based on specific bio-inorganic nanohybrids. In this study, bacteriophage-gold nanoparticle hybrids were chosen as a model to systematically study the effects of each factor on the negative staining of the nanohybrids. The best staining conditions for gold nanoparticle-phage nanohybrids were obtained and the effects of each factor on the negative staining of general nanohybrids were discussed. This work indicates that with proper staining it is possible to use TEM to directly visualize both biological and inorganic components without introducing any artifact. PMID:21678527

  11. Mechanical Impedance Modeling of Human Arm: A survey

    NASA Astrophysics Data System (ADS)

    Puzi, A. Ahmad; Sidek, S. N.; Sado, F.

    2017-03-01

    Human arm mechanical impedance plays a vital role in describing motion ability of the upper limb. One of the impedance parameters is stiffness which is defined as the ratio of an applied force to the measured deformation of the muscle. The arm mechanical impedance modeling is useful in order to develop a better controller for system that interacts with human as such an automated robot-assisted platform for automated rehabilitation training. The aim of the survey is to summarize the existing mechanical impedance models of human upper limb so to justify the need to have an improved version of the arm model in order to facilitate the development of better controller of such systems with ever increase in complexity. In particular, the paper will address the following issue: Human motor control and motor learning, constant and variable impedance models, methods for measuring mechanical impedance and mechanical impedance modeling techniques.

  12. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premnath, Priyatha, E-mail: priyatha.premnath@ryerson.ca; Tavangar, Amirhossein, E-mail: atavanga@ryerson.ca; Tan, Bo, E-mail: tanbo@ryerson.ca

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approachmore » to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel cancer cells while favoring the adhesion of normal cells. - Highlights: • Si platforms with cytophobic/philic patterns were developed to program cell growth. • Both nanotopography and chemistry contributed to the cytophobic property. • Cytophobic zones efficiently repel and drive HeLa cells to migrate to adhesive sites. • The approach enables cell patterning, directionality, channelling, and trapping. • This approach paves the way for developing anti-cancer platforms.« less

  13. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949-2015).

    PubMed

    Chung, Chao-Chen; Yang, Siang-Cing

    2016-02-19

    This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS). Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present research, technology, development and innovation (RTDI) policies as well as the influence of these policies on the functional dynamics of bio-ethanol innovation system, mechanisms prohibiting the system from flourishing are determined. It is suggested that the production of bio-ethanol in Taiwan would be achieved if the government: (1) fixes long-term targets for both domestic bio-ethanol development and emission reduction; and (2) comprehensively designs a set of interrelated RTDI policies in accordance with the functional pattern of the bio-ethanol innovation system and consistently implements these policies. If such measures were implemented, it is considered that the bio-ethanol innovation system in Taiwan would flourish.

  14. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949–2015)

    PubMed Central

    Chung, Chao-Chen; Yang, Siang-Cing

    2016-01-01

    This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS). Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present research, technology, development and innovation (RTDI) policies as well as the influence of these policies on the functional dynamics of bio-ethanol innovation system, mechanisms prohibiting the system from flourishing are determined. It is suggested that the production of bio-ethanol in Taiwan would be achieved if the government: (1) fixes long-term targets for both domestic bio-ethanol development and emission reduction; and (2) comprehensively designs a set of interrelated RTDI policies in accordance with the functional pattern of the bio-ethanol innovation system and consistently implements these policies. If such measures were implemented, it is considered that the bio-ethanol innovation system in Taiwan would flourish. PMID:26907306

  15. Simple method for preparation of nanostructurally organized spines of sand dollar Scaphechinus mirabilis (Agassiz, 1863).

    PubMed

    Ehrlich, Herman; Elkin, Yury N; Artoukov, Alexandr A; Stonik, Valentin A; Safronov, Peter P; Bazhenov, Vasily V; Kurek, Denis V; Varlamov, Valery P; Born, René; Meissner, Heike; Richter, Gert

    2011-06-01

    Unique skeletal formations of marine invertebrates, including representatives of Echinodermata, have the unique potential to serve as templates for bio-inspired materials chemistry, biomimetics, and materials science. The sand dollar Scaphechinus mirabilis (Agassiz, 1983) is widely distributed in the northwest of the Pacific Ocean from southern Japan to the Aleutian Islands. This animal is the main source of naphtochinone-based substances. These compounds have recently drawn medical attention for their use as cardiological and ophthalmological drugs. Unfortunately, after extraction of the naphtochinones, the residual skeletons and spines of the sand dollars were usually discarded. Here, we report the first method for the preparation of nanostructurally organized spines of S. mirabilis, using a simple enzymatic and hydrogen peroxide-based treatment. Application of this method opens the way for development of non-wasteful environmentally clean technology of sand dollars as well-known industrial marine invertebrates.

  16. The Hyper-Envelope Modeling Interface (HEMI): A Novel Approach Illustrated Through Predicting Tamarisk (Tamarix spp.) Habitat in the Western USA

    USGS Publications Warehouse

    Graham, Jim; Young, Nick; Jarnevich, Catherine S.; Newman, Greg; Evangelista, Paul; Stohlgren, Thomas J.

    2013-01-01

    Habitat suitability maps are commonly created by modeling a species’ environmental niche from occurrences and environmental characteristics. Here, we introduce the hyper-envelope modeling interface (HEMI), providing a new method for creating habitat suitability models using Bezier surfaces to model a species niche in environmental space. HEMI allows modeled surfaces to be visualized and edited in environmental space based on expert knowledge and does not require absence points for model development. The modeled surfaces require relatively few parameters compared to similar modeling approaches and may produce models that better match ecological niche theory. As a case study, we modeled the invasive species tamarisk (Tamarix spp.) in the western USA. We compare results from HEMI with those from existing similar modeling approaches (including BioClim, BioMapper, and Maxent). We used synthetic surfaces to create visualizations of the various models in environmental space and used modified area under the curve (AUC) statistic and akaike information criterion (AIC) as measures of model performance. We show that HEMI produced slightly better AUC values, except for Maxent and better AIC values overall. HEMI created a model with only ten parameters while Maxent produced a model with over 100 and BioClim used only eight. Additionally, HEMI allowed visualization and editing of the model in environmental space to develop alternative potential habitat scenarios. The use of Bezier surfaces can provide simple models that match our expectations of biological niche models and, at least in some cases, out-perform more complex approaches.

  17. Biomass Pyrolysis to Hydrocarbon Fuels in the Petroleum Refining Context: Cooperative Research and Development Final Report, CRADA Number CRD-12-500

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chum, Helena L.

    This work focuses on developing a thermochemical route to produce biofuels from agricultural wastes such as sugar cane bagasse, wood chips or corn stover; more specifically it intends to develop the biomass pyrolysis route, which produces bio-oils. Production of bio-oils by pyrolysis is a commercial technology. However, bio-oils are currently not being used for liquid fuels production. Although bio-oils can be produced by high-pressure liquefaction, pyrolysis is a less expensive technology. Nevertheless, bio-oils cannot be used directly as a transportation fuel without upgrading, since they are generally unstable, viscous, and acidic. Thus NREL and Petrobras intend to use their combinedmore » expertise to develop a two-step route to biofuels production: in the first step, a stable bio-oil is produced by NREL biomass pyrolysis technology, while in the second step it is upgraded by using two distinct catalytic processes under development by Petrobras. The first process converts bio-oil into gasoline, LPG, and fuel oil using the catalytic cracking process, while the second one, converts bio-oil into synthesis gas. Syngas gasification catalysts provided by both NREL and Petrobras will be tested. The work includes experiments at both sites to produce bio-oil and then biofuels, life-cycle analysis of each route, personnel training and development of analytical methods with a duration time of two years.« less

  18. Training mechanical engineering students to utilize biological inspiration during product development.

    PubMed

    Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W

    2007-12-01

    The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.

  19. Experiments in cooperative manipulation: A system perspective

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Cannon, Robert H., Jr.

    1989-01-01

    In addition to cooperative dynamic control, the system incorporates real time vision feedback, a novel programming technique, and a graphical high level user interface. By focusing on the vertical integration problem, not only these subsystems are examined, but also their interfaces and interactions. The control system implements a multi-level hierarchical structure; the techniques developed for operator input, strategic command, and cooperative dynamic control are presented. At the highest level, a mouse-based graphical user interface allows an operator to direct the activities of the system. Strategic command is provided by a table-driven finite state machine; this methodology provides a powerful yet flexible technique for managing the concurrent system interactions. The dynamic controller implements object impedance control; an extension of Nevill Hogan's impedance control concept to cooperative arm manipulation of a single object. Experimental results are presented, showing the system locating and identifying a moving object catching it, and performing a simple cooperative assembly. Results from dynamic control experiments are also presented, showing the controller's excellent dynamic trajectory tracking performance, while also permitting control of environmental contact force.

  20. Combined Dielectrophoresis and Impedance Systems for Bacteria Analysis in Microfluidic On-Chip Platforms

    PubMed Central

    Páez-Avilés, Cristina; Juanola-Feliu, Esteve; Punter-Villagrasa, Jaime; del Moral Zamora, Beatriz; Homs-Corbera, Antoni; Colomer-Farrarons, Jordi; Miribel-Català, Pere Lluís; Samitier, Josep

    2016-01-01

    Bacteria concentration and detection is time-consuming in regular microbiology procedures aimed to facilitate the detection and analysis of these cells at very low concentrations. Traditional methods are effective but often require several days to complete. This scenario results in low bioanalytical and diagnostic methodologies with associated increased costs and complexity. In recent years, the exploitation of the intrinsic electrical properties of cells has emerged as an appealing alternative approach for concentrating and detecting bacteria. The combination of dielectrophoresis (DEP) and impedance analysis (IA) in microfluidic on-chip platforms could be key to develop rapid, accurate, portable, simple-to-use and cost-effective microfluidic devices with a promising impact in medicine, public health, agricultural, food control and environmental areas. The present document reviews recent DEP and IA combined approaches and the latest relevant improvements focusing on bacteria concentration and detection, including selectivity, sensitivity, detection time, and conductivity variation enhancements. Furthermore, this review analyses future trends and challenges which need to be addressed in order to successfully commercialize these platforms resulting in an adequate social return of public-funded investments. PMID:27649201

  1. Modified rare earth semiconductor oxide as a new nucleotide probe.

    PubMed

    Shrestha, S; Mills, C E; Lewington, J; Tsang, S C

    2006-12-28

    Recent rapid developments in biological analysis, medical diagnosis, pharmaceutical industry, and environmental control fuel the urgent need for recognition of particular DNA sequences from samples. Currently, DNA detection techniques use radiochemical, enzymatic, fluorescent, or electrochemiluminescent methods; however, these techniques require costly labeled DNA and highly skilled and cumbersome procedure, which prohibit any in-situ monitoring. Here, we report that hybridization of surface-immobilized single-stranded oligonucleotide on praseodymium oxide (evaluated as a biosensor surface for the first time) with complimentary strands in solution provokes a significant shift of electrical impedance curve. This shift is attributed to a change in electrical characteristics through modification of surface charge of the underlying modified praseodymium oxide upon hybridization with the complementary oligonucelotide strand. On the other hand, using a noncomplementary single strand in solution does not create an equivalent change in the impedance value. This result clearly suggests that a new and simple electrochemical technique based on the change in electrical properties of the modified praseodymium oxide semiconductor surface upon recognition and transduction of a biological event without using labeled species is revealed.

  2. Highly sensitive dual mode electrochemical platform for microRNA detection

    NASA Astrophysics Data System (ADS)

    Jolly, Pawan; Batistuti, Marina R.; Miodek, Anna; Zhurauski, Pavel; Mulato, Marcelo; Lindsay, Mark A.; Estrela, Pedro

    2016-11-01

    MicroRNAs (miRNAs) play crucial regulatory roles in various human diseases including cancer, making them promising biomarkers. However, given the low levels of miRNAs present in blood, their use as cancer biomarkers requires the development of simple and effective analytical methods. Herein, we report the development of a highly sensitive dual mode electrochemical platform for the detection of microRNAs. The platform was developed using peptide nucleic acids as probes on gold electrode surfaces to capture target miRNAs. A simple amplification strategy using gold nanoparticles has been employed exploiting the inherent charges of the nucleic acids. Electrochemical impedance spectroscopy was used to monitor the changes in capacitance upon any binding event, without the need for any redox markers. By using thiolated ferrocene, a complementary detection mode on the same sensor was developed where the increasing peaks of ferrocene were recorded using square wave voltammetry with increasing miRNA concentration. This dual-mode approach allows detection of miRNA with a limit of detection of 0.37 fM and a wide dynamic range from 1 fM to 100 nM along with clear distinction from mismatched target miRNA sequences. The electrochemical platform developed can be easily expanded to other miRNA/DNA detection along with the development of microarray platforms.

  3. Phase sensitive diffraction sensor for high sensitivity refractive index measurement

    NASA Astrophysics Data System (ADS)

    Kumawat, Nityanand; Varma, Manoj; Kumar, Sunil

    2018-02-01

    In this study a diffraction based sensor has been developed for bio molecular sensing applications and performing assays in real time. A diffraction grating fabricated on a glass substrate produced diffraction patterns both in transmission and reflection when illuminated by a laser diode. We used zeroth order I(0,0) as reference and first order I(0,1) as signal channel and conducted ratiometric measurements that reduced noise by more than 50 times. The ratiometric approach resulted in a very simple instrumentation with very high sensitivity. In the past, we have shown refractive index measurements both for bulk and surface adsorption using the diffractive self-referencing approach. In the current work we extend the same concept to higher diffraction orders. We have considered order I(0,1) and I(1,1) and performed ratiometric measurements I(0,1)/I(1,1) to eliminate the common mode fluctuations. Since orders I(0,1) and I(1,1) behaved opposite to each other, the resulting ratio signal amplitude increased more than twice compared to our previous results. As a proof of concept we used different salt concentrations in DI water. Increased signal amplitude and improved fluid injection system resulted in more than 4 times improvement in detection limit, giving limit of detection 1.3×10-7 refractive index unit (RIU) compared to our previous results. The improved refractive index sensitivity will help significantly for high sensitivity label free bio sensing application in a very cost-effective and simple experimental set-up.

  4. Fabrication of two-dimensional visible wavelength nanoscale plasmonic structures using hydrogen silsesquioxane based resist

    NASA Astrophysics Data System (ADS)

    Smith, Kyle Z.; Gadde, Akshitha; Kadiyala, Anand; Dawson, Jeremy M.

    2016-03-01

    In recent years, the global market for biosensors has continued to increase in combination with their expanding use in areas such as biodefense/detection, home diagnostics, biometric identification, etc. A constant necessity for inexpensive, portable bio-sensing methods, while still remaining simple to understand and operate, is the motivation behind novel concepts and designs. Labeled visible spectrum bio-sensing systems provide instant feedback that is both simple and easy to work with, but are limited by the light intensity thresholds required by the imaging systems. In comparison, label-free bio-sensing systems and other detection modalities like electrochemical, frequency resonance, thermal change, etc., can require additional technical processing steps to convey the final result, increasing the system's complexity and possibly the time required for analysis. Further decrease in the detection limit can be achieved through the addition of plasmonic structures into labeled bio-sensing systems. Nano-structures that operate in the visible spectrum have feature sizes typically in the order of the operating wavelength, calling for high aspect ratio nanoscale fabrication capabilities. In order to achieve these dimensions, electron beam lithography (EBL) is used due to its accurate feature production. Hydrogen silsesquioxane (HSQ) based electron beam resist is chosen for one of its benefits, which is after exposure to oxygen plasma, the patterned resist cures into silicon dioxide (SiO2). These cured features in conjunction with nanoscale gold particles help in producing a high electric field through dipole generation. In this work, a detailed process flow of the fabrication of square lattice of plasmonic structures comprising of gold coated silicon dioxide pillars designed to operate at 560 nm wavelength and produce an intensity increase of roughly 100 percent will be presented.

  5. Assessing the Global Potential and Regional Implications of Promoting Bioenergy

    EPA Science Inventory

    There is no simple answer to the question “are materials from bio-based feedstocks environmentally, and socially, preferable?” Bioenergy as an alternative energy source might be effective in reducing fossil fuel use, slowing global warming effects, and providing increased revenue...

  6. Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration.

    PubMed

    Sauro, Herbert M; Hucka, Michael; Finney, Andrew; Wellock, Cameron; Bolouri, Hamid; Doyle, John; Kitano, Hiroaki

    2003-01-01

    Researchers in quantitative systems biology make use of a large number of different software packages for modelling, analysis, visualization, and general data manipulation. In this paper, we describe the Systems Biology Workbench (SBW), a software framework that allows heterogeneous application components--written in diverse programming languages and running on different platforms--to communicate and use each others' capabilities via a fast binary encoded-message system. Our goal was to create a simple, high performance, opensource software infrastructure which is easy to implement and understand. SBW enables applications (potentially running on separate, distributed computers) to communicate via a simple network protocol. The interfaces to the system are encapsulated in client-side libraries that we provide for different programming languages. We describe in this paper the SBW architecture, a selection of current modules, including Jarnac, JDesigner, and SBWMeta-tool, and the close integration of SBW into BioSPICE, which enables both frameworks to share tools and compliment and strengthen each others capabilities.

  7. Development on electromagnetic impedance function modeling and its estimation

    NASA Astrophysics Data System (ADS)

    Sutarno, D.

    2015-09-01

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition-as well as the far-field zones, and consequently the plane wave correction is no longer needed for the impedances. In the resulting robust impedance estimates, outlier contamination is removed and the self consistency between the real and imaginary parts of the impedance estimates is guaranteed. Using synthetic and real MT data, it is shown that the proposed robust estimation methods always yield impedance estimates which are better than the conventional least square (LS) estimation, even under condition of severe noise contamination. A recent development on the constrained robust CSAMT impedance estimation is also discussed. By using synthetic CSAMT data it is demonstrated that the proposed methods can produce usable CSAMT transfer functions for all measurement zones.

  8. Development on electromagnetic impedance function modeling and its estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutarno, D., E-mail: Sutarno@fi.itb.ac.id

    2015-09-30

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim atmore » reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition-as well as the far-field zones, and consequently the plane wave correction is no longer needed for the impedances. In the resulting robust impedance estimates, outlier contamination is removed and the self consistency between the real and imaginary parts of the impedance estimates is guaranteed. Using synthetic and real MT data, it is shown that the proposed robust estimation methods always yield impedance estimates which are better than the conventional least square (LS) estimation, even under condition of severe noise contamination. A recent development on the constrained robust CSAMT impedance estimation is also discussed. By using synthetic CSAMT data it is demonstrated that the proposed methods can produce usable CSAMT transfer functions for all measurement zones.« less

  9. A Computer Aided Broad Band Impedance Matching Technique Using a Comparison Reflectometer. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gordy, R. S.

    1972-01-01

    An improved broadband impedance matching technique was developed. The technique is capable of resolving points in the waveguide which generate reflected energy. A version of the comparison reflectometer was developed and fabricated to determine the mean amplitude of the reflection coefficient excited at points in the guide as a function of distance, and the complex reflection coefficient of a specific discontinuity in the guide as a function of frequency. An impedance matching computer program was developed which is capable of impedance matching the characteristics of each disturbance independent of other reflections in the guide. The characteristics of four standard matching elements were compiled, and their associated curves of reflection coefficient and shunt susceptance as a function of frequency are presented. It is concluded that an economical, fast, and reliable impedance matching technique has been established which can provide broadband impedance matches.

  10. Impact of hemodialysis on dual X-ray absorptiometry, bioelectrical impedance measurements, and anthropometry.

    PubMed

    Abrahamsen, B; Hansen, T B; Høgsberg, I M; Pedersen, F B; Beck-Nielsen, H

    1996-01-01

    Dual X-ray absorptiometry (DXA) performs noninvasive assessment of bone and soft tissue with high precision. However, soft tissue algorithms assume that 73.2% of the lean body mass is water, a potential source of error in fluid retention. We evaluated DXA (model QDR-2000; Hologic Inc, Waltham, MA), bioelectrical impedance analysis (BIA), and simple anthropometry in 19 patients (9 women and 10 men, mean age 46 y) before and after hemodialysis, removing 0.9-4.3 L (x: 2.8L) of ultrafiltrate. The reduction in fat-free mass (FFM) measured by DXA was highly correlated with the ultrafiltrate, as determined by the reduction in gravimetric weight (r = 0.975, P < 0.0001; SEE: 233 g), whereas BIA was considerably less accurate in assessing FFM reductions (r = 0.66, P < 0.01; SEE: 757 g). Lumbar bone mineral density (BMD) was unaffected by dialysis, as were whole-body fat and BMD. Whole-body bone mineral content, however, was estimated to be 0.6% lower after dialysis. None of the simple anthropometric measurements correlated significantly with the reduction in FFM. In an unmodified clinical setting, DXA appears to be superior to other simple noninvasive methods for determining body composition, particularly when the emphasis is on repeated measurements.

  11. Experiments with a Loudspeaker

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    A common moving-coil loudspeaker is useful for learning harmonic motion. A simple optical method is used to observe free and forced oscillations of the diaphragm of a loudspeaker. With a lock-in amplifier and data-acquisition system, the frequency response of the loudspeaker and its electrical impedance are automatically recorded versus frequency.…

  12. Bio-recognition and detection using liquid crystals.

    PubMed

    Hussain, A; Pina, A S; Roque, A C A

    2009-09-15

    Liquid crystals (LCs) are used extensively by the electronics industry as display devices. Advances in the understanding of the liquid crystalline phase and the chemistry therein lead to the development of LC exhibiting faster switching speed with greater twist angle. This in turn lead to the emergence of liquid crystal displays, rendering dial-and-needle based displays (such as those used in various meters) and cathode ray tubes obsolete. In this article, we review the history of LC and their emergence as an invaluable material for display devices and the more recent discovery of their use as sensing elements in biosensors. This new application of LC as tools in the development of fast and simple biosensors is envisaged to gain more importance in the foreseeable future.

  13. Bio-microfluidics: biomaterials and biomimetic designs.

    PubMed

    Domachuk, Peter; Tsioris, Konstantinos; Omenetto, Fiorenzo G; Kaplan, David L

    2010-01-12

    Bio-microfluidics applies biomaterials and biologically inspired structural designs (biomimetics) to microfluidic devices. Microfluidics, the techniques for constraining fluids on the micrometer and sub-micrometer scale, offer applications ranging from lab-on-a-chip to optofluidics. Despite this wealth of applications, the design of typical microfluidic devices imparts relatively simple, laminar behavior on fluids and is realized using materials and techniques from silicon planar fabrication. On the other hand, highly complex microfluidic behavior is commonplace in nature, where fluids with nonlinear rheology flow through chaotic vasculature composed from a range of biopolymers. In this Review, the current state of bio-microfluidic materials, designs and applications are examined. Biopolymers enable bio-microfluidic devices with versatile functionalization chemistries, flexibility in fabrication, and biocompatibility in vitro and in vivo. Polymeric materials such as alginate, collagen, chitosan, and silk are being explored as bulk and film materials for bio-microfluidics. Hydrogels offer options for mechanically functional devices for microfluidic systems such as self-regulating valves, microlens arrays and drug release systems, vital for integrated bio-microfluidic devices. These devices including growth factor gradients to study cell responses, blood analysis, biomimetic capillary designs, and blood vessel tissue culture systems, as some recent examples of inroads in the field that should lead the way in a new generation of microfluidic devices for bio-related needs and applications. Perhaps one of the most intriguing directions for the future will be fully implantable microfluidic devices that will also integrate with existing vasculature and slowly degrade to fully recapitulate native tissue structure and function, yet serve critical interim functions, such as tissue maintenance, drug release, mechanical support, and cell delivery.

  14. Multi-frequency parameter mapping of electrical impedance scanning using two kinds of circuit model.

    PubMed

    Liu, Ruigang; Dong, Xiuzhen; Fu, Feng; You, Fusheng; Shi, Xuetao; Ji, Zhenyu; Wang, Kan

    2007-07-01

    Electrical impedance scanning (EIS) is a kind of potential bio-impedance measurement technology, especially aiding the diagnosis of breast cancer in women. By changing the frequency of the driving signal in turn while keeping the other conditions stable, multi-frequency measurement results on the object can be obtained. According to the least square method and circuit theory, the parameters in two models are deduced when measured with data at multiple driving frequencies. The arcs, in the real and imaginary parts of a trans-admittance coordinate, made by the evaluated parameters fit well the realistic data measured by our EIS device on female subjects. The Cole-Cole model in the form of admittance is closer to the measured data than the three-element model. Based on the evaluation of the multi-frequency parameters, we presented parameter mapping of EIS using two kinds of circuit model: one is the three-element model in the form of admittance and the other is the Cole-Cole model in the form of admittance. Comparing with classical admittance mapping at a single frequency, the multi-frequency parameter mapping will provide a novel vision to study EIS. The multi-frequency approach can provide the mappings of four parameters, which is helpful to identify different diseases with a similar characteristic in classical EIS mapping. From plots of the real and imaginary parts of the admittance, it is easy to make sure whether there exists abnormal tissue.

  15. The Bio-Community Perl toolkit for microbial ecology.

    PubMed

    Angly, Florent E; Fields, Christopher J; Tyson, Gene W

    2014-07-01

    The development of bioinformatic solutions for microbial ecology in Perl is limited by the lack of modules to represent and manipulate microbial community profiles from amplicon and meta-omics studies. Here we introduce Bio-Community, an open-source, collaborative toolkit that extends BioPerl. Bio-Community interfaces with commonly used programs using various file formats, including BIOM, and provides operations such as rarefaction and taxonomic summaries. Bio-Community will help bioinformaticians to quickly piece together custom analysis pipelines and develop novel software. Availability an implementation: Bio-Community is cross-platform Perl code available from http://search.cpan.org/dist/Bio-Community under the Perl license. A readme file describes software installation and how to contribute. © The Author 2014. Published by Oxford University Press.

  16. A powerful and flexible approach to the analysis of RNA sequence count data

    PubMed Central

    Zhou, Yi-Hui; Xia, Kai; Wright, Fred A.

    2011-01-01

    Motivation: A number of penalization and shrinkage approaches have been proposed for the analysis of microarray gene expression data. Similar techniques are now routinely applied to RNA sequence transcriptional count data, although the value of such shrinkage has not been conclusively established. If penalization is desired, the explicit modeling of mean–variance relationships provides a flexible testing regimen that ‘borrows’ information across genes, while easily incorporating design effects and additional covariates. Results: We describe BBSeq, which incorporates two approaches: (i) a simple beta-binomial generalized linear model, which has not been extensively tested for RNA-Seq data and (ii) an extension of an expression mean–variance modeling approach to RNA-Seq data, involving modeling of the overdispersion as a function of the mean. Our approaches are flexible, allowing for general handling of discrete experimental factors and continuous covariates. We report comparisons with other alternate methods to handle RNA-Seq data. Although penalized methods have advantages for very small sample sizes, the beta-binomial generalized linear model, combined with simple outlier detection and testing approaches, appears to have favorable characteristics in power and flexibility. Availability: An R package containing examples and sample datasets is available at http://www.bios.unc.edu/research/genomic_software/BBSeq Contact: yzhou@bios.unc.edu; fwright@bios.unc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21810900

  17. Real-time video compressing under DSP/BIOS

    NASA Astrophysics Data System (ADS)

    Chen, Qiu-ping; Li, Gui-ju

    2009-10-01

    This paper presents real-time MPEG-4 Simple Profile video compressing based on the DSP processor. The programming framework of video compressing is constructed using TMS320C6416 Microprocessor, TDS510 simulator and PC. It uses embedded real-time operating system DSP/BIOS and the API functions to build periodic function, tasks and interruptions etcs. Realize real-time video compressing. To the questions of data transferring among the system. Based on the architecture of the C64x DSP, utilized double buffer switched and EDMA data transfer controller to transit data from external memory to internal, and realize data transition and processing at the same time; the architecture level optimizations are used to improve software pipeline. The system used DSP/BIOS to realize multi-thread scheduling. The whole system realizes high speed transition of a great deal of data. Experimental results show the encoder can realize real-time encoding of 768*576, 25 frame/s video images.

  18. The fabrication of subwavelength anti-reflective nanostructures using a bio-template

    NASA Astrophysics Data System (ADS)

    Xie, Guoyong; Zhang, Guoming; Lin, Feng; Zhang, Jin; Liu, Zhongfan; Mu, Shichen

    2008-03-01

    This paper describes a paradigm, a simple, low-cost and conventional approach to the fabrication of large-area subwavelength anti-reflective nanostructures on films directly with a bio-template. Specifically, the nano-nipple arrays on the surface of cicada wings have been precisely replicated to a PMMA (polymethyl methacrylate) film with high reproducibility by a technique of replica molding, which mainly involves two processes: one is that a negative Au mold is prepared directly from the bio-template of the cicada wing by thermal deposition; the other is that the Au mold is used to obtain the replica of the nanostructures on the original cicada wing by casting polymer. The reflectance spectra measurement shows that the replicated PMMA film can considerably reduce reflectivity at its surface over a large wavelength range from 250 to 800 nm, indicating that the anti-reflective property has also been inherited by the PMMA film.

  19. Identification of Ciprofloxacin Resistance by SimpleProbe (trademark), High Resolution Melt and Pyrosequencing (trademark) Nucleic Acid Analysis in Biothreat Agents: Bacillus anthracis, Yersinia pestis and Francisella tularensis

    DTIC Science & Technology

    2010-01-01

    A266/ C gyrB: F1163-BIO GTG TTG CAG CGA AAA AAG C R1469 ATA TCA AAA TCT CCG CCA ATG T S1309 50-ATC CAC CGG CAG AGT-30 G1309/ A S1431 AAT AAT TGT ACG...CAC TTC AT A1423/G parC: F177 AGC GTT CCG TAA GTC GGC TAA A R342-BIO CGG ATC CCC GTC AAC ACT S227 ACC CGC ACG GTG ATT C242/ Te Y. pestis KIM5 gryA...ACA TGG CAT TTT GAA AC R694-BIO GGA GTG TTT CAG CTT CTA GTT TAT GGT S625 AAG CTT ACA TGG CAT TTT GAA AC del: bp 653e657 (TTAAA) a F e Forward (Upstream

  20. Development of an ultra low noise, miniature signal conditioning device for vestibular evoked response recordings

    PubMed Central

    2014-01-01

    Background Inner ear evoked potentials are small amplitude (<1 μVpk) signals that require a low noise signal acquisition protocol for successful extraction; an existing such technique is Electrocochleography (ECOG). A novel variant of ECOG called Electrovestibulography (EVestG) is currently investigated by our group, which captures vestibular responses to a whole body tilt. The objective is to design and implement a bio-signal amplifier optimized for ECOG and EVestG, which will be superior in noise performance compared to low noise, general purpose devices available commercially. Method A high gain configuration is required (>85 dB) for such small signal recordings; thus, background power line interference (PLI) can have adverse effects. Active electrode shielding and driven-right-leg circuitry optimized for EVestG/ECOG recordings were investigated for PLI suppression. A parallel pre-amplifier design approach was investigated to realize low voltage, and current noise figures for the bio-signal amplifier. Results In comparison to the currently used device, PLI is significantly suppressed by the designed prototype (by >20 dB in specific test scenarios), and the prototype amplifier generated noise was measured to be 4.8 nV/Hz @ 1 kHz (0.45 μVRMS with bandwidth 10 Hz-10 kHz), which is lower than the currently used device generated noise of 7.8 nV/Hz @ 1 kHz (0.76 μVRMS). A low noise (<1 nV/Hz) radio frequency interference filter was realized to minimize noise contribution from the pre-amplifier, while maintaining the required bandwidth in high impedance measurements. Validation of the prototype device was conducted for actual ECOG recordings on humans that showed an increase (p < 0.05) of ~5 dB in Signal-to-Noise ratio (SNR), and for EVestG recordings using a synthetic ear model that showed a ~4% improvement (p < 0.01) over the currently used amplifier. Conclusion This paper presents the design and evaluation of an ultra-low noise and miniaturized bio-signal amplifier tailored for EVestG and ECOG. The increase in SNR for the implemented amplifier will reduce variability associated with bio-features extracted from such recordings; hence sensitivity and specificity measures associated with disease classification are expected to increase. Furthermore, immunity to PLI has enabled EVestG and ECOG recordings to be carried out in a non-shielded clinical environment. PMID:24468042

  1. Bio-Oil Analysis Laboratory Procedures | Bioenergy | NREL

    Science.gov Websites

    Bio-Oil Analysis Laboratory Procedures Bio-Oil Analysis Laboratory Procedures NREL develops standard procedures have been validated and allow for reliable bio-oil analysis. Procedures Determination different hydroxyl groups (-OH) in pyrolysis bio-oil: aliphatic-OH, phenolic-OH, and carboxylic-OH. Download

  2. Trace element reference values in tissues from inhabitants of the EU. XII. Development of BioReVa program for statistical treatment.

    PubMed

    Iversen, B S; Sabbioni, E; Fortaner, S; Pietra, R; Nicolotti, A

    2003-01-20

    Statistical data treatment is a key point in the assessment of trace element reference values being the conclusive stage of a comprehensive and organized evaluation process of metal concentration in human body fluids. The EURO TERVIHT project (Trace Elements Reference Values in Human Tissues) was started for evaluating, checking and suggesting harmonized procedures for the establishment of trace element reference intervals in body fluids and tissues. Unfortunately, different statistical approaches are being used in this research field making data comparison difficult and in some cases impossible. Although international organizations such as International Federation of Clinical Chemistry (IFCC) or International Union of Pure and Applied Chemistry (IUPAC) have issued recommended guidelines for reference values assessment, including the statistical data treatment, a unique format and a standardized data layout is still missing. The aim of the present study is to present a software (BioReVa) running under Microsoft Windows platform suitable for calculating the reference intervals of trace elements in body matrices. The main scope for creating an ease-of-use application was to control the data distribution, to establish the reference intervals according to the accepted recommendation, on the base of the simple statistic, to get a standard presentation of experimental data and to have an application to which further need could be integrated in future. BioReVa calculates the IFCC reference intervals as well as the coverage intervals recommended by IUPAC as a supplement to the IFCC intervals. Examples of reference values and reference intervals calculated with BioReVa software concern Pb and Se in blood; Cd, In and Cr in urine, Hg and Mo in hair of different general European populations. University of Michigan

  3. Estimation of fat-free mass in Asian neonates using bioelectrical impedance analysis

    PubMed Central

    Tint, Mya-Thway; Ward, Leigh C; Soh, Shu E; Aris, Izzuddin M; Chinnadurai, Amutha; Saw, Seang Mei; Gluckman, Peter D; Godfrey, Keith M; Chong, Yap-Seng; Kramer, Michael S; Yap, Fabian; Lingwood, Barbara; Lee, Yung Seng

    2016-01-01

    The aims of this study were to develop and validate a prediction equation of fat-free mass (FFM) based on bioelectrical impedance analysis (BIA) and anthropometry using air displacement plethysmography (ADP) as a reference in Asian neonates and to test the applicability of the prediction equations in independent Western cohort. A total of 173 neonates at birth and 140 at week-2 of age were included. Multiple linear regression analysis was performed to develop the prediction equations in a two-third randomly selected subset and validated on the remaining one-third subset at each time point and in an independent Queensland cohort. FFM measured by ADP was the dependent variable and anthropometric measures, sex and impedance quotient (L2/R50) were independent variables in the model. Accuracy of prediction equations were assessed using intra-class correlation and Bland-Altman analyses. L2/R50 was the significant predictor of FFM at week-2 but not at birth. Compared to the model using weight, sex and length, including L2/R50 slightly improved the prediction with a bias of 0.01kg with 2SD limits of agreement (LOA) (0.18, −0.20). Prediction explained 88.9% of variation but not beyond that of anthropometry. Applying these equations to Queensland cohort provided similar performance at the appropriate age. However, when the Queensland equations were applied to our cohort, the bias increased slightly but with similar LOA. BIA appears to have limited use in predicting FFM in the first few weeks of life compared to simple anthropometry in Asian populations. There is a need for population and age appropriate FFM prediction equations. PMID:26856420

  4. Estimation of fat-free mass in Asian neonates using bioelectrical impedance analysis.

    PubMed

    Tint, Mya-Thway; Ward, Leigh C; Soh, Shu E; Aris, Izzuddin M; Chinnadurai, Amutha; Saw, Seang Mei; Gluckman, Peter D; Godfrey, Keith M; Chong, Yap-Seng; Kramer, Michael S; Yap, Fabian; Lingwood, Barbara; Lee, Yung Seng

    2016-03-28

    The aims of this study were to develop and validate a prediction equation of fat-free mass (FFM) based on bioelectrical impedance analysis (BIA) and anthropometry using air-displacement plethysmography (ADP) as a reference in Asian neonates and to test the applicability of the prediction equations in an independent Western cohort. A total of 173 neonates at birth and 140 at two weeks of age were included. Multiple linear regression analysis was performed to develop the prediction equations in a two-third randomly selected subset and validated on the remaining one-third subset at each time point and in an independent Queensland cohort. FFM measured by ADP was the dependent variable, and anthropometric measures, sex and impedance quotient (L2/R50) were independent variables in the model. Accuracy of prediction equations was assessed using intra-class correlation and Bland-Altman analyses. L2/R50 was the significant predictor of FFM at week two but not at birth. Compared with the model using weight, sex and length, including L2/R50 slightly improved the prediction with a bias of 0·01 kg with 2 sd limits of agreement (LOA) (0·18, -0·20). Prediction explained 88·9 % of variation but not beyond that of anthropometry. Applying these equations to the Queensland cohort provided similar performance at the appropriate age. However, when the Queensland equations were applied to our cohort, the bias increased slightly but with similar LOA. BIA appears to have limited use in predicting FFM in the first few weeks of life compared with simple anthropometry in Asian populations. There is a need for population- and age-appropriate FFM prediction equations.

  5. Assessment by bioimpedance of forearm cell mass: a new approach to calibration.

    PubMed

    Pietrobelli, A; Nuñez, C; Zingaretti, G; Battistini, N; Morini, P; Wang, Z M; Yasumura, S; Heymsfield, S B

    2002-08-01

    Changes in skeletal muscle mass are involved in several important clinical disorders including sarcopenia and obesity. Unlike body fat, skeletal muscle is difficult to quantify in vivo, particularly without highly specialized equipment. The present study had a two-fold aim: to develop a regional (40)K counter for non-invasively estimating cell mass in the arm, mainly skeletal muscle cell mass, without radiation exposure; and to test the hypothesis that cell mass in the arm is highly correlated with electrical impedance after adjusting for the arm's length. Forearm cell mass was estimated using a rectangular lead-shielded (40)K counter with 4-NaI crystals; impedance of the arm was measured at multiple frequencies using a segmental bioimpedance analysis (BIA) system. The system's within- and between-day coefficient of variation (CV) for (40)K-derived elemental potassium averaged 1.8+/-1.3 and 5.8+/-1.2%, respectively. The corresponding BIA system's CVs were 1.0+/-0.4 and 2.1+/-1.0%, respectively. Participants in the study were 15 healthy adults (eight females, seven males; age 39+/-2.8 y, BMI 22.9+/-4.5 kg/m(2)). The right arm's K (5.2+/-1.7 g) was highly correlated with length-adjusted impedance (r(2)=0.81, 0.82, and 0.83 for 5, 50 and 300 kHz, respectively; all P<0.001); multiple regression analysis showed no additional improvement by adding age or sex to the prediction models. These results demonstrate the feasibility of calibrating BIA-measured electrical properties of the arm against estimates of arm cell mass, mainly of skeletal muscle, obtained by regional (40)K counting. This simple and practical approach should facilitate the development of BIA-based regional cell mass prediction formulas

  6. Anatomy of BioJS, an open source community for the life sciences.

    PubMed

    Yachdav, Guy; Goldberg, Tatyana; Wilzbach, Sebastian; Dao, David; Shih, Iris; Choudhary, Saket; Crouch, Steve; Franz, Max; García, Alexander; García, Leyla J; Grüning, Björn A; Inupakutika, Devasena; Sillitoe, Ian; Thanki, Anil S; Vieira, Bruno; Villaveces, José M; Schneider, Maria V; Lewis, Suzanna; Pettifer, Steve; Rost, Burkhard; Corpas, Manuel

    2015-07-08

    BioJS is an open source software project that develops visualization tools for different types of biological data. Here we report on the factors that influenced the growth of the BioJS user and developer community, and outline our strategy for building on this growth. The lessons we have learned on BioJS may also be relevant to other open source software projects.

  7. Dielectrophoresis and its application to biomedical diagnostics platforms

    NASA Astrophysics Data System (ADS)

    Basuray, Sagnik

    Novel pathogenic diagnostics and on field devices to attest their growth have been the current norm of scientific research and curiosity. Microfluidics and Nanofluidics have recently been on the forefront of the development of these devices for their inherent advantages of large surface to volume ratio and small diffusion times. With the advancement of soft lithographic techniques, the devices can be easily adapted for medical systems and bio-diagnostic devices to study mechanistic pathways of bio-molecules, bio-chemical reactions and as delivery modules for drug. However, the lack of better sensors, other than optics, to detect low bio-particle numbers in real samples have made the instruments bulky, expensive and not suitable for field use. Thus there is an urgent need to develop label-free, portable, inexpensive, rapid diagnostic devices. In order to achieve a viable device, researchers in these fields have been using dielectrophoresis as the mechanism of choice for a variety of tasks, from particle manipulation, to delivery, to movement of the particles through the fluid. However, the exact physical mechanism for not only the dielectrophoresis of the colloidal assembly is unclear, but the dielectrophoresis of single bio-particles/charged nano-colloids is not understood fully. In this thesis, I present a theory for charged nano-colloid dielectrophoresis taking into account the surface charge and Debye double layer effects. The exact mechanism of the origin of the Stern layer, through the surface conductance effect of a nano-colloid to form a collapsed diffuse layer that renders a nano-colloid conductive at sub-optical frequency has been formulated. This effect is utilized to optimize a nano-colloid assay to detect DNA hybridization. The collapsed diffuse layer kinetics with thick diffuse layer is solved, using spherical harmonics of the Bessel solution of the Poisson equation, to give a modified Clausius-Mosotti factor, that accounts for the size dependent monotonic rise in crossover frequency, unlike in classical theories. This effect is used to design molecular detection platform based on dielectrophoretic trapping of carbon nano-tube (CNT) in an inter-digitized microfluidics platform. The platform can distinguish the target DNA from a heterogeneous DNA mixture or from 3 base mismatched congenic species based on the different electrical impedance signatures (EIS). The open flow device uses shear enhanced discrimination to shear off the non-target biomolecules from CNT surface and also remove the parasitic double layer signal to high frequency for high resolution of the hybridization signal unlike batch processes. It is used to dielectrophoretically trap DNAs, RNAs and biomolecule from a flowing solution to the CNT surface to allow for very rapid, sensitive and selective detection. We designed a rapid, inexpensive, sensitive real time polymerase chain reaction detector; the nano-slot that used dielectrophoresis and EIS to concentrate the DNA molecules for real time detection near a nano-slot.

  8. Bio-inspired Fabrication of Complex Hierarchical Structure in Silicon.

    PubMed

    Gao, Yang; Peng, Zhengchun; Shi, Tielin; Tan, Xianhua; Zhang, Deqin; Huang, Qiang; Zou, Chuanping; Liao, Guanglan

    2015-08-01

    In this paper, we developed a top-down method to fabricate complex three dimensional silicon structure, which was inspired by the hierarchical micro/nanostructure of the Morpho butterfly scales. The fabrication procedure includes photolithography, metal masking, and both dry and wet etching techniques. First, microscale photoresist grating pattern was formed on the silicon (111) wafer. Trenches with controllable rippled structures on the sidewalls were etched by inductively coupled plasma reactive ion etching Bosch process. Then, Cr film was angled deposited on the bottom of the ripples by electron beam evaporation, followed by anisotropic wet etching of the silicon. The simple fabrication method results in large scale hierarchical structure on a silicon wafer. The fabricated Si structure has multiple layers with uniform thickness of hundreds nanometers. We conducted both light reflection and heat transfer experiments on this structure. They exhibited excellent antireflection performance for polarized ultraviolet, visible and near infrared wavelengths. And the heat flux of the structure was significantly enhanced. As such, we believe that these bio-inspired hierarchical silicon structure will have promising applications in photovoltaics, sensor technology and photonic crystal devices.

  9. bioWeb3D: an online webGL 3D data visualisation tool.

    PubMed

    Pettit, Jean-Baptiste; Marioni, John C

    2013-06-07

    Data visualization is critical for interpreting biological data. However, in practice it can prove to be a bottleneck for non trained researchers; this is especially true for three dimensional (3D) data representation. Whilst existing software can provide all necessary functionalities to represent and manipulate biological 3D datasets, very few are easily accessible (browser based), cross platform and accessible to non-expert users. An online HTML5/WebGL based 3D visualisation tool has been developed to allow biologists to quickly and easily view interactive and customizable three dimensional representations of their data along with multiple layers of information. Using the WebGL library Three.js written in Javascript, bioWeb3D allows the simultaneous visualisation of multiple large datasets inputted via a simple JSON, XML or CSV file, which can be read and analysed locally thanks to HTML5 capabilities. Using basic 3D representation techniques in a technologically innovative context, we provide a program that is not intended to compete with professional 3D representation software, but that instead enables a quick and intuitive representation of reasonably large 3D datasets.

  10. The Bio Bay Game: Three-Dimensional Learning of Biomagnification

    PubMed Central

    JASTI, CHANDANA; LAUREN, HILLARY; WALLON, ROBERT C.; HUG, BARBARA

    2016-01-01

    Pressing concerns about sustainability and the state of the environment amplify the need to teach students about the connections between ecosystem health, toxicology, and human health. Additionally, the Next Generation Science Standards call for three-dimensional science learning, which integrates disciplinary core ideas, scientific practices, and crosscutting concepts. The Bio Bay Game is a way to teach students about the biomagnification of toxicants across trophic levels while engaging them in three-dimensional learning. In the game, the class models the biomagnification of mercury in a simple aquatic food chain as they play the roles of anchovies, tuna, and humans. While playing, the class generates data, which they analyze after the game to graphically visualize the buildup of toxicants. Students also read and discuss two articles that draw connections to a real-world case. The activity ends with students applying their understanding to evaluate the game as a model of biomagnification. Throughout the activity, students practice modeling and data analysis and engage with the crosscutting concepts of patterns and cause and effect to develop an understanding of core ideas about the connections between humans and the environment. PMID:27990023

  11. The Bio Bay Game: Three-Dimensional Learning of Biomagnification.

    PubMed

    Jasti, Chandana; Lauren, Hillary; Wallon, Robert C; Hug, Barbara

    2016-01-01

    Pressing concerns about sustainability and the state of the environment amplify the need to teach students about the connections between ecosystem health, toxicology, and human health. Additionally, the Next Generation Science Standards call for three-dimensional science learning, which integrates disciplinary core ideas, scientific practices, and crosscutting concepts. The Bio Bay Game is a way to teach students about the biomagnification of toxicants across trophic levels while engaging them in three-dimensional learning. In the game, the class models the biomagnification of mercury in a simple aquatic food chain as they play the roles of anchovies, tuna, and humans. While playing, the class generates data, which they analyze after the game to graphically visualize the buildup of toxicants. Students also read and discuss two articles that draw connections to a real-world case. The activity ends with students applying their understanding to evaluate the game as a model of biomagnification. Throughout the activity, students practice modeling and data analysis and engage with the crosscutting concepts of patterns and cause and effect to develop an understanding of core ideas about the connections between humans and the environment.

  12. Optical and electrical interfacing technologies for living cell bio-chips.

    PubMed

    Shacham-Diamand, Y; Belkin, S; Rishpon, J; Elad, T; Melamed, S; Biran, A; Yagur-Kroll, S; Almog, R; Daniel, R; Ben-Yoav, H; Rabner, A; Vernick, S; Elman, N; Popovtzer, R

    2010-06-01

    Whole-cell bio-chips for functional sensing integrate living cells on miniaturized platforms made by micro-system-technologies (MST). The cells are integrated, deposited or immersed in a media which is in contact with the chip. The cells behavior is monitored via electrical, electrochemical or optical methods. In this paper we describe such whole-cell biochips where the signal is generated due to the genetic response of the cells. The solid-state platform hosts the biological component, i.e. the living cells, and integrates all the required micro-system technologies, i.e. the micro-electronics, micro-electro optics, micro-electro or magneto mechanics and micro-fluidics. The genetic response of the cells expresses proteins that generate: a. light by photo-luminescence or bioluminescence, b. electrochemical signal by interaction with a substrate, or c. change in the cell impedance. The cell response is detected by a front end unit that converts it to current or voltage amplifies and filters it. The resultant signal is analyzed and stored for further processing. In this paper we describe three examples of whole-cell bio chips, photo-luminescent, bioluminescent and electrochemical, which are based on the genetic response of genetically modified E. coli microbes integrated on a micro-fluidics MEMS platform. We describe the chip outline as well as the basic modeling scheme of such sensors. We discuss the highlights and problems of such system, from the point of view of micro-system-technology.

  13. Electricity from the Silk Cocoon Membrane

    PubMed Central

    Tulachan, Brindan; Meena, Sunil Kumar; Rai, Ratan Kumar; Mallick, Chandrakant; Kusurkar, Tejas Sanjeev; Teotia, Arun Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Bhattacharya, Shantanu; Kumar, Ashok; Sharma, Raj Kishore; Sinha, Neeraj; Singh, Sushil Kumar; Das, Mainak

    2014-01-01

    Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management. PMID:24961354

  14. Electricity from the silk cocoon membrane.

    PubMed

    Tulachan, Brindan; Meena, Sunil Kumar; Rai, Ratan Kumar; Mallick, Chandrakant; Kusurkar, Tejas Sanjeev; Teotia, Arun Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Bhattacharya, Shantanu; Kumar, Ashok; Sharma, Raj Kishore; Sinha, Neeraj; Singh, Sushil Kumar; Das, Mainak

    2014-06-25

    Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management.

  15. Electricity from the Silk Cocoon Membrane

    NASA Astrophysics Data System (ADS)

    Tulachan, Brindan; Meena, Sunil Kumar; Rai, Ratan Kumar; Mallick, Chandrakant; Kusurkar, Tejas Sanjeev; Teotia, Arun Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Bhattacharya, Shantanu; Kumar, Ashok; Sharma, Raj Kishore; Sinha, Neeraj; Singh, Sushil Kumar; Das, Mainak

    2014-06-01

    Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management.

  16. A Simultaneous and Continuous Excitation Method for High-Speed Electrical Impedance Tomography with Reduced Transients and Noise Sensitivity

    PubMed Central

    Mylvaganam, Saba

    2018-01-01

    This paper presents a concept for soft field tomographic scan of all the projections of electromagnetic waves emanating from an array of electrodes. Instead of the sequential excitation of all pairs of electrodes in the list of all projections, the new method present here consists of a single and continuous excitation. This excitation signal is the linear combination of the excitation signals in the projection set at different AC frequencies. The response to a given projection is discriminated by selecting the corresponding AC frequency component in the signal spectra of the digitally demodulated signals. The main advantage of this method is the suppression of transients after each projection, which is particularly problematic in electrical impedance tomography due to contact impedance phenomena and skin effect. The second benefit over the sequential scan method is the increased number of samples for each measurement for reduced noise sensitivity with digital demodulation. The third benefit is the increased temporal resolution in high-speed applications. The main drawback is the increased number of signal sources required (one per electrode). This paper focuses on electrical impedance tomography, based on earlier work by the authors. An experimental proof-of-concept using a simple 4-electrodes electrical impedance tomographic system is presented using simulations and laboratory data. The method presented here may be extended to other modalities (ultrasonic, microwave, optical, etc.). PMID:29597327

  17. Calculating realistic voltages across the US power grid utilizing measured impedances and magnetic fields

    NASA Astrophysics Data System (ADS)

    Lucas, G.; Love, J. J.; Kelbert, A.; Bedrosian, P.; Rigler, E. J.

    2017-12-01

    Space weather induces significant geoelectric fields within Earth's subsurface that can adversely affect electric power grids. The complex interaction between space weather and the solid Earth has traditionally been approached with the use of simple 1-D impedance functions relating the inducing magnetic field to the induced geoelectric field. Ongoing data collection through the NSF EarthScope program has produced measured impedance data across much of the continental US. In this work, impedance data are convolved with magnetic field variations, obtained from USGS magnetic observatories, during a geomagnetic storm. This convolution produces geoelectric fields within the earth. These geoelectric fields are then integrated across power transmission lines to determine the voltage generated within each power line as a function of time during a geomagnetic storm. The voltages generated within the electric power grid will be shown for several historic geomagnetic storms. The estimated voltages calculated from 1-D and 3-D impedances differ by more than 100 V across some transmission lines. In combination with grounding resistance data and network topology, these voltage estimates can be utilized by power companies to estimate geomagnetically-induced currents throughout the network. These voltage estimates can provide information on which power lines are most vulnerable to geomagnetic storms, and assist power grid companies investigating where to install additional protections within their grid.

  18. Damage Diagnosis in Semiconductive Materials Using Electrical Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.; Hinton, Yolanda L.

    2008-01-01

    Recent aerospace industry trends have resulted in an increased demand for real-time, effective techniques for in-flight structural health monitoring. A promising technique for damage diagnosis uses electrical impedance measurements of semiconductive materials. By applying a small electrical current into a material specimen and measuring the corresponding voltages at various locations on the specimen, changes in the electrical characteristics due to the presence of damage can be assessed. An artificial neural network uses these changes in electrical properties to provide an inverse solution that estimates the location and magnitude of the damage. The advantage of the electrical impedance method over other damage diagnosis techniques is that it uses the material as the sensor. Simple voltage measurements can be used instead of discrete sensors, resulting in a reduction in weight and system complexity. This research effort extends previous work by employing finite element method models to improve accuracy of complex models with anisotropic conductivities and by enhancing the computational efficiency of the inverse techniques. The paper demonstrates a proof of concept of a damage diagnosis approach using electrical impedance methods and a neural network as an effective tool for in-flight diagnosis of structural damage to aircraft components.

  19. Mast cell-based electrochemical biosensor for quantification of the major shrimp allergen Pen a 1 (tropomyosin).

    PubMed

    Jiang, Donglei; Ji, Jian; An, Lu; Sun, Xiulan; Zhang, Yinzhi; Zhang, Genyi; Tang, Lili

    2013-12-15

    A novel cell-based electrochemical biosensor was developed to quantify major shrimp allergen Pen a 1 (tropomyosin) and to assess its immunoglobulin E (IgE)-mediated hypersensitivity. Rat basophilic leukemia (RBL-2H3) mast cells, encapsulated in type I collagen, were immobilized on a self-assembled l-cysteine/gold nanoparticle (AuNPsCys)-modified gold electrode to monitor IgE-mediated mast cell sensitization and activation. The exposure of dinitrophenol-bovine serum albumin (DNP-BSA), as a model antigen that stimulates mast cells, induced a robust and long-lasting electrochemical impedance signal in a dose-dependent manner which efficiently measured degranulation of anti-DNP IgE-stimulated mast cells. Then this mast cell-based biosensor was applied into quantification for the shrimp allergen with anti-shrimp tropomyosin IgE-sensitization. The electrochemical impedance spectroscopy (EIS) results showed that the impedance value (Ret) increased with the concentration of purified shrimp allergen Pen a 1 (tropomyosin) in range of 0.5-0.25 μg mL(-1) with the detection limit as 0.15 μg mL(-1), and the electrochemical result was confirmed by β-hexosaminidase assay and scanning electron microscopic morphological (SEM) analysis. Thus, a simple, label-free, and sensitive method for the determination of shrimp allergens was proposed and demonstrated here, implying a highly versatile biosensor for food allergen detection and prediction. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. What the electrical impedance can tell about the intrinsic properties of an electrodynamic shaker

    PubMed Central

    Lütkenhöner, Bernd

    2017-01-01

    Small electrodynamic shakers are becoming increasingly popular for diagnostic investigations of the human vestibular system. More specifically, they are used as mechanical stimulators for eliciting a vestibular evoked myogenic potential (VEMP). However, it is largely unknown how shakers perform under typical measurement conditions, which considerably differ from the normal use of a shaker. Here, it is shown how the basic properties of a shaker can be determined without requiring special sensors such as accelerometers or force gauges. In essence, the mechanical parts of the shaker leave a signature in the electrical impedance, and an interpretation of this signature using a simple model allows for drawing conclusions about the properties of the shaker. The theory developed (which is quite general so that it is usable also in other contexts) is applied to experimental data obtained for the minishaker commonly used in VEMP measurements. It is shown that the experimental conditions substantially influence the properties of the shaker. Relevant factors are, in particular, the spatial orientation of the shaker (upright, horizontal or upside-down) and the static force acting on the table of the shaker (which in a real measurement corresponds to the force by which the shaker is pressed against the test person’s head). These results underline the desirability of a proper standardization of VEMP measurements. Direct measurements of displacement and acceleration prove the consistency of the conclusions derived from the electrical impedance. PMID:28328999

  1. BioPlex Display: An Interactive Suite for Large-Scale AP-MS Protein-Protein Interaction Data.

    PubMed

    Schweppe, Devin K; Huttlin, Edward L; Harper, J Wade; Gygi, Steven P

    2018-01-05

    The development of large-scale data sets requires a new means to display and disseminate research studies to large audiences. Knowledge of protein-protein interaction (PPI) networks has become a principle interest of many groups within the field of proteomics. At the confluence of technologies, such as cross-linking mass spectrometry, yeast two-hybrid, protein cofractionation, and affinity purification mass spectrometry (AP-MS), detection of PPIs can uncover novel biological inferences at a high-throughput. Thus new platforms to provide community access to large data sets are necessary. To this end, we have developed a web application that enables exploration and dissemination of the growing BioPlex interaction network. BioPlex is a large-scale interactome data set based on AP-MS of baits from the human ORFeome. The latest BioPlex data set release (BioPlex 2.0) contains 56 553 interactions from 5891 AP-MS experiments. To improve community access to this vast compendium of interactions, we developed BioPlex Display, which integrates individual protein querying, access to empirical data, and on-the-fly annotation of networks within an easy-to-use and mobile web application. BioPlex Display enables rapid acquisition of data from BioPlex and development of hypotheses based on protein interactions.

  2. Damage detection of civil infrastructures with piezoelectric oscillator sensors

    NASA Astrophysics Data System (ADS)

    Roh, Y. R.; Kim, D. Y.; Park, S. H.; Yun, C. B.

    2006-03-01

    Many researches have been reported on the condition monitoring of civil infrastructures by means of piezoelectric sensors. Most of them made use of the impedance change of the piezoelectric device in relation to the creation of internal damages to the structure. The impedance measurement is a well accepted method in the piezoelectric sensor area, and has been proved by many authors to be useful for civil structure diagnosis. However, the impedance measurement normally requires sophisticated equipment and analysis technology. For more general and wide application of the piezoelectric diagnosis tool, a new methodology is desired to overcome the limitations of the impedance measurement. This paper presents the feasibility of a piezoelectric oscillator sensor to detect the damages in civil infrastructures. The oscillator sensor is composed of an electronic feedback oscillator circuit and a piezoelectric thickness mode vibrator to be attached to the structure of interest. Damage to the structure causes a change in the impedance spectrum of the structure, which results in a corresponding change of the resonant frequency of the structure. The oscillator sensors can instantly detect the frequency change in a very simple manner. Feasibility of the piezoelectric oscillator sensor was verified in this work with a sample aluminum plate where artificial cracks of different depth were imposed in sequence. Validity of the measurement was confirmed through comparison of the experimental data with the results of finite element analyses of the plate with cracks. Performance of the oscillator sensor was also compared with that of its conventional counterpart, i.e. impedance measurement, to manifest the superiority of the oscillator sensor.

  3. Preliminary study on an innovative, simple mast cell-based electrochemical method for detecting foodborne pathogenic bacterial quorum signaling molecules (N-acyl-homoserine-lactones).

    PubMed

    Jiang, Donglei; Feng, Dongdong; Jiang, Hui; Yuan, Limin; Yongqi, Yin; Xu, Xin; Fang, Weiming

    2017-04-15

    This paper reports the a novel and simple mast cell-based electrochemical method for detecting of bacterial quorum signaling molecules, N-acylhomoserine lactones (AHLs), which can be utilized to preliminarily evaluate the toxicity of food-borne pathogenic bacteria. Rat basophilic leukemia (RBL-2H3) mast cells encapsulated in alginate/graphene oxide hydrogel were immobilized on a gold electrode, while mast cells as recognition elements were cultured in a 3D cell culture system. Electrochemical impedance spectroscopy (EIS) was utilized to record the cell impedance signal as-influenced by Pseudomonas aeruginosa quorum-sensing molecule, N-3-oxododecanoyl homoserine lactone (3OC 12 -HSL). The results indicated that cellular activities such as cell viability, apoptosis, intracellular calcium, and degranulation were markedly influenced by the AHLs. Importantly, the exposure of 3OC 12 -HSL to mast cells induced a marked decrease in the electrochemical impedance signal in a dose-dependent manner. The detection limit for 3OC 12 -HSL was 0.034μM with a linear range of 0.1-1μM. These results were confirmed via conventional cell assay and transmission electron microscope (TEM) analysis. Altogether, the proposed method appears to be an innovative and effective approach to the quantitative measurement of Gram-negative bacterial quorum signaling molecules; to this effect, it also may serve as a primary evaluation of the cytotoxicity of food-borne pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A theoretical and experimental investigation of impact control for manipulators

    NASA Technical Reports Server (NTRS)

    Volpe, Richard; Khosla, Pradeep

    1993-01-01

    This article describes a simple control strategy for stable hardon-hard contact of a manipulator with the environment. The strategy is motivated by recognition of the equivalence of proportional gain explicit force control and impedance control. It is shown that negative proportional force gains, or impedance mass ratios less than unity, can equivalently provide excellent impact response without bouncing. This result is indicated by an analysis performed with an experimentally determined arm/sensor/environment model. The results are corroborated by experimental data from implementation of the control algorithms on the CMU DD Arm II system. The results confirm that manipulator impact against a stiff environment without bouncing can be readily handled by this novel control strategy.

  5. An efficient polymeric micromotor doped with Pt nanoparticle@carbon nanotubes for complex bio-media.

    PubMed

    Li, Yana; Wu, Jie; Xie, Yuzhe; Ju, Huangxian

    2015-04-14

    A highly efficient polymeric tubular micromotor doped with Pt nanoparticle@carbon nanotubes is fabricated by template-assisted electrochemical growth. The micromotors preserve good navigation in multi-media and surface modification, along with simple synthesis, easy functionalization and good biocompatibility, displaying great promise in biological applications.

  6. Biomedical engineering meets acupuncture - development of a miniaturized 48-channel skin impedance measurement system for needle and laser acupuncture

    PubMed Central

    2010-01-01

    Background Due to controversially discussed results in scientific literature concerning changes of electrical skin impedance before and during acupuncture a new measurement system has been developed. Methods The prototype measures and analyzes the electrical skin impedance computer-based and simultaneously in 48 channels within a 2.5×3.5 cm matrix. Preliminary measurements in one person were performed using metal needle and violet laser (405 nm) acupuncture at the acupoint Kongzui (LU6). The new system is an improvement on devices previously developed by other researchers for this purpose. Results Skin impedance in the immediate surroundings of the acupoint was lowered reproducibly following needle stimulation and also violet laser stimulation. Conclusions A new instrumentation for skin impedance measurements is presented. The following hypotheses suggested by our results will have to be tested in further studies: Needle acupuncture causes significant, specific local changes of electrical skin impedance parameters. Optical stimulation (violet laser) at an acupoint causes direct electrical biosignal changes. PMID:21092296

  7. BioCreative Workshops for DOE Genome Sciences: Text Mining for Metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Cathy H.; Hirschman, Lynette

    The objective of this project was to host BioCreative workshops to define and develop text mining tasks to meet the needs of the Genome Sciences community, focusing on metadata information extraction in metagenomics. Following the successful introduction of metagenomics at the BioCreative IV workshop, members of the metagenomics community and BioCreative communities continued discussion to identify candidate topics for a BioCreative metagenomics track for BioCreative V. Of particular interest was the capture of environmental and isolation source information from text. The outcome was to form a “community of interest” around work on the interactive EXTRACT system, which supported interactive taggingmore » of environmental and species data. This experiment is included in the BioCreative V virtual issue of Database. In addition, there was broad participation by members of the metagenomics community in the panels held at BioCreative V, leading to valuable exchanges between the text mining developers and members of the metagenomics research community. These exchanges are reflected in a number of the overview and perspective pieces also being captured in the BioCreative V virtual issue. Overall, this conversation has exposed the metagenomics researchers to the possibilities of text mining, and educated the text mining developers to the specific needs of the metagenomics community.« less

  8. Development of a method for detection and quantification of B. brongniartii and B. bassiana in soil

    NASA Astrophysics Data System (ADS)

    Canfora, L.; Malusà, E.; Tkaczuk, C.; Tartanus, M.; Łabanowska, B. H.; Pinzari, F.

    2016-03-01

    A culture independent method based on qPCR was developed for the detection and quantification of two fungal inoculants in soil. The aim was to adapt a genotyping approach based on SSR (Simple Sequence Repeat) marker to a discriminating tracing of two different species of bioinoculants in soil, after their in-field release. Two entomopathogenic fungi, Beauveria bassiana and B. brongniartii, were traced and quantified in soil samples obtained from field trials. These two fungal species were used as biological agents in Poland to control Melolontha melolontha (European cockchafer), whose larvae live in soil menacing horticultural crops. Specificity of SSR markers was verified using controls consisting of: i) soil samples containing fungal spores of B. bassiana and B. brongniartii in known dilutions; ii) the DNA of the fungal microorganisms; iii) soil samples singly inoculated with each fungus species. An initial evaluation of the protocol was performed with analyses of soil DNA and mycelial DNA. Further, the simultaneous detection and quantification of B. bassiana and B. brongniartii in soil was achieved in field samples after application of the bio-inoculants. The protocol can be considered as a relatively low cost solution for the detection, identification and traceability of fungal bio-inoculants in soil.

  9. Development of a method for detection and quantification of B. brongniartii and B. bassiana in soil

    PubMed Central

    Canfora, L.; Malusà, E.; Tkaczuk, C.; Tartanus, M.; Łabanowska, B.H.; Pinzari, F.

    2016-01-01

    A culture independent method based on qPCR was developed for the detection and quantification of two fungal inoculants in soil. The aim was to adapt a genotyping approach based on SSR (Simple Sequence Repeat) marker to a discriminating tracing of two different species of bioinoculants in soil, after their in-field release. Two entomopathogenic fungi, Beauveria bassiana and B. brongniartii, were traced and quantified in soil samples obtained from field trials. These two fungal species were used as biological agents in Poland to control Melolontha melolontha (European cockchafer), whose larvae live in soil menacing horticultural crops. Specificity of SSR markers was verified using controls consisting of: i) soil samples containing fungal spores of B. bassiana and B. brongniartii in known dilutions; ii) the DNA of the fungal microorganisms; iii) soil samples singly inoculated with each fungus species. An initial evaluation of the protocol was performed with analyses of soil DNA and mycelial DNA. Further, the simultaneous detection and quantification of B. bassiana and B. brongniartii in soil was achieved in field samples after application of the bio-inoculants. The protocol can be considered as a relatively low cost solution for the detection, identification and traceability of fungal bio-inoculants in soil. PMID:26975931

  10. ROTRAN 1 - SOLUTION OF EQUATIONS FOR ROTARY TRANSFORMERS

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.

    1994-01-01

    ROTRAN1 is a computer program to calculate the impedance and current gain of a simple transformer. Inputs to the program are primary resistance, primary inductance, secondary (load) resistance, secondary inductance, and mutual inductance. ROTRAN1 was written in BASICA for execution on the IBM PC personal computer. It was written in 1986.

  11. Ladder-Type Circuits Revisited

    ERIC Educational Resources Information Center

    Yoon, Sung Hyun

    2007-01-01

    Ladder-type circuits where a given unit is repeated infinitely many times are dealt with in many textbooks on electromagnetism as examples of filter circuits. Determining the impedance of such circuits seems to be regarded as simple, which may be due to the fact that the invariance of the infinite system under the operation of adding one more unit…

  12. Acellular Mouse Kidney ECM can be Used as a Three-Dimensional Substrate to Test the Differentiation Potential of Embryonic Stem Cell Derived Renal Progenitors.

    PubMed

    Sambi, Manpreet; Chow, Theresa; Whiteley, Jennifer; Li, Mira; Chua, Shawn; Raileanu, Vanessa; Rogers, Ian M

    2017-08-01

    The development of strategies for tissue regeneration and bio-artificial organ development is based on our understanding of embryogenesis. Differentiation protocols attempt to recapitulate the signaling modalities of gastrulation and organogenesis, coupled with cell selection regimens to isolate the cells of choice. This strategy is impeded by the lack of optimal in vitro culture systems since traditional culture systems do not allow for the three-dimensional interaction between cells and the extracellular matrix. While artificial three-dimensional scaffolds are available, using the natural extracellular matrix scaffold is advantageous because it has a distinct architecture that is difficult to replicate. The adult extracellular matrix is predicted to mediate signaling related to tissue repair not embryogenesis but existing similarities between the two argues that the extracellular matrix will influence the differentiation of stem and progenitor cells. Previous studies using undifferentiated embryonic stem cells grown directly on acellular kidney ECM demonstrated that the acellular kidney supported cell growth but limited differentiation occurred. Using mouse kidney extracellular matrix and mouse embryonic stem cells we report that the extracellular matrix can support the development of kidney structures if the stem cells are first differentiated to kidney progenitor cells before being applied to the acellular organ.

  13. Inkjet-Printed Porous Silver Thin Film as a Cathode for a Low-Temperature Solid Oxide Fuel Cell.

    PubMed

    Yu, Chen-Chiang; Baek, Jong Dae; Su, Chun-Hao; Fan, Liangdong; Wei, Jun; Liao, Ying-Chih; Su, Pei-Chen

    2016-04-27

    In this work we report a porous silver thin film cathode that was fabricated by a simple inkjet printing process for low-temperature solid oxide fuel cell applications. The electrochemical performance of the inkjet-printed silver cathode was studied at 300-450 °C and was compared with that of silver cathodes that were fabricated by the typical sputtering method. Inkjet-printed silver cathodes showed lower electrochemical impedance due to their porous structure, which facilitated oxygen gaseous diffusion and oxygen surface adsorption-dissociation reactions. A typical sputtered nanoporous silver cathode became essentially dense after the operation and showed high impedance due to a lack of oxygen supply. The results of long-term fuel cell operation show that the cell with an inkjet-printed cathode had a more stable current output for more than 45 h at 400 °C. A porous silver cathode is required for high fuel cell performance, and the simple inkjet printing technique offers an alternative method of fabrication for such a desirable porous structure with the required thermal-morphological stability.

  14. Molecular Mechanism by Which Retinoids Prevent Breast Cancer Development

    DTIC Science & Technology

    2007-06-01

    10.11 AFFX-r2-Ec- bioB -M_at E. coli /GEN= bioB /DB_XREF=gb:J04423.1 /NOTE=SIF corresponding to nucleotides 2393-2682 of gb:J04423.1 /DEF=E.coli...7,8-diamino-pelargonic acid (bioA), biotin synthetase ( bioB ), 7-keto-8-amino-pelargonic acid synthetase (bioF), bioC protein, and dethiobiot 9.76...9.42 AFFX- BioB - M_at E. coli /GEN= bioB /DB_XREF=gb:J04423.1 /NOTE=SIF corresponding to nucleotides 2482-2739 of gb:J04423.1 /DEF=E.coli 7,8

  15. Impedimetric biosensor based on cell-mediated bioimprinted films for bacterial detection.

    PubMed

    Qi, Peng; Wan, Yi; Zhang, Dun

    2013-01-15

    This work presents the synthesis of bacteria-mediated bioimprinted films for selective bacterial detection. Marine pathogen sulfate-reducing bacteria (SRB) were chosen as the template bacteria. Chitosan (CS) doped with reduced graphene sheets (RGSs) was electrodeposited on an indium tin oxide electrode, and the resulting RGSs-CS hybrid film served as a platform for bacterial attachment. The electrodeposition conditions were optimized to obtain RGSs-CS hybrid films with excellent electrochemical performance. A layer of nonconductive CS film was deposited to embed the pathogen, and acetone was used to wash away the bacterial templates. Electrochemical impedance spectroscopy was performed to characterize the stepwise modification process and monitor the SRB population. Faradic impedance measurements revealed that the charge transfer resistance (R(ct)) increased with increased SRB concentration. A linear relationship between ΔR(ct) and the logarithm of SRB concentration was obtained within the concentration range of 1.0×10(4)cfum L(-1) to 1.0×10(8)cfum L(-1). The impedimetric sensor showed good selectivity towards SRB based on size and shape. Hence, selectivity for bacterial detection can be improved if the bioimprinting technique is combined with other bio-recognition elements. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Polyimide-based intracortical neural implant with improved structural stiffness

    NASA Astrophysics Data System (ADS)

    Lee, Kee-Keun; He, Jiping; Singh, Amarjit; Massia, Stephen; Ehteshami, Gholamreza; Kim, Bruce; Raupp, Gregory

    2004-01-01

    A novel structure for chronically implantable cortical electrodes using polyimide bio-polymer was devised, which provides both flexibility for micro-motion compliance between brain tissues and the skull and at the brain/implant interface and stiffness for better surgical handling. A 5-10 µm thick silicon backbone layer was attached to the tip of the electrode to enhance the structural stiffness. This stiff segment was then followed by a 1 mm flexible segment without a silicon backbone layer. The fabricated implants have tri-shanks with five recording sites (20 µm × 20 µm) and two vias of 40 µm × 40 µm on each shank. In vitro cytotoxicity tests of prototype implants revealed no adverse toxic effects on cells. Bench test impedance values were assessed, resulting in an average impedance value of ~2 MOmega at 1 KHz. For a 5 µm thick silicon backbone electrode, the stiffness of polyimide-based electrodes was increased ten times over that of electrodes without the silicon backbone layer. Furthermore, polyimide-based electrodes with 5 µm and 10 µm thick silicon backbone layer penetrated pia of rat brain without buckling that has been observed in implants without silicon reinforcement.

  17. Origin of Capacity Fading in Nano-Sized Co3O4 Electrodes: Electrochemical Impedance Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Kang, Jin-Gu; Ko, Young-Dae; Park, Jae-Gwan; Kim, Dong-Wan

    2008-10-01

    Transition metal oxides have been suggested as innovative, high-energy electrode materials for lithium-ion batteries because their electrochemical conversion reactions can transfer two to six electrons. However, nano-sized transition metal oxides, especially Co3O4, exhibit drastic capacity decay during discharge/charge cycling, which hinders their practical use in lithium-ion batteries. Herein, we prepared nano-sized Co3O4 with high crystallinity using a simple citrate-gel method and used electrochemical impedance spectroscopy method to examine the origin for the drastic capacity fading observed in the nano-sized Co3O4 anode system. During cycling, AC impedance responses were collected at the first discharged state and at every subsequent tenth discharged state until the 100th cycle. By examining the separable relaxation time of each electrochemical reaction and the goodness-of-fit results, a direct relation between the charge transfer process and cycling performance was clearly observed.

  18. Coupling two spin qubits with a high-impedance resonator

    NASA Astrophysics Data System (ADS)

    Harvey, S. P.; Bøttcher, C. G. L.; Orona, L. A.; Bartlett, S. D.; Doherty, A. C.; Yacoby, A.

    2018-06-01

    Fast, high-fidelity single and two-qubit gates are essential to building a viable quantum information processor, but achieving both in the same system has proved challenging for spin qubits. We propose and analyze an approach to perform a long-distance two-qubit controlled phase (CPHASE) gate between two singlet-triplet qubits using an electromagnetic resonator to mediate their interaction. The qubits couple longitudinally to the resonator, and by driving the qubits near the resonator's frequency, they can be made to acquire a state-dependent geometric phase that leads to a CPHASE gate independent of the initial state of the resonator. Using high impedance resonators enables gate times of order 10 ns while maintaining long coherence times. Simulations show average gate fidelities of over 96% using currently achievable experimental parameters and over 99% using state-of-the-art resonator technology. After optimizing the gate fidelity in terms of parameters tuneable in situ, we find it takes a simple power-law form in terms of the resonator's impedance and quality and the qubits' noise bath.

  19. Annual variability of water productivity components in the watershed of Cabeceira Comprida stream, Santa Fé do Sul, Brazil

    NASA Astrophysics Data System (ADS)

    Coaguila, Daniel N.; Hernandez, Fernando B. T.; de C. Teixeira, Antônio H.; Neale, Christopher M.; Franco, Renato A. M.; Leivas, Janice F.

    2016-10-01

    The Cabeceira Comprida stream's watershed, located in Santa Fé do Sul, Brazil, is an agroecosystem with great demand of water for the population and agriculture. During the dry season the water demand exceeds the amount generated by the watershed. It is important to know the dynamics of the water above the ground to improve the water resources management. Ten Landsat 8 images were used combined with Northwestern São Paulo State Weather Network data under different thermohydrological conditions of the year 2014 to quantify actual evapotranspiration (ETa), biomass production (BIO) and water productivity (WP) based on ETa. Using the Simple Algorithm for Retrieving evapotranspiration (SAFER) for calculating ETa, the Monteith's radiation model was applied for estimating the BIO and for calculation of WP the ratio of BIO and ETa. The average pixels for ETa, BIO and WP ranged respectively from 0.38 +/- 0.35 to 2.05 +/- 0.76 mm day-1; 10.15 +/- 12.19 to 71.61 +/- 35.54 kg ha-1 day-1; 1.89 +/- 0.76 to 3.88 +/- 0.86 kg m-3. The lower values of ETa (0.38 mm day-1; DOY 220), BIO (10.15 kg ha-1 day-1; DOY 220) and WP (1.89 kg m-3; DOY 204) were obtained in winter, and highest values of ETa (2.05 mm day-1; DOY 364) and BIO (71.64 kg ha-1 day-1; DOY 364) in the summer and WP (3.88 kg m-3; DOY 92) in the autumn. The water productivity components can subsidize the monitoring of the agro-ecosystems, being a useful tool to quantify the annual variability of ETa and BIO.

  20. Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques

    DTIC Science & Technology

    2017-11-01

    ARL-TR-8225 ● NOV 2017 US Army Research Laboratory Methodology for Designing and Developing a New Ultra-Wideband Antenna Based...Research Laboratory Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques by...SUBTITLE Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques 5a. CONTRACT NUMBER

  1. Mild Biomass Liquefaction Process for Economic Production of Stabilized Refinery-Ready Bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwal, Santosh; Meng, Jiajia; McCabe, Kevin

    Southern Research (SR) in cooperation with U.S. Department of Energy (DOE), Bioenergy Technology Office (BETO), investigated a biomass liquefaction process for economic production of stabilized refinery-ready bio-oil. The project was awarded by DOE under a Funding Opportunity Announcement (DE-FOA-0000686) for Bio-oil Stabilization and Commoditization that intended to evaluate the feasibility of using bio-oil as a potential feedstock in an existing petroleum refinery. SR investigated Topic Area 1 of the FOA at Technology Readiness Level 2-3 to develop thermochemical liquefaction technologies for producing a bio-oil feedstock from high-impact biomass that can be utilized within a petroleum refinery. Bio-oil obtained from fastmore » pyrolysis of biomass is a green intermediate that can be further upgraded into a biofuel for blending in a petroleum refinery using a hydro-deoxygenation (HDO) route. Co-processing pyrolysis bio-oil in a petroleum refinery is an attractive approach to leverage the refinery’s existing capital. However, the petroleum industry is reluctant to accept pyrolysis bio-oil because of a lack of a standard definition for an acceptable bio-oil feedstock in existing refinery processes. Also per BETO’s multiyear program plan, fast pyrolysis-based bio-fuel is presently not cost competitive with petroleum-based transportation fuels. SR aims to develop and demonstrate a cost-effective low-severity thermal liquefaction and hydrodeoxygenation (HDO) process to convert woody biomass to stabilized bio-oils that can be directly blended with hydrotreater input streams in a petroleum refinery for production of gasoline and/or diesel range hydrocarbons. The specific project objectives are to demonstrate the processes at laboratory scale, characterize the bio-oil product and develop a plan in partnership with a refinery company to move the technology towards commercialization.« less

  2. A design procedure for the phase-controlled parallel-loaded resonant inverter

    NASA Technical Reports Server (NTRS)

    King, Roger J.

    1989-01-01

    High-frequency-link power conversion and distribution based on a resonant inverter (RI) has been recently proposed. The design of several topologies is reviewed, and a simple approximate design procedure is developed for the phase-controlled parallel-loaded RI. This design procedure seeks to ensure the benefits of resonant conversion and is verified by data from a laboratory 2.5 kVA, 20-kHz converter. A simple phasor analysis is introduced as a useful approximation for design purposes. The load is considered to be a linear impedance (or an ac current sink). The design procedure is verified using a 2.5-kVA 20-kHz RI. Also obtained are predictable worst-case ratings for each component of the resonant tank circuit and the inverter switches. For a given load VA requirement, below-resonance operation is found to result in a significantly lower tank VA requirement. Under transient conditions such as load short-circuit, a reversal of the expected commutation sequence is possible.

  3. Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing.

    PubMed

    Liu, Xiao; Yue, Zhilian; Higgins, Michael J; Wallace, Gordon G

    2011-10-01

    Conducting polymers with pendant functionality are advantageous in various bionic and organic bioelectronic applications, as they allow facile incorporation of bio-regulative cues to provide bio-mimicry and conductive environments for cell growth, differentiation and function. In this work, polypyrrole substrates doped with chondroitin sulfate (CS), an extracellular matrix molecule bearing carboxylic acid moieties, were electrochemically synthesized and conjugated with type I collagen. During the coupling process, the conjugated collagen formed a 3-dimensional fibrillar matrix in situ at the conducting polymer interface, as evidenced by atomic force microscopy (AFM) and fluorescence microscopy under aqueous physiological conditions. Cyclic voltammetry (CV) and impedance measurement confirmed no significant reduction in the electroactivity of the fibrillar collagen-modified conducting polymer substrates. Rat pheochromocytoma (nerve) cells showed increased differentiation and neurite outgrowth on the fibrillar collagen, which was further enhanced through electrical stimulation of the underlying conducting polymer substrate. Our study demonstrates that the direct coupling of ECM components such as collagen, followed by their further self-assembly into 3-dimensional matrices, has the potential to improve the neural-electrode interface of implant electrodes by encouraging nerve cell attachment and differentiation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. An electrical bio-chip to transfer and detect electromagnetic stimulation on the cells based on vertically aligned carbon nanotubes.

    PubMed

    Rafizadeh-Tafti, Saeed; Haqiqatkhah, Mohammad Hossein; Saviz, Mehrdad; Janmaleki, Mohsen; Faraji Dana, Reza; Zanganeh, Somayeh; Abdolahad, Mohammad

    2017-01-01

    A highly sensitive impedimetric bio-chip based on vertically aligned multiwall carbon nanotubes (VAMWCNTs), was applied in direct interaction with lung cancer cells. Our tool provided both inducing and monitoring the bioelectrical changes in the cells initiated by electromagnetic (EM) wave stimulation. EM wave of 940MHz frequency with different intensities was used. Here, wave ablation might accumulate electrical charge on the tips of nanotubes penetrated into cell's membrane. The charge might induce ionic exchanges into the cell and cause alterations in electrical states of the membrane. Transmembrane electrostatic/dynamic states would be strongly affected due to such exchanges. Our novel modality was that, the cells' vitality changes caused by charge inductions were electrically detected with the same nanotubes in the architecture of electrodes for impedance measurement. The responses of the sensor were confirmed by electron and florescent microscopy images as well as biological assays. In summation, our method provided an effective biochip for enhancing and detecting external EM stimulation on the cells useful for future diagnostic and therapeutic applications, such as wave-guided drug-resistance breakage. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A first vascularized skin equivalent as an alternative to animal experimentation.

    PubMed

    Groeber, Florian; Engelhardt, Lisa; Lange, Julia; Kurdyn, Szymon; Schmid, Freia F; Rücker, Christoph; Mielke, Stephan; Walles, Heike; Hansmann, Jan

    2016-01-01

    Tissue-engineered skin equivalents mimic key aspects of the human skin, and can thus be employed as wound coverage for large skin defects or as in vitro test systems as an alternative to animal models. However, current skin equivalents lack a functional vasculature limiting clinical and research applications. This study demonstrates the generation of a vascularized skin equivalent with a perfused vascular network by combining a biological vascularized scaffold (BioVaSc) based on a decellularized segment of a porcine jejunum and a tailored bioreactor system. Briefly, the BioVaSc was seeded with human fibroblasts, keratinocytes, and human microvascular endothelial cells. After 14 days at the air-liquid interface, hematoxylin & eosin and immunohistological staining revealed a specific histological architecture representative of the human dermis and epidermis including a papillary-like architecture at the dermal-epidermal-junction. The formation of the skin barrier was measured non-destructively using impedance spectroscopy. Additionally, endothelial cells lined the walls of the formed vessels that could be perfused with a physiological volume flow. Due to the presence of a complex in-vivo-like vasculature, the here shown skin equivalent has the potential for skin grafting and represents a sophisticated in vitro model for dermatological research.

  6. DEMONSTRATION BULLETIN: BIOGENESIS SOIL WASHING TECHNOLOGY - BIOGENESIS

    EPA Science Inventory

    The BioGenesisSM soil washing technology was developed by BioGenesis Enterprises, Inc. to remove organic compounds from soil. The technology uses a proprietary solution (BioGenesisSM cleaner) to transfer organic compounds from the soil matrix to a liquid phase. BioGenesis claims...

  7. Functional tooth restoration by next-generation bio-hybrid implant as a bio-hybrid artificial organ replacement therapy

    PubMed Central

    Oshima, Masamitsu; Inoue, Kaoru; Nakajima, Kei; Tachikawa, Tetsuhiko; Yamazaki, Hiromichi; Isobe, Tomohide; Sugawara, Ayaka; Ogawa, Miho; Tanaka, Chie; Saito, Masahiro; Kasugai, Shohei; Takano-Yamamoto, Teruko; Inoue, Takashi; Tezuka, Katsunari; Kuboki, Takuo; Yamaguchi, Akira; Tsuji, Takashi

    2014-01-01

    Bio-hybrid artificial organs are an attractive concept to restore organ function through precise biological cooperation with surrounding tissues in vivo. However, in bio-hybrid artificial organs, an artificial organ with fibrous connective tissues, including muscles, tendons and ligaments, has not been developed. Here, we have enveloped with embryonic dental follicle tissue around a HA-coated dental implant, and transplanted into the lower first molar region of a murine tooth-loss model. We successfully developed a novel fibrous connected tooth implant using a HA-coated dental implant and dental follicle stem cells as a bio-hybrid organ. This bio-hybrid implant restored physiological functions, including bone remodelling, regeneration of severe bone-defect and responsiveness to noxious stimuli, through regeneration with periodontal tissues, such as periodontal ligament and cementum. Thus, this study represents the potential for a next-generation bio-hybrid implant for tooth loss as a future bio-hybrid artificial organ replacement therapy. PMID:25116435

  8. Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks.

    PubMed

    Adalsteinsson, David; McMillen, David; Elston, Timothy C

    2004-03-08

    Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA) molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. We have developed the software package Biochemical Network Stochastic Simulator (BioNetS) for efficiently and accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous) for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solves the appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  9. [Submental island pedicled flap combination with bio-membrane for reconstructing the piercing palate defects].

    PubMed

    Liu, Hanqian; Yu, Huiming; Liu, Jiawu; Fang, Jin; Mao, Chi

    2015-05-01

    To evaluate the clinical outcomes of submental island pedicled flap (SIPF) combination with bio-membrane in reconstructing palate defects after maxillofacial or palatal neoplasm resection. There were 12 patients with squamous cell carcinoma and one patient with adenoid cystic carcinoma. The clinical stages of tumours were II in two patients, III in four patients, IV in six patients (UICC 2002), and one patient with adenoid cystic carcinoma no staged. SIPFs were designed and created, and the tissue sides of the SIPFs were covered with bio-membrane to reconstruct the oral and the nasal sides of the defects respectively. Speech and swallowing functions and opening mouth were evaluated 6 months postoperatively. All flaps survived and no serious complications occurred. Ten patients achieved normal speech, two had intelligible speech, and one was with slurred speech; Nine patients resumed a solid diet, three with a soft diet, and one on a liquid diet. Eight patients recovered normal mouth opening, four emerged minor limitation of mouth opening, and one had serious limitation of mouth opening. SIPF combined with bio-membrane is a safe, simple, and reliable method for reconstruction of piercing palate defect following neoplasm ablation, with satisfactory oral functions.

  10. Biophysical parameters in a wheat producer region in southern Brazil

    NASA Astrophysics Data System (ADS)

    Leivas, Janice F.; de C. Teixeira, Antonio Heriberto; Andrade, Ricardo G.; de C. Victoria, Daniel; Bolfe, Edson L.; Cruz, Caroline R.

    2014-10-01

    Wheat (Triticum aestivum) is the second most produced cereal in the world, and has major importance in the global agricultural economy. Brazil is a large producer of wheat, especially the Rio Grande do Sul state, located in the south of the country. The purpose of this study was to analyze the estimation of biophysical parameters - evapotranspiration (ET), biomass (BIO) and water productivity (WP) - from satellite images of the municipalities with large areas planted with wheat in Rio Grande do Sul (RS). The evapotranspiration rate was obtained using the SAFER Model (Simple Algorithm for Retrieving Evapotranspiration) on MODIS (Moderate Resolution Imaging Spectroradiometer) images taken in the agricultural year 2012. In order to obtain biomass and water productivity rates we applied the Monteith model and the ratio between BIO and ET. In the beginning of the cycle (the planting period) we observed low values for ET, BIO and WP. During the development period, we observed an increase in the values of the parameters and decline at the end of the cycle, for the period of the wheat harvest. The SAFER model proved effective for estimating the biophysical parameters evapotranspiration, biomass production and water productivity in areas planted with wheat in Brazilian Southern. The methodology can be used for monitoring the crops' water conditions and biomass using satellite images, assisting in estimates of productivity and crop yield. The results may assist the understanding of biophysical properties of important agro-ecosystems, like wheat crop, and are important to improve the rational use of water resources.

  11. Bright luminescence from pure DNA-curcumin-based phosphors for bio hybrid light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Reddy, M. Siva Pratap; Park, Chinho

    2016-08-01

    Recently, significant advances have occurred in the development of phosphors for bio hybrid light-emitting diodes (Bio-HLEDs), which have created brighter, metal-free, rare-earth phosphor-free, eco-friendly, and cost-competitive features for visible light emission. Here, we demonstrate an original approach using bioinspired phosphors in Bio-HLEDs based on natural deoxyribonucleic acid (DNA)-curcumin complexes with cetyltrimethylammonium (CTMA) in bio-crystalline form. The curcumin chromophore was bound to the DNA double helix structure as observed using field emission tunnelling electron microscopy (FE-TEM). Efficient luminescence occurred due to tightly bound curcumin chromophore to DNA duplex. Bio-HLED shows low luminous drop rate of 0.0551 s-1. Moreover, the solid bio-crystals confined the activating bright luminescence with a quantum yield of 62%, thereby overcoming aggregation-induced quenching effect. The results of this study herald the development of commercially viable large-scale hybrid light applications that are environmentally benign.

  12. A generalizable NLP framework for fast development of pattern-based biomedical relation extraction systems.

    PubMed

    Peng, Yifan; Torii, Manabu; Wu, Cathy H; Vijay-Shanker, K

    2014-08-23

    Text mining is increasingly used in the biomedical domain because of its ability to automatically gather information from large amount of scientific articles. One important task in biomedical text mining is relation extraction, which aims to identify designated relations among biological entities reported in literature. A relation extraction system achieving high performance is expensive to develop because of the substantial time and effort required for its design and implementation. Here, we report a novel framework to facilitate the development of a pattern-based biomedical relation extraction system. It has several unique design features: (1) leveraging syntactic variations possible in a language and automatically generating extraction patterns in a systematic manner, (2) applying sentence simplification to improve the coverage of extraction patterns, and (3) identifying referential relations between a syntactic argument of a predicate and the actual target expected in the relation extraction task. A relation extraction system derived using the proposed framework achieved overall F-scores of 72.66% for the Simple events and 55.57% for the Binding events on the BioNLP-ST 2011 GE test set, comparing favorably with the top performing systems that participated in the BioNLP-ST 2011 GE task. We obtained similar results on the BioNLP-ST 2013 GE test set (80.07% and 60.58%, respectively). We conducted additional experiments on the training and development sets to provide a more detailed analysis of the system and its individual modules. This analysis indicates that without increasing the number of patterns, simplification and referential relation linking play a key role in the effective extraction of biomedical relations. In this paper, we present a novel framework for fast development of relation extraction systems. The framework requires only a list of triggers as input, and does not need information from an annotated corpus. Thus, we reduce the involvement of domain experts, who would otherwise have to provide manual annotations and help with the design of hand crafted patterns. We demonstrate how our framework is used to develop a system which achieves state-of-the-art performance on a public benchmark corpus.

  13. Non-invasive method for the aortic blood pressure waveform estimation using the measured radial EBI

    NASA Astrophysics Data System (ADS)

    Krivoshei, Andrei; Lamp, Jürgen; Min, Mart; Uuetoa, Tiina; Uuetoa, Hasso; Annus, Paul

    2013-04-01

    The paper presents a method for the Central Aortic Pressure (CAP) waveform estimation from the measured radial Electrical Bio-Impedance (EBI). The method proposed here is a non-invasive and health-safe approach to estimate the cardiovascular system parameters, such as the Augmentation Index (AI). Reconstruction of the CAP curve from the EBI data is provided by spectral domain transfer functions (TF), found on the bases of data analysis. Clinical experiments were carried out on 30 patients in the Center of Cardiology of East-Tallinn Central Hospital during coronary angiography on patients in age of 43 to 80 years. The quality and reliability of the method was tested by comparing the evaluated augmentation indices obtained from the invasively measured CAP data and from the reconstructed curve. The correlation coefficient r = 0.89 was calculated in the range of AICAP values from 5 to 28. Comparing to the traditional tonometry based method, the developed one is more convenient to use and it allows long-term monitoring of the AI, what is not possible with tonometry probes.

  14. Porous Organic Nanolayers for Coating of Solid-state Devices

    PubMed Central

    2011-01-01

    Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices. PMID:21569579

  15. Bio-charcoal production from municipal organic solid wastes

    NASA Astrophysics Data System (ADS)

    AlKhayat, Z. Q.

    2017-08-01

    The economic and environmental problems of handling the increasingly huge amounts of urban and/or suburban organic municipal solid wastes MSW, from collection to end disposal, in addition to the big fluctuations in power supply and other energy form costs for the various civilian needs, is studied for Baghdad city, the ancient and glamorous capital of Iraq, and a simple control device is suggested, built and tested by carbonizing these dried organic wastes in simple environment friendly bio-reactor in order to produce low pollution potential, economical and local charcoal capsules that might be useful for heating, cooking and other municipal uses. That is in addition to the solve of solid wastes management problem which involves huge human and financial resources and causes many lethal health and environmental problems. Leftovers of different social level residential campuses were collected, classified for organic materials then dried in order to be supplied into the bio-reactor, in which it is burnt and then mixed with small amounts of sugar sucrose that is extracted from Iraqi planted sugar cane, to produce well shaped charcoal capsules. The burning process is smoke free as the closed burner’s exhaust pipe is buried 1m underground hole, in order to use the subsurface soil as natural gas filter. This process has proved an excellent performance of handling about 120kg/day of classified MSW, producing about 80-100 kg of charcoal capsules, by the use of 200 l reactor volume.

  16. One-year clinical outcomes of BioMatrix™-Biolimus A9™ eluting stent: the e-BioMatrix multicenter post marketing surveillance registry in India.

    PubMed

    Mehta, Ashwin B; Chandra, Praveen; Dalal, Jamshed; Shetty, Prabhakar; Desai, Devang; Chocklingam, K; Prajapati, Jayesh; Kumar, Pramod; Magarkar, Vilas; Vasawada, Apurva; Goyal, B K; Kumar, Viveka; Rao, V Suryaprakash; Babu, Ramesh; Parikh, Pritesh; Kaul, Upendra; Patil, Aruna; Mhetre, Tushar; Rangnekar, Hrishikesh

    2013-01-01

    The e-BioMatrix is a post marketing multicenter registry with an objective to evaluate the 2 year clinical safety and efficacy outcomes in patients treated with BioMatrix™ - Biolimus A9™ (BA9™) drug eluting stents (DES). Drug-eluting stents still have late-stage disadvantages that might be attributable to the permanent polymer. BioMatrix a new generation DES containing anti-proliferative drug Biolimus A9™ incorporating a biodegradable abluminal coating that leaves a polymer-free stent after drug release enhancing strut coverage while preventing neointimal hyperplasia. This interim analysis consists of a total of 1189 patients with 1418 lesions treated with BioMatrix stent who entered this multicenter registry in India. We analyzed the incidence of major adverse cardiac events (MACE) and stent thrombosis (ST) at 1, 6, and 12 months with an extended follow-up of 2 years. Recommended antiplatelet regimen included clopidogrel and aspirin for 12 months. The mean age was 57.6 ± 10.9 years, 81.8% were males, comorbidity index was 1.20 ± 1.33, 68% presented with acute coronary syndrome, 49% had hypertension and 40.8% had diabetes mellitus. One-year clinical follow-up was completed in 987 patients at the time of interim analysis. The incidence of MACE is 0.45 for 1544 person-year follow-up. There were only 03 cases of ST (01 late ST) reported during this time. This registry demonstrates excellent one-year clinical safety and efficacy of BioMatrix stents. The 1-year result shows that BioMatrix stent may be a suitable alternative as compared to contemporary DESs which are currently available in the market for simple as well complex disease. Copyright © 2013 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  17. Body Fat Measurement: Weighing the Pros and Cons of Electrical Impedance.

    ERIC Educational Resources Information Center

    Nash, Heyward L.

    1985-01-01

    Research technologists have developed electrical impedance units in response to demand for a convenient and reliable method of measuring body fat. Accuracy of impedance measures versus calipers and underwater weighing are discussed. (MT)

  18. Impedance cardiography: a comparison of cardiac output vs waveform analysis for assessing left ventricular systolic dysfunction.

    PubMed

    DeMarzo, Arthur P; Kelly, Russell F; Calvin, James E

    2007-01-01

    Early detection of asymptomatic left ventricular systolic dysfunction (LVSD) is beneficial in managing heart failure. Recent studies have cast doubt on the usefulness of cardiac output as an indicator of LVSD. In impedance cardiography (ICG), the dZ/dt waveform has a systolic wave called the E wave. This study looked at measurements of the amplitude and area of the E wave compared with ICG-derived cardiac output, stroke volume, cardiac index, and stroke index as methods of assessing LVSD. ICG data were obtained from patients (n=26) admitted to a coronary care unit. Clinical LVSD severity was stratified into 4 groups (none, mild, moderate, and severe) based on echocardiography data and standard clinical assessment by a cardiologist blinded to ICG data. Statistical analysis showed that the E wave amplitude and area were better indicators of the level of LVSD than cardiac output, stroke volume, cardiac index, or stroke index. ICG waveform analysis has potential as a simple point-of-care test for detecting LVSD in asymptomatic patients at high risk for developing heart failure and for monitoring LVSD in patients being treated for heart failure.

  19. An impedance bridge measuring the capacitance ratio in the high frequency range up to 1 MHz

    NASA Astrophysics Data System (ADS)

    Bee Kim, Dan; Kew Lee, Hyung; Kim, Wan-Seop

    2017-02-01

    This paper describes a 2-terminal-pair impedance bridge, measuring the capacitance ratio in the high frequency range up to 1 MHz. The bridge was configured with two voltage sources and a phase control unit which enabled the bridge balance by synchronizing the voltage sources with an enhanced phase resolution. Without employing the transformers such as inductive voltage divider, injection and detection transformers, etc, the bridge system is quite simple to set up, and the balance procedure is quick and easy. Using this dual-source coaxial bridge, the 1:1 and 10:1 capacitance ratios were measured with 1 pF-1 nF capacitors in the frequency range from 1 kHz to 1 MHz. The measurement values obtained by the dual-source bridge were then compared with reference values measured using a commercial precision capacitance bridge of AH2700A, the Z-matrix method developed by ourselves, and the 4-terminal-pair coaxial bridge by the Czech Metrological Institute. All the measurements agreed within the reference uncertainty range of an order of 10-6-10-5, proving the bridge ability as a trustworthy tool for measuring the capacitance ratio in the high frequency range.

  20. A facile route to glycated albumin detection.

    PubMed

    Bohli, Nadra; Meilhac, Olivier; Rondeau, Philippe; Gueffrache, Syrine; Mora, Laurence; Abdelghani, Adnane

    2018-07-01

    In this paper we propose an easy way to detect the glycated form of human serum albumin which is biomarker for several diseases such as diabetes and Alzheimer. The detection platform is a label free impedimetric immunosensor, in which we used a monoclonal human serum albumin antibody as a bioreceptor and electrochemical impedance as a transducing method. The antibody was deposited onto a gold surface by simple physisorption technique. Bovine serum albumin was used as a blocking agent for non-specific binding interactions. Cyclic voltammetry and electrochemical impedance spectroscopy were used for the characterization of each layer. Human serum albumin was glycated at different levels with several concentrations of glucose ranging from 0 mM to 500 mM representing physiological, pathological (diabetic albumin) and suprapathological concentration of glucose. Through the calibration curves, we could clearly distinguish between two different areas related to physiological and pathological albumin glycation levels. The immunosensor displayed a linear range from 7.49% to 15.79% of glycated albumin to total albumin with a good sensitivity. Surface plasmon resonance imaging was also used to characterize the developed immunosensor. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Experimental implementation of acoustic impedance control by a 2D network of distributed smart cells

    NASA Astrophysics Data System (ADS)

    David, P.; Collet, M.; Cote, J.-M.

    2010-03-01

    New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. Smart structures combining large arrays of elementary motion pixels are thus being studied so that fundamental properties could be dynamically adjusted. This paper investigates the acoustical capabilities of a network of distributed transducers connected with a suitable controlling strategy. The research aims at designing an integrated active interface for sound attenuation by using suitable changes of acoustical impedance. The control strategy is based on partial differential equations (PDE) and the multiscaled physics of electromechanical elements. Specific techniques based on PDE control theory have provided a simple boundary control equation able to annihilate the reflections of acoustic waves. To experimentally implement the method, the control strategy is discretized as a first order time-space operator. The obtained quasi-collocated architecture, composed of a large number of sensors and actuators, provides high robustness and stability. The experimental results demonstrate how a well controlled active skin can substantially modify sound reflectivity of the acoustical interface and reduce the propagation of acoustic waves.

  2. The propagation of sound in tunnels

    NASA Astrophysics Data System (ADS)

    Li, Kai Ming; Iu, King Kwong

    2002-11-01

    The sound propagation in tunnels is addressed theoretically and experimentally. In many previous studies, the image source method is frequently used. However, these early theoretical models are somewhat inadequate because the effect of multiple reflections in long enclosures is often modeled by the incoherent summation of contributions from all image sources. Ignoring the phase effect, these numerical models are unlikely to be satisfactory for predicting the intricate interference patterns due to contributions from each image source. In the present paper, the interference effect is incorporated by summing the contributions from the image sources coherently. To develop a simple numerical model, tunnels are represented by long rectangular enclosures with either geometrically reflecting or impedance boundaries. Scale model experiments are conducted for the validation of the numerical model. In some of the scale model experiments, the enclosure walls are lined with a carpet for simulating the impedance boundary condition. Large-scale outdoor measurements have also been conducted in two tunnels designed originally for road traffic use. It has been shown that the proposed numerical model agrees reasonably well with experimental data. [Work supported by the Research Grants Council, The Industry Department, NAP Acoustics (Far East) Ltd., and The Hong Kong Polytechnic University.

  3. Magnetization Dynamics of Amorphous Ribbons and Wires Studied by Inductance Spectroscopy

    PubMed Central

    Betancourt, Israel

    2010-01-01

    Inductance spectroscopy is a particular formulation variant of the well known complex impedance formalism typically used for the electric characterization of dielectric, ferroelectric, and piezoelectric materials. It has been successfully exploited as a versatile tool for characterization of the magnetization dynamics in amorphous ribbons and wires by means of simple experiments involving coils for sample holding and impedance analyzer equipment. This technique affords the resolution of the magnetization processes in soft magnetic materials, in terms of reversible deformation of pinned domain walls, domain wall displacements and spin rotation, for which characteristic parameters such as the alloy initial permeability and the relaxation frequencies, indicating the dispersion of each process, can be defined. Additionally, these parameters can be correlated with chemical composition variation, size effects and induced anisotropies, leading to a more physical insight for the understanding of the frequency dependent magnetic response of amorphous alloys, which is of prime interest for the development of novel applications in the field of telecommunication and sensing technologies. In this work, a brief overview, together with recent progress on the magnetization dynamics of amorphous ribbons, wires, microwires and biphase wires, is presented and discussed for the intermediate frequency interval between 10 Hz and 13 MHz. PMID:28879975

  4. Design and modeling of a planar probe for power measurements in a capacitive plasma sheath

    NASA Astrophysics Data System (ADS)

    Gahan, D.; Hopkins, M. B.; Ellingboe, A. R.

    2004-09-01

    The design and modeling of a planar probe for power measurement in a capacitive RF sheath is described. The probe is to be biased negatively, using a DC power supply, while simultaneously being driven with an RF voltage. A simple model has been developed which describes the voltage, current and impedance from the generator to the probe surface incorporating the transmission line. A conventional method to determine the power through such a probe would be to measure the voltage, current and their phase relationship very close to the probe surface. This can be very difficult to do with much accuracy since the load is almost purely reactive. An alternative method is discussed. The model shows that for certain lengths of transmission line there exists a point on that transmission line where the imaginary impedance goes to zero. If the power is measured at this point where the current and voltage are almost in phase the result should be more accurate. A brief description of the model is given along with some results for its validation. The operation of the power sensor used is also explained.

  5. A Review of Life-Cycle Based Tools Used to Assess the Environmental Sustainability of Biofuels in the United States

    EPA Science Inventory

    There is no simple answer to the question “are materials from bio-based feedstocks environmentally preferable?” Bioenergy, as an alternative energy source, might be effective in reducing fossil fuel use and dependence, slowing or reducing global warming effects, and providing inc...

  6. Using bioimpedance spectroscopy parameters as real-time feedback during tDCS.

    PubMed

    Nejadgholi, Isar; Caytak, Herschel; Bolic, Miodrag

    2016-08-01

    An exploratory analysis is carried out to investigate the feasibility of using BioImpedance Spectroscopy (BIS) parameters, measured on scalp, as real-time feedback during Transcranial Direct Current Stimulation (tDCS). TDCS is shown to be a potential treatment for neurological disorders. However, this technique is not considered as a reliable clinical treatment, due to the lack of a measurable indicator of treatment efficacy. Although the voltage that is applied on the head is very simple to measure during a tDCS session, changes of voltage are difficult to interpret in terms of variables that affect clinical outcome. BIS parameters are considered as potential feedback parameters, because: 1) they are shown to be associated with the DC voltage applied on the head, 2) they are interpretable in terms of conductive and capacitive properties of head tissues, 3) physical interpretation of BIS measurements makes them prone to be adjusted by clinically controllable variables, 4) BIS parameters are measurable in a cost-effective and safe way and do not interfere with DC stimulation. This research indicates that a quadratic regression model can predict the DC voltage between anode and cathode based on parameters extracted from BIS measurements. These parameters are extracted by fitting the measured BIS spectra to an equivalent electrical circuit model. The effect of clinical tDCS variables on BIS parameters needs to be investigated in future works. This work suggests that BIS is a potential method to be used for monitoring a tDCS session in order to adjust, tailor, or personalize tDCS treatment protocols.

  7. Scaling and the frequency dependence of Nyquist plot maxima of the electrical impedance of the human thigh.

    PubMed

    Shiffman, Carl

    2017-11-30

    To define and elucidate the properties of reduced-variable Nyquist plots. Non-invasive measurements of the electrical impedance of the human thigh. A retrospective analysis of the electrical impedances of 154 normal subjects measured over the past decade shows that 'scaling' of the Nyquist plots for human thigh muscles is a property shared by healthy thigh musculature, irrespective of subject and the length of muscle segment. Here the term scaling signifies the near and sometimes 'perfect' coalescence of the separate X versus R plots into one 'reduced' Nyquist plot by the simple expedient of dividing R and X by X m , the value of X at the reactance maximum. To the extent allowed by noise levels one can say that there is one 'universal' reduced Nyquist plot for the thigh musculature of healthy subjects. There is one feature of the Nyquist curves which is not 'universal', however, namely the frequency f m at which the maximum in X is observed. That is found to vary from 10 to 100 kHz. depending on subject and segment length. Analysis shows, however, that the mean value of 1/f m is an accurately linear function of segment length, though there is a small subject-to-subject random element as well. Also, following the recovery of an otherwise healthy victim of ankle fracture demonstrates the clear superiority of measurements above about 800 kHz, where scaling is not observed, in contrast to measurements below about 400 kHz, where scaling is accurately obeyed. The ubiquity of 'scaling' casts new light on the interpretation of impedance results as they are used in electrical impedance myography and bioelectric impedance analysis.

  8. caCORE: a common infrastructure for cancer informatics.

    PubMed

    Covitz, Peter A; Hartel, Frank; Schaefer, Carl; De Coronado, Sherri; Fragoso, Gilberto; Sahni, Himanso; Gustafson, Scott; Buetow, Kenneth H

    2003-12-12

    Sites with substantive bioinformatics operations are challenged to build data processing and delivery infrastructure that provides reliable access and enables data integration. Locally generated data must be processed and stored such that relationships to external data sources can be presented. Consistency and comparability across data sets requires annotation with controlled vocabularies and, further, metadata standards for data representation. Programmatic access to the processed data should be supported to ensure the maximum possible value is extracted. Confronted with these challenges at the National Cancer Institute Center for Bioinformatics, we decided to develop a robust infrastructure for data management and integration that supports advanced biomedical applications. We have developed an interconnected set of software and services called caCORE. Enterprise Vocabulary Services (EVS) provide controlled vocabulary, dictionary and thesaurus services. The Cancer Data Standards Repository (caDSR) provides a metadata registry for common data elements. Cancer Bioinformatics Infrastructure Objects (caBIO) implements an object-oriented model of the biomedical domain and provides Java, Simple Object Access Protocol and HTTP-XML application programming interfaces. caCORE has been used to develop scientific applications that bring together data from distinct genomic and clinical science sources. caCORE downloads and web interfaces can be accessed from links on the caCORE web site (http://ncicb.nci.nih.gov/core). caBIO software is distributed under an open source license that permits unrestricted academic and commercial use. Vocabulary and metadata content in the EVS and caDSR, respectively, is similarly unrestricted, and is available through web applications and FTP downloads. http://ncicb.nci.nih.gov/core/publications contains links to the caBIO 1.0 class diagram and the caCORE 1.0 Technical Guide, which provide detailed information on the present caCORE architecture, data sources and APIs. Updated information appears on a regular basis on the caCORE web site (http://ncicb.nci.nih.gov/core).

  9. The Notion of Scientific Knowledge in Biology

    NASA Astrophysics Data System (ADS)

    Morante, Silvia; Rossi, Giancarlo

    2016-03-01

    The purpose of this work is to reconsider and critically discuss the conceptual foundations of modern biology and bio-sciences in general, and provide an epistemological guideline to help framing the teaching of these disciplines and enhancing the quality of their presentation in High School, Master and Ph.D. courses. After discussing the methodological problems that arise in trying to construct a sensible and useful scientific approach applicable to the study of living systems, we illustrate what are the general requirements that a workable scheme of investigation should meet to comply with the principles of the Galilean method. The amazing success of basic physics, the Galilean science of election, can be traced back to the development of a radically " reductionistic" approach in the interpretation of experiments and a systematic procedure tailored on the paradigm of " falsifiability" aimed at consistently incorporating new information into extended models/theories. The development of bio-sciences seems to fit with neither reductionism (the deeper is the level of description of a biological phenomenon the more difficult looks finding general and simple laws), nor falsifiability (not always experiments provide a yes-or-no answer). Should we conclude that biology is not a science in the Galilean sense? We want to show that this is not so. Rather in the study of living systems, the novel interpretative paradigm of " complexity" has been developed that, without ever conflicting with the basic principles of physics, allows organizing ideas, conceiving new models and understanding the puzzling lack of reproducibility that seems to affect experiments in biology and in other modern areas of investigation. In the delicate task of conveying scientific concepts and principles to students as well as in popularising bio-sciences to a wider audience, it is of the utmost importance for the success of the process of learning to highlight the internal logical consistency of biology and its compliance with the fundamental laws of physics.

  10. BioFed: federated query processing over life sciences linked open data.

    PubMed

    Hasnain, Ali; Mehmood, Qaiser; Sana E Zainab, Syeda; Saleem, Muhammad; Warren, Claude; Zehra, Durre; Decker, Stefan; Rebholz-Schuhmann, Dietrich

    2017-03-15

    Biomedical data, e.g. from knowledge bases and ontologies, is increasingly made available following open linked data principles, at best as RDF triple data. This is a necessary step towards unified access to biological data sets, but this still requires solutions to query multiple endpoints for their heterogeneous data to eventually retrieve all the meaningful information. Suggested solutions are based on query federation approaches, which require the submission of SPARQL queries to endpoints. Due to the size and complexity of available data, these solutions have to be optimised for efficient retrieval times and for users in life sciences research. Last but not least, over time, the reliability of data resources in terms of access and quality have to be monitored. Our solution (BioFed) federates data over 130 SPARQL endpoints in life sciences and tailors query submission according to the provenance information. BioFed has been evaluated against the state of the art solution FedX and forms an important benchmark for the life science domain. The efficient cataloguing approach of the federated query processing system 'BioFed', the triple pattern wise source selection and the semantic source normalisation forms the core to our solution. It gathers and integrates data from newly identified public endpoints for federated access. Basic provenance information is linked to the retrieved data. Last but not least, BioFed makes use of the latest SPARQL standard (i.e., 1.1) to leverage the full benefits for query federation. The evaluation is based on 10 simple and 10 complex queries, which address data in 10 major and very popular data sources (e.g., Dugbank, Sider). BioFed is a solution for a single-point-of-access for a large number of SPARQL endpoints providing life science data. It facilitates efficient query generation for data access and provides basic provenance information in combination with the retrieved data. BioFed fully supports SPARQL 1.1 and gives access to the endpoint's availability based on the EndpointData graph. Our evaluation of BioFed against FedX is based on 20 heterogeneous federated SPARQL queries and shows competitive execution performance in comparison to FedX, which can be attributed to the provision of provenance information for the source selection. Developing and testing federated query engines for life sciences data is still a challenging task. According to our findings, it is advantageous to optimise the source selection. The cataloguing of SPARQL endpoints, including type and property indexing, leads to efficient querying of data resources over the Web of Data. This could even be further improved through the use of ontologies, e.g., for abstract normalisation of query terms.

  11. Near-infrared light-controlled tunable grating based on graphene/elastomer composites

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Jia, Shuhai; Wang, Yonglin; Tang, Zhenhua

    2018-02-01

    A near-infrared (nIR) light actuated tunable transmission optical grating based on graphene nanoplatelet (GNP)/polydimethylsiloxane (PDMS) and PDMS is proposed. A simple fabrication protocol is studied that allows integration of the grating with the actuation mechanism; both components are made from soft elastomers, and this ensure the tunability and the light-driven operation of the grating. The resulting grating structure demonstrates continuous period tunability of 2.7% under an actuation power density of 220 mW cm-2 within a period of 3 s and also demonstrates a time-independent characteristic. The proposed infrared activated grating can be developed for wireless remote light splitting in bio/chemical sensing and optical telecommunications applications.

  12. Transition operators in acoustic-wave diffraction theory. I - General theory. II - Short-wavelength behavior, dominant singularities of Zk0 and Zk0 exp -1

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    1991-01-01

    A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.

  13. FT-MIR supported Electrical Impedance Spectroscopy based study of sugar adulterated honeys from different floral origin.

    PubMed

    Das, Chirantan; Chakraborty, Subhadip; Acharya, Krishnendu; Bera, Nirmal Kumar; Chattopadhyay, Dipankar; Karmakar, Anupam; Chattopadhyay, Sanatan

    2017-08-15

    This study sought to detect the presence of sucrose as an adulterant in selected honey varieties from different floral origins by employing Electrical Impedance Spectroscopy (EIS) technique which has been simultaneously supported by Fourier Transform-Mid Infrared Spectroscopy (FT-MIR) measurements to provide a rapid, robust yet simple platform for honey quality evaluation. Variation of electrical parameters such as impedance, capacitance and conductance for 10%, 20%, 30%, 40%, 50%, 60% and 70% (w/w) sucrose syrup (SS) adulterated honey samples are analyzed and their respective current-voltage (I-V) characteristics are studied. Capacitance, conductance and net current flowing through the system are observed to decrease linearly whereas system impedance has been found to increase similarly with the increase in adulterant content. Also, FT-MIR measurements in the spectral region between 1800cm -1 and 650cm -1 reveal the increment of absorbance values due to the addition of SS. Full-Width-at-Half-Maximum (FWHM) is estimated from the spectral peak 1056cm -1 for all pure and adulterated honey samples and is observed to be linearly increasing with increase in adulterant content. Finally, the coefficient of sensitivity has been extracted for all varieties of honey considered in terms of the measured conductance values. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Determination of carrier lifetime and mobility in colloidal quantum dot films via impedance spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rath, Arup K.; Lasanta, Tania; Bernechea, Maria

    2014-02-10

    Impedance Spectroscopy (IS) proves to be a powerful tool for the determination of carrier lifetime and majority carrier mobility in colloidal quantum dot films. We employ IS to determine the carrier lifetime in PbS quantum dot Schottky solar cells with Al and we verify the validity of the technique via transient photovoltage. We also present a simple approach based on an RC model that allows the determination of carrier mobility in PbS quantum dot films and we corroborate the results via comparison with space charge limited measurements. In summary, we demonstrate the potential of IS to characterize key-to-photovoltaics optoelectronic properties,more » carrier lifetime, and mobility, in a facile way.« less

  15. Determination of ionic species formed during growth of Escherichia coli by capillary isotachophoresis.

    PubMed

    Futschik, K; Ammann, M; Bachmayer, S; Kenndler, E

    1993-08-06

    The ionic species that are formed during the microbial growth of Escherichia coli were determined by capillary isotachophoresis as a function of the time of cultivation. This formation was indicated by the change in a sum parameter, the impedance of the nutrient broth, measured by a special electrode system. Based on the determination of the individual ions formed under the given conditions (identified as acetate, lactate, alpha-ketoglutarate, fumarate, ammonium and probably a simple amine), the change in conductivity was calculated and compared with that obtained by the impedance measurement of the bulk medium. From the results it can be concluded that the change in the sum parameter as a function of time is originated by the ions determined.

  16. The Power Coefficient in the Theory of Energy Extraction from Tidal Channels

    NASA Astrophysics Data System (ADS)

    Cummins, P. F.

    2014-12-01

    The maximum average power available from a fence of turbines deployed in a tidal channel is given by the simple formula, Ρ=γρgaQmax, where ρga is the amplitude of pressure difference across ends of the channel, Qmax is the maximum volume flux through the channel in the undisturbed state (i.e., before turbines are deployed), and γ is a numerical coefficient. The latter depends only weakly on the underlying dynamical balance of the channel. This is shown to be consequence of quadratic drag and changes to the natural impedance of the channel as deployment of turbines impedes the flow. Additionally, it is shown that the power coefficient γ is relatively insensitive to the form of the turbine drag.

  17. Investigation on large-area fabrication of vivid shark skin with superior surface functions

    NASA Astrophysics Data System (ADS)

    Chen, Huawei; Zhang, Xin; Ma, Lingxi; Che, Da; Zhang, Deyuan; Sudarshan, T. S.

    2014-10-01

    Shark skin has attracted worldwide attention because of its superior drag reduction, antifouling performance induced from its unique surface morphology. Although the vivid shark skin has been fabricated by a bio-replicated micro-imprinting approach in previous studies and superior drag reduction effect has been validated in water tunnel, continuous large-area fabrication is still an obstacle to wide apply. In this paper, one novel bio-replication coating technology is proposed for large-area transfer of shark skin based on rapid UV curable paint. Apart from design of coating system, bio-replication accuracy of surface morphology was validated about 97% by comparison between shark skin template and coating surface morphology. Finally, the drag reduction and anti-fouling function of coating surface were tested in water tunnel and open algae pond respectively. Drag reduction rate of coating surface was validated about 12% higher and anti-fouling was proved to about hundred times ameliorate, all of which are more excellent than simple 2D riblet surface.

  18. Detection of proteins using a colorimetric bio-barcode assay.

    PubMed

    Nam, Jwa-Min; Jang, Kyung-Jin; Groves, Jay T

    2007-01-01

    The colorimetric bio-barcode assay is a red-to-blue color change-based protein detection method with ultrahigh sensitivity. This assay is based on both the bio-barcode amplification method that allows for detecting miniscule amount of targets with attomolar sensitivity and gold nanoparticle-based colorimetric DNA detection method that allows for a simple and straightforward detection of biomolecules of interest (here we detect interleukin-2, an important biomarker (cytokine) for many immunodeficiency-related diseases and cancers). The protocol is composed of the following steps: (i) conjugation of target capture molecules and barcode DNA strands onto silica microparticles, (ii) target capture with probes, (iii) separation and release of barcode DNA strands from the separated probes, (iv) detection of released barcode DNA using DNA-modified gold nanoparticle probes and (v) red-to-blue color change analysis with a graphic software. Actual target detection and quantification steps with premade probes take approximately 3 h (whole protocol including probe preparations takes approximately 3 days).

  19. Development of a multi-data assimilation scheme to integrate Bio-Argo floats data with ocean colour satellite data into the CMEMS MFC-Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Cossarini, Gianpiero; D'Ortenzio, Fabrizio; Mariotti, Laura; Mignot, Alexandre; Salon, Stefano

    2017-04-01

    The Mediterranean Sea is a very promising site to develop and test the assimilation of Bio-Argo data since 1) the Bio-Argo network is one of the densest of the global ocean, and 2) a consolidate data assimilation framework of biogeochemical variables (3DVAR-BIO, presently based on assimilation of satellite-estimated surface chlorophyll data) already exists within the CMEMS biogeochemical model system for Mediterranean Sea. The MASSIMILI project, granted by the CMEMS Service Evolution initiative, is aimed to develop the assimilation of Bio-Argo Floats data into the CMEMS biogeochemical model system of the Mediterranean Sea, by means of an upgrade of the 3DVAR-BIO scheme. Specific developments of the 3DVAR-BIO scheme focus on the estimate of new operators of the variational decomposition of the background error covariance matrix and on the implementation of the new observation operator specifically for the Bio-Argo float vertical profile data. In particular, a new horizontal covariance operator for chlorophyll, nitrate and oxygen is based on 3D fields of horizontal correlation radius calculated from a long-term reanalysis simulation. A new vertical covariance operator is built on monthly and spatial varying EOF decomposition to account for the spatiotemporal variability of vertical structure of the three variables error covariance. Further, the observation error covariance is a key factor for an effective assimilation of the Bio-Argo data into the model dynamics. The sensitivities of assimilation to the different factors are estimated. First results of the implementation of the new 3DVAR-BIO scheme show the impact of Bio-Argo data on the 3D fields of chlorophyll, nitrate and oxygen. Tuning the length scale factors of horizontal covariance, analysing the sensitivity of the observation error covariance, introducing non-diagonal biogeochemical covariance operator and non-diagonal multi-platform operator (i.e. Bio-Argo and satellite) are crucial future steps for the success of the MASSIMILI project. In our contribute, we will discuss the recent and promising advancements this strategic project has been having in the past year and its potential for the whole operational biogeochemical modelling community.

  20. Bio-inspired hybrid microelectrodes: a hybrid solution to improve long-term performance of chronic intracortical implants.

    PubMed

    De Faveri, Sara; Maggiolini, Emma; Miele, Ermanno; De Angelis, Francesco; Cesca, Fabrizia; Benfenati, Fabio; Fadiga, Luciano

    2014-01-01

    The use of implants that allow chronic electrical stimulation and recording in the brain of human patients is currently limited by a series of events that cause the deterioration over time of both the electrode surface and the surrounding tissue. The main reason of failure is the tissue inflammatory reaction that eventually causes neuronal loss and glial encapsulation, resulting in a progressive increase of the electrode-electrolyte impedance. Here, we describe a new method to create bio-inspired electrodes to mimic the mechanical properties and biological composition of the host tissue. This combination has a great potential to increase the implant lifetime by reducing tissue reaction and improving electrical coupling. Our method implies coating the electrode with reprogrammed neural or glial cells encapsulated within a hydrogel layer. We chose fibrin as a hydrogel and primary hippocampal neurons or astrocytes from rat brain as cellular layer. We demonstrate that fibrin coating is highly biocompatible, forms uniform coatings of controllable thickness, does not alter the electrochemical properties of the microelectrode and allows good quality recordings. Moreover, it reduces the amount of host reactive astrocytes - over time - compared to a bare wire and is fully reabsorbed by the surrounding tissue within 7 days after implantation, avoiding the common problem of hydrogels swelling. Both astrocytes and neurons could be successfully grown onto the electrode surface within the fibrin hydrogel without altering the electrochemical properties of the microelectrode. This bio-hybrid device has therefore a good potential to improve the electrical integration at the neuron-electrode interface and support the long-term success of neural prostheses.

  1. [Just-in-time initiation of optimal dialysis].

    PubMed

    Cornelis, Tom; Kooman, Jeroen P; van der Sande, Frank M

    2010-01-01

    The IDEAL trial shows that the decision to start renal replacement treatment should not depend on GFR alone, but should be taken on the basis of clinical parameters. Quality of Life (QoL) questionnaires and bio-impedance analysis are potential tools for detecting subtle changes in the predialysis clinic. Too early an initiation of dialysis may be deleterious for the patient and the healthcare system. We are convinced that ESRD patients should be informed about intensive haemodialysis (HD), especially nocturnal (home) HD, as the best available dialysis modality. There is substantial evidence which shows that intensive HD improves clinical, biochemical and biological parameters, and may even prolong survival. We believe that 'just-in-time delivery of intensive haemodialysis' may result in optimised QoL and reduced economic burden.

  2. Dielectrophoretic separation of Bacillus subtilis spores from environmental diesel particles.

    PubMed

    Fatoyinbo, Henry O; Hughes, Michael P; Martin, Stacey P; Pashby, Paul; Labeed, Fatima H

    2007-01-01

    Isolation of pathogenic bacteria from non-biological material of similar size is a vital sample preparation step in the identification of such organisms, particularly in the context of detecting bio-terrorist attacks. However, many detection methods are impeded by particulate contamination from the environment such as those from engine exhausts. In this paper we use dielectrophoresis--the induced motion of particles in non-uniform fields--to successfully remove over 99% of diesel particulates acquired from environmental samples, whilst letting bacterial spores of B. subtilis pass through the chamber largely unimpeded. We believe that such a device has tremendous potential as a precursor to a range of detection methods, improving the signal-to-noise ratio and ultimately improving detection rates.

  3. Study on Manipulations of Fluids in Micro-scale and Their Applications in Physical, Bio/chemistry

    NASA Astrophysics Data System (ADS)

    Zhou, Bingpu

    Microfluidics is a highly interdisciplinary research field which manipulates, controls and analyzes fluids in micro-scale for physical and bio/chemical applications. In this thesis, several aspects of fluid manipulations in micro-scale were studied, discussed and employed for demonstrations of practical utilizations. To begin with, mixing in continuous flow microfluidic was raised and investigated. A simple method for mixing actuation based on magnetism was proposed and realized via integration of magnetically functionalized micropillar arrays inside the microfluidic channel.With such technique, microfluidic mixing could be swiftly switched on and off via simple application or retraction of the magnetic field. Thereafter, in Chapter 3 we mainly focused on how to establish stable while tunable concentration gradients inside microfluidic network using a simple design. The proposed scheme could also be modified with on-chip pneumatic actuated valve to realize pulsatile/temporal concentration gradients simultaneously in ten microfluidic branches. We further applied such methodology to obtain roughness gradients onPolydimethylsiloxane (PDMS) surface via combinations of the microfluidic network andphoto-polymerizations. The obtained materials were utilized in parallel cell culture to figure out the relationship between substrate morphologies and the cell behaviors. In the second part of this work, we emphasized on manipulations on microdroplets insidethe microfluidic channel and explored related applications in bio/chemical aspects. Firstly, microdroplet-based microfluidic universal logic gates were successfully demonstrated vialiquid-electronic hybrid divider. For application based on such novel scheme of control lable droplet generation, on-demand chemical reaction within paired microdroplets was presented using IF logic gate. Followed by this, another important operation of microdroplet - splitting -was investigated. Addition lateral continuous flow was applied at the bifurcation as a mediumto controllably divide microdroplets with highly tunable splitting ratios. Related physical mechanism was proposed and such approach was adopted further for rapid synthesis of multi-scale microspheres.

  4. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    NASA Astrophysics Data System (ADS)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from protein degradation). Algal bio-char also had a significantly higher N-content. Overall, our results suggest that it is feasible to convert algal cultures deficient in lipids, such as nuisance algae obtained from natural blooms, into liquid fuels by thermochemical methods. Next, pyrolysis characteristics of each of the major components present in lignocellulosic as well as algal biomass were studied independently in a thermo-gravimetric analyzer, using model compounds. From those studies, we have established that, with algae and oil seed feed stocks, triglycerides degrade at distinctly higher temperatures (T>350 C) compared to both protein and carbohydrate fractions (T ~ 250-350 C). Similar trend was not seen for lignocellulosic biomass, where degradation temperature interval of lignin overlapped with that of carbohydrates. This unique trend observed for algal biomass (and oil seeds) can be exploited in multiple ways. First, it permits to separately collect high value triglyceride degradation products not contaminated with N-compounds from protein and oxygenates from carbohydrates; this observation formed the basis of a novel "pyrolytic fractionation technique" developed in this thesis. Second, it led to the development of a new and simple analytical method for rapid estimation of the triglyceride content of oleaginous feed stocks. Pyrolytic fractionation is a two-step pyrolysis approach that can be implemented for oleaginous feed stocks (algae and oil-seeds) to separately recover triglyceride degradation products as a "high-quality" bio-oil fraction. The first step is a low-temperature pyrolysis (T ~ 300-320 C) to produce bio-oils from degradation of protein and carbohydrate fractions. Solid residues left behind can subsequently be subjected to a second higher temperature pyrolysis (T ~ 420-430 C) to volatilize and/or degrade triglycerides to produce fatty acids and their derivatives (such as mono-, di- and tri-glycerides) and long chain hydrocarbons. Proof-of-concept micro-pyrolyser (Pyroprobe) and lab-scale fixed-bed experiments were performed using oleaginous algae (Chlorella Sp.) to establish pyrolytic fractionation technique and also to determine the yields of triglyceride-specific bio-oils. As expected, triglyceride-specific bio-oils have hydrocarbons and free fatty acids that were nearly free of water, organic acids and carbohydrate degradation products. Another unique feature of the fractional pyrolysis method is that it allows upgrading of the triglyceride-specific bio-oil vapors via in situ gas-phase hydro-deoxygenation to drop-in fuels (hydrocarbons), without the need to condense the vapors. Similarly, these vapors can also be converted to other value-added products such as fatty acid methyl esters and amides though efficient catalytic and non-catalytic in situ gas-phase conversion methods. Energy requirements for this new pyrolytic fractionation method were also assessed, using energy estimates for the individual steps obtained via differential scanning calorimetry experiments. A comparison of these energy needs against those of alternative thermal processing methods of algae (hydro-thermal processing) proposed in the literature established the viability of this new method. Finally, a new TGA-based analytical method was developed in this thesis for rapid quantification of the triglyceride content of oleaginous feed stocks, by exploiting the non-overlapping thermal degradation range of triglycerides and the other major components.

  5. A label-free and enzyme-free system for operating various logic devices using poly(thymine)-templated CuNPs and SYBR Green I as signal transducers

    NASA Astrophysics Data System (ADS)

    Wu, Changtong; Zhou, Chunyang; Wang, Erkang; Dong, Shaojun

    2016-07-01

    For the first time by integrating fluorescent polyT-templated CuNPs and SYBR Green I, a basic INHIBIT gate and four advanced logic circuits (2-to-1 encoder, 4-to-2 encoder, 1-to-2 decoder and 1-to-2 demultiplexer) have been conceptually realized under label-free and enzyme-free conditions. Taking advantage of the selective formation of CuNPs on ss-DNA, the implementation of these advanced logic devices were achieved without any usage of dye quenching groups or other nanomaterials like graphene oxide or AuNPs since polyA strands not only worked as an input but also acted as effective inhibitors towards polyT templates, meeting the aim of developing bio-computing with cost-effective and operationally simple methods. In short, polyT-templated CuNPs, as promising fluorescent signal reporters, are successfully applied to fabricate advanced logic devices, which may present a potential path for future development of molecular computations.For the first time by integrating fluorescent polyT-templated CuNPs and SYBR Green I, a basic INHIBIT gate and four advanced logic circuits (2-to-1 encoder, 4-to-2 encoder, 1-to-2 decoder and 1-to-2 demultiplexer) have been conceptually realized under label-free and enzyme-free conditions. Taking advantage of the selective formation of CuNPs on ss-DNA, the implementation of these advanced logic devices were achieved without any usage of dye quenching groups or other nanomaterials like graphene oxide or AuNPs since polyA strands not only worked as an input but also acted as effective inhibitors towards polyT templates, meeting the aim of developing bio-computing with cost-effective and operationally simple methods. In short, polyT-templated CuNPs, as promising fluorescent signal reporters, are successfully applied to fabricate advanced logic devices, which may present a potential path for future development of molecular computations. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr04069a

  6. Biological satellite scientific devices

    NASA Astrophysics Data System (ADS)

    Perepech, B. L.; Rumiantsev, V. P.; Galkin, V. M.; Shakhvorostov, S. V.; Rvachev, S. S.

    1991-02-01

    The paper describes the NA SBS 9 systems developed for the ninth Cosmos-2044 biological test mission. The NA SBS 9 life support systems designed for monkeys and rats follow standard design of BIOS-Vivarium and BIOS-Primate units. The main features of NA SBS 9 include the use of a recently developed HF physiological data recorder Skat-3; the incorporation into BIOS-Primate of two units intended for biorhythmic studies (the BBI-Zh system for studying beetles and the VITALOG developed by NASA for studies on monkeys); and a new version of BIOS-Primate system incorporating a capacitance-link and an inductance-link temperature transmitters and a brain tissue oxygen tension control channel.

  7. Systematic errors of EIT systems determined by easily-scalable resistive phantoms.

    PubMed

    Hahn, G; Just, A; Dittmar, J; Hellige, G

    2008-06-01

    We present a simple method to determine systematic errors that will occur in the measurements by EIT systems. The approach is based on very simple scalable resistive phantoms for EIT systems using a 16 electrode adjacent drive pattern. The output voltage of the phantoms is constant for all combinations of current injection and voltage measurements and the trans-impedance of each phantom is determined by only one component. It can be chosen independently from the input and output impedance, which can be set in order to simulate measurements on the human thorax. Additional serial adapters allow investigation of the influence of the contact impedance at the electrodes on resulting errors. Since real errors depend on the dynamic properties of an EIT system, the following parameters are accessible: crosstalk, the absolute error of each driving/sensing channel and the signal to noise ratio in each channel. Measurements were performed on a Goe-MF II EIT system under four different simulated operational conditions. We found that systematic measurement errors always exceeded the error level of stochastic noise since the Goe-MF II system had been optimized for a sufficient signal to noise ratio but not for accuracy. In time difference imaging and functional EIT (f-EIT) systematic errors are reduced to a minimum by dividing the raw data by reference data. This is not the case in absolute EIT (a-EIT) where the resistivity of the examined object is determined on an absolute scale. We conclude that a reduction of systematic errors has to be one major goal in future system design.

  8. Influence resistance on human health

    NASA Astrophysics Data System (ADS)

    Abdul Harits, M.; Bahtiar, Yusuf; Achdan, M. Syahdani; Sunarno, .

    2010-05-01

    Health is an important part of human life. Every person in this world want healthy body, in other words free of any disease. When seeing the pattern of human life today is high activity, always eat instant foods and lack of exercise makes a very bad human health from year to year. Therefore, there is need for the health revolution that can keep human health in order to remain in the condition is always healthy. Eat healthy foods four plus five perfect diligent exercise is the real solution to maintain health. In addition also advisable to always check each month to the doctor so that our health can be controlled. Most people underestimate it, especially the routine checks once a month to the doctor, therefore I created a simple research that aims to get people to mengonytrol health at any time without having to check into the doctor. By utilizing the resistance in the human body's health so we can be controlled. By using a simple tool to measure human resistance by using the concept of the bridge. Bridge circuit used to convert impedance variations into voltage variations. One advantage of this circuit is the voltage produced can vary around 0. This means strengthening can be used to raise the voltage level so as sensitivity to variations in impedance also increases. Another application is the impedance measurement accuracy. The bridge is the simplest and most widely used is the Wheatstone bridge circuit. This circuit is used for signal conditioning applications where a sensor can change the resistance value when the process variable is changed.

  9. Opportunity and development of bio-based composites

    Treesearch

    Zhiyong Cai; Jerrold E. Winandy

    2005-01-01

    Our forests are a naturally renewable resource that has been used as a principal source of bio-energy and building materials for centuries. The rapid growth of world population has now resulted in substantial increases in demand and in consumption of all raw materials. This now provides a unique opportunity of developing new bio-based composites. The 100-year history...

  10. The role of flow in the morphodynamics of embryonic heart

    NASA Astrophysics Data System (ADS)

    Gharib, Morteza

    2017-11-01

    Nature has shown us that some hearts do not require valves to achieve unidirectional flow. In its earliest stages, the vertebrate heart consists of a primitive tube that drives blood through a simple vascular network nourishing tissues and other developing organ systems. We have shown that in the case of the embryonic zebrafish heart, an elastic wave resonance mechanism based on impedance mismatches at the boundaries of the heart tube is the likely mechanism responsible for the valveless pumping behavior. When functioning normally, mature heart valves prevent intracardiac retrograde blood flow; before valves develop there is considerable regurgitation, resulting in oscillatory flow between the atrium and ventricle. We show that reversing flows are particularly strong stimuli to endothelial cells and that heart valves form as a developmental response to oscillatory blood flow through the maturing heart.

  11. BioData: a national aquatic bioassessment database

    USGS Publications Warehouse

    MacCoy, Dorene

    2011-01-01

    BioData is a U.S. Geological Survey (USGS) web-enabled database that for the first time provides for the capture, curation, integration, and delivery of bioassessment data collected by local, regional, and national USGS projects. BioData offers field biologists advanced capabilities for entering, editing, and reviewing the macroinvertebrate, algae, fish, and supporting habitat data from rivers and streams. It offers data archival and curation capabilities that protect and maintain data for the long term. BioData provides the Federal, State, and local governments, as well as the scientific community, resource managers, the private sector, and the public with easy access to tens of thousands of samples collected nationwide from thousands of stream and river sites. BioData also provides the USGS with centralized data storage for delivering data to other systems and applications through automated web services. BioData allows users to combine data sets of known quality from different projects in various locations over time. It provides a nationally aggregated database for users to leverage data from many independent projects that, until now, was not feasible at this scale. For example, from 1991 to 2011, the USGS Idaho Water Science Center collected more than 816 bioassessment samples from 63 sites for the National Water Quality Assessment (NAWQA) Program and more than 477 samples from 39 sites for a cooperative USGS and State of Idaho Statewide Water Quality Network (fig. 1). Using BioData, 20 years of samples collected for both of these projects can be combined for analysis. BioData delivers all of the data using current taxonomic nomenclature, thus relieving users of the difficult and time-consuming task of harmonizing taxonomy among samples collected during different time periods. Fish data are reported using the Integrated Taxonomic Information Service (ITIS) Taxonomic Serial Numbers (TSN's). A simple web-data input interface and self-guided, public data-retrieval web site provides access to bioassessment data. BioData currently accepts data collected using two national protocols: (1) NAWQA and (2) U.S. Environmental Protection Agency (USEPA) National Rivers and Streams Assessment (NRSA). Additional collection protocols are planned for future versions.

  12. Approximate analytical solution for induction heating of solid cylinders

    DOE PAGES

    Jankowski, Todd Andrew; Pawley, Norma Helen; Gonzales, Lindsey Michal; ...

    2015-10-20

    An approximate solution to the mathematical model for induction heating of a solid cylinder in a cylindrical induction coil is presented here. The coupled multiphysics model includes equations describing the electromagnetic field in the heated object, a heat transfer simulation to determine temperature of the heated object, and an AC circuit simulation of the induction heating power supply. A multiple-scale perturbation method is used to solve the multiphysics model. The approximate analytical solution yields simple closed-form expressions for the electromagnetic field and heat generation rate in the solid cylinder, for the equivalent impedance of the associated tank circuit, and formore » the frequency response of a variable frequency power supply driving the tank circuit. The solution developed here is validated by comparing predicted power supply frequency to both experimental measurements and calculated values from finite element analysis for heating of graphite cylinders in an induction furnace. The simple expressions from the analytical solution clearly show the functional dependence of the power supply frequency on the material properties of the load and the geometrical characteristics of the furnace installation. In conclusion, the expressions developed here provide physical insight into observations made during load signature analysis of induction heating.« less

  13. Microelectrode array fabrication for electrochemical detection with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Clark, James

    Understanding how the brain works remains one of the key challenges for scientists. To further this understanding a wide variety of technologies and research methods have been developed. One such technology is conductive electrodes, used to measure the electrical signals elicited from neuronal cells and tissues. These electrodes can be fabricated as a singular electrode or as a multi-electrode array (MEA). This permits bio-electrical measurements from one particular area or simultaneous measurements from multiple areas, respectively. Studying electrical and chemical signals of individual cells in situ requires the use of electrodes with ≤20 µm diameter. However, electrodes of this size generally produce high impedance, perturbing recording of the small signals generated from individual cells. Nanomaterials, such as carbon nanotubes (CNTs), can be deposited to increase the real surface area of these electrodes, producing higher sensitivity measurements. This thesis investigates the potential for using photo-thermal chemical vapour deposition grown CNTs as the electrode material for a de novo fabricated MEA. This device aimed to measure electrochemical signals in the form of dopamine, an important mammalian neurotransmitter, as well as conventional bio-electrical signals that the device is designed for. Realising this aim began with improving CNT aqueous wetting behaviour via oxygen plasma functionalisation. This procedure demonstrated grafting of oxygen functional groups to the CNT structure, and dramatic improvements in aqueous wetting behaviour, with CNTs attached to the device. Subsequently, oxygen plasma functionalised CNT-based MEAs were fabricated and tested, allowing comparisons with a non-functionalised CNT MEA and a state-of-the-art commercial MEA. The functionalised CNT MEA demonstrated an order of magnitude improvement compared to commercial MEAs (2.75 kΩ vs. 25.6 kΩ), at the biologically relevant frequency of 1 kHz. This was followed by measurement of one of the best sensitivity density values, compared to the available literature, for the electrochemical detection of dopamine (9.48 µA µM-1 mm-2). The functionalised CNT MEA then illustrated some selectivity compared to common interferents, i.e. ascorbic acid, of a higher concentration. Nonetheless, imaging of the MEA revealed CNTs were being removed from the electrode areas due to extensive use. Therefore, the final results chapter aimed to develop a novel fabrication route for CNT-based MEAs that produced improved CNT retention on the electrodes. This next-generation functionalised CNT-based MEA displayed improved CNT retention, whilst also producing competitive electrochemical impedance values at 1 kHz (17.8 kΩ) and excellent electrochemical selectivity for dopamine vs. ascorbic acid. Overall, this thesis demonstrates the potential for using MEAs as electrochemical detectors of biological molecules, specifically when using functionalised CNTs as the electrode material.

  14. A User''s Guide to the Zwikker-Kosten Transmission Line Code (ZKTL)

    NASA Technical Reports Server (NTRS)

    Kelly, J. J.; Abu-Khajeel, H.

    1997-01-01

    This user's guide documents updates to the Zwikker-Kosten Transmission Line Code (ZKTL). This code was developed for analyzing new liner concepts developed to provide increased sound absorption. Contiguous arrays of multi-degree-of-freedom (MDOF) liner elements serve as the model for these liner configurations, and Zwikker and Kosten's theory of sound propagation in channels is used to predict the surface impedance. Transmission matrices for the various liner elements incorporate both analytical and semi-empirical methods. This allows standard matrix techniques to be employed in the code to systematically calculate the composite impedance due to the individual liner elements. The ZKTL code consists of four independent subroutines: 1. Single channel impedance calculation - linear version (SCIC) 2. Single channel impedance calculation - nonlinear version (SCICNL) 3. Multi-channel, multi-segment, multi-layer impedance calculation - linear version (MCMSML) 4. Multi-channel, multi-segment, multi-layer impedance calculation - nonlinear version (MCMSMLNL) Detailed examples, comments, and explanations for each liner impedance computation module are included. Also contained in the guide are depictions of the interactive execution, input files and output files.

  15. Renewable energy from corn residues by thermochemical conversion

    NASA Astrophysics Data System (ADS)

    Yu, Fei

    Declining fossil oil reserve, skyrocket price, unsecured supplies, and environment pollution are among the many energy problems we are facing today. It is our conviction that renewable energy is a solution to these problems. The long term goal of the proposed research is to develop commercially practical technologies to produce energy from renewable resources. The overall objective of my research is to study and develop thermochemical processes for converting bulky and low-energy-density biomass materials into bio-fuels and value-added bio-products. The rationale for the proposed research is that, once such processes are developed, processing facility can be set up on or near biomass product sites, reducing the costs associated with transport of bulky biomass which is a key technical barrier to biomass conversion. In my preliminary research, several conversion technologies including atmospheric pressure liquefaction, high pressure liquefaction, and microwave pyrolysis have been evaluated. Our data indicated that microwave pyrolysis had the potential to become a simple and economically viable biomass conversion technology. Microwave pyrolysis is an innovative process that provides efficient and uniform heating, and are robust to type, size and uniformity of feedstock and therefore suitable for almost any waste materials without needing to reduce the particle size. The proposed thesis focused on in-depth investigations of microwave pyrolysis of corn residues. My first specific aim was to examine the effects of processing parameters on product yields. The second specific research aim was to characterize the products (gases, bio-oils, and solid residues), which was critical to process optimization and product developments. Other research tasks included conducting kinetic modeling and preliminary mass and energy balance. This study demonstrated that microwave pyrolysis could be optimized to produce high value syngas, liquid fuels and pyrolytic carbons, and had a great potential to become a commercial process according to the mass and energy balance. One-step global model and two-step consecutive-reaction kinetic model offered a clue to the key mechanistic steps in the overall pyrolysis of corn residues. These results should have a positive impact on advancing renewable energy technologies and establishing the University's leadership status in the area of renewable energy development.

  16. Active acoustical impedance using distributed electrodynamical transducers.

    PubMed

    Collet, M; David, P; Berthillier, M

    2009-02-01

    New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. SMART structures combining large arrays of elementary motion pixels coated with macroscopic components are thus being studied so that fundamental properties such as shape, stiffness, and even reflectivity of light and sound could be dynamically adjusted. This paper investigates the acoustic impedance capabilities of a set of distributed transducers connected with a suitable controlling strategy. Research in this domain aims at designing integrated active interfaces with a desired acoustical impedance for reaching an appropriate global acoustical behavior. This generic problem is intrinsically connected with the control of multiphysical systems based on partial differential equations (PDEs) and with the notion of multiscaled physics when a dense array of electromechanical systems (or MEMS) is considered. By using specific techniques based on PDE control theory, a simple boundary control equation capable of annihilating the wave reflections has been built. The obtained strategy is also discretized as a low order time-space operator for experimental implementation by using a dense network of interlaced microphones and loudspeakers. The resulting quasicollocated architecture guarantees robustness and stability margins. This paper aims at showing how a well controlled semidistributed active skin can substantially modify the sound transmissibility or reflectivity of the corresponding homogeneous passive interface. In Sec. IV, numerical and experimental results demonstrate the capabilities of such a method for controlling sound propagation in ducts. Finally, in Sec. V, an energy-based comparison with a classical open-loop strategy underlines the system's efficiency.

  17. Gully annealing by fluvially-sourced Aeolian sand: remote sensing investigations of connectivity along the Fluvial-Aeolian-hillslope continuum on the Colorado River

    USGS Publications Warehouse

    Sankey, Joel B.; East, Amy E.; Collins, Brian D.; Caster, Joshua J.

    2015-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term, land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This work investigates gully annealing by aeolian sediment, along the Colorado River downstream of Glen Canyon Dam in Glen, Marble, and Grand Canyons, Arizona, USA (Figure 1). In this segment of the Colorado River, gully erosion potentially affects the stability and preservation of archaeological sites that are located within valley margins. Gully erosion occurs as a function of ephemeral, rainfall-induced overland flow associated with intense episodes of seasonal precipitation. Measurements of sediment transport and topographic change have demonstrated that fluvial sand in some locations is transported inland and upslope by aeolian processes to areas affected by gully erosion, and aeolian sediment activity can be locally effective at counteracting gully erosion (Draut, 2012; Collins and others, 2009, 2012; Sankey and Draut, 2014). The degree to which specific locations are affected by upslope wind redistribution of sand from active channel sandbars to higher elevation valley margins is termed “connectivity”. Connectivity is controlled spatially throughout the river by (1) the presence of upwind sources of fluvial sand within the contemporary active river channel (e.g., sandbars), and (2) bio-physical barriers that include vegetation and topography that might impede aeolian sediment transport. The primary hypothesis of this work is that high degrees of connectivity lead to less gullying potential.

  18. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    PubMed Central

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  19. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.

    PubMed

    Olmon, R L; Raschke, M B

    2012-11-09

    The goal of antenna design at optical frequencies is to deliver optical electromagnetic energy to loads in the form of, e.g., atoms, molecules or nanostructures, or to enhance the radiative emission from such structures, or both. A true optical antenna would, on a qualitatively new level, control the light-matter interaction on the nanoscale for controlled optical signal transduction, radiative decay engineering, quantum coherent control, and super-resolution microscopy, and provide unprecedented sensitivity in spectroscopy. Resonant metallic structures have successfully been designed to approach these goals. They are called optical antennas in analogy to radiofrequency (RF) antennas due to their capability to collect and control electromagnetic fields at optical frequencies. However, in contrast to the RF, where exact design rules for antennas, waveguides, and antenna-load matching in terms of their impedances are well established, substantial physical differences limit the simple extension of the RF concepts into the optical regime. Key distinctions include, for one, intrinsic material resonances including quantum state excitations (metals, metal oxides, semiconductor homo- and heterostructures) and extrinsic resonances (surface plasmon/phonon polaritons) at optical frequencies. Second, in the absence of discrete inductors, capacitors, and resistors, new design strategies must be developed to impedance match the antenna to the load, ultimately in the form of a vibrational, electronic, or spin excitation on the quantum level. Third, there is as yet a lack of standard performance metrics for characterizing, comparing and quantifying optical antenna performance. Therefore, optical antenna development is currently challenged at all the levels of design, fabrication, and characterization. Here we generalize the ideal antenna-load interaction at optical frequencies, characterized by three main steps: (i) far-field reception of a propagating mode exciting an antenna resonance, (ii) subsequent transformation of that mode into a nanoscale spatial localization, and (iii) near-field coupling via an enhanced local density of states to a quantum load. These three steps define the goal of efficient transformation of incident radiation into a quantum excitation in an impedance-matched fashion. We review the physical basis of the light-matter interaction at the transition from the RF to optical regime, discuss the extension of antenna theory as needed for the design of impedance-matched optical antenna-load coupled systems, and provide several examples of the state of the art in design strategies and suggest future extensions. We furthermore suggest new performance metrics based on the combination of electric vector field, field enhancement and capture cross section measurement to aid in comparison between different antenna designs and optimization of optical antenna performance within the physical parameter space.

  20. Early social-emotional development in blind infants.

    PubMed

    Tröster, H; Brambring, M

    1992-01-01

    In order to study the impact of blindness on social and emotional development during the first year of life, the level of social-emotional development was compared in blind and sighted 9- and 12-month-old infants. The five 9-month-old and the 17 12-month-old blind infants were completely blind from birth and exhibited no further serious disabilities. Social-emotional development was assessed with a scale from the Bielefeld Developmental Test for Blind Infants and Preschoolers containing three subscales on emotions, social interaction and impulse control. Compared to non-disabled infants, blind infants exhibited a more limited repertoire of facial expressions and less responsiveness. They less frequently attempted to initiate contact with their mothers (self-initiated interactions) or comply with simple requests and prohibitions than sighted infants. These differences in the social-emotional development of blind and sighted infants are traced back to the effects of blindness on the mother-child interaction. The lack of visual perception appears to impede particularly the acquisition of a dialogue concept.

  1. Combined Quarterly Technical Report Number 31. Pluribus Satellite IMP (Interface Message Provision) Development Mobile Access Terminal Network

    DTIC Science & Technology

    1983-12-01

    Bzo I-BIO-INODE I<---->INODE 1-SIO-I BIO I 2 Hbps <-I I LINKI #1 1 B’?LY 1 #2 I LINKI 1-> 2 bps - ----- SWITCH .---- • OR N,2 11bps ->IIJPLIN I...IPROC’Rh IPROC’RI IDOWNLINKI-> 2 14bps I BIO I-BIO-INODE I<---->INODE I-BIO-I BIO I S2 bps ->I I LINKI #1 I B’FLY 1 #2 I LINKI 1-> 2 1bps " ----- + SWITCH

  2. BIOS Security Analysis and a Kind of Trusted BIOS

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenliu; Xu, Rongsheng

    The BIOS's security threats to computer system are analyzed and security requirements for firmware BIOS are summarized in this paper. Through discussion about TCG's trust transitivity, a new approach about CRTM implementation based on BIOS is developed. In this paper, we also put forward a new trusted BIOS architecture-UTBIOS which is built on Intel Framework for EFI/UEFI. The trustworthiness of UTBIOS is based on trusted hardware TPM. In UTBIOS, trust encapsulation and trust measurement are used to construct pre-OS trust chain. Performance of trust measurement is also analyzed in the end.

  3. Bright luminescence from pure DNA-curcumin–based phosphors for bio hybrid light-emitting diodes

    PubMed Central

    Reddy, M. Siva Pratap; Park, Chinho

    2016-01-01

    Recently, significant advances have occurred in the development of phosphors for bio hybrid light-emitting diodes (Bio-HLEDs), which have created brighter, metal-free, rare-earth phosphor-free, eco-friendly, and cost-competitive features for visible light emission. Here, we demonstrate an original approach using bioinspired phosphors in Bio-HLEDs based on natural deoxyribonucleic acid (DNA)-curcumin complexes with cetyltrimethylammonium (CTMA) in bio-crystalline form. The curcumin chromophore was bound to the DNA double helix structure as observed using field emission tunnelling electron microscopy (FE-TEM). Efficient luminescence occurred due to tightly bound curcumin chromophore to DNA duplex. Bio-HLED shows low luminous drop rate of 0.0551 s−1. Moreover, the solid bio-crystals confined the activating bright luminescence with a quantum yield of 62%, thereby overcoming aggregation-induced quenching effect. The results of this study herald the development of commercially viable large-scale hybrid light applications that are environmentally benign. PMID:27572113

  4. Development of Bio-Based Foams Prepared from Pbat/Pla Reinforced with Bio-Calcium Carbonate Compatibilized by Electron-Beam Radiation

    NASA Astrophysics Data System (ADS)

    Cardoso, Elizabeth Carvalho L.; Seixas, Marcus Vinicius S.; Wiebeck, Helio; Oliveira, René R.; Machado, Glauson Aparecido F.; Moura, Esperidiana A. B.

    In Brazil, the food industry generates every year huge amounts of avian eggshell waste, an industrial byproduct containing 95% of calcium carbonate, and its disposal constitutes a serious environmental hazard. This study aims to the development of bio-foams from PBAT/PLA blends reinforced with bio-calcium carbonate from eggshells. Composites were obtained by melting extrusion process, blending PBAT/PLA (50/50) with 25% of bio-calcium carbonate, PBAT/PLA (50/45) with 25% of bio-calcium carbonate and 5 % of pre-irradiated PLA and PBAT/PLA (50/40) with 25% of bio-calcium carbonate and 10 % of pre-irradiated PLA. PLA was previously e-beam irradiated at 150kGy in air and used as compatibilizer agent. The composites were then extruded in a Rheomex 332p single special screw for foaming. Samples were submitted to Tensile and Compression tests, MFI, DSC, TGA, XRD and FEG/SEM, analyses.

  5. Study protocol for the Maule Cohort (MAUCO) of chronic diseases, Chile 2014-2024.

    PubMed

    Ferreccio, Catterina; Roa, Juan Carlos; Bambs, Claudia; Vives, Alejandra; Corvalán, Alejandro H; Cortés, Sandra; Foerster, Claudia; Acevedo, Johanna; Huidobro, Andrea; Passi, Alvaro; Toro, Pablo; Covacevich, Yerko; de la Cruz, Rolando; Koshiol, Jill; Olivares, Mauricio; Miquel, Juan Francisco; Cruz, Francisco; Silva, Raúl; Quest, Andrew F; Kogan, Marcelo J; Castro, Pablo F; Lavandero, Sergio

    2016-02-04

    Maule Cohort (MAUCO), a Chilean cohort study, seeks to analyze the natural history of chronic diseases in the agricultural county of Molina (40,000 inhabitants) in the Maule Region, Chile. Molina´s population is of particular interest because in the last few decades it changed from being undernourished to suffering excess caloric intake, and it currently has the highest national rates of cardiovascular diseases, stomach cancer and gallbladder cancer. Between 2009 and 2011 Molina´s poverty rate dropped from 24.1 % to 13.5 % (national average 20.4 %); in this period the county went from insufficient to almost complete basic sanitation. Despite these advances, chemical pollutants in the food and air are increasing. Thus, in Molina risk factors typical of both under-developed and developed countries coexist, generating a unique profile associated with inflammation, oxidative stress and chronic diseases. MAUCO is the core project of the recently established Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile. In this study, we are enrolling and following 10,000 adults aged 38 to 74 years over 10 years. All eligible Molina residents will be enrolled. Participants were identified through a household census. Consenting individuals answer an epidemiological survey exploring risk factors (psycho-social, pesticides, diet, alcohol, and physical activity), medical history and physical and cognitive conditions; provide fasting blood, urine, and saliva samples; receive an electrocardiogram, abdominal ultrasound and bio-impedance test; and take a hand-grip strength test. These subjects will be re-interviewed after 2, 5 and 7 years. Active surveillance of health events is in place throughout the regional healthcare system. The MAUCO Bio-Bank will store 30 to 50 aliquots per subject using an NIH/NCI biorepository system for secure and anonymous linkage of samples with data. MAUCO´s results will help design public health interventions tailored to agricultural populations in Latin America.

  6. Rail-dbGaP: analyzing dbGaP-protected data in the cloud with Amazon Elastic MapReduce.

    PubMed

    Nellore, Abhinav; Wilks, Christopher; Hansen, Kasper D; Leek, Jeffrey T; Langmead, Ben

    2016-08-15

    Public archives contain thousands of trillions of bases of valuable sequencing data. More than 40% of the Sequence Read Archive is human data protected by provisions such as dbGaP. To analyse dbGaP-protected data, researchers must typically work with IT administrators and signing officials to ensure all levels of security are implemented at their institution. This is a major obstacle, impeding reproducibility and reducing the utility of archived data. We present a protocol and software tool for analyzing protected data in a commercial cloud. The protocol, Rail-dbGaP, is applicable to any tool running on Amazon Web Services Elastic MapReduce. The tool, Rail-RNA v0.2, is a spliced aligner for RNA-seq data, which we demonstrate by running on 9662 samples from the dbGaP-protected GTEx consortium dataset. The Rail-dbGaP protocol makes explicit for the first time the steps an investigator must take to develop Elastic MapReduce pipelines that analyse dbGaP-protected data in a manner compliant with NIH guidelines. Rail-RNA automates implementation of the protocol, making it easy for typical biomedical investigators to study protected RNA-seq data, regardless of their local IT resources or expertise. Rail-RNA is available from http://rail.bio Technical details on the Rail-dbGaP protocol as well as an implementation walkthrough are available at https://github.com/nellore/rail-dbgap Detailed instructions on running Rail-RNA on dbGaP-protected data using Amazon Web Services are available at http://docs.rail.bio/dbgap/ : anellore@gmail.com or langmea@cs.jhu.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  7. Single bead-based electrochemical biosensor.

    PubMed

    Liu, Changchun; Schrlau, Michael G; Bau, Haim H

    2009-12-15

    A simple, robust, single bead-based electrochemical biosensor was fabricated and characterized. The sensor's working electrode consists of an electrochemically etched platinum wire, with a nominal diameter of 25 microm, hermetically heat-fusion sealed in a pulled glass capillary (micropipette). The sealing process does not require any epoxy or glue. A commercially available, densely functionalized agarose bead was mounted on the tip of the etched platinum wire. The use of a pre-functionalized bead eliminates the tedious and complicated surface functionalization process that is often the bottleneck in the development of electrochemical biosensors. We report on the use of a biotin agarose bead-based, micropipette, electrochemical (Bio-BMP) biosensor to monitor H(2)O(2) concentration and the use of a streptavidin bead-based, micropipette, electrochemical (SA-BMP) biosensor to detect DNA amplicons. The Bio-BMP biosensor's response increased linearly as the H(2)O(2) concentration increased in the range from 1 x 10(-6) to 1.2 x10(-4)M with a detection limit of 5 x 10(-7)M. The SA-BMP was able to detect the amplicons of 1pg DNA template of B. Cereus bacteria, thus providing better detection sensitivity than conventional gel-based electropherograms.

  8. bioWeb3D: an online webGL 3D data visualisation tool

    PubMed Central

    2013-01-01

    Background Data visualization is critical for interpreting biological data. However, in practice it can prove to be a bottleneck for non trained researchers; this is especially true for three dimensional (3D) data representation. Whilst existing software can provide all necessary functionalities to represent and manipulate biological 3D datasets, very few are easily accessible (browser based), cross platform and accessible to non-expert users. Results An online HTML5/WebGL based 3D visualisation tool has been developed to allow biologists to quickly and easily view interactive and customizable three dimensional representations of their data along with multiple layers of information. Using the WebGL library Three.js written in Javascript, bioWeb3D allows the simultaneous visualisation of multiple large datasets inputted via a simple JSON, XML or CSV file, which can be read and analysed locally thanks to HTML5 capabilities. Conclusions Using basic 3D representation techniques in a technologically innovative context, we provide a program that is not intended to compete with professional 3D representation software, but that instead enables a quick and intuitive representation of reasonably large 3D datasets. PMID:23758781

  9. Solar promoted azo dye degradation and energy production in the bio-photoelectrochemical system with a g-C3N4/BiOBr heterojunction photocathode

    NASA Astrophysics Data System (ADS)

    Hou, Yanping; Gan, Yuanyuan; Yu, Zebin; Chen, Xixi; Qian, Lun; Zhang, Boge; Huang, Lirong; Huang, Jun

    2017-12-01

    In this study, a single-chamber bio-photoelectrochemical system (BPES), integrating advantages of bioelectrochemical system and photocatalysis process, is developed using a g-C3N4/BiOBr heterojunction photocathode for methyl orange (MO) degradation and simultaneous energy recovery. Photocatalytic activities of g-C3N4/BiOBr, g-C3N4 and BiOBr are characterized by UV-vis diffuse reflectance spectra (UV-vis DRS) and Photoluminescence (PL) spectra; and electrochemical activities of photocathodes are examined by linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Results show that with an applied voltage of 0.8 V and under simulated solar irradiation, MO decolorization with g-C3N4/BiOBr photocathode reaches 97.8% within 4 h, higher than those with g-C3N4 (85.3%) and BiOBr (87.3%) photocathodes. Likewise, higher hydrogen production rate (143.8 L m-3d-1) is observed using g-C3N4/BiOBr photocathode; while values for g-C3N4 and BiOBr photocathodes are 124.3 L m-3d-1 and 117.1 L m-3d-1, respectively. PL and EIS reveal that superior performance of g-C3N4/BiOBr photocathode can be attributed to more efficient separation of photogenerated electron-hole pairs, lower resistance and better charge transfer. Synergistic effect occurs among biological, electrochemical and photocatalytic processes in illuminated BPES for MO removal. Photocathode optimization and system stability evaluation are conducted. This study demonstrates that the BPES holds great potential for efficient refractory organics degradation and energy production.

  10. A compact submicrosecond, high current generator

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Zorin, V. B.; Zherlitsyn, A. A.

    2009-08-01

    Pulsed current generator was developed for experiments with current carrying pulsed plasma. Main parts of the generator are capacitor bank, low inductive current driving lines, and central load part. Generator consists of four identical sections, connected in parallel to one load. Capacitor bank is assembled from 24 capacitor blocks (100 kV, 80 nF), connected in parallel. It stores 9.6 kJ at 100 kV charging voltage. Each capacitor block incorporates a multigap spark switch, which is able to commute by six parallel channels. Switches operate in dry air at atmospheric pressure. The generator was tested with an inductive load and a liner load. At 17.5 nH inductive load and 100 kV of charging voltage it provides 650 kA of current amplitude with 390 ns rise time with 0.6 Ω damping resistors in discharge circuit of each capacitor block. The net generator inductance without a load was optimized to be as low as 15 nH, which results in extremely low impedance of the generator (˜0.08 Ω). It ensures effective energy coupling with a low impedance load such as Z pinch. The generator operates reliably without any adjustments in 70-100 kV range of charging voltage. Jitter in delay between output pulse and triggering pulse is less than 5 ns at 70-100 kV charging voltage. Operation and handling are very simple, because no oil or purified gases are required for the generator. The generator has dimensions 5.24×1.2×0.18 m3 and total weight about 1400 kg, thus manifesting itself as simple, robust, and cost effective apparatus.

  11. STABILIZATION OF BIO-OIL TO ENABLE ITS HYDROTREATING TO PRODUCE BIOFUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huamin

    Fast pyrolysis is considered to be the simplest and most cost-effective approach to produce liquid oil (bio-oil) from biomass. Bio-oil is not suitable to substitute for petroleum as high-quality fuels and significant upgrading such as hydrotreating is required to remove oxygen, add hydrogen, and rearrange carbon backbone of bio-oil. However, the grand challenge in bio-oil hydrotreating technology is bio-oil instability, which limits the lifetime of catalyst and operation. To enable a sustainable and economically viable process for bio-oil hydrotreating, it is vital to develop effective technologies for stabilizing bio-oils. This chapter will be devoted to bio-oil stabilization. The current understatingmore » of the major cause of bio-oil instability, condensation of reactive species such as sugar, aldehydes, ketones, and phenolics, is elucidated. The reported physical and chemical methods for bio-oil stabilization are summarized in detail, with a specific focus on bio-oil catalytic hydrogenation for stabilization. The impact of stabilization on bio-oil hydrotreating is discussed as well.« less

  12. Bionic Manufacturing: Towards Cyborg Cells and Sentient Microbots.

    PubMed

    Srivastava, Sarvesh Kumar; Yadav, Vikramaditya G

    2018-05-01

    Bio-inspired engineering applies biological design principles towards developing engineering solutions but is not practical as a manufacturing paradigm. We advocate 'bionic manufacturing', a synergistic fusion of biotic and abiotic components, to transition away from bio-inspiration toward bio-augmentation to address current limitations in bio-inspired manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Development of an in vitro Assay, Based on the BioFilm Ring Test®, for Rapid Profiling of Biofilm-Growing Bacteria

    PubMed Central

    Di Domenico, Enea G.; Toma, Luigi; Provot, Christian; Ascenzioni, Fiorentina; Sperduti, Isabella; Prignano, Grazia; Gallo, Maria T.; Pimpinelli, Fulvia; Bordignon, Valentina; Bernardi, Thierry; Ensoli, Fabrizio

    2016-01-01

    Microbial biofilm represents a major virulence factor associated with chronic and recurrent infections. Pathogenic bacteria embedded in biofilms are highly resistant to environmental and chemical agents, including antibiotics and therefore difficult to eradicate. Thus, reliable tests to assess biofilm formation by bacterial strains as well as the impact of chemicals or antibiotics on biofilm formation represent desirable tools for a most effective therapeutic management and microbiological risk control. Current methods to evaluate biofilm formation are usually time-consuming, costly, and hardly applicable in the clinical setting. The aim of the present study was to develop and assess a simple and reliable in vitro procedure for the characterization of biofilm-producing bacterial strains for future clinical applications based on the BioFilm Ring Test® (BRT) technology. The procedure developed for clinical testing (cBRT) can provide an accurate and timely (5 h) measurement of biofilm formation for the most common pathogenic bacteria seen in clinical practice. The results gathered by the cBRT assay were in agreement with the traditional crystal violet (CV) staining test, according to the κ coefficient test (κ = 0.623). However, the cBRT assay showed higher levels of specificity (92.2%) and accuracy (88.1%) as compared to CV. The results indicate that this procedure offers an easy, rapid and robust assay to test microbial biofilm and a promising tool for clinical microbiology. PMID:27708625

  14. The BioScope Initiative: Integrating Technology into the Biology Classroom.

    ERIC Educational Resources Information Center

    Ashburn, Sarah J.; Eichinger, David C.; Witham, Shelly A.; Cross, Vanessa D.; Krockover, Gerald H.; Pae, Tae-Il; Islam, Samantha; Robinson, J. Paul

    2002-01-01

    Reports on the quantitative and qualitative assessment of the CD-ROM "Cell Structure and Function" which includes five sections: (1) Basics; (2) Simple Cell; (3) Cell Viewer; (4) Cellular Changes; and (5) Handles. Evaluates the effectiveness of the CD-ROM with the participation of (n=65) students. Applies both qualitative and statistical methods.…

  15. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor.

    PubMed

    Davis, Sean; Meltzer, Paul S

    2007-07-15

    Microarray technology has become a standard molecular biology tool. Experimental data have been generated on a huge number of organisms, tissue types, treatment conditions and disease states. The Gene Expression Omnibus (Barrett et al., 2005), developed by the National Center for Bioinformatics (NCBI) at the National Institutes of Health is a repository of nearly 140,000 gene expression experiments. The BioConductor project (Gentleman et al., 2004) is an open-source and open-development software project built in the R statistical programming environment (R Development core Team, 2005) for the analysis and comprehension of genomic data. The tools contained in the BioConductor project represent many state-of-the-art methods for the analysis of microarray and genomics data. We have developed a software tool that allows access to the wealth of information within GEO directly from BioConductor, eliminating many the formatting and parsing problems that have made such analyses labor-intensive in the past. The software, called GEOquery, effectively establishes a bridge between GEO and BioConductor. Easy access to GEO data from BioConductor will likely lead to new analyses of GEO data using novel and rigorous statistical and bioinformatic tools. Facilitating analyses and meta-analyses of microarray data will increase the efficiency with which biologically important conclusions can be drawn from published genomic data. GEOquery is available as part of the BioConductor project.

  16. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals.

    PubMed

    Morgan, Hervan Marion; Bu, Quan; Liang, Jianghui; Liu, Yujing; Mao, Hanping; Shi, Aiping; Lei, Hanwu; Ruan, Roger

    2017-04-01

    Lignocellulosic biomass is an abundant renewable resource and can be efficiently converted into bio-energy by a bio-refinery. From the various techniques available for biomass thermo-chemical conversion; microwave assisted pyrolysis (MAP) seems to be the very promising. The principles of microwave technology were reviewed and the parameters for the efficient production of bio-oil using microwave technology were summarized. Microwave technology by itself cannot efficiently produce high quality bio-oil products, catalysts are used to improve the reaction conditions and selectivity for valued products during MAP. The catalysts used to optimize MAP are revised in the development of this article. The origins for bio-oils that are phenol rich or hydrocarbon rich are reviewed and their experimental results were summarized. The kinetics of MAP is discussed briefly in the development of the article. Future prospects and scientific development of MAP are also considered in the development of this article. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability.

    PubMed

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N; Singh, Devendra P

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet.

  18. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability

    PubMed Central

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N.; Singh, Devendra P.

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet. PMID:27148218

  19. Material and energy recovery in integrated waste management systems: an innovative approach for the characterization of the gaseous emissions from residual MSW bio-drying.

    PubMed

    Ragazzi, M; Rada, E C; Antolini, D

    2011-01-01

    In the sector of residual municipal solid waste management an increasing attention is put towards the role of biological treatments like bio-drying and bio-stabilization in order to decrease the need of landfilling volumes. The literature shows a lack of information concerning the emission factor of pollutants released from these processes. The available data are generally spot characterizations of concentration and air flow-rate that are used together in order to assess the emission factors. This approach caused significant differences among the available data as the release of pollutants is not steady. This paper belongs to a group of six papers concerning a research on material and energy recovery in integrated waste management systems, developed by a network of five universities. The contribution of the University of Trento, focuses on the bio-drying process with the following targets: (a) developing an innovative low cost method of sampling/measurement able to take into account the dynamics of release of pollutants; (b) checking the efficiency of a bio-filter; (c) verifying the variability of generation of some pollutants; (d) generating emission factors. The research was developed using a bio-drying pilot plant. As a treatment of the process air, the bio-reactor was coupled with a bio-filter. The emissions were characterized using an original approach based on the adoption of two measurement chambers suitable for hosting passive samplers. The passive samplers allowed the characterization of VOCs, N(2)O, NH(3) and H(2)S. A bio-chemical model, useful for energy and mass balances, supported the interpretation of the presented bio-drying run. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Bio-Aerosol Testkamer: Ontwikkeling van Protocollen (Bio Aerosol Test Chamber: Development of Protocols)

    DTIC Science & Technology

    2007-07-01

    testfaciliteit detector met de drie simulanten getest beschikbaar gekomen voor het testen van Beschrijving van de worden volgens gangbare internationale bio...2005 werd de Bio-Adrosol Testkamer (BAT-kamer) geplaatst door de firma Dycor Technologies Ltd., Canada. In de BAT-kamner kan een bio-ai5rosol...bestaande ruimte past. In beide gevallen bleek de firma Dycor Technologies Ltd in Canada (http://www.dycor.com) de beste leverancier te zijn, en voor beide

Top