Electrolytes for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Fergus, Jeffrey W.
The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed.
Solid State Energy Conversion Alliance Delphi SOFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Gary Blake; Sean Kelly
2006-12-31
The following report details the results under the DOE SECA program for the period July 2006 through December 2006. Developments pertain to the development of a 3 to 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. This report details technical results of the work performed under the following tasks for the SOFC Power System: Task 1 SOFC System Development; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant Components; Task 5 Project Management; and Task 6 System Modeling & Cell Evaluation for Highmore » Efficiency Coal-Based Solid Oxide Fuel Cell Gas Turbine Hybrid System.« less
NASA Astrophysics Data System (ADS)
Kupecki, Jakub; Motyliński, Konrad; Skrzypkiewicz, Marek; Wierzbicki, Michał; Naumovich, Yevgeniy
2017-12-01
The article discusses the operation of solid oxide electrochemical cells (SOC) developed in the Institute of Power Engineering as prospective key components of power-to-gas systems. The fundamentals of the solid oxide cells operated as fuel cells (SOFC - solid oxide fuel cells) and electrolysers (SOEC - solid oxide fuel cells) are given. The experimental technique used for electrochemical characterization of cells is presented. The results obtained for planar cell with anodic support are given and discussed. Based on the results, the applicability of the cells in power-to-gas systems (P2G) is evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
JaeHwa Koh; DuckJoo Yoon; Chang H. Oh
2010-07-01
An electrolyzer model for the analysis of a hydrogen-production system using a solid oxide electrolysis cell (SOEC) has been developed, and the effects for principal parameters have been estimated by sensitivity studies based on the developed model. The main parameters considered are current density, area specific resistance, temperature, pressure, and molar fraction and flow rates in the inlet and outlet. Finally, a simple model for a high-temperature hydrogen-production system using the solid oxide electrolysis cell integrated with very high temperature reactors is estimated.
Zhao, Xuan; Li, Xue; Gong, Yunhui; Huang, Kevin
2014-01-18
The recently developed solid oxide metal-air redox battery is a new technology capable of high-rate chemistry. Here we report that the performance, reversibility and stability of a solid oxide iron-air redox battery can be significantly improved by nanostructuring energy storage materials from a carbothermic reaction.
Development Of A Solid Oxide Fuel Cell Stack By Delphi And Battelle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukerjee, Subhasish; Shaffer, Steven J.; Zizelman, James
2003-01-20
Delphi and Battelle are developing a Solid Oxide Fuel Cell (SOFC) stack for transportation and residential applications. This paper describes the status of development of the Generation 2 stack and key progress made in addressing some of the challenges in this technology.
Solid Oxide Fuel Cell Seal Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Bansal, Narottam P.; Dynys, Fred W.; Lang, Jerry; Daniels, Christopher C.; Palko, Joeseph L.; Choi, S. R.
2004-01-01
Researchers at NASA GRC are confronting the seal durability challenges of Solid Oxide Fuel Cells by pursuing an integrated and multidisciplinary development effort incorporating thermo-structural analyses, advanced materials, experimentation, and novel seal design concepts. The successful development of durable hermetic SOFC seals is essential to reliably producing the high power densities required for aerospace applications.
Chen, Kongfa; Liu, Shu-Sheng; Ai, Na; Koyama, Michihisa; Jiang, San Ping
2015-12-14
High temperature solid oxide cells (SOCs) are attractive for storage and regeneration of renewable energy by operating reversibly in solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) modes. However, the stability of SOCs, particularly the deterioration of the performance of oxygen electrodes in the SOEC operation mode, is the most critical issue in the development of high performance and durable SOCs. In this study, we investigate in detail the electrochemical activity and stability of La0.8Sr0.2MnO3 (LSM) oxygen electrodes in cyclic SOEC and SOFC modes. The results show that the deterioration of LSM oxygen electrodes caused by anodic polarization can be partially or completely recovered by subsequent cathodic polarization. Using in situ assembled LSM electrodes without pre-sintering, we demonstrate that the deteriorated LSM/YSZ interface can be repaired and regenerated by operating the cells under cathodic polarization conditions. This study for the first time establishes the foundation for the development of truly reversible and stable SOCs for hydrogen fuel production and electricity generation in cyclic SOEC and SOFC operation modes.
Thin-Film Solid Oxide Fuel Cells
NASA Technical Reports Server (NTRS)
Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex
2009-01-01
The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.
SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Subhasish Mukerjee
2003-12-08
The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burnmore » internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.« less
Solid waste treatment processes for space station
NASA Technical Reports Server (NTRS)
Marrero, T. R.
1983-01-01
The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.
Qifeng Zheng; Zhiyong Cai; Zhenqiang Ma; Shaoqin Gong
2015-01-01
A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4 poly (vinyl alcohol) PVA gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleschev, Yu.N.; Chulharev, V.F.
1996-04-01
Investigations being performed at VNIITF covers the whole cycle of solid oxide fuel cell manufacturing. This report describes the main directions of investigations in materials, technologies, and commercialization.
NASA Astrophysics Data System (ADS)
Ward, Brian
Solid oxide fuel cells (SOFCs) are energy conversion devices that use ceramic powders as a precursor material for their electrodes. Presently, powder manufacturers are encountering complications producing consistent precursor powders. Through various thermal, chemical and physical tests, such as DSC and XRD, a preliminary production standard will be developed.
Development of a household waste treatment subsystem, volume 1. [with water conservation features
NASA Technical Reports Server (NTRS)
Gresko, T. M.; Murray, R. W.
1973-01-01
The domestic waste treatment subsystem was developed to process the daily liquid and non-metallic solid wastes provided by a family of four people. The subsystem was designed to be connected to the sewer line of a household which contained water conservation features. The system consisted of an evaporation technique to separate liquids from solids, an incineration technique for solids reduction, and a catalytic oxidizer for eliminating noxious gases from evaporation and incineration processes. All wastes were passed through a grinder which masticated the solids and deposited them in a settling tank. The liquids were transferred through a cleanable filter into a holding tank. From here the liquids were sprayed into an evaporator and a spray chamber where evaporation occurred. The resulting vapors were processed by catalytic oxidation. Water and latent energy were recovered in a combination evaporator/condenser heat exchanger. The solids were conveyed into an incinerator and reduced to ash while the incineration gases were passed through the catalytic oxidizer along with the processed water vapor.
Solid oxide fuel cells fueled with reducible oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Steven S.; Fan, Liang Shih
A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing themore » solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.« less
Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Deangelis; Rich Depuy; Debashis Dey
2004-09-30
This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale upmore » strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.« less
Supercritical water oxidation - Microgravity solids separation
NASA Technical Reports Server (NTRS)
Killilea, William R.; Hong, Glenn T.; Swallow, Kathleen C.; Thomason, Terry B.
1988-01-01
This paper discusses the application of supercritical water oxidation (SCWO) waste treatment and water recycling technology to the problem of waste disposal in-long term manned space missions. As inorganic constituents present in the waste are not soluble in supercritical water, they must be removed from the organic-free supercritical fluid reactor effluent. Supercritical water reactor/solids separator designs capable of removing precipitated solids from the process' supercritical fluid in zero- and low- gravity environments are developed and evaluated. Preliminary experiments are then conducted to test the concepts. Feed materials for the experiments are urine, feces, and wipes with the addition of reverse osmosis brine, the rejected portion of processed hygiene water. The solid properties and their influence on the design of several oxidation-reactor/solids-separator configurations under study are presented.
Silicon Nanostructures, Excitonic Interactions, Laser Consequences
2008-07-11
etching using an anodized aluminum oxide membrane as mask. The results described here lay a solid foundation for the next phase of development aimed at...achieved though reactive-ion-etching using an anodized aluminum oxide membrane as mask. The results described here lay a solid foundation for the next...Materials, April 4, 2006 issue). 6. Aijun Yin, Marian Tzolov, David Cardimona and Jimmy Xu, "Fabrication of Highly Ordered Anodic Aluminum Oxide
Monolithic solid oxide fuel cell development
NASA Technical Reports Server (NTRS)
Myles, K. M.; Mcpheeters, C. C.
1989-01-01
The feasibility of the monolithic solid oxide fuel cell (MSOFC) concept has been proven, and the performance has been dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials have been minimized, thus allowing successful fabrication of the MSOFC with few defects. The MSOFC shows excellent promise for development into a practical power source for many applications from stationary power, to automobile propulsion, to space pulsed power.
Scaling-Up Solid Oxide Membrane Electrolysis Technology for Magnesium Production
NASA Astrophysics Data System (ADS)
Pati, Soobhankar; Powell, Adam; Tucker, Steve; Derezinski, Steve
Metal Oxygen Separation Technologies, Inc. (MOxST) is actively developing Solid Oxide Membrane (SOM) electrolysis technology for production of magnesium directly from its oxide. The vital component of this technology is the oxygen ion-conducting solid zirconia electrolyte separating the molten flux (a mixture of salts and oxide) and the inert anode. The zirconia not only protects the anode from the flux but also prevents anode gas back-reaction, increasing the efficiency. This makes it possible to produce low-cost high-purity magnesium and high-purity oxygen as a byproduct with no direct greenhouse gas emissions. In this paper we discuss the design modifications made to address the scaling-up challenges, particularly for producing magnesium in liquid form. The key accomplishment to date is the successful development of a prototype capable of producing few kilograms of magnesium per day. We will also describe the prerequisite properties of an inert anode and suitable materials for the same.
Application of the monolithic solid oxide fuel cell to space power systems
NASA Astrophysics Data System (ADS)
Myles, Kevin M.; Bhattacharyya, Samit K.
1991-01-01
The monolithic solid-oxide fuel cell (MSOFC) is a promising electrochemical power generation device that is currently under development at Argonne National Laboratory. The extremely high power density of the MSOFC leads to MSOFC systems that have sufficiently high energy densities that they are excellent candidates for a number of space missions. The fuel cell can also be operated in reverse, if it can be coupled to an external power source, to regenerate the fuel and oxidant from the water product. This feature further enhances the potential mission applications of the MSOFC. In this paper, the current status of the fuel cell development is presented—the focus being on fabrication and currently achievable performance. In addition, a specific example of a space power system, featuring a liquid metal cooled fast spectrum nuclear reactor and a monolithic solid oxide fuel cell, is presented to demonstrate the features of an integrated system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleschev, Yu.N.; Chukharev, V.F.
1996-04-01
This paper describes proposals on scientific and technical collaborations pertaining to solid oxide fuel cell commercialization. Topics included for discussion are: materials research and manufacture; market estimation and cost; directions of collaboration; and project of proposals on joint enterprise creation.
NASA Technical Reports Server (NTRS)
Green, Robert D.; Matter, Paul H.; Holt, Chris; Beachy, Michael; Gaydos, James; Farmer, Serene C.; Setlock, John
2016-01-01
A critical component in spacecraft life support loop closure is the removal of carbon dioxide (CO2, produced by the crew) from the cabin atmosphere and chemical reduction of this CO2 to recover the oxygen. In 2015, we initiated development of an oxygen recovery system for life support applications consisting of a solid oxide co-electrolyzer (SOCE) and a carbon formation reactor (CFR). The SOCE electrolyzes a combined stream of carbon dioxide (CO2) and water (H2O) gas mixtures to produce synthesis gas (e.g., CO and H2 gas) and pure dry oxygen as separate products. This SOCE is being developed from a NASA GRC solid oxide fuel cell and stack design originally developed for aeronautics long-duration power applications. The CFR, being developed by pHMatter LLC, takes the CO and H2 output from the SOCE, and converts it primarily to solid carbon (C(s)) and H2O and CO2. Although the solid carbon accumulates in the CFR, the innovative design allows easy removal of the carbon product, requiring minimal crew member (CM) time and low resupply mass (1.0 kg/year/CM) for replacement of the solid carbon catalyst, a significant improvement over previous Bosch reactor approaches. In this work, we will provide a status of our Phase I efforts in the development and testing of both the SOCE and CFR prototype units, along with an initial assessment of the combined SOCE-CFR system, including a mass and power projections, along with an estimate of the oxygen recovery rate.
Low temperature ozone oxidation of solid waste surrogates
NASA Astrophysics Data System (ADS)
Nabity, James A.; Lee, Jeffrey M.
2015-09-01
Solid waste management presents a significant challenge to human spaceflight and especially, long-term missions beyond Earth orbit. A six-month mission will generate over 300 kg of solid wastes per crewmember that must be dealt with to eliminate the need for storage and prevent it from becoming a biological hazard to the crew. There are several methods for the treatment of wastes that include oxidation via ozone, incineration, microbial oxidation or pyrolysis and physical methods such as microwave drying and compaction. In recent years, a low temperature oxidation process using ozonated water has been developed for the chemical conversion of organic wastes to CO2 and H2O. Experiments were conducted to evaluate the rate and effectiveness with which ozone oxidized several different waste materials. Increasing the surface area by chopping or shredding the solids into small pieces more than doubled the rate of oxidation. A greater flow of ozone and agitation of the ozonated water system also increased processing rates. Of the materials investigated, plastics have proven the most difficult to oxidize. The processing of plastics above the glass transition temperatures caused the plastics to clump together which reduced the exposed surface area, while processing at lower temperatures reduced surface reaction kinetics.
Solid state electrochemical current source
Potanin, Alexander Arkadyevich; Vedeneev, Nikolai Ivanovich
2002-04-30
A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.
Development of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid System Model for Aerospace Applications
NASA Technical Reports Server (NTRS)
Freeh, Joshua E.; Pratt, Joseph W.; Brouwer, Jacob
2004-01-01
Recent interest in fuel cell-gas turbine hybrid applications for the aerospace industry has led to the need for accurate computer simulation models to aid in system design and performance evaluation. To meet this requirement, solid oxide fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical Propulsion Systems Simulation (NPSS) software package. The SOFC and reformer models solve systems of equations governing steady-state performance using common theoretical and semi-empirical terms. An example hybrid configuration is presented that demonstrates the new capability as well as the interaction with pre-existing gas turbine and heat exchanger models. Finally, a comparison of calculated SOFC performance with experimental data is presented to demonstrate model validity. Keywords: Solid Oxide Fuel Cell, Reformer, System Model, Aerospace, Hybrid System, NPSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ievleva, J.I.; Kolesnikov, V.P.; Mezhertisky, G.S.
1996-04-01
The main direction of science investigations for creation of efficient solid oxide fuel cells (SOFC) in IPPE are considered in this work. The development program of planar SOFC with thin-film electrolyte is shown. General design schemes of experimental SOFC units are presented. The flow design schemes of processes for initial materials and electrodes fabrication are shown. The results of investigations for creation thin-film solid oxide electrolyte at porous cathode by magnetron sputtering from complex metal target in oxidative environment are presented.
Nanocrystalline cerium oxide materials for solid fuel cell systems
Brinkman, Kyle S
2015-05-05
Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.
Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen Minh
2002-03-31
This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet}more » Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed« less
Facile solid-state synthesis of oxidation-resistant metal nanoparticles at ambient conditions
NASA Astrophysics Data System (ADS)
Lee, Kyu Hyung; Jung, Hyuk Joon; Lee, Ju Hee; Kim, Kyungtae; Lee, Byeongno; Nam, Dohyun; Kim, Chung Man; Jung, Myung-Hwa; Hur, Nam Hwi
2018-05-01
A simple and scalable method for the synthesis of metal nanoparticles in the solid-state was developed, which can produce nanoparticles in the absence of solvents. Nanoparticles of coinage metals were synthesized by grinding solid hydrazine and the metal precursors in their acetates and oxides at 25 °C. The silver and gold acetates converted completely within 6 min into Ag and Au nanoparticles, respectively, while complete conversion of the copper acetate to the Cu sub-micrometer particles took about 2 h. Metal oxide precursors were also converted into metal nanoparticles by grinding alone. The resulting particles exhibit distinctive crystalline lattice fringes, indicating the formation of highly crystalline phases. The Cu sub-micrometer particles are better resistant to oxidation and exhibit higher conductivity compared to conventional Cu nanoparticles. This solid-state method was also applied for the synthesis of platinum group metals and intermetallic Cu3Au, which can be further extended to synthesize other metal nanoparticles.
Strong, Tough Glass Composites Developed for Solid Oxide Fuel Cell Seals
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Choi, Sung R.
2005-01-01
A fuel cell is an electrochemical device that continuously converts the chemical energy of a fuel directly into electrical energy. It consists of an electrolyte, an anode, and a cathode. Various types of fuel cells are available, such as direct methanol fuel cells, alkaline fuel cells, proton-exchange-membrane fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, and solid oxide fuel cells (SOFCs). The salient features of an SOFC are all solid construction and high-temperature electrochemical-reaction-based operation, resulting in clean, efficient power generation from a variety of fuels. SOFCs are being developed for a broad range of applications, such as portable electronic devices, automobiles, power generation, and aeronautics.
Oxidation reactions of solid carbonaceous and resinous substances in supercritical water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koda, S.
Recent kinetic studies, particularly those by means of shadowgraphy and X-ray radiography, for supercritical water oxidation of solid carbonaceous and resinous substances have revealed the importance of the O{sub 2} mass transfer process over the intrinsic surface reaction at higher temperatures. The mass transfer processes, internal and external one, should be incorporated in designing SCWO processes for solid substances and related processes such as catalytic SCWO. Some model calculation efforts of late are briefly described. Finally, fundamental information required for future development is itemed.
Hybrid rockets - Combining the best of liquids and solids
NASA Technical Reports Server (NTRS)
Cook, Jerry R.; Goldberg, Ben E.; Estey, Paul N.; Wiley, Dan R.
1992-01-01
Hybrid rockets employing liquid oxidizer and solid fuel grain answers to cost, safety, reliability, and environmental impact concerns that have become as prominent as performance in recent years. The oxidizer-free grain has limited sensitivity to grain anomalies, such as bond-line separations, which can cause catastrophic failures in solid rocket motors. An account is presently given of the development effort associated with the AMROC commercial hybrid booster and component testing efforts at NASA-Marshall. These hybrid rockets can be fired, terminated, inspected, evaluated, and restarted for additional testing.
The electrochemical reduction processes of solid compounds in high temperature molten salts.
Xiao, Wei; Wang, Dihua
2014-05-21
Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.
SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Subhasish Mukerjee
2004-05-07
The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine.more » This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.« less
Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raza, Rizwan, E-mail: razahussaini786@gmail.com; Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044; Ahmed, Akhlaq
In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport numbermore » of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.« less
Lee, Lanlee; Kang, Byungwuk; Han, Suyoung; Kim, Hee-Eun; Lee, Moo Dong; Bang, Jin Ho
2018-05-27
A thermal reaction route that induces grain fracture instead of grain growth is devised and developed as a top-down approach to prepare nanostructured oxides from bulk solids. This novel synthesis approach, referred to as the sequential oxygen-nitrogen exchange (SONE) reaction, exploits the reversible anion exchange between oxygen and nitrogen in oxides that is driven by a simple two-step thermal treatment in ammonia and air. Internal stress developed by significant structural rearrangement via the formation of (oxy)nitride and the creation of oxygen vacancies and their subsequent combination into nanopores transforms bulk solid oxides into nanostructured oxides. The SONE reaction can be applicable to most transition metal oxides, and when utilized in a lithium-ion battery, the produced nanostructured materials are superior to their bulk counterparts and even comparable to those produced by conventional bottom-up approaches. Given its simplicity and scalability, this synthesis method could open a new avenue to the development of high-performance nanostructured electrode materials that can meet the industrial demand of cost-effectiveness for mass production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films.
Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom
2017-09-29
Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite crystalline phases and good ionic conductivity were developed during the second annealing step. These films showed properties comparable to those of thermally annealed films. This process is much faster than conventional annealing processes (e.g. halogen furnaces); a few seconds compared to tens of hours, respectively. The significance of this work includes the treatment of solid-state electrolyte oxides for SOFCs and the demonstration of the feasibility of other oxide components for solid-state energy devices.
A novel accelerated oxidative stability screening method for pharmaceutical solids.
Zhu, Donghua Alan; Zhang, Geoff G Z; George, Karen L S T; Zhou, Deliang
2011-08-01
Despite the fact that oxidation is the second most frequent degradation pathway for pharmaceuticals, means of evaluating the oxidative stability of pharmaceutical solids, especially effective stress testing, are still lacking. This paper describes a novel experimental method for peroxide-mediated oxidative stress testing on pharmaceutical solids. The method utilizes urea-hydrogen peroxide, a molecular complex that undergoes solid-state decomposition and releases hydrogen peroxide vapor at elevated temperatures (e.g., 30°C), as a source of peroxide. The experimental setting for this method is simple, convenient, and can be operated routinely in most laboratories. The fundamental parameter of the system, that is, hydrogen peroxide vapor pressure, was determined using a modified spectrophotometric method. The feasibility and utility of the proposed method in solid form selection have been demonstrated using various solid forms of ephedrine. No degradation was detected for ephedrine hydrochloride after exposure to the hydrogen peroxide vapor for 2 weeks, whereas both anhydrate and hemihydrate free base forms degraded rapidly under the test conditions. In addition, both the anhydrate and the hemihydrate free base degraded faster when exposed to hydrogen peroxide vapor at 30°C under dry condition than at 30°C/75% relative humidity (RH). A new degradation product was also observed under the drier condition. The proposed method provides more relevant screening conditions for solid dosage forms, and is useful in selecting optimal solid form(s), determining potential degradation products, and formulation screening during development. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Yamaura, Kazunari
2016-04-01
High-pressure crystal growth and synthesis of selected solid-state osmium oxides, many of which are perovskite-related types, are briefly reviewed, and their magnetic and electrical properties are introduced. Crystals of the osmium oxides, including NaOsO3, LiOsO3, and Na2OsO4, were successfully grown under high-pressure and high-temperature conditions at 6 GPa in the presence of an appropriate amount of flux in a belt-type apparatus. The unexpected discovery of a magnetic metal-insulator transition in NaOsO3, a ferroelectric-like transition in LiOsO3, and high-temperature ferrimagnetism driven by a local structural distortion in Ca2FeOsO6 may represent unique features of the osmium oxides. The high-pressure and high-temperature synthesis and crystal growth has played a central role in the development of solid-state osmium oxides and the elucidation of their magnetic and electronic properties toward possible use in multifunctional devices.
NASA Astrophysics Data System (ADS)
Gnerlich, Markus; Ben-Yoav, Hadar; Culver, James N.; Ketchum, Douglas R.; Ghodssi, Reza
2015-10-01
A three-dimensional micro-supercapacitor has been developed using a novel bottom-up assembly method combining genetically modified Tobacco mosaic virus (TMV-1Cys), photolithographically defined micropillars and selective deposition of ruthenium oxide on multi-metallic microelectrodes. The three-dimensional microelectrodes consist of a titanium nitride current collector with two functionalized areas: (1) gold coating on the active electrode area promotes TMV-1Cys adhesion, and (2) sacrificial nickel pads dissolve in ruthenium tetroxide plating solution to produce ruthenium oxide on all electrically connected areas. The microfabricated electrodes are arranged in an interdigitated pattern, and the capacitance per electrode has been measured as high as 203 mF cm-2 with solid Nafion electrolyte. The process integration of bio-templated ruthenium oxide with microfabricated electrodes and solid electrolyte is an important advance towards the energy storage needs of mass produced self-sufficient micro-devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnerlich, Markus; Ben-Yoav, Hadar; Culver, James N.
A three-dimensional micro-supercapacitor has been developed using a novel bottom-up assembly method combining genetically modified Tobacco mosaic virus (TMV-1Cys), photolithographically defined micropillars and selective deposition of ruthenium oxide on multi-metallic microelectrodes. The three-dimensional microelectrodes consist of a titanium nitride current collector with two functionalized areas: (1) gold coating on the active electrode area promotes TMV-1Cys adhesion, and (2) sacrificial nickel pads dissolve in ruthenium tetroxide plating solution to produce ruthenium oxide on all electrically connected areas. The microfabricated electrodes are arranged in an interdigitated pattern, and the capacitance per electrode has been measured as high as 203 mF cm-2 withmore » solid Nafion electrolyte. The process integration of bio-templated ruthenium oxide with microfabricated electrodes and solid electrolyte is an important advance towards the energy storage needs of mass produced self-sufficient micro-devices.« less
Direct energy recovery from primary and secondary sludges by supercritical water oxidation.
Svanström, M; Modell, M; Tester, J
2004-01-01
Supercritical water oxidation (SCWO) oxidizes organic and biological materials virtually completely to benign products without the need for stack gas scrubbing. Heavy metals are recovered as stabilized solid, along with the sand and clay that is present in the feed. The technology has been under development for twenty years. The major obstacle to commercialization has been developing reactors that are not clogged by inorganic solid deposits. That problem has been solved by using tubular reactors with fluid velocities that are high enough to keep solids in suspension. Recently, system designs have been created that reduce the cost of processing sewage sludges below that of incineration. At 10 wt- % dry solids, sludge can be oxidized with virtually complete recovery of the sludge heating value as hot water or high-pressure steam. Liquid carbon dioxide of high purity can be recovered from the gaseous effluent and excess oxygen can be recovered for recycle. The net effect is to reduce the stack to a harmless vent with minimal flow rate of a clean gas. Complete simulations have been developed using physical property models that accurately simulate the thermodynamic properties of sub- and supercritical water in mixtures with O2, N2, CO2, and organics. Capital and operating cost estimates are given for sewage sludge treatment, which are less costly than incineration. The scenario of direct recovery of energy from sludges has inherent benefits compared to other gasification or liquefaction options.
SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Subhasish Mukerjee
2003-06-09
The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A); and Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustionmore » engine. This technical progress report covers work performed by Delphi from July through December 2002 under Department of Energy Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: Task 1--System Design and Integration; Task 2--Solid Oxide Fuel Cell Stack Developments; Task 3--Reformer Developments; Task 4--Development of Balance of Plant (BOP) Components; Task 5--Manufacturing Development (Privately Funded); Task 6--System Fabrication; and Task 7--System Testing.« less
46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable solids and oxidizing materials used as chemical stores and reagents are governed by subparts 194.15 and...
46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable solids and oxidizing materials used as chemical stores and reagents are governed by subparts 194.15 and...
Lowering the temperature of solid oxide fuel cells.
Wachsman, Eric D; Lee, Kang Taek
2011-11-18
Fuel cells are uniquely capable of overcoming combustion efficiency limitations (e.g., the Carnot cycle). However, the linking of fuel cells (an energy conversion device) and hydrogen (an energy carrier) has emphasized investment in proton-exchange membrane fuel cells as part of a larger hydrogen economy and thus relegated fuel cells to a future technology. In contrast, solid oxide fuel cells are capable of operating on conventional fuels (as well as hydrogen) today. The main issue for solid oxide fuel cells is high operating temperature (about 800°C) and the resulting materials and cost limitations and operating complexities (e.g., thermal cycling). Recent solid oxide fuel cells results have demonstrated extremely high power densities of about 2 watts per square centimeter at 650°C along with flexible fueling, thus enabling higher efficiency within the current fuel infrastructure. Newly developed, high-conductivity electrolytes and nanostructured electrode designs provide a path for further performance improvement at much lower temperatures, down to ~350°C, thus providing opportunity to transform the way we convert and store energy.
Cohen, M.R.; Gal, E.
1993-04-13
A process and system are described for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous mixture.
NASA Technical Reports Server (NTRS)
Dean, David L.
1995-01-01
McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.
Engineered glass seals for solid-oxide fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surdoval, Wayne; Lara-Curzio, Edgar; Stevenson, Jeffry
2017-02-07
A seal for a solid oxide fuel cell includes a glass matrix having glass percolation therethrough and having a glass transition temperature below 650.degree. C. A deformable second phase material is dispersed in the glass matrix. The second phase material can be a compliant material. The second phase material can be a crushable material. A solid oxide fuel cell, a precursor for forming a seal for a solid oxide fuel cell, and a method of making a seal for a solid oxide fuel cell are also disclosed.
Domestic applications for aerospace waste and water management technologies
NASA Technical Reports Server (NTRS)
Disanto, F.; Murray, R. W.
1972-01-01
Some of the aerospace developments in solid waste disposal and water purification, which are applicable to specific domestic problems are explored. Also provided is an overview of the management techniques used in defining the need, in utilizing the available tools, and in synthesizing a solution. Specifically, several water recovery processes will be compared for domestic applicability. Examples are filtration, distillation, catalytic oxidation, reverse osmosis, and electrodialysis. Solid disposal methods will be discussed, including chemical treatment, drying, incineration, and wet oxidation. The latest developments in reducing household water requirements and some concepts for reusing water will be outlined.
Mathematical modeling of solid oxide fuel cells
NASA Technical Reports Server (NTRS)
Lu, Cheng-Yi; Maloney, Thomas M.
1988-01-01
Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.
Solid lithium ion conducting electrolytes and methods of preparation
Narula, Chaitanya K; Daniel, Claus
2013-05-28
A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.
Solid lithium ion conducting electrolytes and methods of preparation
Narula, Chaitanya K.; Daniel, Claus
2015-11-19
A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.
A Study of Oxides for Solid Oxide Cells
NASA Astrophysics Data System (ADS)
Comets, Olivier
As the world energy consumption increases, it is a question of global health to increase energy production efficiency and to reduce CO2 emissions. In that respect, solid oxide cells are solid state devices that convert directly fuel into electricity, or vice versa. In fact, when run in fuel cell mode, such devices produce electricity with efficiency up to twice that of current natural gas power plants. However, systems equipped with them have only seen limited commercialization owing to issues of cost, durability, and performance. In this thesis, three different aspects of solid oxide cells are studied. First, the effects of stress on the properties of mixed ionic electronic conducting oxides are considered. Such oxides can be used as electrode materials, where they are often subject to large stresses, which can, in turn, affect their performance. Hence, understanding the relationship between stress and properties in such materials is crucial. Non-stoichiometry in strontium substituted lanthanum cobaltite is found to increase under tension and to decrease under compression. Then, degradation taking place when the cell is run in electrolysis mode is discussed. A high current allows for a high production rate of hydrogen gas. However, this can also lead to oxygen bubble nucleating in the electrolyte and subsequent degradation of the cell. The analysis conducted here shows that such nucleation phenomenon can be avoided by keeping the overpotential at the oxygen electrode below a critical value. Finally, the growth and coarsening of catalyst nanoparticles at the surface of an oxide is studied. Scientists have developed new oxides for anodes in which a catalyst material is dissolved and exsolves under operating conditions. As the performance of the cell is controlled by the surface area of the catalyst phase, understanding the kinetics of the growth is critical to predict the performance of the cell. An approach is developed to study the growth of one particle, in the limiting case where only bulk transport is allowed.
Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells
Chen, Fanglin; Zhao, Fei; Liu, Qiang
2015-10-06
In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.
Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells
NASA Technical Reports Server (NTRS)
Liu, Qiang (Inventor); Chen, Fanglin (Inventor); Zhao, Fei (Inventor)
2015-01-01
In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.
Partial oxidation of methane (POM) assisted solid oxide co-electrolysis
Chen, Fanglin; Wang, Yao
2017-02-21
Methods for simultaneous syngas generation by opposite sides of a solid oxide co-electrolysis cell are provided. The method can comprise exposing a cathode side of the solid oxide co-electrolysis cell to a cathode-side feed stream; supplying electricity to the solid oxide co-electrolysis cell such that the cathode side produces a product stream comprising hydrogen gas and carbon monoxide gas while supplying oxygen ions to an anode side of the solid oxide co-electrolysis cell; and exposing the anode side of the solid oxide co-electrolysis cell to an anode-side feed stream. The cathode-side feed stream comprises water and carbon dioxide, and the anode-side feed stream comprises methane gas such that the methane gas reacts with the oxygen ions to produce hydrogen and carbon monoxide. The cathode-side feed stream can further comprise nitrogen, hydrogen, or a mixture thereof.
DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. S. Sohal; J. E. O'Brien; C. M. Stoots
2012-02-01
Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problemsmore » between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL's test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.« less
DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; C. M. Stoots; V. I. Sharma
2010-06-01
Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problemsmore » between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL’s test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.« less
Magno, Scott; Wang, Ruiping; Derouane, Eric
2003-01-01
The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.
Determining the Release of Radionuclides from Tank 18F Waste Residual Solids: FY2016 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, William D.; Hobbs, David T.
Pore water leaching studies were conducted on actual Savannah River Site (SRS) Tank 18F residual waste solids to support Liquid Waste tank closure efforts. A test methodology was developed during previous simulant testing to produce slurries of tank residual solids and grout-representative solids in grout pore water solutions (based on SRS groundwater compositions) with pH and E h values expected during the aging of the closed waste tank. The target conditions are provided below where the initial pore water has a reducing potential and a relatively high pH (Reducing Region II). The pore water is expected to become increasingly oxidizingmore » with time (Oxidizing Region II) and during the latter stages of aging (Oxidizing Region III) the pH is expected to decrease. For the reducing case, tests were conducted with both unwashed and washed Tank 18F residual solids. For the oxidizing cases (Oxidizing Regions II and III), all samples were washed with simulated grout pore water solutions prior to testing, since it is expected that these conditions will occur after considerable pore water solution has passed through the system. For the reducing case, separate tests were conducted with representative ground grout solids and with calcium carbonate reagent, which is the grout phase believed to be controlling the pH. Ferrous sulfide (FeS) solids were also added to the reducing samples to lower the slurry E h value. Calcium carbonate solids were used as the grout-representative solid phase for each of the oxidizing cases. Air purge-gas with and without CO 2 removed was transferred through the oxidizing test samples and nitrogen purge-gas was transferred through the reducing test samples during leach testing. The target pH values were achieved to within 0.5 pH units for all samples. Leaching studies were conducted over an E h range of approximately 0.7 V. However, the highest and lowest E h values achieved of ~+0.5 V and ~-0.2 V were significantly less positive and less negative, respectively, than the target values. Achievement of more positive and more negative E h values is believed to require the addition of non-representative oxidants and reductants, respectively.« less
Investigation of solid organic waste processing by oxidative pyrolysis
NASA Astrophysics Data System (ADS)
Kolibaba, O. B.; Sokolsky, A. I.; Gabitov, R. N.
2017-11-01
A thermal analysis of a mixture of municipal solid waste (MSW) of the average morphological composition and its individual components was carried out in order to develop ways to improve the efficiency of its utilization for energy production in thermal reactors. Experimental studies were performed on a synchronous thermal analyzer NETZSCH STA 449 F3 Jupiter combined with a quadrupole mass spectrometer QMC 403. Based on the results of the experiments, the temperature ranges of the pyrolysis process were determined as well as the rate of decrease of the mass of the sample of solid waste during the drying and oxidative pyrolysis processes, the thermal effects accompanying these processes, as well as the composition and volumes of gases produced during oxidative pyrolysis of solid waste and its components in an atmosphere with oxygen content of 1%, 5%, and 10%. On the basis of experimental data the dependences of the yield of gas on the moisture content of MSW were obtained under different pyrolysis conditions under which a gas of various calorific values was produced.
Staged heating by oxidation of carbonaceous material
Knell, Everett W.; Green, Norman W.
1978-01-31
A carbonaceous material is pyrolyzed in the presence of a particulate source of heat obtained by the partial oxidation of a carbon containing solid residue of the carbonaceous material. The heat obtained from the oxidation of the carbon containing solid residue is maximized by preheating the carbon containing solid residue with a hot gas stream obtained by oxidizing the gaseous combustion products of the carbon containing solid residue.
Solid-state rechargeable magnesium battery
Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng
2016-09-06
Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.
Development of Host Crystals for Ce(+3) Blue and Blue-Green Solid-State Lasers.
1982-07-01
oxides ............ 9 Syntheses of LaA1O3 and Lal-xScxO3 . . . . . . . . . . . . . .. . . . . . 10 Syntheses of Oxides from Oxalates ...oxidation of Ce+ 3 . The crystal growth of LaA1O3 has been reported from the melt, hydrothermally , and both LaA103 and Th0 2 from fluxes. ’Va Fa...temperature and/or flux composition may be necessary to produce this oxide. Syntheses of Oxides from Oxalates Syntheses of oxides by the oxidative
2015-01-07
Min Lee, Kevin Huang. Mixed Oxide-Ion and Carbonate-Ion Conductors (MOCCs) as Electrolyte Materials for Solid Oxide Fuel Cells, 218th ECS Meeting... Solid Oxide Fuel Cells The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Solid Oxide Fuel Cell, Oxygen Reduction, Molten Carbonate
Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells
Fabbri, Emiliana; Pergolesi, Daniele; Traversa, Enrico
2010-01-01
High temperature proton conductor (HTPC) oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400–700 °C). The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs. PMID:27877342
Development of SiAlON materials
NASA Technical Reports Server (NTRS)
Layden, G. K.
1977-01-01
Cold pressing and sintering techniques were used to produce ceramic bodies in which the major phase was beta prime Si3-Al-O-N4 solid solution. A variety of foreign oxides were used to promote liquid phase sintering, and this resulted in the incorporation of additional solid phases in the ceramic bodies which controlled elevated temperature properties. None of the bodies studied to date exhibited both adequate high temperature mechanical properties and oxidation resistance. Criteria are suggested to guide the formulation of bodies with improved high temperature properties.
Current status of Westinghouse tubular solid oxide fuel cell program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, W.G.
1996-04-01
In the last ten years the solid oxide fuel cell (SOFC) development program at Westinghouse has evolved from a focus on basic material science to the engineering of fully integrated electric power systems. Our endurance for this cell is 5 to 10 years. To date we have successfully operated at power for over six years. For power plants it is our goal to have operated before the end of this decade a MW class power plant. Progress toward these goals is described.
Method of electrode fabrication for solid oxide electrochemical cells
Jensen, R.R.
1990-11-20
A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.
Method of electrode fabrication for solid oxide electrochemical cells
Jensen, Russell R.
1990-01-01
A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.
Joh, Dong Woo; Park, Jeong Hwa; Kim, Doyeub; Wachsman, Eric D; Lee, Kang Taek
2017-03-15
A functionally graded Bi 1.6 Er 0.4 O 3 (ESB)/Y 0.16 Zr 0.84 O 1.92 (YSZ) bilayer electrolyte is successfully developed via a cost-effective screen printing process using nanoscale ESB powders on the tape-cast NiO-YSZ anode support. Because of the highly enhanced oxygen incorporation process at the cathode/electrolyte interface, a novel bilayer solid oxide fuel cell (SOFC) yields extremely high power density of ∼2.1 W cm -2 at 700 °C, which is a 2.4 times increase compared to that of the YSZ single electrolyte SOFC.
Jing, Y; Qin, H; Liu, Q; Singh, M; Zhu, B
2012-06-01
Low temperature solid oxide fuel cell (LTSOFC, 300-600 degrees C) is developed with advantages compared to conventional SOFC (800-1000 degrees C). The electrodes with good catalytic activity, high electronic and ionic conductivity are required to achieve high power output. In this work, a LiNiCuZn oxides as anode and cathode catalyst is prepared by slurry method. The structure and morphology of the prepared LiNiCuZn oxides are characterized by X-ray diffraction and field emission scanning electron microscopy. The LiNiCuZn oxides prepared by slurry method are nano Li0.28Ni0.72O, ZnO and CuO compound. The nano-crystallites are congregated to form ball-shape particles with diameter of 800-1000 nm. The LiNiCuZn oxides electrodes exhibits high ion conductivity and low polarization resistance to hydrogen oxidation reaction and oxygen reduction reaction at low temperature. The LTSOFC using the LiNiCuZn oxides electrodes demonstrates good cell performance of 1000 mW cm(-2) when it operates at 470 degrees C. It is considered that nano-composite would be an effective way to develop catalyst for LTSOFC.
Development of Residential SOFC Cogeneration System
NASA Astrophysics Data System (ADS)
Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki
2011-06-01
Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the "Demonstrative Research on Solid Oxide Fuel Cells" Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.
46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable... 194.20. (b) Oxidizing materials used as blasting agents are regulated by the appropriate portions of...
46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable... 194.20. (b) Oxidizing materials used as blasting agents are regulated by the appropriate portions of...
46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable... 194.20. (b) Oxidizing materials used as blasting agents are regulated by the appropriate portions of...
Monolith catalysts for closed-cycle carbon dioxide lasers
NASA Technical Reports Server (NTRS)
Herz, Richard K.
1994-01-01
The general subject area of the project involved the development of solid catalysts that have high activity at low temperature for the oxidation of gases such as CO. The original application considered was CO oxidation in closed-cycle CO2 lasers. The scope of the project was subsequently extended to include oxidation of gases in addition to CO and applications such as air purification and exhaust gas emission control. The primary objective of the final phase grant was to develop design criteria for the formulation of new low-temperature oxidation catalysts utilizing Monte Carlo simulations of reaction over NASA-developed catalysts.
Ultra-thin solid oxide fuel cells: Materials and devices
NASA Astrophysics Data System (ADS)
Kerman, Kian
Solid oxide fuel cells are electrochemical energy conversion devices utilizing solid electrolytes transporting O2- that typically operate in the 800 -- 1000 °C temperature range due to the large activation barrier for ionic transport. Reducing electrolyte thickness or increasing ionic conductivity can enable lower temperature operation for both stationary and portable applications. This thesis is focused on the fabrication of free standing ultrathin (<100 nm) oxide membranes of prototypical O 2- conducting electrolytes, namely Y2O3-doped ZrO2 and Gd2O3-doped CeO2. Fabrication of such membranes requires an understanding of thin plate mechanics coupled with controllable thin film deposition processes. Integration of free standing membranes into proof-of-concept fuel cell devices necessitates ideal electrode assemblies as well as creative processing schemes to experimentally test devices in a high temperature dual environment chamber. We present a simple elastic model to determine stable buckling configurations for free standing oxide membranes. This guides the experimental methodology for Y 2O3-doped ZrO2 film processing, which enables tunable internal stress in the films. Using these criteria, we fabricate robust Y2O3-doped ZrO2 membranes on Si and composite polymeric substrates by semiconductor and micro-machining processes, respectively. Fuel cell devices integrating these membranes with metallic electrodes are demonstrated to operate in the 300 -- 500 °C range, exhibiting record performance at such temperatures. A model combining physical transport of electronic carriers in an insulating film and electrochemical aspects of transport is developed to determine the limits of performance enhancement expected via electrolyte thickness reduction. Free standing oxide heterostructures, i.e. electrolyte membrane and oxide electrodes, are demonstrated. Lastly, using Y2O3-doped ZrO2 and Gd2O 3-doped CeO2, novel electrolyte fabrication schemes are explored to develop oxide alloys and nanoscale compositionally graded membranes that are thermomechanically robust and provide added interfacial functionality. The work in this thesis advances experimental state-of-the-art with respect to solid oxide fuel cell operation temperature, provides fundamental boundaries expected for ultrathin electrolytes, develops the ability to integrate highly dissimilar material (such as oxide-polymer) heterostructures, and introduces nanoscale compositionally graded electrolyte membranes that can lead to monolithic materials having multiple functionalities.
NASA Astrophysics Data System (ADS)
Narayanan, Sumaletha
The development of promising solid electrolytes having a garnet-like structure has been successfully achieved through solid state (ceramic) method. Various approaches to improve the Li ion conductivity were employed. The first approach involved creating oxide ion vacancies into the crystal structure of parent garnet-like oxide, Li5La3Nb2O 12 to create a novel family of compounds with nominal composition, Li 5La3Nb2-xYxO12-δ (0 ≤ x ≤ 1). The second approach was Li stuffing into the garnet-like oxides to develop a series of Li stuffed novel Li5+2xLa3Nb 2-xYxO12 (0.05 ≤ x ≤ 0.75) and Li6.5 La2.5Ba0.5ZrTaO12. Powder X-ray diffraction (PXRD), thermo gravimetric analysis (TGA), scanning electron microscopy (SEM), electron probe microanalysis (EPMA) coupled with a wavelength-dispersive spectrometer (WDS), 7Li nuclear magnetic resonance (Li-NMR), and AC impedance spectroscopy were employed to characterize the structure, morphology, elemental composition, Li ion sites, and Li ion conductivity. Studies have shown that Li5+2xLa 3Nb2-xYxO12 have turned out to be promising solid electrolytes with high Li ion conductivity (10-4 Scm -1 at ambient temperatures). In addition, all families of garnets are found to be chemically stable with Li cathode materials (Li2MMn 3O8, where M = Fe, Co) up to 400 °C in air. The developed electrolyte materials have the potential to be used in all-solid-state Li ion batteries.
Cohen, Mitchell R.; Gal, Eli
1993-01-01
A process and system for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous The government of the United States of America has rights in this invention pursuant to Contract No. DE-AC21-88MC 23174 awarded by the U.S. Department of Energy.
Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoxing; Quan, Wenying; Xiao, Jing
2014-09-30
This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. Themore » unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.« less
Feasibility of solid oxide fuel cell dynamic hydrogen coproduction to meet building demand
NASA Astrophysics Data System (ADS)
Shaffer, Brendan; Brouwer, Jacob
2014-02-01
A dynamic internal reforming-solid oxide fuel cell system model is developed and used to simulate the coproduction of electricity and hydrogen while meeting the measured dynamic load of a typical southern California commercial building. The simulated direct internal reforming-solid oxide fuel cell (DIR-SOFC) system is controlled to become an electrical load following device that well follows the measured building load data (3-s resolution). The feasibility of the DIR-SOFC system to meet the dynamic building demand while co-producing hydrogen is demonstrated. The resulting thermal responses of the system to the electrical load dynamics as well as those dynamics associated with the filling of a hydrogen collection tank are investigated. The DIR-SOFC system model also allows for resolution of the fuel cell species and temperature distributions during these dynamics since thermal gradients are a concern for DIR-SOFC.
Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides.
Bi, Lei; Boulfrad, Samir; Traversa, Enrico
2014-12-21
Energy crisis and environmental problems caused by the conventional combustion of fossil fuels boost the development of renewable and sustainable energies. H2 is regarded as a clean fuel for many applications and it also serves as an energy carrier for many renewable energy sources, such as solar and wind power. Among all the technologies for H2 production, steam electrolysis by solid oxide electrolysis cells (SOECs) has attracted much attention due to its high efficiency and low environmental impact, provided that the needed electrical power is generated from renewable sources. However, the deployment of SOECs based on conventional oxygen-ion conductors is limited by several issues, such as high operating temperature, hydrogen purification from water, and electrode stability. To avoid these problems, proton-conducting oxides are proposed as electrolyte materials for SOECs. This review paper provides a broad overview of the research progresses made for proton-conducting SOECs, summarizing the past work and finding the problems for the development of proton-conducting SOECs, as well as pointing out potential development directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jie Guan; Atul Verma; Nguyen Minh
2003-04-01
This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimizationmore » is in progress.« less
Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA
2010-03-02
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.
Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA
2010-11-23
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.
Effect of Antifoam Agent on Oxidative Leaching of Hanford Tank Sludge Simulants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapko, Brian M.; Jones, Susan A.; Lumetta, Gregg J.
2010-02-26
Oxidative leaching of simulant tank waste containing an antifoam agent (AFA) to reduce the chromium content of the sludge was tested using permanganate as the oxidant in 0.25 M NaOH solutions. AFA is added to the waste treatment process to prevent foaming. The AFA, Dow Corning Q2-3183A, is a surface-active polymer that consists of polypropylene glycol, polydimethylsiloxane, octylphenoxy polyethoxy ethanol, treated silica, and polyether polyol. Some of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste slurries contain high concentrations of undissolved solids that would exhibit undesirable behavior without AFA addition. These tests were conducted to determine the effectmore » of the AFA on oxidative leaching of Cr(III) in waste by permanganate. It has not previously been determined what effect AFA has on the permanganate reaction. This study was conducted to determine the effect AFA has on the oxidation of the chromium, plus plutonium and other criticality-related elements, specifically Fe, Ni and Mn. During the oxidative leaching process, Mn is added as liquid permanganate solution and is converted to an insoluble solid that precipitates as MnO2 and becomes part of the solid waste. Caustic leaching was performed followed by an oxidative leach at either 25°C or 45°C. Samples of the leachate and solids were collected at each step of the process. Initially, Battelle-Pacific Northwest Division (PNWD) was contracted by Bechtel National, Inc. to perform these further scoping studies on oxidative alkaline leaching. The data obtained from the testing will be used by the WTP operations to develop procedures for permanganate dosing of Hanford tank sludge solids during oxidative leaching. Work was initially conducted under contract number 24590-101-TSA-W000-00004. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) operating Contract DE-AC05-76RL01830. In summary, this report describes work focused on determining the effect of AFA on chromium oxidation by permanganate with Hanford sludge simulant.« less
NASA Astrophysics Data System (ADS)
Nguyen, H. T.; Le, M. V.; Nguyen, T. A.; Nguyen, T. A. N.
2017-06-01
The solid oxide fuel cell is one of the promising technologies for future energy demand. Solid oxide fuel cell operated in the single-chamber mode exhibits several advantages over conventional single oxide fuel cell due to the simplified, compact, sealing-free cell structure. There are some studies on simulating the behavior of this type of fuel cell but they mainly focus on the 2D model. In the present study, a three-dimensional numerical model of a single chamber solid oxide fuel cell (SOFC) is reported and solved using COMSOL Multiphysics software. Experiments of a planar button solid oxide fuel cell were used to verify the simulation results. The system is fed by methane and oxygen and operated at 700°C. The cathode is LSCF6482, the anode is GDC-Ni, the electrolyte is LDM and the operating pressure is 1 atm. There was a good agreement between the cell temperature and current voltage estimated from the model and measured from the experiment. The results indicate that the model is applicable for the single chamber solid oxide fuel cell and it can provide a basic for the design, scale up of single chamber solid oxide fuel cell system.
Auxiliary power unit based on a solid oxide fuel cell and fuelled with diesel
NASA Astrophysics Data System (ADS)
Lawrence, Jeremy; Boltze, Matthias
An auxiliary power unit (APU) is presented that is fuelled with diesel, thermally self-sustaining, and based on a solid oxide fuel cell (SOFC). The APU is rated at 1 kW electrical, and can generate electrical power after a 3 h warm-up phase. System features include a "dry" catalytic partial oxidation (CPOX) diesel reformer, a 30 cell SOFC stack with an open cathode, and a porous-media afterburner. The APU does not require a supply of external water. The SOFC stack is an outcome of a development partnership with H.C. Starck GmbH and Fraunhofer IKTS, and is discussed in detail in an accompanying paper.
Solid oxide fuel cell with single material for electrodes and interconnect
McPheeters, Charles C.; Nelson, Paul A.; Dees, Dennis W.
1994-01-01
A solid oxide fuel cell having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed therebetween, and the anode, cathode and interconnect elements are comprised of substantially one material.
NASA Astrophysics Data System (ADS)
Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.
2014-05-01
Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01
Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA
2010-07-20
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.
2011-01-01
ABSTRACT Title of Document: MODELING OF WATER-BREATHING PROPULSION SYSTEMS UTILIZING THE ALUMINUM-SEAWATER REACTION AND SOLID...Hybrid Aluminum Combustor (HAC): a novel underwater power system based on the exothermic reaction of aluminum with seawater. The system is modeled ...using a NASA-developed framework called Numerical Propulsion System Simulation (NPSS) by assembling thermodynamic models developed for each component
A novel approach to model the transient behavior of solid-oxide fuel cell stacks
NASA Astrophysics Data System (ADS)
Menon, Vikram; Janardhanan, Vinod M.; Tischer, Steffen; Deutschmann, Olaf
2012-09-01
This paper presents a novel approach to model the transient behavior of solid-oxide fuel cell (SOFC) stacks in two and three dimensions. A hierarchical model is developed by decoupling the temperature of the solid phase from the fluid phase. The solution of the temperature field is considered as an elliptic problem, while each channel within the stack is modeled as a marching problem. This paper presents the numerical model and cluster algorithm for coupling between the solid phase and fluid phase. For demonstration purposes, results are presented for a stack operated on pre-reformed hydrocarbon fuel. Transient response to load changes is studied by introducing step changes in cell potential and current. Furthermore, the effect of boundary conditions and stack materials on response time and internal temperature distribution is investigated.
2010-04-01
aluminum titanate has evolved from a coefficient of thermal expansion (CTE) lowering additive in traditional nickel/YSZ cermets to an anchoring...provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently...volumetric concentrations well below percolation for traditional cermets . The coarsening of nickel after high temperature thermal treatment poses
NASA Technical Reports Server (NTRS)
Sofie, Stephen W.; Cable, Thomas L.; Salamone, Sam M.
2005-01-01
Solid oxide fuel cells (SOFCs) have tremendous commercial potential because of their high efficiency, high energy density, and flexible fuel capability (ability to use fossil fuels). The drive for high-power-utilizing, ultrathin electrolytes (less than 10 microns), has placed an increased demand on the anode to provide structural support, yet allow sufficient fuel entry for sustained power generation. Concentration polarization, a condition where the fuel demand exceeds the supply, is evident in all commercial-based anode-supported cells, and it presents a significant roadblock to SOFC commercialization.
NOVEL OXIDANT FOR ELEMENTAL MERCURY CONTROL FROM FLUE GAS
The primary objective of this study is to develop and test advanced noncarbonaceous solid sorbent materials suitable for removing the elemental form of mercury from power plant emissions. An efficient and cost-effective novel Hg(0) oxidant was evaluated in a lab-scale fixed-bed ...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Stowage of Division 1.5, Class 4 (flammable solids... Solids), Class 5 (Oxidizers and Organic Peroxides), and Division 1.5 Materials § 176.400 Stowage of Division 1.5, Class 4 (flammable solids) and Class 5 (oxidizers and organic peroxides) materials. (a) Class...
Solid oxide fuel cell with single material for electrodes and interconnect
McPheeters, C.C.; Nelson, P.A.; Dees, D.W.
1994-07-19
A solid oxide fuel cell is described having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed there between, and the anode, cathode and interconnect elements are comprised of substantially one material. 9 figs.
Mesoporous MnCeO x solid solutions for low temperature and selective oxidation of hydrocarbons
Zhang, Pengfei; Lu, Hanfeng; Zhou, Ying; ...
2015-10-15
The development of noble-metal-free heterogeneous catalysts that can realize the aerobic oxidation of C–H bonds at low temperature is a profound challenge in the catalysis community. Here we report the synthesis of a mesoporous Mn 0.5Ce 0.5O x solid solution that is highly active for the selective oxidation of hydrocarbons under mild conditions (100–120 °C). Notably, the catalytic performance achieved in the oxidation of cyclohexane to cyclohexanone/cyclohexanol (100 °C, conversion: 17.7%) is superior to those by the state-of-art commercial catalysts (140–160 °C, conversion: 3-5%). Finally, the high activity can be attributed to the formation of a Mn 0.5Ce 0.5O xmore » solid solution with an ultrahigh manganese doping concentration in the CeO 2 cubic fluorite lattice, leading to maximum active surface oxygens for the activation of C–H bonds and highly reducible Mn 4+ ions for the rapid migration of oxygen vacancies from the bulk to the surface.« less
Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons
Zhang, Pengfei; Lu, Hanfeng; Zhou, Ying; Zhang, Li; Wu, Zili; Yang, Shize; Shi, Hongliang; Zhu, Qiulian; Chen, Yinfei; Dai, Sheng
2015-01-01
The development of noble-metal-free heterogeneous catalysts that can realize the aerobic oxidation of C–H bonds at low temperature is a profound challenge in the catalysis community. Here we report the synthesis of a mesoporous Mn0.5Ce0.5Ox solid solution that is highly active for the selective oxidation of hydrocarbons under mild conditions (100–120 °C). Notably, the catalytic performance achieved in the oxidation of cyclohexane to cyclohexanone/cyclohexanol (100 °C, conversion: 17.7%) is superior to those by the state-of-art commercial catalysts (140–160 °C, conversion: 3-5%). The high activity can be attributed to the formation of a Mn0.5Ce0.5Ox solid solution with an ultrahigh manganese doping concentration in the CeO2 cubic fluorite lattice, leading to maximum active surface oxygens for the activation of C–H bonds and highly reducible Mn4+ ions for the rapid migration of oxygen vacancies from the bulk to the surface. PMID:26469151
Formation of self-organized nanoporous anodic oxide from metallic gallium.
Pandey, Bipin; Thapa, Prem S; Higgins, Daniel A; Ito, Takashi
2012-09-25
This paper reports the formation of self-organized nanoporous gallium oxide by anodization of solid gallium metal. Because of its low melting point (ca. 30 °C), metallic gallium can be shaped into flexible structures, permitting the fabrication of nanoporous anodic oxide monoliths within confined spaces like the inside of a microchannel. Here, solid gallium films prepared on planar substrates were employed to investigate the effects of anodization voltage (1, 5, 10, 15 V) and H(2)SO(4) concentration (1, 2, 4, 6 M) on anodic oxide morphology. Self-organized nanopores aligned perpendicular to the film surface were obtained upon anodization of gallium films in ice-cooled 4 and 6 M aqueous H(2)SO(4) at 10 and 15 V. Nanopore formation could be recognized by an increase in anodic current after a current decrease reflecting barrier oxide formation. The average pore diameter was in the range of 18-40 nm with a narrow diameter distribution (relative standard deviation ca. 10-20%), and was larger at lower H(2)SO(4) concentration and higher applied voltage. The maximum thickness of nanoporous anodic oxide was ca. 2 μm. In addition, anodic formation of self-organized nanopores was demonstrated for a solid gallium monolith incorporated at the end of a glass capillary. Nanoporous anodic oxide monoliths formed from a fusible metal will lead to future development of unique devices for chemical sensing and catalysis.
Shi, Liang; Squier, Thomas C; Zachara, John M; Fredrickson, James K
2007-01-01
Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1- and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope. PMID:17581116
NASA Technical Reports Server (NTRS)
Goldberg, Ben E.; Wiley, Dan R.
1991-01-01
An overview is presented of hybrid rocket propulsion systems whereby combining solids and liquids for launch vehicles could produce a safe, reliable, and low-cost product. The primary subsystems of a hybrid system consist of the oxidizer tank and feed system, an injector system, a solid fuel grain enclosed in a pressure vessel case, a mixing chamber, and a nozzle. The hybrid rocket has an inert grain, which reduces costs of development, transportation, manufacturing, and launch by avoiding many safety measures that must be taken when operating with solids. Other than their use in launch vehicles, hybrids are excellent for simulating the exhaust of solid rocket motors for material development.
Hydrolysis of ferric chloride in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lussiez, G.; Beckstead, L.
1996-11-01
The Detox{trademark} process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves amore » two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200{degrees}C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl{sub 3 liquid} + H{sub 2}O {r_arrow} FeOCl{sub solid} + 2 HCl{sub gas} During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl{sub solid} + H{sub 2}O {r_arrow} Fe{sub 2}O{sub 3 solid} + 2 HCl{sub gas}. The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way.« less
Solid oxide fuel cell operable over wide temperature range
Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.
2001-01-01
Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.
Interfacial material for solid oxide fuel cell
Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.
1999-01-01
Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.
NASA Astrophysics Data System (ADS)
Ai, Na; He, Shuai; Li, Na; Zhang, Qi; Rickard, William D. A.; Chen, Kongfa; Zhang, Teng; Jiang, San Ping
2018-04-01
Active and stable oxygen electrode is probably the most important in the development of solid oxide electrolysis cells (SOECs) technologies. Herein, we report the successful development of mixed ionic and electronic conducting (MIEC) La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) perovskite oxides directly assembled on barrier-layer-free yttria-stabilized zirconia (YSZ) electrolyte as highly active and stable oxygen electrodes of SOECs. Electrolysis polarization effectively induces the formation of electrode/electrolyte interface, similar to that observed under solid oxide fuel cell (SOFC) operation conditions. However, in contrast to the significant performance decay under SOFC operation conditions, the cell with directly assembled LSCF oxygen electrodes shows excellent stability, tested for 300 h at 0.5 A cm-2 and 750 °C under SOEC operation conditions. Detailed microstructure and phase analysis reveal that Sr segregation is inevitable for LSCF electrode, but anodic polarization substantially suppresses Sr segregation and migration to the electrode/electrolyte interface, leading to the formation of stable and efficient electrode/electrolyte interface for water and CO2 electrolysis under SOECs operation conditions. The present study demonstrates the feasibility of using directly assembled MIEC cobaltite based oxygen electrodes on barrier-layer-free YSZ electrolyte of SOECs.
Evaluating the oxidative, photothermal and electrical stability of colloidal nanocrystal solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Matt
2016-02-16
IV-VI quantum dot (QD) solids are a novel class of granular electronic materials with great technological potential (e.g., in photodetectors, field-effect transistors (FETs), and solar cells), but their oxidative and thermal instability present a barrier to practical applications [1]. Poor stability is a fundamental issue facing many nanoscale materials due to high surface area and surface energy. Basic studies are needed to elucidate the most important mechanisms of degradation and develop robust countermeasures if QD materials are to become technologically important. This project determined the degradation mechanisms of IV-VI QD solids (primarily PbSe and PbS) and introduced new chemical strategiesmore » to drastically improve their performance, stability, and operating lifetimes [2-5]. Our approach was based on (1) detailed testing of QD thin film materials (principally FETs and solar cells) as a function of oxidative and thermal stress, and (2) the use of organic and inorganic approaches to link the QDs into strongly electronically coupled, high-mobility films, prevent their oxidation, and eliminate internal degrees of freedom that lead to film instability and degradation in response to electrical and thermal stress. Stability against oxidation and thermal degradation was the major focus of this project. We have evaluated the stability of QD thin films and interfaces at temperatures less than 100°C (the regime most relevant to solar and transistor applications). Low-temperature oxidation and sintering of QD films have been investigated using optical absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), current-voltage scanning of transistors and solar cells, X-ray photoelectron spectroscopy, and scanning Kelvin probe microscopy (SKPM). SKPM was used to map the potential profiles of operating QD FETs and solar cells as a function of bias and illumination, which provides detailed information on how the work functions, potential drops and electric field within these devices determine device operation, and set the stage for future studies targeted at understanding and preventing device failure. We pursued two strategies to fabricate QD films with stable electrical characteristics: (1) the use of robust molecular surface ligands [2], and (2) “matrix engineering,” i.e., infilling the QD solid with metal oxide or metal sulfide matrices by low-temperature atomic layer deposition (ALD) to passivate surface states, prevent oxidation, lock the QDs into position, inhibit diffusion, and tune the height and width of the inter-QD potential barriers that govern charge transport [5,6]. Poor stability is a common feature of nanoscale electronic materials, yet stability is all too rarely the focus of basic research. Fundamental studies are therefore needed to elucidate the most important mechanisms of degradation and develop simple yet effective countermeasures. By revealing both how QD solids degrade in response to environmental stresses (oxidative, photothermal, and electric) and how to prevent this degradation, the project has greatly improved our ability to develop stable, high-performance QD materials for real-world applications.« less
Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.
1981-09-14
Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koretsky, Carla
Hexavalent chromium is a highly toxic contaminant that has been introduced into aquifers and shallow sediments and soils via many anthropogenic activities. Hexavalent chromium contamination is a problem or potential problem in the shallow subsurface at several DOE sites, including Hanford, Idaho National Laboratory, Los Alamos National Laboratory and the Oak Ridge Reservation (DOE, 2008). To accurately quantify the fate and transport of hexavalent chromium at DOE and other contaminated sites, robust geochemical models, capable of correctly predicting changes in chromium chemical form resulting from chemical reactions occurring in subsurface environments are needed. One important chemical reaction that may greatlymore » impact the bioavailability and mobility of hexavalent chromium in the subsurface is chemical binding to the surfaces of particulates, termed adsorption or surface complexation. Quantitative thermodynamic surface complexation models have been derived that can correctly calculate hexavalent chromium adsorption on well-characterized materials over ranges in subsurface conditions, such pH and salinity. However, models have not yet been developed for hexavalent chromium adsorption on many important constituents of natural soils and sediments, such as clay minerals. Furthermore, most of the existing thermodynamic models have been developed for relatively simple, single solid systems and have rarely been tested for the complex mixtures of solids present in real sediments and soils. In this study, the adsorption of hexavalent chromium was measured as a function of pH (3-10), salinity (0.001 to 0.1 M NaNO3), and partial pressure of carbon dioxide(0-5%) on a suite of naturally-occurring solids including goethite (FeOOH), hydrous manganese oxide (MnOOH), hydrous ferric oxide (Fe(OH)3), γ-alumina (Al2O3), kaolinite (Al2Si2O5(OH)4), and montmorillonite (Na3(Al, Mg)2Si4O10(OH)2-nH2O). The results show that all of these materials can bind substantial quantities of hexavalent chromium, especially at low pH. Unexpectedly, experiments with the clay minerals kaolinite and montmorillonite suggest that hexavalent chromium may interact with these solids over much longer periods of time than expected. Furthermore, hexavalent chromium may irreversibly bind to these solids, perhaps because of oxidation-reduction reactions occurring on the surfaces of the clay minerals. More work should be done to investigate and quantify these chemical reactions. Experiments conducted with mixtures of goethite, hydrous manganese oxide, hydrous ferric oxide, γ-alumina, montmorillonite and kaolinite demonstrate that it is possible to correctly predict hexavalent chromium binding in the presence of multiple minerals using thermodynamic models derived for the simpler systems. Further, these models suggest that of the six solid considered in this study, goethite is typically the solid to which most of the hexavalent chromium will bind. Experiments completed with organic-rich and organic-poor natural sediments demonstrate that in organic-rich substrates, organic matter is likely to control uptake of the hexavalent chromium. The models derived and tested in this study for hexavalent chromium binding to γ-alumina, hydrous manganese oxide, goethite, hydrous ferric oxide and clay minerals can be used to better predict changes in hexavalent chromium bioavailability and mobility in contaminated sediments and soils.« less
Detailed Multi-dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells.
Tseronis, K; Fragkopoulos, I S; Bonis, I; Theodoropoulos, C
2016-06-01
Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. Here we consider a direct internal reforming solid oxide fuel cell setup in which a separate fuel reformer is not required. We construct a multidimensional, detailed model of a planar solid oxide fuel cell, where mass transport in the fuel channel is modeled using the Stefan-Maxwell model, whereas the mass transport within the porous electrodes is simulated using the Dusty-Gas model. The resulting highly nonlinear model is built into COMSOL Multiphysics, a commercial computational fluid dynamics software, and is validated against experimental data from the literature. A number of parametric studies is performed to obtain insights on the direct internal reforming solid oxide fuel cell system behavior and efficiency, to aid the design procedure. It is shown that internal reforming results in temperature drop close to the inlet and that the direct internal reforming solid oxide fuel cell performance can be enhanced by increasing the operating temperature. It is also observed that decreases in the inlet temperature result in smoother temperature profiles and in the formation of reduced thermal gradients. Furthermore, the direct internal reforming solid oxide fuel cell performance was found to be affected by the thickness of the electrochemically-active anode catalyst layer, although not always substantially, due to the counter-balancing behavior of the activation and ohmic overpotentials.
NASA Astrophysics Data System (ADS)
Qiu, Guohong; Jiang, Kai; Ma, Meng; Wang, Dihua; Jin, Xianbo; Chen, George Z.
2007-06-01
Previous work, mainly from this research group, is re-visited on electrochemical reduction of solid metal oxides, in the form of compacted powder, in molten CaCl2, aiming at further understanding of the roles of cationic and elemental calcium. The discussion focuses on six aspects: 1.) debate on two mechanisms proposed in the literature, i. e. electro-metallothermic reduction and electro-reduction (or electro-deoxidation), for the electrolytic removal of oxygen from solid metals or metal oxides in molten CaCl2; 2.) novel metallic cavity working electrodes for electrochemical investigations of compacted metal oxide powders in high temperature molten salts assisted by a quartz sealed Ag/AgCl reference electrode (650 ºC- 950 ºC); 3.) influence of elemental calcium on the background current observed during electrolysis of solid metal oxides in molten CaCl2; 4.) electrochemical insertion/ inclusion of cationic calcium into solid metal oxides; 5.) typical features of cyclic voltammetry and chronoamperometry (potentiostatic electrolysis) of metal oxide powders in molten CaCl2; and 6.) some kinetic considerations on the electrolytic removal of oxygen.
Liquid-phase and solid-phase microwave irradiations for reduction of graphite oxide
NASA Astrophysics Data System (ADS)
Zhao, Na; Wen, Chen-Yu; Zhang, David Wei; Wu, Dong-Ping; Zhang, Zhi-Bin; Zhang, Shi-Li
2014-12-01
In this paper, two microwave irradiation methods: (i) liquid-phase microwave irradiation (MWI) reduction of graphite oxide suspension dissolved in de-ionized water and N, N-dimethylformamide, respectively, and (ii) solid-phase MWI reduction of graphite oxide powder have been successfully carried out to reduce graphite oxide. The reduced graphene oxide products are thoroughly characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectral analysis, Raman spectroscopy, UV-Vis absorption spectral analysis, and four-point probe conductivity measurements. The results show that both methods can efficiently remove the oxygen-containing functional groups attached to the graphite layers, though the solid-phase MWI reduction method can obtain far more efficiently a higher quality-reduced graphene oxide with fewer defects. The I(D)/I(G) ratio of the solid-phase MWI sample is as low as 0.46, which is only half of that of the liquid-phase MWI samples. The electrical conductivity of the reduced graphene oxide by the solid method reaches 747.9 S/m, which is about 25 times higher than that made by the liquid-phase method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaur, Anshu, E-mail: gauranshu20@gmail.com, E-mail: ahamed.vza@gmail.com; Mohiddon, Md. Ahamad, E-mail: gauranshu20@gmail.com, E-mail: ahamed.vza@gmail.com; Prasad, Muvva D.
2016-05-23
The growth and oxidation study of pulsed laser deposited MnCo{sub 2}O{sub 4} protective layer on SS430 substrate for solid oxide fuel cell application is demonstrated. MnCo{sub 2}O{sub 4} has been achieved in three different ways including, deposition at higher substrate temperature (700°C), and deposition at room temperature on pre-oxidized and untreated SS430 substrate followed by annealing at 700°C for 2 hrs. X-ray diffraction and Raman spectroscopy has been applied to demonstrate the kind of phases developed in each case. These three samples were subjected to heat treatment at 750°C for 5 hr. The extent of undesired Fe{sub 2}O{sub 3} phasemore » formation in the post deposition heat treated samples is discussed based on Raman spectroscopic results.« less
NASA Technical Reports Server (NTRS)
Ferrall, Joe; Rohatgi, Naresh K.; Seshan, P. K.
1992-01-01
A model has been developed for NASA to quantitatively compare and select life support systems and technology options. The model consists of a modular, top-down hierarchical breakdown of the life support system into subsystems, and further breakdown of subsystems into functional elements representing individual processing technologies. This paper includes the technology trades for a Mars mission, using solid waste treatment technologies to recover water from selected liquid and solid waste streams. Technologies include freeze drying, thermal drying, wet oxidation, combustion, and supercritical-water oxidation. The use of these technologies does not have any significant advantages with respect to weight; however, significant power penalties are incurred. A benefit is the ability to convert hazardous waste into a useful resource, namely water.
Presentation provides information on the need to oxidize As III to As V to increase arsenic removal followed by information on the results of an arsenic demonstration project (Plainview CDS) using a solid oxidizing media (Filox) to oxidize As III. The presentation includes a sho...
Manufacture and application of RuO2 solid-state metal-oxide pH sensor to common beverages.
Lonsdale, W; Wajrak, M; Alameh, K
2018-04-01
A new reproducible solid-state metal-oxide pH sensor for beverage quality monitoring is developed and characterised. The working electrode of the developed pH sensor is based on the use of laser-etched sputter-deposited RuO 2 on Al 2 O 3 substrate, modified with thin layers of sputter-deposited Ta 2 O 5 and drop-cast Nafion for minimisation of redox interference. The reference electrode is manufactured by further modifying a working electrode with a porous polyvinyl butyral layer loaded with fumed SiO 2 . The developed pH sensor shows excellent performance when applied to a selection of beverage samples, with a measured accuracy within 0.08 pH of a commercial glass pH sensor. Copyright © 2017 Elsevier B.V. All rights reserved.
Optical and electrical studies of cerium mixed oxides
NASA Astrophysics Data System (ADS)
Sherly, T. R.; Raveendran, R.
2014-10-01
The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.
Naimi-Jamal, M Reza; Hamzeali, Hamideh; Mokhtari, Javad; Boy, Jürgen; Kaupp, Gerd
2009-01-01
Benzylic alcohols are quantitatively oxidized by gaseous nitrogen dioxide to give pure aromatic aldehydes. The reaction gas mixtures are transformed to nitric acid, which renders the processes free of waste. The exothermic gas-liquid or gas-solid reactions profit from the solubility of nitrogen dioxide in the neat benzylic alcohols. The acid formed impedes further oxidation of the benzaldehydes. The neat isolated benzaldehydes and nitrogen dioxide quantitatively give the benzoic acids. Solid long-chain primary alcohols are directly and quantitatively oxidized with nitrogen dioxide gas to give the fatty acids in the solid state. The oxidations with ubiquitous nitrogen dioxide are extended to solid heterocyclic thioamides, which gives disulfides, and to diphenylamine, which gives tetraphenylhydrazine. These sustainable (green) specific oxidation procedures produce no dangerous residues from the oxidizing agent or from auxiliaries.
Yttria-stabilized zirconia solid oxide electrolyte fuel cells: Monolithic solid oxide fuel cells
NASA Astrophysics Data System (ADS)
1990-10-01
The monolithic solid oxide fuel cell (MSOFC) is currently under development for a variety of applications including coal-based power generation. The MSOFC is a design concept that places the thin components of a solid oxide fuel cell in lightweight, compact, corrugated structure, and so achieves high efficiency and excellent performance simultaneously with high power density. The MSOFC can be integrated with coal gasification plants and is expected to have high overall efficiency in the conversion of the chemical energy of coal to electrical energy. This report describes work aimed at: (1) assessing manufacturing costs for the MSOFC and system costs for a coal-based plant; (2) modifying electrodes and electrode/electrolyte interfaces to improve the electrochemical performance of the MSOFC; and (3) testing the performance of the MSOFC on hydrogen and simulated coal gas. Manufacturing costs for both the coflow and crossflow MSOFC's were assessed based on the fabrication flow charts developed by direct scaleup of tape calendering and other laboratory processes. Integrated coal-based MSOFC systems were investigated to determine capital costs and costs of electricity. Design criteria were established for a coal-fueled 200-Mw power plant. Four plant arrangements were evaluated, and plant performance was analyzed. Interfacial modification involved modification of electrodes and electrode/electrolyte interfaces to improve the MSOFC electrochemical performance. Work in the cathode and cathode/electrolyte interface was concentrated on modification of electrode porosity, electrode morphology, electrode material, and interfacial bonding. Modifications of the anode and anode/electrolyte interface included the use of additives and improvement of nickel distribution. Single cells have been tested for their electrochemical performance. Performance data were typically obtained with humidified H2 or simulated coal gas and air or oxygen.
Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm(-2) at 550 °C.
Lee, Jin Goo; Park, Jeong Ho; Shul, Yong Gun
2014-06-04
Low-temperature operation is necessary for next-generation solid oxide fuel cells due to the wide variety of their applications. However, significant increases in the fuel cell losses appear in the low-temperature solid oxide fuel cells, which reduce the cell performance. To overcome this problem, here we report Gd0.1Ce0.9O1.95-based low-temperature solid oxide fuel cells with nanocomposite anode functional layers, thin electrolytes and core/shell fibre-structured Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Gd0.1Ce0.9O1.95 cathodes. In particular, the report describes the use of the advanced electrospinning and Pechini process in the preparation of the core/shell-fibre-structured cathodes. The fuel cells show a very high performance of 2 W cm(-2) at 550 °C in hydrogen, and are stable for 300 h even under the high current density of 1 A cm(-2). Hence, the results suggest that stable and high-performance solid oxide fuel cells at low temperatures can be achieved by modifying the microstructures of solid oxide fuel cell components.
NASA Astrophysics Data System (ADS)
Chen, Guoyi; Xin, Xianshuang; Luo, Ting; Liu, Leimin; Zhou, Yuchun; Yuan, Chun; Lin, Chucheng; Zhan, Zhongliang; Wang, Shaorong
2015-03-01
In an attempt to reduce the oxidation and Cr evaporation rates of solid oxide fuel cells (SOFCs), Mn1.4Co1.4Cu0.2O4 spinel coating is developed on the Crofer22 APU ferritic stainless steel substrate by a powder reduction technique. Doping of Cu into Mn-Co spinels improves electrical conductivity as well as thermal expansion match with the Crofer22 APU interconnect. Good adhesion between the coating and the alloy substrate is achieved by the reactive sintering process using the reduced powders. Long-term isothermal oxidation experiment and area specific resistance (ASR) measurement are investigated. The ASR is less than 4 mΩ cm2 even though the coated alloy undergoes oxidation at 800 °C for 530 h and four thermal cycles from 800 °C to room temperature. The Mn1.4Co1.4Cu0.2O4 spinel coatings demonstrate excellent anti-oxidation performance and long-term stability. It exhibits a promising prospect for the practical application of SOFC alloy interconnect.
2015-01-01
requiring circulation of the electrolyte to filter out the carbonate solids. The superior power density of proton exchange membrane fuel cells ( PEMFC ...without requir- ing a CO2 free oxidant stream, prevented commercial develop- ment of the liquid AFC, allowing PEMFCs to dominate low temperature fuel...cell research and development. PEMFCs employ a solid acidic polymer to transport protons from anode to cathode. PEMs have been researched heavily the
Detailed Multi‐dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells
Tseronis, K.; Fragkopoulos, I.S.; Bonis, I.
2016-01-01
Abstract Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. Here we consider a direct internal reforming solid oxide fuel cell setup in which a separate fuel reformer is not required. We construct a multidimensional, detailed model of a planar solid oxide fuel cell, where mass transport in the fuel channel is modeled using the Stefan‐Maxwell model, whereas the mass transport within the porous electrodes is simulated using the Dusty‐Gas model. The resulting highly nonlinear model is built into COMSOL Multiphysics, a commercial computational fluid dynamics software, and is validated against experimental data from the literature. A number of parametric studies is performed to obtain insights on the direct internal reforming solid oxide fuel cell system behavior and efficiency, to aid the design procedure. It is shown that internal reforming results in temperature drop close to the inlet and that the direct internal reforming solid oxide fuel cell performance can be enhanced by increasing the operating temperature. It is also observed that decreases in the inlet temperature result in smoother temperature profiles and in the formation of reduced thermal gradients. Furthermore, the direct internal reforming solid oxide fuel cell performance was found to be affected by the thickness of the electrochemically‐active anode catalyst layer, although not always substantially, due to the counter‐balancing behavior of the activation and ohmic overpotentials. PMID:27570502
Fabbri, Emiliana; Bi, Lei; Pergolesi, Daniele; Traversa, Enrico
2012-01-10
The need for reducing the solid oxide fuel cell (SOFC) operating temperature below 600 °C is imposed by cost reduction, which is essential for widespread SOFC use, but might also disclose new applications. To this aim, high-temperature proton-conducting (HTPC) oxides have gained widespread interest as electrolyte materials alternative to oxygen-ion conductors. This Progress Report describes recent developments in electrolyte, anode, and cathode materials for protonic SOFCs, addressing the issue of chemical stability, processability, and good power performance below 600 °C. Different fabrication methods are reported for anode-supported SOFCs, obtained using state-of-the-art, chemically stable proton-conducting electrolyte films. Recent findings show significant improvements in the power density output of cells based on doped barium zirconate electrolytes, pointing out towards the feasibility of the next generation of protonic SOFCs, including a good potential for the development of miniaturized SOFCs as portable power supplies. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shaigan, Nima; Qu, Wei; Ivey, Douglas G.; Chen, Weixing
Ferritic stainless steels have become the standard material for solid oxide fuel cell (SOFC) interconnect applications. The use of commercially available ferritic stainless steels, not specifically designed for interconnect application, however, presents serious issues leading to premature degradation of the fuel cell stack, particularly on the cathode side. These problems include rapidly increasing contact resistance and volatilization of Cr from the oxide scales, resulting in cathode chromium poisoning and cell malfunction. To overcome these issues, a variety of conductive/protective coatings, surface treatments and modifications as well as alloy development have been suggested and studied over the past several years. This paper critically reviews the attempts performed thus far to mitigate the issues associated with the use of ferritic stainless steels on the cathode side. Different approaches are categorized and summarized and examples for each case are provided. Finally, directions and recommendations for the future studies are presented.
NASA Astrophysics Data System (ADS)
Xu, Yuanhong; Liu, Jingquan; Zhang, Jizhen; Zong, Xidan; Jia, Xiaofang; Li, Dan; Wang, Erkang
2015-05-01
A portable lab-on-a-chip methodology to generate ionic liquid-functionalized carbon nanodots (CNDs) was developed via electrochemical oxidation of screen printed carbon electrodes. The CNDs can be successfully applied for efficient cell imaging and solid-state electrochemiluminescence sensor fabrication on the paper-based chips.A portable lab-on-a-chip methodology to generate ionic liquid-functionalized carbon nanodots (CNDs) was developed via electrochemical oxidation of screen printed carbon electrodes. The CNDs can be successfully applied for efficient cell imaging and solid-state electrochemiluminescence sensor fabrication on the paper-based chips. Electronic supplementary information (ESI) available: Experimental section; Fig. S1. XPS spectra of the as-prepared CNDs after being dialyzed for 72 hours; Fig. S2. LSCM images showing time-dependent fluorescence signals of HeLa cells treated by the as-prepared CNDs; Tripropylamine analysis using the Nafion/CNDs modified ECL sensor. See DOI: 10.1039/c5nr01765c
Innovative oxide materials for electrochemical energy conversion and oxygen separation
NASA Astrophysics Data System (ADS)
Belousov, V. V.
2017-10-01
Ion-conducting solid metal oxides are widely used in high-temperature electrochemical devices for energy conversion and oxygen separation. However, liquid metal oxides possessing unique electrochemical properties still remain of limited use. The review demonstrates the potential for practical applications of molten oxides. The transport properties of molten oxide materials are discussed. The emphasis is placed on the chemical diffusion of oxygen in the molten oxide membrane materials for electrochemical energy conversion and oxygen separation. The thermodynamics of these materials is considered. The dynamic polymer chain model developed to describe the oxygen ion transport in molten oxides is discussed. Prospects for further research into molten oxide materials are outlined. The bibliography includes 145 references.
NASA Astrophysics Data System (ADS)
Swaminathan, Srinivasan; Lee, Young-Su; Kim, Dong-Ik
2016-09-01
To ensure the best performance of solid oxide fuel cell metallic interconnects, the Fe-22 wt.% Cr ferritic stainless steels with various La contents (0.006-0.6 wt.%) and Cu addition (1.57 wt.%), are developed. Long-term isothermal oxidation behavior of these steels is investigated in air at 800 °C, for 2700 h. Chemistry, morphology, and microstructure of the thermally grown oxide scale are examined using XPS, SEM-EDX, and XRD techniques. Broadly, all the steels show a double layer consisting of an inner Cr2O3 and outer (Mn, Cr)3O4. Distinctly, in the La-added steels, binary oxides of Cr, Mn and Ti are found at the oxide scale surface together with (Mn, Cr)3O4. Furthermore, all La-varied steels possess the metallic Fe protrusions along with discontinuous (Mn, Cr)3O4 spinel zones at the oxide scale/metal interface and isolated precipitates of Ti-oxides in the underlying matrix. Increase of La content to 0.6 wt.% is detrimental to the oxidation resistance. For the Cu-added steel, Cu is found to segregate strongly at the oxide scale/metal interface which inhibits the ingress of oxygen thereby suppressing the subscale formation of (Mn, Cr)3O4. Thus, Cu addition to the Fe-22Cr ferritic stainless steels benefits the oxidation resistance.
Cao, Xiehong; Zheng, Bing; Shi, Wenhui; Yang, Jian; Fan, Zhanxi; Luo, Zhimin; Rui, Xianhong; Chen, Bo; Yan, Qingyu; Zhang, Hua
2015-08-26
Reduced graphene oxide-wrapped MoO3M (rGO/MoO3 ) is prepared by a novel and simple method that is developed by using a metal-organic framework as the precursor. After a two-step annealing process, the obtained rGO/MoO3 composite is used for a high-performance supercapacitor electrode. Moreover, an all-solid-state flexible supercapacitor is fabricated based on the rGO/MoO3 composite, which shows stable performance under different bending states. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanocrystal-polymer nanocomposite electrochromic device
Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo
2015-12-08
Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.
Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A
2013-01-01
A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoshimoto, Yuuki; Li, Jinwang; Shimoda, Tatsuya
2018-04-01
A gel state exists in the solution-solid conversion process. We found that solidification can be promoted by irradiating the gel with ultraviolet (UV) light. In this study, a patterning method without using a vacuum system or employing photoresist materials has been proposed wherein solidification was applied to a gel by UV irradiation. Indium oxide gel, indium gallium oxide gel, lanthanum zirconium oxide gel, and lanthanum ruthenium oxide gels were successfully patterned by using our technique. Moreover, an oxide thin-film transistor was fabricated by our novel patterning method and was successfully operated.
High temperature microelectrophoresis studies of the solid oxide/water interface
NASA Astrophysics Data System (ADS)
Fedkin, Mark Valentinovich
Metal oxides are abundant components of geo-environmental systems and are widely used materials in industry. Many practical applications of oxide materials require the knowledge of their surface properties at both ambient and elevated temperatures. Due to substantial technical challenges associated with experimental studies of solid/water interfaces at elevated temperatures, consistent data on adsorption, surface charge, and zeta potential for most oxide materials are limited to temperatures less than 100°C. A high temperature microelectrophoresis technique, developed in this study, made it possible to extend the zeta potential measurements at the solid oxide/water interface to 200°C. The design of the high temperature electrophoresis cell allowed for the visual microscopic observation of the electrophoretic movement of suspended particles through pressure-tight sapphire windows. The electrophoretic mobilities of metal oxide particles suspended in aqueous solutions were measured in a DC electric field as a function of pH, ionic strength, and temperature. The experimental procedure and methods for evaluation of the main experimental parameters (electrophoretic mobility, electric field strength, high temperature pH, and cell constant) have been developed. Zeta potentials were calculated from the experimental data using O'Brien and White's (1978) numerical solution for electrophoretic mobility equation. Zeta potentials and isoelectric points (IEP) of the metal oxide/aqueous solution interface were experimentally determined for ZrO2, TiO 2(rutile), and alphaAl2O3 at 25, 120, and 200°C. The background solutions used for the preparation of suspensions were pure H2O, NaCl(aq) (10-4--10-2 mol.kg-1), and SrCl2 (10-4 mol.kg, for TiO2). For all studied materials, the IEPs were found to regularly decrease with increasing temperature, which agrees with available theoretical predictions. Thermodynamic functions, including Gibbs energy, enthalpy, and heat capacity, were estimated for the H +/OH- adsorption from the experimental IEP data using the 1-pK model of the oxide/water interface. The experimental information obtained in this study combined with data from potentiometric titration and other experimental methods form the basis for future theoretical studies of the electrical double layer at the oxide/water interface.
Delivery system for molten salt oxidation of solid waste
Brummond, William A.; Squire, Dwight V.; Robinson, Jeffrey A.; House, Palmer A.
2002-01-01
The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.
NASA Astrophysics Data System (ADS)
Chen, Lin; Yueming, Li
2018-06-01
In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.
Enhanced adsorption of arsenic through the oxidative treatment of reduced aquifer solids.
Huling, Jenna R; Huling, Scott G; Ludwig, Ralph
2017-10-15
Arsenic (As) contamination in drinking water is an epidemic in many areas of the world, especially Eastern Asian countries. Developing affordable and efficient procedures to remove arsenic from drinking water is critical to protect human health. In this study, the oxidation of aquifer solids through the use of sodium permanganate (NaMnO 4 ), hydrogen peroxide (H 2 O 2 ), and exposure to air, enhanced the adsorption of arsenic to the aquifer material resulting in treatment of the water. NaMnO 4 was more effective than H 2 O 2 . NaMnO 4 was tested at different loading rates (0.5, 1.5, 2.4, 3.4, and 4.9 g NaMnO 4 /kg aquifer material), and after 30 days contact time, arsenic removal ([As +3 ] INITIAL = 610 μg/L) was 77%, 88%, 93%, 95%, 97%, respectively, relative to un-oxidized aquifer material. Arsenic removal increased with increasing contact time (30, 60, 90 days) suggesting removal was not reversible under the conditions of these experiments. Oxidative treatment by exposing the aquifer solids to air for 68 days resulted in >99% removal of Arsenic ([As +3 ] INITIAL = 550 μg/L). Less arsenic removal (38.2%) was measured in the un-oxidized aquifer material. In-situ oxidation of aquifer materials using NaMnO 4 , or ex-situ oxidation of aquifer materials through exposure to air could be effective in the removal of arsenic in ground water and a potential treatment method to protect human health. Published by Elsevier Ltd.
Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.
The National Energy Technology Laboratory’s Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in–house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, andmore » operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of biodiesel into mostly hydrogen and carbon monoxide (syngas.) The syngas was fed to the STF and fuel cell stack. The results presented in this experimental report document one of the first times a SOFC has been operated on syngas from reformed biodiesel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, Gerald C.
1975-10-01
The oxygen-to-metal atom ratio, or O/M, of solid solution uranium- plutonium oxide reactor fuel is a measure of the concentration of crystal defects in the oxide which affect many fuel properties, particularly, fuel oxygen potential. Fabrication of a high-temperature oxygen electrode, employing an electro-active tip of oxygen-deficient solid-state electrolyte, intended to confirm gaseous oxygen potentials is described. Uranium oxide and plutonium oxide O/M reference materials were prepared by in situ oxidation of high purity metals in the thermobalance. A solid solution uranium-plutonium oxide O/M reference material was prepared by alloying the uranium and plutonium metals in a yttrium oxide cruciblemore » at 1200°C and oxidizing with moist He at 250°C. The individual and solid solution oxides were isothermally equilibrated with controlled oxygen potentials between 800 and 1300°C and the equilibrated O/ M ratios calculated with corrections for impurities and buoyancy effects. Use of a reference oxygen potential of -100 kcal/mol to produce an O/M of 2.000 is confirmed by these results. However, because of the lengthy equilibration times required for all oxides, use of the O/M reference materials rather than a reference oxygen potential is recommended for O/M analysis methods calibrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Niyanth; Isheim, D.; Seidman, David N.
Solid state joining is achieved in three steps, (i) interface asperity deformation, (ii) oxide dispersion, followed by (iii) atomic contact and bonding. Atomically clean metallic surfaces without an oxide layer bond spontaneously. Despite its importance the oxide dispersion mechanism is not well studied. In this work the first ever atom probe study of iron-aluminum solid state welds show that the oxygen concentration at the interface is 20 at.%. This is significantly lower than any equilibrium oxide concentration. Here, we therefore propose that the high-strain rate deformation at the interfaces renders the oxide unstable resulting in the observed concentration of oxygen.
Sridharan, Niyanth; Isheim, D.; Seidman, David N.; ...
2016-12-14
Solid state joining is achieved in three steps, (i) interface asperity deformation, (ii) oxide dispersion, followed by (iii) atomic contact and bonding. Atomically clean metallic surfaces without an oxide layer bond spontaneously. Despite its importance the oxide dispersion mechanism is not well studied. In this work the first ever atom probe study of iron-aluminum solid state welds show that the oxygen concentration at the interface is 20 at.%. This is significantly lower than any equilibrium oxide concentration. Here, we therefore propose that the high-strain rate deformation at the interfaces renders the oxide unstable resulting in the observed concentration of oxygen.
Sun, Dengrong; Ye, Lin; Sun, Fangxiang; García, Hermenegildo; Li, Zhaohui
2017-05-01
Calcination of the mixed-metal species Co/Ni-MOF-74 leads to the formation of carbon-coated Co x Ni 1-x @Co y Ni 1-y O with a metal core diameter of ∼3.2 nm and a metal oxide shell thickness of ∼2.4 nm embedded uniformly in the ligand-derived carbon matrix. The close proximity of Co and Ni in the mixed-metal Co/Ni-MOF-74 promotes the metal alloying and the formation of a solid solution of metal oxide during the calcination process. The presence of the tightly coated carbon shell prohibits particle agglomeration and stabilizes the Co x Ni 1-x @Co y Ni 1-y O nanoparticles in small size. The Co x Ni 1-x @Co y Ni 1-y O@C derived from Co/Ni-MOF-74 nanocomposites show superior performance for the oxygen evolution reaction (OER). The use of mixed-metal MOFs as precursors represents a powerful strategy for the fabrication of metal alloy@metal oxide solid solution nanoparticles in small size. This method also holds great promise in the development of multifunctional carbon-coated complex core-shell metal/metal oxides owing to the diversified MOF structures and their flexible chemistry.
Pastorelli, S; Valzacchi, S; Rodriguez, A; Simoneau, C
2006-11-01
Fatty foods are susceptible to lipid oxidation resulting in deterioration of product quality due to the generation of off-flavours. Hexanal is a good indicator of rancidity. Therefore, a method based on solid-phase microextraction (SPME) coupled to gas chromatograph with flame ionization detection was developed to determine hexanal formation in hazelnuts during storage. Optimum conditions were as follows: carboxen-polydimethylsiloxane 75 microm fibre, extraction time 10 min, equilibrium time 10 min and equilibrium temperature 60 degrees C. The effect of oxygen scavengers on the oxidation process was also evaluated by measuring hexanal formation in hazelnuts stored with/without oxygen absorber sachets. Oxygen scavengers were shown to reduce oxidation; however, analysis of the sachet revealed that other volatile compounds from the headspace were also absorbed.
Study on Zinc Oxide-Based Electrolytes in Low-Temperature Solid Oxide Fuel Cells.
Xia, Chen; Qiao, Zheng; Feng, Chu; Kim, Jung-Sik; Wang, Baoyuan; Zhu, Bin
2017-12-28
Semiconducting-ionic conductors have been recently described as excellent electrolyte membranes for low-temperature operation solid oxide fuel cells (LT-SOFCs). In the present work, two new functional materials based on zinc oxide (ZnO)-a legacy material in semiconductors but exceptionally novel to solid state ionics-are developed as membranes in SOFCs for the first time. The proposed ZnO and ZnO-LCP (La/Pr doped CeO₂) electrolytes are respectively sandwiched between two Ni 0.8 Co 0.15 Al 0.05 Li-oxide (NCAL) electrodes to construct fuel cell devices. The assembled ZnO fuel cell demonstrates encouraging power outputs of 158-482 mW cm -2 and high open circuit voltages (OCVs) of 1-1.06 V at 450-550 °C, while the ZnO-LCP cell delivers significantly enhanced performance with maximum power density of 864 mW cm -2 and OCV of 1.07 V at 550 °C. The conductive properties of the materials are investigated. As a consequence, the ZnO electrolyte and ZnO-LCP composite exhibit extraordinary ionic conductivities of 0.09 and 0.156 S cm -1 at 550 °C, respectively, and the proton conductive behavior of ZnO is verified. Furthermore, performance enhancement of the ZnO-LCP cell is studied by electrochemical impedance spectroscopy (EIS), which is found to be as a result of the significantly reduced grain boundary and electrode polarization resistances. These findings indicate that ZnO is a highly promising alternative semiconducting-ionic membrane to replace the electrolyte materials for advanced LT-SOFCs, which in turn provides a new strategic pathway for the future development of electrolytes.
Study on Zinc Oxide-Based Electrolytes in Low-Temperature Solid Oxide Fuel Cells
Qiao, Zheng; Feng, Chu; Wang, Baoyuan; Zhu, Bin
2017-01-01
Semiconducting-ionic conductors have been recently described as excellent electrolyte membranes for low-temperature operation solid oxide fuel cells (LT-SOFCs). In the present work, two new functional materials based on zinc oxide (ZnO)—a legacy material in semiconductors but exceptionally novel to solid state ionics—are developed as membranes in SOFCs for the first time. The proposed ZnO and ZnO-LCP (La/Pr doped CeO2) electrolytes are respectively sandwiched between two Ni0.8Co0.15Al0.05Li-oxide (NCAL) electrodes to construct fuel cell devices. The assembled ZnO fuel cell demonstrates encouraging power outputs of 158–482 mW cm−2 and high open circuit voltages (OCVs) of 1–1.06 V at 450–550 °C, while the ZnO-LCP cell delivers significantly enhanced performance with maximum power density of 864 mW cm−2 and OCV of 1.07 V at 550 °C. The conductive properties of the materials are investigated. As a consequence, the ZnO electrolyte and ZnO-LCP composite exhibit extraordinary ionic conductivities of 0.09 and 0.156 S cm−1 at 550 °C, respectively, and the proton conductive behavior of ZnO is verified. Furthermore, performance enhancement of the ZnO-LCP cell is studied by electrochemical impedance spectroscopy (EIS), which is found to be as a result of the significantly reduced grain boundary and electrode polarization resistances. These findings indicate that ZnO is a highly promising alternative semiconducting-ionic membrane to replace the electrolyte materials for advanced LT-SOFCs, which in turn provides a new strategic pathway for the future development of electrolytes. PMID:29283395
NASA Astrophysics Data System (ADS)
Rivai, A. K.; Dimyati, A.; Adi, W. A.
2017-05-01
One of the advanced materials for application at high temperatures which is aggressively developed in the world is ODS (Oxide Dispersion strengthened) steel. ODS ferritic steels are one of the candidate materials for future nuclear reactors in the world (Generation IV reactors) because it is able to be used in the reactor above 600 °C. ODS ferritic steels have also been developed for the interconnect material of SOFC (Solid Oxide Fuel Cell) which will be exposed to about 800 °C of temperature. The steel is strengthened by dispersing homogeneously of oxide particles (ceramic) in nano-meter sized in the matrix of the steel. Synthesis of a ferritic ODS steel by dispersion of nano-particles of yttrium oxide (yttria: Y2O3) as the dispersion particles, and containing high-chromium i.e. 14% has been conducted. Synthesis of the ODS steels was done mechanically (mechanosynthesis) using HEM (High Energy ball Milling) technique for 40 and 100 hours. The resulted samples were characterized using SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscope), and XRD (X-ray diffraction) to analyze the microstructure characteristics. The results showed that the crystal grains of the sample with 100 hours milling time was much smaller than the sample with 40 hours milling time, and some amount of alloy was formed during the milling process even for 40 hours milling time. Furthermore, the structure analysis revealed that some amount of iron atom substituted by a slight amount of chromium atom as a solid solution. The quantitative analysis showed that the phase mostly consisted of FeCr solid-solution with the structure was BCC (body-centered cubic).
Determining the release of radionuclides from tank waste residual solids. FY2015 report
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, William D.; Hobbs, David T.
Methodology development for pore water leaching studies has been continued to support Savannah River Site High Level Waste tank closure efforts. For FY2015, the primary goal of this testing was the achievement of target pH and Eh values for pore water solutions representative of local groundwater in the presence of grout or grout-representative (CaCO 3 or FeS) solids as well as waste surrogate solids representative of residual solids expected to be present in a closed tank. For oxidizing conditions representative of a closed tank after aging, a focus was placed on using solid phases believed to be controlling pH andmore » E h at equilibrium conditions. For three pore water conditions (shown below), the target pH values were achieved to within 0.5 pH units. Tank 18 residual surrogate solids leaching studies were conducted over an E h range of approximately 630 mV. Significantly higher Eh values were achieved for the oxidizing conditions (ORII and ORIII) than were previously observed. For the ORII condition, the target Eh value was nearly achieved (within 50 mV). However, E h values observed for the ORIII condition were approximately 160 mV less positive than the target. E h values observed for the RRII condition were approximately 370 mV less negative than the target. Achievement of more positive and more negative E h values is believed to require the addition of non-representative oxidants and reductants, respectively. Plutonium and uranium concentrations measured during Tank 18 residual surrogate solids leaching studies under these conditions (shown below) followed the general trends predicted for plutonium and uranium oxide phases, assuming equilibrium with dissolved oxygen. The highest plutonium and uranium concentrations were observed for the ORIII condition and the lowest concentrations were observed for the RRII condition. Based on these results, it is recommended that these test methodologies be used to conduct leaching studies with actual Tank 18 residual solids material. Actual waste testing will include leaching evaluations of technetium and neptunium, as well as plutonium and uranium.« less
Code of Federal Regulations, 2014 CFR
2014-10-01
... (flammable solid) or Class 5 (oxidizing) materials shall be contained entirely within the body of the motor.... Special care shall also be taken in the loading of any motor vehicle with Class 4 (flammable solid) or... 49 Transportation 2 2014-10-01 2014-10-01 false Class 4 (flammable solid) materials, Class 5...
Code of Federal Regulations, 2013 CFR
2013-10-01
... (flammable solid) or Class 5 (oxidizing) materials shall be contained entirely within the body of the motor.... Special care shall also be taken in the loading of any motor vehicle with Class 4 (flammable solid) or... 49 Transportation 2 2013-10-01 2013-10-01 false Class 4 (flammable solid) materials, Class 5...
Code of Federal Regulations, 2012 CFR
2012-10-01
... (flammable solid) or Class 5 (oxidizing) materials shall be contained entirely within the body of the motor.... Special care shall also be taken in the loading of any motor vehicle with Class 4 (flammable solid) or... 49 Transportation 2 2012-10-01 2012-10-01 false Class 4 (flammable solid) materials, Class 5...
Direct electrical arc ignition of hybrid rocket motors
NASA Astrophysics Data System (ADS)
Judson, Michael I., Jr.
Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.
Determination of filter pore size for use in HB line phase II production of plutonium oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shehee, T.; Crowder, M.; Rudisill, T.
2014-08-01
H-Canyon and HB-Line are tasked with the production of plutonium oxide (PuO 2) from a feed of plutonium (Pu) metal. The PuO 2 will provide feed material for the Mixed Oxide (MOX) Fuel Fabrication Facility. After dissolution of the Pu metal in H-Canyon, plans are to transfer the solution to HB-Line for purification by anion exchange. Anion exchange will be followed by plutonium(IV) oxalate precipitation, filtration, and calcination to form PuO 2. The filtrate solutions, remaining after precipitation, contain low levels of Pu ions, oxalate ions, and may include solids. These solutions are transferred to H-Canyon for disposition. To mitigatemore » the criticality concern of Pu solids in a Canyon tank, past processes have used oxalate destruction or have pre-filled the Canyon tank with a neutron poison. The installation of a filter on the process lines from the HB-Line filtrate tanks to H-Canyon Tank 9.6 is proposed to remove plutonium oxalate solids. This report describes SRNL’s efforts to determine the appropriate pore size for the filters needed to perform this function. Information provided in this report aids in developing the control strategies for solids in the process.« less
Symmetrical, bi-electrode supported solid oxide fuel cell
NASA Technical Reports Server (NTRS)
Sofie, Stephen W. (Inventor); Cable, Thomas L. (Inventor)
2009-01-01
The present invention is a symmetrical bi-electrode supported solid oxide fuel cell comprising a sintered monolithic framework having graded pore electrode scaffolds that, upon treatment with metal solutions and heat subsequent to sintering, acquire respective anodic and cathodic catalytic activity. The invention is also a method for making such a solid oxide fuel cell. The graded pore structure of the graded pore electrode scaffolds in achieved by a novel freeze casting for YSZ tape.
Process for treating effluent from a supercritical water oxidation reactor
Barnes, Charles M.; Shapiro, Carolyn
1997-01-01
A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.
Oxygen partial pressure sensor
Dees, D.W.
1994-09-06
A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.
Oxygen partial pressure sensor
Dees, Dennis W.
1994-01-01
A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.
Nogueira, Lucie S; Ribeiro, Susana; Granadeiro, Carlos M; Pereira, Eulália; Feio, Gabriel; Cunha-Silva, Luís; Balula, Salete S
2014-07-07
A novel method to prepare silica nano-sized particles incorporating polyoxometalates was developed leading to a new efficient heterogeneous oxidative catalyst. Zinc-substituted polyoxotungstate [PW11Zn(H2O)O39](5-) (PW11Zn) was encapsulated into silica nanoparticles using a cross-linked organic-inorganic core, performed through successive spontaneous reactions in water. The potassium salt of PW11Zn and the composite formed, PW11Zn-APTES@SiO2, were characterized by a myriad of solid-state methods such as FT-IR, FT-Raman, (31)P and (13)C CP/MAS solid-state NMR, elemental analysis and SEM-EDS, confirming the integrity of the PW11Zn structure immobilized in the silica nanoparticles. The new composite has shown to be a versatile catalyst for the oxidation of olefins and also to catalyze the desulfurization of a model oil using H2O2 as the oxidant and acetonitrile as the solvent. The novel composite material was capable of being recycled without significant loss of activity and maintaining its structural stability for consecutive desulfurization and olefin oxidative cycles.
NASA Astrophysics Data System (ADS)
Griffiths, Trevor R.; Volkovich, Vladimir A.
An extensive review of the literature on the high temperature reactions (both in melts and in the solid state) of uranium oxides (UO 2, U 3O 8 and UO 3) resulting in the formation of insoluble alkali metal (Li to Cs) uranates is presented. Their uranate(VI) and uranate(V) compounds are examined, together with mixed and oxygen-deficient uranates. The reactions of uranium oxides with carbonates, oxides, per- and superoxides, chlorides, sulfates, nitrates and nitrites under both oxidising and non-oxidising conditions are critically examined and systematised, and the established compositions of a range of uranate(VI) and (V) compounds formed are discussed. Alkali metal uranates(VI) are examined in detail and their structural, physical, thermodynamic and spectroscopic properties considered. Chemical properties of alkali metal uranates(VI), including various methods for their reduction, are also reported. Errors in the current theoretical treatment of uranate(VI) spectra are identified and the need to develop routes for the preparation of single crystals is stressed.
Nicholas, Sarah L.; Erickson, Melinda L.; Woodruff, Laurel G.; Knaeble, Alan R.; Marcus, Matthew A.; Lynch, Joshua K.; Toner, Brandy M.
2017-01-01
e of this research is to identify the solid-phase sources and geochemical mechanisms of release of As in aquifers of the Des Moines Lobe glacial advance. The overarching concept is that conditions present at the aquifer-aquitard interfaces promote a suite of geochemical reactions leading to mineral alteration and release of As to groundwater. A microprobe X-ray absorption spectroscopy (lXAS) approach is developed and applied to rotosonic drill core samples to identify the solid-phase speciation of As in aquifer, aquitard, and aquifer-aquitard interface sediments. This approach addresses the low solid-phase As concentrations, as well as the fine-scale physical and chemical heterogeneity of the sediments. The spectroscopy data are analyzed using novel cosine-distance and correlation-distance hierarchical clustering for Fe 1s and As 1s lXAS datasets. The solid-phase Fe and As speciation is then interpreted using sediment and well-water chemical data to propose solid-phase As reservoirs and release mechanisms. The results confirm that in two of the three locations studied, the glacial sediment forming the aquitard is the source of As to the aquifer sediments. The results are consistent with three different As release mechanisms: (1) desorption from Fe (oxyhydr)oxides, (2) reductive dissolution of Fe (oxyhydr)oxides, and (3) oxidative dissolution of Fe sulfides. The findings confirm that glacial sediments at the interface between aquifer and aquitard are geochemically active zones for As. The diversity of As release mechanisms is consistent with the geographic heterogeneity observed in the distribution of elevated-As wells.
Cover and startup gas supply system for solid oxide fuel cell generator
Singh, P.; George, R.A.
1999-07-27
A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.
Cover and startup gas supply system for solid oxide fuel cell generator
Singh, Prabhakar; George, Raymond A.
1999-01-01
A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.
Development of a high power density 2.5 kW class solid oxide fuel cell stack
NASA Astrophysics Data System (ADS)
Yokoo, M.; Mizuki, K.; Watanabe, K.; Hayashi, K.
2011-10-01
We have developed a 2.5 kW class solid oxide fuel cell stack. It is constructed by combining 70 power generation units, each of which is composed of an anode-supported planar cell and separators. The power generation unit for the 2.5 kW class stack were designed so that the height of the unit were scaled down by 2/3 of that for our conventional 1.5 kW class stack. The power generation unit for the 2.5 kW class stack provided the same output as the unit used for the conventional 1.5 kW class stack, which means that power density per unit volume of the 2.5 kW class stack was 50% greater than that of the conventional 1.5 kW class stack.
Lu, Yuzheng; Afzal, Muhammad; Zhu, Bin; Wang, Baoyuan; Wang, Jun; Xia, Chen
2017-07-10
Nanocomposites (integrating the nano and composite technologies) for advanced fuel cells (NANOCOFC) demonstrate the great potential to reduce the operational temperature of solid oxide fuel cell (SOFC) significantly in the low temperature (LT) range 300-600ºC. NANOCOFC has offered the development of multi-functional materials composed of semiconductor and ionic materials to meet the requirements of low temperature solid oxide fuel cell (LTSOFC) and green energy conversion devices with their unique mechanisms. This work reviews the recent developments relevant to the devices and the patents in LTSOFCs from nanotechnology perspectives that reports advances including fabrication methods, material compositions, characterization techniques and cell performances. Finally, the future scope of LTSOFC with nanotechnology and the practical applications are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
New instrumentation technologies for testing the bonding of sensors to solid materials
NASA Technical Reports Server (NTRS)
Hashemian, H. M.; Shell, C. S.; Jones, C. N.
1996-01-01
This report presents the results of a comprehensive research and development project that was conducted over a three-year period to develop new technologies for testing the attachment of sensors to solid materials for the following NASA applications: (1) testing the performance of composites that are used for the lining of solid rocket motor nozzles, (2) testing the bonding of surface-mounted platinum resistance thermometers that are used on fuel and oxidizer lines of the space shuttle to detect valve leaks by monitoring temperature, (3) testing the attachment of strain gages that are used in testing the performance of space shuttle main engines, and (4) testing the thermocouples that are used for determining the performance of blast tube liner material in solid rocket boosters.
NASA Astrophysics Data System (ADS)
Jewulski, J. R.; Osif, T. L.; Remick, R. J.
1990-12-01
The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling, and optimization studies. Correlation and optimization studies are described which include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells are presented which include the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar
2009-06-30
Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode,more » respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall integrated system assembly was not completed because of limited resources. An inexpensive metallic interconnects fabrication process was developed in-house. BOP components were fabricated and evaluated under the forecasted operating conditions. Proof-of-concept demonstration of cogenerating hydrogen and electricity was performed, and demonstrated SOFEC operational stability over 360 hours with no significant degradation. Cost analysis was performed for providing an economic assessment of the cost of hydrogen production using the targeted hybrid technology, and for guiding future research and development.« less
Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.
Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J
1996-06-01
For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.
Solid lubricant materials for high temperatures: A review
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1985-01-01
Solid lubricants that can be used above 300 C in air are discussed, including coatings and self-lubricating composite bearing materials. The lubricants considered are representative dichalcogenides, graphite, graphite fluoride, polyimides, soft oxides, oxidatively stable fluorides, and hard coating materials. A few general design considerations revelant to solid lubrication are interspersed.
Catalysts compositions for use in fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Steven S.C.
2015-12-01
The present invention generally relates to the generation of electrical energy from a solid-state fuel. In one embodiment, the present invention relates to a solid-oxide fuel cell for generating electrical energy from a carbon-based fuel, and to catalysts for use in a solid-oxide fuel cell.
From Two-Phase to Three-Phase: The New Electrochemical Interface by Oxide Electrocatalysts
NASA Astrophysics Data System (ADS)
Xu, Zhichuan J.
2018-03-01
Electrochemical reactions typically occur at the interface between a solid electrode and a liquid electrolyte. The charge exchange behaviour between these two phases determines the kinetics of electrochemical reactions. In the past few years, significant advances have been made in the development of metal oxide electrocatalysts for fuel cell and electrolyser reactions. However, considerable gaps remain in the fundamental understanding of the charge transfer pathways and the interaction between the metal oxides and the conducting substrate on which they are located. In particular, the electrochemical interfaces of metal oxides are significantly different from the traditional (metal) ones, where only a conductive solid electrode and a liquid electrolyte are considered. Oxides are insulating and have to be combined with carbon as a conductive mediator. This electrode configuration results in a three-phase electrochemical interface, consisting of the insulating oxide, the conductive carbon, and the liquid electrolyte. To date, the mechanistic insights into this kind of non-traditional electrochemical interface remain unclear. Consequently conventional electrochemistry concepts, established on classical electrode materials and their two-phase interfaces, are facing challenges when employed for explaining these new electrode materials. [Figure not available: see fulltext.
Characterization of undissolved solids from the dissolution of North Anna reactor fuel
Rudisill, Tracy S.; Olson, L. C.; DiPrete, D. P.
2017-06-16
Here, samples of undissolved solids (UDS) from the dissolution of North Anna reactor fuel were characterized to investigate the effects of using air or oxygen as the oxidant during tritium removal. The UDS composition data also support the development of a waste form for disposal. There was no discernible effect of the oxidant used during the tritium removal process or the size fraction on the UDS composition. Scanning electron microscopy (SEM) and energy dispersive (x-ray) spectroscopy were used to estimate the oxygen content of the UDS and it was found to be potentially significant, on the order of 30% bymore » mass and 80% by atom.« less
Design and operation of interconnectors for solid oxide fuel cell stacks
NASA Astrophysics Data System (ADS)
Winkler, W.; Koeppen, J.
Highly efficient combined cycles with solid oxide fuel cell (SOFC) need an integrated heat exchanger in the stack to reach efficiencies of about 80%. The stack costs must be lower than 1000 DM/kW. A newly developed welded metallic (Haynes HA 230) interconnector with a free stretching planar SOFC and an integrated heat exchanger was tested in thermal cycling operation. The design allowed a cycling of the SOFC without mechanical damage of the electrolyte in several tests. However, more tests and a further design optimization will be necessary. These results could indicate that commercial high-temperature alloys can be used as interconnector material in order to fullfil the cost requirements.
Solid oxide fuel cell steam reforming power system
Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.
2013-03-12
The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.
Process for treating effluent from a supercritical water oxidation reactor
Barnes, C.M.; Shapiro, C.
1997-11-25
A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.
Nicholas, Sarah L.; Erickson, Melinda L.; Woodruff, Laurel G.; ...
2017-05-19
Arsenic (As) is a geogenic contaminant affecting groundwater in geologically diverse systems globally. Arsenic release from aquifer sediments to groundwater is favored when biogeochemical conditions, especially oxidation-reduction (redox) potential, in aquifers fluctuate. The specific objective of this research is to identify the solid-phase sources and geochemical mechanisms of release of As in aquifers of the Des Moines Lobe glacial advance. The overarching concept is that conditions present at the aquifer-aquitard interfaces promote a suite of geochemical reactions leading to mineral alteration and release of As to groundwater. A microprobe X-ray absorption spectroscopy (μXAS) approach is developed and applied to rotosonicmore » drill core samples to identify the solid-phase speciation of As in aquifer, aquitard, and aquifer-aquitard interface sediments. This approach addresses the low solid-phase As concentrations, as well as the fine-scale physical and chemical heterogeneity of the sediments. The spectroscopy data are analyzed using novel cosine-distance and correlation-distance hierarchical clustering for Fe 1s and As 1s μXAS datasets. The solid-phase Fe and As speciation is then interpreted using sediment and well-water chemical data to propose solid-phase As reservoirs and release mechanisms. The results confirm that in two of the three locations studied, the glacial sediment forming the aquitard is the source of As to the aquifer sediments. The results are consistent with three different As release mechanisms: (1) desorption from Fe (oxyhydr)oxides, (2) reductive dissolution of Fe (oxyhydr)oxides, and (3) oxidative dissolution of Fe sulfides. The findings confirm that glacial sediments at the interface between aquifer and aquitard are geochemically active zones for As. The diversity of As release mechanisms is consistent with the geographic heterogeneity seen in the distribution of elevated-As wells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholas, Sarah L.; Erickson, Melinda L.; Woodruff, Laurel G.
Arsenic (As) is a geogenic contaminant affecting groundwater in geologically diverse systems globally. Arsenic release from aquifer sediments to groundwater is favored when biogeochemical conditions, especially oxidation-reduction (redox) potential, in aquifers fluctuate. The specific objective of this research is to identify the solid-phase sources and geochemical mechanisms of release of As in aquifers of the Des Moines Lobe glacial advance. The overarching concept is that conditions present at the aquifer-aquitard interfaces promote a suite of geochemical reactions leading to mineral alteration and release of As to groundwater. A microprobe X-ray absorption spectroscopy (μXAS) approach is developed and applied to rotosonicmore » drill core samples to identify the solid-phase speciation of As in aquifer, aquitard, and aquifer-aquitard interface sediments. This approach addresses the low solid-phase As concentrations, as well as the fine-scale physical and chemical heterogeneity of the sediments. The spectroscopy data are analyzed using novel cosine-distance and correlation-distance hierarchical clustering for Fe 1s and As 1s μXAS datasets. The solid-phase Fe and As speciation is then interpreted using sediment and well-water chemical data to propose solid-phase As reservoirs and release mechanisms. The results confirm that in two of the three locations studied, the glacial sediment forming the aquitard is the source of As to the aquifer sediments. The results are consistent with three different As release mechanisms: (1) desorption from Fe (oxyhydr)oxides, (2) reductive dissolution of Fe (oxyhydr)oxides, and (3) oxidative dissolution of Fe sulfides. The findings confirm that glacial sediments at the interface between aquifer and aquitard are geochemically active zones for As. The diversity of As release mechanisms is consistent with the geographic heterogeneity seen in the distribution of elevated-As wells.« less
Hybrid propulsion technology program: Phase 1, volume 4
NASA Technical Reports Server (NTRS)
Claflin, S. E.; Beckman, A. W.
1989-01-01
The use of a liquid oxidizer-solid fuel hybrid propellant combination in booster rocket motors appears extremely attractive due to the integration of the best features of liquid and solid propulsion systems. The hybrid rocket combines the high performance, clean exhaust, and safety of liquid propellant engines with the low cost and simplicity of solid propellant motors. Additionally, the hybrid rocket has unique advantages such as an inert fuel grain and a relative insensitivity to fuel grain and oxidizer injection anomalies. The advantages mark the hybrid rocket as a potential replacement or alternative for current and future solid propellant booster systems. The issues are addressed and recommendations are made concerning oxidizer feed systems, injectors, and ignition systems as related to hybrid rocket propulsion. Early in the program a baseline hybrid configuration was established in which liquid oxygen would be injected through ports in a solid fuel whose composition is based on hydroxyl terminated polybutadiene (HTPB). Liquid oxygen remained the recommended oxidizer and thus all of the injector concepts which were evaluated assumed only liquid would be used as the oxidizer.
Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor
Bates, J. Lambert
1992-01-01
In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8. Preferably, "a" is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0 to 9.3. Preferably, "b" is from 0.3 to 0.5 and "c" is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8, the electrical interconnection comprising Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1-d)ZrO.sub.2 -(d)Y.sub.2 O.sub.3 where "d" is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO.sub.2, where "X" is an elemental metal.
Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor
Bates, J.L.
1992-09-01
In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8. Preferably, a' is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0 to 9.3. Preferably, b' is from 0.3 to 0.5 and c' is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8, the electrical interconnection comprising Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1[minus]d)ZrO[sub 2]-(d)Y[sub 2]O[sub 3] where d' is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO[sub 2], where X' is an elemental metal. 5 figs.
Propagation of a Chemical Reaction through Heterogeneous Lithium- Polytetrafluoroethylene Mixtures
1975-12-11
Condensed Phases ........... ............... 9 1.2.1 Lithium-Gas Surface Reactions. .......... 10 1.2.2 Composite Solid Propellant Combustion. . .. 13...f:- the o:cu:=ence _A a surface reaction was developed, but no analyti7al reaction zate model was presented- 1.2.2 Composite S’-lid Propellant...Combustion Composite solid propellants are plastic-like materials consisting of small oxidizer particles embedded in a fuel matrix. Ammonium perchlorate is
Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho
2017-08-01
Magnetic graphene oxide was modified by four imidazole-based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid-phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single-factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid-liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid-modified magnetic graphene oxide materials, and amount of 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic-liquid-modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Presidential Green Chemistry Challenge: 2003 Greener Synthetic Pathways Award
Presidential Green Chemistry Challenge 2003 winner, Sud-Chemie, developed a synthesis for solid oxide catalysts used to make hydrogen and clean fuels. The process creates little wastewater, no nitrates, and no or little NOx.
Electrochemical incineration of wastes
NASA Technical Reports Server (NTRS)
Kaba, L.; Hitchens, G. D.; Bockris, J. O'M.
1989-01-01
A low temperature electrolysis process has been developed for the treatment of solid waste material and urine. Experiments are described in which organic materials are oxidized directly at the surface of an electrode. Also, hypochlorite is generated electrochemically from chloride component of urine. Hypochlorite can act as a strong oxidizing agent in solution. The oxidation takes place at 30-60 C and the gaseous products from the anodic reaction are carbon dioxide, nitrogen, oxygen. Hydrogen is formed at the cathode. Carbon monoxide, and nitrogen oxides and methane were not detected in the off gases. Chlorine was evolved at the anode in relatively low amounts.
Wang, Mei; Duong, Le Dai; Mai, Nguyen Thi; Kim, Sanghoon; Kim, Youngjun; Seo, Heewon; Kim, Ye Chan; Jang, Woojin; Lee, Youngkwan; Suhr, Jonghwan; Nam, Jae-Do
2015-01-21
Portable energy storage devices have gained special attention due to the growing demand for portable electronics. Herein, an all-solid-state supercapacitor is successfully fabricated based on a poly(vinyl alcohol)-H3PO4 (PVA-H3PO4) polymer electrolyte and a reduced graphene oxide (RGO) membrane electrode prepared by electrophoretic deposition (EPD). The RGO electrode fabricated by EPD contains an in-plane layer-by-layer alignment and a moderate porosity that accommodate the electrolyte ions. The all-solid-state RGO supercapacitor is thoroughly tested to give high specific volumetric capacitance (108 F cm(-3)) and excellent energy and power densities (7.5 Wh cm(-3) and 2.9 W cm(-3), respectively). In addition, the all-solid-state RGO supercapacitor exhibits an ultralong lifetime for as long as 180 days (335 000 cycles), which is an ultrahigh cycling capability for a solid-state supercapacitor. The RGO is also tested for being used as a transparent supercapacitor electrode demonstrating its possible use in various transparent optoelectronic devices. Due to the facile scale-up capability of the EPD process and RGO dispersion, the developed all-solid-state supercapacitor is highly applicable to large-area portable energy storage devices.
Enhanced photothermal effect in reduced graphene oxide in solid-state
NASA Astrophysics Data System (ADS)
Sahadev, Nishaina; Anappara, Aji A.
2017-11-01
We report on a giant photothermal effect in few-layer Reduced Graphene Oxide (RGO) in powder form. Graphite oxide synthesized following modified Hummer's method was thermally exfoliated and reduced to obtain RGO consisting of ˜8-10 layers. Upon irradiation with an incoherent, broad-band light source (wavelengths ranging from 250 to 450 nm), an enormous photothermal effect was observed. The heat generated by RGO determined from the isothermal differential photocalorimetric technique is as high as ˜319 W/g resulting from the dominant non-radiative de-excitation of photoexcited electrons due to the absence of a radiative pathway. A practical applicability was demonstrated using a commercial thermoelectric generator wherein upon illumination from a solar-simulator, an open voltage in the mV range was developed, giving a direct proof of the exothermic effect in powder RGO upon light illumination. Herewith, we have demonstrated a proof-of-concept of photothermal effects in solid-state RGO.
Bertuna, Angela; Faglia, Guido; Ferroni, Matteo; Kaur, Navpreet; Munasinghe Arachchige, Hashitha M. M.; Sberveglieri, Giorgio; Comini, Elisabetta
2017-01-01
Metal oxide 1D nanowires are probably the most promising structures to develop cheap stable and selective chemical sensors. The purpose of this contribution is to review almost two-decades of research activity at the Sensor Lab Brescia on their preparation during by vapor solid (n-type In2O3, ZnO), vapor liquid solid (n-type SnO2 and p-type NiO) and thermal evaporation and oxidation (n-type ZnO, WO3 and p-type CuO) methods. For each material we’ve assessed the chemical sensing performance in relation to the preparation conditions and established a rank in the detection of environmental and industrial pollutants: SnO2 nanowires were effective in DMMP detection, ZnO nanowires in NO2, acetone and ethanol detection, WO3 for ammonia and CuO for ozone. PMID:28468310
Cassettes for solid-oxide fuel cell stacks and methods of making the same
Weil, K. Scott; Meinhardt, Kerry D; Sprenkle, Vincent L
2012-10-23
Solid-oxide fuel cell (SOFC) stack assembly designs are consistently investigated to develop an assembly that provides optimal performance, and durability, within desired cost parameters. A new design includes a repeat unit having a SOFC cassette and being characterized by a three-component construct. The three components include an oxidation-resistant, metal window frame hermetically joined to an electrolyte layer of a multi-layer, anode-supported ceramic cell and a pre-cassette including a separator plate having a plurality of vias that provide electrical contact between an anode-side collector within the pre-cassette and a cathode-side current collector of an adjacent cell. The third component is a cathode-side seal, which includes a standoff that supports a cathode channel spacing between each of the cassettes in a stack. Cassettes are formed by joining the pre-cassette and the window frame.
Process for removing copper in a recoverable form from solid scrap metal
Hartman, Alan D.; Oden, Laurance L.; White, Jack C.
1995-01-01
A process for removing copper in a recoverable form from a copper/solid ferrous scrap metal mix is disclosed. The process begins by placing a copper/solid ferrous scrap metal mix into a reactor vessel. The atmosphere within the reactor vessel is purged with an inert gas or oxidizing while the reactor vessel is heated in the area of the copper/solid ferrous scrap metal mix to raise the temperature within the reactor vessel to a selected elevated temperature. Air is introduced into the reactor vessel and thereafter hydrogen chloride is introduced into the reactor vessel to obtain a desired air-hydrogen chloride mix. The air-hydrogen chloride mix is operable to form an oxidizing and chloridizing atmosphere which provides a protective oxide coating on the surface of the solid ferrous scrap metal in the mix and simultaneously oxidizes/chloridizes the copper in the mix to convert the copper to a copper monochloride gas for transport away from the solid ferrous scrap metal. After the copper is completely removed from the copper/solid ferrous scrap metal mix, the flows of air and hydrogen chloride are stopped and the copper monochloride gas is collected for conversion to a recoverable copper species.
NASA Astrophysics Data System (ADS)
Liu, Yongxun; Koga, Kazuhiro; Khumpuang, Sommawan; Nagao, Masayoshi; Matsukawa, Takashi; Hara, Shiro
2017-06-01
Solid source diffusions of phosphorus (P) and boron (B) into the half-inch (12.5 mm) minimal silicon (Si) wafers by spin on dopants (SOD) have been systematically investigated and the physical-vapor-deposited (PVD) titanium nitride (TiN) metal gate minimal silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) field-effect transistors (FETs) have successfully been fabricated using the developed SOD thermal diffusion technique. It was experimentally confirmed that a low temperature oxidation (LTO) process which depresses a boron silicide layer formation is effective way to remove boron-glass in a diluted hydrofluoric acid (DHF) solution. It was also found that top Si layer thickness of SOI wafers is reduced in the SOD thermal diffusion process because of its consumption by thermal oxidation owing to the oxygen atoms included in SOD films, which should be carefully considered in the ultrathin SOI device fabrication. Moreover, normal operations of the fabricated minimal PVD-TiN metal gate SOI-CMOS inverters, static random access memory (SRAM) cells and ring oscillators have been demonstrated. These circuit level results indicate that no remarkable particles and interface traps were introduced onto the minimal wafers during the device fabrication, and the developed solid source diffusion by SOD is useful for the fabrication of functional logic gate minimal SOI-CMOS integrated circuits.
Solid-State Diffusional Behaviors of Functional Metal Oxides at Atomic Scale.
Chen, Jui-Yuan; Huang, Chun-Wei; Wu, Wen-Wei
2018-02-01
Metal/metal oxides have attracted extensive research interest because of their combination of functional properties and compatibility with industry. Diffusion and thermal reliability have become essential issues that require detailed study to develop atomic-scaled functional devices. In this work, the diffusional reaction behavior that transforms piezoelectric ZnO into magnetic Fe 3 O 4 is investigated at the atomic scale. The growth kinetics of metal oxides are systematically studied through macro- and microanalyses. The growth rates are evaluated by morphology changes, which determine whether the growth behavior was a diffusion- or reaction-controlled process. Furthermore, atom attachment on the kink step is observed at the atomic scale, which has important implications for the thermodynamics of functional metal oxides. Faster growth planes simultaneously decrease, which result in the predominance of low surface energy planes. These results directly reveal the atomic formation process of metal oxide via solid-state diffusion. In addition, the nanofabricated method provides a novel approach to investigate metal oxide evolution and sheds light on diffusional reaction behavior. More importantly, the results and phenomena of this study provide considerable inspiration to enhance the material stability and reliability of metal/oxide-based devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabrication of copper-based anodes via atmosphoric plasma spraying techniques
Lu, Chun [Monroeville, PA
2012-04-24
A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.
Method of burning sulfur-containing fuels in a fluidized bed boiler
Jones, Brian C.
1982-01-01
A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.
Calorimetric determination of energetics of solid solutions of UO 2+ x with CaO and Y 2O 3
NASA Astrophysics Data System (ADS)
Mazeina, Lena; Navrotsky, Alexandra; Greenblatt, Martha
2008-02-01
Quantitative study of thermodynamic properties of solid solutions of UO 2+ x with divalent and trivalent oxides is important for predicting the behavior of oxide fuel. Although early literature work measured vapor pressure in some of these solid solutions, direct calorimetric measurements of enthalpies of formation have been hampered by the refractory nature of such oxides. First measurements of the enthalpies of formation in the systems UO 2+ x-CaO and UO 2+ x-YO 1.5, obtained by high-temperature oxide melt solution calorimetry, are reported. Both systems show significantly negative (exothermic) heats of formation from binary oxides (UO 2, plus O 2 and CaO or YO 1.5, as well as from UO 2 plus UO 3 and CaO or YO 1.5), consistent with reported free energy measurements in the urania-yttria system. The energetic contributions of oxygen content (oxidation of U 4+) and of charge balanced ionic substitution as well as defect clustering are discussed. Behavior of urania-yttria is compared to that of corresponding systems in which the tetravalent ion is Ce, Zr, or Hf. The substantial additional stability in the solid solutions compared to pure UO 2+ x may retard, in both thermodynamic and kinetic sense, the oxidation and leaching of spent fuel to form aqueous U 6+ and solid uranyl phases.
NASA Technical Reports Server (NTRS)
1971-01-01
Two alternative technical approaches were studied for application of an electrochemical process using a solid oxide electrolyte (zirconia stabilized by yttria or scandia) to oxygen reclamation from carbon dioxide and water, for spacecraft life support systems. Among the topics considered are the advisability of proceeding to engineering prototype development and fabrication of a full scale model for the system concept, the optimum choice of method or approach to be carried into prototype development, and the technical problem areas which exist.
Multi scale modeling of ignition and combustion of micro and nano aluminum particles
NASA Astrophysics Data System (ADS)
Puri, Puneesh
With renewed interest in nano scale energetic materials like aluminum, many fundamental issues concerning the ignition and combustion characteristics at nano scales, remain to be clarified. The overall aim of the current study is the establishment of a unified theory accommodating the various processes and mechanisms involved in the combustion and ignition of aluminum particles at micro and nano scales. A comprehensive review on the ignition and combustion of aluminum particles at multi scales was first performed identifying various processes and mechanisms involved. Research focus was also placed on the establishment of a Molecular Dynamics (MD) simulation tool to investigate the characteristics of nano-particulate aluminum through three major studies. The general computational framework involved parallelized preprocessing, post-processing and main code with capability to simulate different ensembles using appropriate algorithms. Size dependence of melting temperature of pure aluminum particles was investigated in the first study. Phenomena like dynamic coexistence of solid and liquid phase and effect of surface charges on melting were explored. The second study involved the study of effect of defects in the form of voids on melting of bulk and particulate phase aluminum. The third MD study was used to analyze the thermo-mechanical behavior of nano-sized aluminum particles with total diameter of 5-10 nm and oxide thickness of 1-2.5 nm. The ensuing solid-solid and solid-liquid phase changes in the core and shell, stresses developed within the shell, and the diffusion of aluminum cations in the oxide layer, were explored in depth for amorphous and crystalline oxide layers. In the limiting case, the condition for pyrophoricity/explosivity of nano-particulate aluminum was analyzed and modified. The size dependence of thermodynamic properties at nano scales were considered and incorporated into the existing theories developed for micro and larger scales. Finally, a phenomenological theory for ignition and combustion of aluminum particles was proposed. The whole time history from ignition till particle burnout was divided into five stages. An attempt was made to explore different modes of ignition based on the effect of pressure, temperature, oxidizer, oxide thickness and particle diameter and was investigated using length and time scales involved during ignition and combustion.
Synthesis and Performance Characterization of a Nanocomposite Ternary Thermite: Al/Fe2O3/SiO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prentice, D; Pantoya, M L; Clapsaddle, B J
2005-02-04
Making solid energetic materials requires the physical mixing of solid fuels and oxidizers or the incorporation of fuel and oxidizing moieties into a single molecule. The former are referred to as composite energetic materials (i.e., thermites, propellants, pyrotechnics) and the latter are deemed monomolecular energetic materials (i.e., explosives). Mass diffusion between the fuel and oxidizer is the rate controlling step for composite reactions while bond breaking and chemical kinetics control monomolecular reactions. Although composites have higher energy densities than monomolecular species, they release that energy over a longer period of time because diffusion controlled reactions are considerably slower than chemistrymore » controlled reactions. Conversely, monomolecular species exhibit greater power due to more rapid kinetics than physically mixed energetics. Reducing the diffusion distance between fuel and oxidizer species within an energetic composite would enhance the reaction rate. Recent advances in nanotechnology have spurred the development of nano-scale fuel and oxidizer particles that can be combined into a composite and effectively reduce diffusion distances to nano-scale dimensions or less. These nanocomposites have the potential to deliver the best of both worlds: high energy density of the physically mixed composite with the high power of the monomolecular species. Toward this end, researchers at Lawrence Livermore National Laboratory (LLNL) developed nano-particle synthesis techniques, based on sol-gel chemistry, for the production of thermite nanocomposites.« less
The TMI regenerable solid oxide fuel cell
NASA Technical Reports Server (NTRS)
Cable, Thomas L.
1995-01-01
Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.
The TMI regenerable solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Cable, Thomas L.
1995-04-01
Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.
Methods and systems for producing syngas
Hawkes, Grant L; O& #x27; Brien, James E; Stoots, Carl M; Herring, J. Stephen; McKellar, Michael G; Wood, Richard A; Carrington, Robert A; Boardman, Richard D
2013-02-05
Methods and systems are provided for producing syngas utilizing heat from thermochemical conversion of a carbonaceous fuel to support decomposition of at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells. Simultaneous decomposition of carbon dioxide and water or steam by one or more solid-oxide electrolysis cells may be employed to produce hydrogen and carbon monoxide. A portion of oxygen produced from at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells is fed at a controlled flow rate in a gasifier or combustor to oxidize the carbonaceous fuel to control the carbon dioxide to carbon monoxide ratio produced.
High temperature resistant cermet and ceramic compositions
NASA Technical Reports Server (NTRS)
Phillips, W. M. (Inventor)
1978-01-01
Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.
Li, Tian-Tian; Liu, Yu; Qi, Shi-Chao; Liu, Xiao-Qin; Huang, Li; Sun, Lin-Bing
2018-05-03
The design of new type of solid strong base with ideal activity, stability, and reusability is strongly urged by the growing demand of green chemistry and sustainable development. In this study, a new type of mesoporous solid strong base, denoted as CaO/mSiO 2 /Fe 3 O 4 , is successfully fabricated by successively coating SiO 2 onto Fe 3 O 4 magnetic nanoparticles and loading CaO into the mesoporous SiO 2 . Compared with a series of other typical solid bases, the CaO/mSiO 2 /Fe 3 O 4 exhibits higher activity towards the synthesis of dimethyl carbonate by the transesterification of ethylene carbonate and methanol. The activity of the CaO/mSiO 2 /Fe 3 O 4 is not observed to decrease obviously even after sextic catalyst recirculation, and in particular, the recovery of the catalyst without quality loss is very convenient due to the good magnetic responsiveness of the Fe 3 O 4 cores. Copyright © 2018. Published by Elsevier Inc.
Chatterjee, Pabitra B; Crans, Debbie C
2012-09-03
Visible light facilitates a solid-to-solid photochemical aerobic oxidation of a hunter-green microcrystalline oxidovanadium(IV) compound (1) to form a black powder of cis-dioxidovanadium(V) (2) at ambient temperature. The siderophore ligand pyridine-2,6-bis(thiocarboxylic acid), H(2)L, is secreted by a microorganism from the Pseudomonas genus. This irreversible transformation of a metal monooxo to a metal dioxo complex in the solid state in the absence of solvent is unprecedented. It serves as a proof-of-concept reaction for green chemistry occurring in solid matrixes.
Combinatorial synthesis of phosphors using arc-imaging furnace
Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo
2011-01-01
We have applied a novel ‘melt synthesis technique’ rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10–60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1–5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10–60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions. PMID:27877432
Combinatorial synthesis of phosphors using arc-imaging furnace
NASA Astrophysics Data System (ADS)
Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo
2011-10-01
We have applied a novel 'melt synthesis technique' rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10-60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1-5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10-60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions.
Roehrens, Daniel; Packbier, Ute; Fang, Qingping; Blum, Ludger; Sebold, Doris; Bram, Martin; Menzler, Norbert
2016-01-01
In this study we report on the development and operational data of a metal-supported solid oxide fuel cell with a thin film electrolyte under varying conditions. The metal-ceramic structure was developed for a mobile auxiliary power unit and offers power densities of 1 W/cm2 at 800 °C, as well as robustness under mechanical, thermal and chemical stresses. A dense and thin yttria-doped zirconia layer was applied to a nanoporous nickel/zirconia anode using a scalable adapted gas-flow sputter process, which allowed the homogeneous coating of areas up to 100 cm2. The cell performance is presented for single cells and for stack operation, both in lightweight and stationary stack designs. The results from short-term operation indicate that this cell technology may be a very suitable alternative for mobile applications. PMID:28773883
Low voltage solid-state lateral coloration electrochromic device
Tracy, C.E.; Benson, D.K.; Ruth, M.R.
1984-12-21
A solid-state transition metal oxide device comprising a plurality of layers having a predisposed orientation including an electrochromic oxide layer. Conductive material including anode and cathode contacts is secured to the device. Coloration is actuated within the electrochromic oxide layer after the application of a predetermined potential between the contacts. The coloration action is adapted to sweep or dynamically extend across the length of the electrochromic oxide layer.
Low voltage solid-state lateral coloration electrochromic device
Tracy, C. Edwin; Benson, David K.; Ruth, Marta R.
1987-01-01
A solid-state transition metal oxide device comprising a plurality of lay having a predisposed orientation including an electrochromic oxide layer. Conductive material including anode and cathode contacts is secured to the device. Coloration is actuated within the electrochromic oxide layer after the application of a predetermined potential between the contacts. The coloration action is adapted to sweep or dynamically extend across the length of the electrochromic oxide layer.
NASA Technical Reports Server (NTRS)
Blankenship, C. P.; Saunders, N. T.
1972-01-01
Manufacturing processes were developed for TD-NiCr providing small sheet (45 x 90 cm), and larger sheet (60 x 150 cm) and foil. The alternate alloy, DS-NiCr, was produced by pack-chromizing Ni-ThO2 sheet. Formability criteria are being established for basic sheet forming processes, which are brake forming, corrugation forming, joggling, dimpling, and beading. Resistance spot welding (fusion and solid state), resistance seam welding, solid state diffusion welding, and brazing are included in the joining programs. Major emphasis is centered on an Al-modified Ni-Cr-ThO2 alloy development. These alloys, containing 3 to 5% Al, form the protective Al2O3 scale. This enhances oxidation resistance under reentry conditions. Both TD-NiCrAl and DS-NiCrAl alloys are included. A tentative composition of Ni-16Cr-3.5Al-2ThO2 was selected based on oxidation resistance and fabricability.
Muscatello, Anthony C.; Navratil, James D.; Saba, Mark T.
1987-07-28
Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrenedivinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like.
Muscatello, A.C.; Navratil, J.D.; Saba, M.T.
1985-06-13
Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrene-divinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like. 2 tabs.
NASA Astrophysics Data System (ADS)
Siddiqui, Osamah; Dincer, Ibrahim
2017-12-01
In the present study, a new solar-based multigeneration system integrated with an ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle to produce electricity, hydrogen, cooling and hot water is developed for analysis and performance assessment. In this regard, thermodynamic analyses and modeling through both energy and exergy approaches are employed to assess and evaluate the overall system performance. Various parametric studies are conducted to study the effects of varying system parameters and operating conditions on the energy and exergy efficiencies. The results of this study show that the overall multigeneration system energy efficiency is obtained as 39.1% while the overall system exergy efficiency is calculated as 38.7%, respectively. The performance of this multigeneration system results in an increase of 19.3% in energy efficiency as compared to single generation system. Furthermore, the exergy efficiency of the multigeneration system is 17.8% higher than the single generation system. Moreover, both energy and exergy efficiencies of the solid oxide fuel cell-gas turbine combined cycle are determined as 68.5% and 55.9% respectively.
NASA Astrophysics Data System (ADS)
Y Neira-Guio, A.; Gómez Cuaspud, J. A.; López, E. Vera; Pineda Triana, Y.
2017-12-01
This paper describes the synthesis and characterization of two spinel and olivine-type multicomponent oxides based on LiMO2 and LiM2O4 systems (M=Co and Mn), which represent the current state of the art in the development of cathodes for Li-ion batteries. A simple combustion synthesis process was employed to obtain the nanometric oxides in powder form (crystal sizes around 5-8nm), with a number of improved surface characteristics. The characterization by X-Ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (SEM, TEM) and X-Ray Fluorescence (XRF), allowed to evaluate the morphology and the stoichiometric compositions of solids, obtaining a concordant pure crystalline phase of LiCoO2 and LiMn2O4 oxides identified in a rhombohedral and cubic phase with punctual group R-3m (1 6 6) and Fm-3m (2 2 5) respectively. The electrical characterization of materials developed by impedance spectroscopy solid state, allowed to determine a p-type semiconducting behaviour with conductivity values of 6.2×10-3 and 2.7×10-7 S for LiCoO2 and LiMn2O4 systems, consistent with the state of the art for such materials.
Fabrication and characterization of solid oxide cells for energy conversion and storage
NASA Astrophysics Data System (ADS)
Yang, Chenghao
2011-12-01
There has been an increasing interest in clean and renewable energy generation for highlighted energy and environmental concerns. Solid oxide cells (SOCs) have been considered as one of the promising technologies, since they can be operated efficiently both in electrolysis mode by generating hydrogen through steam electrolysis and fuel cell mode by electrochemically combining fuel with oxidant. The present work is devoted to performing a fundamental study of SOC in both fuel cell mode for power generation and electrolysis mode for fuel production. The research work on SOCs that can be operated reversibly for power generation and fuel production has been conducted in the following six projects: (1) High performance solid oxide electrolysis cell (SOEC) Fabrication of novel structured SOEC oxygen electrode with the conventional and commercial solid oxide fuel cell materials by screen-printing and infiltration fabrication methods. The microstructure, electrochemical properties and durability of SOECs has been investigated. It was found that the LSM infiltrated cell has an area specific resistance (ASR) of 0.20 Ω cm2 at 900°C at open circuit voltage with 50% absolute humidity (AH), which is relatively lower than that of the cell with LSM-YSZ oxygen electrode made by a conventional mixing method. Electrolysis cell with LSM infiltrated oxygen electrode has demonstrated stable performance under electrolysis operation with 0.33 A/cm2 and 50 vol.% AH at 800°C. (2) Advanced performance high temperature micro-tubular solid oxide fuel cell (MT-SOFC) Phase-inversion, dip-coating, high temperature co-sintering process and impregnation method were used to fabricate micro-tubular solid oxide fuel cell. The micro-structure of the micro-tubular fuel cell will be investigated and the power output and thermal robustness has been evaluated. High performance and rapid start-up behavior have been achieved, indicates that the MT-SOFC developed in this work can be a promising technology for portable applications. (3) Promising intermediate temperature micro-tubular solid oxide fuel cells for portable power supply applications Maximum power densities of 0.5, 0.38 and 0.27 W/cm2 have been obtained using H2-15% H2O as fuel at 550, 600 and 650°C, respectively. Quick thermal cycles performed on the intermediate temperature MT-SOFC stability demonstrate that the cell has robust performance stability for portable applications. (4) Micro-tubular solid oxide cell (MT-SOC) for steam electrolysis The electrochemical properties of MT-SOC will be investigated in detail in electrolysis mode. The mechanism of the novel hydrogen electrode structure benefiting the cell performance will be demonstrated systematically. The high electrochemical performance of the MT-SOC in electrolysis mode indicates that MT-SOC can provide an efficient hydrogen generation process. (5) Micro-tubular solid oxide cell (MT-SOC) for steam and CO2 co-electrolysis The MT-SOC will be operated in co-electrolysis mode for steam and CO 2, which will provide an efficient approach to generate syngas (H2+CO) without consuming fossil fuels. This can potentially provide an alternative superior approach for carbon sequestration which has been a critical issue facing the sustainability of our society. (6) Steam and CO2 co-electrolysis using solid oxide cells fabricated by freeze-drying tape-casting Tri-layer scaffolds have been prepared by freeze-drying tape casting process and the electrode catalysts are obtained by infiltrating the porous electrode substrates. Button cells will be tested for co-electrolysis of steam and CO2. The mechanism and efficiency of steam and CO2 co-electrolysis will be systemically investigated. In conclusion, SOCs have been fabricated with conventional materials and evaluated, but their performance has been found to be limited in either SOFC or SOEC mode. The cell performance has been significantly improved by employing an infiltrated LSM-YSZ electrode, due to dramatically decreased polarization resistance. However, mass transport limitation has been observed, particularly in electrolysis mode. By utilizing micro-tubular SOCs with novel hydrogen electrode produced via a phase inversion method, mass transport limitation has been mitigated. Finally, mass transport has been further improved by using cells with electrodes fabricated through a freeze-drying tape-casting method. (Abstract shortened by UMI.)
Carbon in oxides and silicates - Dissolution versus exsolution
NASA Technical Reports Server (NTRS)
Freund, F.
1986-01-01
A theory of CO2 dissolution in the solid state is developed, using the idea proposed by Freund (1983) concerning dissolution of CO/CO2 in MgO on the basis of their experimental results obtained with an MgO-containing carbon impurity. It is shown that the dissolution mechanism may be linked to an internal redox reaction by which a certain number of lattice oxygens change their formal oxidation state from -2 to -1, while the carbon becomes reduced. The similarities between the mechanisms of CO and/or CO2 dissolution and that of H2O dissolution are pointed out. A hypothesis is proposed concerning the exsolution of reduced carbon from supersaturated solid solutions under conditions which permit C-C bond formation.
Test Results From The Idaho National Laboratory Of The NASA Bi-Supported Cell Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
C Stoots; J O'Brien; T Cable
The Idaho National Laboratory has been researching the application of solid-oxide fuel cell technology for large-scale hydrogen production. As a result, the Idaho National Laboratory has been testing various cell designs to characterize electrolytic performance. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This paper presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising designmore » for both high power-to-weight fuel cell and electrolyzer applications.« less
Compositional control of continuously graded anode functional layer
NASA Astrophysics Data System (ADS)
McCoppin, J.; Barney, I.; Mukhopadhyay, S.; Miller, R.; Reitz, T.; Young, D.
2012-10-01
In this work, solid oxide fuel cells (SOFC's) are fabricated with linear-compositionally graded anode functional layers (CGAFL) using a computer-controlled compound aerosol deposition (CCAD) system. Cells with different CGAFL thicknesses (30 um and 50 um) are prepared with a continuous compositionally graded interface deposited between the electrolyte and anode support current collecting regions. The compositional profile was characterized using energy dispersive X-ray spectroscopic mapping. An analytical model of the compound aerosol deposition was developed. The model predicted compositional profiles for both samples that closely matched the measured profiles, suggesting that aerosol-based deposition methods are capable of creating functional gradation on length scales suitable for solid oxide fuel cell structures. The electrochemical performances of the two cells are analyzed using electrochemical impedance spectroscopy (EIS).
Glass/BNNT Composite for Sealing Solid Oxide Fuel Cells
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Hurst, Janet B.; Choi, Sung R.
2007-01-01
A material consisting of a barium calcium aluminosilicate glass reinforced with 4 weight percent of boron nitride nanotubes (BNNTs) has shown promise for use as a sealant in planar solid oxide fuel cells (SOFCs).
Caisso, Marie; Picart, Sébastien; Belin, Renaud C; Lebreton, Florent; Martin, Philippe M; Dardenne, Kathy; Rothe, Jörg; Neuville, Daniel R; Delahaye, Thibaud; Ayral, André
2015-04-14
Transmutation of americium in heterogeneous mode through the use of U1-xAmxO2±δ ceramic pellets, also known as Americium Bearing Blankets (AmBB), has become a major research axis. Nevertheless, in order to consider future large-scale deployment, the processes involved in AmBB fabrication have to minimize fine particle dissemination, due to the presence of americium, which considerably increases the risk of contamination. New synthesis routes avoiding the use of pulverulent precursors are thus currently under development, such as the Calcined Resin Microsphere Pelletization (CRMP) process. It is based on the use of weak-acid resin (WAR) microspheres as precursors, loaded with actinide cations. After two specific calcinations under controlled atmospheres, resin microspheres are converted into oxide microspheres composed of a monophasic U1-xAmxO2±δ phase. Understanding the different mechanisms during thermal conversion, that lead to the release of organic matter and the formation of a solid solution, appear essential. By combining in situ techniques such as XRD and XAS, it has become possible to identify the key temperatures for oxide formation, and the corresponding oxidation states taken by uranium and americium during mineralization. This paper thus presents the first results on the mineralization of (U,Am) loaded resin microspheres into a solid solution, through in situ XAS analysis correlated with HT-XRD.
Zafred, Paolo R [Murrysville, PA; Draper, Robert [Pittsburgh, PA
2012-01-17
A solid oxide fuel cell (400) is made having a tubular, elongated, hollow, active section (445) which has a cross-section containing an air electrode (452) a fuel electrode (454) and solid oxide electrolyte (456) between them, where the fuel cell transitions into at least one inactive section (460) with a flattened parallel sided cross-section (462, 468) each cross-section having channels (472, 474, 476) in them which smoothly communicate with each other at an interface section (458).
Protective interlayer for high temperature solid electrolyte electrochemical cells
Singh, P.; Vasilow, T.R.; Richards, V.L.
1996-05-14
The invention is comprised of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb{sub x}Ta{sub y}Ce{sub 1{minus}x{minus}y}O{sub 2} where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same is also described. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell, characterized by a first electrode; an electrically conductive interlayer of niobium and/or tantalum doped cerium oxide deposited over at least a first portion of the first electrode; an interconnect deposited over the interlayer; a solid electrolyte deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode deposited over the solid electrolyte. The interlayer is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode, an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer is a dense yttria stabilized zirconium oxide, the interconnect layer is a dense, doped lanthanum chromite, and the second electrode, a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy. 5 figs.
Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae
2016-01-12
Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.
Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes
Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae
2014-01-28
Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.
Lei, Li; Ni, Jinren
2014-04-15
A three-dimensional three-phase fluid model, supplemented by laboratory data, was developed to simulate the hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification processes in an oxidation ditch. The model provided detailed phase information on the liquid flow field, gas hold-up distribution and sludge sedimentation. The three-phase model described water-gas, water-sludge and gas-sludge interactions. Activated sludge was taken to be in a pseudo-solid phase, comprising an initially separated solid phase that was transported and later underwent biological reactions with the surrounding liquidmedia. Floc parameters were modified to improve the sludge viscosity, sludge density, oxygen mass transfer rate, and carbon substrate uptake due to adsorption onto the activated sludge. The validation test results were in very satisfactory agreement with laboratory data on the behavior of activated sludge in an oxidation ditch. By coupling species transport and biological process models, reasonable predictions are made of: (1) the biochemical kinetics of dissolved oxygen, chemical oxygen demand (COD) and nitrogen variation, and (2) the physical kinematics of sludge sedimentation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Da Han; Liu, Xuejiao; Zeng, Fanrong; Qian, Jiqin; Wu, Tianzhi; Zhan, Zhongliang
2012-01-01
Tremendous efforts to develop high-efficiency reduced-temperature (≤ 600°C) solid oxide fuel cells are motivated by their potentials for reduced materials cost, less engineering challenge, and better performance durability. A key obstacle to such fuel cells arises from sluggish oxygen reduction reaction kinetics on the cathodes. Here we reported that an oxide hybrid, featuring a nanoporous Sm0.5Sr0.5CoO3−δ (SSC) catalyst coating bonded onto the internal surface of a high-porosity La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) backbone, exhibited superior catalytic activity for oxygen reduction reactions and thereby yielded low interfacial resistances in air, e.g., 0.021 Ω cm2 at 650°C and 0.043 Ω cm2 at 600°C. We further demonstrated that such a micro-nano porous hybrid, adopted as the cathode in a thin LSGM electrolyte fuel cell, produced impressive power densities of 2.02 W cm−2 at 650°C and 1.46 W cm−2 at 600°C when operated on humidified hydrogen fuel and air oxidant. PMID:22708057
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Xu, Wei; Stephens, Elizabeth
Metallic cell interconnects (IC) made of ferritic stainless steels, i.e., iron-based alloys, have been increasingly favored in the recent development of planar solid oxide fuel cells (SOFCs) because of their advantages in excellent imperviousness, low electrical resistance, ease in fabrication, and cost effectiveness. Typical SOFC operating conditions inevitably lead to the formation of oxide scales on the surface of ferritic stainless steel, which could cause delamination, buckling, and spallation resulting from the mismatch of the coefficient of thermal expansion and eventually reduce the lifetime of the interconnect components. Various protective coating techniques have been applied to alleviate these drawbacks. Inmore » the present work, a fracture-mechanics-based quantitative modeling framework has been established to predict the mechanical reliability and lifetime of the spinel-coated, surface-modified specimens under an isothermal cooling cycle. Analytical solutions have been formulated to evaluate the scale/substrate interfacial strength and determine the critical oxide thickness in terms of a variety of design factors, such as coating thickness, material properties, and uncertainties. In conclusion, the findings then are correlated with the experimentally measured oxide scale growth kinetics to quantify the predicted lifetime of the metallic interconnects.« less
Xu, Zhijie; Xu, Wei; Stephens, Elizabeth; ...
2017-07-03
Metallic cell interconnects (IC) made of ferritic stainless steels, i.e., iron-based alloys, have been increasingly favored in the recent development of planar solid oxide fuel cells (SOFCs) because of their advantages in excellent imperviousness, low electrical resistance, ease in fabrication, and cost effectiveness. Typical SOFC operating conditions inevitably lead to the formation of oxide scales on the surface of ferritic stainless steel, which could cause delamination, buckling, and spallation resulting from the mismatch of the coefficient of thermal expansion and eventually reduce the lifetime of the interconnect components. Various protective coating techniques have been applied to alleviate these drawbacks. Inmore » the present work, a fracture-mechanics-based quantitative modeling framework has been established to predict the mechanical reliability and lifetime of the spinel-coated, surface-modified specimens under an isothermal cooling cycle. Analytical solutions have been formulated to evaluate the scale/substrate interfacial strength and determine the critical oxide thickness in terms of a variety of design factors, such as coating thickness, material properties, and uncertainties. In conclusion, the findings then are correlated with the experimentally measured oxide scale growth kinetics to quantify the predicted lifetime of the metallic interconnects.« less
NASA Technical Reports Server (NTRS)
Phillips, W. M. (Inventor)
1978-01-01
High temperature oxidation resistance, high hardness and high abrasion and wear resistance are properties of cermet compositions particularly to provide high temperature resistant refractory coatings on metal substrates, for use as electrical insulation seals for thermionic converters. The compositions comprise a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride are also described.
NASA Astrophysics Data System (ADS)
Sauvet, A.-L.; Fouletier, J.
The recent trend in solid oxide fuel cell concerns the use of natural gas as fuel. Steam reforming of methane is a well-established process for producing hydrogen directly at the anode side. In order to develop new anode materials, the catalytic activities of several oxides for the steam reforming of methane were characterized by gas chromatography. We studied the catalytic activity as a function of steam/carbon ratios r. The methane and the steam content were varied between 5 and 30% and between 1.5 and 3.5%, respectively, corresponding to r-values between 0.07 and 0.7. Catalyst (ruthenium and vanadium)-doped lanthanum chromites substituted with strontium, gadolinium-doped ceria (Ce 0.9Gd 0.1O 2) referred as to CeGdO 2, praseodymium oxide, molybdenum oxide and copper oxide were tested. The working temperature was fixed at 850°C, except for 5% ruthenium-doped La 1- xSr xCrO 3 where the temperature was varied between 700 and 850°C. Two types of behavior were observed as a function of the activity of the catalyst. The higher steam reforming efficiency was observed with 5% of ruthenium above 750°C.
Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica
NASA Astrophysics Data System (ADS)
Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa
2017-06-01
Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.
Yabuuchi, Naoaki; Takeuchi, Mitsue; Nakayama, Masanobu; Shiiba, Hiromasa; Ogawa, Masahiro; Nakayama, Keisuke; Ohta, Toshiaki; Endo, Daisuke; Ozaki, Tetsuya; Inamasu, Tokuo; Sato, Kei; Komaba, Shinichi
2015-06-23
Rechargeable lithium batteries have rapidly risen to prominence as fundamental devices for green and sustainable energy development. Lithium batteries are now used as power sources for electric vehicles. However, materials innovations are still needed to satisfy the growing demand for increasing energy density of lithium batteries. In the past decade, lithium-excess compounds, Li2MeO3 (Me = Mn(4+), Ru(4+), etc.), have been extensively studied as high-capacity positive electrode materials. Although the origin as the high reversible capacity has been a debatable subject for a long time, recently it has been confirmed that charge compensation is partly achieved by solid-state redox of nonmetal anions (i.e., oxide ions), coupled with solid-state redox of transition metals, which is the basic theory used for classic lithium insertion materials, such as LiMeO2 (Me = Co(3+), Ni(3+), etc.). Herein, as a compound with further excess lithium contents, a cation-ordered rocksalt phase with lithium and pentavalent niobium ions, Li3NbO4, is first examined as the host structure of a new series of high-capacity positive electrode materials for rechargeable lithium batteries. Approximately 300 mAh ⋅ g(-1) of high-reversible capacity at 50 °C is experimentally observed, which partly originates from charge compensation by solid-state redox of oxide ions. It is proposed that such a charge compensation process by oxide ions is effectively stabilized by the presence of electrochemically inactive niobium ions. These results will contribute to the development of a new class of high-capacity electrode materials, potentially with further lithium enrichment (and fewer transition metals) in the close-packed framework structure with oxide ions.
Development of Ceramic Solid-State Laser Host Material
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra
2009-01-01
Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.
Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode
NASA Astrophysics Data System (ADS)
Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.
2015-09-01
Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.
Proceedings of the Fuel Cells `97 Review Meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Federal Energy Technology Center (FETC) sponsored the Fuel Cells '97 Review Meeting on August 26-28, 1997, in Morgantown, West Virginia. The purpose of the meeting was to provide an annual forum for the exchange of ideas and discussion of results and plans related to the research on fuel cell power systems. The total of almost 250 conference participants included engineers and scientists representing utilities, academia, and government from the U.S. and eleven other countries: Canada, China, India, Iran, Italy, Japan, Korea, Netherlands, Russia, Taiwan, and the United Kingdom. On first day, the conference covered the perspectives of sponsors andmore » end users, and the progress reports of fuel-cell developers. Papers covered phosphoric, carbonate, and solid oxide fuel cells for stationary power applications. On the second day, the conference covered advanced research in solid oxide and other fuel cell developments. On the third day, the conference sponsored a workshop on advanced research and technology development. A panel presentation was given on fuel cell opportunities. Breakout sessions with group discussions followed this with fuel cell developers, gas turbine vendors, and consultants.« less
NASA Astrophysics Data System (ADS)
Coralli, Alberto; Villela de Miranda, Hugo; Espiúca Monteiro, Carlos Felipe; Resende da Silva, José Francisco; Valadão de Miranda, Paulo Emílio
2014-12-01
Solid oxide fuel cells are globally recognized as a very promising technology in the area of highly efficient electricity generation with a low environmental impact. This technology can be advantageously implemented in many situations in Brazil and it is well suited to the use of ethanol as a primary energy source, an important feature given the highly developed Brazilian ethanol industry. In this perspective, a simplified mathematical model is developed for a fuel cell and its balance of plant, in order to identify the optimal system structure and the most convenient values for the operational parameters, with the aim of maximizing the global electric efficiency. In this way it is discovered the best operational configuration for the desired application, which is the distributed generation in the concession area of the electricity distribution company Elektro. The data regarding this configuration are required for the continuation of the research project, i.e. the development of a prototype, a cost analysis of the developed system and a detailed perspective of the market opportunities in Brazil.
Propellant development for the Advanced Solid Rocket Motor
NASA Technical Reports Server (NTRS)
Landers, L. C.; Stanley, C. B.; Ricks, D. W.
1991-01-01
The properties of a propellant developed for the NASA Advanced Solid Rocket Motor (ASRM) are described in terms of its composition, performance, and compliance to NASA specifications. The class 1.3 HTPB/AP/A1 propellant employs an ester plasticizer and the content of ballistic solids is set at 88 percent. Ammonia evolution is prevented by the utilization of a neutral bonding agent which allows continuous mixing. The propellant also comprises a bimodal AP blend with one ground fraction, ground AP of at least 20 microns, and ferric oxide to control the burning rate. The propellant's characteristics are discussed in terms of tradeoffs in AP particle size and the types of Al powder, bonding agent, and HTPB polymer. The size and shape of the ballistic solids affect the processability, ballistic properties, and structural properties of the propellant. The revised baseline composition is based on maximizing the robustness of in-process viscosity, structural integrity, and burning-rate tailoring range.
NASA Astrophysics Data System (ADS)
Wang, Gaojun; Chen, Linfeng; Mathur, Gyanesh N.; Varadan, Vijay K.
2011-04-01
Improving soldier portable power systems is very important for saving soldiers' lives and having a strategic advantage in a war. This paper reports our work on synthesizing lithium vanadium oxides (Li1+xV3O8) and developing their applications as the cathode (positive) materials in lithium-ion batteries for soldier portable power systems. Two synthesizing methods, solid-state reaction method and sol-gel method, are used in synthesizing lithium vanadium oxides, and the chemical reaction conditions are determined mainly based on thermogravimetric and differential thermogravimetric (TG-DTG) analysis. The synthesized lithium vanadium oxides are used as the active positive materials in the cathodes of prototype lithium-ion batteries. By using the new solid-state reaction technique proposed in this paper, lithium vanadium oxides can be synthesized at a lower temperature and in a shorter time, and the synthesized lithium vanadium oxide powders exhibit good crystal structures and good electrochemical properties. In the sol-gel method, different lithium source materials are used, and it is found that lithium nitrate (LiNO3) is better than lithium carbonate (Li2CO3) and lithium hydroxide (LiOH). The lithium vanadium oxides synthesized in this work have high specific charge and discharge capacities, which are helpful for reducing the sizes and weights, or increasing the power capacities, of soldier portable power systems.
Development of Carbon and Sulphur Tolerant Anodes of Solid Oxide Fuel Cells
2010-01-14
LSCM/YSZ) composite anode is investigated in detail for the direct utilization of ethanol and methane (the main component of natural gas) in SOFCs...Impregnation of Pd nanoparticles significantly promotes the electrocatalytic activity of LSCM/YSZ composite anodes for the ethanol and methane... electrooxidation reaction. At 800°C, the electrode polarization resistance for the methane oxidation is reduced by a factor of 3 after impregnation of 0.10
Removal of sulfur and nitrogen containing pollutants from discharge gases
Joubert, James I.
1986-01-01
Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.
Stability of solid oxide fuel cell materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, T.R.; Bates, J.L.; Chick, L.A.
1996-04-01
Interconnection materials in a solid oxide fuel cell are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. The thermal expansion characteristics of substituted lanthanum and yttrium chromite interconnect materials were evaluated by dilatometry as a function of oxygen partial pressures from 1 atm to 10{sup -18} atm, controlled using a carbon dioxide/hydrogen buffer.
NASA Astrophysics Data System (ADS)
Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan
The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid Alkali Metal Salts in Polyethylene Oxide * Redox Behavior of Alkyl Viologens in Ion Conductive Polymer Solid * Ionic Conductivity of Interpenetrating Polymer Networks Containing LiClO4 * Electrochemical Behaviors of Porphyrins Incorporated into Solid Polymer Electrolytes * Lithium Ion Conducting Polymer Electrolytes * Electrochemical Synthesis of Polyaniline Thin Film * Electrochemical Aspect of Polyaniline Electrode in Aqueous Electrolyte * Mixed Cation Effect in Epoxy Resin - PEO-IPN Containing Perchlorate Salts * Conductivity, Raman and IR Studies on the Doped PEO-PPG Polymer Blends * Proton Conducting Polymeric Electrolytes from Poly (Ethyleneoxide) System * Surface Structure of Polymer Solid Ionic Conductors Based on Segmented Polyether Polyurethaneureas * Study on Addition Products of LiI and Diethylene Glycol etc. * Solid State Rechargeable Battery Using Paper Form Copper Ion Conductive Solid Electrolyte * Characterization of Electrode/Electrolyte Interfaces in Battery Li/PVAC-Li-Mont./Li1+xV3O8 by AC Impedance Method * Investigation on Reversibility of Vanadium Oxide Cathode Materials in Solid-State Battery * Preparation and Characterization of Silver Boromolybdate Solid State Batteries * The Electric Properties of the Trinary Cathode Material and its Application in Magnisium Solid State Cell * Electrical Properties and Phase Relation of Na2Mo0.1S0.9O4 Doped with Rare Earth Sulfate * New Electrochemical Probe for Rapid Determination of Silicon Concentration in Hot Metals * A New Theoretical EMF Expression for SOx(x = 2, 3) Sensors Based on Na2SO4 Solid Electrolyte * Evaluation of the Electrochemical SOx(x = 2, 3) Sensor with a Tubular Nasicon Electrolyte * The Response Time of a Modified Oxygen Sensor Using Zirconia Electrolyte * Preparation, Characteristics and Sintering Behavior of MgO-PSZ Powder * Reaction between La0.9MnO3 and Yttria Doped Zirconia * Development of the Extended-Life Oxygen Sensor of Caβ''-Al2O3 * Caβ''-Al2O3 Ultra-Low Oxygen Sensor * Measurement of Sulfur Concentration with Zirconia-Based Electrolyte Cell in Molten Iron * Influence of SO2 on the Conductivity of Calcia Stabilized Zirconia * Reactions between YSZ and La1-xCaxMnO3 as a Cathode for SOFC * Preparation and Electrical Properties of Lithium β''-Alumina * Influence of Lithia Content on Properties of β''-Alumina Ceramics * Electrical Conductivity of Solid Solutions of Na2SO4 with Na2SeO4 * Effect of Antagonist XO42- = MoO42- and WO42- Ion Substitution on the Electrical Conductivity of Li2SO4 : Li2CO3 Eutectic System * Study on the Electrical Properties and Structure of Multicrystal Materials Li5+xGe1-xCrxV3O12 * Preliminary Study on Synthesis of Silver Zirconium Silicophosphates by Sol - Gel Process * Sodium Ion Conduction in Iron(III) Exchanged Y Zeolite * Electrical Properties of V5O9+x (x = 0, 1) and CuxV5O9.1 * Electrical Properties of the Tetragonal ZrO2 Stabilized with CeO2, CeO2 + Gd2O3 * Study of Preparation and Ionic Conduction of Doped Barium Cerate Perovskite * Preparing Fine Alumina Powder by Homogeneous Precipitation Method for Fabricating β''-Al2O3 * Amorphous Lithium Ion Conductors in Li2S-SiS2-LiBO2 System * Mixed Alkali Effect of Glass Super Ionic Conductors * Electrical Property and Phase Separation, Crystallization Behavior of A Cu+-Conducting Glass * Investigation of Phase Separation and Crystallization for 0.4CuI-0.3 Cu2O-0.3P2O5 Glass by SEM and XRD * Study on the Lithium Solid Electrolytes of Li3N-LiX(X = F, Cl, Br, I)-B2O3 Ternary Systems * Synthesis and Characterization of the Li2O : P2O5 : WO3 Glasses * The Electrochromic Properties of Electrodeposited Ni-O Films in Nonaqueous Electrolytes * All Solid-State WO3-MnO2 Based Electrochromic Window * Electrochromism in Nickel Oxide Films * E S R of X-Irradiated Melt Quenched Li2SO4 * Mixed-Alkali Effect in the Li2O-Na2O-TeO2 Glass System * Electrical and Thermal Studies on Silver Tellurite Glasses * Late Entries (Invited Papers) * Proton Conducting Polymers * Light Scattering Studies on Superionic Conductor YSZ * Development of Thin Film Surface Modified Solid State Electrochemical Gas Sensors * Author Index * List of Participants
Monoclinic Sr(1-x)Na(x)SiO(3-0.5x): new superior oxide ion electrolytes.
Singh, Preetam; Goodenough, John B
2013-07-10
Oxide ion electrolytes determine the temperature of operation of solid oxide fuel cells, oxygen separation membranes, and oxygen sensors. There is a strong incentive to lower their operating temperatures, in a solid oxide fuel cell, for example, from Top > 800 °C to Top ≈ 500 °C. The use of low-cost Na(+) rather than K(+) as the dopant in monoclinic SrSiO3 (C12/C1) is shown to provide a larger solid solution range (0 < x ≤ 0.45) in Sr1-xNaxSiO3-0.5x and to achieve an oxide ion conductivity σo ≥ 10(-2) S·cm(-1) by 525 °C as a result of lowering the temperature of a smooth transition to full disorder of the mobile oxide ions. The Sr1-xNaxSiO3-0.5x electrolytes are much less hygroscopic than Sr1-xKxSiO3-0.5x and are stable with a nickel composite anode in 5% H2/Ar as well as with cathodes such as La1-xSrxMnO3-δ and Sr0.7Y0.3CoO3-δ in air, which makes them candidate electrolytes for intermediate-temperature solid oxide fuel cells or for other applications of oxide ion electrolytes.
Solid oxide fuel cells with bi-layered electrolyte structure
NASA Astrophysics Data System (ADS)
Zhang, Xinge; Robertson, Mark; Decès-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave
In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 μm SSZ and 4 μm SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm -2 at 650 °C and 0.85 W cm -2 at 700 °C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (R el) and electrode polarization resistance (R p,a+c) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O 2- x during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the R el value (0.32 Ω cm 2) at 650 °C, which is almost one order of magnitude higher than the calculated value.
Surface chemistry of carbon dioxide revisited
NASA Astrophysics Data System (ADS)
Taifan, William; Boily, Jean-François; Baltrusaitis, Jonas
2016-12-01
This review discusses modern developments in CO2 surface chemistry by focusing on the work published since the original review by H.J. Freund and M.W. Roberts two decades ago (Surface Science Reports 25 (1996) 225-273). It includes relevant fundamentals pertaining to the topics covered in that earlier review, such as conventional metal and metal oxide surfaces and CO2 interactions thereon. While UHV spectroscopy has routinely been applied for CO2 gas-solid interface analysis, the present work goes further by describing surface-CO2 interactions under elevated CO2 pressure on non-oxide surfaces, such as zeolites, sulfides, carbides and nitrides. Furthermore, it describes additional salient in situ techniques relevant to the resolution of the interfacial chemistry of CO2, notably infrared spectroscopy and state-of-the-art theoretical methods, currently used in the resolution of solid and soluble carbonate species in liquid-water vapor, liquid-solid and liquid-liquid interfaces. These techniques are directly relevant to fundamental, natural and technological settings, such as heterogeneous and environmental catalysis and CO2 sequestration.
Ward, W Kenneth; Slobodzian, Emily P; Tiekotter, Kenneth L; Wood, Michael D
2002-11-01
We addressed the effect of implant thickness, implant porosity, and polyurethane (PU) chemistry on angiogenesis and on the foreign body response in rats. The following materials were implanted subcutaneously for 7 weeks then excised for histologic analysis: a solid PU; a solid polyurethane with silicone and polyethylene oxide (PU-S-PEO); porous expanded polytetrafluoroethylene (ePTFE); and porous polyvinyl alcohol sponge (PVA). Two thicknesses of PU-S-PEO were compared: 300 microns (thin) and 2000 microns (thick). Foreign body capsule (FBC) thickness was much less in PU-S-PEO implants than in PU implants. In addition, FBC were thinner in thin implants than in thick implants. FBC was much more dense in solid implants than in porous implants. As compared with solid implants, porous implants (PVA and ePTFE) led to a marked increase in the number of microvessels that developed adjacent to the implant, as observed both with hematoxylin/eosin staining and with an immunohistochemical anti-endothelial stain. We conclude that the polyethylene oxide and silicone moieties in PU reduce the thickness of the subsequent FBC. In addition, thin implants lead to a thin FBC. Porous implants (PVA and ePTFE) cause more angiogenesis than solid implants. These results may have implications for the measurement of blood-derived analytes by biosensors.
Solid oxide MEMS-based fuel cells
Jankowksi, Alan F.; Morse, Jeffrey D.
2007-03-13
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
Laser surface treatment of porous ceramic substrate for application in solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Mahmod, D. S. A.; Khan, A. A.; Munot, M. A.; Glandut, N.; Labbe, J. C.
2016-08-01
Laser has offered a large number of benefits for surface treatment of ceramics due to possibility of localized heating, very high heating/cooling rates and possibility of growth of structural configurations only produced under non-equilibrium high temperature conditions. The present work investigates oxidation of porous ZrB2-SiC sintered ceramic substrates through treatment by a 1072 ± 10 nm ytterbium fiber laser. A multi-layer structure is hence produced showing successively oxygen rich distinct layers. The porous bulk beneath these layers remained unaffected as this laser-formed oxide scale and protected the substrate from oxidation. A glassy SiO2 structure thus obtained on the surface of the substrate becomes subject of interest for further research, specifically for its utilization as solid protonic conductor in Solid Oxide Fuel Cells (SOFCs).
A study on production of biodiesel using a novel solid oxide catalyst derived from waste.
Majhi, Samrat; Ray, Srimanta
2016-05-01
The issues of energy security, dwindling supply and inflating price of fossil fuel have shifted the global focus towards fuel of renewable origin. Biodiesel, having renewable origin, has exhibited great potential as substitute for fossil fuels. The most common route of biodiesel production is through transesterification of vegetable oil in presence of homogeneous acid or base or solid oxide catalyst. But, the economics of biodiesel is not competitive with respect to fossil fuel due to high cost of production. The vegetable oil waste is a potential alternative for biodiesel production, particularly when disposal of used vegetable oil has been restricted in several countries. The present study evaluates the efficacy of a low-cost solid oxide catalyst derived from eggshell (a food waste) in transesterification of vegetable oil and simulated waste vegetable oil (SWVO). The impact of thermal treatment of vegetable oil (to simulate frying operation) on transesterification using eggshell-derived solid oxide catalyst (ESSO catalyst) was also evaluated along with the effect of varying reaction parameters. The study reported that around 90 % biodiesel yield was obtained with vegetable oil at methanol/oil molar ratio of 18:1 in 3 h reaction time using 10 % ESSO catalyst. The biodiesel produced with ESSO catalyst from SWVO, thermally treated at 150 °C for 24 h, was found to conform with the biodiesel standard, but the yield was 5 % lower compared to that of the untreated oil. The utilization of waste vegetable oil along with waste eggshell as catalyst is significant for improving the overall economics of the biodiesel in the current market. The utilization of waste for societal benefit with the essence of sustainable development is the novelty of this work.
Three-phase boundary length in solid-oxide fuel cells: A mathematical model
NASA Astrophysics Data System (ADS)
Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf
A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.
NASA Astrophysics Data System (ADS)
Liu, Chengsong; Yang, Shufeng; Li, Jingshe; Ni, Hongwei; Zhang, Xueliang
2017-04-01
The aim of this study was to control the physicochemical characteristics of inclusions in steel through appropriate heat treatment. Using a confocal scanning laser microscope (CSLM) and pipe furnace, the solid-state reactions between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide during heat treatment at 1473 K (1200 °C) and the influence of these reactions on the compositions of and phases in the alloy and oxide were investigated by the diffusion couple method. Suitable pretreatment of the oxide using a CSLM and production of the diffusion couple of Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide gave good contact between the alloy and oxide. The diffusion couple was then sealed in a quartz tube with a piece of Ti foil to lower oxygen partial pressure and a block of Fe-Al-Ca alloy was introduced to conduct heat treatment experiments. Solid-state reactions between the alloy and oxide during heat treatment at 1473 K (1200 °C) were analyzed and discussed. A dynamic model to calculate the width of the particle precipitation zone based on the Wagner model of internal oxidation of metal was proposed. This model was helpful to understand the solid-state reaction mechanism between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide.
2008-12-01
respectively. 2.3.1.2 Brushless DC Motor Brushless direct current ( BLDC ) motors feature high efficiency, ease of control , and astonishingly high power...modeling purposes, we ignore the modeling complexity of the BLDC controller and treat the motor and controller “as commutated”, i.e. we assume the...High Performance, High Power Density Solid Oxide Fuel Cells− Materials and Load Control Stephen W. Sofie, Steven R. Shaw, Peter A. Lindahl, and Lee H
Regeneration of sulfated metal oxides and carbonates
Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.
1978-03-28
Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.
Xu, Zhiyuan; Shi, Jingjing; Haroone, Muhammad Sohail; Chen, Wenpeng; Zheng, Shufang; Lu, Jun
2018-04-01
Due to the superiority of metal-doped ZnO compared to TiO 2 , the Zn-M (M = Al 3+ , Ga 3+ , Cr 3+ , Ti 4+ , Ce 4+ ) mixed metal oxide solid solutions have been extensively studied for photocatalytic and photovoltaic applications. In this work, a systematic research has proceeded for the preparation of a zinc-aluminum oxide semiconductor as a photoanode for the dye-sensitized solar cells (DSSCs) by a simple pyrolysis route with the Zn-Al layered double hydroxide (LDH) as a precursor. The Zn-Al oxide solid solution has been applied for DSSCs as an electron acceptor, which is used to study the influence of different Al content and sintering temperature on the device efficiency. Finally, the Zn-Al oxide solid solution with calcination temperature 600 °C and Al 27 at.% content exhibits the best performance. The photoelectric efficiency improved 100 times when the Al 3+ content decreased from 44 to 27 at.%. The Zn x Al y O solid solution show a reasonable efficiency as photoanode materials in DSSCs, with the best preliminary performance reported so far, and shows its potential application for the photovoltaic devices. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nielsen, Jimmi; Persson, Åsa H.; Sudireddy, Bhaskar R.; Irvine, John T. S.; Thydén, Karl
2017-12-01
For improved robustness, durability and to avoid severe processing challenges alternatives to the Ni:YSZ composite electrode is highly desirable. The Ni:YSZ composite electrode is conventionally used for solid oxide fuel cell and solid oxide electrolysis cell. In the present study we report on high performing nanostructured Ni:CGO electrocatalyst coated A site deficient Lanthanum doped Strontium Titanate (La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3) based anodes. The anodes were incorporated into the co-sintered DTU metal supported solid oxide fuel cell design and large sized 12 cm × 12 cm cells were fabricated. The titanate material showed good processing characteristics and surface wetting properties towards the Ni:CGO electrocatalyst coating. The cell performances were evaluated on single cell level (active area 16 cm2) and a power density at 0.7 V and 700 °C of 0.650 Wcm-2 with a fuel utilization of 31% was achieved. Taking the temperature into account the performances of the studied anodes are among the best reported for redox stable and corrosion resistant alternatives to the conventional Ni:YSZ composite solid oxide cell electrode.
Jet fuel based high pressure solid oxide fuel cell system
NASA Technical Reports Server (NTRS)
Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)
2013-01-01
A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.
Jet Fuel Based High Pressure Solid Oxide Fuel Cell System
NASA Technical Reports Server (NTRS)
Srinivasan, Hari (Inventor); Hardin, Larry (Inventor); Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Dasgupta, Arindam (Inventor); Bayt, Robert (Inventor)
2015-01-01
A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.
Alternative synthetic approaches for metal-organic frameworks: transformation from solid matters.
Zhan, Guowu; Zeng, Hua Chun
2016-12-20
Developing economic and sustainable synthetic strategies for metal-organic frameworks (MOFs) is imperative for promoting MOF materials into large scale industrial use. Very recently, an alternative strategy for MOF synthesis by using solvent-insoluble "solid matters" as cation reservoirs and/or templates has been developed to accomplish this goal, in which the solid matters often refer to metals, metal oxides, hydroxides, carbonates, and so forth, but excluding the soluble metal salts which have been prevailingly used in MOF synthesis. Although most of the pioneering activities in this field have just started in the past 5 years, remarkable achievements have been made covering the synthesis, functionalization, positioning, and applications. A great number of MOFs in powder form, thin-films, or membranes, have been prepared through such solid-to-MOF transformations. This field is rapidly developing and expanding, and the number of related scientific publications has strikingly increased over the last few years. The aim of this review is to summarise the latest developments, highlight the present state-of-the-art, and also provide an overview for future research directions.
Method for producing metal oxide nanoparticles
Phillips, Jonathan [Santa Fe, NM; Mendoza, Daniel [Santa Fe, NM; Chen, Chun-Ku [Albuquerque, NM
2008-04-15
Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.
Adams, Marisa; Richmond, Victoria; Smith, Douglas; ...
2017-03-24
Here, in order to design more effective solid polymer electrolytes, it is important to decouple ion conductivityfrom polymer segmental motion. To that end, novel polymers based on oxanorbornene dicarboximidemonomers with varying lengths of oligomeric ethylene oxide side chains have been synthesized usingring opening metathesis polymerization. These unique polymers have a fairly rigid and bulky backboneand were used to investigate the decoupling of ion motion from polymer segmental dynamics. Ionconductivity was measured using broadband dielectric spectroscopy for varying levels of added lithiumsalt. The conductivity data demonstrate six to seven orders of separation in timescale of ion conductivityfrom polymer segmental motion formore » polymers with shorter ethylene oxide side chains. However,commensurate changes in the glass transition temperatures T g reduce the effect of decoupling in ionconductivity and lead to lower conductivity at ambient conditions. These results suggest that both anincrease in decoupling and a reduction in T g might be required to develop solid polymer electrolytes withhigh ion conductivity at room temperature.« less
Brazing of Stainless Steels to Yttria Stabilized Zirconia (YSZ) for Solid Oxide Fuel Cells
NASA Technical Reports Server (NTRS)
Shpargel, Tarah P.; Needham, Robert J.; Singh, M.; Kung, Steven C.
2005-01-01
Recently, there has been a great deal of interest in research, development, and commercialization of solid oxide fuel cells. Joining and sealing are critical issues that will need to be addressed before SOFC's can truly perform as expected. Ceramics and metals can be difficult to join together, especially when the joint must withstand up to 900 C operating temperature of the SOFC's. The goal of the present study is to find the most suitable braze material for joining of yttria stabilized zirconia (YSZ) to stainless steels. A number of commercially available braze materials TiCuSil, TiCuNi, Copper-ABA, Gold-ABA, and Gold-ABA-V have been evaluated. The oxidation behavior of the braze materials and steel substrates in air was also examined through thermogravimetric analysis. The microstructure and composition of the brazed regions have been examined by optical and scanning electron microscopy and EDS analysis. Effect of braze composition and processing conditions on the interfacial microstructure and composition of the joint regions will be presented.
Modelling of directional solidification of BSO
NASA Astrophysics Data System (ADS)
Lin, Chenting; Motakef, Shahryar
1993-03-01
A thermo-fluid model for vertical Bridgman growth of bismuth silicon oxide (BSO) as model material for semi-transparent, low thermal conductivity oxides is developed. Internal radiative heat transfer, together with convective and conductive heat transfer are considered in this model. Due to the strong internal thermal radiation within the grown crystal, the growth interface is highly convex into the melt, instead of being concave as is the case for opaque materials with the thermal conductivity of the melt larger than that of the solid. Reduction of the growth interface non-planarity through variations in the growth configuration is investigated. A furnace temperature profile consisting of a steep gradient on the melt side and shallow gradient on the solid side of the charge is found to be the most effective approach.
Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell
Wei, Tao; Huang, Yun-Hui; Zeng, Rui; Yuan, Li-Xia; Hu, Xian-Luo; Zhang, Wu-Xing; Jiang, Long; Yang, Jun-You; Zhang, Zhao-Liang
2013-01-01
A cobalt-based thermoelectric compound Ca3Co2O6 (CCO) has been developed as new cathode material with superior performance for intermediate-temperature (IT) solid-oxide fuel cell (SOFC). Systematic evaluation has been carried out. Measurement of thermal expansion coefficient (TEC), thermal-stress (σ) and interfacial shearing stress (τ) with the electrolyte show that CCO matches well with several commonly-used IT electrolytes. Maximum power density as high as 1.47 W cm−2 is attained at 800°C, and an additional thermoelectric voltage of 11.7 mV is detected. The superior electrochemical performance, thermoelectric effect, and comparable thermal and mechanical behaviors with the electrolytes make CCO to be a promising cathode material for SOFC. PMID:23350032
Barnett, Scott A.; Lai, Tammy; Liu, Jiang
2010-05-04
The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.
NASA Astrophysics Data System (ADS)
Isaacs, H. S.
Progress in the development of functioning solid electrolyte fuel cells is summarized. The solid electrolyte cells perform at 1000 C, a temperature elevated enough to indicate high efficiencies are available, especially if the cell is combined with a steam generator/turbine system. The system is noted to be sulfur tolerant, so coal containing significant amounts of sulfur is expected to yield satisfactory performances with low parasitic losses for gasification and purification. Solid oxide systems are electrically reversible, and are usable in both fuel cell and electrolysis modes. Employing zirconium and yttrium in the electrolyte provides component stability with time, a feature not present with other fuel cells. The chemical reactions producing the cell current are reviewed, along with materials choices for the cathodes, anodes, and interconnections.
Doerr, Nora A; Ptacek, Carol J; Blowes, David W
2005-06-01
The Nickel Rim aquifer has been impacted for five decades by a metal-rich plume generated from the Nickel Rim mine tailings impoundment. Metals released by the oxidation of pyrrhotite in the unsaturated zone of the tailings migrate into the downgradient aquifer, affecting both the groundwater and the aquifer solids. A reactive barrier has been installed in the aquifer to remove sulfate and metals from the groundwater. The effect of the reactive barrier on metal concentrations in the aquifer solids has not previously been studied. In this study, a series of selective extraction procedures was applied to cores of aquifer sediment, to ascertain the distribution of metals among various solid phases present in the aquifer. Extraction results were combined with groundwater chemistry, geochemical modelling and solid-phase microanalyses, to assess the potential mobility of metals under changing geochemical conditions. Reactions within the reactive barrier caused an increase in the solid-phase carbonate content downgradient from the barrier. The concentrations of poorly crystalline, oxidized phases of Mn and Fe, as well as concentrations of Cr(III) associated with oxidized Fe, and poorly crystalline Zn, are lower downgradient from the barrier, whereas total solid-phase metal concentrations remain constant. Iron and Mn accumulate as oxidized, easily extractable forms in a peat layer overlying the aquifer. Although these oxides may buffer reducing plumes, they also have the potential to release metals to the groundwater, should a reduced condition be imposed on the aquifer by remedial actions.
Air feed tube support system for a solid oxide fuel cell generator
Doshi, Vinod B.; Ruka, Roswell J.; Hager, Charles A.
2002-01-01
A solid oxide fuel cell generator (12), containing tubular fuel cells (36) with interior air electrodes (18), where a supporting member (82) containing a plurality of holes (26) supports oxidant feed tubes (51), which pass from an oxidant plenum (52") into the center of the fuel cells, through the holes (26) in the supporting member (82), where a compliant gasket (86) around the top of the oxidant feed tubes and on top (28) of the supporting member (82) helps support the oxidant feed tubes and center them within the fuel cells, and loosen the tolerance for centering the air feed tubes.
Zhang, G.; Dong, H.; Jiang, H.; Kukkadapu, R.K.; Kim, J.; Eberl, D.; Xu, Z.
2009-01-01
Iron-reducing and oxidizing microorganisms gain energy through reduction or oxidation of iron, and by doing so play an important role in the geochemical cycling of iron. This study was undertaken to investigate mineral transformations associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. A fluid sample from the 2450 m depth of the Chinese Continental Scientific Drilling project was collected, and Fe3+-reducing and Fe2+-oxidizing microorganisms were enriched. The enrichment cultures displayed reduction of Fe3+ in nontronite and ferric citrate, and oxidation of Fe2+ in vivianite, siderite, and monosulfide (FeS). Additional experiments verified that the iron reduction and oxidation was biological. Oxidation of FeS resulted in the formation of goethite, lepidocrocite, and ferrihydrite as products. Although our molecular microbiological analyses detected Thermoan-aerobacter ethanolicus as a predominant organism in the enrichment culture, Fe3+ reduction and Fe2+ oxidation may be accomplished by a consortia of organisms. Our results have important environmental and ecological implications for iron redox cycling in solid minerals in natural environments, where iron mineral transformations may be related to the mobility and solubility of inorganic and organic contaminants.
Novel carbon-ion fuel cells. Quarterly technical report, April--June 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocks, F.H.
1996-11-01
This report presents research to develop a new type of of fuel cell using a solid electrolyte that transports carbon ions. This new class of fuel cell would use solid C dissolved in molten metal (carbide) as a fuel reservoir and anode; thus expensive gas or liquid fuel would not be required. Thermodynamic efficiency of carbon-ion fuel cells is reviewed, as are electrolyte crystal structures (oxide and fluorite carbides). The sequence of laboratory research procedures for developing a solid C-ion electrolyte and to determine the ionic conductivity of C ions therein is outlined; results of the laboratory research to datemore » are summarized, including XRD analysis of crystal structures and transition temperatures of carbides (La, Ce, Be, Al) and SIMS of carbon isotopes.« less
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.
2002-01-01
Lithium-based polymer batteries for aerospace applications need the ability to operate in temperatures ranging from -70 to 70 C. Current state-of-the-art solid polymer electrolytes (based on amorphous polyethylene oxide, PEO) have acceptable ionic conductivities (10-4 to 10-3 S/cm) only above 60 C. Higher conductivity can be achieved in the current systems by adding solvent or plasticizers to the solid polymer to improve ion transport. However, this can compromise the dimensional and thermal stability of the electrolyte, as well as compatibility with electrode materials. One of NASA Glenn Research Center's objectives in the PERS program is to develop new electrolytes having unique molecular architectures and/or novel ion transport mechanisms, leading to good ionic conductivity at room temperature and below without solvents or plasticizers.
Pennycook, Timothy J; Jones, Lewys; Pettersson, Henrik; Coelho, João; Canavan, Megan; Mendoza-Sanchez, Beatriz; Nicolosi, Valeria; Nellist, Peter D
2014-12-22
Dynamic processes, such as solid-state chemical reactions and phase changes, are ubiquitous in materials science, and developing a capability to observe the mechanisms of such processes on the atomic scale can offer new insights across a wide range of materials systems. Aberration correction in scanning transmission electron microscopy (STEM) has enabled atomic resolution imaging at significantly reduced beam energies and electron doses. It has also made possible the quantitative determination of the composition and occupancy of atomic columns using the atomic number (Z)-contrast annular dark-field (ADF) imaging available in STEM. Here we combine these benefits to record the motions and quantitative changes in the occupancy of individual atomic columns during a solid-state chemical reaction in manganese oxides. These oxides are of great interest for energy-storage applications such as for electrode materials in pseudocapacitors. We employ rapid scanning in STEM to both drive and directly observe the atomic scale dynamics behind the transformation of Mn3O4 into MnO. The results demonstrate we now have the experimental capability to understand the complex atomic mechanisms involved in phase changes and solid state chemical reactions.
Sterren, Vanesa B; Aiassa, Virginia; Garnero, Claudia; Linck, Yamila Garro; Chattah, Ana K; Monti, Gustavo A; Longhi, Marcela R; Zoppi, Ariana
2017-11-01
Chloramphenicol is an old antibiotic agent that is re-emerging as a valuable alternative for the treatment of multidrug-resistant pathogens. However, it exhibits suboptimal biopharmaceutical properties and toxicity profiles. In this work, chloramphenicol was combined with essential amino acids (arginine, cysteine, glycine, and leucine) with the aim of improving its dissolution rate and reduce its toxicity towards leukocytes. The chloramphenicol/amino acid solid samples were prepared by freeze-drying method and characterized in the solid state by using Fourier transform infrared spectroscopy, powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and solid-state nuclear magnetic resonance. The dissolution properties, antimicrobial activity, reactive oxygen species production, and stability of the different samples were studied. The dissolution rate of all combinations was significantly increased in comparison to that of the pure active pharmaceutical ingredient. Additionally, oxidative stress production in human leukocytes caused by chloramphenicol was decreased in the chloramphenicol/amino acid combinations, while the antimicrobial activity of the antibiotic was maintained. The CAP:Leu binary combination resulted in the most outstanding solid system makes it suitable candidate for the development of pharmaceutical formulations of this antimicrobial agent with an improved safety profile.
Belousov, Valery V
2017-02-21
High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials. To solve this problem, the operating temperatures of these electrochemical devices must be lowered. However, lowering the temperature is accompanied by decreasing the ionic conductivity of fuel cell electrolyte and oxygen separator membrane. Therefore, there is a need to search for alternative electrolyte and membrane materials that have high ionic conductivity at lower temperatures. A great many opportunities exist for molten oxides as electrochemical energy materials. Because of their unique electrochemical properties, the molten oxide innovations can offer significant benefits for improving energy efficiency. In particular, the newly developed electrochemical molten oxide materials show high ionic conductivities at intermediate temperatures (600-800 °C) and could be used in molten oxide fuel cells (MOFCs) and molten oxide membranes (MOMs). The molten oxide materials containing both solid grains and liquid channels at the grain boundaries have advantages compared to the ceramic materials. For example, the molten oxide materials are ductile, which solves a problem of thermal incompatibility (difference in coefficient of thermal expansion, CTE). Besides, the outstanding oxygen selectivity of MOM materials allows us to separate ultrahigh purity oxygen from air. For their part, the MOFC electrolytes show the highest ionic conductivity at intermediate temperatures. To evaluate the potential of molten oxide materials for technological applications, the relationship between the microstructure of these materials and their transport and mechanical properties must be revealed. This Account summarizes the latest results on oxygen ion transport in potential MOM materials and MOFC electrolytes. In addition, we consider the rapid oxygen transport in a molten oxide scale formed on a metal surface during catastrophic oxidation and show that the same transport could be used beneficially in MOMs and MOFCs. A polymer model explaining the oxygen transport in molten oxides is also considered. Understanding the oxygen transport mechanisms in oxide melts is important for the development of new generation energy materials, which will contribute to more efficient operation of electrochemical devices at intermediate temperatures. Here we highlight the progress made in developing this understanding. We also show the latest advances made in search of alternative molten oxide materials having high mixed ion electronic and ionic conductivities for use in MOMs and MOFCs, respectively. Prospects for further research are presented.
Novel diode laser-based sensors for gas sensing applications
NASA Technical Reports Server (NTRS)
Tittel, F. K.; Lancaster, D. G.; Richter, D.
2000-01-01
The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.
First principles materials design of novel functional oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Valentino R.; Voas, Brian K.; Bridges, Craig A.
2016-05-31
We review our efforts to develop and implement robust computational approaches for exploring phase stability to facilitate the prediction-to-synthesis process of novel functional oxides. These efforts focus on a synergy between (i) electronic structure calculations for properties predictions, (ii) phenomenological/empirical methods for examining phase stability as related to both phase segregation and temperature-dependent transitions and (iii) experimental validation through synthesis and characterization. We illustrate this philosophy by examining an inaugural study that seeks to discover novel functional oxides with high piezoelectric responses. Lastly, our results show progress towards developing a framework through which solid solutions can be studied to predictmore » materials with enhanced properties that can be synthesized and remain active under device relevant conditions.« less
Aluminum Agglomeration and Trajectory in Solid Rocket Motors
2007-08-30
34the stepwise oxidation of aluminum (that) is caused by the sequence of polymorphic phase transitions occurring in the growing oxide film",2 5 . 25...C. and Yang, V., "Analysis of RDX Monopropellant Combustion with Two-Phase Subsurface Reactions", Journal of Propulsion and Power, Vol. 11, No. 4...temperature. Generalized mechanisms have been developed and applied to many ingredients such as HMX , GAP, NG, BTTN, ADN and AP.10 The burning rates of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaleel, Mohammad A.; Lin, Zijing; Singh, Prabhakar
2004-05-03
A 3D simulation tool for modeling solid oxide fuel cells is described. The tool combines the versatility and efficiency of a commercial finite element analysis code, MARC{reg_sign}, with an in-house developed robust and flexible electrochemical (EC) module. Based upon characteristic parameters obtained experimentally and assigned by the user, the EC module calculates the current density distribution, heat generation, and fuel and oxidant species concentration, taking the temperature profile provided by MARC{reg_sign} and operating conditions such as the fuel and oxidant flow rate and the total stack output voltage or current as the input. MARC{reg_sign} performs flow and thermal analyses basedmore » on the initial and boundary thermal and flow conditions and the heat generation calculated by the EC module. The main coupling between MARC{reg_sign} and EC is for MARC{reg_sign} to supply the temperature field to EC and for EC to give the heat generation profile to MARC{reg_sign}. The loosely coupled, iterative scheme is advantageous in terms of memory requirement, numerical stability and computational efficiency. The coupling is iterated to self-consistency for a steady-state solution. Sample results for steady states as well as the startup process for stacks with different flow designs are presented to illustrate the modeling capability and numerical performance characteristic of the simulation tool.« less
Schwartz, Michael; White, James H.; Sammells, Anthony F.
2005-09-27
This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.
Schwartz, Michael; White, James H.; Sammels, Anthony F.
2000-01-01
This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.
NASA Astrophysics Data System (ADS)
Puranen, Jouni; Lagerbom, Juha; Hyvärinen, Leo; Kylmälahti, Mikko; Himanen, Olli; Pihlatie, Mikko; Kiviaho, Jari; Vuoristo, Petri
2011-01-01
Manganese cobalt oxide spinel doped with Fe2O3 was studied as a protective coating on ferritic stainless steel interconnects. Chromium alloying causes problems at high operation temperatures in such oxidizing conditions where chromium compounds evaporate and poison the cathode active area, causing the degradation of the solid oxide fuel cell. In order to prevent chromium evaporation, these interconnectors need a protective coating to block the chromium evaporation and to maintain an adequate electrical conductivity. Thermal spraying is regarded as a promising way to produce dense and protective layers. In the present work, the ceramic Mn-Co-Fe oxide spinel coatings were produced by using the atmospheric plasma spray process. Coatings with low thickness and low amount of porosity were produced by optimizing deposition conditions. The original spinel structure decomposed because of the fast transformation of solid-liquid-solid states but was partially restored by using post-annealing treatment.
NASA Technical Reports Server (NTRS)
Kibbey, Timothy P.; Cortopassi, Andrew C.; Boyer, Eric C.
2017-01-01
NASA Marshall Space Flight Center's Materials and Processes Department, with support from the Propulsion Systems Department, has renewed the development and maintenance of a hybrid test bed for exposing ablative thermal protection materials to an environment similar to that seen in solid rocket motors (SRM). The Solid Fuel Torch (SFT), operated during the Space Shuttle program, utilized gaseous oxygen for oxidizer and an aluminized hydroxyl-terminated polybutadiene (HTPB) fuel grain to expose a converging section of phenolic material to a 400 psi, 2-phase flow combustion environment. The configuration allows for up to a 2 foot long, 5 inch diameter fuel grain cartridge. Wanting to now test rubber insulation materials with a turn-back feature to mimic the geometry of an aft dome being impinged by alumina particles, the throat area has now been increased by several times to afford flow similarity. Combined with the desire to maintain a higher operating pressure, the oxidizer flow rate is being increased by a factor of 10. Out of these changes has arisen the need to characterize the fuel/oxidizer combination in a higher mass flux condition than has been previously tested at MSFC, and at which the literature has little to no reporting as well. For (especially) metalized fuels, hybrid references have pointed out possible dependence of fuel regression rate on a number of variables: mass flux, G - oxidizer only (G0), or - total mass flux (Gtot), Length, L, Pressure, P, and Diameter, D.
NASA Astrophysics Data System (ADS)
Bennett, Joseph W.
Perovskite oxides of formula ABO3 have a wide range of structural, electrical and mechanical properties, making them vital materials for many applications, such as catalysis, ultrasound machines and communication devices. Perovskite solid solutions with high piezoelectric response, such as ferroelectrics, are of particular interest as they can be employed as sensors in SONAR devices. Ferroelectric materials are unique in that their chemical and electrical properties can be non-invasively and reversibly changed, by switching the bulk polarization. This makes ferroelectrics useful for applications in non-volatile random access memory (NVRAM) devices. Perovskite solid solutions with a lower piezoelectric response than ferroelectrics are important for communication technology, as they function well as electroceramic capacitors. Also of interest is how these materials act as a component in a solid oxide fuel cell, as they can function as an efficient source of energy. Altering the chemical composition of these solid oxide materials offers an opportunity to change the desired properties of the final ceramic, adding a degree of flexibility that is advantageous for a variety of applications. These solid oxides are complex, sometimes disordered systems that are a challenge to study experimentally. However, as it is their complexity which produces favorable properties, highly accurate modeling which captures the essential features of the disordered structure is necessary to explain the behavior of current materials and predict favorable compositions for new materials. Methodological improvements and faster computer speeds have made first-principles and atomistic calculations a viable tool for understanding these complex systems. Offering a combination of accuracy and computational speed, the density functional theory (DFT) approach can reveal details about the microscopic structure and interactions of complex systems. Using DFT and a combination of principles from both inorganic chemistry and materials science, I have been able to gain insights into solid oxide perovskite-based systems.
Development of planar solid oxide fuel cells for power generation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minh, N.Q.
1996-04-01
Planar solid oxide fuel cells (SOFCs) are presently being developed for a variety of electric power generation application. The planar design offers simple cell geometry, high power density, and multiple fabrication and gas manifolding options. Planar SOFC technology has received much attention recently, and significant progress has been made in this area. Recent effort at AlliedSignal has focused on the development of high-performance, lightweight planar SOFCs, having thin-electrolyte films, that can be operated efficiently at reduced temperatures (< 1000{degrees}C). The advantages of reduced-temperature operation include wider material choice (including use of metallic interconnects), expected longer cell life, reduced thermal stress,more » improved reliability, and reduced fuel cell cost. The key aspect in the development of thin-film SIFCs is to incorporate the thin electrolyte layer into the desired structure of cells in a manner that yields the required characteristics. AlliedSignal has developed a simple and cost-effective method based on tape calendering for the fabrication of thin-electrolyte SOFCs. Thin-electrolyte cells made by tape calendering have shown extraordinary performance, e.g., producing more than 500mW/cm{sup 2} at 700{degrees}C and 800mW/cm{sup 2} at 800{degrees}C with hydrogen as fuel and air is oxidant. thin-electrolyte single cells have been incorporated into a compliant metallic stack structure and operated at reduced and operated at reduced-temperature conditions.« less
Solid polymer electrolyte compositions
Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba
2001-01-01
An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.
Robust, functional nanocrystal solids by infilling with atomic layer deposition.
Liu, Yao; Gibbs, Markelle; Perkins, Craig L; Tolentino, Jason; Zarghami, Mohammad H; Bustamante, Jorge; Law, Matt
2011-12-14
Thin films of colloidal semiconductor nanocrystals (NCs) are inherently metatstable materials prone to oxidative and photothermal degradation driven by their large surface-to-volume ratios and high surface energies. (1) The fabrication of practical electronic devices based on NC solids hinges on preventing oxidation, surface diffusion, ripening, sintering, and other unwanted physicochemical changes that can plague these materials. Here we use low-temperature atomic layer deposition (ALD) to infill conductive PbSe NC solids with metal oxides to produce inorganic nanocomposites in which the NCs are locked in place and protected against oxidative and photothermal damage. Infilling NC field-effect transistors and solar cells with amorphous alumina yields devices that operate with enhanced and stable performance for at least months in air. Furthermore, ALD infilling with ZnO lowers the height of the inter-NC tunnel barrier for electron transport, yielding PbSe NC films with electron mobilities of 1 cm2 V(-1) s(-1). Our ALD technique is a versatile means to fabricate robust NC solids for optoelectronic devices.
Thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell in combined heat and power applications
NASA Astrophysics Data System (ADS)
Abraham, F.; Dincer, I.
2015-12-01
This paper presents a comprehensive steady state modelling and thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell integrated with Gas Turbine power cycle (DU-SOFC/GT). The use of urea as direct fuel mitigates public health and safety risks associated with the use of hydrogen and ammonia. The integration scheme in this study covers both oxygen ion-conducting solid oxide fuel cells (SOFC-O) and hydrogen proton-conducting solid oxide fuel cells (SOFC-H). Parametric case studies are carried out to investigate the effects of design and operating parameters on the overall performance of the system. The results reveal that the fuel cell exhibited the highest level of exergy destruction among other system components. Furthermore, the SOFC-O based system offers better overall performance than that with the SOFC-H option mainly due to the detrimental reverse water-gas shift reaction at the SOFC anode as well as the unique configuration of the system.
Protective interlayer for high temperature solid electrolyte electrochemical cells
Singh, Prabhakar; Vasilow, Theodore R.; Richards, Von L.
1996-01-01
The invention comprises of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb.sub.x Ta.sub.y Ce.sub.1-x-y O.sub.2 where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell (10), characterized by a first electrode (12); an electrically conductive interlayer (14) of niobium and/or tantalum doped cerium oxide deposited over at least a first portion (R) of the first electrode; an interconnect (16) deposited over the interlayer; a solid electrolyte (18) deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode (20) deposited over the solid electrolyte. The interlayer (14) is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode (12), an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer (18) is a dense yttria stabilized zirconium oxide, the interconnect layer (16) is a dense, doped lanthanum chromite, and the second electrode (20), a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell (10) can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy.
Amperometric Carbon Fiber Nitrite Microsensor for In Situ Biofilm Monitoring
A highly selective needle type solid state amperometric nitrite microsensor based on direct nitrite oxidation on carbon fiber was developed using a simplified fabrication method. The microsensor’s tip diameter was approximately 7 µm, providing a high spatial resolution of at lea...
Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari
2015-01-01
Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC). PMID:26218470
Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari
2015-07-28
Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).
Yang, Guangming; Zhou, Wei; Liu, Meilin; Shao, Zongping
2016-12-28
The successful development of low-cost, durable electrocatalysts for oxygen reduction reaction (ORR) at intermediate temperatures is critical for broad commercialization of solid oxide fuel cells. Here, we report our findings in design, fabrication, and characterization of a cobalt-free SrFe 0.85 Ti 0.1 Ni 0.05 O 3-δ cathode decorated with NiO nanoparticles. Exsolved from and well bonded to the parent electrode under well-controlled conditions, the NiO nanoparticles uniformly distributed on the surface of the parent electrode greatly enhance cathode performance, demonstrating ORR activity better than that of the benchmark cobalt-based Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ . Further, a process for regeneration of the NiO nanoparticles was also developed to mitigate potential performance degradation due to coarsening of NiO particles under practical operating conditions. As a general approach, this exsolution-dissolution of electrocatalytically active nanoparticles on an electrode surface may be applicable to the development of other high-performance cobalt-free cathodes for fuel cells and other electrochemical systems.
A Mechanistic-Based Healing Model for Self-Healing Glass Seals Used in Solid Oxide Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wei; Sun, Xin; Stephens, Elizabeth V.
The usage of self-healing glass as hermetic seals is a recent advancement in sealing technology development for the planar solid oxide fuel cells (SOFCs). Because of its capability of restoring the mechanical properties at elevated temperatures, the self-healing glass seal is expected to provide high reliability in maintaining the long-term structural integrity and functionality of SOFCs. In order to accommodate the design and to evaluate the effectiveness of such engineering seals under various thermo-mechanical operating conditions, computational modeling framework needs to be developed to accurately capture and predict the healing behavior of the glass material. In the present work, amore » mechanistic-based two-stage model was developed to study the stress and temperature-dependent crack healing of the self-healing glass materials. The model was first calibrated by experimental measurements combined with the kinetic Monte Carlo (kMC) simulation results and then implemented into the finite element analysis (FEA). The effects of various factors, i.e. stress, temperature, crack morphology, on the healing behavior of the glass were investigated and discussed.« less
The modeling of a standalone solid-oxide fuel cell auxiliary power unit
NASA Astrophysics Data System (ADS)
Lu, N.; Li, Q.; Sun, X.; Khaleel, M. A.
In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module, two heat exchanger modules, and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components, as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will help design engineers to adjust design parameters to optimize the performance. The modeling results of the SOFC APU heat-up stage and the output voltage response to a sudden load change are presented in this paper. The fuel flow regulation based on fuel utilization is also briefly discussed.
Transformation toughened ceramics for the heavy duty diesel engine technology program
NASA Technical Reports Server (NTRS)
Musikant, S.; Feingold, E.; Rauch, H.; Samanta, S.
1984-01-01
The objective of this program is to develop an advanced high temperature oxide structural ceramic for application to the heavy duty diesel engine. The approach is to employ transformation toughening by additions of ZrO.5HfO.5O2 solid solution to the oxide ceramics, mullite (2Al2O3S2SiO2) and alumina (Al2O3). The study is planned for three phases, each 12 months in duration. This report covers Phase 1. During this period, processing techniques were developed to incorporate the ZrO.5HfO.5O2 solid solution in the matrices while retaining the necessary metastable tetragonal phase. Modulus of rupture and of elasticity, coefficient of thermal expansion, fracture toughness by indent technique and thermal diffusivity of representative specimens were measured. In Phase 2, the process will be improved to provide higher mechanical strength and to define the techniques for scale up to component size. In Phase 3, full scale component prototypes will be fabri-]cated.
NASA Astrophysics Data System (ADS)
Leucht, Florian; Bessler, Wolfgang G.; Kallo, Josef; Friedrich, K. Andreas; Müller-Steinhagen, H.
A sustainable future power supply requires high fuel-to-electricity conversion efficiencies even in small-scale power plants. A promising technology to reach this goal is a hybrid power plant in which a gas turbine (GT) is coupled with a solid oxide fuel cell (SOFC). This paper presents a dynamic model of a pressurized SOFC system consisting of the fuel cell stack with combustion zone and balance-of-plant components such as desulphurization, humidification, reformer, ejector and heat exchangers. The model includes thermal coupling between the different components. A number of control loops for fuel and air flows as well as power management are integrated in order to keep the system within the desired operation window. Models and controls are implemented in a MATLAB/SIMULINK environment. Different hybrid cycles proposed earlier are discussed and a preferred cycle is developed. Simulation results show the prospects of the developed modeling and control system.
Solid oxide fuel cell hybrid system: Control strategy for stand-alone configurations
NASA Astrophysics Data System (ADS)
Ferrari, Mario L.
2011-03-01
The aim of this study is the development and testing of a control system for solid oxide fuel cell hybrid systems through dynamic simulations. Due to the complexity of these cycles, several parameters, such as the turbine rotational speed, the temperatures within the fuel cell, the differential pressure between the anodic and the cathodic side and the Steam-To-Carbon Ratio need to be monitored and kept within safe limits. Furthermore, in stand-alone conditions the system response to load variations is required to meet the global plant power demand at any time, supporting global load variations and avoiding dangerous or unstable conditions. The plant component models and their integration were carried out in previous studies. This paper focuses on the control strategy required for managing the net electrical power from the system, avoiding malfunctions or damage. Once the control system was developed and tuned, its performance was evaluated by simulating the transient behaviour of the whole hybrid cycle: the results for several operating conditions are presented and discussed.
Sun, Dengrong; Sun, Fangxiang; Deng, Xiaoyu; Li, Zhaohui
2015-09-08
Different amounts of Co-substituted Ni-MOF-74 have been prepared via a post-synthetic metal exchange. Inductively coupled plasma mass spectrometry, powder X-ray diffraction (XRD), N2 adsorption/desorption, and extended X-ray absorption fine structure (EXAFS) analyses indicated the successful metathesis between Co and Ni in Ni-MOF-74 to form the solid-solution-like mixed-metal Co/Ni-MOF-74. It was found that introduction of active Co into the Ni-MOF-74 framework enabled the inert Ni-MOF-74 to show activity for cyclohexene oxidation. Since Co was favorably substituted at positions more accessible to the substrate, the mixed-metal Co/Ni-MOF-74 showed superior catalytic performance, compared with pure Co-MOF-74 containing a similar amount of Co. This study provides a facile method to develop solid-solution-like MOFs for heterogeneous catalysis and highlights the great potential of this mixed-metal strategy in the development of MOFs with specific endowed functionalities.
NASA Astrophysics Data System (ADS)
Park, Beom-Kyeong; Song, Rak-Hyun; Lee, Seung-Bok; Lim, Tak-Hyoung; Park, Seok-Joo; Jung, WooChul; Lee, Jong-Won
2017-04-01
Solid oxide fuel cells (SOFCs) require low-cost metallic components for current collection from electrodes as well as electrical connection between unit cells; however, the degradation of their electrical properties and surface stability associated with high-temperature oxidation is of great concern. It is thus important to develop protective conducting oxide coatings capable of mitigating the degradation of metallic components under SOFC operating conditions. Here, we report a conformal bi-layered coating composed of perovskite and spinel oxides on a metallic wire network fabricated by a facile electrodeposition-based route. A highly dense, crack-free, and adhesive bi-layered LaMnO3/Co3O4 coating of ∼1.2 μm thickness is conformally formed on the surfaces of wires with ∼100 μm diameter. We demonstrate that the bi-layered LaMnO3/Co3O4 coating plays a key role in improving the power density and durability of a tubular SOFC by stabilizing the surface of the metallic wire network used as a cathode current collector. The electrodeposition-based technique presented in this study offers a low-cost and scalable process to fabricate conformal multi-layered coatings on various metallic structures.
Stack configurations for tubular solid oxide fuel cells
Armstrong, Timothy R.; Trammell, Michael P.; Marasco, Joseph A.
2010-08-31
A fuel cell unit includes an array of solid oxide fuel cell tubes having porous metallic exterior surfaces, interior fuel cell layers, and interior surfaces, each of the tubes having at least one open end; and, at least one header in operable communication with the array of solid oxide fuel cell tubes for directing a first reactive gas into contact with the porous metallic exterior surfaces and for directing a second reactive gas into contact with the interior surfaces, the header further including at least one busbar disposed in electrical contact with at least one surface selected from the group consisting of the porous metallic exterior surfaces and the interior surfaces.
Communication—Electrolysis at High Efficiency with Remarkable Hydrogen Production Rates
Wood, Anthony; He, Hongpeng; Joia, Tahir; ...
2016-01-20
Solid Oxide Electrolysis (SOE) can be used to produce hydrogen with very high efficiencies at remarkable hydrogen production rates. Through microstructural and compositional modification, conventional low cost Solid Oxide Fuel Cell (SOFC) materials have been used to create a Solid Oxide Electrolysis Cell (SOEC) that can achieve remarkable current density at cell voltages allowing higher conversion efficiency than current commercial electrolysers. Current densities in excess of 6 A/cm2 have been achieved at 800°C with a cell voltage of < 1.67 V. This cell shows a more than 3-fold increase in hydrogen production rate at higher efficiency than established commercial electrolysers.
Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B
2015-02-24
A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Franklin
Two main categories of heterogeneous catalysts are metal and metal oxide which catalyze 80% chemical reactions at solid-gas and solid-liquid interfaces. Metal oxide catalysts are much more complicated than metal catalysts. The reason is that the cations of the metal atoms could exhibit a few different oxidation states on surface of the same catalyst particle such as Co 3O 4 or change of their oxidation states under different reactive environments. For a metal catalyst, there is only one oxidation state typically. In addition, surface of a metal oxide can be terminated with multiple surface functionalities including O atoms with differentmore » binding configurations and OH group. For metal, only metal atoms are exposed typically. Obviously, the complication of surface chemistry and structure of a metal oxide makes studies of surface of an oxide catalyst very challenging. Due to the complication of surface of a meal oxide, the electronic and geometric structures of surface of a metal oxide and the exposed species have received enormous attention since oxide catalysts catalyze at least 1/3 chemical reactions in chemical and energy industries. Understanding of catalytic reactions on early transition metal oxide-based catalysts is fundamentally intriguing and of great practical interest in energy- and environment-related catalysis. Exploration of surface chemistry of oxide-based catalysts at molecular level during catalysis has remained challenging though it is critical in deeply understanding catalysis on oxide-based catalysts and developing oxide-based catalysts with high activity and selectivity. Thus, the overall objective of this project is to explore surface chemistry and structure of early transition metal oxide-based catalysts through in-situ characterization of surface of catalysts, measurements of catalytic performances, and then build an intrinsic correlation of surface chemistry and structure with their catalytic performances in a few important catalytic reactions, and essentially fundamentally understand catalytic mechanism. Furthermore, this correlation will guide the design of catalysts with high activity and selectivity.« less
Oxidation of Haynes 230 alloy in reduced temperature solid oxide fuel cell environments
NASA Astrophysics Data System (ADS)
Jian, Li; Jian, Pu; Jianzhong, Xiao; Xiaoliang, Qian
Haynes 230 alloy was exposed to reducing and oxidizing environments at 750 °C for 1000 h, simulating the conditions in a reduced temperature solid oxide fuel cell (SOFC). The oxidized specimens were characterized in terms of the oxide morphology, composition and crystal structure. The oxide scale in each environment was identified as Cr 2O 3 with the existence of Cr 2MnO 4. Ni remained metallic in the reducing atmosphere, and NiO was detected in the sample exposed to air. The oxide scale is around 1 μm thick after 1000 h of oxidation in both situations. The area specific resistance (ASR) contributed by the oxide scale is expected less than 0.1 Ω cm 2 after 40,000 h of exposure when a parabolic oxide growth rate is assumed, demonstrating the suitability of the interconnect application of this alloy in the reduced temperature SOFCs.
2011-02-04
Solid Oxide fuel cell and Lithium Ion battery (~150 watts) • Enables extended mission durations • 12 hours of full power; 30 hours of silent watch...Hybrid fuel cell system is designed to replace the existing lead-acid batteries with an upgraded Solid Oxide fuel cell and Lithium Ion battery (~250
Reduction in the Band Gap of Manganese-Doped Zinc Oxide: Role of the Oxidation State
NASA Astrophysics Data System (ADS)
Sharma, Sonia; Ramesh, Pranith; Swaminathan, P.
2015-12-01
Manganese-doped zinc oxide powders were synthesized by solid state reaction of the respective oxides. The high-temperature conditions were chosen such that multiple valence states of manganese were doped in the host zinc oxide lattice. Structural characterization was carried out to confirm the doping and to find the maximum amount of manganese that can be incorporated. Diffuse reflectance spectroscopy was used to measure the optical band gap of the doped sample and the lowering with respect to pure ZnO was attributed to the presence of higher oxidation states of manganese. The presence of these oxidation states was confirmed using x-ray photoelectron spectroscopy. The study shows that a solid state reaction is a viable route for synthesizing doped metal oxides with desired optical properties.
High-Temperature Desulfurization of Heavy Fuel-Derived Reformate Gas Streams for SOFC Applications
NASA Technical Reports Server (NTRS)
Flytzani-Stephanopoulos, Maria; Surgenor, Angela D.
2007-01-01
Desulfurization of the hot reformate gas produced by catalytic partial oxidation or autothermal reforming of heavy fuels, such as JP-8 and jet fuels, is required prior to using the gas in a solid oxide fuel cell (SOFC). Development of suitable sorbent materials involves the identification of sorbents with favorable sulfidation equilibria, good kinetics, and high structural stability and regenerability at the SOFC operating temperatures (650 to 800 C). Over the last two decades, a major barrier to the development of regenerable desulfurization sorbents has been the gradual loss of sorbent performance in cyclic sulfidation and regeneration at such high temperatures. Mixed oxide compositions based on ceria were examined in this work as regenerable sorbents in simulated reformate gas mixtures and temperatures greater than 650 C. Regeneration was carried out with dilute oxygen streams. We have shown that under oxidative regeneration conditions, high regeneration space velocities (greater than 80,000 h(sup -1)) can be used to suppress sulfate formation and shorten the total time required for sorbent regeneration. A major finding of this work is that the surface of ceria and lanthanan sorbents can be sulfided and regenerated completely, independent of the underlying bulk sorbent. This is due to reversible adsorption of H2S on the surface of these sorbents even at temperatures as high as 800 C. La-rich cerium oxide formulations are excellent for application to regenerative H2S removal from reformate gas streams at 650 to 800 C. These results create new opportunities for compact sorber/regenerator reactor designs to meet the requirements of solid oxide fuel cell systems at any scale.
Modified cermet fuel electrodes for solid oxide electrochemical cells
Ruka, Roswell J.; Spengler, Charles J.
1991-01-01
An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.
Sludge stabilization through aerobic digestion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, R.B.; Smith, D.G.; Bennett, E.R.
1979-10-01
The aerobic digestion process with certain modifications is evaluated as an alternative for sludge processing capable of developing a product with characteristics required for land application. Environmental conditions, including temperature, solids concentration, and digestion time, that affect the aerobic digestion of a mixed primary sludge-trickling filter humus are investigated. Variations in these parameters that influence the characteristics of digested sludge are determined, and the parameters are optimized to: provide the maximum rate of volatile solids reduction; develop a stable, nonodorous product sludge; and provide the maximum rate of oxidation of the nitrogenous material present in the feed sludge. (3 diagrams,more » 9 graphs, 15 references, 3 tables)« less
Sochacka, E
2001-01-01
In order to efficiently assess the chemical stability of modified nucleosides to the reagents and conditions of automated oligonucleotide synthesis, we designed, developed and tested a scheme in which the modified nucleoside, directly attached to a solid support, is exposed to the cyclic chemistry of the instrument. Stability of 2-thiouridine against different oxidizers was investigated. Tertbutyl hydroperoxide (1 M) in anhydrous acetonitrile was a more effective oxidizer for the incorporation of 2-thiouridine into oligonucleotide chains than the same oxidizer in methylene chloride. Carbon tetrachloride/water in the presence of a basic catalyst was superior in maintaining the thiocarbonyl function, but its utility for RNA synthesis has yet to be fully tested, whereas 2-phenylsulfonyloxaziridine was a very efficient reagent for oxidative desulfurization of 2-thiouridine.
NASA Astrophysics Data System (ADS)
Zhang, H. H.; Zeng, C. L.
2014-04-01
Ferritic stainless steels have become the candidate materials for interconnects of intermediate temperature solid oxide fuel cell (SOFC). The present issues to be solved urgently for the application of ferritic stainless steel interconnects are their rapid increase in contact resistance and Cr poisoning. In the present study, a chloride electrolyte suspension has been developed to electro-deposit a Co-Mn alloy on a type 430 stainless steel, followed by heat treatment at 750 °C in argon and at 800 °C in air to obtain Co-Mn spinel coatings. The experimental results indicate that an adhesive and compact Co-Mn alloy layer can be deposited in the chloride solution. After heat treatment, a complex coating composed of an external MnCo2O4 layer and an inner Cr-rich oxide layer has been formed on 430SS. The coating improves the oxidation resistance of the steel at 800 °C in air, especially in wet air, and inhibits the outward diffusion of Cr from the Cr-rich scale. Moreover, a low contact resistance has been achieved with the application of the spinel coatings.
Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert
2014-06-01
A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larry Zirker; Nathan Jerred; Dr. Indrajit Charit
2012-03-01
Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.
Fabrication of Thin Electrolytes for Second-Generation Solid Oxide Fuel Cells
1999-05-05
stabilized zirconia but are equally applicable to components, have been developed. Halogen com- other oxide electrolytes. pounds such as ZrCl4 and YC13...substrates. They used ZrCl4 and an oxygen source reactant. EVD is a two-step YC13 vapor mixtures as the metal compound sources process. The first step...thin zirconia layers on ited film. In this step oxygen ions formed on the porous alumina substrates. ZrCl4 and YC13 vapor water vapor side of the
Chen, Yuyun; Han, Min; Tang, Yujia; Bao, Jianchun; Li, Shunli; Lan, Yaqian; Dai, Zhihui
2015-08-11
Novel polypyrrole-polyoxometalate/reduced graphene oxide ternary nanohybrids (TNHs) are synthesized via a one-pot redox relay strategy. The TNHs exhibit high areal specific capacitance (2.61 mF cm(-2)), and the fabricated solid device also exhibits good rate capability, excellent flexibility and mechanical stability.
Yang, Lei; Cheng, Zhe; Liu, Ze; Liu, Meilin
2015-01-13
Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.
Metal current collect protected by oxide film
Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.
2004-05-25
Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.
Method of fabricating a monolithic solid oxide fuel cell
Minh, N.Q.; Horne, C.R.
1994-03-01
In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.
Method of fabricating a monolithic solid oxide fuel cell
Minh, Nguyen Q.; Horne, Craig R.
1994-01-01
In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.
Study of low-temperature active rare-earth oxide catalysts for automotive exhaust clean-up.
DOT National Transportation Integrated Search
2014-02-01
We report a facile onepot synthesis of CexZr1-xO2 (0x1) solid solution nanocrystals using hydrothermal reactions. A direct formation of oxide solid solutions in aqueous solution under pressure at low temperatures was clearly revealed by X-ra...
Analysis of the Hazardous Material Reutilization Facilities at SUBASE Bangor and NS San Diego
1990-12-01
soprene * styrene methyl acrylate methyl methacrylate *turpentine? varnish 9 GROUP IV: OXIDES AND PEROXIDE -rORKING COMPOUNDS a) Gases b) Liquids...lead fluorine GROUP XV: POISON a GROUP XVI: OXIDIZERS .a) Solid a) Solid phosphorus red ammonium nitrate phosphorus white/, ammonium perchlorate yellow
In operando spectroscopic studies of high temperature electrocatalysts used for energy conversion
NASA Astrophysics Data System (ADS)
McIntyre, Melissa Dawn
Solid-state electrochemical cells are efficient energy conversion devices that can be used for clean energy production or for removing air pollutants from exhaust gas emitted by combustion processes. For example, solid oxide fuel cells generate electricity with low emissions from a variety of fuel sources; solid oxide electrolysis cells produce zero-emission H2 fuel; and solid-state DeNOx cells remove NOx gases from diesel exhaust. In order to maintain high conversion efficiencies, these systems typically operate at temperatures ≥ 500°C. The high operating temperatures, however, accelerate chemical and mechanical cell degradation. To improve device durability, a mechanistic understanding of the surface chemistry occurring at the cell electrodes (anode and cathode) is critical in terms of refining cell design, material selection and operation protocols. The studies presented herein utilized in operando Raman spectroscopy coupled with electrochemical measurements to directly correlate molecular/material changes with device performance in solid oxide cells under various operating conditions. Because excessive carbon accumulation with carbon-based fuels destroys anodes, the first three studies investigated strategies for mitigating carbon accumulation on Ni cermet anodes. Results from the first two studies showed that low amounts of solid carbon stabilized the electrical output and improved performance of solid oxide fuel cells operating with syn-gas (H 2/CO fuel mixture). The third study revealed that infiltrating anodes with Sn or BaO suppressed carbon accumulation with CH4 fuel and that H2O was the most effective reforming agent facilitating carbon removal. The last two studies explored how secondary phases formed in traditional solid oxide cell materials doped with metal oxides improve electrochemical performance. Results from the fourth study suggest that the mixed ion-electron conducting Zr5Ti7O24 secondary phase can expand the electrochemically active region and increase electrochemical activity in cermet electrodes. The final study of lanthanum strontium manganite cathodes infiltrated with BaO revealed the reversible decomposition/formation of a Ba3Mn2O8 secondary phase under applied potentials and proposed mechanisms for the enhanced electrocatalytic oxygen reduction associated with this compound under polarizing conditions. Collectively, these studies demonstrate that mechanistic information obtained from molecular/material specific techniques coupled with electrochemical measurements can be used to help optimize materials and operating conditions in solid-state electrochemical cells.
Development and Validation of a 3-Dimensional CFB Furnace Model
NASA Astrophysics Data System (ADS)
Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti
At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents CFB process analysis focused on combustion and NO profiles in pilot and industrial scale bituminous coal combustion.
CoxFe1-x oxide coatings on metallic interconnects for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Shen, Fengyu; Lu, Kathy
2016-10-01
In order to improve the performance of Cr-containing steel as an interconnect material for solid oxide fuel cells, CoFe alloy coatings with Co:Fe ratios of 9:1, 8:2, 7:3, 6:4, and 5:5 are deposited by electrodeposition and then oxidized to CoxFe1-x oxide coatings with a thickness of ∼6 μm as protective layers on the interconnect. The area specific resistance of the coated interconnect increases with the Fe content. Higher Co content oxide coatings are more effective in limiting the growth of the chromia scale while all coatings are effective in inhibiting Cr diffusion and evaporation. With the Co0.8Fe0.2 oxide coated interconnect, the electrochemical performance of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode is improved. Only 1.54 atomic percentage of Cr is detected on the surface of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode while no Cr is detected 0.66 μm or more into the cathode. CoxFe1-x oxide coatings are promising candidates for solid oxide fuel cell interconnects with the advantage of using existing cathode species for compatibility and performance enhancement.
Sintered Cathodes for All-Solid-State Structural Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
Huddleston, William; Dynys, Frederick; Sehirlioglu, Alp
2017-01-01
All-solid-state structural lithium ion batteries serve as both structural load-bearing components and as electrical energy storage devices to achieve system level weight savings in aerospace and other transportation applications. This multifunctional design goal is critical for the realization of next generation hybrid or all-electric propulsion systems. Additionally, transitioning to solid state technology improves upon battery safety from previous volatile architectures. This research established baseline solid state processing conditions and performance benchmarks for intercalation-type layered oxide materials for multifunctional application. Under consideration were lithium cobalt oxide and lithium nickel manganese cobalt oxide. Pertinent characteristics such as electrical conductivity, strength, chemical stability, and microstructure were characterized for future application in all-solid-state structural battery cathodes. The study includes characterization by XRD, ICP, SEM, ring-on-ring mechanical testing, and electrical impedance spectroscopy to elucidate optimal processing parameters, material characteristics, and multifunctional performance benchmarks. These findings provide initial conditions for implementing existing cathode materials in load bearing applications.
Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system
NASA Astrophysics Data System (ADS)
Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang
2017-02-01
A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.
Electrochemical Detectors in HPLC and Ion Chromatography.
Horvai, George; Pungor, ErnÕ
1989-01-01
Back in 1952, the renowned Polish electrochemist Wiktor Kemula introduced chromato-polarography, 1 i.e., polaro-graphic detection for liquid chromatography. This technique continued to develop slowly until the early 1970s (for a review see Reference 2) when modem high-performance liquid chromatography (HPLC) emerged. This new, highly efficient chromatographc method could only be. used with detectors ensuring low dispersion. It was not easy to modify the dropping mercury electrode cells to satisfy this requirement. However, at the same time, electroanalytical chemists, who already had much experience in using carbon-based electrodes for oxidative detection in flow analysis, put forward the idea of oxidative amperometric detection in liquid chromatography. 3,4 In this technique, solid or quasi-solid (paste) electrodes were used and this made possible the construction of miniaturized cells with just a few microliter volume.
NASA Astrophysics Data System (ADS)
Che Abdullah, Salmie Suhana Binti; Teranishi, Takashi; Hayashi, Hidetaka; Kishimoto, Akira
2018-01-01
High operation temperature of solid oxide fuel cell (SOFC) results in high cell and operation cost, time consuming and fast cell degradation. Developing high performance SOFC that operates at lower temperature is required. Here we demonstrate 24 GHz microwave as a rapid heating source to replace conventional heating method for SOFC operation using 20 mol% Sm doped CeO2 electrolyte-supported single cell. The tested cell shows improvement of 62% in maximum power density at 630 °C under microwave heating. This improvement governs by bulk conductivity of the electrolyte. Investigation of ionic transference number reveals that the value is unchanged under microwave irradiation, confirming the charge carrier is dominated by oxygen ion species. This work shows a potential new concept of high performance as well as cost and energy effective SOFC.
Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments
NASA Astrophysics Data System (ADS)
Aller, Robert C.; Rude, Peter D.
1988-03-01
During the physical or biological reworking of surficial marine sediments, metal oxides are often brought into contact with both solid and dissolved sulfides. Experiments simulating these mixing processes demonstrate that in natural sediments Mn-oxides can completely oxidize solid phase sulfides to SO 4- under anoxic conditions. The major source of sulfur is probably acid volatile sulfide. Minerals containing Mn +4 are apparently more effective than Mn +3 in driving the oxidation. There is slight or no evidence for complete sulfide oxidation by Fe-oxides under similar conditions. The reaction is inhibited by DNP (dinitrophenol) and azide, implying biological mediation by a group of chemolithotrophic bacteria such as the thiobacilli, having a well-organized cytochrome system, oxidative phosphorylation coupled with sulfide oxidation, and possibly aulolrophic CO 2 fixation. Lack of sensitivity to chlorate suggests that a No 3- reductase complex is not involved. Because of metal reduction and the overall stoichiometry of reaction, this sulfide oxidation causes a rise in pH in contrast to oxidation by O 2. Alkalinity is also simultaneously depeleted by Mn, Ca carbonate precipitation. Both manganoan kutnahorite and manganoan calcite are observed to form rapidly (days) during Mn reduction. The oxidation of sulfides by Mn-oxides is likely to be important, but highly variable, in organic-rich shelf sediments and environments such as hydrothermal vents where sulfidic plumes contact oxidized metals. A substantial Proportion of sedimentary sulfide may be oxidized and Mn reduced by this pathway, particularly in bioturbated sediments. The relative roles of lithotrophic (S) and heterotrophic (C) Mn-reduction in marine sediments are presently unknown.
NASA Astrophysics Data System (ADS)
Aldalur, Itziar; Martinez-Ibañez, Maria; Piszcz, Michal; Rodriguez-Martinez, Lide M.; Zhang, Heng; Armand, Michel
2018-04-01
Novel solid polymer electrolytes (SPEs), comprising of comb polymer matrix grafted with soft and disordered polyether moieties (Jeffamine®) and lithium bis(fluorosulfonyl)imide (LiFSI) are investigated in all-solid-state lithium metal (Li°) polymer cells. The LiFSI/Jeffamine-based SPEs are fully amorphous at room temperature with glass transitions as low as ca. -55 °C. They show higher ionic conductivities than conventional poly(ethylene oxide) (PEO)-based SPEs at ambient temperature region, and good electrochemical compatibility with Li° electrode. These exceptional properties enable the operational temperature of Li° | LiFePO4 cells to be decreased from an elevated temperature (70 °C) to room temperature. Those results suggest that LiFSI/Jeffamine-based SPEs can be promising electrolyte candidates for developing safe and high performance all-solid-state Li° batteries.
Intermediate temperature solid oxide fuel cell based on lanthanum gallate electrolyte
NASA Astrophysics Data System (ADS)
Inagaki, Toru; Nishiwaki, Futoshi; Yamasaki, Satoru; Akbay, Taner; Hosoi, Kei
The Kansai Electric Power Co. Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been developing intermediate temperature solid oxide fuel cells (IT-SOFCs) which are operable at a temperature range between 600 and 800 °C. There are some significant features in IT-SOFC of KEPCO-MMC: (1) highly conductive lanthanum gallate-based oxide is adopted as an electrolyte to realize high-performance disk-type electrolyte-supported cells; (2) the cell-stacks with seal-less structure using metallic separators allow residual fuel to burn around the stack and the combustion heat is utilized for thermally self-sustainable operation; (3) the separators have flexible arms by which separate compressive forces can be applied for manifold parts and interconnection parts. We are currently participating in the project by New Energy and Industrial Technology Development Organization (NEDO) to develop 10 kW-class combined heat and power (CHP) systems. In FY2006, a 10 kW-class module was developed, with which the electrical efficiency of 50%HHV was obtained based on DC 12.6 kW. In the first quarter of FY2007, the 10 kW-class CHP system using the module gave the electrical efficiency of 41%HHV on AC 10 kW and the overall efficiency of 82%HHV when exhaust heat was recovered as 60 °C hot water. Currently, the operation has been accumulated for about 2500 h to evaluate the long-term stability of the system.
Oxygen scrubbing and sensing in plant growth chambers using solid oxide electrolyzers
NASA Technical Reports Server (NTRS)
Sridhar, K. R.; MacElroy, Robert D.
1997-01-01
The maintenance of optimal levels of oxygen in the gaseous environment of a plant growth chamber during light and dark periods is an essential criterion for the correct growth of plants. The use of solid oxide electrolyzers to control the oxygen levels by removing the excess gaseous oxygen during periods of illumination and full-scale photosynthesis is described. A part of the oxygen removed can be stored and supplied back to the plants during dark periods. The excess oxygen can be used by the crew. The electrolizer can be additionally used in its open circuit mode, to sense the oxygen concentrations in the plant chamber. The solid oxide electrolysis process is described.
Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections
Huang, Kevin [Export, PA; Ruka, Roswell J [Pittsburgh, PA
2012-05-08
An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.
Tuneable diode laser gas analyser for methane measurements on a large scale solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Lengden, Michael; Cunningham, Robert; Johnstone, Walter
2011-10-01
A new in-line, real time gas analyser is described that uses tuneable diode laser spectroscopy (TDLS) for the measurement of methane in solid oxide fuel cells. The sensor has been tested on an operating solid oxide fuel cell (SOFC) in order to prove the fast response and accuracy of the technology as compared to a gas chromatograph. The advantages of using a TDLS system for process control in a large-scale, distributed power SOFC unit are described. In future work, the addition of new laser sources and wavelength modulation will allow the simultaneous measurement of methane, water vapour, carbon-dioxide and carbon-monoxide concentrations.
NASA Astrophysics Data System (ADS)
Chang, Song-Lin
There are only a few solid state humidity sensors available today. Most of those sensors use a porous oxide material as a principal part of the device. The devices work on the basis of a change in resistance as the moisture in the air varies. In this experiment, two solid state humidity sensors have been developed for use under practical conditions. One is a Polymer Oxide Semiconductor device with a POLYOX film that absorbs the moisture from the air. The amount of water dipoles absorbed by the polymer is a function of relative humidity. This sensor can measure relative humidity from 20% to 90%. The other is a Dew Point sensor. The sensor is in contact with the upper surface of a miniature Peltier cooler. Water molecules deposited on the sensor surface cause the electrical current through the sensor to increase. The operator adjusts the temperature of the Peltier cooler until a saturated current through the sensor is reached. About one min. is required to measure low relative humidities. The Dew Point sensor can measure a range of relative humidities of 30% to 80%.
Solid oxide fuel cell power plant with an anode recycle loop turbocharger
Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.
2015-07-14
An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).
Solid oxide fuel cell power plant with an anode recycle loop turbocharger
Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.
2016-09-27
An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).
Conversion of organic solids to hydrocarbons
Greenbaum, E.
1995-05-23
A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon. 5 Figs.
Conversion of organic solids to hydrocarbons
Greenbaum, Elias
1995-01-01
A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon.
DETOX{sup SM} catalyzed wet oxidation as a highly suitable pretreatment for vitrification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T.W.; Dhooge, P.M.; Goldblatt, S.D.
1995-11-01
A catalyzed wet oxidation process has been developed which uses ferric iron in an acidic water solution to oxidize organic compounds in the presence of platinum ion and/or ruthenium ion catalysts. The process is capable of oxidizing a wide range of organic compounds to carbon dioxide and water with great efficiency. The process has been tested in the bench-scale with many different types of organics. Conceptual engineering for application of the process to treatment of liquid and solid organic waste materials has been followed by engineering design for a demonstration unit. Fabrication of the unit and demonstration on hazardous andmore » mixed wastes at two Department of Energy sites is planned in 1995 through 1997.« less
DEVELOPMENT OF A BETTER METHOD TO IDENTIFY AND MEASURE PERCHLORATE IN DRINKING WATER
Perchlorate (ClO4 -) is an oxidant used primarily in solid propellant for rockets, missiles, pyrotechnics, as a component in air bag inflators, and in highway safety flares. Perchlorate tainted water has been found throughout the southwestern United States where its source has o...
Electrochemical catalyst recovery method
Silva, L.J.; Bray, L.A.
1995-05-30
A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.
Electrochemical catalyst recovery method
Silva, Laura J.; Bray, Lane A.
1995-01-01
A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.
Chen, Wei-Hsin; Lu, Ke-Miao; Liu, Shih-Hsien; Tsai, Chi-Ming; Lee, Wen-Jhy; Lin, Ta-Chang
2013-10-01
The reaction characteristics of four biomass materials (i.e. oil palm fiber, coconut fiber, eucalyptus, and Cryptomeria japonica) with non-oxidative and oxidative torrefaction at various superficial velocities are investigated where nitrogen and air are used as carrier gases. Three torrefaction temperatures of 250, 300, and 350 °C are considered. At a given temperature, the solid yield of biomass is not affected by N2 superficial velocity, revealing that the thermal degradation is controlled by heat and mass transfer in biomass. Increasing air superficial velocity decreases the solid yield, especially in oil palm fiber and coconut fiber, implying that the torrefaction reaction of biomass is dominated by surface oxidation. There exists an upper limit of air superficial velocity in the decrement of solid yield, suggesting that beyond this limit the thermal degradation of biomass is no longer governed by surface oxidation, but rather is controlled by internal mass transport. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jemison, N.; Johnson, T. M.; Druhan, J. L.; Davis, J. A.
2016-12-01
Uranium occurs in groundwater primarily as soluble and mobile U(VI), which can be reduced to immobile U(IV), often observed in sediments as uraninite. Numerous U(VI)-contaminated sites, such as the DOE field site in Rifle, CO, contain naturally reduced zones (NRZ's) that have relatively high concentrations of organic matter. Reduction of heavy metals occurs within NRZ's, producing elevated concentrations of iron sulfides and U(IV). Slow, natural oxidation of U(IV) from NRZ's may prolong U(VI) contamination of groundwater. The reduction of U(VI) produces U(IV) with a higher 238U/235U ratio. Samples from two NRZ sediment cores recovered from the Rifle site revealed that the outer fringes of the NRZ contain U(IV) with a high 238U/235U ratio, while lower values are observed in the center . We suggest that as aqueous U(VI) was reduced in the NRZ, it was driven to lower 238U/235U values, such that U(IV) formed in the core of the NRZ reflects a lower 238U/235U. Two oxidation experiments were conducted by injecting groundwater containing between 14.9 and 21.2 mg/L dissolved O2 as an oxidant into the NRZ. The oxidation of U(IV) from this NRZ increased aqueous U(VI) concentrations and caused a shift to higher 238U/235U in groundwater as U(IV) was oxidized primarily on the outer fringes of the NRZ. In total these observations suggest that the stability of solid phase uranium is governed by coupled reaction and transport processes. To better understand various reactive transport scenarios we developed a model for the formation and oxidation of NRZ's utilizing the reactive transport software CrunchTope. These simulations suggest that the development of isotopically heterogeneous U(IV) within NRZ's is largely controlled by permeability of the NRZ and the U(VI) reduction rate. Oxidation of U(IV) from the NRZ's is constrained by the oxidation rate of U(IV) as well as iron sulfides, which can prevent oxidation of U(IV) by scavenging dissolved oxygen.
Process for forming a homogeneous oxide solid phase of catalytically active material
Perry, Dale L.; Russo, Richard E.; Mao, Xianglei
1995-01-01
A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.
Solid oxide fuel cell generator
Di Croce, A. Michael; Draper, Robert
1993-11-02
A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.
Design of Hybrid Solid Polymer Electrolytes: Structure and Properties
NASA Technical Reports Server (NTRS)
Bronstein, Lyudmila M.; Karlinsey, Robert L.; Ritter, Kyle; Joo, Chan Gyu; Stein, Barry; Zwanziger, Josef W.
2003-01-01
This paper reports synthesis, structure, and properties of novel hybrid solid polymer electrolytes (SPE's) consisting of organically modified aluminosilica (OM-ALSi), formed within a poly(ethylene oxide)-in-salt (Li triflate) phase. To alter the structure and properties we fused functionalized silanes containing poly(ethylene oxide) (PEO) tails or CN groups.
Review of Fuel Cell Technologies for Military Land Vehicles
2014-09-01
fuel cell technologies for APUs are Proton Exchange Membrane Fuel Cells ( PEMFC ), direct methanol fuel cells and Solid Oxide Fuel Cells (SOFC). The...6 4.2 Proton Exchange Membrane Fuel Cells ( PEMFC ...OEM Original Equipment Manufacturer PEM Proton Exchange Membrane PEMFC Proton Exchange Membrane Fuel Cell SOFC Solid Oxide Fuel Cell TRL Technical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parmar, N.; Gorby, Yuri A.; Beveridge, Terrance J.
This investigation documents the formation of Green Rust (GR) and immobilization of Ni2+ in response to bacterial reduction of hydrous ferric oxide (HFO) reduction experiments provided evidence that the solid-phase partitioning of Ni2+ in GR extended from equilibrium solid-solution behavior.
Solid oxide fuel cell generator
Di Croce, A.M.; Draper, R.
1993-11-02
A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.
Robust, functional nanocrystal solids by infilling with atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yao; Gibbs, Markelle; Perkins, Craig L.
2011-12-14
Thin films of colloidal semiconductor nanocrystals (NCs) are inherently metatstable materials prone to oxidative and photothermal degradation driven by their large surface-to-volume ratios and high surface energies. The fabrication of practical electronic devices based on NC solids hinges on preventing oxidation, surface diffusion, ripening, sintering, and other unwanted physicochemical changes that can plague these materials. Here we use low-temperature atomic layer deposition (ALD) to infill conductive PbSe NC solids with metal oxides to produce inorganic nanocomposites in which the NCs are locked in place and protected against oxidative and photothermal damage. Infilling NC field-effect transistors and solar cells with amorphousmore » alumina yields devices that operate with enhanced and stable performance for at least months in air. Furthermore, ALD infilling with ZnO lowers the height of the inter-NC tunnel barrier for electron transport, yielding PbSe NC films with electron mobilities of 1 cm² V -1 s -1. Our ALD technique is a versatile means to fabricate robust NC solids for optoelectronic devices.« less
NASA Technical Reports Server (NTRS)
Himansu, Ananda; Freeh, Joshua E.; Steffen, Christopher J., Jr.; Tornabene, Robert T.; Wang, Xiao-Yen J.
2006-01-01
A system level analysis, inclusive of mass, is carried out for a cryogenic hydrogen fueled hybrid solid oxide fuel cell and bottoming gas turbine (SOFC/GT) power system. The system is designed to provide primary or secondary electrical power for an unmanned aerial vehicle (UAV) over a high altitude, long endurance mission. The net power level and altitude are parametrically varied to examine their effect on total system mass. Some of the more important technology parameters, including turbomachinery efficiencies and the SOFC area specific resistance, are also studied for their effect on total system mass. Finally, two different solid oxide cell designs are compared to show the importance of the individual solid oxide cell design on the overall system. We show that for long mission durations of 10 days or more, the fuel mass savings resulting from the high efficiency of a SOFC/GT system more than offset the larger powerplant mass resulting from the low specific power of the SOFC/GT system. These missions therefore favor high efficiency, low power density systems, characteristics typical of fuel cell systems in general.
Method and apparatus for assembling solid oxide fuel cells
Szreders, B.E.; Campanella, N.
1988-05-11
This invention relates generally to solid oxide fuel power generators and is particularly directed to improvements in the assembly and coupling of solid oxide fuel cell modules. A plurality of jet air tubes are supported and maintained in a spaced matrix array by a positioning/insertion assembly for insertion in respective tubes of a solid oxide fuel cell (SOFC) in the assembly of an SOFC module. The positioning/insertion assembly includes a plurality of generally planar, elongated, linear vanes which are pivotally mounted at each end thereof to a support frame. A rectangular compression assembly of adjustable size is adapted to receive and squeeze a matrix of SOFC tubes so as to compress the inter-tube nickel felt conductive pads which provide series/parallel electrical connection between adjacent SOFCs, with a series of increasingly larger retainer frames used to maintain larger matrices of SOFC tubes in position. Expansion of the SOFC module housing at the high operating temperatures of the SOFC is accommodated by conductive, flexible, resilient expansion, connector bars which provide support and electrical coupling at the top and bottom of the SOFC module housing. 17 figs.
Charging a Li-O₂ battery using a redox mediator.
Chen, Yuhui; Freunberger, Stefan A; Peng, Zhangquan; Fontaine, Olivier; Bruce, Peter G
2013-06-01
The non-aqueous Li-air (O2) battery is receiving intense interest because its theoretical specific energy exceeds that of Li-ion batteries. Recharging the Li-O2 battery depends on oxidizing solid lithium peroxide (Li2O2), which is formed on discharge within the porous cathode. However, transporting charge between Li2O2 particles and the solid electrode surface is at best very difficult and leads to voltage polarization on charging, even at modest rates. This is a significant problem facing the non-aqueous Li-O2 battery. Here we show that incorporation of a redox mediator, tetrathiafulvalene (TTF), enables recharging at rates that are impossible for the cell in the absence of the mediator. On charging, TTF is oxidized to TTF(+) at the cathode surface; TTF(+) in turn oxidizes the solid Li2O2, which results in the regeneration of TTF. The mediator acts as an electron-hole transfer agent that permits efficient oxidation of solid Li2O2. The cell with the mediator demonstrated 100 charge/discharge cycles.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1990-01-01
A research program is described which developes an understanding of high-temperature solid lubrication and experimental techniques through the development of a composite lubricant coating system. The knowledge gained through this research was then applied to a specific engineering challenge, the tribology of a sliding seal for hypersonic flight vehicles. The solid lubricant coating is a chromium carbide based composite combined with silver, which acts as a low temperature lubricant, and barium fluoride/calcium fluoride eutectic, which acts as a high-temperature lubricant. This composite coating provides good wear resistance and low friction for sliding contacts from room temperature to over 900 C in reducing or oxidative environments. The specific research on this coating included a composition screening using a foil gas bearing test rig and the use of thin silver films to reduce initial wear using a pin-on-disk test rig. The chemical stability of the materials used was also addressed. This research indicated that soft metallic films and materials which become soft at elevated temperatures are potentially good lubricants. The general results from the experiments with the model solid lubricant coating were then applied to a sliding seal design concept. This seal design requires that a braided ceramic fabric slide against a variety of metal counterface materials at temperatures from 25 to 850 C in an oxidative environment. A pin-on-disk tribometer was used to evaluate the tribological properties of these materials and to develop lubrication techniques. The results indicate that these seal materials must be lubricated to prevent wear and reduce friction. Thin films of silver, gold and calcium fluoride provided lubrication to the sliding materials.
Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers.
Li, Xinming; Zhao, Tianshuo; Chen, Qiao; Li, Peixu; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Wei, Bingqing; Zhu, Hongwei
2013-11-07
Flexible all-solid-state supercapacitors based on graphene fibers are demonstrated in this study. Surface-deposited oxide nanoparticles are used as pseudo-capacitor electrodes to achieve high capacitance. This supercapacitor electrode has an areal capacitance of 42 mF cm(-2), which is comparable to the capacitance for fiber-based supercapacitors reported to date. During the bending and cycling of the fiber-based supercapacitor, the stability could be maintained without sacrificing the electrochemical performance, which provides a novel and simple way to develop flexible, lightweight and efficient graphene-based devices.
A Novel Solid State Ultracapacitor
NASA Technical Reports Server (NTRS)
Cortes-Pena, A. Y.; Rolin, T. D.; Hill, C. W.
2017-01-01
Novel dielectric materials were researched to develop an internal barrier layer capacitor that is fully solid state. These materials included reduced nanoparticles of barium titanate that were coated with various atomic layer deposited oxides. The nanoparticle powders were then densified into pellets and characterized using a dielectric test fixture over a frequency range of 20 Hz to 2 MHz. Densification and sintering were evaluated using scanning electron microscopic techniques. Ultimately, the samples showing the most promising electrical characteristics of permittivity, dissipation factor and equivalent series resistance were chosen to manufacture devices for subsequent testing.
In situ remediation process using divalent metal cations
Brady, Patrick V.; Khandaker, Nadim R.; Krumhansl, James L.; Teter, David M.
2004-12-14
An in situ process for treating ambient solid materials (e.g., soils, aquifer solids, sludges) by adding one or more divalent metal cations to the ambient solid material. The added divalent metal cations, such as Cu.sup.2+ or Zn.sup.2+, combine with metal oxide/hydroxides (e.g., ferric oxide/hydroxide or aluminum oxide/hydroxide) already present in the ambient solid material to form an effective sorbent material having a large number of positively-charged surface complexes that binds and immobilizes anionic contaminant species (e.g., arsenic or chromate). Divalent metal cations can be added, for example, by injecting an aqueous solution of CuSO.sub.4 into an aquifer contaminated with arsenic or chromate. Also, sludges can be stabilized against leaching of anionic contaminants through the addition of divalent metal cations. Also, an inexpensive sorbent material can be easily formed by mixing divalent metal cations with soil that has been removed from the ground.
Bench scale demonstration and conceptual engineering for DETOX{sup SM} catalyzed wet oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moslander, J.; Bell, R.; Robertson, D.
1994-06-01
Laboratory and bench scale studies of the DETOX{sup SM} catalyzed wet oxidation process have been performed with the object of developing the process for treatment of hazardous and mixed wastes. Reaction orders, apparent rates, and activation energies have been determined for a range of organic waste surrogates. Reaction intermediates and products have been analyzed. Metals` fates have been determined. Bench scale units have been designed, fabricated, and tested with solid and liquid organic waste surrogates. Results from the laboratory and bench scale studies have been used to develop conceptual designs for application of the process to hazardous and mixed wastes.
Oxidation resistant coatings for ceramic matrix composite components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaubert, V.M.; Stinton, D.P.; Hirschfeld, D.A.
Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Michael Z.; DePaoli, David W.; Kuritz, Tanya
We present a “bottom-up” fabrication approach to first grow a new class of inorganic (silica) long hair-like microfibers or microwires and then to form monolithic solid pellet that contains parallel arrays of bundled microfibers with a controlled orientation. During the sol-gel solution processing, reactive precursor species are utilized as molecular “building blocks” for the field-directed assembly growth of microfibers driven by an electric field of pulsed direct current (dc) with controlled frequency. In principle, this reactive electrofibrilation process that combines an external field with a solid-phase nucleation and growth process has no limitation on reactions (such as the one heremore » that involves sol-gel reaction chemistry) and on materials compositions (such as the example silica oxide), thus will enable bulk production of long microfibers of wide variety of inorganic materials (other oxides or metals). Furthermore, we have fabricated uniquely architectured monolithic solid materials containing aligned microfibers by “wet press” of the in-situ grown microfiber structure in the electric field. The consolidated monolithic slabs (1 cm x 1 cm x 3 mm) have shown anisotropic properties and desirable retention of DNA molecule fragments, thus, could serve as a platform stationary-phase materials for future development of capillary electrochromatography for biomolecule separations.« less
Hu, Michael Z.; DePaoli, David W.; Kuritz, Tanya; ...
2017-09-11
We present a “bottom-up” fabrication approach to first grow a new class of inorganic (silica) long hair-like microfibers or microwires and then to form monolithic solid pellet that contains parallel arrays of bundled microfibers with a controlled orientation. During the sol-gel solution processing, reactive precursor species are utilized as molecular “building blocks” for the field-directed assembly growth of microfibers driven by an electric field of pulsed direct current (dc) with controlled frequency. In principle, this reactive electrofibrilation process that combines an external field with a solid-phase nucleation and growth process has no limitation on reactions (such as the one heremore » that involves sol-gel reaction chemistry) and on materials compositions (such as the example silica oxide), thus will enable bulk production of long microfibers of wide variety of inorganic materials (other oxides or metals). Furthermore, we have fabricated uniquely architectured monolithic solid materials containing aligned microfibers by “wet press” of the in-situ grown microfiber structure in the electric field. The consolidated monolithic slabs (1 cm x 1 cm x 3 mm) have shown anisotropic properties and desirable retention of DNA molecule fragments, thus, could serve as a platform stationary-phase materials for future development of capillary electrochromatography for biomolecule separations.« less
Ma, Chunhua; Ji, Jiaojiao; Tan, Connieal; Chen, Dongmei; Luo, Feng; Wang, Yiru; Chen, Xi
2014-03-01
Oxidation has important effects on the quality of edible oils. In particular, the generation of aldehydes produced by the oxidation of oils is one of the deteriorative factors to their quality. The aim of this study was to develop a method to determine the aldehydes as lipid oxidation markers in edible oils. Seven aldehydes generated from lipid oxidation were studied using headspace solid-phase microextraction coupled to gas chromatography with a flame ionization detector. The extraction efficiency of five commercial fibers was investigated and the influence of extraction temperature, extraction time, desorption temperature, and desorption time were optimized. The best result was obtained with 85 μm carboxen/polydimethylsiloxane, extraction at 50 °C for 15 min and desorption in the gas chromatography injector at 250 °C for 2 min. Under the optimized conditions, the content of hexanal was the highest of the seven aldehydes in all edible oils. The limits of detection for hexanal in the three oils were found to range from 4.6 to 10.2 ng L(-1). The reproducibility of the method was evaluated and the relative standard deviations were less than 8.9%. This developed approach was successfully applied to analyze hexanal in peanut oil, soy oil, and olive oil samples, and these results were compared with those obtained using the thiobarbituric acid-reactive substances (TBARs) method. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Oxidation-resisting technology of W-Re thermocouples and their industrial applications
NASA Astrophysics Data System (ADS)
Wang, K.; Dai, M.; Dong, J.; Wang, L.; Wang, T.
2013-09-01
We use DSC/TG, SEM and EPMA approaches to investigate the high temperature oxidation behaviors of the Type C W-Re thermocouple wires and W-Re powders which the wires were made from. To solve the oxidization of W-Re thermocouples the chemical method, other than the commonly used physical method, i.e. vacuum-pumping method, was developed. Several solid-packed techniques such as stuffing with inert material, chemical deoxidizing, gas-absorbing and sealing were employed to prevent the W-Re thermocouples from oxidizing. Based on comprehensive consideration of various parameters in process industries, a series of industrial W-Re thermocouples has been successfully used in oxidizing and reducing atmospheres, high temperature alkali and other harsh environments. The service life is 6 to 12 months in strong oxidizing atmosphere of Cr2O3-Al2O3 brick kiln and 2 to 3 months in high temperature alkali and in reducing atmosphere of CO.
Santa Clara County Planar Solid Oxide Fuel Cell Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fred Mitlitsky; Sara Mulhauser; David Chien
2009-11-14
The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project demonstrated the technical viability of pre-commercial PSOFC technology at the County 911 Communications headquarters, as well as the input fuel flexibility of the PSOFC. PSOFC operation was demonstrated on natural gas and denatured ethanol. The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project goals were to acquire, site, and demonstrate the technical viability of a pre-commercial PSOFC technology at the County 911 Communications headquarters. Additional goals included educating local permit approval authorities, and other governmental entities about PSOFC technology, existing fuel cell standards and specific code requirements.more » The project demonstrated the Bloom Energy (BE) PSOFC technology in grid parallel mode, delivering a minimum 15 kW over 8760 operational hours. The PSOFC system demonstrated greater than 81% electricity availability and 41% electrical efficiency (LHV net AC), providing reliable, stable power to a critical, sensitive 911 communications system that serves geographical boundaries of the entire Santa Clara County. The project also demonstrated input fuel flexibility. BE developed and demonstrated the capability to run its prototype PSOFC system on ethanol. BE designed the hardware necessary to deliver ethanol into its existing PSOFC system. Operational parameters were determined for running the system on ethanol, natural gas (NG), and a combination of both. Required modeling was performed to determine viable operational regimes and regimes where coking could occur.« less
NASA Astrophysics Data System (ADS)
Gazzarri, J. I.; Kesler, O.
In the first part of this two-paper series, we presented a numerical model of the impedance behaviour of a solid oxide fuel cell (SOFC) aimed at simulating the change in the impedance spectrum induced by contact degradation at the interconnect-electrode, and at the electrode-electrolyte interfaces. The purpose of that investigation was to develop a non-invasive diagnostic technique to identify degradation modes in situ. In the present paper, we appraise the predictive capabilities of the proposed method in terms of its robustness to uncertainties in the input parameters, many of which are very difficult to measure independently. We applied this technique to the degradation modes simulated in Part I, in addition to anode sulfur poisoning. Electrode delamination showed the highest robustness to input parameter variations, followed by interconnect oxidation and interconnect detachment. The most sensitive degradation mode was sulfur poisoning, due to strong parameter interactions. In addition, we simulate several simultaneous two-degradation-mode scenarios, assessing the method's capabilities and limitations for the prediction of electrochemical behaviour of SOFC's undergoing multiple simultaneous degradation modes.
NASA Astrophysics Data System (ADS)
Nikravech, Mehrdad; Rahmani, Abdelkader
2016-09-01
The association of plasma and spray will permit to process materials where organometallic precursors are not available or economically non-reliable. The injection of aerosols in low pressure plasma results in the rapid evaporation of solvent and the rapid transformation of small amounts of precursors contained in each droplet leading to form nanoscale oxide particles. We developed two configurations of this technique: one is Spray Plasma that permits to deposit this layers on flat substrates; the second one is Fluidized Spray Plasma that permits to deposit thin layers on the surface of solid beads. The aim of this presentation is to describe the principles of this new technique together with several applications. The influence of experimental parameters to deposit various mixed metal oxides will be demonstrated: thin dense layers of nanostructured ZnO for photovoltaic applications, porous layers of LaxSr1-x MnO3 as the cathode for fuel cells, ZnO-Cu, NiO layers on solid pellets in fluidized bed for catalysis applications. Aknowledgement to Programme interdisciplinaire SPC Énergies de Demain.
Developmental status and system studies of the monolithic solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Myles, K. M.
The monolithic solid oxide fuel cell (MSOFC) was invented at the Argonne National Laboratory in 1983 and is currently being developed by a team consisting of Argonne National Laboratory and Allied-Signal Aerospace/AiResearch. The MSOFC is an oxide ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. The electrolyte, which conducts oxygens ions from the air side to the fuel side, is yttria-stabilized zirconia (YSZ). All the other materials, that is, the nickel-YSZ anode, the strontium-doped lanthanum manganite cathode, and the doped lanthanum chromite interconnect (bipolar plate), are electronic conductors. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/l at fuel efficiencies over 50 percent, because of small cell size and low resistive losses in the materials. These performances have been approached in laboratory test fuel cell stacks of nominal 125-W capacities.
NASA Astrophysics Data System (ADS)
Guo, Weimin; Liu, Jiang
Anode-supported solid oxide fuel cells (SOFCs) with a trilayered yttria-doped bismuth oxide (YDB), strontium- and magnesium-doped lanthanum gallate (LSGM) and lanthanum-doped ceria (LDC) composite electrolyte film are developed. The cell with a YDB (18 μm)/LSGM (19 μm)/LDC (13 μm) composite electrolyte film (designated as cell-A) shows the open-circuit voltages (OCVs) slightly higher than that of a cell with an LSGM (31 μm)/LDC (17 μm) electrolyte film (designated as cell-B) in the operating temperature range of 500-700 °C. The cell-A using Ag-YDB composition as cathode exhibits lower polarization resistance and ohmic resistance than those of a cell-B at 700 °C. The results show that the introduction of YDB to an anode-supported SOFC with a LSGM/LDC composite electrolyte film can effectively block electronic transport through the cell and thus increased the OCVs, and can help the cell to achieve higher power output.
NASA Astrophysics Data System (ADS)
Luo, Rui; Wu, Feng; Xie, Man; Ying, Yao; Zhou, Jiahui; Huang, Yongxin; Ye, Yusheng; Li, Li; Chen, RenJie
2018-04-01
Layered transition metal oxides are considered to be promising candidates as cathode materials for sodium-ion batteries. Herein, a facile solid-state reaction is developed to synthesize hexagons plate-like Na0.67Ni0.25Mn0.75O2+δ (denoted as P2-NNM) material with habit plane formed. The structure of this layered oxide is characterized by XRD, HR-TEM and SAED. The layered material delivers a high reversible capacity of 91.8 mAh g-1 at 0.2 C with a capacity retention of 94.4 % after 280 cycles, superior rate capability and long cycle life (84.2 % capacity retention after 1000 cycle). Ni2+ is an active ion and Ni doping alleviates the Jahn-Teller distortion, and Mn3+/Mn4+ coexist as Mn4+ is desired from the stability perspective. Particularly, CV and XPS results confirm these results. Moreover, the electrode exhibits a quasi-solid-solution reaction during the sodium extraction and insertion. This contribution demonstrates that P2-NNM is a promising cathode electrode for rechargeable long-life sodium-ion batteries.
Lithium alloy negative electrodes
NASA Astrophysics Data System (ADS)
Huggins, Robert A.
The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.
Kuklja, M M; Kotomin, E A; Merkle, R; Mastrikov, Yu A; Maier, J
2013-04-21
Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980's as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot's cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Adam; Pati, Soobhankar
2012-03-11
Solid Oxide Membrane (SOM) Electrolysis is a new energy-efficient zero-emissions process for producing high-purity magnesium and high-purity oxygen directly from industrial-grade MgO. SOM Recycling combines SOM electrolysis with electrorefining, continuously and efficiently producing high-purity magnesium from low-purity partially oxidized scrap. In both processes, electrolysis and/or electrorefining take place in the crucible, where raw material is continuously fed into the molten salt electrolyte, producing magnesium vapor at the cathode and oxygen at the inert anode inside the SOM. This paper describes a three-dimensional multi-physics finite-element model of ionic current, fluid flow driven by argon bubbling and thermal buoyancy, and heat andmore » mass transport in the crucible. The model predicts the effects of stirring on the anode boundary layer and its time scale of formation, and the effect of natural convection at the outer wall. MOxST has developed this model as a tool for scale-up design of these closely-related processes.« less
METHOD OF COMBINING HYDROGEN AND OXYGEN
McBride, J.P.
1962-02-27
A method is given for the catalytic recombination of radiolytic hydrogen and/or deulerium and oxygen resulting from the subjection or an aqueous thorium oxide or thorium oxide-uranium oxide slurry to ionizing radiation. An improved catalyst is prepared by providing paliadium nitrate in an aqueous thorium oxide sol at a concentration of at least 0.05 grams per gram of thorium oxide and contacting the sol with gaseous hydrogen to form flocculated solids. The solids are then recovered and added to the slurry to provide a palladium concentration of 100 to 1000 parts per million. Recombination is effected by the calalyst at a rate sufficient to support high nuclear reactor power densities. (AEC)
Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.
1998-05-19
The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvis, J.B.; Terry, J.C.; Schubert, S.A.
The report gives results of the measurement of the adipic acid degradation rate in a bench-scale flue gas desulfurization (FGD) system, designed to simulate many of the important aspects of full-scale FGD systems. Results show that the adipic acid degradation rate depends on the sulfite oxidation rate, the adipic acid concentration, the presence of manganese in solution, and temperature. The degradation rate is also affected by pH, but only when manganese is present. Adipic acid degradation products identified in the liquid phase include valeric, butyric, propionic, succinic, and glutaric acids. When manganese was present, the predominant degradation products were succinicmore » and glutaric acids. Analysis of solids from the bench scale tests shows large concentrations of coprecipitated adipic acid in low oxidation sulfite solids. By contrast, low quantities of coprecipitated adipic acid were found in high oxidation gypsum solids.« less
One-step electrolytic preparation of Si-Fe alloys as anodes for lithium ion batteries
NASA Astrophysics Data System (ADS)
Wang, Hailong; Sun, Diankun; Song, Qiqi; Xie, Wenqi; Jiang, Xu; Zhang, Bo
2016-06-01
One-step electrolytic formation of uniform crystalline Si-Fe alloy particles was successfully demonstrated in direct electro-reduction of solid mixed oxides of SiO2 and Fe2O3 in molten CaCl2 at 900∘C. Upon constant voltage electrolysis of solid mixed oxides at 2.8V between solid oxide cathode and graphite anode for 5h, electrolytic Si-Fe with the same Si/Fe stoichimetry of the precursory oxides was generated. The firstly generated Fe could function as depolarizers to enhance reduction rate of SiO2, resulting in the enhanced reduction kinetics to the electrolysis of individual SiO2. When evaluated as anode for lithium ion batteries, the prepared SiFe electrode showed a reversible lithium storage capacity as high as 470mAh g-1 after 100 cycles at 200mA g-1, promising application in high-performance lithium ion batteries.
Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik
1999-01-01
The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.
Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik
1998-01-01
The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.
Wang, Hailiang; Sapi, Andras; Thompson, Christopher M; Liu, Fudong; Zherebetskyy, Danylo; Krier, James M; Carl, Lindsay M; Cai, Xiaojun; Wang, Lin-Wang; Somorjai, Gabor A
2014-07-23
We synthesize platinum nanoparticles with controlled average sizes of 2, 4, 6, and 8 nm and use them as model catalysts to study isopropanol oxidation to acetone in both the liquid and gas phases at 60 °C. The reaction at the solid/liquid interface is 2 orders of magnitude slower than that at the solid/gas interface, while catalytic activity increases with the size of platinum nanoparticles for both the liquid-phase and gas-phase reactions. The activation energy of the gas-phase reaction decreases with the platinum nanoparticle size and is in general much higher than that of the liquid-phase reaction which is largely insensitive to the size of catalyst nanoparticles. Water substantially promotes isopropanol oxidation in the liquid phase. However, it inhibits the reaction in the gas phase. The kinetic results suggest different mechanisms between the liquid-phase and gas-phase reactions, correlating well with different orientations of IPA species at the solid/liquid interface vs the solid/gas interface as probed by sum frequency generation vibrational spectroscopy under reaction conditions and simulated by computational calculations.
Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho
2017-10-04
We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10 -3 S cm -1 ) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g -1 at 0.1 A g -1 ), better rate capability (64% capacity retention until 20 A g -1 ), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg -1 at 1 A g -1 ) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.
Shishkin, M; Ziegler, T
2014-02-07
The first principles modeling of electrochemical reactions has proven useful for the development of efficient, durable and low cost solid oxide full cells (SOFCs). In this account we focus on recent advances in modeling of structural, electronic and catalytic properties of the SOFC anodes based on density functional theory (DFT) first principle calculations. As a starting point, we highlight that the adequate analysis of cell electrochemistry generally requires modeling of chemical reactions at the metal/oxide interface rather than on individual metal or oxide surfaces. The atomic models of Ni/YSZ and Ni/CeO2 interfaces, required for DFT simulations of reactions on SOFC anodes are discussed next, together with the analysis of the electronic structure of these interfaces. Then we proceed to DFT-based findings on charge transfer mechanisms during redox reactions on these two anodes. We provide a comparison of the electronic properties of Ni/YSZ and Ni/CeO2 interfaces and present an interpretation of their different chemical performances. Subsequently we discuss the computed energy pathways of fuel oxidation mechanisms, obtained by various groups to date. We also discuss the results of DFT studies combined with microkinetic modeling as well as the results of kinetic Monte Carlo simulations. In conclusion we summarize the key findings of DFT modeling of metal/oxide interfaces to date and highlight possible directions in the future modeling of SOFC anodes.
High conducting oxide--sulfide composite lithium superionic conductor
Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin
2017-01-17
A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.
Combustion Characterization and Model Fuel Development for Micro-tubular Flame-assisted Fuel Cells.
Milcarek, Ryan J; Garrett, Michael J; Baskaran, Amrish; Ahn, Jeongmin
2016-10-02
Combustion based power generation has been accomplished for many years through a number of heat engine systems. Recently, a move towards small scale power generation and micro combustion as well as development in fuel cell research has created new means of power generation that combine solid oxide fuel cells with open flames and combustion exhaust. Instead of relying upon the heat of combustion, these solid oxide fuel cell systems rely on reforming of the fuel via combustion to generate syngas for electrochemical power generation. Procedures were developed to assess the combustion by-products under a wide range of conditions. While theoretical and computational procedures have been developed for assessing fuel-rich combustion exhaust in these applications, experimental techniques have also emerged. The experimental procedures often rely upon a gas chromatograph or mass spectrometer analysis of the flame and exhaust to assess the combustion process as a fuel reformer and means of heat generation. The experimental techniques developed in these areas have been applied anew for the development of the micro-tubular flame-assisted fuel cell. The protocol discussed in this work builds on past techniques to specify a procedure for characterizing fuel-rich combustion exhaust and developing a model fuel-rich combustion exhaust for use in flame-assisted fuel cell testing. The development of the procedure and its applications and limitations are discussed.
Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries.
Liu, Xue; Huang, Jia-Qi; Zhang, Qiang; Mai, Liqiang
2017-05-01
Lithium-sulfur (Li-S) batteries with high energy density and long cycle life are considered to be one of the most promising next-generation energy-storage systems beyond routine lithium-ion batteries. Various approaches have been proposed to break down technical barriers in Li-S battery systems. The use of nanostructured metal oxides and sulfides for high sulfur utilization and long life span of Li-S batteries is reviewed here. The relationships between the intrinsic properties of metal oxide/sulfide hosts and electrochemical performances of Li-S batteries are discussed. Nanostructured metal oxides/sulfides hosts used in solid sulfur cathodes, separators/interlayers, lithium-metal-anode protection, and lithium polysulfides batteries are discussed respectively. Prospects for the future developments of Li-S batteries with nanostructured metal oxides/sulfides are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Assessment of bio-fuel options for solid oxide fuel cell applications
NASA Astrophysics Data System (ADS)
Lin, Jiefeng
Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with diesel engine and truck idling with fuel cell auxiliary power unit system. The customized nozzle used for fuel vaporization and mixing achieved homogenous atomization of input hydrocarbon fuels (e.g., diesel, biodiesel, diesel-biodiesel blend, and biodiesel-ethanol-diesel), and improved the performance of fuel catalytic reformation. Given the same operating condition (reforming temperature, total oxygen content, water input flow, and gas hourly space velocity), the hydrocarbon reforming performance follows the trend of diesel > biodiesel-ethanol-diesel > diesel-biodiesel blend > biodiesel (i.e., diesel catalytic reformation has the highest hydrogen production, lowest risk of carbon formation, and least possibility of hot spot occurrence). These results provide important new insight into the use of bio-fuels and bio-fuel blends as a primary fuel source for solid oxide fuel cell applications.
Pomfret, Michael B; Steinhurst, Daniel A; Owrutsky, Jeffrey C
2013-04-18
Fuel interactions on solid oxide fuel cell (SOFC) anodes are studied with in situ Fourier transform infrared emission spectroscopy (FTIRES). SOFCs are operated at 800 °C with CH4 as a representative hydrocarbon fuel. IR signatures of gas-phase oxidation products, CO2(g) and CO(g), are observed while cells are under load. A broad feature at 2295 cm(-1) is assigned to CO2 adsorbed on Ni as a CH4 oxidation intermediate during cell operation and while carbon deposits are electrochemically oxidized after CH4 operation. Electrochemical control provides confirmation of the assignment of adsorbed CO2. FTIRES has been demonstrated as a viable technique for the identification of fuel oxidation intermediates and products in working SOFCs, allowing for the elucidation of the mechanisms of fuel chemistry.
NASA Astrophysics Data System (ADS)
Talic, Belma; Molin, Sebastian; Wiik, Kjell; Hendriksen, Peter Vang; Lein, Hilde Lea
2017-12-01
MnCo2O4, MnCo1.7Cu0.3O4 and MnCo1.7Fe0.3O4 are investigated as coatings for corrosion protection of metallic interconnects in solid oxide fuel cell stacks. Electrophoretic deposition is used to deposit the coatings on Crofer 22 APU alloy. All three coating materials reduce the parabolic oxidation rate in air at 900 °C and 800 °C. At 700 °C there is no significant difference in oxidation rate between coated samples and uncoated pre-oxidized Crofer 22 APU. The cross-scale area specific resistance (ASR) is measured in air at 800 °C using La0.85Sr0.1Mn1.1O3 (LSM) contact plates to simulate the interaction with the cathode in a SOFC stack. All coated samples have three times lower ASR than uncoated Crofer 22 APU after 4370 h aging. The ASR increase with time is lowest with the MnCo2O4 coating, followed by the MnCo1.7Fe0.3O4 and MnCo1.7Cu0.3O4 coatings. LSM plates contacted to uncoated Crofer 22 APU contain significant amounts of Cr after aging, while all three coatings effectively prevent Cr diffusion into the LSM. A complex Cr-rich reaction layer develops at the coating-alloy interface during oxidation. Cu and Fe doping reduce the extent of this reaction layer at 900 °C, while at 800 °C the effect of doping is insignificant.
Superconductivity devices: Commercial use of space
NASA Technical Reports Server (NTRS)
Haertling, Gene; Furman, Eugene; Li, Guang
1995-01-01
The work described in this report covers various aspects of the Rainbow solid-state actuator technology. It is presented in six parts dealing with materials, processing, fabrication, properties and associated phenomena. The Rainbow actuator technology is a relatively new materials development which had its inception in 1992. It consists of a new processing technology for preparing piezoelectric and electrostrictive ceramic materials. It involves a high temperature chemical reduction process which leads to an internal pre-stressing of the oxide wafer, thus the name Rainbow, an acronym for Reduced And INternally Biased Oxide Wafer. Ceramics fabricated by this method produce bending-mode actuator devices which possess several times more displacement and load bearing capacity than present-day benders (unimorphs, bimorphs). It is anticipated that these solid-state, electromechanical actuators which can be used in a number of applications in space such as cryopump motors, anti-vibration active structures, autoleveling platforms, telescope mirror correctors and autofocusing devices. When considering any of these applications, the key to the development of a successful device is the successful development of a ceramic material which can produce maximum displacement per volt input; hence, this initiative involving a solid-state means for achieving unusually high electromechanical displacement can be significant and far reaching. An additional benefit obtained from employing the piezoelectric effect in these actuator devices is the ability to also utilize them as sensors; and, indeed, they can be used as both motor (actuator) and generator (sensor) in multifunction devices.
Composite anode La0.8Sr0.2MnO3 impregnated with cobalt oxide for steam electrolysis
NASA Astrophysics Data System (ADS)
Li, Shisong; Cheng, Jigui; Xie, Kui; Li, Peipei; Wu, Yucheng
2013-12-01
Oxygen-ion conducting solid oxide electrolyzer (SOE) has attracted a great deal of interest because it converts electrical energy into chemical energy directly. The oxygen evolution reaction (OER) is occurred at the anode of solid oxide electrolyzer as the O2- being oxidized and form O2 gas, which is considered as one of the major cause of overpotentials in steam electrolyzers. This paper investigates the electrolysis of steam based on cobalt oxide impregnated La0.8Sr0.2MnO3 (LSM) composite anode in an oxide-ion-conducting solid oxide electrolyzer. The conductivity of LSM is studied versus temperature and oxygen partial pressure and correlated to the electrochemical properties of the composite electrodes in symmetric cells at 800 °C. Different contents of Co3O4 (wt.1%, 2%, 4%, 6%, 8%, 10%) were impregnated into LSM electrode and it was found that the polarization resistance (Rp) of symmetric cells gradually improved from 1.16 Ω•cm2 (LSM) to 0.24 Ω•cm2 (wt.10%Co3O4-LSM). Steam electrolysis based on LSM and wt.6%Co3O4-LSM anode electrolyzers are tested at 800°C and the AC impedance spectroscopy results indicated that the Rp of high frequency process significantly decreased from1.1 Ω•cm2 (LSM) to 0.5 Ω•cm2 (wt.6%Co3O4-LSM) under 1.8V electrolysis voltage and the Rp of low frequency process decreased from 14.9 Ω•cm2 to 5.7 Ω•cm2. Electrochemical catalyst Co3O4 can efficiently improve the electrode and enhance the performance of high temperature solid oxide electrolyzer.
Stefan, Elena; Norby, Truls
2016-01-31
The rising importance of converting high peak electricity from renewables to fuels has urged field specialists to organize this Faraday Discussion on Solid Oxide Electrolysis. The topic is of essential interest in order to achieve a greater utilization of renewable energy and storage at higher densities.
Viscous sealing glass compositions for solid oxide fuel cells
Kim, Cheol Woon; Brow, Richard K.
2016-12-27
A sealant for forming a seal between at least two solid oxide fuel cell components wherein the sealant comprises a glass material comprising B.sub.2O.sub.3 as a principal glass former, BaO, and other components and wherein the glass material is substantially alkali-free and contains less than 30% crystalline material.
Ni modified ceramic anodes for direct-methane solid oxide fuel cells
Xiao, Guoliang; Chen, Fanglin
2016-01-19
In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.
Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly
Haltiner, Jr., Karl J.; Kelly, Sean M.
2005-11-22
In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.
NASA Astrophysics Data System (ADS)
White, B. D.; Kesler, O.
Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.
NASA Astrophysics Data System (ADS)
Piyadasa, Adimali; Wang, Sibo; Gao, Pu-Xian
2017-07-01
The electronic band structure of a solid state semiconductor determines many of its physical and chemical characteristics such as electrical, optical, physicochemical, and catalytic activity. Alteration or modification of the band structure could lead to significant changes in these physical and chemical characteristics, therefore we introduce new mechanisms of creating novel solid state materials with interesting properties. Over the past three decades, research on band structure engineering has allowed development of various methods to modify the band structure of engineered materials. Compared to bulk counterparts, nanostructures generally exhibit higher band structure modulation capabilities due to the quantum confinement effect, prominent surface effect, and higher strain limit. In this review we will discuss various band structure engineering strategies in semiconductor nanowires and other related nanostructures, mostly focusing on metal oxide systems. Several important strategies of band structure modulation are discussed in detail, such as doping, alloying, straining, interface and core-shell nanostructuring.
NASA Astrophysics Data System (ADS)
Nakajima, Hironori; Kitahara, Tatsumi
2017-11-01
We have investigated the behavior of an operating solid oxide fuel cell (SOFC) with supplying a simulated syngas to develop diagnosis method of the SOFC for marine power applications fueled with liquefied natural gas (LNG). We analyze the characteristics of a syngas-fueled intermediate temperature microtubular SOFC at 500 ∘C for accelerated deterioration by carbon deposition as a model case by electrochemical impedance spectroscopy (EIS) to in-situ find parameters useful for the real-time diagnosis. EIS analyses are performed by complex nonlinear least squares (CNLS) curve fitting to measured impedance spectra with an equivalent electric circuit model consisting of several resistances and capacitances attributed to the anode and cathode processes as well as Ohmic resistance of the cell. The characteristic changes of those circuit parameters by internal reforming and anode degradation are extracted, showing that they can be used for the real-time diagnosis of operating SOFCs.
JAGUAR Procedures for Detonation Behavior of Silicon Containing Explosives
NASA Astrophysics Data System (ADS)
Stiel, Leonard; Baker, Ernest; Capellos, Christos; Poulos, William; Pincay, Jack
2007-06-01
Improved relationships for the thermodynamic properties of solid and liquid silicon and silicon oxide for use with JAGUAR thermo-chemical equation of state routines were developed in this study. Analyses of experimental melting temperature curves for silicon and silicon oxide indicated complex phase behavior and that improved coefficients were required for solid and liquid thermodynamic properties. Advanced optimization routines were utilized in conjunction with the experimental melting point data to establish volumetric coefficients for these substances. The new property libraries resulted in agreement with available experimental values, including Hugoniot data at elevated pressures. Detonation properties were calculated with JAGUAR using the revised property libraries for silicon containing explosives. Constants of the JWLB equation of state were established for varying extent of silicon reaction. Supporting thermal heat transfer analyses were conducted for varying silicon particle sizes to establish characteristic times for melting and silicon reaction.
NASA Technical Reports Server (NTRS)
Singh, M.; Shpargel, T. P.; Asthana, R.
2007-01-01
Two gold-base active metal brazes (gold-ABA and gold-ABA-V) were evaluated for oxidation resistance to 850 C, and used to join yttria-stabilized zirconia (YSZ) to a corrosion-resistant ferritic stainless steel for possible use in solid oxide fuel cells. Thermogravimetric analysis and optical microscopy and scanning electron microscopy coupled with energy-dispersive spectroscopy were used to evaluate the braze oxidation behavior, and microstructure and composition of the YSZ/braze/steel joints. Both gold-ABA and gold-ABA-V exhibited nearly linear oxidation kinetics at 850 C, with gold-ABA-V showing faster oxidation than gold-ABA. Both brazes produced metallurgically sound YSZ/steel joints due to chemical interactions of Ti and V with the YSZ and steel substrates.
Solid polymer MEMS-based fuel cells
Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Pleasant Hill, CA
2008-04-22
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
Selenium Speciation and Management in Wet FGD Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searcy, K; Richardson, M; Blythe, G
2012-02-29
This report discusses results from bench- and pilot-scale simulation tests conducted to determine the factors that impact selenium speciation and phase partitioning in wet FGD systems. The selenium chemistry in wet FGD systems is highly complex and not completely understood, thus extrapolation and scale-up of these results may be uncertain. Control of operating parameters and application of scrubber additives have successfully demonstrated the avoidance or decrease of selenite oxidation at the bench and pilot scale. Ongoing efforts to improve sample handling methods for selenium speciation measurements are also discussed. Bench-scale scrubber tests explored the impacts of oxidation air rate, tracemore » metals, scrubber additives, and natural limestone on selenium speciation in synthetic and field-generated full-scale FGD liquors. The presence and concentration of redox-active chemical species as well as the oxidation air rate contribute to the oxidation-reduction potential (ORP) conditions in FGD scrubbers. Selenite oxidation to the undesirable selenate form increases with increasing ORP conditions, and decreases with decreasing ORP conditions. Solid-phase manganese [Mn(IV)] appeared to be the significant metal impacting the oxidation of selenite to selenate. Scrubber additives were tested for their ability to inhibit selenite oxidation. Although dibasic acid and other scrubber additives showed promise in early clear liquor (sodium based and without calcium solids) bench-scale tests, these additives did not show strong inhibition of selenite oxidation in tests with higher manganese concentrations and with slurries from full-scale wet FGD systems. In bench-tests with field liquors, addition of ferric chloride at a 250:1 iron-to-selenium mass ratio sorbed all incoming selenite to the solid phase, although addition of ferric salts had no impact on native selenate that already existed in the field slurry liquor sample. As ORP increases, selenite may oxidize to selenate more rapidly than it sorbs to ferric solids. Though it was not possible to demonstrate a decrease in selenium concentrations to levels below the project'ale testing were evident at the pilot scale. Specifically, reducing oxidation air rate and ORP tends to either retain selenium as selenite in the liquor or shift selenium phase partitioning to the solid phase. Oxidation air flow rate control may be one option for managing selenium behavior in FGD scrubbers. Units that cycle load widely may find it more difficult to impact ORP conditions with oxidation air flow rate control alone. Because decreasing oxidation air rates to the reaction tank showed that all new selenium reported to the solids, the addition of ferric chloride to the pilot scrubber could not show further improvements in selenium behavior. Ferric chloride addition did shift mercury to the slurry solids, specifically to the fine particles. Several competing pathways may govern the reporting of selenium to the slurry solids: co-precipitation with gypsum into the bulk solids and sorption or co-precipitation with iron into the fine particles. Simultaneous measurement of selenium and mercury behavior suggests a holistic management strategy is best to optimize the fate of both of these elements in FGD waters. Work conducted under this project evaluated sample handling and analytical methods for selenium speciation in FGD waters. Three analytical techniques and several preservation methods were employed. Measurements of selenium speciation over time indicated that for accurate selenium speciation, it is best to conduct measurements on unpreserved, filtered samples as soon after sampling as possible. The capital and operating costs for two selenium management strategies were considered: ferric chloride addition and oxidation air flow rate control. For ferric chloride addition, as might be expected the reagent makeup costs dominate the overall costs, and range from 0.22 to 0.29 mills/kWh. For oxidation air flow rate control, a cursory comparison of capital costs and turndown capabilities for multi-stage and single-stage centrifugal blowers and several flow control methods was completed. For greenfield systems, changing the selection of blower type and flow control method may have payback periods of 4 to 5 years or more if based on energy savings alone. However, the benefits to managing redox chemistry in the scrubber could far outweigh the savings in electricity costs under some circumstances.« less
Controlled growth of semiconductor crystals
Bourret-Courchesne, Edith D.
1992-01-01
A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.
Controlled growth of semiconductor crystals
Bourret-Courchesne, E.D.
1992-07-21
A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.
Fundamental Studies of the Durability of Materials for Interconnects in Solid Oxide Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick S. Pettit; Gerald H. Meier
2006-06-30
Ferritic stainless steels are a leading candidate material for use as an SOFC interconnect, but have the problem of forming volatile chromia species that lead to cathode poisoning. This project has focused both on optimization of ferritic alloys for SOFC applications and evaluating the possibility of using alternative materials. The initial efforts involved studying the oxidation behavior of a variety of chromia-forming ferritic stainless steels in the temperature range 700-900 C in atmospheres relevant to solid oxide fuel cell operation. The alloys exhibited a wide variety of oxidation behavior based on composition. A method for reducing the vaporization is tomore » add alloying elements that lead to the formation of a thermally grown oxide layer over the protective chromia. Several commercial steels form manganese chromate on the surface. This same approach, combined with observations of TiO{sub 2} overlayer formation on the chromia forming, Ni-based superalloy IN 738, has resulted in the development of a series of Fe-22 Cr-X Ti alloys (X=0-4 wt%). Oxidation testing has indicated that this approach results in significant reduction in chromia evaporation. Unfortunately, the Ti also results in accelerated chromia scale growth. Fundamental thermo-mechanical aspects of the durability of solid oxide fuel cell (SOFC) interconnect alloys have also been investigated. A key failure mechanism for interconnects is the spallation of the chromia scale that forms on the alloy, as it is exposed to fuel cell environments. Indentation testing methods to measure the critical energy release rate (Gc) associated with the spallation of chromia scale/alloy systems have been evaluated. This approach has been used to evaluate the thermomechanical stability of chromia films as a function of oxidation exposure. The oxidation of pure nickel in SOFC environments was evaluated using thermogravimetric analysis (TGA) to determine the NiO scaling kinetics and a four-point probe was used to measure the area-specific resistance (ASR) to estimate the electrical degradation of the interconnect. In addition to the baseline study of pure nickel, steps were taken to decrease the ASR through alloying and surface modifications. Finally, high conductivity composite systems, consisting of nickel and silver, were studied. These systems utilize high conductivity silver pathways through nickel while maintaining the mechanical stability that a nickel matrix provides.« less
A Model for the Oxidation of Carbon Silicon Carbide Composite Structures
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2004-01-01
A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of carbon silicon carbide (C/SiC) composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The numerical method is demonstrated by utilizing the method to model the carbon oxidation and weight loss behavior of C/SiC specimens during thermogravimetric experiments. The numerical method is used to study the physics of carbon oxidation in carbon silicon carbide composites.
Interfacial Tension in the CaO-Al2O3-SiO2-(MgO) Liquid Slag-Solid Oxide Systems
NASA Astrophysics Data System (ADS)
Abdeyazdan, Hamed; Monaghan, Brian J.; Longbottom, Raymond J.; Rhamdhani, M. Akbar; Dogan, Neslihan; Chapman, Michael W.
2017-08-01
Interfacial phenomenon is critical in metal processing and refining. While it is known to be important, there are little data available for key oxide systems in the literature. In this study, the interfacial tension ( σ LS) of liquid slag on solid oxides (alumina, spinel, and calcium aluminate), for a range of slags in the CaO-Al2O3-SiO2-(MgO) system at 1773 K (1500 °C), has been evaluated. The results show that basic ladle-type slags exhibit lower σ LS with oxide phases examined compared to that of acid tundish-type slags. Also, within the slag types (acid and base), σ LS was observed to decrease with increasing slag basicity. A correlation between σ LS and slag structure was observed, i.e., σ LS was found to decrease linearly with increasing of slag optical basicity (Λ) and decrease logarithmically with decreasing of slag viscosity from acid to base slags. This indicated a higher σ LS as the ions in the slag become larger and more complex. Through a work of adhesion ( W) analysis, it was shown that basic ladle slags with lower σ LS result in a greater W, i.e., form a stronger bond with the solid oxide phases examined. This indicates that all other factors being equal, the efficiency of inclusion removal from steel of inclusions of similar phase to these solid oxides would be greater.
Air-Independent Solid Oxide Fuel Cells for NASA's LOX-CH4 Landers
NASA Technical Reports Server (NTRS)
Ryan, Abigail C.; Araghi, Koorosh R.; Farmer, Serene C.
2013-01-01
Gemini, Apollo, and Space Shuttle used fuel cells as main power source for vehicle and water source for life support and thermal PEM (Gemini) and Alkaline (Apollo, Shuttle) fuel cells were used Ideal for short (less than 3 weeks) missions when the required O2 and H2 can be launched with the vehicle. New missions that might require long-duration stays in orbit or at a habitat, cannot rely on the availability of pure reactants but should also aim to be sun-independent - a problem for which Solid Oxide Fuel Cells might be the answer. Recently, NASA has investigated & developed LOX/CH4-propelled landers (Altair, MORPHEUS). In order to preserve mission flexibility, fuel cells are being studied as a potential power source. Much of NASA's fuel cell development has been focused on creating a dead-headed, non-flow through PEM fuel cells which would weigh less and be more reliable than the existing Alkaline and PEM technology; however, LOX/CH4 as a propellant introduces SOFCs as a power option due to their ability to accept those reactants without much reforming.
A novel cobalt-free layered GdBaFe 2O 5+ δ cathode for proton conducting solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Ding, Hanping; Xue, Xingjian
While cobalt-containing perovskite-type cathode materials facilitate the activation of oxygen reduction, they also suffer from problems like poor chemical stability in CO 2 and high thermal expansion coefficients. In this research, a cobalt-free layered GdBaFe 2O 5+ δ (GBF) perovskite was developed as a cathode material for protonic ceramic membrane fuel cells (PCMFCs) based on proton conducting electrolyte of stable BaZr 0.1Ce 0.7Y 0.2O 3- δ (BZCY7). The button cells of Ni-BZCY7|BZCY7|GBF were fabricated and characterized using complex impedance technique from 600 to 700 °C. An open-circuit potential of 1.007 V, maximum power density of 417 mW cm -2, and a low electrode polarization resistance of 0.18 Ω cm 2 were achieved at 700 °C. The results indicate that layered GBF perovskite is a good candidate for cobalt-free cathode material, while the developed Ni-BZCY7|BZCY7|GBF cell is a promising functional material system for solid oxide fuel cells.
NASA Astrophysics Data System (ADS)
Guan, Xiaofei; Pal, Uday B.; Powell, Adam C.
2014-06-01
This paper reports a solid oxide membrane (SOM) electrolysis experiment using an LSM(La0.8Sr0.2MnO3-δ)-Inconel inert anode current collector for production of magnesium and oxygen directly from magnesium oxide at 1423 K (1150 °C). The electrochemical performance of the SOM cell was evaluated by means of various electrochemical techniques including electrochemical impedance spectroscopy, potentiodynamic scan, and electrolysis. Electronic transference numbers of the flux were measured to assess the magnesium dissolution in the flux during SOM electrolysis. The effects of magnesium solubility in the flux on the current efficiency and the SOM stability during electrolysis are discussed. An inverse correlation between the electronic transference number of the flux and the current efficiency of the SOM electrolysis was observed. Based on the experimental results, a new equivalent circuit of the SOM electrolysis process is presented. A general electrochemical polarization model of SOM process for magnesium and oxygen gas production is developed, and the maximum allowable applied potential to avoid zirconia dissociation is calculated as well. The modeling results suggest that a high electronic resistance of the flux and a relatively low electronic resistance of SOM are required to achieve membrane stability, high current efficiency, and high production rates of magnesium and oxygen.
Engine-integrated solid oxide fuel cells for efficient electrical power generation on aircraft
NASA Astrophysics Data System (ADS)
Waters, Daniel F.; Cadou, Christopher P.
2015-06-01
This work investigates the use of engine-integrated catalytic partial oxidation (CPOx) reactors and solid oxide fuel cells (SOFCs) to reduce fuel burn in vehicles with large electrical loads like sensor-laden unmanned air vehicles. Thermodynamic models of SOFCs, CPOx reactors, and three gas turbine (GT) engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed and checked against relevant data and source material. Fuel efficiency is increased by 4% and 8% in the 50 kW and 90 kW separate exhaust turbofan systems respectively at only modest cost in specific power (8% and 13% reductions respectively). Similar results are achieved in other engine types. An additional benefit of hybridization is the ability to provide more electric power (factors of 3 or more in some cases) than generator-based systems before encountering turbine inlet temperature limits. A sensitivity analysis shows that the most important parameters affecting the system's performance are operating voltage, percent fuel oxidation, and SOFC assembly air flows. Taken together, this study shows that it is possible to create a GT-SOFC hybrid where the GT mitigates balance of plant losses and the SOFC raises overall system efficiency. The result is a synergistic system with better overall performance than stand-alone components.
Zhang, Ming-Yue; Wang, Man-Man; Hao, Yu-Lan; Shi, Xin-Ran; Wang, Xue-Sheng
2016-05-01
A simple, effective, and robust magnetic solid-phase extraction method was developed using magnetite/reduced graphene oxide nanoparticles as the adsorbent for the simultaneous determination of Sudan dyes (I, II, III, and IV) in foodstuffs. The magnetite/reduced graphene oxide nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometry. The extraction parameters including extraction time, elution solution, and elution time and volume were investigated in detail. Such magnetite/reduced graphene oxide nanoparticles based magnetic solid-phase extraction in combination with high-performance liquid chromatography and variable wavelength detection gave the detection limits of 3-6 μg/kg for Sudan I-IV in chili sauce, tomato sauce, chili powder, and chili flake samples. The recoveries were 79.6-108% at three spiked levels with the intra- and inter-day relative standard deviations of 1.2-8.6 and 4.5-9.6%, respectively. The feasibility was further performed by a comparison with commercial alumina-N. This method is suitable for the routine analysis of Sudan dyes due to its sensitivity, simplicity, and low cost. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extended Durability Testing of an External Fuel Processor for a Solid Oxide Fuel Cell (SOFC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Perna; Anant Upadhyayula; Mark Scotto
2012-11-05
Durability testing was performed on an external fuel processor (EFP) for a solid oxide fuel cell (SOFC) power plant. The EFP enables the SOFC to reach high system efficiency (electrical efficiency up to 60%) using pipeline natural gas and eliminates the need for large quantities of bottled gases. LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) is developing natural gas-fired SOFC power plants for stationary power applications. These power plants will greatly benefit the public by reducing the cost of electricity while reducing the amount of gaseous emissions of carbon dioxide, sulfur oxides,more » and nitrogen oxides compared to conventional power plants. The EFP uses pipeline natural gas and air to provide all the gas streams required by the SOFC power plant; specifically those needed for start-up, normal operation, and shutdown. It includes a natural gas desulfurizer, a synthesis-gas generator and a start-gas generator. The research in this project demonstrated that the EFP could meet its performance and durability targets. The data generated helped assess the impact of long-term operation on system performance and system hardware. The research also showed the negative impact of ambient weather (both hot and cold conditions) on system operation and performance.« less
Fenaille, François; Visani, Piero; Fumeaux, René; Milo, Christian; Guy, Philippe A
2003-04-23
Two headspace techniques based on mass spectrometry detection (MS), electronic nose, and solid phase microextraction coupled to gas chromatography-mass spectrometry (SPME-GC/MS) were evaluated for their ability to differentiate various infant formula powders based on changes of their volatiles upon storage. The electronic nose gave unresolved MS fingerprints of the samples gas phases that were further submitted to principal component analysis (PCA). Such direct MS recording combined to multivariate treatment enabled a rapid differentiation of the infant formulas over a 4 week storage test. Although MS-based electronic nose advantages are its easy-to-use aspect and its meaningful data interpretation obtained with a high throughput (100 samples per 24 h), its greatest disadvantage is that the present compounds could not be identified and quantified. For these reasons, a SPME-GC/MS measurement was also investigated. This technique allowed the identification of saturated aldehydes as the main volatiles present in the headspace of infant milk powders. An isotope dilution assay was further developed to quantitate hexanal as a potential indicator of infant milk powder oxidation. Thus, hexanal content was found to vary from roughly 500 and 3500 microg/kg for relatively non-oxidized and oxidized infant formulas, respectively.
Saxena, Mandvi; Maiti, Tanmoy
2017-05-09
Increasing electrical conductivity in oxides, which are inherently insulators, can be a potential route in developing oxide-based thermoelectric power generators with higher energy conversion efficiency. In the present work, environmentally friendly non-toxic double perovskite La x Sr 2-x TiMoO 6 (LSTM) ceramics were synthesized using a solid-state reaction route by optimizing the sintering temperature and atmosphere for high temperature thermoelectric applications. Rietveld refinement of XRD data confirmed a single-phase solid solution with a cubic structure in these double perovskites with the space-group Pm3[combining macron]m. SEM studies showed a highly dense microstructure in these ceramics. High electrical conductivity on the order of 10 5 S m -1 and large carrier concentration (∼10 22 cm -3 ) were obtained in these materials. The temperature-dependent electrical conductivity measurement showed that the LSTM ceramics exhibit a semiconductor to metal transition. Thermopower (S) measurements demonstrated the conductivity switching from a p-type to n-type behavior at higher temperature. A temperature dependent Seebeck coefficient was further explained using a model for coexistence of both types of charge carriers in these oxides. A conductivity mechanism of these double perovskites was found to be governed by a small polaron hopping model.
Electrochemical Stability of Li 10GeP 2S 12 and Li 7La 3Zr 2O 12 Solid Electrolytes
Han, Fudong; Zhu, Yizhou; He, Xingfeng; ...
2016-01-21
The electrochemical stability window of solid electrolyte is overestimated by the conventional experimental method using a Li/electrolyte/inert metal semiblocking electrode because of the limited contact area between solid electrolyte and inert metal. Since the battery is cycled in the overestimated stability window, the decomposition of the solid electrolyte at the interfaces occurs but has been ignored as a cause for high interfacial resistances in previous studies, limiting the performance improvement of the bulk-type solid-state battery despite the decades of research efforts. Thus, there is an urgent need to identify the intrinsic stability window of the solid electrolyte. The thermodynamic electrochemicalmore » stability window of solid electrolytes is calculated using first principles computation methods, and an experimental method is developed to measure the intrinsic electrochemical stability window of solid electrolytes using a Li/electrolyte/electrolyte-carbon cell. The most promising solid electrolytes, Li10GeP2S12 and cubic Li-garnet Li7La3Zr2O12, are chosen as the model materials for sulfide and oxide solid electrolytes, respectively. The results provide valuable insights to address the most challenging problems of the interfacial stability and resistance in high-performance solid-state batteries.« less
Status of commercial fuel cell powerplant system development
NASA Technical Reports Server (NTRS)
Warshay, Marvin
1987-01-01
The primary focus is on the development of commercial Phosphoric Acid Fuel Cell (PAFC) powerplant systems because the PAFC, which has undergone extensive development, is currently the closest fuel cell system to commercialization. Shorter discussions are included on the high temperature fuel cell systems which are not as mature in their development, such as the Molten Carbonate Fuel Cell (MCFC) and the Solid Oxide Fuel Cell (SOFC). The alkaline and the Solid Polymer Electrolyte (SPE) fuel cell systems, are also included, but their discussions are limited to their prospects for commercial development. Currently, although the alkaline fuel cell continues to be used for important space applications there are no commercial development programs of significant size in the USA and only small efforts outside. The market place for fuel cells and the status of fuel cell programs in the USA receive extensive treatment. The fuel cell efforts outside the USA, especially the large Japanese programs, are also discussed.
NASA Technical Reports Server (NTRS)
Perkins, G. S.; Pawlik, E. V.; Phillips, W. M. (Inventor)
1981-01-01
A nozzle for use with abrasive and/or corrosive materials is formed of sintered ceramic compositions having high temperature oxidation resistance, high hardness and high abrasion and corrosion resistance. The ceramic may be a binary solid solution of a ceramic oxide and silicon nitride, and preferably a ternary solid solution of a ceramic oxide, silicon nitride and aluminum nitride. The ceramic oxide is selected from a group consisting of Al2O3, Y2O3 and Cr2O3, or mixtures of those compounds. Titanium carbide particles are dispersed in the ceramic mixture before sintering. The nozzles are encased for protection from external forces while in use by a metal or plastic casing.
Direct electrochemical reduction of solid uranium oxide in molten fluoride salts
NASA Astrophysics Data System (ADS)
Gibilaro, Mathieu; Cassayre, Laurent; Lemoine, Olivier; Massot, Laurent; Dugne, Olivier; Malmbeck, Rikard; Chamelot, Pierre
2011-07-01
The direct electrochemical reduction of UO 2 solid pellets was carried out in LiF-CaF 2 (+2 mass.% Li 2O) at 850 °C. An inert gold anode was used instead of the usual reactive sacrificial carbon anode. In this case, oxidation of oxide ions present in the melt yields O 2 gas evolution on the anode. Electrochemical characterisations of UO 2 pellets were performed by linear sweep voltammetry at 10 mV/s and reduction waves associated to oxide direct reduction were observed at a potential 150 mV more positive in comparison to the solvent reduction. Subsequent, galvanostatic electrolyses runs were carried out and products were characterised by SEM-EDX, EPMA/WDS, XRD and microhardness measurements. In one of the runs, uranium oxide was partially reduced and three phases were observed: nonreduced UO 2 in the centre, pure metallic uranium on the external layer and an intermediate phase representing the initial stage of reduction taking place at the grain boundaries. In another run, the UO 2 sample was fully reduced. Due to oxygen removal, the U matrix had a typical coral-like structure which is characteristic of the pattern observed after the electroreduction of solid oxides.
Solid oxide fuel cell generator with removable modular fuel cell stack configurations
Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.
1998-04-21
A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.
Solid oxide fuel cell generator with removable modular fuel cell stack configurations
Gillett, James E.; Dederer, Jeffrey T.; Zafred, Paolo R.; Collie, Jeffrey C.
1998-01-01
A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.
Czaplicka, Marianna; Kurowski, Ryszard; Jaworek, Katarzyna; Bratek, Łukasz
2013-01-01
The paper presents results of studies into advanced oxidation processes in 03 and 03/UV systems. An advanced oxidation process (AOP) was conducted to reduce the load of impurities in circulating waters from wet de-dusting of shaft furnace gases. Besides inorganic impurities, i.e. mainly arsenic compounds (16 g As L(-1) on average), lead, zinc, chlorides and sulphates, the waters also contain some organic material. The organic material is composed of a complex mixture that contains, amongst others, aliphatic compounds, phenol and its derivatives, pyridine bases, including pyridine, and its derivatives. The test results show degradation of organic and inorganic compounds during ozonation and photo-oxidation processes. Analysis of the solutions from the processes demonstrated that the complex organic material in the industrial water was oxidized in ozonation and in photo-oxidation, which resulted in formation of aldehydes and carboxylic acids. Kinetic degradation of selected pollutants is presented. Obtained results indicated that the O3/UV process is more effective in degradation of organic matter than ozonation. Depending on the process type, precipitation of the solid phase was observed. The efficiency of solid-phase formation was higher in photo-oxidation with ozone. It was found that the precipitated solid phase is composed mainly of arsenic, iron and oxygen.
The Use of Aryl Hydrazide Linkers for the Solid Phase Synthesis of Chemically Modified Peptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, Y; Mitchell, A R; Camarero, J A
2006-11-03
Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis ofmore » C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.« less
Fuel cell applied research: Electrocatalysis and materials
NASA Astrophysics Data System (ADS)
Srinivasan, S.; Isaacs, H.; McBreen, J.; Ogrady, W. E.; Olender, H.; Olmer, L. J.; Schouler, E. J. L.; Adzic, R. R.
1980-03-01
The effect of underpotential deposited metal layers on the electrocatalysis of fuel cell reactions is studied. The potential for developing organic compound/air fuel cells using underpotential deposited Pb adatoms to enhance the electrocatalysis of the fuel electrode is explored. The effects of adsorbed layers of Pb, Tl and Bi on formic acid and methanol oxidation on platinum in 85 percent H3PO4 were investigated. The effect of crystal orientation on formic acid oxidation on platinum in 1 M CHlO2 was investigated. The kinetics of the oxygen reduction and evolution reactions at the electrode (metal or oxide) solid electrolyte (yttria stabilized zirconia) interface were investigated using ac and dc techniques.
Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai
2013-12-01
Since the industrial revolution, detection and monitoring of toxic matter, chemical wastes, and air pollutants has become an important environmental issue. Thus, it leads to the development of chemical sensors for various environmental applications. The recent disastrous oil spills over the near-surface of ocean due to the offshore drilling emphasize the use of chemical sensors for prevention and monitoring of the processes that might lead to these mishaps.1, 2 Chemical sensors operated on a simple principle that the sensing platform undergoes a detectable change when exposed to the target substance to be sensed. Among all the types of chemical sensors,more » solid state gas sensors have attracted a great deal of attention due to their advantages such as high sensitivity, greater selectivity, portability, high stability and low cost.3, 4 Especially, semiconducting metal oxides such as SnO2, TiO2, and WO3 have been widely used as the active sensing platforms in solid state gas sensors.5 For the enhanced properties of solid state gas sensors, finding new sensing materials or development of existing materials will be needed. Thus, nanostructured materials such as nanotubes,6-8 nanowires,9-11 nanorods,12-15 nanobelts,16, 17 and nano-scale thin films18-23 have been synthesized and studied for chemical sensing applications.« less
Zheng, Qifeng; Cai, Zhiyong; Ma, Zhenqiang; Gong, Shaoqin
2015-02-11
A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4/poly(vinyl alcohol) (PVA) gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors were fabricated without any binders, current collectors, or electroactive additives. Because of the porous structure of the CNF/RGO/CNT aerogel electrodes and the excellent electrolyte absorption properties of the CNFs present in the aerogel electrodes, the resulting flexible supercapacitors exhibited a high specific capacitance (i.e., 252 F g(-1) at a discharge current density of 0.5 A g(-1)) and a remarkable cycle stability (i.e., more than 99.5% of the capacitance was retained after 1000 charge-discharge cycles at a current density of 1 A g(-1)). Furthermore, the supercapacitors also showed extremely high areal capacitance, areal power density, and energy density (i.e., 216 mF cm(-2), 9.5 mW cm(-2), and 28.4 μWh cm(-2), respectively). In light of its excellent electrical performance, low cost, ease of large-scale manufacturing, and environmental friendliness, the CNF/RGO/CNT aerogel electrodes may have a promising application in the development of flexible energy-storage devices.
Oxide-Based Composite Electrolytes Using Na3Zr2Si2PO12/Na3PS4 Interfacial Ion Transfer.
Noi, Kousuke; Nagata, Yuka; Hakari, Takashi; Suzuki, Kenji; Yubuchi, So; Ito, Yusuke; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro
2018-05-31
All-solid-state sodium batteries using Na 3 Zr 2 Si 2 PO 12 (NASICON) solid electrolytes are promising candidates for safe and low-cost advanced rechargeable battery systems. Although NASICON electrolytes have intrinsically high sodium-ion conductivities, their high sintering temperatures interfere with the immediate development of high-performance batteries. In this work, sintering-free NASICON-based composites with Na 3 PS 4 (NPS) glass ceramics were prepared to combine the high grain-bulk conductivity of NASICON and the interfacial formation ability of NPS. Before the composite preparation, the NASICON/NPS interfacial resistance was investigated by modeling the interface between the NASICON sintered ceramic and the NPS glass thin film. The interfacial ion-transfer resistance was very small above room temperature; the area-specific resistances at 25 and 100 °C were 15.8 and 0.40 Ω cm 2 , respectively. On the basis of this smooth ion transfer, NASICON-rich (70-90 wt %) NASICON-NPS composite powders were prepared by ball-milling fine powders of each component. The composite powders were well-densified by pressing at room temperature. Scanning electron microscopy observation showed highly dispersed sub-micrometer NASICON grains in a dense NPS matrix to form closed interfaces between the oxide and sulfide solid electrolytes. The composite green (unfired) compacts with 70 and 80 wt % NASICON exhibited high total conductivities at 100 °C of 1.1 × 10 -3 and 6.8 × 10 -4 S cm -1 , respectively. An all-solid-state Na 15 Sn 4 /TiS 2 cell was constructed using the 70 wt % NASICON composite electrolyte by the uniaxial pressing of the powder materials, and its discharge properties were evaluated at 100 °C. The cell showed the reversible capacities of about 120 mAh g -1 under the current density of 640 μA cm -2 . The prepared oxide-based composite electrolytes were thus successfully applied in all-solid-state sodium rechargeable batteries without sintering.
Solid oxide fuel cell systems with hot zones having improved reactant distribution
Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.
2012-11-06
A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.
Solid oxide fuel cell systems with hot zones having improved reactant distribution
Poshusta, Joseph C; Booten, Charles W; Martin, Jerry L
2013-12-24
A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.
Solid oxide fuel cell systems with hot zones having improved reactant distribution
Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.
2016-05-17
A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.
Reducing mode circulating fluid bed combustion
Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien
1986-01-01
A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.
Strain-tolerant ceramic coated seal
Schienle, James L.; Strangman, Thomas E.
1994-01-01
A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. An array of discontinuous grooves is laser machined into the outer surface of the solid lubricant surface layer making the coating strain tolerant.
System for operating solid oxide fuel cell generator on diesel fuel
NASA Technical Reports Server (NTRS)
Singh, Prabhu (Inventor); George, Raymond A. (Inventor)
1997-01-01
A system is provided for operating a solid oxide fuel cell generator on diesel fuel. The system includes a hydrodesulfurizer which reduces the sulfur content of commercial and military grade diesel fuel to an acceptable level. Hydrogen which has been previously separated from the process stream is mixed with diesel fuel at low pressure. The diesel/hydrogen mixture is then pressurized and introduced into the hydrodesulfurizer. The hydrodesulfurizer comprises a metal oxide such as ZnO which reacts with hydrogen sulfide in the presence of a metal catalyst to form a metal sulfide and water. After desulfurization, the diesel fuel is reformed and delivered to a hydrogen separator which removes most of the hydrogen from the reformed fuel prior to introduction into a solid oxide fuel cell generator. The separated hydrogen is then selectively delivered to the diesel/hydrogen mixer or to a hydrogen storage unit. The hydrogen storage unit preferably comprises a metal hydride which stores hydrogen in solid form at low pressure. Hydrogen may be discharged from the metal hydride to the diesel/hydrogen mixture at low pressure upon demand, particularly during start-up and shut-down of the system.
SOLID ROCKET OXIDIZERS, *LIQUID ROCKET OXIDIZERS, CHLORATES, FLUORIDES, ACETONES, CHLORINE COMPOUNDS, NITROSO COMPOUNDS, *HALOGEN COMPOUNDS, ADDITION REACTIONS, CESIUM COMPOUNDS, CHLORIDES, COMPLEX COMPOUNDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiaofei Guan; Peter A. Zink; Uday B. Pal
2012-01-01
Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.% Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the magnesium content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapor. The solid oxide membrane (SOM) electrolysis process is employed in themore » refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium.« less
UTC Power/Delphi SECA CBS Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorman, Michael; Kerr, Rich
2013-04-04
The subject report summarizes the results of solid oxide fuel cell development conducted by UTC Power in conjunction with Delphi Automotive Systems under a cost-share program with from October 2008 through March of 2013. Over that period Delphi Automotive Systems developed a nearly four times larger area solid oxide fuel cell stack capable of operating on pre-reformed natural gas and simulated coal gas with durability demonstrated to 5,000 hours and projected to exceed 10,000 hours. The new stack design was scaled to 40-cell stacks with power output in excess of 6.25kW. Delphi also made significant strides in improving the manufacturability,more » yield and production cost of these solid oxide fuel cells over the course of the program. Concurrently, UTC Power developed a conceptual design for a 120 MW Integrated Gasification Fuel Cell (IGFC) operating on coal syngas with as high as 57% Higher Heating Value (HHV) efficiency as a measure of the feasibility of the technology. Subsequently a 400 kW on-site system preliminary design with 55% Lower Heating Value (LHV) efficiency operating on natural gas was down-selected from eighteen candidate designs. That design was used as the basis for a 25kW breadboard power plant incorporating four Delphi cell stacks that was tested on natural gas before the program was discontinued due to the sale of UTC Power in early 2013. Though the program was cut short of the endurance target of 3,000 hours, many aspects of the technology were proven including: large-area, repeatable cell manufacture, cell stack operation on simulated coal gas and natural gas and integrated power plant operation on natural gas. The potential of the technology for high efficiency stationary electric power generation is clear. Acceptable production costs, durability, and reliability in real world environments are the remaining challenges to commercialization.« less
NASA Astrophysics Data System (ADS)
Polverino, Pierpaolo; Pianese, Cesare; Sorrentino, Marco; Marra, Dario
2015-04-01
The paper focuses on the design of a procedure for the development of an on-field diagnostic algorithm for solid oxide fuel cell (SOFC) systems. The diagnosis design phase relies on an in-deep analysis of the mutual interactions among all system components by exploiting the physical knowledge of the SOFC system as a whole. This phase consists of the Fault Tree Analysis (FTA), which identifies the correlations among possible faults and their corresponding symptoms at system components level. The main outcome of the FTA is an inferential isolation tool (Fault Signature Matrix - FSM), which univocally links the faults to the symptoms detected during the system monitoring. In this work the FTA is considered as a starting point to develop an improved FSM. Making use of a model-based investigation, a fault-to-symptoms dependency study is performed. To this purpose a dynamic model, previously developed by the authors, is exploited to simulate the system under faulty conditions. Five faults are simulated, one for the stack and four occurring at BOP level. Moreover, the robustness of the FSM design is increased by exploiting symptom thresholds defined for the investigation of the quantitative effects of the simulated faults on the affected variables.
Generator configuration for solid oxide fuel cells
Reichner, Philip
1989-01-01
Disclosed are improvements in a solid oxide fuel cell generator 1 having a multiplicity of electrically connected solid oxide fuel cells 2, where a fuel gas is passed over one side of said cells and an oxygen-containing gas is passed over the other side of said cells resulting in the generation of heat and electricity. The improvements comprise arranging the cells in the configuration of a circle, a spiral, or folded rows within a cylindrical generator, and modifying the flow rate, oxygen concentration, and/or temperature of the oxygen-containing gases that flow to those cells that are at the periphery of the generator relative to those cells that are at the center of the generator. In these ways, a more uniform temperature is obtained throughout the generator.
An afterburner-powered methane/steam reformer for a solid oxide fuel cells application
NASA Astrophysics Data System (ADS)
Mozdzierz, Marcin; Chalusiak, Maciej; Kimijima, Shinji; Szmyd, Janusz S.; Brus, Grzegorz
2018-04-01
Solid oxide fuel cell (SOFC) systems can be fueled by natural gas when the reforming reaction is conducted in a stack. Due to its maturity and safety, indirect internal reforming is usually used. A strong endothermic methane/steam reforming process needs a large amount of heat, and it is convenient to provide thermal energy by burning the remainders of fuel from a cell. In this work, the mathematical model of afterburner-powered methane/steam reformer is proposed. To analyze the effect of a fuel composition on SOFC performance, the zero-dimensional model of a fuel cell connected with a reformer is formulated. It is shown that the highest efficiency of a solid oxide fuel cell is achieved when the steam-to-methane ratio at the reforming reactor inlet is high.
Direct ethanol solid oxide fuel cell operating in gradual internal reforming
NASA Astrophysics Data System (ADS)
Nobrega, S. D.; Galesco, M. V.; Girona, K.; de Florio, D. Z.; Steil, M. C.; Georges, S.; Fonseca, F. C.
2012-09-01
An electrolyte supported solid oxide fuel cell (SOFC) using standard electrodes, doped-lanthanum manganite cathode and Ni-cermet anode, was operated with direct (anhydrous) ethanol for more than 100 h, delivering essentially the same power output as running on hydrogen. A ceria-based layer provides the catalytic activity for the gradual internal reforming, which uses the steam formed by the electrochemical oxidation of hydrogen for the decomposition of ethanol. Such a concept opens up the way for multi-fuel SOFCs using standard components and a catalytic layer.
Method of making sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
Isenberg, Arnold O.
1989-01-01
An electrochemical apparatus is made containing an exterior electorde bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.
Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
Isenberg, Arnold O.
1987-01-01
An electrochemical apparatus is made containing an exterior electrode bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.
Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells.
Fan, L; Wang, C; Di, J; Chen, M; Zheng, J; Zhu, B
2012-06-01
Composite and nanocomposite samarium doped ceria-carbonates powders were prepared by solid-state reaction, citric acid-nitrate combustion and modified nanocomposite approaches and used as electrolytes for low temperature solid oxide fuel cells. X-ray Diffraction, Scanning Electron Microscope, low-temperature Nitrogen Adsorption/desorption Experiments, Electrochemical Impedance Spectroscopy and fuel cell performance test were employed in characterization of these materials. All powders are nano-size particles with slight aggregation and carbonates are amorphous in composites. Nanocomposite electrolyte exhibits much lower impedance resistance and higher ionic conductivity than those of the other electrolytes at lower temperature. Fuel cell using the electrolyte prepared by modified nanocomposite approach exhibits the best performance in the whole operation temperature range and achieves a maximum power density of 839 mW cm(-2) at 600 degrees C with H2 as fuel. The excellent physical and electrochemical performances of nanocomposite electrolyte make it a promising candidate for low-temperature solid oxide fuel cells.
NASA Astrophysics Data System (ADS)
Harthøj, Anders; Holt, Tobias; Møller, Per
2015-05-01
This work evaluates the performance of cobalt/cerium oxide (Co/CeO2) composite coatings and pure Co coatings to be used for solid oxide fuel cell (SOFC) interconnects. The coatings are electroplated on the ferritic stainless steels Crofer 22 APU and Crofer 22H. Coated and uncoated samples are exposed in air at 800 °C for 3000 h and oxidation rates are measured and oxide scale microstructures are investigated. Area-specific resistances (ASR) in air at 850 °C of coated and uncoated samples are also measured. A dual layered oxide scale formed on all coated samples. The outer layer consisted of Co, Mn, Fe and Cr oxide and the inner layer consisted of Cr oxide. The CeO2 was present as discrete particles in the outer oxide layer after exposure. The Cr oxide layer thicknesses and oxidations rates were significantly reduced for Co/CeO2 coated samples compared to for Co coated and uncoated samples. The ASR of all Crofer 22H samples increased significantly faster than of Crofer 22 APU samples which was likely due to the presence of SiO2 in the oxide/metal interface of Crofer 22H.
Metal/Metal Oxide Differential Electrode pH Sensors
NASA Technical Reports Server (NTRS)
West, William; Buehler, Martin; Keymeulen, Didier
2007-01-01
Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.
Method and system for controlling a gasification or partial oxidation process
Rozelle, Peter L; Der, Victor K
2015-02-10
A method and system for controlling a fuel gasification system includes optimizing a conversion of solid components in the fuel to gaseous fuel components, controlling the flux of solids entrained in the product gas through equipment downstream of the gasifier, and maximizing the overall efficiencies of processes utilizing gasification. A combination of models, when utilized together, can be integrated with existing plant control systems and operating procedures and employed to develop new control systems and operating procedures. Such an approach is further applicable to gasification systems that utilize both dry feed and slurry feed.
Holographic investigation of solid propellant particulates
NASA Astrophysics Data System (ADS)
Gillespie, T. R.
1981-12-01
The investigation completed the development process to establish a technique to obtain holographic recordings of particulate behavior during the combustion process of solid propellants in a two-dimensional rocket motor. Holographic and photographic recordings were taken in a crossflow environment using various compositions of metallized propellants. The reconstructed holograms are used to provide data on the behavior of aluminum/aluminum oxide particulates in a steady state combustion environment as a function of the initial aluminum size cast into the propellant. High speed, high resolution motion pictures were taken to compare the cinematic data with that available from the holograms.
NASA Astrophysics Data System (ADS)
Musa, Omer; Xiong, Chen; Changsheng, Zhou
2017-08-01
The present article investigates experimentally and numerically the ignition and flame stability of high-density polyethylene solid fuel with incoming swirling air through a solid fuel ramjet (SFRJ). A new design of swirler is proposed and used in this work. Experiments on connected pipes test facility were performed for SFRJ with and without swirl. An in-house code has been developed to simulate unsteady, turbulent, reacting, swirling flow in the SFRJ. Four different swirl intensities are utilized to study experimentally and numerically the effect of swirl number on the transient regression, ignition of the solid fuel in a hot-oxidizing flow and combustion phenomenon in the SFRJ. The results showed that using swirl flow decreases the ignition time delay, recirculation zone length, and the distance between the flame and the wall, meanwhile, increases the residence time, heat transfer, regression rate and mixing degree, thus, improving the combustion efficiency and stability.
Redox Mediators for Li-O2 Batteries: Status and Perspectives.
Park, Jin-Bum; Lee, Seon Hwa; Jung, Hun-Gi; Aurbach, Doron; Sun, Yang-Kook
2018-01-01
Li-O 2 batteries have received much attention due to their extremely large theoretical energy density. However, the high overpotentials required for charging Li-O 2 batteries lower their energy efficiency and degrade the electrolytes and carbon electrodes. This problem is one of the main obstacles in developing practical Li-O 2 batteries. To solve this problem, it is important to facilitate the oxidation of Li 2 O 2 upon charging by using effective electrocatalysis. Using solid catalysts is not too effective for oxidizing the electronically isolating Li-peroxide layers. In turn, for soluble catalysts, red-ox mediators (RMs) are homogeneously dissolved in the electrolyte solutions and can effectively oxidize all of the Li 2 O 2 precipitated during discharge. RMs can decompose solid Li 2 O 2 species no matter their size, morphology, or thickness and thus dramatically increase energy efficiency. However, some negative side effects, such as the shuttle reactions of RMs and deterioration of the Li-metal occur. Therefore, it is necessary to study the activity and stability of RMs in Li-O 2 batteries in detail. Herein, recent studies related to redox mediators are reviewed and the mechanisms of redox reactions are illustrated. The development opportunities of RMs for this important battery technology are discussed and future directions are suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical fingerprints of solid-liquid interfaces: a joint ATR-IR and first principles investigation
NASA Astrophysics Data System (ADS)
Yang, L.; Niu, F.; Tecklenburg, S.; Pander, M.; Nayak, S.; Erbe, A.; Wippermann, S.; Gygi, F.; Galli, G.
Despite the importance of understanding the structural and bonding properties of solid-liquid interfaces for a wide range of (photo-)electrochemical applications, there are presently no experimental techniques available to directly probe the microscopic structure of solid-liquid interfaces. To develop robust strategies to interpret experiments and validate theory, we carried out attenuated total internal reflection (ATR-IR) spectroscopy measurements and ab initio molecular dynamics (AIMD) simulations of the vibrational properties of interfaces between liquid water and well-controlled prototypical semiconductor substrates. We show the Ge(100)/H2O interface to feature a reversible potential-dependent surface phase transition between Ge-H and Ge-OH termination. The Si(100)/H2O interface is proposed as a model system for corrosion and oxidation processes. We performed AIMD calculations under finite electric fields, revealing different pathways for initial oxidation. These pathways are predicted to exhibit unique spectral signatures. A significant increase in surface specificity can be achieved utilizing an angle-dependent ATR-IR experiment, which allows to detect such signatures at the interfacial layer and consequently changes in the hydrogen bond network. Funding from DOE-BES Grant No. DE-SS0008939 and the Deutsche Forschungsgemeinschaft (RESOLV, EXC 1069) are gratefully acknowledged.
Emission from open burning of municipal solid waste in India.
Kumari, Kanchan; Kumar, Sunil; Rajagopal, Vineel; Khare, Ankur; Kumar, Rakesh
2017-07-27
Open burning of Municipal Solid Waste (MSW) is a potential non-point source of emission, which causes greater concern especially in developing countries such as India. Lack of awareness about environmental impact of open burning, and ignorance of the fact, i.e. 'Open burning is a source of emission of carcinogenic substances' are major hindrances towards an appropriate municipal solid waste management system in India. The paper highlights the open burning of MSW practices in India, and the current and projected emission of 10 major pollutants (dioxin, furans, particulate matter, carbon monoxide, sulphur oxides, nitrogen oxides, benzene, toluene, ethyl benzene and 1-hexene) emitted due to the open burning of MSW. Waste to Energy potential of MSW was also estimated adopting effective biological and thermal techniques. Statistical techniques were applied to analyse the data and current and projected emission of various pollutants were estimated. Data pertaining to population, MSW generation and its collection efficiency were compiled for 29 States and 7 Union Territories. Thereafter, emission of 10 pollutants was measured following methodology prescribed in Intergovernmental Panel on Climate Change guideline for National Greenhouse Gas Inventories, 2006. The study revealed that people living in Metropolitan cities are more affected by emissions from open burning.
Huan, Juan; Liu, Qian; Fei, Airong; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun
2015-11-15
An amplified solid-state electrochemiluminescence (ECL) biosensor for detection of cholesterol in near-infrared (NIR) range was constructed based on CdTe quantum dots (QDs) decorated multiwalled carbon nanotubes@reduced graphene nanoribbons (CdTe-MWCNTs@rGONRs), which were prepared by electrostatic interactions. The CdTe QDs decorated on the MWCNTs@rGONRs resulted in the amplified ECL intensity by ~4.5 fold and decreased onset potential by ~100 mV. By immobilization of the cholesterol oxidase (ChOx) and NIR CdTe-MWCNTs@rGONRs on the electrode surface, a solid-state ECL biosensor for cholesterol detection was constructed. When cholesterol was added to the detection solution, the immobilized ChOx catalyzed the oxidation of cholesterol to generate H2O2, which could be used as the co-reactant in the ECL system of CdTe-MWCNTs@rGONRs. The as-prepared biosensor exhibited good performance for cholesterol detection including good reproducibility, selectivity, and acceptable linear range from 1 μM to 1mM with a relative low detection limit of 0.33 μM (S/N=3). The biosensor was successfully applied to the determination of cholesterol in biological fluid and food sample, which would open a new possibility for development of solid-state ECL biosensors with NIR emitters. Copyright © 2015 Elsevier B.V. All rights reserved.
Charge and discharge characteristics of lithium-ion graphite electrodes in solid-state cells
NASA Astrophysics Data System (ADS)
Lemont, S.; Billaud, D.
Lithium ions have been electrochemically intercalated into graphite in solid-state cells operating with solid polymer electrolytes based on poly(ethylene oxide) (PEO) complexed with lithium perchlorate (LiClO 4). The working composite electrode is composed of active-divided natural graphite associated with P(EO) 8-LiClO 4 acting as a binder and a Li + ionic conductor. Intercalation and de-intercalation of Li + were performed using galvanostatic or voltammetry techniques. The curves obtained in our solid-state cells were compared with those performed in liquid ethylene carbonate-LiClO 4 electrolyte. It is shown that in solid-state cells, side reactions occur both in the reduction and in the oxidation processes which leads to some uncertainty in the determination of the maximum reversible capacity of the graphite material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, I-Wei
Solid oxide fuel cells and solid oxide electrolysis cells rely on solid electrolytes in which a large ionic current dominates. This project was initiated to investigate microstructural changes in such devices under electrochemical forces, because nominally insignificant processes may couple to the large ionic current to yield non-equilibrium phenomena that alter the microstructure. Our studies had focused on yttria-stabilized cubic zirconia (YSZ) widely used in these devices. The experiments have revealed enhanced grain growth at higher temperatures, pore and gas bubble migration at all temperatures, and the latter also lead to enhanced sintering of highly porous ceramics into fully densemore » ceramics at unprecedentedly low temperatures. These results have shed light on kinetic processes that fall completely outside the realm of classical ceramic processing. Other fast-oxygen oxide ceramics closely related to, and often used in conjunction with zirconia ceramics, have also be investigated, as are closely related scientific problems in zirconia ceramics. These include crystal structures, defects, diffusion kinetics, oxygen potentials, low temperature sintering, flash sintering, and coarsening theory, and all have resulted in greater clarity in scientific understanding. The knowledge is leveraged to provide new insight to electrode kinetics and near-electrode mixed conductivity and to new materials. In the following areas, our research has resulted in completely new knowledge that defines the state-of-the-art of the field. (a) Electrical current driven non-equilibrium phenomena, (b) Enhanced grain growth under electrochemically reducing conditions, (c) Development of oxygen potential polarization in electrically loaded electrolyte, (d) Low temperature sintering and grain growth, and (e) Structure, defects and cation kinetics of fluorite-structured oxides. Our research has also contributed to synthesis of new energy-relevant electrochemical materials and new understanding of flash sintering, which is a rapid sintering process initiated by a large electrical loading.« less
LABORATORY STUDY ON THE OXIDATION OF ARSENIC III TO ARSENIC V
A one-year laboratory study was performed to determine the ability of seven oxidants to oxidize As(III) to As(V). These included chlorine, permanganate, ozone, chlorine dioxide, monochloramine, a solid-phase oxidizing media, and 254 nm ultraviolet light. Chlorine and permanganate...
Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity
Skotheim, Terje
1986-01-01
There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.
Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity
Skotheim, T.
1984-09-28
There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.
USDA-ARS?s Scientific Manuscript database
Solid lipid particles provide a method to encapsulate and control the release of drugs in vivo but lack the imaging capability provided by CdS quantum dots. This shortcoming was addressed by combining these two technologies into a model system that uses iron oxide as a non-toxic imaging component in...
NASA Astrophysics Data System (ADS)
Luo, Yu; Shi, Yixiang; Li, Wenying; Cai, Ningsheng
2018-03-01
CO/CO2 are the major gas reactant/product in the fuel electrode of reversible solid oxide cells (RSOC). This study proposes a two-charge-transfer-step mechanism to describe the reaction and transfer processes of CO-CO2 electrochemical conversion on a patterned Ni electrode of RSOC. An elementary reaction model is developed to couple two charge transfer reactions, C(Ni)+O2-(YSZ) ↔ CO(Ni)+(YSZ) +2e- and CO(Ni)+O2-(YSZ) ↔ CO2(Ni)+(YSZ)+2e-, with adsorption/desorption, surface chemical reactions and surface diffusion. This model well validates in both solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) modes by the experimental data from a patterned Ni electrode with 10 μm stripe width at different pCO (0-0.25 atm), pCO2 (0-0.35 atm) and operating temperature (600-700 °C). This model indicates SOEC mode is dominated by charge transfer step C(Ni)+O2-(YSZ)↔CO(Ni)+(YSZ) +2e-, while SOFC mode by CO(Ni)+ O2-(YSZ)↔CO2(Ni)+(YSZ)+2e- on the patterned Ni electrode. The sensitivity analysis shows charge transfer step is the major rate-determining step for RSOC, besides, surface diffusion of CO and CO2 as well as CO2 adsorption also plays a significant role in the electrochemical reaction of SOEC while surface diffusion of CO and CO2 desorption could be co-limiting in SOFC.
Zheng, Yun; Wang, Jianchen; Yu, Bo; Zhang, Wenqiang; Chen, Jing; Qiao, Jinli; Zhang, Jiujun
2017-03-06
High-temperature solid oxide electrolysis cells (SOECs) are advanced electrochemical energy storage and conversion devices with high conversion/energy efficiencies. They offer attractive high-temperature co-electrolysis routes that reduce extra CO 2 emissions, enable large-scale energy storage/conversion and facilitate the integration of renewable energies into the electric grid. Exciting new research has focused on CO 2 electrochemical activation/conversion through a co-electrolysis process based on the assumption that difficult C[double bond, length as m-dash]O double bonds can be activated effectively through this electrochemical method. Based on existing investigations, this paper puts forth a comprehensive overview of recent and past developments in co-electrolysis with SOECs for CO 2 conversion and utilization. Here, we discuss in detail the approaches of CO 2 conversion, the developmental history, the basic principles, the economic feasibility of CO 2 /H 2 O co-electrolysis, and the diverse range of fuel electrodes as well as oxygen electrode materials. SOEC performance measurements, characterization and simulations are classified and presented in this paper. SOEC cell and stack designs, fabrications and scale-ups are also summarized and described. In particular, insights into CO 2 electrochemical conversions, solid oxide cell material behaviors and degradation mechanisms are highlighted to obtain a better understanding of the high temperature electrolysis process in SOECs. Proposed research directions are also outlined to provide guidelines for future research.
Dong, Qiuchen; Huang, Yikun; Song, Donghui; Wu, Huixiang; Cao, Fei; Lei, Yu
2018-07-30
Both pH-sensitive and glucose-responsive rhodium oxide nanocorals (Rh 2 O 3 NCs) were synthesized through electrospinning followed by high-temperature calcination. The as-prepared Rh 2 O 3 NCs were systematically characterized using various advanced techniques including scanning electron microscopy, X-ray powder diffraction and Raman spectroscopy, and then employed as a dual functional nanomaterial to fabricate a dual sensor for both non-enzymatic glucose sensing and solid-state pH monitoring. The sensing performance of the Rh 2 O 3 NCs based dual sensor toward pH and glucose was evaluated using open circuit potential, cyclic voltammetry and amperometric techniques, respectively. The results show that the as-prepared Rh 2 O 3 NCs not only maintain accurate and reversible pH sensitivity of Rh 2 O 3 , but also demonstrate a good electrocatalytic activity toward glucose oxidation in alkaline medium with a sensitivity of 11.46 μA mM -1 cm -2 , a limit of detection of 3.1 μM (S/N = 3), and a reasonable selectivity against various interferents in non-enzymatic glucose detection. Its accuracy in determining glucose in human serum samples was further demonstrated. These features indicate that the as-prepared Rh 2 O 3 NCs hold great promise as a dual-functional sensing material in the development of a high-performance sensor forManjakkal both solid-state pH and non-enzymatic glucose sensing. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Jagow, R. B.
1972-01-01
Laboratory investigations to define optimum process conditions for oxidation of fecal/urine slurries were conducted in a one-liter batch reactor. The results of these tests formed the basis for the design, fabrication, and testing of an initial prototype system, including a 100-hour design verification test. Areas of further development were identified during this test. Development of a high pressure slurry pump, materials corrosion studies, oxygen supply trade studies, comparison of salt removal water recovery devices, ammonia removal investigation, development of a solids grinder, reactor design studies and bearing life tests, and development of shutoff valves and a back pressure regulator were undertaken. The development work has progressed to the point where a prototype system suitable for manned chamber testing can be fabricated and tested with a high degree of confidence of success.
Zhu, Yinlong; Zhou, Wei; Chen, Yubo; Shao, Zongping
2016-07-25
The Aurivillius oxide Bi2 Sr2 Nb2 MnO12-δ (BSNM) was used as a cobalt-free cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). To the best of our knowledge, the BSNM oxide is the only alkaline-earth-containing cathode material with complete CO2 tolerance that has been reported thus far. BSNM not only shows favorable activity in the oxygen reduction reaction (ORR) at intermediate temperatures but also exhibits a low thermal expansion coefficient, excellent structural stability, and good chemical compatibility with the electrolyte. These features highlight the potential of the new BSNM material as a highly promising cathode material for IT-SOFCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid State Cooling with Advanced Oxide Materials
2014-06-03
Department of Materials Science and Engineering , Department of Mechanical Science and Engineering , and Department of Electrical and Computer... Engineering University of Illinois, Urbana-Champaign Program Overview The focus of this program was to probe electro-(magneto-)caloric materials for... engineering systems by developing theoretical and experimental approaches to study thermodynamic properties and effects in thin film systems. Despite
A physical model for evaluating uranium nitride specific heat
NASA Astrophysics Data System (ADS)
Baranov, V. G.; Devyatko, Yu. N.; Tenishev, A. V.; Khlunov, A. V.; Khomyakov, O. V.
2013-03-01
Nitride fuel is one of perspective materials for the nuclear industry. But unlike the oxide and carbide uranium and mixed uranium-plutonium fuel, the nitride fuel is less studied. The present article is devoted to the development of a model for calculating UN specific heat on the basis of phonon spectrum data within the solid state theory.
Huang, Chen; Ragauskas, Arthur J; Wu, Xinxing; Huang, Yang; Zhou, Xuelian; He, Juan; Huang, Caoxing; Lai, Chenhuan; Li, Xin; Yong, Qiang
2018-02-01
A novel bio-refinery sequence yielding varieties of co-products was developed using straw pulping solid residue. This process utilizes neutral sulfite pretreatment which under optimal conditions (160 °C and 3% (w/v) sulfite charge) provides 64.3% delignification while retaining 90% of cellulose and 67.3% of xylan. The pretreated solids exhibited excellent enzymatic digestibility, with saccharification yields of 86.9% and 81.1% for cellulose and xylan, respectively. After pretreatment, the process of semi-simultaneous saccharification and fermentation (S-SSF) and bio-catalysis was investigated. The results revealed that decreased ethanol yields were achieved when solid loading increased from 5% to 30%. An acceptable ethanol yield of 76.8% was obtained at 20% solid loading. After fermentation, bio-catalysis of xylose remaining in fermentation broth resulted in near 100% xylonic acid (XA) yield at varied solid loadings. To complete the co-product portfolio, oxidation ammoniation of the dissolved lignin successfully transformed it into biodegradable slow-release nitrogen fertilizer with excellent agricultural properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Investigation of thermodynamic properties of metal-oxide catalysts
NASA Astrophysics Data System (ADS)
Shah, Parag Rasiklal
An apparatus for Coulometric Titration was developed and used to measure the redox isotherms (i.e. oxygen fugacity P(O2) vs oxygen stoichiometry) of ceria-zirconia solid solutions, mixed oxides of vanadia, and vanadia supported on ZrO2. This data was used to correlate the redox thermodynamics of these oxides to their structure and catalytic properties. From the redox isotherms measured between 873 K and 973 K, the differential enthalpies of oxidation (DeltaH) for Ce0.81Zr0.19O 2.0 and Ce0.25Zr0.75O2.0 were determined, and they were found to be independent of extent of reduction or composition of the solid solution. They were also lower than DeltaH for ceria, which explains the better redox properties of ceria-zirconia solid solutions. The oxidation was driven by entropy in the low reduction region, and a structural model was proposed to explain the observed entropy effects. Redox isotherms were also measured for a number of bulk vanadates between 823 K and 973 K. DeltaG, DeltaH and DeltaS were reported for V 2O5, Mg3(VO4)2, CeVO 4 and ZrV2O7 along with DeltaG values for AlVO 4, LaVO4, CrVO4. V2O5 and ZrV2O7, which were the only oxides having V-O-V bonds, showed a two-step transition of vanadium for V+3↔V +4 and V+4↔V+5 equilibrium in the redox isotherms. The other oxides, all of which have only M-O-V (M=cation other than V), showed a direct one-step transition, V+3↔V +5. The nature of the M-atom also influenced the P(O2) at which the V+3↔V+5 transition occurs. Redox isotherms at 748 K were measured for vanadia supported on ZrO 2; with two different vanadia loadings corresponding to isolated vanadyls and polymeric vanadyls. The isotherm for the sample with isolated vanadyls showed a single-step transition, similar to the one seen in bulk vanadates with M-O-V linkages, while no such one-step transition was observed in the isotherm of the other sample. To study the affect of the varying redox properties of the vanadium-based catalysts on oxidation rates, kinetic studies were performed for methanol and propane oxidation reactions on some of these catalysts. The results suggested that there was no effect of thermodynamic properties of these catalysts on the rates of these oxidation reactions.
Method and system for the removal of oxides of nitrogen and sulfur from combustion processes
Walsh, John V.
1987-12-15
A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.
Atomistic study of ternary oxides as high-temperature solid lubricants
NASA Astrophysics Data System (ADS)
Gao, Hongyu
Friction and wear are important tribological phenomena tightly associated with the performance of tribological components/systems such as bearings and cutting machines. In the process of contact and sliding, friction and wear lead to energy loss, and high friction and wear typically result in shortened service lifetime. To reduce friction and wear, solid lubricants are generally used under conditions where traditional liquid lubricants cannot be applied. However, it is challenging to maintain the functionality of those materials when the working environment becomes severe. For instance, at elevated temperatures (i.e., above 400 °C), most traditional solid lubricants, such as MoS2 and graphite, will easily oxidize or lose lubricity due to irreversible chemical changes. For such conditions, it is necessary to identify materials that can remain thermally stable as well as lubricious over a wide range of temperatures. Among the currently available high-temperature solid lubricants, Ag-based ternary metal oxides have recently drawn attention due to their low friction and ability to resist oxidation. A recent experimental study showed that the Ag-Ta-O ternary exhibited an extremely low coefficient of friction (0.06) at 750 °C. To fully uncover the lubricious nature of this material as a high-temperature solid lubricant, a series of tribological investigations were carried out based on one promising candidate - silver tantalate (AgTaO3). The study was then extended to alternative materials, Cu-Ta-O ternaries, to accommodate a variety of application requirements. We aimed to understand, at an atomic level, the effects of physical and chemical properties on the thermal, mechanical and tribological behavior of these materials at high temperatures. Furthermore, we investigated potassium chloride films on a clean iron surface as a representative boundary lubricating system in a nonextreme environment. This investigation complemented the study of Ag/Cu-Ta-O and enhanced the understanding of lubricious mechanisms of solid lubricants in general. Molecular dynamics (MD) simulations was used as the primary tool in this research, complemented by density-functional theory and experiments from our colleagues. In this research, we first developed empirical potential parameters for AgTaO3 and later Cu- Ta-O ternaries using the modified embedded-atom method (MEAM) formalism. With those parameters, we explored the sliding mechanisms of AgTaO3, CuTaO3 and CuTa2O6 at elevated temperatures. Particularly on AgTaO3, we investigated the effects of applied loads as well as surface terminations on friction and wear as functions of temperature. In addition, to optimize the tribological performance of AgTaO3, film reconstruction mechanisms were investigated on Ta2O5/Ag films with varying amounts of Ag. For the potassium chloride-iron system, we studied the effect of contact pressure on interfacial structure, based on which the origin of the commonly observed pressure-dependent shear strengths was explored. We hope this research will benefit the design and development of solid lubricant materials for a wide range of applications.
NASA Astrophysics Data System (ADS)
Gorham, Caroline S.; Hattar, Khalid; Cheaito, Ramez; Duda, John C.; Gaskins, John T.; Beechem, Thomas E.; Ihlefeld, Jon F.; Biedermann, Laura B.; Piekos, Edward S.; Medlin, Douglas L.; Hopkins, Patrick E.
2014-07-01
The thermal boundary conductance across solid-solid interfaces can be affected by the physical properties of the solid boundary. Atomic composition, disorder, and bonding between materials can result in large deviations in the phonon scattering mechanisms contributing to thermal boundary conductance. Theoretical and computational studies have suggested that the mixing of atoms around an interface can lead to an increase in thermal boundary conductance by creating a region with an average vibrational spectra of the two materials forming the interface. In this paper, we experimentally demonstrate that ion irradiation and subsequent modification of atoms at solid surfaces can increase the thermal boundary conductance across solid interfaces due to a change in the acoustic impedance of the surface. We measure the thermal boundary conductance between thin aluminum films and silicon substrates with native silicon dioxide layers that have been subjected to proton irradiation and post-irradiation surface cleaning procedures. The thermal boundary conductance across the Al/native oxide/Si interfacial region increases with an increase in proton dose. Supported with statistical simulations, we hypothesize that ion beam mixing of the native oxide and silicon substrate within ˜2.2nm of the silicon surface results in the observed increase in thermal boundary conductance. This ion mixing leads to the spatial gradation of the silicon native oxide into the silicon substrate, which alters the acoustic impedance and vibrational characteristics at the interface of the aluminum film and native oxide/silicon substrate. We confirm this assertion with picosecond acoustic analyses. Our results demonstrate that under specific conditions, a "more disordered and defected" interfacial region can have a lower resistance than a more "perfect" interface.
Thermodynamic and kinetic aspects of UO 2 fuel oxidation in air at 400-2000 K
NASA Astrophysics Data System (ADS)
Taylor, Peter
2005-09-01
Most nuclear fuel oxidation research has addressed either low-temperature (<700 K) air oxidation related to fuel storage or high-temperature (>1500 K) steam oxidation linked to reactor safety. This paper attempts to unify modelling for air oxidation of UO 2 fuel over a wide range of temperature, and thus to assist future improvement of the ASTEC code, co-developed by IRSN and GRS. Phenomenological correlations for different temperature ranges distinguish between oxidation on the scale of individual grains to U 3O 7 and U 3O 8 below ˜700 K and individual fragments to U 3O 8 via UO 2+ x and/or U 4O 9 above ˜1200 K. Between about 700 and 1200 K, empirical oxidation rates slowly decline as the U 3O 8 product becomes coarser-grained and more coherent, and fragment-scale processes become important. A more mechanistic approach to high-temperature oxidation addresses questions of oxygen supply, surface reaction kinetics, thermodynamic properties, and solid-state oxygen diffusion. Experimental data are scarce, however, especially at low oxygen partial pressures and high temperatures.
Zinc oxide crystal whiskers as a novel sorbent for solid-phase extraction of flavonoids.
Wang, Licheng; Shangguan, Yangnan; Hou, Xiudan; Jia, Yong; Liu, Shujuan; Sun, Yingxin; Guo, Yong
2017-08-15
As a novel solid-phase extraction material, zinc oxide crystal whiskers were used to extract flavonoid compounds and showed good extraction abilities. X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy and surface area/pore volume characterized the sorbent. The zinc oxide was packed into a solid-phase extraction micro-column and its extraction ability was evaluated by four model flavonoid compounds. The sample loading and elution parameters were optimized and the zinc oxide based analytical method for flavonoids was established. It showed that the method has wide linearities from 1 to 150μg/L and low limits of detection at 0.25μg/L. The relative standard deviations of a single column repeatability and column to column reproducibility were less than 6.8% and 10.6%. Several real samples were analyzed by the established method and satisfactory results were obtained. The interactions between flavonoids and zinc oxide were calculated and proved to be from the Van der Waals' forces between the 4p and 5d orbitals from zinc atom and the neighboring π orbitals from flavonoid phenyl groups. Moreover, the zinc oxide crystal whiskers showed good stability and could be reused more than 50 times under the operation conditions. This work proves that the zinc oxide crystal whiskers are a good candidate for flavonoids enrichment. Copyright © 2017. Published by Elsevier B.V.
Surface chemistry of liquid metals
NASA Technical Reports Server (NTRS)
Mann, J. Adin, Jr.; Peebles, Henry; Peebles, Diamond; Rye, Robert; Yost, Fred
1993-01-01
The fundamental surface chemistry of the behavior of liquid metals spreading on a solid substrate is not at all well understood. Each of these questions involves knowing the details of the structure of interfaces and their dynamics. For example the structure of a monolayer of tin oxide on pure liquid tin is unknown. This is in contrast to the relatively large amount of data available on the structure of copper oxide monolayers on solid, pure copper. However, since liquid tin has a vapor pressure below 10(exp -10)torr for a reasonable temperature range above its melting point, it is possible to use the techniques of surface science to study the geometric, electronic and vibrational structures of these monolayers. In addition, certain techniques developed by surface chemists for the study of liquid systems can be applied to the ultra-high vacuum environment. In particular we have shown that light scattering spectroscopy can be used to study the surface tension tensor of these interfaces. The tin oxide layer in particular is very interesting in that the monolayer is rigid but admits of bending. Ellipsometric microscopy allows the visualization of monolayer thick films and show whether island formation occurs at various levels of dosing.
NASA Astrophysics Data System (ADS)
Shimada, Hiroyuki; Yamaguchi, Toshiaki; Suzuki, Toshio; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu
2016-01-01
High power density solid oxide electrochemical cells were developed using nanostructure-controlled composite powder consisting of Sr-doped SmCoO3 (SSC) and Sm-doped CeO2 (SDC) for electrode material. The SSC-SDC nano-composite powder, which was synthesized by spray pyrolysis, had a narrow particle size distribution (D10, D50, and D90 of 0.59, 0.71, and 0.94 μm, respectively), and individual particles were spherical, composing of nano-size SSC and SDC fragments (approximately 10-15 nm). The application of the powder to a cathode for an anode-supported solid oxide fuel cell (SOFC) realized extremely fine cathode microstructure and excellent cell performance. The anode-supported SOFC with the SSC-SDC cathode achieved maximum power density of 3.65, 2.44, 1.43, and 0.76 W cm-2 at 800, 750, 700, and 650 °C, respectively, using humidified H2 as fuel and air as oxidant. This result could be explained by the extended electrochemically active region in the cathode induced by controlling the structure of the starting powder at the nano-order level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagoria, P.; Racoveanu, A.
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Physical Sciences, Inc. (PSI), to develop a synthesis of two novel energetic heterocyclic oxidizers as possible replacements for ammonium perchlorate (AP) in rocket propellant formulations. This CRADA resulted from the award of the Phase I Small Business Technology Transfer (STTR) from DOD. The CRADA consisted of two phases. The goal for Phase 1 was to produce a new oxidizer called TNMDNP. Phase 2 is optional (based on the success of Phase 1) and the goal of Phase 2more » (optional) was to produce a new oxidizer called TNMDNT. Phase 2 tasks would be performed based on the successful results of Phase 1.« less
NASA Astrophysics Data System (ADS)
Tellekamp, M. Brooks; Greenlee, Jordan D.; Shank, Joshua C.; Doolittle, W. Alan
2015-09-01
In order to consistently grow high quality niobium oxides and lithium niobium oxides, a novel solid/liquid state oxygen source, LiClO4, has been implemented in a molecular beam epitaxy (MBE) system. LiClO4 is shown to decompose into both molecular and atomic oxygen upon heating. This allows oxidation rates similar to that of molecular oxygen but at a reduced overall beam flux, quantified by in situ Auger analysis. LiClO4 operation is decomposition limited to less than 400 °C, and other material limitations are identified. The design of a custom near-ambient NbCl5 effusion cell is presented, which improves both short and long term stability. Films of Nb oxidation state +2, +3, and +5 are grown using these new tools, including the multi-functional sub-oxide LiNbO2.
Ceramification: A plutonium immobilization process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rask, W.C.; Phillips, A.G.
1996-05-01
This paper describes a low temperature technique for stabilizing and immobilizing actinide compounds using a combination process/storage vessel of stainless steel, in which measured amounts of actinide nitrate solutions and actinide oxides (and/or residues) are systematically treated to yield a solid article. The chemical ceramic process is based on a coating technology that produces rare earth oxide coatings for defense applications involving plutonium. The final product of this application is a solid, coherent actinide oxide with process-generated encapsulation that has long-term environmental stability. Actinide compounds can be stabilized as pure materials for ease of re-use or as intimate mixtures withmore » additives such as rare earth oxides to increase their degree of proliferation resistance. Starting materials for the process can include nitrate solutions, powders, aggregates, sludges, incinerator ashes, and others. Agents such as cerium oxide or zirconium oxide may be added as powders or precursors to enhance the properties of the resulting solid product. Additives may be included to produce a final product suitable for use in nuclear fuel pellet production. The process is simple and reduces the time and expense for stabilizing plutonium compounds. It requires a very low equipment expenditure and can be readily implemented into existing gloveboxes. The process is easily conducted with less associated risk than proposed alternative technologies.« less
Nitrous Oxide/Paraffin Hybrid Rocket Engines
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Snyder, Gary
2010-01-01
Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.
Jung, Yun-Chae; Park, Myung-Soo; Kim, Duck-Hyun; Ue, Makoto; Eftekhari, Ali; Kim, Dong-Won
2017-12-13
Amorphous poly(ethylene ether carbonate) (PEEC), which is a copolymer of ethylene oxide and ethylene carbonate, was synthesized by ring-opening polymerization of ethylene carbonate. This route overcame the common issue of low conductivity of poly(ethylene oxide)(PEO)-based solid polymer electrolytes at low temperatures, and thus the solid polymer electrolyte could be successfully employed at the room temperature. Introducing the ethylene carbonate units into PEEC improved the ionic conductivity, electrochemical stability and lithium transference number compared with PEO. A cross-linked solid polymer electrolyte was synthesized by photo cross-linking reaction using PEEC and tetraethyleneglycol diacrylate as a cross-linking agent, in the form of a flexible thin film. The solid-state Li/LiNi 0.6 Co 0.2 Mn 0.2 O 2 cell assembled with solid polymer electrolyte based on cross-linked PEEC delivered a high initial discharge capacity of 141.4 mAh g -1 and exhibited good capacity retention at room temperature. These results demonstrate the feasibility of using this solid polymer electrolyte in all-solid-state lithium batteries that can operate at ambient temperatures.
First-principles simulations of heat transport
NASA Astrophysics Data System (ADS)
Puligheddu, Marcello; Gygi, Francois; Galli, Giulia
2017-11-01
Advances in understanding heat transport in solids were recently reported by both experiment and theory. However an efficient and predictive quantum simulation framework to investigate thermal properties of solids, with the same complexity as classical simulations, has not yet been developed. Here we present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at close to equilibrium conditions, which only requires calculations of first-principles trajectories and atomic forces, thus avoiding direct computation of heat currents and energy densities. In addition the method requires much shorter sequential simulation times than ordinary molecular dynamics techniques, making it applicable within density functional theory. We discuss results for a representative oxide, MgO, at different temperatures and for ordered and nanostructured morphologies, showing the performance of the method in different conditions.
Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide
NASA Astrophysics Data System (ADS)
Lashkarev, G. V.; Shtepliuk, I. I.; Ievtushenko, A. I.; Khyzhun, O. Y.; Kartuzov, V. V.; Ovsiannikova, L. I.; Karpyna, V. A.; Myroniuk, D. V.; Khomyak, V. V.; Tkach, V. N.; Timofeeva, I. I.; Popovich, V. I.; Dranchuk, N. V.; Khranovskyy, V. D.; Demydiuk, P. V.
2015-02-01
A study of the properties of materials based on the wide bandgap zinc oxide semiconductor, which are promising for application in optoelectronics, photovoltaics and nanoplasmonics. The structural and optical properties of solid solution Zn1-xCdxO films with different cadmium content, are studied. The samples are grown using magnetron sputtering on sapphire backing. Low-temperature photoluminescence spectra revealed emission peaks associated with radiative recombination processes in those areas of the film that have varying amounts of cadmium. X-ray phase analysis showed the presence of a cadmium oxide cubic phase in these films. Theoretical studies of the solid solution thermodynamic properties allowed for a qualitative interpretation of the observed experimental phenomena. It is established that the growth of the homogeneous solid solution film is possible only at high temperatures, whereas regions of inhomogeneous composition can be narrowed through elastic deformation, caused by the mismatch of the film-backing lattice constants. The driving forces of the spinodal decomposition of the Zn1-xCdxO system are identified. Fullerene-like clusters of Znn-xCdxOn are used to calculate the bandgap and the cohesive energy of ZnCdO solid solutions. The properties of transparent conductive ZnO films, doped with Group III donor impurities (Al, Ga, In), are examined. It is shown that oxygen vacancies are responsible for the hole trap centers in the zinc oxide photoconductivity process. We also examine the photoluminescence properties of metal-ZnO nanocomposite structures, caused by surface plasmons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp
2016-07-06
Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.
New Technologies for Reliable, Low-Cost In Situ Resource Utilization
NASA Astrophysics Data System (ADS)
Ramohalli, Kumar
1998-01-01
New technologies can dramatically alter overall mission feasibility, architecture, window-of-opportunity, and science return. In the specific context of planetary exploration/development, several new technologies have been recently developed. It is significant that every one of these new technologies won a NASA NTR award in 1997-1998. In the area of low-cost space access and planetary transportation, hybrids are discussed. Whether we carry all of the fuel and oxidizer from Earth, or we make some or all of it in situ, mass advantages are shown through calculations. The hybrisol concept, where a solid fuel is cast over a state-of-the-art solid propellant, is introduced as a further advance in these ideas,. Thus, the motor operates as a controllable, high Isp rocket initially, and transitions to a high-thrust rocket after ascent, at which time the empty oxidizer tank is jettisoned. Again, calculations show significant advantages. In the area of efficient energy use for various mechanical actuations and robotic movements, muscle wires are introduced. Not only do we present detailed systems-level schemes, but we also present results from a hardware mechanism that has seen more than 18,000 cycles of operation. Recognizing that power is the real issue in planetary exploration/ development, the concept of LORPEX is introduced as a means of converting low-level energy accumulation into sudden bursts of power that can give factors of millions (in power magnification) in the process; this robot employs a low-power In Situ Resource Utilization (ISRU) unit to accumulate ISRU-generated fuel and oxidizer to be consumed at a rapid rate, chemically in an engine. Drilling, hopping, jumping, and ascent, or even return to Earth, are possible. Again, the hardware has been built and initial systems checkout demonstrated. Long-duration exploration and long-distance travel are made possible through aerobots, as is well known for planets with an atmosphere. However, power has again been a limiting factor. With our new concept of PV-enhanced aerobots, the aerobot surface is covered with ultra-lightweight photovoltaic cells that generate power. The power is used for buoyancy enhancement, communication, and science instruments In the area of fuel/oxidizer generation, a new concept is introduced that avoids the fragile solid oxide electrolyzers (SOXE) and Sabatier reactors (that need H). The new concept of MIMOCE is naturally suited for the local atmosphere, operates at a significantly lower temperature (<400? C), and has no troublesome seals or electrodes with bonding problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, Tracy S.; Olson, L. C.; DiPrete, D. P.
Here, samples of undissolved solids (UDS) from the dissolution of North Anna reactor fuel were characterized to investigate the effects of using air or oxygen as the oxidant during tritium removal. The UDS composition data also support the development of a waste form for disposal. There was no discernible effect of the oxidant used during the tritium removal process or the size fraction on the UDS composition. Scanning electron microscopy (SEM) and energy dispersive (x-ray) spectroscopy were used to estimate the oxygen content of the UDS and it was found to be potentially significant, on the order of 30% bymore » mass and 80% by atom.« less
Skotheim, T.
A polymer blend is disclosed of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.
High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage
NASA Technical Reports Server (NTRS)
Bents, David J.
1987-01-01
A hydrogen-oxygen regenerative fuel cell (RFC) energy storage system based on high temperature solid oxide fuel cell (SOFC) technology is described. The reactants are stored as gases in lightweight insulated pressure vessels. The product water is stored as a liquid in saturated equilibrium with the fuel gas. The system functions as a secondary battery and is applicable to darkside energy storage for solar photovoltaics.
Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell
Ruka, Roswell J.; Vora, Shailesh D.
2001-01-01
A fuel cell structure (2) is provided, having a pre-sintered nickel-zirconia fuel electrode (6) and an air electrode (4), with a ceramic electrolyte (5) disposed between the electrodes, where the pre-sintered fuel electrode (6) contains particles selected from the group consisting of nickel oxide, cobalt and cerium dioxide particles and mixtures thereof, and titanium dioxide particles, within a matrix of yttria-stabilized zirconia and spaced-apart filamentary nickel strings having a chain structure, and where the fuel electrode can be sintered to provide an active solid oxide fuel cell.
Mössbauer study of modified iron-molybdenum catalysts for methanol oxidation
NASA Astrophysics Data System (ADS)
Ivanov, K. I.; Mitov, I. G.; Krustev, St. V.; Boyanov, B. S.
2010-03-01
The preparation and catalytic properties of mixed Fe-Mo-W catalysts toward methanol oxidation are investigated. Mössbauer spectroscopy, X-ray diffraction and chemical studies revealed the formation of two types of solid solutions with compositions Fe2(MoxW1-xO4)3 and (MoxW1-x)O3. The solid solutions formed are characterized by high activity and selectivity upon methanol oxidation and are of interest in view of their practical application. Sodium-doped iron-molybdenum catalysts are also investigated and the NaFe(MoO4)2 formation was established.
Recovery of iron oxide from coal fly ash
Dobbins, Michael S.; Murtha, Marlyn J.
1983-05-31
A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.
The analysis of magnesium oxide hydration in three-phase reaction system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Xiaojia; Guo, Lin; Chen, Chen
In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phasemore » system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.« less
NASA Astrophysics Data System (ADS)
Abbas, Ghazanfar; Raza, Rizwan; Ashfaq Ahmad, M.; Ajmal Khan, M.; Jafar Hussain, M.; Ahmad, Mukhtar; Aziz, Hammad; Ahmad, Imran; Batool, Rida; Altaf, Faizah; Zhu, Bin
2017-10-01
Zinc-based nanostructured nickel (Ni) free metal oxide electrode material Zn0.60/Cu0.20Mn0.20 oxide (CMZO) was synthesized by solid state reaction and investigated for low temperature solid oxide fuel cell (LTSOFC) applications. The crystal structure and surface morphology of the synthesized electrode material were examined by XRD and SEM techniques respectively. The particle size of ZnO phase estimated by Scherer’s equation was 31.50 nm. The maximum electrical conductivity was found to be 12.567 S/cm and 5.846 S/cm in hydrogen and air atmosphere, respectively at 600∘C. The activation energy of the CMZO material was also calculated from the DC conductivity data using Arrhenius plots and it was found to be 0.060 and 0.075 eV in hydrogen and air atmosphere, respectively. The CMZO electrode-based fuel cell was tested using carbonated samarium doped ceria composite (NSDC) electrolyte. The three layers 13 mm in diameter and 1 mm thickness of the symmetric fuel cell were fabricated by dry pressing. The maximum power density of 728.86 mW/cm2 was measured at 550∘C.
NASA Astrophysics Data System (ADS)
Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong
2016-02-01
The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.
Multilayer heterostructures and their manufacture
Hammond, Scott R; Reese, Matthew; Rupert, Benjamin; Miedaner, Alexander; Curtis, Clavin; Olson, Dana; Ginley, David S
2015-11-04
A method of synthesizing multilayer heterostructures including an inorganic oxide layer residing on a solid substrate is described. Exemplary embodiments include producing an inorganic oxide layer on a solid substrate by a liquid coating process under relatively mild conditions. The relatively mild conditions include temperatures below 225.degree. C. and pressures above 9.4 mb. In an exemplary embodiment, a solution of diethyl aluminum ethoxide in anhydrous diglyme is applied to a flexible solid substrate by slot-die coating at ambient atmospheric pressure, and the diglyme removed by evaporation. An AlO.sub.x layer is formed by subjecting material remaining on the solid substrate to a relatively mild oven temperature of approximately 150.degree. C. The resulting AlO.sub.x layer exhibits relatively high light transmittance and relatively low vapor transmission rates for water. An exemplary embodiment of a flexible solid substrate is polyethylene napthalate (PEN). The PEN is not substantially adversely affected by exposure to 150.degree. C
NASA Astrophysics Data System (ADS)
Zhang, Zhizhen; Xu, Kaiqi; Rong, Xiaohui; Hu, Yong-Sheng; Li, Hong; Huang, Xuejie; Chen, Liquan
2017-12-01
Solid electrolytes with high ionic conductivity and excellent electrochemical stability are of prime significance to enable the application of solid-state batteries in energy storage and conversion. In this study, solid composite polymer electrolytes (CPEs) based on sodium bis(trifluorosulfonyl) imide (NaTFSI) and poly (ethylene oxide) (PEO) incorporated with active ceramic filler (NASICON) are reported for the first time. With the addition of NASICON fillers, the thermal stability and electrochemical stability of the CPEs are improved. A high conductivity of 2.8 mS/cm (at 80 °C) is readily achieved when the content of the NASICON filler in the composite polymer reaches 50 wt%. Furthermore, Na3V2(PO4)3/CPE/Na solid-state batteries using this composite electrolyte display good rate and excellent cycle performance.
Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun
2015-01-01
Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm−1 in 5% H2 and peak power densities of 1.72 and 0.54 W cm−2 using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm−2. To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode. PMID:26648509
NASA Astrophysics Data System (ADS)
Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun
2015-12-01
Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm-1 in 5% H2 and peak power densities of 1.72 and 0.54 W cm-2 using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm-2. To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode.
Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun
2015-12-09
Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm(-1) in 5% H2 and peak power densities of 1.72 and 0.54 W cm(-2) using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm(-2). To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Xiaofei; Zink, Peter; Pal, Uday
2012-03-11
Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.%Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the Mg content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapors in a separate condenser. The solid oxide membrane (SOM) electrolysis process ismore » employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium; could not collect and weigh all of the magnesium recovered.« less
Barium oxide, calcium oxide, magnesia, and alkali oxide free glass
Lu, Peizhen Kathy; Mahapatra, Manoj Kumar
2013-09-24
A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.