Sample records for developing soybean seeds

  1. Evaluating soybean breeding lines developed from differenct sources of resistance to phomopsis seed decay

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) causes poor soybean seed quality worldwide. The primary causal agent of PSD is Phomopsis longicolla (syn. Diaporthe longicolla). Breeding for PSD-resistance is the most effective long-term strategy to control this disease. To develop soybean lines with resistance to PSD, m...

  2. Development of Single-Seed Near-Infrared Spectroscopic Predictions of Corn and Soybeans Constituents Using Bulk Teference Values and Mean Spectra

    USDA-ARS?s Scientific Manuscript database

    Near-Infrared reflectance spectroscopic prediction models were developed for common constituents of corn and soybeans using bulk reference values and mean spectra from single-seeds. The bulk reference model and a true single-seed model for soybean protein were compared to determine how well the bul...

  3. Protein profile of mature soybean seeds and prepared soybean milk.

    PubMed

    Capriotti, Anna Laura; Caruso, Giuseppe; Cavaliere, Chiara; Samperi, Roberto; Stampachiacchiere, Serena; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2014-10-08

    The soybean (Glycine max (L.) Merrill) is economically the most important bean in the world, providing a wide range of vegetable proteins. Soybean milk is a colloidal solution obtained as water extract from swelled and ground soybean seeds. Soybean proteins represent about 35-40% on a dry weight basis and they are receiving increasing attention with respect to their health effects. However, the soybean is a well-recognized allergenic food, and therefore, it is urgent to define its protein components responsible for the allergenicity in order to develop hypoallergenic soybean products for sensitive people. The main aim of this work was the characterization of seed and milk soybean proteome and their comparison in terms of protein content and specific proteins. Using a shotgun proteomics approach, 243 nonredundant proteins were identified in mature soybean seeds.

  4. Biological Networks Underlying Soybean Seed Oil Composition and Content

    USDA-ARS?s Scientific Manuscript database

    Soybean is the most important oil crop in the United States. Production of soybean seed oil requires coordinated expression of many biological components and pathways, which is further regulated by seed development and phyto-hormones. A new research project is initiated in my laboratory to delineat...

  5. [The NIR spectra based variety discrimination for single soybean seed].

    PubMed

    Zhu, Da-Zhou; Wang, Kun; Zhou, Guang-Hua; Hou, Rui-Feng; Wang, Cheng

    2010-12-01

    With the development of soybean producing and processing, the quality breeding becomes more and more important for soybean breeders. Traditional sampling detection methods for soybean quality need to destroy the seed, and does not satisfy the requirement of earlier generation materials sieving for breeding. Near infrared (NIR) spectroscopy has been widely used for soybean quality detection. However, all these applications were referred to mass samples, and they were not suitable for little or single seed detection in breeding procedure. In the present study, the acousto--optic tunable filter (AOTF) NIR spectroscopy was used to measure the single soybean seed. Two varieties of soybean were measured, which contained 60 KENJIANDOU43 seeds and 60 ZHONGHUANG13 seeds. The results showed that NIR spectra combined with soft independent modeling of class analogy (SIMCA) could accurately discriminate the soybean varieties. The classification accuracy for KENJIANDOU43 seeds and ZHONGHUANG13 was 100%. The spectra of single soybean seed were measured at different positions, and it showed that the seed shape has significant influence on the measurement of spectra, therefore, the key point for single seed measurement was how to accurately acquire the spectra and keep their representativeness. The spectra for soybeans with glossy surface had high repeatability, while the spectra of seeds with external defects had significant difference for several measurements. For the fast sieving of earlier generation materials in breeding, one could firstly eliminate the seeds with external defects, then apply NIR spectra for internal quality detection, and in this way the influence of seed shape and external defects could be reduced.

  6. Development and application of a novel genome-wide SNP array reveals domestication history in soybean

    PubMed Central

    Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue

    2016-01-01

    Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean. PMID:26856884

  7. Development and application of a novel genome-wide SNP array reveals domestication history in soybean.

    PubMed

    Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue

    2016-02-09

    Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean.

  8. Development of SNP Genotyping Assays for Seed Composition Traits in Soybean

    PubMed Central

    Patil, Gunvant; Chaudhary, Juhi; Vuong, Tri D.; Jenkins, Brian; Qiu, Dan; Kadam, Suhas; Shannon, Grover J.

    2017-01-01

    Seed composition is one of the most important determinants of the economic values in soybean. The quality and quantity of different seed components, such as oil, protein, and carbohydrates, are crucial ingredients in food, feed, and numerous industrial products. Soybean researchers have successfully developed and utilized a diverse set of molecular markers for seed trait improvement in soybean breeding programs. It is imperative to design and develop molecular assays that are accurate, robust, high-throughput, cost-effective, and available on a common genotyping platform. In the present study, we developed and validated KASP (Kompetitive allele-specific polymerase chain reaction) genotyping assays based on previously known functional mutant alleles for the seed composition traits, including fatty acids, oligosaccharides, trypsin inhibitor, and lipoxygenase. These assays were validated on mutant sources as well as mapping populations and precisely distinguish the homozygotes and heterozygotes of the mutant genes. With the obvious advantages, newly developed KASP assays in this study can substitute the genotyping assays that were previously developed for marker-assisted selection (MAS). The functional gene-based assay resource developed using common genotyping platform will be helpful to accelerate efforts to improve soybean seed composition traits. PMID:28630621

  9. Dynamic changes of genome-wide DNA methylation during soybean seed development

    USDA-ARS?s Scientific Manuscript database

    Seed development is programmed by expression of many genes in plants. Seed maturation is an important developmental process to soybean seed quality and yield. DNA methylation is a major epigenetic modification regulating gene expression. However, little is known about the dynamic nature of DNA me...

  10. Validation of reference genes for real-time quantitative PCR normalization in soybean developmental and germinating seeds.

    PubMed

    Li, Qing; Fan, Cheng-Ming; Zhang, Xiao-Mei; Fu, Yong-Fu

    2012-10-01

    Most of traditional reference genes chosen for real-time quantitative PCR normalization were assumed to be ubiquitously and constitutively expressed in vegetative tissues. However, seeds show distinct transcriptomes compared with the vegetative tissues. Therefore, there is a need for re-validation of reference genes in samples of seed development and germination, especially for soybean seeds. In this study, we aimed at identifying reference genes suitable for the quantification of gene expression level in soybean seeds. In order to identify the best reference genes for soybean seeds, 18 putative reference genes were tested with various methods in different seed samples. We combined the outputs of both geNorm and NormFinder to assess the expression stability of these genes. The reference genes identified as optimums for seed development were TUA5 and UKN2, whereas for seed germination they were novel reference genes Glyma05g37470 and Glyma08g28550. Furthermore, for total seed samples it was necessary to combine four genes of Glyma05g37470, Glyma08g28550, Glyma18g04130 and UKN2 [corrected] for normalization. Key message We identified several reference genes that stably expressed in soybean seed developmental and germinating processes.

  11. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, P., E-mail: pkrishnan@iari.res.in; Singh, Ravender; Verma, A.P.S.

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T{sub 2}). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate ofmore » seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T{sub 2}) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.« less

  12. Raffinose and stachyose metabolism are not required for efficient soybean seed germination.

    PubMed

    Dierking, Emily C; Bilyeu, Kristin D

    2009-08-15

    Raffinose family oligosaccharides (RFOs), which include raffinose and stachyose, are thought to be an important source of energy during seed germination. In contrast to their potential for promoting germination, RFOs represent anti-nutritional units for monogastric animals when consumed as a component of feed. The exact role for RFOs during soybean seed development and germination has not been experimentally determined; but it has been hypothesized that RFOs are required for successful germination. Previously, inhibition of RFO breakdown during imbibition and germination was shown to significantly delay germination in pea seeds. The objective of this study was to compare the germination potential for soybean seeds with either wild-type (WT) or low RFO levels and to examine the role of RFO breakdown in germination of soybean seeds. There was no significant difference in germination between normal and low RFO soybean seeds when imbibed/germinated in water. Similar to the situation in pea, soybean seeds of wild-type carbohydrate composition experienced a delay in germination when treated with a chemical inhibitor of alpha-galactosidase activity (1-deoxygalactonojirimycin or DGJ) during imbibition. However, low RFO soybean seed germination was not significantly delayed or reduced when treated with DGJ. In contrast to the situation in pea, the inhibitor-induced germination delay in wild-type soybean seeds was not partially overcome by the addition of galactose or sucrose. We conclude that RFOs are not an essential source of energy during soybean seed germination.

  13. Development of soybean with novel sources of resistance to Phomopsis seed decay

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) is an important soybean disease that results in poor seed quality in most soybean production areas of the United States. PSD is caused primarily by the fungal pathogen Phomopsis longicolla. In 2009, due to the prevalence of hot and humid environments from pod fill to harve...

  14. Complementary Genetic and Genomic Approaches Help Characterize the Linkage Group I Seed Protein QTL in Soybean

    USDA-ARS?s Scientific Manuscript database

    The nutritional and economic value of soybean [Glycine max (L.) Merrill] is effectively a function of its seed protein and oil content. Insight into the genetic and molecular control mechanisms involved in the deposition of these constituents in the developing seed is needed to guide future soybean ...

  15. Immunocytolocalization of extensin in developing soybean seed coats by immunogold-silver staining and by tissue printing on nitrocellulose paper

    PubMed Central

    1987-01-01

    In soybean seed coats the accumulation of the hydroxyproline-rich glycoprotein extensin is regulated in a developmental and tissue- specific manner. The time course of appearance of extensin during seed development was studied by Western blot analysis and by immunogold- silver localization. Using these techniques extensin was first detected at 16-18 d after anthesis, increasing during development to high levels at 24 d after anthesis. Immunogold-silver localization of extensin in the seed coat showed marked deposition of the glycoprotein in the walls of palisade epidermal cells and hourglass cells. The immunolocalization of extensin in developing soybean seeds was also made by a new technique--tissue printing on nitrocellulose paper. It was found that extensin is primarily localized in the seed coat, hilum, and vascular elements of the seed. PMID:3693394

  16. Development of rigorous fatty acid near-infrared spectroscopy quantitation methods in support of soybean oil improvement

    USDA-ARS?s Scientific Manuscript database

    The seed of soybean (Glycine max L. Merr) is a valuable source of high quality edible oil and protein. Despite dramatic breeding gains over the past 80 years, soybean seed oil continues to be oxidatively unstable. Until recently, the majority of soybean oil underwent partial chemical hydrogenation. ...

  17. Factors Affecting Tocopherol Concentrations in Soybean Seeds.

    PubMed

    Carrera, Constanza S; Seguin, Philippe

    2016-12-21

    Soybean seeds contain several health-beneficial compounds, including tocopherols, which are used by the nutraceutical and functional food industries. Soybean tocopherol concentrations are, however, highly variable. Large differences observed in tocopherol concentrations among soybean genotypes together with the relatively simple biosynthetic pathway involving few genes support the feasibility of selecting for high-tocopherol soybean. Tocopherol concentrations are also highly influenced by environmental factors and field management. Temperature during seed filling and soil moisture appear to be the main factors affecting tocopherol concentrations; other factors such as soil fertility and solar radiation also affect concentrations and composition. Field management decisions including seeding date, row spacing, irrigation, and fertilization also affect tocopherols. Knowledge of factors affecting soybean tocopherols is essential to develop management strategies that will lead to the production of seeds with consistent target concentrations that will meet the needs of the nutraceutical and functional food industries.

  18. Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds.

    PubMed

    Li, Runzhi; Yu, Keshun; Wu, Yongmei; Tateno, Mizuki; Hatanaka, Tomoko; Hildebrand, David F

    2012-01-01

    Plant oils can be useful chemical feedstocks such as a source of epoxy fatty acids. High seed-specific expression of a Stokesia laevis epoxygenase (SlEPX) in soybeans only results in 3-7% epoxide levels. SlEPX-transgenic soybean seeds also exhibited other phenotypic alterations, such as altered seed fatty acid profiles, reduced oil accumulation, and variable protein levels. SlEPX-transgenic seeds showed a 2-5% reduction in total oil content and protein levels of 30.9-51.4%. To address these pleiotrophic effects of SlEPX expression on other traits, transgenic soybeans were developed to co-express SlEPX and DGAT (diacylglycerol acyltransferase) genes (VgDGAT1 & 2) isolated from Vernonia galamensis, a high accumulator of epoxy fatty acids. These side effects of SlEPX expression were largely overcome in the DGAT co-expressing soybeans. Total oil and protein contents were restored to the levels in non-transgenic soybeans, indicating that both VgDGAT1 and VgDGAT2 could complement the disrupted phenotypes caused by over-expression of an epoxygenase in soybean seeds. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Early perception of stink bug damage in developing seeds of field-grown soybean induces chemical defences and reduces bug attack.

    PubMed

    Giacometti, Romina; Barneto, Jesica; Barriga, Lucia G; Sardoy, Pedro M; Balestrasse, Karina; Andrade, Andrea M; Pagano, Eduardo A; Alemano, Sergio G; Zavala, Jorge A

    2016-08-01

    Southern green stink bugs (Nezara viridula L.) invade field-grown soybean crops, where they feed on developing seeds and inject phytotoxic saliva, which causes yield reduction. Although leaf responses to herbivory are well studied, no information is available about the regulation of defences in seeds. This study demonstrated that mitogen-activated protein kinases MPK3, MPK4 and MPK6 are expressed and activated in developing seeds of field-grown soybean and regulate a defensive response after stink bug damage. Although 10-20 min after stink bug feeding on seeds induced the expression of MPK3, MPK6 and MPK4, only MPK6 was phosphorylated after damage. Herbivory induced an early peak of jasmonic acid (JA) accumulation and ethylene (ET) emission after 3 h in developing seeds, whereas salicylic acid (SA) was also induced early, and at increasing levels up to 72 h after damage. Damaged seeds upregulated defensive genes typically modulated by JA/ET or SA, which in turn reduced the activity of digestive enzymes in the gut of stink bugs. Induced seeds were less preferred by stink bugs. This study shows that stink bug damage induces seed defences, which is perceived early by MPKs that may activate defence metabolic pathways in developing seeds of field-grown soybean. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy.

    PubMed

    Kusumaningrum, Dewi; Lee, Hoonsoo; Lohumi, Santosh; Mo, Changyeun; Kim, Moon S; Cho, Byoung-Kwan

    2018-03-01

    The viability of seeds is important for determining their quality. A high-quality seed is one that has a high capability of germination that is necessary to ensure high productivity. Hence, developing technology for the detection of seed viability is a high priority in agriculture. Fourier transform near-infrared (FT-NIR) spectroscopy is one of the most popular devices among other vibrational spectroscopies. This study aims to use FT-NIR spectroscopy to determine the viability of soybean seeds. Viable and artificial ageing seeds as non-viable soybeans were used in this research. The FT-NIR spectra of soybean seeds were collected and analysed using a partial least-squares discriminant analysis (PLS-DA) to classify viable and non-viable soybean seeds. Moreover, the variable importance in projection (VIP) method for variable selection combined with the PLS-DA was employed. The most effective wavelengths were selected by the VIP method, which selected 146 optimal variables from the full set of 1557 variables. The results demonstrated that the FT-NIR spectral analysis with the PLS-DA method that uses all variables or the selected variables showed good performance based on the high value of prediction accuracy for soybean viability with an accuracy close to 100%. Hence, FT-NIR techniques with a chemometric analysis have the potential for rapidly measuring soybean seed viability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Preinoculation of Soybean Seeds Treated with Agrichemicals up to 30 Days before Sowing: Technological Innovation for Large-Scale Agriculture

    PubMed Central

    da Cruz, Sonia Purin; Martin, Thomas Newton; Nakatani, André Shigueyoshi; Nogueira, Marco Antonio; Hungria, Mariangela

    2017-01-01

    The cultivation of soybean in Brazil experienced an expressive growth in the last decades. Soybean is highly demanding on nitrogen (N) that must come from fertilizers or from biological fixation. The N supply to the soybean crop in Brazil relies on the inoculation with elite strains of Bradyrhizobium japonicum, B. elkanii, and B. diazoefficiens, which are able to fulfill the crop's N requirements and enrich the soil for the following crop. The effectiveness of the association between N2-fixing bacteria and soybean plants depends on the efficacy of the inoculation process. Seed treatment with pesticides, especially fungicides or micronutrients, may rapidly kill the inoculated bacteria, affecting the establishment and outcome of the symbiosis. The development of technologies that allow inoculation to become a successful component of industrial seed treatment represents a valuable tool for the seed industry, as well as for the soybean crop worldwide. In this article, we report the results of new technologies, developed by the company Total Biotecnologia Indústria e Comércio S/A of Brazil, for preinoculation of soybean seeds with bradyrhizobia, in the presence of agrichemicals. Our results demonstrate improved bacterial survival for up to 30 days after inoculation, without compromising nodulation, N2-fixation, and yield in the field. PMID:29129977

  2. Preinoculation of Soybean Seeds Treated with Agrichemicals up to 30 Days before Sowing: Technological Innovation for Large-Scale Agriculture.

    PubMed

    Araujo, Ricardo Silva; da Cruz, Sonia Purin; Souchie, Edson Luiz; Martin, Thomas Newton; Nakatani, André Shigueyoshi; Nogueira, Marco Antonio; Hungria, Mariangela

    2017-01-01

    The cultivation of soybean in Brazil experienced an expressive growth in the last decades. Soybean is highly demanding on nitrogen (N) that must come from fertilizers or from biological fixation. The N supply to the soybean crop in Brazil relies on the inoculation with elite strains of Bradyrhizobium japonicum, B. elkanii, and B. diazoefficiens , which are able to fulfill the crop's N requirements and enrich the soil for the following crop. The effectiveness of the association between N 2 -fixing bacteria and soybean plants depends on the efficacy of the inoculation process. Seed treatment with pesticides, especially fungicides or micronutrients, may rapidly kill the inoculated bacteria, affecting the establishment and outcome of the symbiosis. The development of technologies that allow inoculation to become a successful component of industrial seed treatment represents a valuable tool for the seed industry, as well as for the soybean crop worldwide. In this article, we report the results of new technologies, developed by the company Total Biotecnologia Indústria e Comércio S/A of Brazil, for preinoculation of soybean seeds with bradyrhizobia, in the presence of agrichemicals. Our results demonstrate improved bacterial survival for up to 30 days after inoculation, without compromising nodulation, N 2 -fixation, and yield in the field.

  3. Identification and Validation of Loci Governing Seed Coat Color by Combining Association Mapping and Bulk Segregation Analysis in Soybean

    PubMed Central

    Ma, Yansong; Tian, Long; Li, Xinxiu; Li, Ying-Hui; Guan, Rongxia; Guo, Yong; Qiu, Li-Juan

    2016-01-01

    Soybean seed coat exists in a range of colors from yellow, green, brown, black, to bicolor. Classical genetic analysis suggested that soybean seed color was a moderately complex trait controlled by multi-loci. However, only a couple of loci could be detected using a single biparental segregating population. In this study, a combination of association mapping and bulk segregation analysis was employed to identify genes/loci governing this trait in soybean. A total of 14 loci, including nine novel and five previously reported ones, were identified using 176,065 coding SNPs selected from entire SNP dataset among 56 soybean accessions. Four of these loci were confirmed and further mapped using a biparental population developed from the cross between ZP95-5383 (yellow seed color) and NY279 (brown seed color), in which different seed coat colors were further dissected into simple trait pairs (green/yellow, green/black, green/brown, yellow/black, yellow/brown, and black/brown) by continuously developing residual heterozygous lines. By genotyping entire F2 population using flanking markers located in fine-mapping regions, the genetic basis of seed coat color was fully dissected and these four loci could explain all variations of seed colors in this population. These findings will be useful for map-based cloning of genes as well as marker-assisted breeding in soybean. This work also provides an alternative strategy for systematically isolating genes controlling relative complex trait by association analysis followed by biparental mapping. PMID:27404272

  4. Molecular mapping and genomics of soybean seed protein: a review and perspective for the future.

    PubMed

    Patil, Gunvant; Mian, Rouf; Vuong, Tri; Pantalone, Vince; Song, Qijian; Chen, Pengyin; Shannon, Grover J; Carter, Tommy C; Nguyen, Henry T

    2017-10-01

    Genetic improvement of soybean protein meal is a complex process because of negative correlation with oil, yield, and temperature. This review describes the progress in mapping and genomics, identifies knowledge gaps, and highlights the need of integrated approaches. Meal protein derived from soybean [Glycine max (L) Merr.] seed is the primary source of protein in poultry and livestock feed. Protein is a key factor that determines the nutritional and economical value of soybean. Genetic improvement of soybean seed protein content is highly desirable, and major quantitative trait loci (QTL) for soybean protein have been detected and repeatedly mapped on chromosomes (Chr.) 20 (LG-I), and 15 (LG-E). However, practical breeding progress is challenging because of seed protein content's negative genetic correlation with seed yield, other seed components such as oil and sucrose, and interaction with environmental effects such as temperature during seed development. In this review, we discuss rate-limiting factors related to soybean protein content and nutritional quality, and potential control factors regulating seed storage protein. In addition, we describe advances in next-generation sequencing technologies for precise detection of natural variants and their integration with conventional and high-throughput genotyping technologies. A syntenic analysis of QTL on Chr. 15 and 20 was performed. Finally, we discuss comprehensive approaches for integrating protein and amino acid QTL, genome-wide association studies, whole-genome resequencing, and transcriptome data to accelerate identification of genomic hot spots for allele introgression and soybean meal protein improvement.

  5. A correlation between tocopherol content and antioxidant activity in seeds and germinating seeds of soybean cultivars.

    PubMed

    Lee, Yu Young; Park, Hyang Mi; Hwang, Tae Young; Kim, Sun Lim; Kim, Mi Jung; Lee, Seuk Ki; Seo, Min Jung; Kim, Kee Jong; Kwon, Young-Up; Lee, Sang Chul; Kim, Yul Ho

    2015-03-15

    Tocopherols are crucial lipid-soluble antioxidants and essential nutrients. There is increasing interest in the biofortification of crops with vitamin E for reducing micronutrient malnutrition. However, relatively little is known about the development of soybean cultivars with high levels of tocopherol through combined breeding. Tocopherol contents of seeds and germinating seeds of 28 Korean soybean cultivars were analyzed and evaluated for health-promoting activities. Total tocopherol concentrations ranged from 203.9 to 503.1 µg g⁻¹ in seeds and from 20.1 to 230.1 µg g⁻¹ in germinating seeds. The traditional landraces of HaNagari (HN, 503.1 µg g⁻¹), Orialtae (OL, 486.6 µg g⁻¹), SuMoktae (SM, 476.5 µg g⁻¹) and SoRitae (SR, 475.5 µg g⁻¹) showed high levels of tocopherol content. The contents of the four isomers of tocopherol in seeds and germinating seeds were correlated with lipid peroxidation. The γ- and δ-tocopherol contents in seeds were related to 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity (0.434; P < 0.01 and 0.373; P < 0.05). Total tocopherol content was higher in soybean landraces as compared with modern cultivars developed by cross-breeding. These results suggest that soybean breeding is necessary to increase tocopherol levels. © 2014 Society of Chemical Industry.

  6. Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean

    PubMed Central

    2010-01-01

    Background The nutritional and economic value of many crops is effectively a function of seed protein and oil content. Insight into the genetic and molecular control mechanisms involved in the deposition of these constituents in the developing seed is needed to guide crop improvement. A quantitative trait locus (QTL) on Linkage Group I (LG I) of soybean (Glycine max (L.) Merrill) has a striking effect on seed protein content. Results A soybean near-isogenic line (NIL) pair contrasting in seed protein and differing in an introgressed genomic segment containing the LG I protein QTL was used as a resource to demarcate the QTL region and to study variation in transcript abundance in developing seed. The LG I QTL region was delineated to less than 8.4 Mbp of genomic sequence on chromosome 20. Using Affymetrix® Soy GeneChip and high-throughput Illumina® whole transcriptome sequencing platforms, 13 genes displaying significant seed transcript accumulation differences between NILs were identified that mapped to the 8.4 Mbp LG I protein QTL region. Conclusions This study identifies gene candidates at the LG I protein QTL for potential involvement in the regulation of protein content in the soybean seed. The results demonstrate the power of complementary approaches to characterize contrasting NILs and provide genome-wide transcriptome insight towards understanding seed biology and the soybean genome. PMID:20199683

  7. Effect of fungicide seed treatments on Fusarium virguliforme infection of soybean and development of sudden death syndrome

    USDA-ARS?s Scientific Manuscript database

    Sudden death syndrome (SDS), caused by Fusarium virguliforme (Fv), is a major yield-limiting disease of soybean in North America. Infection of soybean seedling roots by Fv results in severe root damage; therefore, fungicide seed treatments could potentially reduce these early-season infections and r...

  8. Evaluation of mature soybean pods as a food source for two pod-sucking bugs, Riptortus pedestris (Hemiptera: Alydidae) and Halyomorpha halys (Hemiptera: Pentatomidae)

    PubMed Central

    Rahman, M. Mahbubur

    2017-01-01

    Riptortus pedestris (Fabricius) and Halyomorpha halys (Stål) cause injury to soybeans by piercing and sucking pods and seeds. Growers believe that new damage decreases near to harvest despite the occurrence of these bugs at that time. As this question has never been assessed, we evaluated two diets: a) mature soybean pods (dried shell + dried soybean seeds) and b) dried soybean seeds for the two bugs by assessing their biological, behavioral, and morphological attributes on each diet in laboratory. While nymphs of both species were able to develop and adults able to reproduce on the tested diets, bugs fed on pods had longer development times and 2.2 to 5.0 times higher mortality rates than bugs fed on seeds. Furthermore, adult longevity of R. pedestris and H. halys fed on pods was 8.4 and 7.5 days shorter, respectively, than that of bugs fed on seeds. However, pod feeding had no effect on adult fecundity or egg viability. In a behavioral choice test, adult R. pedestris preferred seeds over pods and probed seeds longer than pods. On average, adult H. halys also preferred seeds over pods, although 15.6% of H. halys showed the reverse, preferring pods over seeds. The proboscis length and estimated depth of stylet penetration into the host tissue of both nymphs and adults of both species was much greater than the thickness of the pod shell, suggesting that mouthpart structure does not explain the negative effects of pods vs. seeds. In conclusion, mature soybean pods were found to be a suitable food source for both R. pedestris and H. halys despite some negative effects, and thus careful attention should be paid to the population levels of these two bugs approaching harvest to reduce economic damage in soybean. PMID:28430798

  9. Expanding Omics Resources for Improvement of Soybean Seed Composition Traits

    PubMed Central

    Chaudhary, Juhi; Patil, Gunvant B.; Sonah, Humira; Deshmukh, Rupesh K.; Vuong, Tri D.; Valliyodan, Babu; Nguyen, Henry T.

    2015-01-01

    Food resources of the modern world are strained due to the increasing population. There is an urgent need for innovative methods and approaches to augment food production. Legume seeds are major resources of human food and animal feed with their unique nutrient compositions including oil, protein, carbohydrates, and other beneficial nutrients. Recent advances in next-generation sequencing (NGS) together with “omics” technologies have considerably strengthened soybean research. The availability of well annotated soybean genome sequence along with hundreds of identified quantitative trait loci (QTL) associated with different seed traits can be used for gene discovery and molecular marker development for breeding applications. Despite the remarkable progress in these technologies, the analysis and mining of existing seed genomics data are still challenging due to the complexity of genetic inheritance, metabolic partitioning, and developmental regulations. Integration of “omics tools” is an effective strategy to discover key regulators of various seed traits. In this review, recent advances in “omics” approaches and their use in soybean seed trait investigations are presented along with the available databases and technological platforms and their applicability in the improvement of soybean. This article also highlights the use of modern breeding approaches, such as genome-wide association studies (GWAS), genomic selection (GS), and marker-assisted recurrent selection (MARS) for developing superior cultivars. A catalog of available important resources for major seed composition traits, such as seed oil, protein, carbohydrates, and yield traits are provided to improve the knowledge base and future utilization of this information in the soybean crop improvement programs. PMID:26635846

  10. Identification of soybean genotypes adaptive to tropical area and suitable for industry

    NASA Astrophysics Data System (ADS)

    Adie, M. M.; Krisnawati, A.

    2018-01-01

    Soybeans in Indonesia are mostly used for raw material of tempeh industry. This study aims to identify 150 soybean genotypes for their suitability for raw materials of tempeh and adaptability to be developed in tropical area of Indonesia. The research material consisted of 150 soybean genotypes. The field research was conducted in Malang from February to May 2016, using a randomized block design with two replicates. The identification of 150 soybean genotypes showed 30.67% of super early maturity (<75 days), 50% of early maturity (76 - 79 days), and 19.33% were medium maturity (80 - 90 days). In the group of super early maturity, 11 genotypes were yielded between 3.01 - 3.69 t/ha and the 100 seed weight ranged from 15.27 - 20.18 g. In the early maturity group, there were 23 genotypes with seed yields between 3.01 - 3.66 t/ha, and the 100 seed weight ranged from 13.90 - 20.23 g. In Indonesia, tempeh industry requires soybeans with large seed size. In this research, G511H/Anj//Anj////Anjs-8-5 was suitable to be developed in Indonesia’s tropical climate and also preferred by industry for tempeh raw material due to its high yield, super early days to maturity, and large seed size.

  11. Role of nano-range amphiphilic polymers in seed quality enhancement of soybean and imidacloprid retention capacity on seed coatings.

    PubMed

    Adak, Totan; Kumar, Jitendra; Shakil, Najam A; Pandey, Sushil

    2016-10-01

    Nano-size and wide-range solubility of amphiphilic polymers (having both hydrophilic and hydrophobic blocks) can improve uniformity in seed coatings. An investigation was carried out to assess the positive effect of amphiphilic polymers over hydrophilic or hydrophobic polymers as seed coating agents and pesticide carriers. Amphiphilic polymers with 127.5-354 nm micelle size were synthesized in the laboratory using polyethylene glycols and aliphatic di-acids. After 6 months of storage, germination of uncoated soybean seeds decreased drastically from 97.80 to 81.55%, while polymer-coated seeds showed 89.44-95.92% germination. Similarly, vigour index-1 was reduced from 3841.10 to 2813.06 for control seeds but ranged from 3375.59 to 3844.60 for polymer-coated seeds after 6 months. The developed imidacloprid formulations retained more pesticide on soybean seed coatings than did a commercial formulation (Gaucho(®) 600 FS). The time taken for 50% release of imidacloprid from seed coatings in water was 7.12-9.11 h for the developed formulations and 0.41 h for the commercial formulation. Nano-range amphiphilic polymers can be used to protect soybean seeds from ageing. Formulations as seed treatments may produce improved and sustained efficacy with minimum environmental contamination. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Effects of Soybean Seed Size on Weed Competition

    USDA-ARS?s Scientific Manuscript database

    Organic soybean producers must rely on various, nonherbicidal tactics for weed management. Increased soybean seed size may be one method to increase the competitiveness of the soybean canopy. Soybean varieties Hutcheson, NC-Roy, and NC-Raleigh were separated into four or five seed size classes. Seed...

  13. Development of NIR calibrations for isoflavone and saponin concentrations in soybeans: data collection and correlations

    USDA-ARS?s Scientific Manuscript database

    Isoflavones and saponins are the major unique phytochemical constituents of soybean seeds. They are essential in preserving the health of germinating seeds, and have been implicated in biochemical roles in both human and animal nutritional health. The accumulation of these compounds in developing se...

  14. Soybean oil biosynthesis: role of diacylglycerol acyltransferases.

    PubMed

    Li, Runzhi; Hatanaka, Tomoko; Yu, Keshun; Wu, Yongmei; Fukushige, Hirotada; Hildebrand, David

    2013-03-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to form seed oil triacylglycerol (TAG). To understand the features of genes encoding soybean (Glycine max) DGATs and possible roles in soybean seed oil synthesis and accumulation, two full-length cDNAs encoding type 1 diacylglycerol acyltransferases (GmDGAT1A and GmDGAT1B) were cloned from developing soybean seeds. These coding sequences share identities of 94 % and 95 % in protein and DNA sequences. The genomic architectures of GmDGAT1A and GmDGAT1B both contain 15 introns and 16 exons. Differences in the lengths of the first exon and most of the introns were found between GmDGAT1A and GmDGAT1B genomic sequences. Furthermore, detailed in silico analysis revealed a third predicted DGAT1, GmDGAT1C. GmDGAT1A and GmDGAT1B were found to have similar activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-diacylglycerol were preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. Both transcripts are much more abundant in developing seeds than in other tissues including leaves, stem, roots, and flowers. Both soybean DGAT1A and DGAT1B are highly expressed at developing seed stages of maximal TAG accumulation with DGAT1B showing highest expression at somewhat later stages than DGAT1A. DGAT1A and DGAT1B show expression profiles consistent with important roles in soybean seed oil biosynthesis and accumulation.

  15. A novel FAD2-1 A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content.

    PubMed

    Pham, Anh-Tung; Lee, Jeong-Dong; Shannon, J Grover; Bilyeu, Kristin D

    2011-09-01

    The alteration of fatty acid profiles in soybean to improve soybean oil quality has been a long-time goal of soybean researchers. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of soybean oil compared to other oils. In the lipid biosynthetic pathway, the enzyme fatty acid desaturase 2 (FAD2) is responsible for the conversion of oleic acid precursors to linoleic acid precursors in developing soybean seeds. Two genes encoding FAD2-1A and FAD2-1B were identified to be expressed specifically in seeds during embryogenesis and have been considered to hold an important role in controlling the seed oleic acid content. A total of 22 soybean plant introduction (PI) lines identified to have an elevated oleic acid content were characterized for sequence mutations in the FAD 2-1A and FAD2-1B genes. PI 603452 was found to contain a deletion of a nucleotide in the second exon of FAD2-1A. These important SNPs were used in developing molecular marker genotyping assays. The assays appear to be a reliable and accurate tool to identify the FAD 2-1A and FAD2-1B genotype of wild-type and mutant plants. PI 603452 was subsequently crossed with PI 283327, a soybean line that has a mutation in FAD2-1B. Interestingly, soybean lines carrying both homozygous insertion/deletion mutation (indel) FAD2-1A alleles and mutant FAD2-1B alleles have an average of 82-86% oleic acid content, compared to 20% in conventional soybean, and low levels of linoleic and linolenic acids. The newly identified indel mutation in the FAD2-1A gene offers a simple method for the development of high oleic acid commercial soybean varieties.

  16. Advances in disease-resistant varieties

    USDA-ARS?s Scientific Manuscript database

    Soybean yields worldwide are reduced by a variety of diseases that affect plant stands, seed development, and/or seed quality, but soybean breeders, pathologists, and genomicists have made considerable progress in the identification, characterization and utilization of sources of resistance genes. M...

  17. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress.

    PubMed

    Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A

    2017-12-12

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O 3 ]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O 3 ] and elevated temperature, respectively. Elevated [O 3 ] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.

  18. Estimating nutrient uptake requirements for soybean using QUEFTS model in China

    PubMed Central

    Yang, Fuqiang; Xu, Xinpeng; Wang, Wei; Ma, Jinchuan; Wei, Dan; He, Ping; Pampolino, Mirasol F.; Johnston, Adrian M.

    2017-01-01

    Estimating balanced nutrient requirements for soybean (Glycine max [L.] Merr) in China is essential for identifying optimal fertilizer application regimes to increase soybean yield and nutrient use efficiency. We collected datasets from field experiments in major soybean planting regions of China between 2001 and 2015 to assess the relationship between soybean seed yield and nutrient uptake, and to estimate nitrogen (N), phosphorus (P), and potassium (K) requirements for a target yield of soybean using the quantitative evaluation of the fertility of tropical soils (QUEFTS) model. The QUEFTS model predicted a linear–parabolic–plateau curve for the balanced nutrient uptake with a target yield increased from 3.0 to 6.0 t ha−1 and the linear part was continuing until the yield reached about 60–70% of the potential yield. To produce 1000 kg seed of soybean in China, 55.4 kg N, 7.9 kg P, and 20.1 kg K (N:P:K = 7:1:2.5) were required in the above-ground parts, and the corresponding internal efficiencies (IE, kg seed yield per kg nutrient uptake) were 18.1, 126.6, and 49.8 kg seed per kg N, P, and K, respectively. The QUEFTS model also simulated that a balanced N, P, and K removal by seed which were 48.3, 5.9, and 12.2 kg per 1000 kg seed, respectively, accounting for 87.1%, 74.1%, and 60.8% of the total above-ground parts, respectively. These results were conducive to make fertilizer recommendations that improve the seed yield of soybean and avoid excessive or deficient nutrient supplies. Field validation indicated that the QUEFTS model could be used to estimate nutrient requirements which help develop fertilizer recommendations for soybean. PMID:28498839

  19. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

    PubMed Central

    Shu, Kai; Qi, Ying; Chen, Feng; Meng, Yongjie; Luo, Xiaofeng; Shuai, Haiwei; Zhou, Wenguan; Ding, Jun; Du, Junbo; Liu, Jiang; Yang, Feng; Wang, Qiang; Liu, Weiguo; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Yang, Wenyu

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA1, GA3, and GA4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA1/ABA, GA3/ABA, and GA4/ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress. PMID:28848576

  20. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis.

    PubMed

    Shu, Kai; Qi, Ying; Chen, Feng; Meng, Yongjie; Luo, Xiaofeng; Shuai, Haiwei; Zhou, Wenguan; Ding, Jun; Du, Junbo; Liu, Jiang; Yang, Feng; Wang, Qiang; Liu, Weiguo; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Yang, Wenyu

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA 1 , GA 3 , and GA 4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA 1 /ABA, GA 3 /ABA, and GA 4 /ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  1. A systems biology approach toward understanding seed composition in soybean.

    PubMed

    Li, Ling; Hur, Manhoi; Lee, Joon-Yong; Zhou, Wenxu; Song, Zhihong; Ransom, Nick; Demirkale, Cumhur Yusuf; Nettleton, Dan; Westgate, Mark; Arendsee, Zebulun; Iyer, Vidya; Shanks, Jackie; Nikolau, Basil; Wurtele, Eve Syrkin

    2015-01-01

    The molecular, biochemical, and genetic mechanisms that regulate the complex metabolic network of soybean seed development determine the ultimate balance of protein, lipid, and carbohydrate stored in the mature seed. Many of the genes and metabolites that participate in seed metabolism are unknown or poorly defined; even more remains to be understood about the regulation of their metabolic networks. A global omics analysis can provide insights into the regulation of seed metabolism, even without a priori assumptions about the structure of these networks. With the future goal of predictive biology in mind, we have combined metabolomics, transcriptomics, and metabolic flux technologies to reveal the global developmental and metabolic networks that determine the structure and composition of the mature soybean seed. We have coupled this global approach with interactive bioinformatics and statistical analyses to gain insights into the biochemical programs that determine soybean seed composition. For this purpose, we used Plant/Eukaryotic and Microbial Metabolomics Systems Resource (PMR, http://www.metnetdb.org/pmr, a platform that incorporates metabolomics data to develop hypotheses concerning the organization and regulation of metabolic networks, and MetNet systems biology tools http://www.metnetdb.org for plant omics data, a framework to enable interactive visualization of metabolic and regulatory networks. This combination of high-throughput experimental data and bioinformatics analyses has revealed sets of specific genes, genetic perturbations and mechanisms, and metabolic changes that are associated with the developmental variation in soybean seed composition. Researchers can explore these metabolomics and transcriptomics data interactively at PMR.

  2. Selection for Oil Content During Soybean Domestication Revealed by X-Ray Tomography of Ancient Beans

    NASA Astrophysics Data System (ADS)

    Zong, Yunbing; Yao, Shengkun; Crawford, Gary W.; Fang, Hui; Lang, Jianfeng; Fan, Jiadong; Sun, Zhibin; Liu, Yang; Zhang, Jianhua; Duan, Xiulan; Zhou, Guangzhao; Xiao, Tiqiao; Luan, Fengshi; Wang, Qing; Chen, Xuexiang; Jiang, Huaidong

    2017-02-01

    When and under what circumstances domestication related traits evolved in soybean (Glycine max) is not well understood. Seed size has been a focus of archaeological attention because increased soybean seed weight/size is a trait that distinguishes most modern soybeans from their ancestors; however, archaeological seed size analysis has had limited success. Modern domesticated soybean has a significantly higher oil content than its wild counterpart so oil content is potentially a source of new insight into soybean domestication. We investigated soybean oil content using X-ray computed tomography (CT; specifically, synchrotron radiation X-ray CT or SRX-CT) of charred, archaeological soybean seeds. CT identified holes in the specimens that are associated with oil content. A high oil content facilitates the development of small holes, whereas a high protein content results in larger holes. The volume of small holes increased slowly from 7,500 to 4,000 cal B.P. We infer that human selection for higher oil content began as early as 7,500 cal B.P. and that high oil content cultivars were well established by 4,000 cal B.P.

  3. Selection for Oil Content During Soybean Domestication Revealed by X-Ray Tomography of Ancient Beans

    PubMed Central

    Zong, Yunbing; Yao, Shengkun; Crawford, Gary W.; Fang, Hui; Lang, Jianfeng; Fan, Jiadong; Sun, Zhibin; Liu, Yang; Zhang, Jianhua; Duan, Xiulan; Zhou, Guangzhao; Xiao, Tiqiao; Luan, Fengshi; Wang, Qing; Chen, Xuexiang; Jiang, Huaidong

    2017-01-01

    When and under what circumstances domestication related traits evolved in soybean (Glycine max) is not well understood. Seed size has been a focus of archaeological attention because increased soybean seed weight/size is a trait that distinguishes most modern soybeans from their ancestors; however, archaeological seed size analysis has had limited success. Modern domesticated soybean has a significantly higher oil content than its wild counterpart so oil content is potentially a source of new insight into soybean domestication. We investigated soybean oil content using X-ray computed tomography (CT; specifically, synchrotron radiation X-ray CT or SRX-CT) of charred, archaeological soybean seeds. CT identified holes in the specimens that are associated with oil content. A high oil content facilitates the development of small holes, whereas a high protein content results in larger holes. The volume of small holes increased slowly from 7,500 to 4,000 cal B.P. We infer that human selection for higher oil content began as early as 7,500 cal B.P. and that high oil content cultivars were well established by 4,000 cal B.P. PMID:28240321

  4. Selection for Oil Content During Soybean Domestication Revealed by X-Ray Tomography of Ancient Beans.

    PubMed

    Zong, Yunbing; Yao, Shengkun; Crawford, Gary W; Fang, Hui; Lang, Jianfeng; Fan, Jiadong; Sun, Zhibin; Liu, Yang; Zhang, Jianhua; Duan, Xiulan; Zhou, Guangzhao; Xiao, Tiqiao; Luan, Fengshi; Wang, Qing; Chen, Xuexiang; Jiang, Huaidong

    2017-02-27

    When and under what circumstances domestication related traits evolved in soybean (Glycine max) is not well understood. Seed size has been a focus of archaeological attention because increased soybean seed weight/size is a trait that distinguishes most modern soybeans from their ancestors; however, archaeological seed size analysis has had limited success. Modern domesticated soybean has a significantly higher oil content than its wild counterpart so oil content is potentially a source of new insight into soybean domestication. We investigated soybean oil content using X-ray computed tomography (CT; specifically, synchrotron radiation X-ray CT or SRX-CT) of charred, archaeological soybean seeds. CT identified holes in the specimens that are associated with oil content. A high oil content facilitates the development of small holes, whereas a high protein content results in larger holes. The volume of small holes increased slowly from 7,500 to 4,000 cal B.P. We infer that human selection for higher oil content began as early as 7,500 cal B.P. and that high oil content cultivars were well established by 4,000 cal B.P.

  5. Field evaluations of soybean lines from a new source of resistance to Phomopsis seed decay, 2012

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) is an important disease which causes large soybean quality losses when environmental conditions favor its growth, and harvest is delayed due to wet field conditions. High humidity, free water and warm temperatures during pod development favor PSD development and are commo...

  6. Field evaluation of soybean lines from a new souorce of resistance to Phomopsis seed decay, 2013

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) is an important disease which causes large soybean quality losses when environmental conditions favor its growth, and harvest is delayed due to wet field conditions. High humidity, free water and warm temperatures during pod development favor PSD development and are commo...

  7. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio.

    PubMed

    Shuai, Haiwei; Meng, Yongjie; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Dai, Yujia; Qi, Ying; Du, Junbo; Yang, Feng; Liu, Jiang; Yang, Wenyu; Shu, Kai

    2017-10-03

    Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represses soybean seed germination by enhancing ABA biosynthesis, while impairing GA biogenesis, and finally decreasing GA 1 /ABA and GA 4 /ABA ratios. Microscope observation showed that auxin treatment delayed rupture of the soybean seed coat and radicle protrusion. qPCR assay revealed that transcription of the genes involved in ABA biosynthetic pathway was up-regulated by application of auxin, while expression of genes involved in GA biosynthetic pathway was down-regulated. Accordingly, further phytohormone quantification shows that auxin significantly increased ABA content, whereas the active GA 1 and GA 4 levels were decreased, resulting insignificant decreases in the ratiosGA 1 /ABA and GA 4 /ABA.Consistent with this, ABA biosynthesis inhibitor fluridone reversed the delayed-germination phenotype associated with auxin treatment, while paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Altogether, exogenous auxin represses soybean seed germination by mediating ABA and GA biosynthesis.

  8. Gm1-MMP is involved in growth and development of leaf and seed, and enhances tolerance to high temperature and humidity stress in transgenic Arabidopsis.

    PubMed

    Liu, Sushuang; Liu, Yanmin; Jia, Yanhong; Wei, Jiaping; Wang, Shuang; Liu, Xiaolin; Zhou, Yali; Zhu, Yajing; Gu, Weihong; Ma, Hao

    2017-06-01

    Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases. Gm1-MMP was found to play an important role in soybean tissue remodeling during leaf expansion. In this study, Gm1-MMP was isolated and characterized. Its encoding protein had a relatively low phylogenetic relationship with the MMPs in other plant species. Subcellular localization indicated that Gm1-MMP was a plasma membrane protein. Gm1-MMP showed higher expression levels in mature leaves, old leaves, pods, and mature seeds, as well as was involved in the development of soybean seed. Additionally, it was involved in response to high temperature and humidity (HTH) stress in R7 leaves and seeds in soybean. The analysis of promoter of Gm1-MMP suggested that the fragment from -399 to -299 was essential for its promoter activity in response to HTH stress. The overexpression of Gm1-MMP in Arabidopsis affected the growth and development of leaves, enhanced leaf and developing seed tolerance to HTH stress and improved seed vitality. The levels of hydrogen peroxide (H 2 O 2 ) and ROS in transgenic Arabidopsis seeds were lower than those in wild type seeds under HTH stress. Gm1-MMP could interact with soybean metallothionein-II (GmMT-II), which was confirmed by analysis of yeast two-hybrid assay and BiFC assays. All the results indicated that Gm1-MMP plays an important role in the growth and development of leaves and seeds as well as in tolerance to HTH stress. It will be helpful for us understanding the functions of Gm1-MMP in plant growth and development, and in response to abiotic stresses. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Resistance to Phomopsis Seed Decay in soybean

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) of soybean is caused primarily by the fungal pathogen, Phomopsis longicolla T.W. Hobbs along with other Phomopsis and Diaporthe spp. This disease causes poor seed quality and suppresses yield in most soybean-growing countries. Infected soybean seeds can be symptomless, but...

  10. Soybean Seed Development: Fatty Acid and Phytohormone Metabolism and Their Interactions

    PubMed Central

    Nguyen, Quoc Thien.; Kisiala, Anna; Andreas, Peter; Neil Emery, R.J.; Narine, Suresh

    2016-01-01

    Vegetable oil utilization is determined by its fatty acid composition. In soybean and other grain crops, during the seed development oil accumulation is important trait for value in food or industrial applications. Seed development is relatively short and sensitive to unfavorable abiotic conditions. These stresses can lead to a numerous undesirable qualitative as well as quantitative changes in fatty acid production. Fatty acid manipulation which targets a higher content of a specific single fatty acid for food or industrial application has gained more attention. Despite several successes in modifying the ratio of endogenous fatty acids in most domesticated oilseed crops, numerous obstacles in FA manipulation of seed maturation are yet to be overcome. Remarkably, connections with plant hormones have not been well studied despite their critical roles in the regulation and promotion of a plethora of processes in plant growth and development. While activities of phytohormones during the reproductive phase have been partially clarified in seed physiology, the biological role of plant hormones in oil accumulation during seed development has not been investigated. In this review seed development and numerous effects of abiotic stresses are discussed. After describing fatty acid and phytohormone metabolism and their interactions, we postulate that the endogenous plant hormones play important roles in fatty acid production in soybean seeds. PMID:27252591

  11. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-06-01

    Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular markers associated with oil-related QTL in this study, which also have positive effects on other important traits such as seed yield and protein concentration, could be used in the soybean marker breeding programs aimed at developing either higher seed yield and oil concentration or higher seed protein and oil concentration per hectare. Alternatively, selecting complementary parents with greater breeding values due to positive epistatic interactions could lead to the development of higher oil soybean cultivars.

  12. Role of Soybean mosaic virus-encoded proteins in seed and aphid transmission in soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean mosaic virus (SMV) is seed and aphid transmitted and can cause significant reductions in yield and seed quality in soybean, Glycine max. The roles in seed and aphid transmission of selected SMV-encoded proteins were investigated by constructing chimeric recombinants between SMV 413 (efficien...

  13. Variation of unsaturated fatty acids in soybean sprout of high oleic acid accessions.

    PubMed

    Dhakal, Krishna Hari; Jung, Ki-Hwal; Chae, Jong-Hyun; Shannon, J Grover; Lee, Jeong-Dong

    2014-12-01

    Oleic acid and oleic acid rich foods may have beneficial health effects in humans. Soybeans with high oleic acid (around 80% in seed oil) have been developed. Soybean sprouts are an important vegetable in Korea, Japan and China. The objective of this study was to investigate the variation of unsaturated fatty acids, oleic, linoleic and α-linolenic acids, in sprouts from soybeans with normal and high oleic acid concentration. Twelve soybean accessions with six high oleic acid lines, three parents of high oleic acid lines, and three checks with normal and high oleic acid concentration were used in this study. The unsaturated fatty acid concentration in sprouts from each genotype was similar to the concentration in the ungerminated seed. The oleic acid concentration in the sprouts of high oleic acid lines (up to 80%) was still high (>70%) compared to the ungerminated seed. Thus, high oleic soybean varieties developed for sprout production could add valuable health benefits to sprouts and the individuals who consume this vegetable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants.

    PubMed

    Wei, Wei; Li, Qing-Tian; Chu, Ya-Nan; Reiter, Russel J; Yu, Xiao-Min; Zhu, Dan-Hua; Zhang, Wan-Ke; Ma, Biao; Lin, Qing; Zhang, Jin-Song; Chen, Shou-Yi

    2015-02-01

    Melatonin is a well-known agent that plays multiple roles in animals. Its possible function in plants is less clear. In the present study, we tested the effect of melatonin (N-acetyl-5-methoxytryptamine) on soybean growth and development. Coating seeds with melatonin significantly promoted soybean growth as judged from leaf size and plant height. This enhancement was also observed in soybean production and their fatty acid content. Melatonin increased pod number and seed number, but not 100-seed weight. Melatonin also improved soybean tolerance to salt and drought stresses. Transcriptome analysis revealed that salt stress inhibited expressions of genes related to binding, oxidoreductase activity/process, and secondary metabolic processes. Melatonin up-regulated expressions of the genes inhibited by salt stress, and hence alleviated the inhibitory effects of salt stress on gene expressions. Further detailed analysis of the affected pathways documents that melatonin probably achieved its promotional roles in soybean through enhancement of genes involved in cell division, photosynthesis, carbohydrate metabolism, fatty acid biosynthesis, and ascorbate metabolism. Our results demonstrate that melatonin has significant potential for improvement of soybean growth and seed production. Further study should uncover more about the molecular mechanisms of melatonin's function in soybeans and other crops. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Genome-wide expression analysis of soybean NF-Y genes reveals potential function in development and drought response.

    PubMed

    Quach, Truyen N; Nguyen, Hanh T M; Valliyodan, Babu; Joshi, Trupti; Xu, Dong; Nguyen, Henry T

    2015-06-01

    Nuclear factor-Y (NF-Y), a heterotrimeric transcription factor, is composed of NF-YA, NF-YB and NF-YC proteins. In plants, there are usually more than 10 genes for each family and their members have been identified to be key regulators in many developmental and physiological processes controlling gametogenesis, embryogenesis, nodule development, seed development, abscisic acid (ABA) signaling, flowering time, primary root elongation, blue light responses, endoplasmic reticulum (ER) stress response and drought tolerance. Taking the advantages of the recent soybean genome draft and information on functional characterizations of nuclear factor Y (NF-Y) transcription factor family in plants, we identified 21 GmNF-YA, 32 GmNF-YB, and 15 GmNF-YC genes in the soybean (Glycine max) genome. Phylogenetic analyses show that soybean's proteins share strong homology to Arabidopsis and many of them are closely related to functionally characterized NF-Y in plants. Expression analysis in various tissues of flower, leaf, root, seeds of different developmental stages, root hairs under rhizobium inoculation, and drought-treated roots and leaves revealed that certain groups of soybean NF-Y are likely involved in specific developmental and stress responses. This study provides extensive evaluation of the soybean NF-Y family and is particularly useful for further functional characterization of GmNF-Y proteins in seed development, nodulation and drought adaptation of soybean.

  16. Genetic mapping of QTLs associated with seed macronutrients accumulation in 'MD96-5722' by 'Spencer' recombinant inbred lines of soybean

    USDA-ARS?s Scientific Manuscript database

    Research of genetic mapping of QTLs for macronutrient accumulation in soybean seed is limited. Therefore, the objective of this research was to identify QTLs related to macronutrients (N, C, S, P, K, Ca, and Mg) in seeds in 92 F5:7 recombinant inbred lines developed from a cross between MD 96-5722 (...

  17. Resistance to phomopsis seed decay identified in maturity group V soybean plant introductions

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) of soybean is the major cause of poor seed quality in most soybean-growing countries. This disease is primarily caused by the fungus Phomopsis longicolla. Few soybean cultivars currently available for planting in the U.S. have resistance to PSD. To identify soybean lines w...

  18. Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water.

    PubMed

    Ma, Fengshan; Cholewa, Ewa; Mohamed, Tasneem; Peterson, Carol A; Gijzen, Mark

    2004-08-01

    Soybean (Glycine max) is among the many legumes that are well known for 'hardseededness'. This feature can be beneficial for long-term seed survival, but is undesirable for the food processing industry. There is substantial disagreement concerning the mechanisms and related structures that control the permeability properties of soybean seed coats. In this work, the structural component that controls water entry into the seed is identified. Six soybean cultivars were tested for their seed coat permeabilities to water. To identify the structural feature(s) that may contribute to the determination of these permeabilities, fluorescent tracer dyes, and light and electron microscopic techniques were used. The cultivar 'Tachanagaha' has the most permeable seed coat, 'OX 951' the least permeable seed coat, and the permeabilities of the rest ('Harovinton', 'Williams', 'Clark L 67-3469', and 'Harosoy 63') are intermediate. All seeds have surface deposits, depressions, a light line, and a cuticle about 0.2 microm thick overlaying the palisade layer. In permeable cultivars the cuticle tends to break, whereas in impermeable seeds of 'OX 951' it remains intact. In the case of permeable seed coats, the majority of the cracks are from 1 to 5 micro m wide and from 20 to 200 micro m long, and occur more frequently on the dorsal side than in other regions of the seed coat, a position that correlates with the site of initial water uptake. The cuticle of the palisade layer is the key factor that determines the permeability property of a soybean seed coat. The cuticle of a permeable seed coat is mechanically weak and develops small cracks through which water can pass. The cuticle of an impermeable seed coat is mechanically strong and does not crack under normal circumstances.

  19. Genotyping-by-Sequencing-Based Investigation of the Genetic Architecture Responsible for a ∼Sevenfold Increase in Soybean Seed Stearic Acid.

    PubMed

    Heim, Crystal B; Gillman, Jason D

    2017-01-05

    Soybean oil is highly unsaturated but oxidatively unstable, rendering it nonideal for food applications. Until recently, the majority of soybean oil underwent partial chemical hydrogenation, which produces trans fats as an unavoidable consequence. Dietary intake of trans fats and most saturated fats are conclusively linked to negative impacts on cholesterol levels and cardiovascular health. Two major soybean oil breeding targets are: (1) to reduce or eliminate the need for chemical hydrogenation, and (2) to replace the functional properties of partially hydrogenated soybean oil. One potential solution is the elevation of seed stearic acid, a saturated fat which has no negative impacts on cardiovascular health, from 3 to 4% in typical cultivars to > 20% of the seed oil. We performed QTL analysis of a population developed by crossing two mutant lines, one with a missense mutation affecting a stearoyl-acyl-carrier protein desaturase gene resulting in ∼11% seed stearic acid crossed to another mutant, A6, which has 24-28% seed stearic acid. Genotyping-by-sequencing (GBS)-based QTL mapping identified 21 minor and major effect QTL for six seed oil related traits and plant height. The inheritance of a large genomic deletion affecting chromosome 14 is the basis for largest effect QTL, resulting in ∼18% seed stearic acid. This deletion contains SACPD-C and another gene(s); loss of both genes boosts seed stearic acid levels to ≥ 18%. Unfortunately, this genomic deletion has been shown in previous studies to be inextricably correlated with reduced seed yield. Our results will help inform and guide ongoing breeding efforts to improve soybean oil oxidative stability. Copyright © 2017 Heim and Gillman.

  20. 40 CFR 180.1020 - Sodium chlorate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., forage Sorghum, grain, grain Sorghum, grain, stover Soybean, forage Soybean, hay Soybean, seed Sunflower... in accordance with good agricultural practice on the following crops: Bean, dry, seed Corn, field..., sweet, stover Cotton, undelinted seed Flax, seed Grain, aspirated fractions Guar, seed Pea, southern...

  1. 40 CFR 180.1020 - Sodium chlorate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., forage Sorghum, grain, grain Sorghum, grain, stover Soybean, forage Soybean, hay Soybean, seed Sunflower... in accordance with good agricultural practice on the following crops: Bean, dry, seed Corn, field..., sweet, stover Cotton, undelinted seed Flax, seed Grain, aspirated fractions Guar, seed Pea, southern...

  2. GmSBH1, a homeobox transcription factor gene, relates to growth and development and involves in response to high temperature and humidity stress in soybean.

    PubMed

    Shu, Yingjie; Tao, Yuan; Wang, Shuang; Huang, Liyan; Yu, Xingwang; Wang, Zhankui; Chen, Ming; Gu, Weihong; Ma, Hao

    2015-11-01

    GmSBH1 involves in response to high temperature and humidity stress. Homeobox transcription factors are key switches that control plant development processes. Glycine max H1 Sbh1 (GmSBH1) was the first homeobox gene isolated from soybean. In the present study, the full ORF of GmSBH1 was isolated, and the encoded protein was found to be a typical class I KNOX homeobox transcription factor. Subcellular localization and transcriptional activation assays showed that GmSBH1 is a nuclear protein and possesses transcriptional activation activity in the homeodomain. The KNOX1 domain was found to play a clear role in suppressing the transcriptional activation activity of GmSBH1. GmSBH1 showed different expression levels among different soybean tissues and was involved in response to high temperature and humidity (HTH) stress in developing soybean seeds. The overexpression of GmSBH1 in Arabidopsis altered leaf and stoma phenotypes and enhanced seed tolerance to HTH stress. Overall, our results indicated that GmSBH1 is involved in growth, development, and enhances tolerance to pre-harvest seed deterioration caused by HTH stress in soybean.

  3. Seed nutrition and quality, seed coat boron and lignin are influenced by delayed harvest in exotically-derived soybean breeding lines under high heat

    USDA-ARS?s Scientific Manuscript database

    Growing heat sensitive soybean under the high heat and humid environment of the Early Soybean Production System (ESPS) in the Midsouthern USA often leads to poor seed quality. Therefore, breeding for heat tolerant soybeans that maintain high quality of seed nutrition, high germination, and high prot...

  4. Phomopsis seed decay of soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD) causes poor seed quality and suppresses yield in most soybean-growing countries. The disease is caused primarily by the fungal pathogen Phomopsis longicolla along with other Phomopsis and Diaporthe spp. Infected seed range from symptomless to shriveled, elongated, ...

  5. Evaluating soybean cultivars for resistance to Phomopsis seed decay in Mississippi

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) of soybean reduces seed quality, germination and seedling vigor. PSD has been problematic in most soybean production areas including Mississippi (MS). Planting resistant cultivars is one of the most effective means to control PSD. However, very few soybean cultivars resis...

  6. A Single-Nucleotide Polymorphism in an Endo-1,4-β-Glucanase Gene Controls Seed Coat Permeability in Soybean

    PubMed Central

    Jang, Seong-Jin; Sato, Masako; Sato, Kei; Jitsuyama, Yutaka; Fujino, Kaien; Mori, Haruhide; Takahashi, Ryoji; Benitez, Eduardo R.; Liu, Baohui; Yamada, Tetsuya; Abe, Jun

    2015-01-01

    Physical dormancy, a structural feature of the seed coat known as hard seededness, is an important characteristic for adaptation of plants against unstable and unpredictable environments. To dissect the molecular basis of qHS1, a quantitative trait locus for hard seededness in soybean (Glycine max (L) Merr.), we developed a near-isogenic line (NIL) of a permeable (soft-seeded) cultivar, Tachinagaha, containing a hard-seed allele from wild soybean (G. soja) introduced by successive backcrossings. The hard-seed allele made the seed coat of Tachinagaha more rigid by increasing the amount of β-1,4-glucans in the outer layer of palisade cells of the seed coat on the dorsal side of seeds, known to be a point of entrance of water. Fine-mapping and subsequent expression and sequencing analyses revealed that qHS1 encodes an endo-1,4-β-glucanase. A single-nucleotide polymorphism (SNP) introduced an amino acid substitution in a substrate-binding cleft of the enzyme, possibly reducing or eliminating its affinity for substrates in permeable cultivars. Introduction of the genomic region of qHS1 from the impermeable (hard-seeded) NIL into the permeable cultivar Kariyutaka resulted in accumulation of β-1,4-glucan in the outer layer of palisade cells and production of hard seeds. The SNP allele found in the NIL was further associated with the occurrence of hard seeds in soybean cultivars of various origins. The findings of this and previous studies may indicate that qHS1 is involved in the accumulation of β-1,4-glucan derivatives such as xyloglucan and/or β-(1,3)(1,4)-glucan that reinforce the impermeability of seed coats in soybean. PMID:26039079

  7. Screening a diverse soybean germplasm collection for reaction to purple seed stain caused by Cercospora kikuchii

    USDA-ARS?s Scientific Manuscript database

    Purple seed stain (PSS), caused by Cercospora kikuchii, is a prevalent soybean disease that causes latent seed infection, seed decay, purple seed discoloration, and overall quality deterioration. The objective of this research was to screen soybean accessions from the USDA germplasm collection for r...

  8. Metabolism variation and better storability of dark- versus light-coloured soybean (Glycine max L. Merr.) seeds.

    PubMed

    Liu, Jiang; Qin, Wen-Ting; Wu, Hai-Jun; Yang, Cai-Qiong; Deng, Jun-Cai; Iqbal, Nasir; Liu, Wei-Guo; Du, Jun-Bo; Shu, Kai; Yang, Feng; Wang, Xiao-Chun; Yong, Tai-Wen; Yang, Wen-Yu

    2017-05-15

    The effects of storage duration on the seed germination and metabolite profiling of soybean seeds with five different coloured coats were studied. Their germination, constituents and transcript expressions of isoflavones and free fatty acids (FFAs) were compared using chromatographic metabolomic profiling and transcriptome sequencing. The seed water content was characterized using nuclear magnetic resonance (NMR) relaxometry. Results showed that dark-coloured seeds were less inactivated than light-coloured seeds. The aglycone and β-glucoside concentrations of upstream constituents increased significantly, whereas the acetylglucosides and malonylglucosides of downstream constituents decreased with an increase in the storage period. FFAs increased considerably in the soybean seeds as a result of storage. These results indicate that dark-coloured soybean seeds have better storability than light-coloured seeds, and seed water content plays a role in seed inactivation. It was concluded that there are certain metabolic regularities that are associated with different coloured seed coats of soybeans under storage conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Reaction of maturity group V soybean plant introductions to Phomopsis Seed Decay in Arkansas Mississippi and Missouri 2009

    USDA-ARS?s Scientific Manuscript database

    In 2009, Soybean Phomopsis seed decay (PSD) caused over 12 million bushels of yield loss in 16 southern states. This disease severely affects soybean seed quality due to the reduction of seed viability, oil content, and alteration of seed composition, and it may also increase moldy and/or split seed...

  10. Seasonal Progress of Phomopsis longicolla on Soybean Plant Parts and its Relationship to Seed Quality

    USDA-ARS?s Scientific Manuscript database

    Phomopsis longicolla is a major seed pathogen of soybean in hot and humid production environments. This study was conducted for three years to monitor the infection and development of P. longicolla on vegetative and reproductive tissues of six cultivars and determine the relationship between this i...

  11. Evaluation of diverse soybean germplasm for resistance to Phomopsis Seed Decay

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) is a major cause of poor quality soybean seeds. The disease is caused primarily by the fungal pathogen, Phomopsis longicolla. To identify soybean lines with resistance to PSD, a total of 135 selected soybean germplasm accessions originally from 28 countries and in maturity...

  12. An update of research on Phomopsis Seed Decay in soybean

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) is one of the most important soybean diseases that causes poor seed quality and further poor germination/vigor in most soybean production areas, especially in southern states. Very few soybean cultivars currently available for planting have resistance to PSD. To identify n...

  13. Impact of heat stress during seed development on soybean seed metabolome

    USDA-ARS?s Scientific Manuscript database

    Seed development is a temperature-sensitive process that is much more vulnerable than vegetative tissues to abiotic stresses. Climate change is expected to increase the incidence and severity of summer heatwaves, and the impact of heat stress on seed development is expected to become more widespread...

  14. A new gene that controls seed coat wrinkling in soybean

    USDA-ARS?s Scientific Manuscript database

    Seed coat wrinkling is a major factor affecting the germinability of soybean [Glycine max (L.) Merr.] seed produced in high-temperature environments, such as in the early soybean production system (ESPS) of the midsouthern United States. Exposure of seed to high temperatures, coupled with alternatin...

  15. Oxidative processes in soybean and pea seeds: effect of light, temperature, and water content

    NASA Technical Reports Server (NTRS)

    Vertucci, C. W.; Leopold, A. C.

    1987-01-01

    Oxidative processes are probable determinants of longevity of seeds in storage. Measurements of actual oxygen uptake rates were made for soybean and pea seeds as a comparison of short and long lived seeds when light, temperature, and moisture contents were varied. In both peas and soybeans, the oxygen uptake was depressed at low temperatures (<16 degrees C) and low water contents (< 0.25 gram H2O per gram dry weight). Apparent activation energies under these conditions are very high, while apparent activation energies of seeds at higher water contents and at temperatures greater than 22 degrees C are much less. Light enhances the level of oxygen uptake in pea, but reduces the level of oxygen uptake in soybean. The complexities of the interactions of oxygen uptake with environmental conditions in soybean compared to pea suggest that oxidative processes occur in soybean at low water contents, but are essentially absent in pea. It is suggested that the additional oxidative processes in soybean with moisture contents between 0.10 and 0.24 gram per gram may contribute to the poorer longevity of soybean seed compared to pea seed.

  16. Molecular mapping and genomics of soybean seed protein: A review and perspective for the future

    USDA-ARS?s Scientific Manuscript database

    Meal protein derived from soybean [Glycine max (L) Merr.] seed is the primary source of protein in poultry and livestock feed. Protein is a key factor that determines the nutritional and economical value of soybean. Genetic improvement of soybean seed protein content is highly desirable, and major q...

  17. Pathogenicity of diaporthe spp. isolates recovered from soybean (glycine max) seeds in Paraguay

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) caused by Diaporthe longicolla (Hobbs) J.M. Santos, Vrandecic & A.J.L. Phillips has been documented as part of a soybean [Glycine max (L.) Merr.] fungal disease complex that affects the quality of soybean seed. In 2006, 16 isolates of Diaporthe were recovered from soybean...

  18. Evaluating soybean germplasm and commercial varieties for resistance to Phomopsis seed decay

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD) is the major cause of poor seed quality in most soybean production areas of the United States. Very few soybean cultivars currently available for planting in the US have resistance to PSD. To identify new sources of resistance to PSD, a multistate and multiyear res...

  19. Molecular genetic analysis of seed protein control at Linkage Group I in soybean near-isogenic lines

    USDA-ARS?s Scientific Manuscript database

    The molecular mechanisms that influence soybean seed composition are not well understood. Because the profitability of the soybean crop is affected by seed protein and oil content, insight into the genetic controls involved in these traits is important for future soybean improvement. Here we examine...

  20. Real-time near-infrared spectroscopic inspection system for adulterated sesame oil

    NASA Astrophysics Data System (ADS)

    Kang, Sukwon; Lee, Kang-jin; Son, Jaeryong; Kim, Moon S.

    2010-04-01

    Sesame seed oil is popular and expensive in Korea and has been often mixed with other less expensive vegetable oils. The objective of this research is to develop an economical and rapid adulteration determination system for sesame seed oil mixed with other vegetable oils. A recently developed inspection system consists of a light source, a measuring unit, a spectrophotometer, fiber optics, and a data acquisition module. A near-infrared transmittance spectroscopic method was used to develop the prediction model using Partial Least Square (PLS). Sesame seed oil mixed with a range of concentrations of corn, or perilla, or soybean oil was measured in 8 mm diameter glass tubes. For the model development, a correlation coefficient value of 0.98 was observed for corn, perilla, and soybean oil mixtures with standard errors of correlation of 6.32%, 6.16%, and 5.67%, respectively. From the prediction model, the correlation coefficients of corn oil, perilla oil, and soybean oil were 0.98, 0.97 and 0.98, respectively. The Standard Error of Prediction (SEP) for corn oil, perilla oil, and soybean oil were 6.52%, 6.89% and 5.88%, respectively. The results indicated that this system can potentially be used as a rapid non-destructive adulteration analysis tool for sesame seed oil mixed with other vegetable oils.

  1. Identification of Major Quantitative Trait Loci for Seed Oil Content in Soybeans by Combining Linkage and Genome-Wide Association Mapping.

    PubMed

    Cao, Yongce; Li, Shuguang; Wang, Zili; Chang, Fangguo; Kong, Jiejie; Gai, Junyi; Zhao, Tuanjie

    2017-01-01

    Soybean oil is the most widely produced vegetable oil in the world and its content in soybean seed is an important quality trait in breeding programs. More than 100 quantitative trait loci (QTLs) for soybean oil content have been identified. However, most of them are genotype specific and/or environment sensitive. Here, we used both a linkage and association mapping methodology to dissect the genetic basis of seed oil content of Chinese soybean cultivars in various environments in the Jiang-Huai River Valley. One recombinant inbred line (RIL) population (NJMN-RIL), with 104 lines developed from a cross between M8108 and NN1138-2 , was planted in five environments to investigate phenotypic data, and a new genetic map with 2,062 specific-locus amplified fragment markers was constructed to map oil content QTLs. A derived F 2 population between MN-5 (a line of NJMN-RIL) and NN1138-2 was also developed to confirm one major QTL. A soybean breeding germplasm population (279 lines) was established to perform a genome-wide association study (GWAS) using 59,845 high-quality single nucleotide polymorphism markers. In the NJMN-RIL population, 8 QTLs were found that explained a range of phenotypic variance from 6.3 to 26.3% in certain planting environments. Among them, qOil-5-1, qOil-10-1 , and qOil-14-1 were detected in different environments, and qOil-5-1 was further confirmed using the secondary F 2 population. Three loci located on chromosomes 5 and 20 were detected in a 2-year long GWAS, and one locus that overlapped with qOil-5-1 was found repeatedly and treated as the same locus. qOil-5-1 was further localized to a linkage disequilibrium block region of approximately 440 kb. These results will not only increase our understanding of the genetic control of seed oil content in soybean, but will also be helpful in marker-assisted selection for breeding high seed oil content soybean and gene cloning to elucidate the mechanisms of seed oil content.

  2. Identification of Major Quantitative Trait Loci for Seed Oil Content in Soybeans by Combining Linkage and Genome-Wide Association Mapping

    PubMed Central

    Cao, Yongce; Li, Shuguang; Wang, Zili; Chang, Fangguo; Kong, Jiejie; Gai, Junyi; Zhao, Tuanjie

    2017-01-01

    Soybean oil is the most widely produced vegetable oil in the world and its content in soybean seed is an important quality trait in breeding programs. More than 100 quantitative trait loci (QTLs) for soybean oil content have been identified. However, most of them are genotype specific and/or environment sensitive. Here, we used both a linkage and association mapping methodology to dissect the genetic basis of seed oil content of Chinese soybean cultivars in various environments in the Jiang-Huai River Valley. One recombinant inbred line (RIL) population (NJMN-RIL), with 104 lines developed from a cross between M8108 and NN1138-2, was planted in five environments to investigate phenotypic data, and a new genetic map with 2,062 specific-locus amplified fragment markers was constructed to map oil content QTLs. A derived F2 population between MN-5 (a line of NJMN-RIL) and NN1138-2 was also developed to confirm one major QTL. A soybean breeding germplasm population (279 lines) was established to perform a genome-wide association study (GWAS) using 59,845 high-quality single nucleotide polymorphism markers. In the NJMN-RIL population, 8 QTLs were found that explained a range of phenotypic variance from 6.3 to 26.3% in certain planting environments. Among them, qOil-5-1, qOil-10-1, and qOil-14-1 were detected in different environments, and qOil-5-1 was further confirmed using the secondary F2 population. Three loci located on chromosomes 5 and 20 were detected in a 2-year long GWAS, and one locus that overlapped with qOil-5-1 was found repeatedly and treated as the same locus. qOil-5-1 was further localized to a linkage disequilibrium block region of approximately 440 kb. These results will not only increase our understanding of the genetic control of seed oil content in soybean, but will also be helpful in marker-assisted selection for breeding high seed oil content soybean and gene cloning to elucidate the mechanisms of seed oil content. PMID:28747922

  3. Mutations in a delta9-Stearoyl-ACP-Desaturase Gene Are Associated with Enhanced Stearic Acid Levels in Soybean Seeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, P.; Shanklin, J.; Burton, J. W.

    2008-11-01

    Stearic acid (18:0) is typically a minor component of soybean [Glycine max (L.) Merr.] oil, accounting for only 2 to 4% of the total fatty acid content. Increasing stearic acid levels of soybean oil would lead to enhanced oxidative stability, potentially reducing the need for hydrogenation, a process leading to the formation of undesirable trans fatty acids. Although mutagenesis strategies have been successful in developing soybean germplasm with elevated 18:0 levels in the seed oil, the specific gene mutations responsible for this phenotype were not known. We report a newly identified soybean gene, designated SACPD-C, that encodes a unique isoformmore » of {Delta}{sup 9}-stearoyl-ACP-desaturase, the enzyme responsible for converting stearic acid to oleic acid (18:1). High levels of SACPD-C transcript were only detected in developing seed tissue, suggesting that the encoded desaturase functions to enhance oleic acid biosynthetic capacity as the immature seed is actively engaged in triacylglycerol production and storage. The participation of SACPD-C in storage triacylglycerol synthesis is further supported by the observation of mutations in this gene in two independent sources of elevated 18:0 soybean germplasm, A6 (30% 18:0) and FAM94-41 (9% 18:0). A molecular marker diagnostic for the FAM94-41 SACPD-C gene mutation strictly associates with the elevated 18:0 phenotype in a segregating population, and could thus serve as a useful tool in the development of cultivars with oils possessing enhanced oxidative stability.« less

  4. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication1[OPEN

    PubMed Central

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Ma, Biao; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Shui, Guang-Hou; Chen, Shou-Yi

    2017-01-01

    Seed oil is a momentous agronomical trait of soybean (Glycine max) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351, encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1, BIOTIN CARBOXYL CARRIER PROTEIN2, 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III, DIACYLGLYCEROL O-ACYLTRANSFERASE1, and OLEOSIN2 in transgenic Arabidopsis (Arabidopsis thaliana) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean (Glycine soja) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. PMID:28184009

  5. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication.

    PubMed

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Bian, Xiao-Hua; Shen, Ming; Ma, Biao; Zhang, Wan-Ke; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Lam, Sin-Man; Shui, Guang-Hou; Chen, Shou-Yi; Zhang, Jin-Song

    2017-04-01

    Seed oil is a momentous agronomical trait of soybean ( Glycine max ) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351 , encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1 , BIOTIN CARBOXYL CARRIER PROTEIN2 , 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III , DIACYLGLYCEROL O-ACYLTRANSFERASE1 , and OLEOSIN2 in transgenic Arabidopsis ( Arabidopsis thaliana ) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean ( Glycine soja ) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines.

    PubMed

    Redekar, Neelam R; Biyashev, Ruslan M; Jensen, Roderick V; Helm, Richard F; Grabau, Elizabeth A; Maroof, M A Saghai

    2015-12-18

    Low phytic acid (lpa) crops are potentially eco-friendly alternative to conventional normal phytic acid (PA) crops, improving mineral bioavailability in monogastric animals as well as decreasing phosphate pollution. The lpa crops developed to date carry mutations that are directly or indirectly associated with PA biosynthesis and accumulation during seed development. These lpa crops typically exhibit altered carbohydrate profiles, increased free phosphate, and lower seedling emergence, the latter of which reduces overall crop yield, hence limiting their large-scale cultivation. Improving lpa crop yield requires an understanding of the downstream effects of the lpa genotype on seed development. Towards that end, we present a comprehensive comparison of gene-expression profiles between lpa and normal PA soybean lines (Glycine max) at five stages of seed development using RNA-Seq approaches. The lpa line used in this study carries single point mutations in a myo-inositol phosphate synthase gene along with two multidrug-resistance protein ABC transporter genes. RNA sequencing data of lpa and normal PA soybean lines from five seed-developmental stages (total of 30 libraries) were used for differential expression and functional enrichment analyses. A total of 4235 differentially expressed genes, including 512-transcription factor genes were identified. Eighteen biological processes such as apoptosis, glucan metabolism, cellular transport, photosynthesis and 9 transcription factor families including WRKY, CAMTA3 and SNF2 were enriched during seed development. Genes associated with apoptosis, glucan metabolism, and cellular transport showed enhanced expression in early stages of lpa seed development, while those associated with photosynthesis showed decreased expression in late developmental stages. The results suggest that lpa-causing mutations play a role in inducing and suppressing plant defense responses during early and late stages of seed development, respectively. This study provides a global perspective of transcriptomal changes during soybean seed development in an lpa mutant. The mutants are characterized by earlier expression of genes associated with cell wall biosynthesis and a decrease in photosynthetic genes in late stages. The biological processes and transcription factors identified in this study are signatures of lpa-causing mutations.

  7. Cracks in the Palisade Cuticle of Soybean Seed Coats Correlate with their Permeability to Water

    PubMed Central

    MA, FENGSHAN; CHOLEWA, EWA; MOHAMED, TASNEEM; PETERSON, CAROL A.; GIJZEN, MARK

    2004-01-01

    • Background and Aims Soybean (Glycine max) is among the many legumes that are well known for ‘hardseededness’. This feature can be beneficial for long-term seed survival, but is undesirable for the food processing industry. There is substantial disagreement concerning the mechanisms and related structures that control the permeability properties of soybean seed coats. In this work, the structural component that controls water entry into the seed is identified. • Methods Six soybean cultivars were tested for their seed coat permeabilities to water. To identify the structural feature(s) that may contribute to the determination of these permeabilities, fluorescent tracer dyes, and light and electron microscopic techniques were used. • Key Results The cultivar ‘Tachanagaha’ has the most permeable seed coat, ‘OX 951’ the least permeable seed coat, and the permeabilities of the rest (‘Harovinton’, ‘Williams’, ‘Clark L 67-3469’, and ‘Harosoy 63’) are intermediate. All seeds have surface deposits, depressions, a light line, and a cuticle about 0·2 µm thick overlaying the palisade layer. In permeable cultivars the cuticle tends to break, whereas in impermeable seeds of ‘OX 951’ it remains intact. In the case of permeable seed coats, the majority of the cracks are from 1 to 5 µm wide and from 20 to 200 µm long, and occur more frequently on the dorsal side than in other regions of the seed coat, a position that correlates with the site of initial water uptake. • Conclusions The cuticle of the palisade layer is the key factor that determines the permeability property of a soybean seed coat. The cuticle of a permeable seed coat is mechanically weak and develops small cracks through which water can pass. The cuticle of an impermeable seed coat is mechanically strong and does not crack under normal circumstances. PMID:15217785

  8. Evaluation of soybean commercial varieties for resistance to Phomopsis seed decay in the Mississippi Delta, 2012

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD), primarily caused by Phomopsis longicolla, is a major cause of poor seed quality in the United States, especially in the mid-southern region. To identify new sources of soybean lines resistant to PSD, 16 commercial soybean varieties (MG IV and MGV) were planted on ...

  9. Evaluation of soybean breeding lines for resistance to phomopsis seed decay in stoneville mississippi 2014

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) of soybean is a major cause of poor seed quality in most soybean production areas, especially in the mid-southern region of the United States. Breeding for PSD-resistance is the most effective long-term strategy to control this disease. To breed soybean lines with resistan...

  10. Analysis of proteome profile in germinating soybean seed, and its comparison with rice showing the styles of reserves mobilization in different crops.

    PubMed

    Han, Chao; Yin, Xiaojian; He, Dongli; Yang, Pingfang

    2013-01-01

    Seed germination is a complex physiological process during which mobilization of nutrient reserves happens. In different crops, this event might be mediated by different regulatory and metabolic pathways. Proteome profiling has been proved to be an efficient way that can help us to construct these pathways. However, no such studies have been performed in soybean germinating seeds up to date. Proteome profiling was conducted through one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry strategy in the germinating seeds of soybean (glycine max). Comprehensive comparisons were also carried out between rice and soybean germinating seeds. 764 proteins belonging to 14 functional groups were identified and metabolism related proteins were the largest group. Deep analyses of the proteins and pathways showed that lipids were degraded through lipoxygenase dependent pathway and proteins were degraded through both protease and 26S proteosome system, and the lipoxygenase could also help to remove the reactive oxygen species during the rapid mobilization of reserves of soybean germinating seeds. The differences between rice and soybean germinating seeds proteome profiles indicate that each crop species has distinct mechanism for reserves mobilization during germination. Different reserves could be converted into starches before they are totally utilized during the germination in different crops seeds. This study is the first comprehensive analysis of proteome profile in germinating soybean seeds to date. The data presented in this paper will improve our understanding of the physiological and biochemical status in the imbibed soybean seeds just prior to germination. Comparison of the protein profile with that of germinating rice seeds gives us new insights on mobilization of nutrient reserves during the germination of crops seeds.

  11. Benefits of Neonicotinoid Seed Treatments to Soybean Production

    EPA Pesticide Factsheets

    Read about EPA’s analysis of use of the neonicotinoid seed treatments for insect control in U.S. soybean production. EPA concludes that these seed treatments provide little or no overall benefits to soybean production in most situations.

  12. Analysis of the genome sequence of Phomopsis longicolla: A fungal pathogen causing Phomopsis seed decay in soybean

    USDA-ARS?s Scientific Manuscript database

    Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is a seed-borne fungus causing Phomopsis seed decay in soybean. This disease is one of the most devastating diseases reducing soybean seed quality worldwide. To facilitate investigation of the genomic basis of pathogenicity and to understa...

  13. Comparative Biochemical and Proteomic Analyses of Soybean Seed Cultivars Differing in Protein and Oil Content.

    PubMed

    Min, Chul Woo; Gupta, Ravi; Kim, So Wun; Lee, So Eui; Kim, Yong Chul; Bae, Dong Won; Han, Won Young; Lee, Byong Won; Ko, Jong Min; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sun Tae

    2015-08-19

    This study develops differential protein profiles of soybean (Glycine max) seeds (cv. Saedanbaek and Daewon) varying in protein (47.9 and 39.2%) and oil (16.3 and 19.7%) content using protamine sulfate (PS) precipitation method coupled with a 2D gel electrophoresis (2DGE) approach. Of 71 detected differential spots between Daewon and Saedanbaek, 48 were successfully identified by MALDI-TOF/TOF. Gene ontology analysis revealed that up-regulated proteins in Saedanbaek were largely associated with nutrient reservoir activity (42.6%), which included mainly seed-storage proteins (SSPs; subunits of glycinin and β-conglycinin). Similar results were also obtained in two cultivars of wild soybean (G. soja cv. WS22 and WS15) differing in protein content. Western blots confirmed higher accumulation of SSPs in protein-rich Saedanbaek. Findings presented and discussed in this study highlight a possible involvement of the urea cycle for increased accumulation of SSPs and hence the higher protein content in soybean seeds.

  14. Archaeological Soybean (Glycine max) in East Asia: Does Size Matter?

    PubMed Central

    Lee, Gyoung-Ah; Crawford, Gary W.; Liu, Li; Sasaki, Yuka; Chen, Xuexiang

    2011-01-01

    The recently acquired archaeological record for soybean from Japan, China and Korea is shedding light on the context in which this important economic plant became associated with people and was domesticated. This paper examines archaeological (charred) soybean seed size variation to determine what insight can be gained from a comprehensive comparison of 949 specimens from 22 sites. Seed length alone appears to represent seed size change through time, although the length×width×thickness product has the potential to provide better size change resolution. A widespread early association of small seeded soybean is as old as 9000–8600 cal BP in northern China and 7000 cal BP in Japan. Direct AMS radiocarbon dates on charred soybean seeds indicate selection resulted in large seed sizes in Japan by 5000 cal BP (Middle Jomon) and in Korea by 3000 cal BP (Early Mumun). Soybean seeds recovered in China from the Shang through Han periods are similar in length to the large Korean and Japanese specimens, but the overall size of the large Middle and Late Jomon, Early Mumun through Three Kingdom seeds is significantly larger than any of the Chinese specimens. The archaeological record appears to disconfirm the hypothesis of a single domestication of soybean and supports the view informed by recent phyologenetic research that soybean was domesticated in several locations in East Asia. PMID:22073186

  15. In silico characterization and expression analysis of the multigene family encoding the Bowman-Birk protease inhibitor in soybean.

    PubMed

    de Almeida Barros, Beatriz; da Silva, Wiliane Garcia; Moreira, Maurilio Alves; de Barros, Everaldo Gonçalves

    2012-01-01

    The Bowman-Birk (BBI) protease inhibitors can be used as source of sulfur amino acids, can regulate endogenous protease activity during seed germination and during the defense response of plants to pathogens. In soybean this family has not been fully described. The goal of this work was to characterize in silico and analyze the expression of the members of this family in soybean. We identified 11 potential BBI genes in the soybean genome. In each one of them at least a characteristic BBI conserved domain was detected in addition to a potential signal peptide. The sequences have been positioned in the soybean physical map and the promoter regions were analyzed with respect to known regulatory elements. Elements related to seed-specific expression and also to response to biotic and abiotic stresses have been identified. Based on the in silico analysis and also on quantitative RT-PCR data it was concluded that BBI-A, BBI-CII and BBI-DII are expressed specifically in the seed. The expression profiles of these three genes are similar along seed development. Their expressions reach a maximum in the intermediate stages and decrease as the seed matures. The BBI-DII transcripts are the most abundant ones followed by those of BBI-A and BBI-CII.

  16. Accumulation of genistein and daidzein, soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation.

    PubMed

    Bennett, John O; Yu, Oliver; Heatherly, Larry G; Krishnan, Hari B

    2004-12-15

    To circumvent drought conditions persisting during seed fill in the mid-south U.S. soybean production region, researchers have developed the early soybean (Glycine max [L.] Merr.) production system (ESPS), which entails early planting of short-season varieties. Because soybean supplies a preponderance of the world's protein and oil and consumption of soy-based foods has been associated with multiple health benefits, the effects of this agronomic practice on seed quality traits such as protein, oil, and isoflavones should be investigated. Four cultivars of soybean, two from maturity group IV and two from maturity group V, were planted in April (ESPS) and May (traditional) in a two-year study at Stoneville, MS. Near-infrared analysis of soybean seed was utilized to determine the percentages of protein and oil. Dependent upon variety, the oil content of the early-planted crop was increased by 3-8%, whereas protein was not significantly changed. Visualization of protein extracts fractionated by sodium dodecyl sulfate-polyacrylamide electrophoresis and fluorescence two-dimensional difference gel electrophoresis revealed that early planting did not affect the relative accumulation of the major seed-storage proteins; thus, protein composition was equal to that of traditionally cultivated soybeans. Maturity group IV cultivars contained a higher percentage of oil and a lower percentage of protein than did the maturity group V cultivars, regardless of planting date. Gas chromatographic separation of fatty acids revealed that the percentages of saturated and unsaturated fatty acids were not significantly altered by planting date. Methanol extracts of seed harvested from different planting dates when analyzed by high-performance liquid chromatography showed striking differences in isoflavone content. Dependent upon the variety, total isoflavone content was increased as much as 1.3-fold in early-planted soybeans. Irrigation enhanced the isoflavone content of both early- and late-planted soybeans as much as 2.5-fold. Accumulation of individual isoflavones, daidzein and genistein, was also elevated by irrigation. Because this cultural practice improves the quality traits of seeds, ESPS provides an opportunity for enhancing the quality of soybean.

  17. A simple method to evaluate the number of bradyrhizobia on soybean seeds and its implication on inoculant quality control

    PubMed Central

    2011-01-01

    Soybean seeds are non-sterile and their bacterial population interferes with the enumeration of beneficial bacteria, making it difficult to assess survival under different conditions. Within this context, the principal aims of this work were: (1) to improve a selective media for the enumeration of B. japonicum recovered from inoculated soybean seeds; (2) to establish the most representative mathematical function for B. japonicum mortality on soybean seeds after inoculation; (3) to evaluate if environmental or physiological conditions modify B. japonicum mortality on soybean seeds; and (4) to create a new protocol for quality control of soybean inoculants. We successfully evaluated the combination of pentachloronitrobenzene and vancomycin added to the yeast-mannitol medium to inhibit most fungi and Gram-positive soybean microbiota, thus producing reliable counts of B. japonicum from inoculated soybean seeds. Percentages of recovery and survival factors were obtained and used to construct a two-phase exponential decay non-linear regression function. High temperature and desiccation decreased these parameters, while the optimization of temperature and the use of osmoprotective compounds with inoculants increased them. The use of this protocol minimized heterogeneity between experiments and may be considered more reliable than the simple expression of direct colony count of bacteria recovered from seeds. PMID:21906377

  18. (Hydroxyproline-rich glycoprotein of the plant cell wall): Report on work from June 1987 to June 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    In soybean seed costs the accumulation of the hydroxproline-rich glycoprotein extensin is regulated in a developmental and tissue-specific manner. The time course of appearance of extensin during seed development was studied by Western blot analysis and by immunogold-silver localization. Using these techniques extensin was first detected at 16 to 18 d after anthesis, increasing during development to high levels at 24 d after anthesis. Immunogold-silver localization of extensin in the seed coat showed marked depostion of the glycoprotein in the walls of palisade epidermal cells and hourglass cells. The immunolocalization of extensin in developing soybean seeds was also made bymore » a new technique - tissue printing on nitrocellulose paper. This technique shows that extensin is primarily localized in the seed coal, hilum, and vascular elements of the seed.« less

  19. Development of SSR markers for genetic diversity and phylogenetic studies of Phomopsis longicolla causing Phomopsis seed decay in soybean

    USDA-ARS?s Scientific Manuscript database

    Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is the primary cause of Phomopsis seed decay (PSD) in soybean, Glycine max (L.) Merrill. The genome of P. longicolla type strain TWH P74 represents one of the important fungal pathogens in the Diaporthe-Phomopsis complex. In this study, th...

  20. Soybeans Grown in the Chernobyl Area Produce Fertile Seeds that Have Increased Heavy Metal Resistance and Modified Carbon Metabolism

    PubMed Central

    Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Berezhna, Valentyna V.; Uvackova, Lubica; Rashydov, Namik M.; Hajduch, Martin

    2012-01-01

    Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis. PMID:23110204

  1. Evaluation of maturity group III soybean lines for resistance to purple seed stain in Mississippi, 2010

    USDA-ARS?s Scientific Manuscript database

    Purple seed stain (PSS) of soybean is an important disease caused by Cercospora kikuchii. PSS reduces seed quality and market grade, affects seed germination and vigor, and has been reported wherever soybeans are grown worldwide. In 2009, PSS caused 6.4 million bushels of yield losses in 16 southern...

  2. Evaluation of maturity group IV soybean lines for resistance to purple seed stains in Mississippi 2010

    USDA-ARS?s Scientific Manuscript database

    Purple seed stain (PSS) of soybean is an important disease caused by Cercospora kikuchii. PSS reduces seed quality and market grade, affects seed germination and vigor, and has been reported wherever soybeans are grown worldwide. In 2009, PSS caused 6.4 million bushels of yield losses in 16 southern...

  3. Gene amplification of the Hps locus in Glycine max

    PubMed Central

    Gijzen, Mark; Kuflu, Kuflom; Moy, Pat

    2006-01-01

    Background Hydrophobic protein from soybean (HPS) is an 8 kD cysteine-rich polypeptide that causes asthma in persons allergic to soybean dust. HPS is synthesized in the pod endocarp and deposited on the seed surface during development. Past evidence suggests that the protein may mediate the adherence or dehiscence of endocarp tissues during maturation and affect the lustre, or glossiness of the seed surface. Results A comparison of soybean germplasm by genomic DNA blot hybridization shows that the copy number and structure of the Hps locus is polymorphic among soybean cultivars and related species. Changes in Hps gene copy number were also detected by comparative genomic DNA hybridization using cDNA microarrays. The Hps copy number polymorphisms co-segregated with seed lustre phenotype and HPS surface protein in a cross between dull- and shiny-seeded soybeans. In soybean cultivar Harosoy 63, a minimum of 27 ± 5 copies of the Hps gene were estimated to be present in each haploid genome. The isolation and analysis of genomic clones indicates that the core Hps locus is comprised of a tandem array of reiterated units, with each 8.6 kb unit containing a single HPS open reading frame. Conclusion This study shows that polymorphisms at the Hps locus arise from changes in the gene copy number via gene amplification. We present a model whereby Hps copy number modulates protein expression levels and seed lustre, and we suggest that gene amplification may result from selection pressures imposed on crop plants. PMID:16536872

  4. Temperature and Oxygen Effects on 14C-Photosynthate Unloading and Accumulation in Developing Soybean Seeds

    PubMed Central

    Thorne, John H.

    1982-01-01

    The environmental sensitivity of the processes associated with the import of photosynthate by developing soybean seeds was investigated within intact fruit and with excised, immature embryos. Intact pods of field-grown (Glycine max [L.] Merr.) Amsoy 71 soybeans were subjected to localized regimes of 0, 21, or 100% O2 and 15, 25, or 35°C during pulsechase translocation experiments and, 2.5 hours later, the uptake and distribution of 14C-photosynthate among dissected fruit tissues determined. In other experiments, excised embryos were incubated in [14C]sucrose solutions under various experimental conditions to separate the effects of these treatments on accumulation by the embryos from those which may operate on phloem unloading in the maternal seedcoat. Import of 14C-photosynthate by intact soybean fruit was both temperature- and O2-dependent. This dependency was shown to occur only within the seeds; import by the pod walls was essentially insensitive to fruit temperature or O2 treatments. The embryos of anaerobic fruit were completely unlabeled, regardless of fruit temperature. But under anaerobic in vitro incubation conditions, uptake of [14C]sucrose in excised embryos was only 30% less than that in aerobic in vitro conditions. The data suggest that, within intact fruit, anoxia prevented sucrose efflux from the seed coat phloem and any subsequent uptake by the embryo. The demonstrated energy dependence of phloem unloading may reflect requirements for membrane integrity or energy metabolism in the companion cell-sieve element complex, consistent with a facilitated unloading process. Collectively, these data characterize the environmental sensitivity of photosynthate import in developing soybean fruit. They imply that environmental regulation of import may occur at both the embryo level and at the phloem terminals within the seed coat. PMID:16662182

  5. Soybean seed protein oil and fatty acids as influenced by S and S+N fertilizers under irrigated or non-irrigated environments

    USDA-ARS?s Scientific Manuscript database

    Information on the effect of sulfur (S) or sulfur+nitrogen (S+N) on soybean seed composition is almost non-existent. The objective of this study was to investigate the effects of S, and S+N fertilizers on soybean [(Glycine max (L.) Merr.)] seed composition in the Early Soybean Production System (ESP...

  6. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil concentration with no significant impact on seed protein concentration.

  7. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation.

    PubMed

    Chen, Liang; Zheng, Yuhong; Dong, Zhimin; Meng, Fanfan; Sun, Xingmiao; Fan, Xuhong; Zhang, Yunfeng; Wang, Mingliang; Wang, Shuming

    2018-04-01

    Soybean is the world's most important leguminous crop producing high-quality protein and oil. Elevating oil accumulation in soybean seed is always many researchers' goal. WRINKLED1 (WRI1) encodes a transcription factor of the APETALA2/ethylene responsive element-binding protein (AP2/EREBP) family that plays important roles during plant seed oil accumulation. In this study, we isolated and characterized three distinct orthologues of WRI1 in soybean (Glycine max) that display different organ-specific expression patterns, among which GmWRI1a was highly expressed in maturing soybean seed. Electrophoretic mobility shift assays and yeast one-hybrid experiments demonstrated that the GmWRI1a protein was capable of binding to AW-box, a conserved sequence in the proximal upstream regions of many genes involved in various steps of oil biosynthesis. Transgenic soybean seeds overexpressing GmWRI1a under the control of the seed-specific napin promoter showed the increased total oil and fatty acid content and the changed fatty acid composition. Furthermore, basing on the activated expressions in transgenic soybean seeds and existence of AW-box element in the promoter regions, direct downstream genes of GmWRI1a were identified, and their products were responsible for fatty acid production, elongation, desaturation and export from plastid. We conclude that GmWRI1a transcription factor can positively regulate oil accumulation in soybean seed by a complex gene expression network related to fatty acid biosynthesis.

  8. Evaluation of soybean breeding lines for resistance to Phomopsis seed decay: Results of 2014, 2015, and 2016 field trials in Stoneville, Mississippi

    USDA-ARS?s Scientific Manuscript database

    Soybean [Glycine max (L.) Merr.] is one of the most important crops in the world. Phomopsis seed decay (PSD) is a soybean seed disease that causes poor seed quality. This disease is caused primarily by a fungal pathogen, Phomopsis longicolla (syn. Diaporthe longicolla). Planting PSD-resistant soybea...

  9. Impact of Environment on the Biomass Composition of Soybean (Glycine max) seeds.

    PubMed

    McClure, Tamara; Cocuron, Jean-Christophe; Osmark, Veronika; McHale, Leah K; Alonso, Ana Paula

    2017-08-16

    Factors including genetics, fertilization, and climatic conditions, can alter the biomass composition of soybean seeds, consequently impacting their market value and usage. This study specifically determined the content of protein and oil, as well as the composition of proteinogenic amino acids and fatty acids in seeds from 10 diverse soybean cultivars grown in four different sites. The results highlighted that different environments produce a different composition for the 10 cultivars under investigation. Specifically, the levels of oleic and linoleic acids, important contributors to oil stability, were negatively correlated. Although the protein and oil contents were higher in some locations, their "quality" was lower in terms of composition of essential amino acids and oleic acid, respectively. Finally, proteinogenic histidine and glutamate were the main contributors to the separation between Central and Northern growing sites. Taken together, these results can guide future breeding and engineering efforts aiming to develop specialized soybean lines.

  10. Identification of a new soybean Kunitz trypsin inhibitor mutation and its effect on Bowman-Birk protease inhibitor content in soybean seed

    USDA-ARS?s Scientific Manuscript database

    Soybean seeds possess anti-nutritional compounds which inactivate digestive proteases, principally corresponding to two families: Kunitz Trypsin Inhibitors (KTi) and Bowman-Birk Inhibitors (BBI). High levels of raw soybeans/soybean meal in feed mixtures can cause poor weight gain and pancreatic abno...

  11. Thlaspi arvense (Pennycress): An off-season energy crop within the corn-soybean rotation

    USDA-ARS?s Scientific Manuscript database

    Pennycress is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean production. The seed...

  12. Evaluation of soybean genotypes for resistance to three seed borne diseases

    USDA-ARS?s Scientific Manuscript database

    Seed-borne diseases of soybeans caused by Phomopsis longicolla (Phomopsis seed decay), Cercospora kukuchii (purple seed stain), and M. phaseolina (charcoal rot) are economically important seed-borne diseases that affect seed quality. Commercial cultivars marketed as resistant to all the three disea...

  13. Effects of neonicitinoid seed treatments on soybean aphid and its natural enemies

    USDA-ARS?s Scientific Manuscript database

    Insecticidal seed treatments are becoming a pervasive presence on soybeans in North America, and several recent studies question their efficacy. Here, we examine the effects of two neonicotinoid insecticidal seed treatments on insect populations (pest and natural enemies) in SD soybeans over two yea...

  14. Identification of a single gene for seed coat impermeability in soybean PI 594619

    USDA-ARS?s Scientific Manuscript database

    High temperatures during seed fill increase the occurrence of soybeans with impermeable seed coat, which is associated with non-uniform and delayed germination and emergence. This has become an issue in soybean production areas with excessively high-temperature environments. The objectives of the pr...

  15. Identification and characterization of large DNA deletions affecting oil quality traits in soybean seeds through transcriptome sequencing analysis

    USDA-ARS?s Scientific Manuscript database

    Understanding the molecular and genetic mechanisms underlying variation in seed composition and contents among different genotypes is important for soybean oil quality improvement. We designed a bioinformatics approach to compare seed transcriptomes of 9 soybean genotypes varying in oil composition ...

  16. Discrimination of transgenic soybean seeds by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Liu, Changhong; Chen, Feng; Yang, Jianbo; Zheng, Lei

    2016-10-01

    Discrimination of genetically modified organisms is increasingly demanded by legislation and consumers worldwide. The feasibility of a non-destructive discrimination of glyphosate-resistant and conventional soybean seeds and their hybrid descendants was examined by terahertz time-domain spectroscopy system combined with chemometrics. Principal component analysis (PCA), least squares-support vector machines (LS-SVM) and PCA-back propagation neural network (PCA-BPNN) models with the first and second derivative and standard normal variate (SNV) transformation pre-treatments were applied to classify soybean seeds based on genotype. Results demonstrated clear differences among glyphosate-resistant, hybrid descendants and conventional non-transformed soybean seeds could easily be visualized with an excellent classification (accuracy was 88.33% in validation set) using the LS-SVM and the spectra with SNV pre-treatment. The results indicated that THz spectroscopy techniques together with chemometrics would be a promising technique to distinguish transgenic soybean seeds from non-transformed seeds with high efficiency and without any major sample preparation.

  17. Roles of Soybean Plasma Membrane Intrinsic Protein GmPIP2;9 in Drought Tolerance and Seed Development.

    PubMed

    Lu, Linghong; Dong, Changhe; Liu, Ruifang; Zhou, Bin; Wang, Chuang; Shou, Huixia

    2018-01-01

    Aquaporins play an essential role in water uptake and transport in vascular plants. The soybean genome contains a total of 22 plasma membrane intrinsic protein (PIP) genes. To identify candidate PIPs important for soybean yield and stress tolerance, we studied the transcript levels of all 22 soybean PIPs. We found that a GmPIP2 subfamily member, GmPIP2;9, was predominately expressed in roots and developing seeds. Here, we show that GmPIP2;9 localized to the plasma membrane and had high water channel activity when expressed in Xenopus oocytes. Using transgenic soybean plants expressing a native GmPIP2;9 promoter driving a GUS-reporter gene, it was found high GUS expression in the roots, in particular, in the endoderm, pericycle, and vascular tissues of the roots of transgenic plants. In addition, GmPIP2;9 was also highly expressed in developing pods. GmPIP2;9 expression significantly increased in short term of polyethylene glycol (PEG)-mediated drought stress treatment. GmPIP2;9 overexpression increased tolerance to drought stress in both solution cultures and soil plots. Drought stress in combination with GmPIP2;9 overexpression increased net CO 2 assimilation of photosynthesis, stomata conductance, and transpiration rate, suggesting that GmPIP2;9- overexpressing transgenic plants were less stressed than wild-type (WT) plants. Furthermore, field experiments showed that GmPIP2;9 -overexpressing plants had significantly more pod numbers and larger seed sizes than WT plants. In summary, the study demonstrated that GmPIP2;9 has water transport activity. Its relative high expression levels in roots and developing pods are in agreement with the phenotypes of GmPIP2;9 -overexpressing plants in drought stress tolerance and seed development.

  18. Roles of Soybean Plasma Membrane Intrinsic Protein GmPIP2;9 in Drought Tolerance and Seed Development

    PubMed Central

    Lu, Linghong; Dong, Changhe; Liu, Ruifang; Zhou, Bin; Wang, Chuang; Shou, Huixia

    2018-01-01

    Aquaporins play an essential role in water uptake and transport in vascular plants. The soybean genome contains a total of 22 plasma membrane intrinsic protein (PIP) genes. To identify candidate PIPs important for soybean yield and stress tolerance, we studied the transcript levels of all 22 soybean PIPs. We found that a GmPIP2 subfamily member, GmPIP2;9, was predominately expressed in roots and developing seeds. Here, we show that GmPIP2;9 localized to the plasma membrane and had high water channel activity when expressed in Xenopus oocytes. Using transgenic soybean plants expressing a native GmPIP2;9 promoter driving a GUS-reporter gene, it was found high GUS expression in the roots, in particular, in the endoderm, pericycle, and vascular tissues of the roots of transgenic plants. In addition, GmPIP2;9 was also highly expressed in developing pods. GmPIP2;9 expression significantly increased in short term of polyethylene glycol (PEG)-mediated drought stress treatment. GmPIP2;9 overexpression increased tolerance to drought stress in both solution cultures and soil plots. Drought stress in combination with GmPIP2;9 overexpression increased net CO2 assimilation of photosynthesis, stomata conductance, and transpiration rate, suggesting that GmPIP2;9-overexpressing transgenic plants were less stressed than wild-type (WT) plants. Furthermore, field experiments showed that GmPIP2;9-overexpressing plants had significantly more pod numbers and larger seed sizes than WT plants. In summary, the study demonstrated that GmPIP2;9 has water transport activity. Its relative high expression levels in roots and developing pods are in agreement with the phenotypes of GmPIP2;9-overexpressing plants in drought stress tolerance and seed development. PMID:29755491

  19. Environmental stability of carbohydrate profiles in different soybean genotypes

    USDA-ARS?s Scientific Manuscript database

    Soybean is an important annual crop. The raffinose family of oligosaccharides (RFO) raffinose and stachyose are anti-nutritional carbohydrates present in soybean seeds. Consumption of soybean seed products with low RFO reduced flatulence in humans and increased metabolizable energy efficiency in chi...

  20. Sequence and expression variations suggest an adaptive role for the DA1-like gene family in the evolution of soybeans.

    PubMed

    Zhao, Man; Gu, Yongzhe; He, Lingli; Chen, Qingshan; He, Chaoying

    2015-05-15

    The DA1 gene family is plant-specific and Arabidopsis DA1 regulates seed and organ size, but the functions in soybeans are unknown. The cultivated soybean (Glycine max) is believed to be domesticated from the annual wild soybeans (Glycine soja). To evaluate whether DA1-like genes were involved in the evolution of soybeans, we compared variation at both sequence and expression levels of DA1-like genes from G. max (GmaDA1) and G. soja (GsoDA1). Sequence identities were extremely high between the orthologous pairs between soybeans, while the paralogous copies in a soybean species showed a relatively high divergence. Moreover, the expression variation of DA1-like paralogous genes in soybean was much greater than the orthologous gene pairs between the wild and cultivated soybeans during development and challenging abiotic stresses such as salinity. We further found that overexpressing GsoDA1 genes did not affect seed size. Nevertheless, overexpressing them reduced transgenic Arabidopsis seed germination sensitivity to salt stress. Moreover, most of these genes could improve salt tolerance of the transgenic Arabidopsis plants, corroborated by a detection of expression variation of several key genes in the salt-tolerance pathways. Our work suggested that expression diversification of DA1-like genes is functionally associated with adaptive radiation of soybeans, reinforcing that the plant-specific DA1 gene family might have contributed to the successful adaption to complex environments and radiation of the plants.

  1. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size.

    PubMed

    Gu, Yongzhe; Li, Wei; Jiang, Hongwei; Wang, Yan; Gao, Huihui; Liu, Miao; Chen, Qingshan; Lai, Yongcai; He, Chaoying

    2017-05-17

    Soybean (Glycine max) probably originated from the wild soybean (Glycine soja). Glycine max has a significantly larger seed size, but the underlying genomic changes are largely unknown. Candidate regulatory genes were preliminarily proposed by data co-localizing RNA sequencing with the quantitative loci (QTLs) for seed size. The soybean gene locus SoyWRKY15a and its orthologous genes from G. max (GmWRKY15a) and G. soja (GsWRKY15a) were analyzed in detail. The coding sequences were nearly identical between the two orthologs, but GmWRKY15a was significantly more highly expressed than GsWRKY15a. Four haplotypes (H1-H4) were found and they varied in the size of a CT-core microsatellite locus in the 5'-untranslated region of this gene. H1 (with six CT-repeats) was the only allelic version found in G. max, while H3 (with five CT-repeats) was the dominant G. soja allele. Differential expression of this gene in soybean pods was correlated with CT-repeat variation, and manipulation of the CT copy number altered the reporter gene expression, suggesting a regulatory role for the simple sequence repeats. Seed weight of wild soybeans harboring H1 was significantly greater than that of soybeans having haplotypes H2, H3, or H4, and seed weight was correlated with gene expression, suggesting the influence of GsWRKY15a in controlling seed size. However, the seed size might be refractory to increased SoyWRKY15a expression in cultivated soybeans. The evolutionary significance of SoyWRKY15a variation in soybean seed domestication is discussed. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Identification of quantitative trait loci associated with boiled seed hardness in soybean

    PubMed Central

    Hirata, Kaori; Masuda, Ryoichi; Tsubokura, Yasutaka; Yasui, Takeshi; Yamada, Tetsuya; Takahashi, Koji; Nagaya, Taiko; Sayama, Takashi; Ishimoto, Masao; Hajika, Makita

    2014-01-01

    Boiled seed hardness is an important factor in the processing of soybean food products such as nimame and natto. Little information is available on the genetic basis for boiled seed hardness, despite the wide variation in this trait. DNA markers linked to the gene controlling this trait should be useful in soybean breeding programs because of the difficulty of its evaluation. In this report, quantitative trait locus (QTL) analysis was performed to reveal the genetic factors associated with boiled seed hardness using a recombinant inbred line population developed from a cross between two Japanese cultivars, ‘Natto-shoryu’ and ‘Hyoukei-kuro 3’, which differ largely in boiled seed hardness, which in ‘Natto-shoryu’ is about twice that of ‘Hyoukei-kuro 3’. Two significantly stable QTLs, qHbs3-1 and qHbs6-1, were identified on chromosomes 3 and 6, for which the ‘Hyoukei-kuro 3’ alleles contribute to decrease boiled seed hardness for both QTLs. qHbs3-1 also showed significant effects in progeny of a residual heterozygous line and in a different segregating population. Given its substantial effect on boiled seed hardness, SSR markers closely linked to qHbs3-1, such as BARCSOYSSR_03_0165 and BARCSOYSSR_03_0185, could be useful for marker-assisted selection in soybean breeding. PMID:25914591

  3. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean.

    PubMed

    Baghel, Lokesh; Kataria, Sunita; Guruprasad, Kadur Narayan

    2016-10-01

    The effectiveness of magnetopriming was assessed for alleviation of salt-induced adverse effects on soybean growth. Soybean seeds were pre-treated with static magnetic field (SMF) of 200 mT for 1 h to evaluate the effect of magnetopriming on growth, carbon and nitrogen metabolism, and yield of soybean plants under different salinity levels (0, 25, and 50 mM NaCl). The adverse effect of NaCl-induced salt stress was found on growth, yield, and various physiological attributes of soybeans. Results indicate that SMF pre-treatment significantly increased plant growth attributes, number of root nodules, nodules, fresh weight, biomass accumulation, and photosynthetic performance under both non-saline and saline conditions as compared to untreated seeds. Polyphasic chlorophyll a fluorescence (OJIP) transients from magnetically treated plants gave a higher fluorescence yield at J-I-P phase. Nitrate reductase activity, PIABS , photosynthetic pigments, and net rate of photosynthesis were also higher in plants that emerged from SMF pre-treated seeds as compared to untreated seeds. Leghemoglobin content and hemechrome content in root nodules were also increased by SMF pre-treatment. Thus pre-sowing exposure of seeds to SMF enhanced carbon and nitrogen metabolism and improved the yield of soybeans in terms of number of pods, number of seeds, and seed weight under saline as well as non-saline conditions. Consequently, SMF pre-treatment effectively mitigated adverse effects of NaCl on soybeans. It indicates that magnetopriming of dry soybean seeds can be effectively used as a pre-sowing treatment for alleviating salinity stress. Bioelectromagnetics. 37:455-470, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Soybeans as bioreactors for biopharmaceuticals and industrial proteins.

    PubMed

    Vianna, G R; Cunha, N B; Murad, A M; Rech, E L

    2011-01-01

    Plants present various advantages for the production of biomolecules, including low risk of contamination with prions, viruses and other pathogens, scalability, low production costs, and available agronomical systems. Plants are also versatile vehicles for the production of recombinant molecules because they allow protein expression in various organs, such as tubers and seeds, which naturally accumulate large amounts of protein. Among crop plants, soybean is an excellent protein producer. Soybean plants are also a good source of abundant and cheap biomass and can be cultivated under controlled greenhouse conditions. Under containment, the plant cycle can be manipulated and the final seed yield can be maximized for large-scale protein production within a small and controlled area. Exploitation of specific regulatory sequences capable of directing and accumulating recombinant proteins in protein storage vacuoles in soybean seeds, associated with recently developed biological research tools and purification systems, has great potential to accelerate preliminary characterization of plant-derived biopharmaceuticals and industrial macromolecules. This is an important step in the development of genetically engineered products that are inexpensive and safe for medicinal, food and other uses.

  5. 40 CFR 180.436 - Cyfluthrin and the isomer beta-cyfluthrin; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., undelinted seed 1.0 Egg 0.01 Fruit, citrus, group 10 0.2 Fruit, pome, group 11 0.5 Fruit, stone, group 12 0.3... shelled, except soybean, subgroup 6C 0.15 Pea, dry, seed 0.15 Pea, southern, succulent 0.25 Peanut 0.01... byproducts 0.05 Sorghum, grain, grain 3.5 Soybean, forage 8.0 Soybean, hay 4.0 Soybean, seed 0.03 Sugarcane...

  6. 40 CFR 180.436 - Cyfluthrin and the isomer beta-cyfluthrin; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., undelinted seed 1.0 Egg 0.01 Fruit, citrus, group 10 0.2 Fruit, pome, group 11 0.5 Fruit, stone, group 12 0.3... shelled, except soybean, subgroup 6C 0.15 Pea, dry, seed 0.15 Pea, southern, succulent 0.25 Peanut 0.01... byproducts 0.05 Sorghum, grain, grain 3.5 Soybean, forage 8.0 Soybean, hay 4.0 Soybean, seed 0.03 Sugarcane...

  7. 40 CFR 180.436 - Cyfluthrin and the isomer beta-cyfluthrin; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., undelinted seed 1.0 Egg 0.01 Fruit, citrus, group 10 0.2 Fruit, pome, group 11 0.5 Fruit, stone, group 12 0.3... shelled, except soybean, subgroup 6C 0.15 Pea, dry, seed 0.15 Pea, southern, succulent 0.25 Peanut 0.01... byproducts 0.05 Sorghum, grain, grain 3.5 Soybean, forage 8.0 Soybean, hay 4.0 Soybean, seed 0.03 Sugarcane...

  8. 40 CFR 180.436 - Cyfluthrin and the isomer beta-cyfluthrin; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., undelinted seed 1.0 Egg 0.01 Fruit, citrus, group 10 0.2 Fruit, pome, group 11 0.5 Fruit, stone, group 12 0.3... shelled, except soybean, subgroup 6C 0.15 Pea, dry, seed 0.15 Pea, southern, succulent 0.25 Peanut 0.01... byproducts 0.05 Sorghum, grain, grain 3.5 Soybean, forage 8.0 Soybean, hay 4.0 Soybean, seed 0.03 Sugarcane...

  9. Soybean seed compostion and quality: interactions of enviroment genotype and management practices

    USDA-ARS?s Scientific Manuscript database

    Soybean seed is a major source of protein, oil, carbohydrates, isoflavones, and minerals for human and animal nutrition. Soybean seed contains approximately 40% protein, 20% oil, and 33% carbohydrates, 9% crude fiber. About one-third of the world's edible oils and two-thirds of its protein meal are ...

  10. Assessment of soybean breeding lines for resistance to Phomopsis seed decay from field trials in Stoneville, Mississippi

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) is one of the most important seed diseases in soybean. A fungal pathogen, Phomopsis longicolla (syn. Diaporthe longicolla), is the primary causal agent of PSD. Planting PSD-resistant soybean cultivars is the most effective strategy to manage this disease. However, few comm...

  11. The interactomic analysis reveals pathogenic protein networks in Phomopsis longicolla underlying seed decay of soybean

    USDA-ARS?s Scientific Manuscript database

    Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is the primary cause of Phomopsis seed decay (PSD) in soybean, Glycine max (L.) Merrill. This disease causes poor seed quality and is one of the most economically important diseases in soybean. The objectives of this study were to perform ...

  12. Soybean GmMYB73 promotes lipid accumulation in transgenic plants

    PubMed Central

    2014-01-01

    Background Soybean is one of the most important oil crops. The regulatory genes involved in oil accumulation are largely unclear. We initiated studies to identify genes that regulate this process. Results One MYB-type gene GmMYB73 was found to display differential expression in soybean seeds of different developing stages by microarray analysis and was further investigated for its functions in lipid accumulation. GmMYB73 is a small protein with single MYB repeat and has similarity to CPC-like MYB proteins from Arabidopsis. GmMYB73 interacted with GL3 and EGL3, and then suppressed GL2, a negative regulator of oil accumulation. GmMYB73 overexpression enhanced lipid contents in both seeds and leaves of transgenic Arabidopsis plants. Seed length and thousand-seed weight were also promoted. GmMYB73 introduction into the Arabidopsis try cpc double mutant rescued the total lipids, seed size and thousand-seed weight. GmMYB73 also elevated lipid levels in seeds and leaves of transgenic Lotus, and in transgenic hairy roots of soybean plants. GmMYB73 promoted PLDα1 expression, whose promoter can be bound and inhibited by GL2. PLDα1 mutation reduced triacylglycerol levels mildly in seeds but significantly in leaves of Arabidopsis plants. Conclusions GmMYB73 may reduce GL2, and then release GL2-inhibited PLDα1 expression for lipid accumulation. Manipulation of GmMYB73 may potentially improve oil production in legume crop plants. PMID:24655684

  13. Comparative Profiling of microRNA Expression in Soybean Seeds from Genetically Modified Plants and their Near-Isogenic Parental Lines.

    PubMed

    Wang, Yong; Lan, Qingkuo; Zhao, Xin; Xu, Wentao; Li, Feiwu; Wang, Qinying; Chen, Rui

    2016-01-01

    MicroRNAs (miRNAs) have been widely demonstrated to play fundamental roles in gene regulation in most eukaryotes. To date, there has been no study describing the miRNA composition in genetically modified organisms (GMOs). In this study, small RNAs from dry seeds of two GM soybean lines and their parental cultivars were investigated using deep sequencing technology and bioinformatic approaches. As a result, several differentially expressed gma-miRNAs were found between the GM and non-GM soybeans. Meanwhile, more differentially expressed gma-miRNAs were identified between distantly relatednon-GM soybeans, indicating that the miRNA components of soybean seeds varied among different soybean lines, including the GM and non-GM soybeans, and the extent of difference might be related to their genetic relationship. Additionally, fourteen novel gma-miRNA candidates were predicted in soybean seeds including a potential bidirectionally transcribed miRNA family with two genomic loci (gma-miR-N1). Our findings firstly provided useful data for miRNA composition in edible GM crops and also provided valuable information for soybean miRNA research.

  14. Genomic Studies in Soybean: Toward Understanding Seed Oil and Protein Production

    USDA-ARS?s Scientific Manuscript database

    The molecular mechanisms that influence soybean seed composition are not well understood. Insight into the genetic controls involved in these traits is important for future soybean improvement. In this study, we identified candidate genes at the major soybean protein quantitative trait locus at Link...

  15. The strategy of sustainable soybean development to increase soybean needs in North Sumatera

    NASA Astrophysics Data System (ADS)

    Handayani, L.; Rauf, A.; Rahmawaty; Supriana, T.

    2018-02-01

    The objective of the research was to analyze both internal and external factors influencing the strategy of sustainable soybean development to increase soybean needs in North Sumatera. SWOT analysis was used as the method of the research through identifying internal factors in the development of sustainable soybean the strategy to increase soybean production in research area is aggressive strategy or strategy of SO (Strengths - Oppurtunities) that is using force to exploit existing opportunity with activities as follows: (1). Use certified seeds in accordance with government regulations and policies. (2). Utilizing the level of soil fertility and cropping patterns to be able to meet the demand for soybeans. (3). Utilizing human resources by becoming a member of farmer groups.

  16. A comparison of protein and phenolic compounds in seed from GMO and non-GMO soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean protein is a valuable and important component in human and animal diets. Approximately 94% of the soybean planted in the US is genetically modified (GM) to enhance quality and productivity. Since value-added traits are continuously being developed by genetic modification, it is important t...

  17. The Path for the Development and Release of Heat Tolerant Soybean Lines

    USDA-ARS?s Scientific Manuscript database

    High ambient temperatures can damage soybean seed. Heat is recognized by the crop insurance industry as a major cause for monetary losses to producers. The USDA Risk Management Agency reported payouts to soybean farmers of more than $247 million on over 1.62 million hectares for losses due to heat...

  18. Development, Validation, and Interlaboratory Evaluation of a Quantitative Multiplexing Method To Assess Levels of Ten Endogenous Allergens in Soybean Seed and Its Application to Field Trials Spanning Three Growing Seasons.

    PubMed

    Hill, Ryan C; Oman, Trent J; Wang, Xiujuan; Shan, Guomin; Schafer, Barry; Herman, Rod A; Tobias, Rowel; Shippar, Jeff; Malayappan, Bhaskar; Sheng, Li; Xu, Austin; Bradshaw, Jason

    2017-07-12

    As part of the regulatory approval process in Europe, comparison of endogenous soybean allergen levels between genetically engineered (GE) and non-GE plants has been requested. A quantitative multiplex analytical method using tandem mass spectrometry was developed and validated to measure 10 potential soybean allergens from soybean seed. The analytical method was implemented at six laboratories to demonstrate the robustness of the method and further applied to three soybean field studies across multiple growing seasons (including 21 non-GE soybean varieties) to assess the natural variation of allergen levels. The results show environmental factors contribute more than genetic factors to the large variation in allergen abundance (2- to 50-fold between environmental replicates) as well as a large contribution of Gly m 5 and Gly m 6 to the total allergen profile, calling into question the scientific rational for measurement of endogenous allergen levels between GE and non-GE varieties in the safety assessment.

  19. Assessing the value and pest management window provided by neonicotinoid seed treatments for management of soybean aphid (Aphis glycines Matsumura) in the Upper Midwestern United States.

    PubMed

    Krupke, Christian H; Alford, Adam M; Cullen, Eileen M; Hodgson, Erin W; Knodel, Janet J; McCornack, Brian; Potter, Bruce D; Spigler, Madeline I; Tilmon, Kelley; Welch, Kelton

    2017-10-01

    A 2-year, multi-state study was conducted to assess the benefits of using soybean seed treated with the neonicotinoid thiamethoxam to manage soybean aphid in the upper Midwestern USA and compare this approach with an integrated pest management (IPM) approach that included monitoring soybean aphids and treating with foliar-applied insecticide only when the economic threshold was reached. Concentrations of thiamethoxam in soybean foliage were also quantified throughout the growing season to estimate the pest management window afforded by insecticidal seed treatments. Both the IPM treatment and thiamethoxam-treated seed resulted in significant reductions in cumulative aphid days when soybean aphid populations reached threshold levels. However, only the IPM treatment resulted in significant yield increases. Analysis of soybean foliage from thiamethoxam-treated seeds indicated that tissue concentrations of thiamethoxam were statistically similar to plants grown from untreated seeds beginning at the V2 growth stage, indicating that the period of pest suppression for soybean aphid is likely to be relatively short. These data demonstrate that an IPM approach, combining scouting and foliar-applied insecticide where necessary, remains the best option for treatment of soybean aphids, both in terms of protecting the yield potential of the crop and of break-even probability for producers. Furthermore, we found that thiamethoxam concentrations in foliage are unlikely to effectively manage soybean aphids for most of the pests' activity period across the region. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans[OPEN

    PubMed Central

    Shen, Bo; Damude, Howard G.; Everard, John D.; Booth, John R.

    2016-01-01

    Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae. Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm. Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans. PMID:27208257

  1. The Proteome of Seed Development in the Model Legume Lotus japonicus1[C][W

    PubMed Central

    Dam, Svend; Laursen, Brian S.; Ørnfelt, Jane H.; Jochimsen, Bjarne; Stærfeldt, Hans Henrik; Friis, Carsten; Nielsen, Kasper; Goffard, Nicolas; Besenbacher, Søren; Krusell, Lene; Sato, Shusei; Tabata, Satoshi; Thøgersen, Ida B.; Enghild, Jan J.; Stougaard, Jens

    2009-01-01

    We have characterized the development of seeds in the model legume Lotus japonicus. Like soybean (Glycine max) and pea (Pisum sativum), Lotus develops straight seed pods and each pod contains approximately 20 seeds that reach maturity within 40 days. Histological sections show the characteristic three developmental phases of legume seeds and the presence of embryo, endosperm, and seed coat in desiccated seeds. Furthermore, protein, oil, starch, phytic acid, and ash contents were determined, and this indicates that the composition of mature Lotus seed is more similar to soybean than to pea. In a first attempt to determine the seed proteome, both a two-dimensional polyacrylamide gel electrophoresis approach and a gel-based liquid chromatography-mass spectrometry approach were used. Globulins were analyzed by two-dimensional polyacrylamide gel electrophoresis, and five legumins, LLP1 to LLP5, and two convicilins, LCP1 and LCP2, were identified by matrix-assisted laser desorption ionization quadrupole/time-of-flight mass spectrometry. For two distinct developmental phases, seed filling and desiccation, a gel-based liquid chromatography-mass spectrometry approach was used, and 665 and 181 unique proteins corresponding to gene accession numbers were identified for the two phases, respectively. All of the proteome data, including the experimental data and mass spectrometry spectra peaks, were collected in a database that is available to the scientific community via a Web interface (http://www.cbs.dtu.dk/cgi-bin/lotus/db.cgi). This database establishes the basis for relating physiology, biochemistry, and regulation of seed development in Lotus. Together with a new Web interface (http://bioinfoserver.rsbs.anu.edu.au/utils/PathExpress4legumes/) collecting all protein identifications for Lotus, Medicago, and soybean seed proteomes, this database is a valuable resource for comparative seed proteomics and pathway analysis within and beyond the legume family. PMID:19129418

  2. Identification of a Soybean MOTHER OF FT AND TFL1 Homolog Involved in Regulation of Seed Germination

    PubMed Central

    Wang, Xu; Wu, Faqiang; Hu, Ruibo; Fu, Yongfu

    2014-01-01

    Seed germination is an important event in the life cycle of seed plants, and is controlled by complex and coordinated genetic networks. Many genes involved in the regulation of this process have been identified in different plant species so far. Recent studies in both Arabidopsis and wheat have uncovered a new role of MOTHER OF FT AND TFL1 (MFT) in seed germination. Here, we reported a homolog of MFT in soybean (GmMFT) which strongly expressed in seeds. Detailed expression analysis showed that the mRNA level of GmMFT increased with seed development but declined during seed germination. The transcription of GmMFT also responded to exogenous application of ABA and GA3. Ectopic expression of GmMFT CDS in Arabidopsis moderately inhibited seed germination. All these evidences suggest that GmMFT may be a negative regulator of seed germination. PMID:24932489

  3. Research on purple seed stain of soybean: germplasm screening and genetic resistance

    USDA-ARS?s Scientific Manuscript database

    Soybean purple seed stain (PSS) causes seed decay and purple seed discoloration, resulting in overall poor seed quality and reduced market grade and value. It is a prevalent disease that also affects seed vigor and stand establishment. PSS is caused by the fungus Cercospora kikuchii and other Cercos...

  4. A searchable database for the genome of Phomopsis longicolla (isolate MSPL 10-6)

    USDA-ARS?s Scientific Manuscript database

    Phomopsis longicolla (syn. Diaporthe longicolla) is an important seed-borne fungal pathogen that primarily causes Phomopsis seed decay (PSD) in most soybean production areas worldwide. This disease severely decreases soybean seed quality by reducing seed viability and oil quality, altering seed com...

  5. Restoration potential of sedge meadows in hand-cultivated soybean fields in northeastern China

    USGS Publications Warehouse

    Wang, Guodong; Middleton, Beth; Jiang, Ming

    2013-01-01

    Sedge meadows can be difficult to restore from farmed fields if key structural dominants are missing from propagule banks. In hand-cultivated soybean fields in northeastern China, we asked if tussock-forming Carex and other wetland species were present as seed or asexual propagules. In the Sanjiang Plain, China, we compared the seed banks, vegetative propagules (below-ground) and standing vegetation of natural and restored sedge meadows, and hand-cultivated soybean fields in drained and flooded conditions. We found that important wetland species survived cultivation as seeds for some time (e.g. Calamogrostis angustifolia and Potamogeton crispus) and as field weeds (e.g. C. angustifolia and Phragmites australis). Key structural species were missing in these fields, for example, Carex meyeriana. We also observed that sedge meadows restored without planting or seeding lacked tussock-forming sedges. The structure of the seed bank was related to experimental water regime, and field environments of tussock height, thatch depth, and presence of burning as based on Nonmetric Multidimensional Scaling analysis. To re-establish the structure imposed by tussock sedges, specific technologies might be developed to encourage the development of tussocks in restored sedge meadows.

  6. Screening soybean germplasm and commerical varieties for resistance to Phomopsis seed decay: results from 2012 trials

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD) causes poor seed quality and suppresses yield in most soybean production areas of the United States. In 2009, PSD caused a yield loss of over 12 million bushels in 16 southern states. The disease is primarily caused by Phomopsis longicolla along with other Phomopsi...

  7. Reaction of maturity group IV soybean plant introductions to Phomopsis Seed Decay in Arkansas Mississippi and Missouri 2009

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD) causes poor seed quality and suppresses yield in most of soybean-growing states in United States. In 2009, PSD caused over 12 million bushel yield loss in 16 southern states. The disease is primarily caused by Phomopsis longicolla along with other Phomopsis and Dia...

  8. Identification of soybean accessions with resistance to Phomopsis seed decay: joint effort from USDA and university scientists

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD) is primarily caused by Phomopsis longicolla along with other Phomopsis and Diaporthe spp. This disease causes poor seed quality and suppresses yield in most soybean-growing states in the United States. In 2009, PSD caused yield loss of over 12 million bushels in 16...

  9. Quantitative trait loci underlying seed sugars content in MD96-5722 by spencer recombinant inbred line population of soybean

    USDA-ARS?s Scientific Manuscript database

    Sucrose, raffinose, and stachyose are important soluble sugars in soybean [Glycine max (L.) Merr.] seeds, and soybean seeds with higher sucrose and lower raffinose and stachyose are desirable. Therefore, optimizing sugars biosynthesis is a major goal for soy food industry. The objective of this stud...

  10. Evaluation of exotically-derived soybean breeding lines for seed yield, germination, damage, and composition under dryland production in the midsouthern USA

    USDA-ARS?s Scientific Manuscript database

    Although the Early Soybean Production System (ESPS) in the Midsouthern USA increased seed yield under irrigated and non-irrigated conditions, heat stress and drought still lead to poor seed quality in heat sensitive soybean cultivars. Our goal was to identify breeding lines that possess high germin...

  11. Protein and oil composition predictions of single soybeans by transmission Raman spectroscopy.

    PubMed

    Schulmerich, Matthew V; Walsh, Michael J; Gelber, Matthew K; Kong, Rong; Kole, Matthew R; Harrison, Sandra K; McKinney, John; Thompson, Dennis; Kull, Linda S; Bhargava, Rohit

    2012-08-22

    The soybean industry requires rapid, accurate, and precise technologies for the analyses of seed/grain constituents. While the current gold standard for nondestructive quantification of economically and nutritionally important soybean components is near-infrared spectroscopy (NIRS), emerging technology may provide viable alternatives and lead to next generation instrumentation for grain compositional analysis. In principle, Raman spectroscopy provides the necessary chemical information to generate models for predicting the concentration of soybean constituents. In this communication, we explore the use of transmission Raman spectroscopy (TRS) for nondestructive soybean measurements. We show that TRS uses the light scattering properties of soybeans to effectively homogenize the heterogeneous bulk of a soybean for representative sampling. Working with over 1000 individual intact soybean seeds, we developed a simple partial least-squares model for predicting oil and protein content nondestructively. We find TRS to have a root-mean-standard error of prediction (RMSEP) of 0.89% for oil measurements and 0.92% for protein measurements. In both calibration and validation sets, the predicative capabilities of the model were similar to the error in the reference methods.

  12. Value of neonicotinoid seed treatments to US soybean farmers.

    PubMed

    Hurley, Terrance; Mitchell, Paul

    2017-01-01

    The benefits of neonicotinoid seed treatment to soybean farmers have received increased scrutiny. Rather than use data from small-plot experiments, this research uses survey data from 500 US farmers to estimate the benefit of neonicotinoid seed treatments to them. As seed treatment users, farmers are familiar with their benefits in the field and have economic incentives to only use them if they provide value. Of the surveyed farmers, 51% used insecticide seed treatments, averaging 87% of their soybean area. Farmers indicated that human and environmental safety is an important consideration affecting their pest management decisions and reported aphids as the most managed and important soybean pest. Asking farmers who used seed treatments to state how much value they provided gives an estimate of $US 28.04 ha -1 treated in 2013, net of seed treatment costs. Farmer-reported average yields provided an estimated average yield gain of 128.0 kg ha -1 treated in 2013, or about $US 42.20 ha -1 treated, net of seed treatment costs. These estimates using different data and methods are consistent and suggest the value of insecticide seed treatments to the US soybean farmers who used them in 2013 was around $US 28-42 ha -1 treated, net of seed treatment costs. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Characterization of the fan1 locus in soybean line A5 and development of molecular assays for high-throughput genotyping of FAD3 genes

    USDA-ARS?s Scientific Manuscript database

    Soybean is one of the most important oil crops in the world, and reduced linolenic acid content of soybean oil will provide increased stability of the oil to consumers and food manufacturers and limit the amount of trans-fat to be used in the processed foods. The linolenic content in soybean seeds i...

  14. Development of a non-dormant germplasm from Thlaspi Arvense (Pennycress)

    USDA-ARS?s Scientific Manuscript database

    Pennycress is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean production. The seed...

  15. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies

    PubMed Central

    Koester, Robert P.; Skoneczka, Jeffrey A.; Cary, Troy R.; Diers, Brian W.; Ainsworth, Elizabeth A.

    2014-01-01

    Soybean (Glycine max Merr.) is the world’s most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha–1 year–1, and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future. PMID:24790116

  16. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    PubMed Central

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  17. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions.

    PubMed

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-02-23

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis.

  18. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans.

    PubMed

    Roesler, Keith; Shen, Bo; Bermudez, Ericka; Li, Changjiang; Hunt, Joanne; Damude, Howard G; Ripp, Kevin G; Everard, John D; Booth, John R; Castaneda, Leandro; Feng, Lizhi; Meyer, Knut

    2016-06-01

    Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. Influence of planting date on seed protein oil sugars minerals and nitrogen metabolism in soybean under irrigated and non-irrigated enviroments

    USDA-ARS?s Scientific Manuscript database

    Information on the effect of planting date and irrigation on soybean [Glycine max (L.) Merr.] seed composition in the Early Soybean Production System is deficient, and what is available is inconclusive. The objective of this research was to investigate the effects of planting date on seed protein, o...

  20. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content.

    PubMed

    Goettel, Wolfgang; Xia, Eric; Upchurch, Robert; Wang, Ming-Li; Chen, Pengyin; An, Yong-Qiang Charles

    2014-04-23

    Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality.

  1. Ketocarotenoid Production in Soybean Seeds through Metabolic Engineering

    PubMed Central

    Pierce, Emily C.; LaFayette, Peter R.; Ortega, María A.; Joyce, Blake L.; Kopsell, Dean A.; Parrott, Wayne A.

    2015-01-01

    The pink or red ketocarotenoids, canthaxanthin and astaxanthin, are used as feed additives in the poultry and aquaculture industries as a source of egg yolk and flesh pigmentation, as farmed animals do not have access to the carotenoid sources of their wild counterparts. Because soybean is already an important component in animal feed, production of these carotenoids in soybean could be a cost-effective means of delivery. In order to characterize the ability of soybean seed to produce carotenoids, soybean cv. Jack was transformed with the crtB gene from Pantoea ananatis, which codes for phytoene synthase, an enzyme which catalyzes the first committed step in the carotenoid pathway. The crtB gene was engineered together in combinations with ketolase genes (crtW from Brevundimonas sp. strain SD212 and bkt1 from Haematococcus pluvialis) to produce ketocarotenoids; all genes were placed under the control of seed-specific promoters. HPLC results showed that canthaxanthin is present in the transgenic seeds at levels up to 52 μg/g dry weight. Transgenic seeds also accumulated other compounds in the carotenoid pathway, such as astaxanthin, lutein, β-carotene, phytoene, α-carotene, lycopene, and β-cryptoxanthin, whereas lutein was the only one of these detected in non-transgenic seeds. The accumulation of astaxanthin, which requires a β-carotene hydroxylase in addition to a β-carotene ketolase, in the transgenic seeds suggests that an endogenous soybean enzyme is able to work in combination with the ketolase transgene. Soybean seeds that accumulate ketocarotenoids could potentially be used in animal feed to reduce or eliminate the need for the costly addition of these compounds. PMID:26376481

  2. Analysis of soybean leaf metabolism and seed coat transcriptome reveal sink strength is maintained under abiotic stress conditions

    USDA-ARS?s Scientific Manuscript database

    The seed coat is a vital tissue for directing the flow of photosynthate from source leaves to the embryo and cotyledons during seed development. By forming a sucrose gradient, the seed coat promotes transport of sugars from source leaves to seeds, thereby establishing sink strength. Understanding th...

  3. Glyphosate Can Decrease Germination of Glyphosate-Resistant Soybeans.

    PubMed

    Gomes, Marcelo Pedrosa; Bicalho, Elisa Monteze; Smedbol, Élise; Cruz, Fernanda Vieira da Silva; Lucotte, Marc; Garcia, Queila Souza

    2017-03-22

    We investigated the effects of different concentrations of glyphosate acid and one of its formulations (Roundup) on seed germination of two glyphosate-resistant (GR) and one non-GR variety of soybean. As expected, the herbicide affected the shikimate pathway in non-GR seeds but not in GR seeds. We observed that glyphosate can disturb the mitochondrial electron transport chain, leading to H 2 O 2 accumulation in soybean seeds, which was, in turn, related to lower seed germination. In addition, GR seeds showed increased activity of antioxidant systems when compared to non-GR seeds, making them less vulnerable to oxidative stress induced by glyphosate. The differences in the responses of GR varieties to glyphosate exposure corresponded to their differences in enzymatic activity related to H 2 O 2 scavenging and mitochondrial complex III (the proposed site of ROS induction by glyphosate). Our results showed that glyphosate ought to be used carefully as a pre-emergence herbicide in soybean field crop systems because this practice may reduce seed germination.

  4. Sicklepod (Senna obtusifolia) seed processing and potential utilization.

    PubMed

    Harry-O'kuru, Rogers E; Wu, Y Victor; Evangelista, Roque; Vaughn, Steven F; Rayford, Warren; Wilson, Richard F

    2005-06-15

    Sicklepod (Senna obtusifolia) is a leguminous plant that infests soybean fields in the southeastern United States. Its seeds contain a variety of toxic, highly colored compounds, mainly anthraquinones together with a small amount of fat. These compounds contaminate and lower the quality of soybean oil when inadequately cleaned soybean seed from this area is processed. The sorting of sicklepod seed from a soybean harvest is an additional economic burden on the farmer beyond the cost of proper disposal of the weed seed to avoid worsening field infestation. Fortunately, sicklepod seed also contains substantial amounts of carbohydrates and proteins. These edible components when freed from anthraquinones have a market in pet food as well as potential in human foods because of the high galactomannan ratio of the polysaccharides. Sicklepod seed was dehulled, and the ground endosperm was defatted, followed by sequential solvent extraction of the defatted seed meal to isolate the anthraquinones, carbohydrates, and protein components into their respective classes. Each class of isolate was spectroscopically identified.

  5. Effects of stress temperatures of germination on polyamine titers of soybean seeds

    NASA Astrophysics Data System (ADS)

    Pineda-Mejia, Renan

    High and low stress temperatures during seed germination and seedling development limit total germination and the rate of germination and growth. Changes in polyamine (PA) concentrations in seeds of different species have been associated with germination, growth and environmental stresses such as temperature, drought, oxygen, chilling injury and osmotic conditions. Two studies were conducted to determine the effect of stress temperatures during germination and seedling development on polyamine titers in soybean seeds. Three germination temperatures, 25, 30, and 36°C were used in the first study to evaluate their influence on changes in polyamine concentrations in soybean seeds germinated at 76 and 90 hours. The polyamines (PAs), cadaverine (Cad), putrescine (Put), spermidine (Spd), agmatine (Agm), and spermine (Spin) were quantified by HPLC using a cation exchange column and an electrochemical detector. Cad, Put, Agm, and Spd declined as the germination temperatures increased from 25 to 36°C. Conversely, Spin increased considerably with an increase in temperature. Total germination was reduced from 97.2 to 92.5% as germination temperatures increased from 25 to 36°C. Germination time did not affect Cad, Agm and Spm, and total germination, however, the interaction between temperature and germination time for Put and Spd concentrations was significant. In the second study, changes in PA concentrations, seedling growth, germination time (t50), fresh and dry weight, and moisture content were measured in the embryonic axis and cotyledons of soybean seeds germinated at 10 and 25°C through six stages of germination dry seed (DS), testa split (TS), radicle at 10 mm (Ra-10), root hairs visible (RHV), secondary root primordia (SRP), and complete seedling (CS). The concentrations of Cad and Put in the embryonic axis, were significantly higher in seeds germinated under low temperature than in seeds at 25°C (approximately 10 and 3 fold respectively). However, this difference was not observed until the last three stages of germination. The stage of germination also influenced the levels of these polyamines. The concentrations of Cad and Put detected at the CS stage were 50 and 18 fold respectively, relative to the initial concentrations found at the DS stage. Spd levels in seeds under stress temperatures also increased, but to a lesser extent compared to Cad and Put. Differences in Spd concentrations between temperatures were observed only at the CS stage. Agm concentrations were higher at 25 than at 10°C at SRP and CS. Spm concentrations of seeds germinated at 25°C remained higher during the first four stages of development but at the end of germination, seeds at 10°C had higher quantities of Spm. In the cotyledons, Polyamines tended to decline with stages of germination, regardless of the temperature. However, Agm levels increased in the cotyledons of soybean seeds. Maximum dry weight and seedling growth was found at RHV, SRP, and CS. Maximum levels of Cad and Put were also found during these stages. Spd increased with both temperatures from DS to Ra-10, thereafter, Spd levels in seeds at 10°C continued increasing while seeds at 25°C declined. High and low stress germination temperatures caused significant changes in polyamine concentrations, reduced germination and seedling growth of soybean seeds.

  6. Phenology and Seed Yield Performance of Determinate Soybean Cultivars Grown at Elevated Temperatures in a Temperate Region.

    PubMed

    Choi, Doug-Hwan; Ban, Ho-Young; Seo, Beom-Seok; Lee, Kyu-Jong; Lee, Byun-Woo

    2016-01-01

    Increased temperature means and fluctuations associated with climate change are predicted to exert profound effects on the seed yield of soybean. We conducted an experiment to evaluate the impacts of global warming on the phenology and yield of two determinate soybean cultivars in a temperate region (37.27°N, 126.99°E; Suwon, South Korea). These two soybean cultivars, Sinpaldalkong [maturity group (MG) IV] and Daewonkong (MG VI), were cultured on various sowing dates within a four-year period, under no water-stress conditions. Soybeans were kept in greenhouses controlled at the current ambient temperature (AT), AT+1.5°C, AT+3.0°C, and AT+5.0°C throughout the growth periods. Growth periods (VE-R7) were significantly prolonged by the elevated temperatures, especially the R1-R5 period. Cultivars exhibited no significant differences in seed yield at the AT+1.5°C and AT+3.0°C treatments, compared to AT, while a significant yield reduction was observed at the AT+5.0°C treatment. Yield reductions resulted from limited seed number, which was due to an overall low numbers of pods and seeds per pod. Heat stress conditions induced a decrease in pod number to a greater degree than in seed number per pod. Individual seed weight exhibited no significant variation among temperature elevation treatments; thus, seed weight likely had negligible impacts on overall seed yield. A boundary line analysis (using quantile regression) estimated optimum temperatures for seed number at 26.4 to 26.8°C (VE-R5) for both cultivars; the optimum temperatures (R5-R7) for single seed weight were estimated at 25.2°C for the Sinpaldalkong smaller-seeded cultivar, and at 22.3°C for the Daewonkong larger-seeded cultivar. The optimum growing season (VE-R7) temperatures for seed yield, which were estimated by combining the two boundary lines for seed number and seed weight, were 26.4 and 25.0°C for the Sinpaldalkong and Daewonkong cultivars, respectively. Considering the current soybean growing season temperature, which ranges from 21.7 (in the north) to 24.6°C (in the south) in South Korea, and the temperature response of potential soybean yields, further warming of less than approximately 1°C would not become a critical limiting factor for soybean production in South Korea.

  7. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies.

    PubMed

    Koester, Robert P; Skoneczka, Jeffrey A; Cary, Troy R; Diers, Brian W; Ainsworth, Elizabeth A

    2014-07-01

    Soybean (Glycine max Merr.) is the world's most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha(-1) year(-1), and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Canopy position has a profound effect on soybean seed composition

    USDA-ARS?s Scientific Manuscript database

    Although soybean seeds appear homogenous their composition (protein, oil and mineral concentrations) can vary significantly with canopy position. Seeds produced at the top of the canopy have higher concentrations of protein but less oil and minerals such as Mg, Fe, and Cu compared to seeds produced ...

  9. Genetic improvement of the soybean fatty acid biosynthesis system to alter the ¿-6/¿-3 ratio in the soybean seed

    USDA-ARS?s Scientific Manuscript database

    Soybean is an important source of vegetable oil beneficial for human consumption. Several studies have shown that a high '-6/'-3 ratio in edible oil adversely affects human health. Hence, the production of seed oils with a balanced '-6/'-3 ratio is recommended. The cultivated soybeans usually have ...

  10. A searchable database for the genome of Phomopsis longicolla (isolate MSPL 10-6).

    PubMed

    Darwish, Omar; Li, Shuxian; May, Zane; Matthews, Benjamin; Alkharouf, Nadim W

    2016-01-01

    Phomopsis longicolla (syn. Diaporthe longicolla) is an important seed-borne fungal pathogen that primarily causes Phomopsis seed decay (PSD) in most soybean production areas worldwide. This disease severely decreases soybean seed quality by reducing seed viability and oil quality, altering seed composition, and increasing frequencies of moldy and/or split beans. To facilitate investigation of the genetic base of fungal virulence factors and understand the mechanism of disease development, we designed and developed a database for P. longicolla isolate MSPL 10-6 that contains information about the genome assemblies (contigs), gene models, gene descriptions and GO functional ontologies. A web-based front end to the database was built using ASP.NET, which allows researchers to search and mine the genome of this important fungus. This database represents the first reported genome database for a seed borne fungal pathogen in the Diaporthe- Phomopsis complex. The database will also be a valuable resource for research and agricultural communities. It will aid in the development of new control strategies for this pathogen. http://bioinformatics.towson.edu/Phomopsis_longicolla/HomePage.aspx.

  11. A searchable database for the genome of Phomopsis longicolla (isolate MSPL 10-6)

    PubMed Central

    May, Zane; Matthews, Benjamin; Alkharouf, Nadim W.

    2016-01-01

    Phomopsis longicolla (syn. Diaporthe longicolla) is an important seed-borne fungal pathogen that primarily causes Phomopsis seed decay (PSD) in most soybean production areas worldwide. This disease severely decreases soybean seed quality by reducing seed viability and oil quality, altering seed composition, and increasing frequencies of moldy and/or split beans. To facilitate investigation of the genetic base of fungal virulence factors and understand the mechanism of disease development, we designed and developed a database for P. longicolla isolate MSPL 10-6 that contains information about the genome assemblies (contigs), gene models, gene descriptions and GO functional ontologies. A web-based front end to the database was built using ASP.NET, which allows researchers to search and mine the genome of this important fungus. This database represents the first reported genome database for a seed borne fungal pathogen in the Diaporthe– Phomopsis complex. The database will also be a valuable resource for research and agricultural communities. It will aid in the development of new control strategies for this pathogen. Availability: http://bioinformatics.towson.edu/Phomopsis_longicolla/HomePage.aspx PMID:28197060

  12. Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine.

    PubMed

    Moravec, Tomas; Schmidt, Monica A; Herman, Eliot M; Woodford-Thomas, Terry

    2007-02-19

    The B subunit of the heat labile toxin of enterotoxigenic Escherichia coli (LTB) was used as a model immunogen for production in soybean seed. LTB expression was directed to the endoplasmic reticulum (ER) of seed storage parenchyma cells for sequestration in de novo synthesized inert protein accretions derived from the ER. Pentameric LTB accumulated to 2.4% of the total seed protein at maturity and was stable in desiccated seed. LTB-soybean extracts administered orally to mice induced both systemic IgG and IgA, and mucosal IgA antibody responses, and was particularly efficacious when used in a parenteral prime-oral gavage boost immunization strategy. Sera from immunized mice blocked ligand binding in vitro and immunized mice exhibited partial protection against LT challenge. Moreover, soybean-expressed LTB stimulated the antibody response against a co-administered antigen by 500-fold. These results demonstrate the utility of soybean as an efficient production platform for vaccines that can be used for oral delivery.

  13. Varying response of the concentration and content of soybean seed mineral elements, carbohydrates, organic acids, amino acids, protein, and oil to phosphorus starvation and CO2 enrichment

    USDA-ARS?s Scientific Manuscript database

    A detailed investigation of the concentration (g-1 seed weight) and content (g plant-1) of seed mineral elements and metabolic profile under phosphorus (P) starvation at ambient (aCO2) and elevated carbon dioxide (eCO2) in soybean is limited. Soybean plants were grown in a controlled environment at ...

  14. Molecular mapping of two environmentally sensitive male-sterile mutants in soybean

    USDA-ARS?s Scientific Manuscript database

    In soybean [Glycine max (L.) Merr.], manual cross-pollination to produce large quantities of hybrid seed is difficult and time consuming. Identification of an environmentally stable male-sterility system could make hybrid seed production commercially valuable. In soybean, two environmentally sensi...

  15. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content

    PubMed Central

    2014-01-01

    Background Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. Results In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. Conclusions As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality. PMID:24755115

  16. Creating Conventional Soybeans with the High Oleic Acid Seed Oil Trait

    USDA-ARS?s Scientific Manuscript database

    Commodity soybeans are poised to undergo a revolutionary change. Major shifts in market expectations for the nutritional quality of the oil, brought about in part through food labeling requirements and the suitability for biodiesel, are driving the commodity soybean to embrace new seed compositiona...

  17. Ionomic screening of field-grown soybeans identifies mutants with altered seed elemental composition

    USDA-ARS?s Scientific Manuscript database

    Soybean seeds contain high levels of mineral nutrients essential for human and animal nutrition. High throughput elemental profiling (ionomics) has identified mutants in model plant species grown in controlled environments. Here, we describe a method for identifying potential soybean ionomics mutant...

  18. Fingerprinting Soybean Germplasm and Its Utility in Genomic Research

    PubMed Central

    Song, Qijian; Hyten, David L.; Jia, Gaofeng; Quigley, Charles V.; Fickus, Edward W.; Nelson, Randall L.; Cregan, Perry B.

    2015-01-01

    The United States Department of Agriculture, Soybean Germplasm Collection includes 18,480 domesticated soybean and 1168 wild soybean accessions introduced from 84 countries or developed in the United States. This collection was genotyped with the SoySNP50K BeadChip containing greater than 50K single-nucleotide polymorphisms. Redundant accessions were identified in the collection, and distinct genetic backgrounds of soybean from different geographic origins were observed that could be a unique resource for soybean genetic improvement. We detected a dramatic reduction of genetic diversity based on linkage disequilibrium and haplotype structure analyses of the wild, landrace, and North American cultivar populations and identified candidate regions associated with domestication and selection imposed by North American breeding. We constructed the first soybean haplotype block maps in the wild, landrace, and North American cultivar populations and observed that most recombination events occurred in the regions between haplotype blocks. These haplotype maps are crucial for association mapping aimed at the identification of genes controlling traits of economic importance. A case-control association test delimited potential genomic regions along seven chromosomes that most likely contain genes controlling seed weight in domesticated soybean. The resulting dataset will facilitate germplasm utilization, identification of genes controlling important traits, and will accelerate the creation of soybean varieties with improved seed yield and quality. PMID:26224783

  19. Detection of genetically modified soybean in crude soybean oil.

    PubMed

    Nikolić, Zorica; Vasiljević, Ivana; Zdjelar, Gordana; Ðorđević, Vuk; Ignjatov, Maja; Jovičić, Dušica; Milošević, Dragana

    2014-02-15

    In order to detect presence and quantity of Roundup Ready (RR) soybean in crude oil extracted from soybean seed with a different percentage of GMO seed two extraction methods were used, CTAB and DNeasy Plant Mini Kit. The amplifications of lectin gene, used to check the presence of soybean DNA, were not achieved in all CTAB extracts of DNA, while commercial kit gave satisfactory results. Comparing actual and estimated GMO content between two extraction methods, root mean square deviation for kit is 0.208 and for CTAB is 2.127, clearly demonstrated superiority of kit over CTAB extraction. The results of quantification evidently showed that if the oil samples originate from soybean seed with varying percentage of RR, it is possible to monitor the GMO content at the first stage of processing crude oil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    DOE PAGES

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; ...

    2016-05-23

    Soybean ( Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCNmore » resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Furthermore, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.« less

  1. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan

    Soybean ( Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCNmore » resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Furthermore, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.« less

  2. Accumulation of functional recombinant human coagulation factor IX in transgenic soybean seeds.

    PubMed

    Cunha, Nicolau B; Murad, André M; Ramos, Gustavo L; Maranhão, Andréia Q; Brígido, Marcelo M; Araújo, Ana Cláudia G; Lacorte, Cristiano; Aragão, Francisco J L; Covas, Dimas T; Fontes, Aparecida M; Souza, Gustavo H M F; Vianna, Giovanni R; Rech, Elíbio L

    2011-08-01

    The seed-based production of recombinant proteins is an efficient strategy to achieve the accumulation, correct folding, and increased stability of these recombinant proteins. Among potential plant molecular farming systems, soybean [Glycine max (L.) Merrill] is a viable option for the production of recombinant proteins due to its high protein content, known regulatory sequences, efficient gene transfer protocols, and a scalable production system under greenhouse conditions. We report here the expression and stable accumulation of human coagulation factor IX (hFIX) in transgenic soybean seeds. A biolistic process was utilised to co-introduce a plasmid carrying the hFIX gene under the transcriptional control of the α' subunit of a β-conglycinin seed-specific promoter and an α-Coixin signal peptide in soybean embryonic axes from mature seeds. The 56-kDa hFIX protein was expressed in the transgenic seeds at levels of up to 0.23% (0.8 g kg(-1) seed) of the total soluble seed protein as determined by an enzyme-linked immunosorbent assay (ELISA) and western blot. Ultrastructural immunocytochemistry assays indicated that the recombinant hFIX in seed cotyledonary cells was efficiently directed to protein storage vacuoles. Mass spectrometry characterisation confirmed the presence of the hFIX recombinant protein sequence. Protein extracts from transgenic seeds showed a blood-clotting activity of up to 1.4% of normal plasma. Our results demonstrate the correct processing and stable accumulation of functional hFIX in soybean seeds stored for 6 years under room temperature conditions (22 ± 2°C).

  3. Reaction of maturity group V soybean lines to purple seed stains in Mississippi 2010

    USDA-ARS?s Scientific Manuscript database

    In 2009, soybean purple seed stain (PSS) caused 6.4 million bushels of yield losses in 16 southern states. This disease severely reduces seed market grade and affects seed germination and vigor. PSS is caused by Cercospora kikuchii and is an economy important disease. To identify new sources of resi...

  4. 75 FR 60114 - Notice of Receipt of Requests for Amendments to Delete Uses in Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... Hatcheries 82633-2 Sharda Diquat Diquat dibromide Sorghum (seed crop Concentrate only) and Soybean (seed crop only) 83529-13 Diquash Ag Diquat dibromide Sorghum (seed crop only) and Soybean (seed crop only) Users... imposed, as in special review actions. List of Subjects Environmental protection, Pesticides and pests...

  5. Soybean seed phenol, lignin, and isoflavones and sugars composition are altered by Foliar Boron application in soybean under water stress

    USDA-ARS?s Scientific Manuscript database

    Previous research showed that foliar boron (B) fertilizer at flowering or seed-fill growth stages altered seed protein, oil, and fatty acids. The objective of this research was to investigate the effects of foliar B fertilizer on seed phenolics (phenol, lignin, and isoflavones) and sugars concentrat...

  6. Transfer and targeted overexpression of γ-tocopherol methyltransferase (γ-TMT) gene using seed-specific promoter improves tocopherol composition in Indian soybean cultivars.

    PubMed

    Arun, Muthukrishnan; Subramanyam, Kondeti; Theboral, Jeevaraj; Sivanandhan, Ganeshan; Rajesh, Manoharan; Kapil Dev, Gnanajothi; Jaganath, Balusamy; Manickavasagam, Markandan; Girija, Shanmugam; Ganapathi, Andy

    2014-02-01

    Soybean oil contains high levels of tocopherols which are an important source of vitamin E in human diet. The conversion of γ- to α-tocopherol catalyzed by γ-tocopherol methyltransferase (γ-TMT) is found to be the rate limiting factor in soybean which influences the tocopherol composition. Using Agrobacterium-mediated transformation, we overexpressed the γ-TMT gene of Perilla frutescens under the control of the seed-specific promoter vicillin in cultivar Pusa 16. Transgene integration and expression was confirmed in five independently transformed GUS positive soybean plants by polymerase chain reaction (PCR), Southern hybridization, and reverse transcriptase-PCR (RT-PCR). High-performance liquid chromatography (HPLC) analysis showed that overexpression of Pf-γ-TMT resulted in efficient conversion of γ-tocopherol to α-tocopherol and concomitant increase in seed α-tocopherol content in RT-PCR positive plants. The protocol was successfully applied to three more cultivars PK 416, Gujarat soybean 1, and VL soya 1 in which seeds of transformed plants showed elevated level of α-tocopherol than wild-type seeds.

  7. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species

    PubMed Central

    Ge, Liangfa; Yu, Jianbin; Wang, Hongliang; Luth, Diane; Bai, Guihua; Wang, Kan

    2016-01-01

    Plant organs, such as seeds, are primary sources of food for both humans and animals. Seed size is one of the major agronomic traits that have been selected in crop plants during their domestication. Legume seeds are a major source of dietary proteins and oils. Here, we report a conserved role for the BIG SEEDS1 (BS1) gene in the control of seed size and weight in the model legume Medicago truncatula and the grain legume soybean (Glycine max). BS1 encodes a plant-specific transcription regulator and plays a key role in the control of the size of plant organs, including seeds, seed pods, and leaves, through a regulatory module that targets primary cell proliferation. Importantly, down-regulation of BS1 orthologs in soybean by an artificial microRNA significantly increased soybean seed size, weight, and amino acid content. Our results provide a strategy for the increase in yield and seed quality in legumes. PMID:27791139

  8. Ribosome profiling reveals changes in translational status of soybean transcripts during immature cotyledon development

    PubMed Central

    Shamimuzzaman, Md.

    2018-01-01

    To understand translational capacity on a genome-wide scale across three developmental stages of immature soybean seed cotyledons, ribosome profiling was performed in combination with RNA sequencing and cluster analysis. Transcripts representing 216 unique genes demonstrated a higher level of translational activity in at least one stage by exhibiting higher translational efficiencies (TEs) in which there were relatively more ribosome footprint sequence reads mapping to the transcript than were present in the control total RNA sample. The majority of these transcripts were more translationally active at the early stage of seed development and included 12 unique serine or cysteine proteases and 16 2S albumin and low molecular weight cysteine-rich proteins that may serve as substrates for turnover and mobilization early in seed development. It would appear that the serine proteases and 2S albumins play a vital role in the early stages. In contrast, our investigation of profiles of 19 genes encoding high abundance seed storage proteins, such as glycinins, beta-conglycinins, lectin, and Kunitz trypsin inhibitors, showed that they all had similar patterns in which the TE values started at low levels and increased approximately 2 to 6-fold during development. The highest levels of these seed protein transcripts were found at the mid-developmental stage, whereas the highest ribosome footprint levels of only up to 1.6 TE were found at the late developmental stage. These experimental findings suggest that the major seed storage protein coding genes are primarily regulated at the transcriptional level during normal soybean cotyledon development. Finally, our analyses also identified a total of 370 unique gene models that showed very low TE values including over 48 genes encoding ribosomal family proteins and 95 gene models that are related to energy and photosynthetic functions, many of which have homology to the chloroplast genome. Additionally, we showed that genes of the chloroplast were relatively translationally inactive during seed development. PMID:29570733

  9. Evaluation of commercial soybean cultivars for reaction to Phomopsis seed decay

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD), caused by Phomopsis longicolla (syn. Diaporthe longicolla), is an economically important soybean disease causing poor seed quality. Planting resistant cultivars is one of the most effective means to control PSD. In this study, 16 commercially available maturity groups IV ...

  10. Development and Seed Number in Indeterminate Soybean as Affected by Timing and Duration of Exposure to Long Photoperiods after Flowering

    PubMed Central

    Kantolic, Adriana G.; Slafer, Gustavo A.

    2007-01-01

    Background and Aims Long photoperiods from flowering to maturity have been found to delay reproductive development in soybean (Glycine max) and to increase the number of seeds per unit land area. This study was aimed to evaluate whether sensitivity to photoperiod after flowering (a) is quantitatively related to the length of exposure to long days and (b) persists throughout the whole pod-setting period. It was also evaluated whether seed number was related to changes in the duration of post-flowering phenophases. Methods Two field experiments were conducted with an indeterminate cultivar of soybean of maturity group V. In expt 1, photoperiods 2 h longer than natural daylength were applied during different numbers of days from the beginning pod stage (R3) onwards, while in expt 2 these photoperiod extensions were imposed during 9 consecutive days starting at different times between R3 and R6 (full seed) stages. Key Results There was a quantitative response of development to the number of cycles with a long photoperiod. The exposure to long photoperiods from R3 to R5 (beginning of seed growth) increased the duration of R3–R6 regardless of the timing of exposure. The stages of development comprised in the R3–R6 phase were delayed by current as well as by previous exposure to long days. A positive relationship was found between seed number and the duration of R3–R6, irrespective of the timing and length of exposure to the long photoperiod. Conclusions Sensitivity to photoperiod remained high during the reproductive period and was highly and positively coupled with the processes of generation of yield. PMID:17452381

  11. Interactive effects of elevated temperature and ozone on soybean biomass production and seed yield

    USDA-ARS?s Scientific Manuscript database

    Predicting the impacts of air pollution and climate change on vegetation requires understanding of the interactions between elevated air temperature and atmospheric gases such as ozone. The air exclusion system (AES) developed by our group was used to expose soybean plants to combinations of elevate...

  12. Evaluation of the chemical quality traits of soybean seeds, as related to sensory attributes of soymilk.

    PubMed

    Ma, Lei; Li, Bin; Han, Fenxia; Yan, Shurong; Wang, Lianzheng; Sun, Junming

    2015-04-15

    The soybean seed chemical quality traits (including protein content, oil content, fatty acid composition, isoflavone content, and protein subunits), soymilk chemical character (soluble solid), and soymilk sensory attributes were evaluated among 70 genotypes to determine the correlation between seed chemical quality traits and soymilk sensory attributes. Six sensory parameters (i.e., soymilk aroma, smoothness in the mouth, thickness in the mouth, sweetness, colour and appearance, and overall acceptability) and a seven-point hedonic scale for each parameter were developed. Significant positive correlations were observed between overall acceptability and the other five evaluation parameters, suggesting that overall acceptability is an ideal parameter for evaluating soymilk flavour. The soymilk sensory attributes were significantly positively correlated with the characteristics of the glycinin (11S)/beta-conglycinin (7S) protein ratio, soluble solid, and oil content but negatively correlated with glycitein and protein content. Our results indicated that soymilk sensory attributes could be improved by selecting the desirable seed chemical quality traits in practical soybean breeding programs. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. QTLs Regulating the Contents of Antioxidants, Phenolics, and Flavonoids in Soybean Seeds Share a Common Genomic Region.

    PubMed

    Li, Man-Wah; Muñoz, Nacira B; Wong, Chi-Fai; Wong, Fuk-Ling; Wong, Kwong-Sen; Wong, Johanna Wing-Hang; Qi, Xinpeng; Li, Kwan-Pok; Ng, Ming-Sin; Lam, Hon-Ming

    2016-01-01

    Soybean seeds are a rich source of phenolic compounds, especially isoflavonoids, which are important nutraceuticals. Our study using 14 wild- and 16 cultivated-soybean accessions shows that seeds from cultivated soybeans generally contain lower total antioxidants compared to their wild counterparts, likely an unintended consequence of domestication or human selection. Using a recombinant inbred population resulting from a wild and a cultivated soybean parent and a bin map approach, we have identified an overlapping genomic region containing major quantitative trait loci (QTLs) that regulate the seed contents of total antioxidants, phenolics, and flavonoids. The QTL for seed antioxidant content contains 14 annotated genes based on the Williams 82 reference genome (Gmax1.01). None of these genes encodes functions that are related to the phenylpropanoid pathway of soybean. However, we found three putative Multidrug And Toxic Compound Extrusion (MATE) transporter genes within this QTL and one adjacent to it (GmMATE1-4). Moreover, we have identified non-synonymous changes between GmMATE1 and GmMATE2, and that GmMATE3 encodes an antisense transcript that expresses in pods. Whether the polymorphisms in GmMATE proteins are major determinants of the antioxidant contents, or whether the antisense transcripts of GmMATE3 play important regulatory roles, awaits further functional investigations.

  14. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds.

    PubMed

    Liu, Wen Xian; Liu, Hua Liang; Qu, Le Qing

    2013-09-01

    Oleosin is the most abundant protein in the oil bodies of plant seeds, playing an important role in regulating oil body formation and lipid accumulation. To investigate whether lipid accumulation in transgenic rice seeds depends on the expression level of oleosin, we introduced two soybean oleosin genes encoding 24 kDa proteins into rice under the control of an embryo-specific rice promoter REG-2. Overexpression of soybean oleosin in transgenic rice leads to an increase of seed lipid content up to 36.93 and 46.06 % higher than that of the non-transgenic control, respectively, while the overall fatty acid profiles of triacylglycerols remained unchanged. The overexpression of soybean oleosin in transgenic rice seeds resulted in more numerous and smaller oil bodies compared with wild type, suggesting that an inverse relationship exists between oil body size and the total oleosin level. The increase in lipid content is accompanied by a reduction in the accumulation of total seed protein. Our results suggest that it is possible to increase rice seed oil content for food use and for use as a low-cost feedstock for biodiesel by overexpressing oleosin in rice seeds.

  15. Inheritance of and molecular markers for purple seed stain resistance in soybean

    USDA-ARS?s Scientific Manuscript database

    Purple seed stain (PSS) caused by Cercospora kikuchii, is an important disease of soybean, causing seed quality deterioration. Use of genetic resistance is the most practical and economical way to control the disease. The objectives of this research were to investigate the inheritance of resistance...

  16. Quantitative trait loci for seed isoflavones contents in 'MD96-5722' by 'Spencer' recombinant inbred lines of soybean

    USDA-ARS?s Scientific Manuscript database

    Isoflavones from soybeans (Glycine max L. Merr.) have significant impact on human health in reducing the risk of several major diseases. Breeding soybean for high isoflavones content in the seed is possible through marker assisted selection (MAS), which can be based on quantitative trait loci (QTL)....

  17. Mapping of QTL associated with seed amino acids content in MD96-5722 by "Spencer" RIL population of soybean using SNP markers

    USDA-ARS?s Scientific Manuscript database

    Soybean seeds are major sources of essential amino acids, protein, and fatty acids. Limited information is available on the genetic analysis of amino acid composition in soybean. Therefore, the objective of this study was to identify genomic regions containing quantitative trait loci (QTL) controlli...

  18. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    USDA-ARS?s Scientific Manuscript database

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  19. Effects of lipid extraction on nutritive composition of winged bean (Psophocarpus tetragonolobus), rubber seed (Hevea brasiliensis), and tropical almond (Terminalia catappa).

    PubMed

    Jayanegara, Anuraga; Harahap, Rakhmad P; Rozi, Richard F; Nahrowi

    2018-04-01

    This experiment aimed to evaluate the nutritive composition and in vitro rumen fermentability and digestibility of intact and lipid-extracted winged bean, rubber seed, and tropical almond. Soybean, winged bean, rubber seed, and tropical almond were subjected to lipid extraction and chemical composition determination. Lipid extraction was performed through solvent extraction by Soxhlet procedure. Non-extracted and extracted samples of these materials were evaluated for in vitro rumen fermentation and digestibility assay using rumen: Buffer mixture. Parameters measured were gas production kinetics, total volatile fatty acid (VFA) concentration, ammonia, in vitro dry matter (IVDMD) and in vitro organic matter digestibility (IVOMD). Data were analyzed by analysis of variance and Duncan's multiple range test. Soybean, winged bean, rubber seed, and tropical almond contained high amounts of ether extract, i.e., above 20% DM. Crude protein contents of soybean, winged bean, rubber seed, and tropical almond increased by 17.7, 4.7, 55.2, and 126.5% after lipid extraction, respectively. In vitro gas production of intact winged bean was the highest among other materials at various time point intervals (p<0.05), followed by soybean > rubber seed > tropical almond. Extraction of lipid increased in vitro gas production, total VFA concentration, IVDMD, and IVOMD of soybean, winged bean, rubber seed, and tropical almond (p<0.05). After lipid extraction, all feed materials had similar IVDMD and IVOMD values. Lipid extraction improved the nutritional quality of winged bean, rubber seed, and tropical almond.

  20. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines.

    PubMed

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; Hatcher, Catherine N; Wuddineh, Wegi A; Rudis, Mary; Tschaplinski, Timothy J; Pantalone, Vincent R; Arelli, Prakash R; Hewezi, Tarek; Chen, Feng; Stewart, Charles Neal

    2016-11-01

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCN resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Thus, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. 7 CFR 810.107 - Special grades and special grade requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... injurious to stored grain. (b) Infested barley, canola, corn, oats, sorghum, soybeans, sunflower seed, and..., soybeans, sunflower seed, and mixed grain are defined according to sampling designations as follows: (1...

  2. 7 CFR 810.107 - Special grades and special grade requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... injurious to stored grain. (b) Infested barley, canola, corn, oats, sorghum, soybeans, sunflower seed, and..., soybeans, sunflower seed, and mixed grain are defined according to sampling designations as follows: (1...

  3. Adenylate and Nicotinamide Nucleotides in Developing Soybean Seeds During Seed-Fill 1

    PubMed Central

    Quebedeaux, Bruno

    1981-01-01

    Profiles of adenylate and nicotinamide nucleotides in soybean seeds were determined during seed-fill. The ATP content per seed increased during the early seed-filling stages to a level of 10 to 12 micrograms per seed. Seed ATP decreased after 40 days of development and reached its lowest level of less than 1 microgram at maturity. The ATP:ADP ratios were relatively constant at all seed development stages. Sharp increases in AMP levels during the late seed-fill stages were paralleled with a disappearance of ATP and ADP pools resulting in a reduced seed energy charge. Energy charge varied from the highest value of 0.78 at mid-seed-fill to less than 0.10 at maturity. Of the oxidized (NAD, NADP) and reduced (NADH, NADPH) nicotinamide nucleotide forms, NAD was the most abundant. Levels as high as 17.5 micrograms per seed were observed during the mid-seed-filling stages. NADP was found almost exclusively in the reduced form with a NADP: NADPH ratio of less than 0.35, whereas the reverse was noted for NAD which was found mainly in the oxidized form with a NAD:NADH ratio in the range of 5 to 25. NADP was detected in low concentrations compared to the other adenylate and nicotinamide nucleotides. The nicotinamide redox charge defined as (NADH + NADPH)/(NAD + NADH) + (NADP + NADPH) was calculated to express the state of the energy balance between the oxidized and reduced nicotinamide nucleotide forms. The nicotinamide redox charge varied between 0.15 and 0.30 during seed development and was significantly lower than that found for the adenylate energy charge. PMID:16661875

  4. Genome-wide association mapping for seed protein and oil contents using a large panel of soybean accessions.

    PubMed

    Li, Dongmei; Zhao, Xue; Han, Yingpeng; Li, Wenbin; Xie, Futi

    2018-01-08

    Soybean is globally cultivated primarily for its protein and oil. The protein and oil contents of the seeds are quantitatively inherited traits determined by the interaction of numerous genes. In order to gain a better understanding of the molecular foundation of soybean protein and oil content for the marker-assisted selection (MAS) of high quality traits, a population of 185 soybean germplasms was evaluated to identify the quantitative trait loci (QTLs) associated with the seed protein and oil contents. Using specific length amplified fragment sequencing (SLAF-seq) technology, a total of 12,072 single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) ≥ 0.05 were detected across the 20 chromosomes (Chr), with a marker density of 78.7 kbp. A total of 31 SNPs located on 12 of the 20 soybean chromosomes were correlated with seed protein and oil content. Of the 31 SNPs that were associated with the two target traits, 31 beneficial alleles were identified. Two SNP markers, namely rs15774585 and rs15783346 on Chr 07, were determined to be related to seed oil content both in 2015 and 2016. Three SNP markers, rs53140888 on Chr 01, rs19485676 on Chr 13, and rs24787338 on Chr 20 were correlated with seed protein content both in 2015 and 2016. These beneficial alleles may potentially contribute towards the MAS of favorable soybean protein and oil characteristics. Copyright © 2018. Published by Elsevier Inc.

  5. Effects of proteome rebalancing and sulfur nutrition on the accumulation of methionine rich δ-zein in transgenic soybeans

    PubMed Central

    Kim, Won-Seok; Jez, Joseph M.; Krishnan, Hari B.

    2014-01-01

    Expression of heterologous methionine-rich proteins to increase the overall sulfur amino acid content of soybean seeds has been only marginally successful, presumably due to low accumulation of transgenes in soybeans or due to gene silencing. Proteome rebalancing of seed proteins has been shown to promote the accumulation of foreign proteins. In this study, we have utilized RNAi technology to suppress the expression of the β-conglycinin, the abundant 7S seed storage proteins of soybean. Western blot and 2D-gel analysis revealed that β-conglycinin knockdown line (SAM) failed to accumulate the α′, α, and β-subunits of β-conglycinin. The proteome rebalanced SAM retained the overall protein and oil content similar to that of wild-type soybean. We also generated transgenic soybean lines expressing methionine-rich 11 kDa δ-zein under the control of either the glycinin or β-conglycinin promoter. The introgression of the 11 kDa δ-zein into β-conglycinin knockdown line did not enhance the accumulation of the 11 kDa δ-zein. However, when the same plants were grown in sulfur-rich medium, we observed 3- to 16-fold increased accumulation of the 11 kDa δ-zein. Transmission electron microscopy observation revealed that seeds grown in sulfur-rich medium contained numerous endoplasmic reticulum derived protein bodies. Our findings suggest that sulfur availability, not proteome rebalancing, is needed for high-level accumulation of heterologous methionine-rich proteins in soybean seeds. PMID:25426134

  6. Effects of foliar boron application on seed composition, cell wall boron, and seed delta 15N and delta 13C isotopes in soybean are influenced by water stress

    USDA-ARS?s Scientific Manuscript database

    Although the effect of foliar boron (B) application on yield and quality is well established for crops, limited information and controversial results still exist on the effects of foliar B application on soybean seed composition (seed protein, oil, fatty acids, and sugars). The objective of this res...

  7. Field evaluation of soybean lines from a new source of resistance to Cercospora kikuchii, 2013

    USDA-ARS?s Scientific Manuscript database

    Purple seed stain, which is caused by the fungus Cercospora kikuchii, is an important seed disease which causes soybean seed quality losses when environmental conditions favor its growth, and harvest is delayed due to wet field conditions. Frogeye leaf spot caused by the fungus Cercospora sojina is...

  8. Multi-population selective genotyping to identify soybean (Glycine max (L.) Merr.) seed protein and oil QTLs

    USDA-ARS?s Scientific Manuscript database

    Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which in soybean [Glycine max (L.) Merr.] is seed protein and oil. Identification of genetic loci governing those two traits would facilitate that effort, and though genome-wide asso...

  9. GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean

    USDA-ARS?s Scientific Manuscript database

    Loss of seed-coat impermeability was an essential step towards domestication of many leguminous crops for production of their highly nutritious seeds. Here we show that seed-coat impermeability in wild soybean is controlled by a single gene, Hard seededness 1 (Hs1), which encodes a calcineurin-like ...

  10. Identification of transcript polymorphisms for seed quality improvement by exploring soybean genetic diversity

    USDA-ARS?s Scientific Manuscript database

    The difference in seed oil composition and content among soybean genotypes could be mostly attributed to transcript sequence and/or expression variations of oil-related genes that that lead to changes in the functions of the proteins that they encode and/or their accumulation in seeds. We sequenced ...

  11. Evaluation of seed chemical quality traits and sensory properties of natto soybean.

    PubMed

    Yoshikawa, Yoko; Chen, Pengyin; Zhang, Bo; Scaboo, Andrew; Orazaly, Moldir

    2014-06-15

    Natto is a popular soyfood in Japan, and the U.S. is the largest supplier of natto soybeans. However, information on natto seed chemical and sensory properties is very limited. The objectives of this study were to evaluate differences of seed chemical and sensory properties among natto types and determine heritability and correlation. A total of 15 small-seeded natto genotypes (three superior, nine moderate and three inferior) were evaluated for protein, oil, calcium, manganese, boron and sugar content and processed into a natto product to evaluate appearance, stickiness, flavor, texture and shelf-life. The superior natto group had a higher sugar content but lower protein plus oil, calcium, manganese and boron content than other two groups. Most seed quality traits exhibited high heritability. The natto sensory preference was positively correlated with sucrose and oil content, but negatively correlated with seed hardness, protein, protein plus oil, calcium, manganese, and boron contents. Selecting soybean lines with low protein, protein plus oil, calcium, manganese, and boron content while with high sucrose will be an effective approach for soybean breeding for natto production. Published by Elsevier Ltd.

  12. Transgenic soybeans and soybean protein analysis: an overview.

    PubMed

    Natarajan, Savithiry; Luthria, Devanand; Bae, Hanhong; Lakshman, Dilip; Mitra, Amitava

    2013-12-04

    To meet the increasing global demand for soybeans for food and feed consumption, new high-yield varieties with improved quality traits are needed. To ensure the safety of the crop, it is important to determine the variation in seed proteins along with unintended changes that may occur in the crop as a result various stress stimuli, breeding, and genetic modification. Understanding the variation of seed proteins in the wild and cultivated soybean cultivars is useful for determining unintended protein expression in new varieties of soybeans. Proteomic technology is useful to analyze protein variation due to various stimuli. This short review discusses transgenic soybeans, different soybean proteins, and the approaches used for protein analysis. The characterization of soybean protein will be useful for researchers, nutrition professionals, and regulatory agencies dealing with soy-derived food products.

  13. Characterization of Natural and Simulated Herbivory on Wild Soybean (Glycine soja Seib. et Zucc.) for Use in Ecological Risk Assessment of Insect Protected Soybean

    PubMed Central

    Goto, Hidetoshi; Shimada, Hiroshi; Horak, Michael J.; Ahmad, Aqeel; Baltazar, Baltazar M.; Perez, Tim; McPherson, Marc A.; Stojšin, Duška; Shimono, Ayako; Ohsawa, Ryo

    2016-01-01

    Insect-protected soybean (Glycine max (L.) Merr.) was developed to protect against foliage feeding by certain Lepidopteran insects. The assessment of potential consequences of transgene introgression from soybean to wild soybean (Glycine soja Seib. et Zucc.) is required as one aspect of the environmental risk assessment (ERA) in Japan. A potential hazard of insect-protected soybean may be hypothesized as transfer of a trait by gene flow to wild soybean and subsequent reduction in foliage feeding by Lepidopteran insects that result in increased weediness of wild soybean in Japan. To assess this potential hazard two studies were conducted. A three-year survey of wild soybean populations in Japan was conducted to establish basic information on foliage damage caused by different herbivores. When assessed across all populations and years within each prefecture, the total foliage from different herbivores was ≤ 30%, with the lowest levels of defoliation (< 2%) caused by Lepidopteran insects. A separate experiment using five levels of simulated defoliation (0%, 10%, 25%, 50% and 100%) was conducted to assess the impact on pod and seed production and time to maturity of wild soybean. The results indicated that there was no decrease in wild soybean plants pod or seed number or time to maturity at defoliation rates up to 50%. The results from these experiments indicate that wild soybean is not limited by lepidopteran feeding and has an ability to compensate for defoliation levels observed in nature. Therefore, the potential hazard to wild soybean from the importation of insect-protected soybean for food and feed into Japan is negligible. PMID:26963815

  14. Deletions of the SACPD-C locus elevate seed stearic acid levels but also result in fatty acid and morphological alterations in nitrogen fixing nodules

    USDA-ARS?s Scientific Manuscript database

    Soybean (Glycine max) seeds are the primary source of edible oil in the United States. Despite its widespread utility, soybean oil is oxidatively unstable. Until recently, the majority of soybean oil underwent chemical hydrogenation, a process which generates trans fats. An alternative to chemical h...

  15. Enviromental Effects on Oleic Acid in Soybean Seed Oil of Plant Introductions with Elevated Oleic Concentration

    USDA-ARS?s Scientific Manuscript database

    Soybean [Glycine max (L.) Merr.] oil with oleic acid content >500 g per kg is desirable for a broader role in food and industrial uses. Seed oil in commercially grown soybean genotypes averages about 230 g per kg oleic acid (18:1). Some maturity group (MG) II to V plant introductions (PIs) have el...

  16. Genome-wide scan for seed composition provides insights into the improvement of soybean quality and the impacts of domestication and modern breeding

    USDA-ARS?s Scientific Manuscript database

    Soybean (Glycine max (L.) Merrill) is a world-widely grown major crop rich in both protein and oil. Improvement of seed nutrients has long been one of the most important breeding objectives in soybean. To better understand the genetic architecture of the traits for improvement, we conducted genome-w...

  17. Assessing metabolomic and chemical diversity of a soybean lineage representing 35 years of breeding

    USDA-ARS?s Scientific Manuscript database

    Information on crop genotype- and phenotype-metabolite associations can be of value to trait development as well as to food security and safety. The unique study presented here assessed seed metabolomic and ionomic diversity in a soybean lineage representing ~35 years of breeding (launch years 1972-...

  18. Expression of the Arabidopsis thaliana BBX32 gene in soybean increases grain yield.

    PubMed

    Preuss, Sasha B; Meister, Robert; Xu, Qingzhang; Urwin, Carl P; Tripodi, Federico A; Screen, Steven E; Anil, Veena S; Zhu, Shuquan; Morrell, James A; Liu, Grace; Ratcliffe, Oliver J; Reuber, T Lynne; Khanna, Rajnish; Goldman, Barry S; Bell, Erin; Ziegler, Todd E; McClerren, Amanda L; Ruff, Thomas G; Petracek, Marie E

    2012-01-01

    Crop yield is a highly complex quantitative trait. Historically, successful breeding for improved grain yield has led to crop plants with improved source capacity, altered plant architecture, and increased resistance to abiotic and biotic stresses. To date, transgenic approaches towards improving crop grain yield have primarily focused on protecting plants from herbicide, insects, or disease. In contrast, we have focused on identifying genes that, when expressed in soybean, improve the intrinsic ability of the plant to yield more. Through the large scale screening of candidate genes in transgenic soybean, we identified an Arabidopsis thaliana B-box domain gene (AtBBX32) that significantly increases soybean grain yield year after year in multiple transgenic events in multi-location field trials. In order to understand the underlying physiological changes that are associated with increased yield in transgenic soybean, we examined phenotypic differences in two AtBBX32-expressing lines and found increases in plant height and node, flower, pod, and seed number. We propose that these phenotypic changes are likely the result of changes in the timing of reproductive development in transgenic soybean that lead to the increased duration of the pod and seed development period. Consistent with the role of BBX32 in A. thaliana in regulating light signaling, we show that the constitutive expression of AtBBX32 in soybean alters the abundance of a subset of gene transcripts in the early morning hours. In particular, AtBBX32 alters transcript levels of the soybean clock genes GmTOC1 and LHY-CCA1-like2 (GmLCL2). We propose that through the expression of AtBBX32 and modulation of the abundance of circadian clock genes during the transition from dark to light, the timing of critical phases of reproductive development are altered. These findings demonstrate a specific role for AtBBX32 in modulating soybean development, and demonstrate the validity of expressing single genes in crops to deliver increased agricultural productivity.

  19. Effects of physical agitation on yield of greenhouse-grown soybean

    NASA Technical Reports Server (NTRS)

    Jones, R. S.; Mitchell, C. A.

    1992-01-01

    Agronomic and horticultural crop species experience reductions in growth and harvestable yield after exposure to physical agitation (also known as mechanical stress), as by wind or rain. A greenhouse study was conducted to test the influence of mechanical stress on soybean yield and to determine if exposure to mechanical stress during discrete growth periods has differential effects on seed yield. A modified rotatory shaker was used to apply seismic (i.e., shaking) stress. Brief, periodic episodes of seismic stress reduced stem length, total seed dry weight, and seed number of soybean [Glycine max (L.) Merr.]. Lodging resistance was greater for plants stressed during vegetative growth or throughout vegetative and reproductive growth than during reproductive growth only. Seed dry weight yield was reduced regardless of the timing or duration of stress application, but was lowest when applied during reproductive development. Seismic stress applied during reproductive growth stages R1 to R2 (Days 3 to 4) was as detrimental to seed dry weight accumulation as was stress applied during growth stages R1 to R6 (Days 39 to 42). Seed dry weight per plant was highly correlated with seed number per plant, and seed number was correlated with the seed number of two- and three-seeded pods. Dry weight per 100 seeds was unaffected by seismic-stress treatment. Growth and yield reductions resulting from treatments applied only during the vegetative stage imply that long-term mechanical effects were induced, from which the plants did not fully recover. It is unclear which yield-controlling physiological processes were affected by mechanical stress. Both transient and long-term effects on yield-controlling processes remain to be elucidated.

  20. Seed Nutrition and Quality, Seed Coat Boron and Lignin Are Influenced by Delayed Harvest in Exotically-Derived Soybean Breeding Lines under High Heat.

    PubMed

    Bellaloui, Nacer; Smith, James R; Mengistu, Alemu

    2017-01-01

    The timing of harvest is a major factor affecting seed quality in soybean, particularly in Midsouthern USA, when rain during harvest period is not uncommon. The objective of this research was to evaluate the effects of time of harvest on soybean seed quality (seed composition, germination, seed coat boron, and lignin) in high germinability (HG) breeding lines (50% exotic) developed under high heat. The hypothesis was that seeds of HG lines possess physiological and genetic traits for a better seed quality at harvest maturity and delayed harvest. A 2-year field experiment was conducted under irrigated conditions. Results showed that, at harvest maturity, the exotic HG lines had higher seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin, but lower seed oil compared with the non-exotic checks (Control), confirming our hypothesis. At 28 days after harvest maturity (delayed harvest), the content of seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin were higher in some of the HG lines compared with the checks, indicating a possible involvement of these seed constituents, especially seed coat boron and seed coat lignin, in maintaining seed coat integrity and protecting seed coat against physical damage. Highly significant positive correlations were found between germination and seed protein, oleic acid, sugars, and seed coat boron and seed coat lignin. Highly significant negative correlation was found between germination and oil, linoleic acid, seed coat wrinkling, shattering, and hard seed. Yields of some HG lines were competitive with checks. This research demonstrated that time of harvesting is an important factor influencing seed protein and oil production. Also, since high oleic acid is desirable for oxidative stability, shelf-life and biodiesel properties, using HG lines could positively influence these important traits. This result should suggest to breeders of some of the advantages of selecting for high seed coat boron and lignin, and inform growers of the importance of timely harvest for maintaining high seed quality.

  1. Contributions of Fusarium virguliforme and Heterodera glycines to the Disease Complex of Sudden Death Syndrome of Soybean

    PubMed Central

    Westphal, Andreas; Li, Chunge; Xing, Lijuan; McKay, Alan; Malvick, Dean

    2014-01-01

    Background Sudden death syndrome (SDS) of soybean caused by Fusarium virguliforme spreads and reduces soybean yields through the North Central region of the U.S. The fungal pathogen and Heterodera glycines are difficult to manage. Methodology/Principal Findings The objective was to determine the contributions of H. glycines and F. virguliforme to SDS severity and effects on soybean yield. To quantify DNA of F. virguliforme in soybean roots and soil, a specific real time qPCR assay was developed. The assay was used on materials from soybean field microplots that contained in a four-factor factorial-design: (i) untreated or methyl bromide-fumigated; (ii) non-infested or infested with F. virguliforme; (iii) non-infested or infested with H. glycines; (iv) natural precipitation or additional weekly watering. In years 2 and 3 of the trial, soil and watering treatments were maintained. Roots of soybean ‘Williams 82’ were collected for necrosis ratings at the full seed growth stage R6. Foliar symptoms of SDS (area under the disease progress curve, AUDPC), root necrosis, and seed yield parameters were related to population densities of H. glycines and the relative DNA concentrations of F. virguliforme in the roots and soil. The specific and sensitive real time qPCR was used. Data from microplots were introduced into models of AUDPC, root necrosis, and seed yield parameters with the frequency of H. glycines and F. virguliforme, and among each other. The models confirmed the close interrelationship of H. glycines with the development of SDS, and allowed for predictions of disease risk based on populations of these two pathogens in soil. Conclusions/Significance The results modeled the synergistic interaction between H. glycines and F. virguliforme quantitatively in previously infested field plots and explained previous findings of their interaction. Under these conditions, F. virguliforme was mildly aggressive and depended on infection of H. glycines to cause highly severe SDS. PMID:24932970

  2. Effects of air, ozone, and nitrogen dioxide exposure on the oxidation of corn and soybean lipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, R.I.; Csallany, A.S.

    1978-01-01

    Whole, halves and ground samples of soybean seeds and whole corn kernels were exposed to air, 15 ppm NO2, or 1.5 ppm O3 continuously for 100 h at room temperature. Lipid oxidation was measured by polyunsaturated fatty acid (PUFA) and tocopherol destruction and formation of fluorescent lipofuscin-like pigments. Exposure of whole soybean and corn seeds to air, 15 ppm NO2, or 1.5 ppm O3 was found to induce no PUFA and tocopherol destruction and no formation of lipofuscin-like pigments. Tocopherol and PUFA destruction and lipofuscin-like pigment formation were detected in samples of soybean seed halves exposed to 15 ppm NO2more » or 1.5 ppm O3; however, only tocopherol destruction occurred in soybean halves exposed to air. Ground soybean samples exposed to air, 15 ppm NO2, or 1.5 ppm O3 incurred the greatest PUFA and tocopherol destruction and lipofuscin-like pigment formation. 25 references, 3 figures, 4 tables.« less

  3. Differential expression and elution behavior of basic 7S globulin among cultivars under hot water treatment of soybean seeds.

    PubMed

    Fujiwara, Keigo; Cabanos, Cerrone; Toyota, Kenji; Kobayashi, Yasunori; Maruyama, Nobuyuki

    2014-06-01

    Basic 7S globulin (Bg7S), which accumulates in mature soybean (Glycine max) seeds, is an extracellular matrix protein. A large amount of Bg7S is synthesized de novo and is eluted from soybean seeds when immersed in 50-60°C water (hot water treatment, HWT). However, the Bg7S elution mechanism remains unclear. Under HWT, the seeds probably undergo heat stress and flooding stress. To obtain fundamental knowledge related to how Bg7S is eluted from hot-water-treated seeds, this study compared Bg7S elution among soybean cultivars having different flooding tolerance during pre-germination. The amounts of Bg7S eluted from seeds varied significantly among cultivars. Elution was suppressed by seed coats regarded as preventing the leakage of seed contents by rapid water imbibition. Furthermore, Bg7S expression levels differed among cultivars, although the difference did not result from any variation in Bg7S promoter sequences. However, the expression levels of Bg7S under HWT were not associated with the flooding tolerance level. Immunoelectron microscopy revealed that the Bg7S accumulated in the intercellular space of hot-water-treated seeds. Plasma membrane shrinkage was observed. The main proteins eluted from seeds under HWT were located in the extracellular space. This study clarified the mechanism of Bg7S elution from seeds under HWT. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Quantitative Conversion of Phytate to Inorganic Phosphorus in Soybean Seeds Expressing a Bacterial Phytase1[OA

    PubMed Central

    Bilyeu, Kristin D.; Zeng, Peiyu; Coello, Patricia; Zhang, Zhanyuan J.; Krishnan, Hari B.; Bailey, April; Beuselinck, Paul R.; Polacco, Joe C.

    2008-01-01

    Phytic acid (PA) contains the major portion of the phosphorus in the soybean (Glycine max) seed and chelates divalent cations. During germination, both minerals and phosphate are released upon phytase-catalyzed degradation of PA. We generated a soybean line (CAPPA) in which an Escherichia coli periplasmic phytase, the product of the appA gene, was expressed in the cytoplasm of developing cotyledons. CAPPA exhibited high levels of phytase expression, ≥90% reduction in seed PA, and concomitant increases in total free phosphate. These traits were stable, and, although resulted in a trend for reduced emergence and a statistically significant reduction in germination rates, had no effect on the number of seeds per plant or seed weight. Because phytate is not digested by monogastric animals, untreated soymeal does not provide monogastrics with sufficient phosphorus and minerals, and PA in the waste stream leads to phosphorus runoff. The expression of a cytoplasmic phytase in the CAPPA line therefore improves phosphorus availability and surpasses gains achieved by other reported transgenic and mutational strategies by combining in seeds both high phytase expression and significant increases in available phosphorus. Thus, in addition to its value as a high-phosphate meal source, soymeal from CAPPA could be used to convert PA of admixed meals, such as cornmeal, directly to utilizable inorganic phosphorus. PMID:18162589

  5. Reaction of maturity group III soybean plant introductions to Phomopsis seed decay in Arkansas Mississippi and Missouri 2009

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD) is the major cause of poor seed quality in the United States, especially in the mid-south region. The disease is primarily caused by Phomopsis longicolla along with other Phomopsis and Diaporthe spp. There are few management strategies for this disease, and these s...

  6. Effect of water stress and foliar boron application on seed protein oil fatty acids and nitrogen metabolism in soybean

    USDA-ARS?s Scientific Manuscript database

    Effects of water stress and foliar boron (FB) application on soybean (Glycine max (L) Merr.) seed composition and nitrogen metabolism have not been well investigated. Therefore, the objective of this study was to investigate the effects of water stress and FB on seed protein, oil, fatty acids, nitra...

  7. Unraveling the effect of structurally different classes of insecticide on germination and early plant growth of soybean [Glycine max (L.) Merr].

    PubMed

    Dhungana, Sanjeev Kumar; Kim, Il-Doo; Kwak, Hwa-Sook; Shin, Dong-Hyun

    2016-06-01

    Although a considerable number of studies about the effect of different insecticides on plant physiology and metabolism have been carried out, research work about the comparative action of structurally different classes of insecticide on physiological and biochemical properties of soybean seed germination and early growth has not been found. The objective of this study was to investigate the effect of different classes of insecticides on soybean seed germination and early plant growth. Soybean seeds of Bosuk cultivar were soaked for 24h in distilled water or recommended dose (2mLL(-1), 1mLL(-1), 0.5gL(-1), and 0.5gL(-1) water for insecticides Mepthion, Myungtaja, Actara, and Stonate, respectively) of pesticide solutions of four structurally different classes of insecticides - Mepthion (fenitrothion; organophosphate), Myungtaja (etofenprox; pyrethroid), Actara (thiamethoxam; neonicotinoid), and Stonate (lambda-cyhalothrin cum thiamethoxam; pyrethroid cum neonicotinoid) - which are used for controlling stink bugs in soybean crop. Insecticides containing thiamethoxam and lamda-cyhalothrin cum thiamethoxam showed positive effects on seedling biomass and content of polyphenol and flavonoid, however fenitrothion insecticide reduced the seed germination, seed and seedling vigor, and polyphenol and flavonoid contents in soybean. Results of this study reveal that different classes of insecticide have differential influence on physiologic and metabolic actions like germination, early growth, and antioxidant activities of soybean and this implies that yield and nutrient content also might be affected with the application of different types of insecticide. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. 40 CFR 180.585 - Pyraflufen-ethyl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .../revocation date Almond, hulls 0.02 None. Cattle, meat byproducts 0.02 10/15/12 Corn, field, forage 0.01 None..., undelinted seed 0.04 None Fruit, pome, group 11-10 0.01 None. Fruit, stone, group 12 0.01 None. Grape 0.01... Soybean, forage 0.05 None Soybean, hay 0.10 None Soybean, seed 0.01 None Wheat, forage 0.02 None Wheat...

  9. 40 CFR 180.585 - Pyraflufen-ethyl; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .../revocation date Almond, hulls 0.02 None. Cattle, meat byproducts 0.02 10/15/12 Corn, field, forage 0.01 None..., undelinted seed 0.04 None Fruit, pome, group 11-10 0.01 None. Fruit, stone, group 12 0.01 None. Grape 0.01... Soybean, forage 0.05 None Soybean, hay 0.10 None Soybean, seed 0.01 None Wheat, forage 0.02 None Wheat...

  10. Effects of Boron foliar-fertilization on irrigated soybean (Glycine max L. Merr.) in the Mississippi River Valley Delta of the midsouth, USA

    USDA-ARS?s Scientific Manuscript database

    Irrigated soybeans in the Mississippi Delta have been reported to with increased seed yields when fertilized with a boron (B). Furrow irrigated soybean cultivars were foliar fertilized with a B solution at growth stages R3 and/or R5. No consistent trends in yield or seed weight were noted. No phy...

  11. A genome-wide association study of seed composition traits in wild soybean (Glycine soja).

    PubMed

    Leamy, Larry J; Zhang, Hengyou; Li, Changbao; Chen, Charles Y; Song, Bao-Hua

    2017-01-05

    Cultivated soybean (Glycine max) is a major agricultural crop that provides a crucial source of edible protein and oil. Decreased amounts of saturated palmitic acid and increased amounts of unsaturated oleic acid in soybean oil are considered optimal for human cardiovascular health and therefore there has considerable interest by breeders in discovering genes affecting the relative concentrations of these fatty acids. Using a genome-wide association (GWA) approach with nearly 30,000 single nucleotide polymorphisms (SNPs), we investigated the genetic basis of protein, oil and all five fatty acid levels in seeds from a sample of 570 wild soybeans (Glycine soja), the progenitor of domesticated soybean, to identify quantitative trait loci (QTLs) affecting these seed composition traits. We discovered 29 SNPs located on ten different chromosomes that are significantly associated with the seven seed composition traits in our wild soybean sample. Eight SNPs co-localized with QTLs previously uncovered in linkage or association mapping studies conducted with cultivated soybean samples, while the remaining SNPs appeared to be in novel locations. Twenty-four of the SNPs significantly associated with fatty acid variation, with the majority located on chromosomes 14 (6 SNPs) and seven (8 SNPs). Two SNPs were common for two or more fatty acids, suggesting loci with pleiotropic effects. We also identified some candidate genes that are involved in fatty acid metabolism and regulation. For each of the seven traits, most of the SNPs produced differences between the average phenotypic values of the two homozygotes of about one-half standard deviation and contributed over 3% of their total variability. This is the first GWA study conducted on seed composition traits solely in wild soybean populations, and a number of QTLs were found that have not been previously discovered. Some of these may be useful to breeders who select for increased protein/oil content or altered fatty acid ratios in the seeds. The results also provide additional insight into the genetic architecture of these traits in a large sample of wild soybean, and suggest some new candidate genes whose molecular effects on these traits need to be further studied.

  12. Determination and comparison of seed oil triacylglycerol composition of various soybeans (Glycine max (L.)) using ¹H-NMR spectroscopy.

    PubMed

    Kim, Won Woo; Rho, Ho Sik; Hong, Yong Deog; Yeom, Myung Hun; Shin, Song Seok; Yi, Jun Gon; Lee, Min-Seuk; Park, Hye Yoon; Cho, Dong Ha

    2013-11-21

    Seed oil triacylglycerol (TAG) composition of 32 soybean varieties were determined and compared using ¹H-NMR. The contents of linolenic (Ln), linoleic (L), and oleic (O) ranged from 10.7% to 19.3%, 37.4%-50.1%, and 15.7%-34.1%, respectively. As is evident, linoleic acid was the major fatty acid of soybean oil. Compositional differences among the varieties were observed. Natural oils containing unsaturated groups have been regarded as important nutrient and cosmetic ingredients because of their various biological activities. The TAG profiles of the soy bean oils could be useful for distinguishing the origin of seeds and controlling the quality of soybean oils. To the best of our knowledge, this is the first study in which the TAG composition of various soybean oils has been analyzed using the ¹H-NMR method.

  13. 40 CFR 180.477 - Flumiclorac pentyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... million Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Cotton, gin byproducts 3.0 Cotton, undelinted seed 0.2 Soybean, hulls 0.02 Soybean, seed 0.01 (b) Section 18 emergency...

  14. Development of a Rapid Point-of-Use DNA Test for the Screening of Genuity® Roundup Ready 2 Yield® Soybean in Seed Samples.

    PubMed

    Chandu, Dilip; Paul, Sudakshina; Parker, Mathew; Dudin, Yelena; King-Sitzes, Jennifer; Perez, Tim; Mittanck, Don W; Shah, Manali; Glenn, Kevin C; Piepenburg, Olaf

    2016-01-01

    Testing for the presence of genetically modified material in seed samples is of critical importance for all stakeholders in the agricultural industry, including growers, seed manufacturers, and regulatory bodies. While rapid antibody-based testing for the transgenic protein has fulfilled this need in the past, the introduction of new variants of a given transgene demands new diagnostic regimen that allows distinguishing different traits at the nucleic acid level. Although such molecular tests can be performed by PCR in the laboratory, their requirement for expensive equipment and sophisticated operation have prevented its uptake in point-of-use applications. A recently developed isothermal DNA amplification technique, recombinase polymerase amplification (RPA), combines simple sample preparation and amplification work-flow procedures with the use of minimal detection equipment in real time. Here, we report the development of a highly sensitive and specific RPA-based detection system for Genuity Roundup Ready 2 Yield (RR2Y) material in soybean (Glycine max) seed samples and present the results of studies applying the method in both laboratory and field-type settings.

  15. Agricultural practices altered soybean seed protein, oil, fatty acids, sugars, and minerals in the Midsouth USA.

    PubMed

    Bellaloui, Nacer; Bruns, H Arnold; Abbas, Hamed K; Mengistu, Alemu; Fisher, Daniel K; Reddy, Krishna N

    2015-01-01

    Information on the effects of management practices on soybean seed composition is scarce. Therefore, the objective of this research was to investigate the effects of planting date (PD) and seeding rate (SR) on seed composition (protein, oil, fatty acids, and sugars) and seed minerals (B, P, and Fe) in soybean grown in two row-types (RTs) on the Mississippi Delta region of the Midsouth USA. Two field experiments were conducted in 2009 and 2010 on Sharkey clay and Beulah fine sandy loam soil at Stoneville, MS, USA, under irrigated conditions. Soybean were grown in 102 cm single-rows and 25 cm twin-rows in 102 cm centers at SRs of 20, 30, 40, and 50 seeds m(-2). The results showed that in May and June planting, protein, glucose, P, and B concentrations increased with increased SR, but at the highest SRs (40 and 50 seeds m(-2)), the concentrations remained constant or declined. Palmitic, stearic, and linoleic acid concentrations were the least responsive to SR increases. Early planting resulted in higher oil, oleic acid, sucrose, B, and P on both single and twin-rows. Late planting resulted in higher protein and linolenic acid, but lower oleic acid and oil concentrations. The changes in seed constituents could be due to changes in environmental factors (drought and temperature), and nutrient accumulation in seeds and leaves. The increase of stachyose sugar in 2010 may be due to a drier year and high temperature in 2010 compared to 2009; suggesting the possible role of stachyose as an environmental stress compound. Our research demonstrated that PD, SR, and RT altered some seed constituents, but the level of alteration in each year dependent on environmental factors such as drought and temperature. This information benefits growers and breeders for considering agronomic practices to select for soybean seed nutritional qualities under drought and high heat conditions.

  16. Research update on soybean Phomopsis seed decay and its primarily causal pathogen Phomopsis longicolla

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) of soybean is the major cause of poor seed quality in the United States, especially in the mid-southern United States. In 2009, due to the prevalence of hot and humid environments from pod fill to harvest, PSD caused over 0.33 MMT losses in 16 states. To identify new sourc...

  17. Comprehensive quantification of triacylglycerols in soybean seeds by electrospray ionization mass spectrometry with multiple neutral loss scans

    DOE PAGES

    Li, Maoyin; Butka, Emily; Wang, Xuemin

    2014-10-10

    Soybean seeds are an important source of vegetable oil and biomaterials. The content of individual triacylglycerol species (TAG) in soybean seeds is difficult to quantify in an accurate and rapid way. The present study establishes an approach to quantify TAG species in soybean seeds utilizing an electrospray ionization tandem mass spectrometry with multiple neutral loss scans. Ten neutral loss scans were performed to detect the fatty acyl chains of TAG, including palmitic (P, 1650), linolenic (Ln, 1853), linoleic (L, 1852), oleic (O, 1851), stearic (S, 1850), eicosadienoic (2052), gadoleic (2051), arachidic (2050), erucic (2251), and behenic (2250). The abundance ofmore » ten fatty acyl chains at 46 TAG masses (mass-to-charge ratio, m/z) were determined after isotopic deconvolution and correction by adjustment factors at each TAG mass. The direct sample infusion and multiple internal standards correction allowed a rapid and accurate quantification of TAG species. Ninety-three TAG species were resolved and their levels were determined.The most abundant TAG species were LLL, OLL, LLLn, PLL, OLLn, OOL, POL, and SLL. Many new species were detected and quantified. As a result, this shotgun lipidomics approach should facilitate the study of TAG metabolism and genetic breeding of soybean seeds for desirable TAG content and composition.« less

  18. Response of soybean seed germination to cadmium and acid rain.

    PubMed

    Liu, Ting Ting; Wu, Peng; Wang, Li Hong; Zhou, Qing

    2011-12-01

    Cadmium (Cd) pollution and acid rain are the main environmental issues, and they often occur in the same agricultural region. Nevertheless, up to now, little information on the combined pollution of Cd(2+) and acid rain action on crops were presented. Here, we investigated the combined effect of Cd(2+) and acid rain on the seed germination of soybean. The results indicated that the single treatment with the low level of Cd(2+) (0.18, 1.0, 3.0 mg L(-1)) or acid rain (pH ≥3.0) could not affect the seed germination of soybean, which was resulted in the increased activities of peroxidase and catalase. The single treatment with the high concentration of Cd(2+) (>6 mg L(-1)) or acid rain at pH 2.5 decreased the activities of peroxidase and catalase, damaged the cell membrane and then decreased the seed germination of soybean. Meanwhile, the same toxic effect was observed in the combined treatment with Cd(2+) and acid rain, and the combined treatment had more toxic effect than the single treatment with Cd(2+) or acid rain. Thus, the combined pollution of Cd(2+) and acid rain had more potential threat to the seed germination of soybean than the single pollution of Cd(2+) or acid rain.

  19. Proteomic Analysis of Pigeonpea (Cajanus cajan) Seeds Reveals the Accumulation of Numerous Stress-Related Proteins.

    PubMed

    Krishnan, Hari B; Natarajan, Savithiry S; Oehrle, Nathan W; Garrett, Wesley M; Darwish, Omar

    2017-06-14

    Pigeonpea is one of the major sources of dietary protein for more than a billion people living in South Asia. This hardy legume is often grown in low-input and risk-prone marginal environments. Considerable research effort has been devoted by a global research consortium to develop genomic resources for the improvement of this legume crop. These efforts have resulted in the elucidation of the complete genome sequence of pigeonpea. Despite these developments, little is known about the seed proteome of this important crop. Here, we report the proteome of pigeonpea seed. To enable the isolation of maximum number of seed proteins, including those that are present in very low amounts, three different protein fractions were obtained by employing different extraction media. High-resolution two-dimensional (2-D) electrophoresis followed by MALDI-TOF-TOF-MS/MS analysis of these protein fractions resulted in the identification of 373 pigeonpea seed proteins. Consistent with the reported high degree of synteny between the pigeonpea and soybean genomes, a large number of pigeonpea seed proteins exhibited significant amino acid homology with soybean seed proteins. Our proteomic analysis identified a large number of stress-related proteins, presumably due to its adaptation to drought-prone environments. The availability of a pigeonpea seed proteome reference map should shed light on the roles of these identified proteins in various biological processes and facilitate the improvement of seed composition.

  20. Assessment of potential soybean cadmium excluder cultivars at different concentrations of Cd in soils.

    PubMed

    Zhi, Yang; He, Kangxin; Sun, Ting; Zhu, Yongqiang; Zhou, Qixing

    2015-09-01

    The selection of cadmium-excluding cultivars has been used to minimize the transfer of cadmium into the human food chain. In this experiment, five Chinese soybean plants were grown in three soils with different concentrations of Cd (0.15, 0.75 and 1.12mg/kg). Variations in uptake, enrichment, and translocation of Cd among these soybean cultivars were studied. The results indicated that the concentration of Cd in seeds that grew at 1.12mg/kg Cd in soils exceeded the permitted maximum levels in soybeans. Therefore, our results indicated that even some soybean cultivars grown on soils with permitted levels of Cd might accumulate higher concentrations of Cd in seeds that are hazardous to human health. The seeds of these five cultivars were further assessed for interactions between Cd and other mineral nutrient elements such as Ca, Cu, Fe, Mg, Mn and Zn. High Cd concentration in soil was found to inhibit the uptake of Mn. Furthermore, Fe and Zn accumulations were found to be enhanced in the seeds of all of the five soybean cultivars in response to high Cd concentration. Cultivar Tiefeng 31 was found to fit the criteria for a Cd-excluding cultivar under different concentrations of Cd in soils. Copyright © 2015. Published by Elsevier B.V.

  1. Structural and transcriptional characterization of a novel member of the soybean urease gene family.

    PubMed

    Wiebke-Strohm, Beatriz; Ligabue-Braun, Rodrigo; Rechenmacher, Ciliana; De Oliveira-Busatto, Luisa Abruzzi; Carlini, Célia Regina; Bodanese-Zanettini, Maria Helena

    2016-04-01

    In plants, ureases have been related to urea degradation, to defense against pathogenic fungi and phytophagous insects, and to the soybean-Bradyrhizobium japonicum symbiosis. Two urease isoforms have been described for soybean: the embryo-specific, encoded by Eu1 gene, and the ubiquitous urease, encoded by Eu4. A third urease-encoding locus exists in the completed soybean genome. The gene was designated Eu5 and the putative product of its ORF as SBU-III. Phylogenetic analysis shows that 41 plant, moss and algal ureases have diverged from a common ancestor protein, but ureases from monocots, eudicots and ancient species have evolved independently. Genomes of ancient organisms present a single urease-encoding gene and urease-encoding gene duplication has occurred independently along the evolution of some eudicot species. SBU-III has a shorter amino acid sequence, since many gaps are found when compared to other sequences. A mutation in a highly conserved amino acid residue suggests absence of ureolytic activity, but the overall protein architecture remains very similar to the other ureases. The expression profile of urease-encoding genes in different organs and developmental stages was determined by RT-qPCR. Eu5 transcripts were detected in seeds one day after dormancy break, roots of young plants and embryos of developing seeds. Eu1 and Eu4 transcripts were found in all analyzed organs, but Eu4 expression was more prominent in seeds one day after dormancy break whereas Eu1 predominated in developing seeds. The evidence suggests that SBU-III may not be involved in nitrogen availability to plants, but it could be involved in other biological role(s). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Modeling the effects of ozone on soybean growth and yield.

    PubMed

    Kobayashi, K; Miller, J E; Flagler, R B; Heck, W W

    1990-01-01

    A simple mechanistic model was developed based on an existing growth model in order to address the mechanisms of the effects of ozone on growth and yield of soybean [Glycine max. (L.) Merr. 'Davis'] and interacting effects of other environmental stresses. The model simulates daily growth of soybean plants using environmental data including shortwave radiation, temperature, precipitation, irrigation and ozone concentration. Leaf growth, dry matter accumulation, water budget, nitrogen input and seed growth linked to senescence and abscission of leaves are described in the model. The effects of ozone are modeled as reduced photosynthate production and accelerated senescence. The model was applied to the open-top chamber experiments in which soybean plants were exposed to ozone under two levels of soil moisture regimes. After calibrating the model to the growth data and seed yield, goodness-of-fit of the model was tested. The model fitted well for top dry weight in the vegetative growth phase and also at maturity. The effect of ozone on seen yield was also described satisfactorily by the model. The simulation showed apparent interaction between the effect of ozone and soil moisture stress on the seed yield. The model revealed that further work is needed concerning the effect of ozone on the senescence process and the consequences of alteration of canopy microclimate by the open-top chambers.

  3. Silencing of Soybean Raffinose Synthase Gene Reduced Raffinose Family Oligosaccharides and Increased True Metabolizable Energy of Poultry Feed

    PubMed Central

    Valentine, Michelle F.; De Tar, Joann R.; Mookkan, Muruganantham; Firman, Jeffre D.; Zhang, Zhanyuan J.

    2017-01-01

    Soybean [Glycine max (L.) Merr.] is the number one oil and protein crop in the United States, but the seed contains several anti-nutritional factors that are toxic to both humans and livestock. RNA interference technology has become an increasingly popular technique in gene silencing because it allows for both temporal and spatial targeting of specific genes. The objective of this research is to use RNA-mediated gene silencing to down-regulate the soybean gene raffinose synthase 2 (RS2), to reduce total raffinose content in mature seed. Raffinose is a trisaccharide that is indigestible to humans and monogastric animals, and as monogastric animals are the largest consumers of soy products, reducing raffinose would improve the nutritional quality of soybean. An RNAi construct targeting RS2 was designed, cloned, and transformed to the soybean genome via Agrobacterium-mediated transformation. Resulting plants were analyzed for the presence and number of copies of the transgene by PCR and Southern blot. The efficiency of mRNA silencing was confirmed by real-time quantitative PCR. Total raffinose content was determined by HPLC analysis. Transgenic plant lines were recovered that exhibited dramatically reduced levels of raffinose in mature seed, and these lines were further analyzed for other phenotypes such as development and yield. Additionally, a precision-fed rooster assay was conducted to measure the true metabolizable energy (TME) in full-fat soybean meal made from the wild-type or transgenic low-raffinose soybean lines. Transgenic low-raffinose soy had a measured TME of 2,703 kcal/kg, an increase as compared with 2,411 kcal/kg for wild-type. As low digestible energy is a major limiting factor in the percent of soybean meal that can be used in poultry diets, these results may substantiate the use of higher concentrations of low-raffinose, full-fat soy in formulated livestock diets. PMID:28559898

  4. 40 CFR 180.435 - Deltamethrin; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., stover 15 Cotton, refined oil 0.2 Cotton, undelinted seed 0.04 Egg 0.02 Fruit, pome, Group 11 0.2 Goat... Sorghum, grain, forage 0.5 Sorghum, grain, stover 1.0 Soybean, seed 0.1 Soybean, hulls 0.2 Starfruit* 0.2 Sunflower, seed 0.1 Tomato 0.2 Tomato, paste 1.0 Tomato, puree 1.0 Vegetable, cucurbit, Group 9 0.2...

  5. 40 CFR 180.435 - Deltamethrin; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., stover 15 Cotton, refined oil 0.2 Cotton, undelinted seed 0.04 Egg 0.02 Fruit, pome, Group 11 0.2 Goat... Sorghum, grain, forage 0.5 Sorghum, grain, stover 1.0 Soybean, seed 0.1 Soybean, hulls 0.2 Starfruit* 0.2 Sunflower, seed 0.1 Tomato 0.2 Tomato, paste 1.0 Tomato, puree 1.0 Vegetable, cucurbit, Group 9 0.2...

  6. 40 CFR 180.442 - Bifenthrin; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., leaves 6.0 Coriander, seed 5.0 Corn, field, forage 3.0 Corn, field, grain 0.05 Corn, field, stover 5.0... husk removed 0.05 Corn, sweet, stover 5.0 Cotton, undelinted seed 0.5 Eggplant 0.05 Egg 0.05 Fruit..., seed 0.05 Sheep, fat 1.0 Sheep, meat byproducts 0.1 Sheep, meat 0.5 Soybean, hulls 0.50 Soybean...

  7. 40 CFR 180.435 - Deltamethrin; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., stover 15 Cotton, refined oil 0.2 Cotton, undelinted seed 0.04 Egg 0.02 Fruit, pome, Group 11 0.2 Goat... Sorghum, grain, forage 0.5 Sorghum, grain, stover 1.0 Soybean, seed 0.1 Soybean, hulls 0.2 Starfruit* 0.2 Sunflower, seed 0.1 Tomato 0.2 Tomato, paste 1.0 Tomato, puree 1.0 Vegetable, cucurbit, Group 9 0.2...

  8. 40 CFR 180.442 - Bifenthrin; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., leaves 6.0 Coriander, seed 5.0 Corn, field, forage 3.0 Corn, field, grain 0.05 Corn, field, stover 5.0... husk removed 0.05 Corn, sweet, stover 5.0 Cotton, undelinted seed 0.5 Eggplant 0.05 Egg 0.05 Fruit..., seed 0.05 Sheep, fat 1.0 Sheep, meat byproducts 0.1 Sheep, meat 0.5 Soybean, hulls 0.50 Soybean...

  9. 40 CFR 180.435 - Deltamethrin; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., stover 15 Cotton, refined oil 0.2 Cotton, undelinted seed 0.04 Egg 0.02 Fruit, pome, Group 11 0.2 Goat... Sorghum, grain, forage 0.5 Sorghum, grain, stover 1.0 Soybean, seed 0.1 Soybean, hulls 0.2 Starfruit* 0.2 Sunflower, seed 0.1 Tomato 0.2 Tomato, paste 1.0 Tomato, puree 1.0 Vegetable, cucurbit, Group 9 0.2...

  10. Mapping QTLs for 100-seed weight in an interspecific soybean cross of Williams 82 (Glycine max) x PI 366121 (Glycine soja)

    USDA-ARS?s Scientific Manuscript database

    100-seed weight is a critical component for soybean quality and yield. The objective of the present study was to identify quantitative trait loci (QTLs) for 100-seed weight using 169 recombinant inbred lines (RILs) derived from the cross of Williams 82 x PI 366121. The parental lines and RILs were g...

  11. Effects of drought and elevated atmospheric carbon dioxide on seed nutrition and 15N and 13C natural abundance isotopes in soybean cultivars under controlled environments

    USDA-ARS?s Scientific Manuscript database

    Climate change resulting from global warming is expected to affect crop production and seed quality. The objective of this research was to evaluate the response of soybean cultivars to the effect of drought and elevated temperature on seed composition and mineral nutrition. In a repeated growth cham...

  12. Fall rice straw management and winter flooding treatment effects on a subsequent soybean crop

    USGS Publications Warehouse

    Anders, M.M.; Windham, T.E.; McNew, R.W.; Reinecke, K.J.

    2005-01-01

    The effects of fall rice (Oryza sativa L.) straw management and winter flooding on the yield and profitability of subsequent irrigated and dryland soybean [Glycine max (L.) Merr.] crops were studied for 3 years. Rice straw treatments consisted of disking, rolling, or standing stubble. Winter flooding treatments consisted of maintaining a minimum water depth of 10 cm by pumping water when necessary, impounding available rainfall, and draining fields to prevent flooding. The following soybean crop was managed as a conventional-tillage system or no-till system. Tillage system treatments were further divided into irrigated or dryland. Results indicated that there were no significant effects from either fall rice straw management or winter flooding treatments on soybean seed yields. Soybean seed yields for, the conventional tillage system were significantly greater than those for the no-till system for the first 2 yrs and not different in the third year. Irrigated soybean seed yields were significantly greater than those from dryland plots for all years. Net economic returns averaged over the 3 yrs were greatest ($390.00 ha-1) from the irrigated no-till system.

  13. Mass spectrometry characterisation of fatty acids from metabolically engineered soybean seeds.

    PubMed

    Murad, André M; Vianna, Giovanni R; Machado, Alex M; da Cunha, Nicolau B; Coelho, Cíntia M; Lacerda, Valquiria A M; Coelho, Marly C; Rech, Elibio L

    2014-05-01

    Improving the quality and performance of soybean oil as biodiesel depends on the chemical composition of its fatty acids and requires an increase in monounsaturated acids and a reduction in polyunsaturated acids. Despite its current use as a source of biofuel, soybean oil contains an average of 25 % oleic acid and 13 % palmitic acid, which negatively impacts its oxidative stability and freezing point, causing a high rate of nitrogen oxide emission. Gas chromatography and ion mobility mass spectrometry were conducted on soybean fatty acids from metabolically engineered seed extracts to determine the nature of the structural oleic and palmitic acids. The soybean genes FAD2-1 and FatB were placed under the control of the 35SCaMV constitutive promoter, introduced to soybean embryonic axes by particle bombardment and down-regulated using RNA interference technology. Results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 94.58 %) and a reduction in palmitic acid (to <3 %) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and non-transgenic oil extracts.

  14. Integrated and comparative proteomics of high-oil and high-protein soybean seeds.

    PubMed

    Xu, Xiu Ping; Liu, Hui; Tian, Lihong; Dong, Xiang Bai; Shen, Shi Hua; Qu, Le Qing

    2015-04-01

    We analysed the global protein expression in seeds of a high-oil soybean cultivar (Jiyu 73, JY73) by proteomics. More than 700 protein spots were detected and 363 protein spots were successfully identified. Comparison of the protein profile of JY73 with that of a high-protein cultivar (Zhonghuang 13, ZH13) revealed 40 differentially expressed proteins, including oil synthesis, redox/stress, hydrolysis and storage-related proteins. All redox/stress proteins were less or not expressed in JY73, whereas the expression of the major storage proteins, nitrogen and carbon metabolism-related proteins was higher in ZH13. Biochemical analysis of JY73 revealed that it was in a low oxidation state, with a high content of polyunsaturated fatty acids and vitamin E. Vitamin E was more active than antioxidant enzymes and protected the soybean seed in a lower oxidation state. The characteristics of high oil and high protein in soybean, we revealed, might provide a reference for soybean nutrition and soybean breeding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max.

    PubMed

    Liu, Yuan; Wei, Haichao

    2017-07-01

    Soybean (Glycine max) is one of the most important crop plants. Wild and cultivated soybean varieties have significant differences worth further investigation, such as plant morphology, seed size, and seed coat development; these characters may be related to auxin biology. The PIN gene family encodes essential transport proteins in cell-to-cell auxin transport, but little research on soybean PIN genes (GmPIN genes) has been done, especially with respect to the evolution and differences between wild and cultivated soybean. In this study, we retrieved 23 GmPIN genes from the latest updated G. max genome database; six GmPIN protein sequences were changed compared with the previous database. Based on the Plant Genome Duplication Database, 18 GmPIN genes have been involved in segment duplication. Three pairs of GmPIN genes arose after the second soybean genome duplication, and six occurred after the first genome duplication. The duplicated GmPIN genes retained similar expression patterns. All the duplicated GmPIN genes experienced purifying selection (K a /K s < 1) to prevent accumulation of non-synonymous mutations and thus remained more similar. In addition, we also focused on the artificial selection of the soybean PIN genes. Five artificially selected GmPIN genes were identified by comparing the genome sequence of 17 wild and 14 cultivated soybean varieties. Our research provides useful and comprehensive basic information for understanding GmPIN genes.

  16. Agrobacterium tumefaciens-mediated transformation of the soybean pathogen Phomopsis longicolla

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) of soybean is caused primarily by the fungal pathogen Phomopsis longicolla. PSD impairs seed germination, reduces seedling vigor, and can substantially reduce stand establishment. In hot and humid conditions, PSD can cause significant yield losses. Few studies have explore...

  17. A genome-wide association study in soybean

    USDA-ARS?s Scientific Manuscript database

    A genome-wide association study (GWAS) was performed to estimate the feasibility of identifying genes controlling the quantitative traits, seed protein and oil concentration, in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. A total of 55,159 single nucleo...

  18. Measurement of single soybean seed attributes by near infrared technologies. A comparative study

    USDA-ARS?s Scientific Manuscript database

    Four near infrared spectrophotometers, and their associated spectral collection methods, were tested and compared for measuring three soybean single seed attributes: weight (g), protein (%), and oil (%). Using partial least squares (PLS) and 4 preprocessing methods, the attribute which was significa...

  19. Whole genome-wide transcript profiling to identify differentially expressed genes associated with seed field emergence in two soybean low phytate mutants.

    PubMed

    Yuan, Fengjie; Yu, Xiaomin; Dong, Dekun; Yang, Qinghua; Fu, Xujun; Zhu, Shenlong; Zhu, Danhua

    2017-01-18

    Seed germination is important to soybean (Glycine max) growth and development, ultimately affecting soybean yield. A lower seed field emergence has been the main hindrance for breeding soybeans low in phytate. Although this reduction could be overcome by additional breeding and selection, the mechanisms of seed germination in different low phytate mutants remain unknown. In this study, we performed a comparative transcript analysis of two low phytate soybean mutants (TW-1 and TW-1-M), which have the same mutation, a 2 bp deletion in GmMIPS1, but show a significant difference in seed field emergence, TW-1-M was higher than that of TW-1 . Numerous genes analyzed by RNA-Seq showed markedly different expression levels between TW-1-M and TW-1 mutants. Approximately 30,000-35,000 read-mapped genes and ~21000-25000 expressed genes were identified for each library. There were ~3900-9200 differentially expressed genes (DEGs) in each contrast library, the number of up-regulated genes was similar with down-regulated genes in the mutant TW-1and TW-1-M. Gene ontology functional categories of DEGs indicated that the ethylene-mediated signaling pathway, the abscisic acid-mediated signaling pathway, response to hormone, ethylene biosynthetic process, ethylene metabolic process, regulation of hormone levels, and oxidation-reduction process, regulation of flavonoid biosynthetic process and regulation of abscisic acid-activated signaling pathway had high correlations with seed germination. In total, 2457 DEGs involved in the above functional categories were identified. Twenty-two genes with 20 biological functions were the most highly up/down- regulated (absolute value Log2FC >5) in the high field emergence mutant TW-1-M and were related to metabolic or signaling pathways. Fifty-seven genes with 36 biological functions had the greatest expression abundance (FRPM >100) in germination-related pathways. Seed germination in the soybean low phytate mutants is a very complex process, which involves a series of physiological, morphological and transcriptional changes. Compared with TW-1, TW-1-M had a very different gene expression profile, which included genes related to plant hormones, antioxidation, anti-stress and energy metabolism processes. Our research provides a molecular basis for understanding germination mechanisms, and is also an important resource for the genetic analysis of germination in low phytate crops. Plant hormone- and antioxidation-related genes might strongly contribute to the high germination rate in the TW-1-M mutant.

  20. Effects of growth temperature and carbon dioxide enrichment on soybean seed components at different stages of development

    USDA-ARS?s Scientific Manuscript database

    Soybean plants were grown to maturity in controlled environment chambers and at the onset of flowering three temperature treatments were imposed that provided optimum [28/24°C], low [22/18°C] or high [36/32°C] chamber air temperatures. In addition, plants were treated continuously with either 400 o...

  1. Registration of N6002 soybean germplasm with enhanced yield derived from Japanese cultivars Fukuyutaka and Nakasennari and elevated seed protein content

    USDA-ARS?s Scientific Manuscript database

    This release is part of a continuing effort to broaden the genetic base of applied North American soybean [Glycine max L. (Merr.)] breeding programs. N6002 was cooperatively developed and released by the USDA-ARS and the North Carolina Agricultural Research Service in September 2014 as a convention...

  2. Environmental effects on allergen levels in commercially grown non-genetically modified soybeans: assessing variation across north america.

    PubMed

    Stevenson, Severin E; Woods, Carlotta A; Hong, Bonnie; Kong, Xiaoxiao; Thelen, Jay J; Ladics, Gregory S

    2012-01-01

    Soybean (Glycinemax) is a hugely valuable soft commodity that generates tens of billions of dollars annually. This value is due in part to the balanced composition of the seed which is roughly 1:2:2 oil, starch, and protein by weight. In turn, the seeds have many uses with various derivatives appearing broadly in processed food products. As is true with many edible seeds, soybeans contain proteins that are anti-nutritional factors and allergens. Soybean, along with milk, eggs, fish, crustacean shellfish, tree nuts, peanuts, and wheat, elicit a majority of food allergy reactions in the United States. Soybean seed composition can be affected by breeding, and environmental conditions (e.g., temperature, moisture, insect/pathogen load, and/or soil nutrient levels). The objective of this study was to evaluate the influence of genotype and environment on allergen and anti-nutritional proteins in soybean. To address genetic and environmental effects, four varieties of non-GM soybeans were grown in six geographically distinct regions of North America (Georgia, Iowa, Kansas, Nebraska, Ontario, and Pennsylvania). Absolute quantification of proteins by mass spectrometry can be achieved with a technique called multiple reaction monitoring (MRM), during which signals from an endogenous protein are compared to those from a synthetic heavy-labeled internal standard. Using MRM, eight allergens were absolutely quantified for each variety in each environment. Statistical analyses show that for most allergens, the effects of environment far outweigh the differences between varieties brought about by breeding.

  3. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean

    PubMed Central

    Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.

    2015-01-01

    The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003

  4. Performance of hybrid progeny formed between genetically modified herbicide-tolerant soybean and its wild ancestor

    PubMed Central

    Guan, Zheng-Jun; Zhang, Peng-Fei; Wei, Wei; Mi, Xiang-Cheng; Kang, Ding-Ming; Liu, Biao

    2015-01-01

    Gene flow from genetically modified (GM) crops to wild relatives might affect the evolutionary dynamics of weedy populations and result in the persistence of escaped genes. To examine the effects of this gene flow, the growth of F1 hybrids that were formed by pollinating wild soybean (Glycine soja) with glyphosate-tolerant GM soybean (G. max) or its non-GM counterpart was examined in a greenhouse. The wild soybean was collected from two geographical populations in China. The performance of the wild soybean and the F2 hybrids was further explored in a field trial. Performance was measured by several vegetative and reproductive growth parameters, including the vegetative growth period, pod number, seed number, above-ground biomass and 100-seed weight. The pod setting percentage was very low in the hybrid plants. Genetically modified hybrid F1 plants had a significantly longer period of vegetative growth, higher biomass and lower 100-seed weight than the non-GM ones. The 100-seed weight of both F1 and F2 hybrids was significantly higher than that of wild soybean in both the greenhouse and the field trial. No difference in plant growth was found between GM and non-GM F2 hybrids in the field trial. The herbicide-resistant gene appeared not to adversely affect the growth of introgressed wild soybeans, suggesting that the escaped transgene could persist in nature in the absence of herbicide use. PMID:26507568

  5. Comparison of in Situ and in Vitro Regulation of Soybean Seed Growth and Development

    PubMed Central

    Dyer, Daniel J.; Cotterman, C. Daniel; Cotterman, Josephine C.

    1987-01-01

    The growth characteristics of soybean (Glycine max [L.] Merr.) embryos in culture and seeds in situ were found to be similar, but developmental differences were observed. Embryos placed in culture when very small (<2 milligrams dry weight) failed to attain the maximal growth rates attained by embryos which were more mature when placed in culture. When nutrient levels were maintained in the culture medium, embryos continued to grow indefinitely, reaching dry weights far in excess of seeds matured in situ. Apparently, maternal factors were important in early and late development during the determination of maximum growth rate and the cessation of growth. Embryo growth rate was not affected by substituting glucose plus fructose for sucrose in the medium, nor by hormone treatments, including abscisic acid. Glutamine was found to give substantially better growth than glutamate, however. Contrary to prior reports, the response of soybean embryo growth rate to irradiance was found to be primarily an artifact of the effect of irradiance on media temperature. Across seven genotypes the correlation coefficient between seed growth rate in situ and embryo growth rate in vitro was 0.94, indicating essentially all of the variability of in situ seed growth rate between cultivars could be attributed to inherent growth rate differences associated with the embryos. The response to temperature was very similar for both embryos in culture and seeds in situ at temperatures below 30°C. Beyond that temperature, embryo growth rate continued to increase, while seed growth rate did not. The implication is that in situ seed growth rate is determined by the inherent growth potential of the embryo at low to moderate temperatures; however, at higher temperatures, the maternal plant is unable to support the rapid growth rates that the embryo is capable of attaining under conditions of unlimited assimilate supply. PMID:16665434

  6. Inhibition of aflatoxin B production of Aspergillus flavus, isolated from soybean seeds by certain natural plant products.

    PubMed

    Krishnamurthy, Y L; Shashikala, J

    2006-11-01

    The inhibitory effect of cowdung fumes, Captan, leaf powder of Withania somnifera, Hyptis suaveolens, Eucalyptus citriodora, peel powder of Citrus sinensis, Citrus medica and Punica granatum, neem cake and pongamia cake and spore suspension of Trichoderma harzianum and Aspergillus niger on aflatoxin B(1) production by toxigenic strain of Aspergillus flavus isolated from soybean seeds was investigated. Soybean seed was treated with different natural products and fungicide captan and was inoculated with toxigenic strain of A. flavus and incubated for different periods. The results showed that all the treatments were effective in controlling aflatoxin B(1) production. Captan, neem cake, spore suspension of T. harzianum, A. niger and combination of both reduced the level of aflatoxin B(1) to a great extent. Leaf powder of W. somnifera, H. suaveolens, peel powder of C. sinensis, C. medica and pongamia cake also controlled the aflatoxin B(1) production. All the natural product treatments applied were significantly effective in inhibiting aflatoxin B(1) production on soybean seeds by A. flavus. These natural plant products may successfully replace chemical fungicides and provide an alternative method to protect soybean and other agricultural commodities from aflatoxin B(1) production by A. flavus.

  7. Influence of pulsed magnetic field on soybean (Glycine max L.) seed germination, seedling growth and soil microbial population.

    PubMed

    Radhakrishnan, Ramalingam; Kumari, Bollipo Dyana Ranjitha

    2013-08-01

    The effects of pulsed magnetic field (PMF) treatment of soybean (Glycine max L. cv CO3) seeds were investigated on rate of seed germination, seedling growth, physico-chemical properties of seed leachates and soil microbial population under laboratory conditions. Seeds were exposed to PMF of 1500 nT at 0.1, 1.0 10.0 and 100.0 Hz for 5 h per day for 20 days, induced by enclosure coil systems. Non-treated seeds were considered as controls. All PMF treatments significantly increased the rate of seed germination, while 10 and 100 Hz PMFs showed the most effective response. The 1.0 and 10 Hz PMFs remarkably improved the fresh weight of shoots and roots, leaf area and plant height from seedlings from magnetically-exposed seeds compared to the control, while 10 Hz PMF increased the total soluble sugar, total protein and phenol contents. The leaf chlorophyll a, b and total chlorophyll were higher in PMF (10 and 100 Hz) pretreated plants, as compared to other treatments. In addition, activities of alpha-amylase, acid phosphatase, alkaline phosphatase, nitrate reductase, peroxidase and polyphenoloxidase were increased, while beta-amylase and protease activities were declined in PMF (10 Hz)-exposed soybean plants. Similarly, the capacity of absorbance of water by seeds and electrical conductivity of seed leachates were significantly enhanced by 10 Hz PMF exposure, whereas PMF (10 Hz) pretreated plants did not affect the microbial population in rhizosphere soil. The results suggested the potential of 10 Hz PMF treatment to enhance the germination and seedling growth of soybean.

  8. Modeling Biometric Traits, Yield and Nutritional and Antioxidant Properties of Seeds of Three Soybean Cultivars Through the Application of Biostimulant Containing Seaweed and Amino Acids

    PubMed Central

    Kocira, Sławomir; Szparaga, Agnieszka; Kocira, Anna; Czerwińska, Ewa; Wójtowicz, Agnieszka; Bronowicka-Mielniczuk, Urszula; Koszel, Milan; Findura, Pavol

    2018-01-01

    In recent years, attempts have been made to use preparations that allow obtaining high and good quality yields, while reducing the application of pesticides and mineral fertilizers. These include biostimulants that are safe for the natural environment and contribute to the improvement of yield size and quality, especially after the occurrence of stressors. Their use is advisable in the case of crops sensitive to such biotic stress factors like low temperatures or drought. One of these is soybean which is a very important plant from the economic viewpoint. Field experiments were established in the years 2014-2016 in a random block design in four replicates on experimental plots of 10 m2. Three soybean cultivars: Annushka, Mavka, and Atlanta were planted in the third decade of April. Fylloton biostimulant was used at 0.7% or 1% concentrations as single spraying (BBCH 13-15) or double spraying (BBCH 13-15, BBCH 61) in the vegetation period. The number of seeds per 1 m2, seed yield, thousand seed weight, number of pods per plant, number of nodes in the main shoot, height of plants, and protein and fat contents in seeds were determined. The content of phenolic compounds, antioxidant capacity and antioxidant effect of soybean seeds were assayed as well. Foliar treatment of soybean with Fylloton stimulated the growth and yield of plants without compromising their nutritional and nutraceutical properties. The double application of the higher concentration of Fylloton was favorable for the plant height, seed number and soybean yield. Moreover, the highest number of pods was obtained after single treatment of plants with the lower biostimulant concentration. There was also a positive effect of using this biostimulant on the content and activity of some bioactive compounds, such as phenolics and flavonoids, and on the reducing power. PMID:29636764

  9. Modeling Biometric Traits, Yield and Nutritional and Antioxidant Properties of Seeds of Three Soybean Cultivars Through the Application of Biostimulant Containing Seaweed and Amino Acids.

    PubMed

    Kocira, Sławomir; Szparaga, Agnieszka; Kocira, Anna; Czerwińska, Ewa; Wójtowicz, Agnieszka; Bronowicka-Mielniczuk, Urszula; Koszel, Milan; Findura, Pavol

    2018-01-01

    In recent years, attempts have been made to use preparations that allow obtaining high and good quality yields, while reducing the application of pesticides and mineral fertilizers. These include biostimulants that are safe for the natural environment and contribute to the improvement of yield size and quality, especially after the occurrence of stressors. Their use is advisable in the case of crops sensitive to such biotic stress factors like low temperatures or drought. One of these is soybean which is a very important plant from the economic viewpoint. Field experiments were established in the years 2014-2016 in a random block design in four replicates on experimental plots of 10 m 2 . Three soybean cultivars: Annushka, Mavka, and Atlanta were planted in the third decade of April. Fylloton biostimulant was used at 0.7% or 1% concentrations as single spraying (BBCH 13-15) or double spraying (BBCH 13-15, BBCH 61) in the vegetation period. The number of seeds per 1 m 2 , seed yield, thousand seed weight, number of pods per plant, number of nodes in the main shoot, height of plants, and protein and fat contents in seeds were determined. The content of phenolic compounds, antioxidant capacity and antioxidant effect of soybean seeds were assayed as well. Foliar treatment of soybean with Fylloton stimulated the growth and yield of plants without compromising their nutritional and nutraceutical properties. The double application of the higher concentration of Fylloton was favorable for the plant height, seed number and soybean yield. Moreover, the highest number of pods was obtained after single treatment of plants with the lower biostimulant concentration. There was also a positive effect of using this biostimulant on the content and activity of some bioactive compounds, such as phenolics and flavonoids, and on the reducing power.

  10. Near-infrared spectroscopy used to predict soybean seed germination and vigor

    USDA-ARS?s Scientific Manuscript database

    The potential of using near-infrared (NIR) spectroscopy for differentiating levels in germination, vigor, and electrical conductivity of soybean seeds was investigated. For the 243 spectral data collected using the Perten DA7200, stratified sampling was used to obtain three calibration sets consisti...

  11. Evaluation of soybean germplasm conserved in NIAS genebank and development of mini core collections

    PubMed Central

    Kaga, Akito; Shimizu, Takehiko; Watanabe, Satoshi; Tsubokura, Yasutaka; Katayose, Yuichi; Harada, Kyuya; Vaughan, Duncan A.; Tomooka, Norihiko

    2012-01-01

    Genetic variation and population structure among 1603 soybean accessions, consisted of 832 Japanese landraces, 109 old and 57 recent Japanese varieties, 341 landrace from 16 Asian countries and 264 wild soybean accessions, were characterized using 191 SNP markers. Although gene diversity of Japanese soybean germplasm was slight lower than that of exotic soybean germplasm, population differentiation and clustering analyses indicated clear genetic differentiation among Japanese cultivated soybeans, exotic cultivated soybeans and wild soybeans. Nine hundred ninety eight Japanese accessions were separated to a certain extent into groups corresponding to their agro-morphologic characteristics such as photosensitivity and seed characteristics rather than their geographical origin. Based on the assessment of the SNP markers and several agro-morphologic traits, accessions that retain gene diversity of the whole collection were selected to develop several soybean sets of different sizes using an heuristic approach; a minimum of 12 accessions can represent the observed gene diversity; a mini-core collection of 96 accession can represent a major proportion of both geographic origin and agro-morphologic trait variation. These selected sets of germplasm will provide an effective platform for enhancing soybean diversity studies and assist in finding novel traits for crop improvement. PMID:23136496

  12. Soybean cultivation for Bioregenerative Life Support Systems (BLSSs): The effect of hydroponic system and nitrogen source

    NASA Astrophysics Data System (ADS)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A.; Barbieri, Giancarlo; De Pascale, Stefania

    2014-02-01

    Soybean [Glycine max (L.) Merr.] is one of the plant species selected within the European Space Agency (ESA) Micro-Ecological Life Support System Alternative (MELiSSA) project for hydroponic cultivation in Biological Life Support Systems (BLSSs), because of the high nutritional value of seeds. Root symbiosis of soybean with Bradirhizobium japonicum contributes to plant nutrition in soil, providing ammonium through the bacterial fixation of atmospheric nitrogen. The aim of this study was to evaluate the effects of two hydroponic systems, Nutrient Film Technique (NFT) and cultivation on rockwool, and two nitrogen sources in the nutrient solution, nitrate (as Ca(NO3)2 and KNO3) and urea (CO(NH2)2), on root symbiosis, plant growth and seeds production of soybean. Plants of cultivar 'OT8914', inoculated with B. japonicum strain BUS-2, were grown in a growth chamber, under controlled environmental conditions. Cultivation on rockwool positively influenced root nodulation and plant growth and yield, without affecting the proximate composition of seeds, compared to NFT. Urea as the sole source of N drastically reduced the seed production and the harvest index of soybean plants, presumably because of ammonium toxicity, even though it enhanced root nodulation and increased the N content of seeds. In the view of large-scale cultivation for space colony on planetary surfaces, the possibility to use porous media, prepared using in situ resources, should be investigated. Urea can be included in the nutrient formulation for soybean in order to promote bacterial activity, however a proper ammonium/nitrate ratio should be maintained.

  13. Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress.

    PubMed

    Radhakrishnan, Ramalingam; Leelapriya, Thasari; Kumari, Bollipo Diana Ranjitha

    2012-12-01

    The effects of magnetic field (MF) treatments of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress were investigated under controlled conditions. Soybean seeds were exposed to a 1.0 Hz sinusoidal uniform pulsed magnetic field (PMF) of 1.5 µT for 5 h/day for 20 days. Non-treated seeds were considered as controls. For callus regeneration, the embryonic axis explants were taken from seeds and inoculated in a saline medium with a concentration of 10 mM NaCl for calli growth analysis and biochemical changes. The combined treatment of MF and salt stress was found to significantly increase calli fresh weight, total soluble sugar, total protein, and total phenol contents, but it decreased the ascorbic acid, lipid peroxidation, and catalase activity of calli from magnetically exposed seeds compared to the control calli. PMF treatment significantly improved calli tolerance to salt stress in terms of an increase in flavonoid, flavone, flavonole, alkaloid, saponin, total polyphenol, genistein, and daidzein contents under salt stress. The results suggest that PMF treatment of soybean seeds has the potential to counteract the adverse effects of salt stress on calli growth by improving primary and secondary metabolites under salt stress conditions. Copyright © 2012 Wiley Periodicals, Inc.

  14. QTL that underlie seed protein, oil, fatty and amino acids content in the ‘Hamilton’ by ‘Spencer’ recombinant inbred line population of soybean [Glycine max (L.) Merr.

    USDA-ARS?s Scientific Manuscript database

    Improving seed composition and quality, including protein, oil, fatty acids, and amino acids content is an important goal of soybean farmers and breeders. Our previous research identified novel QTLs associated with seed isoflavones. The aim of this study was to use the ‘Hamilton’ by ‘Spencer’ recomb...

  15. Identification of the molecular genetic basis of the low palmitic acid seed oil trait in soybean mutant line RG3 and association analysis of molecular markers with elevated seed stearic acid and reduced seed palmitic acid

    USDA-ARS?s Scientific Manuscript database

    The fatty acid composition of vegetable oil is becoming increasingly critical for the ultimate functionality and utilization in foods and industrial products. Partial chemical hydrogenation of soybean oil increases oxidative stability and shelf life but also results in the introduction of trans fats...

  16. Meta-Analyses of QTLs Associated with Protein and Oil Contents and Compositions in Soybean [Glycine max (L.) Merr.] Seed.

    PubMed

    Van, Kyujung; McHale, Leah K

    2017-06-01

    Soybean [ Glycine max (L.) Merr.] is a valuable and nutritious crop in part due to the high protein meal and vegetable oil produced from its seed. Soybean producers desire cultivars with both elevated seed protein and oil concentrations as well as specific amino acid and fatty acid profiles. Numerous studies have identified quantitative trait loci (QTLs) associated with seed composition traits, but validation of these QTLs has rarely been carried out. In this study, we have collected information, including genetic location and additive effects, on each QTL for seed contents of protein and oil, as well as amino acid and fatty acid compositions from over 80 studies. Using BioMercator V. 4.2, a meta-QTL analysis was performed with genetic information comprised of 175 QTLs for protein, 205 QTLs for oil, 156 QTLs for amino acids, and 113 QTLs for fatty acids. A total of 55 meta-QTL for seed composition were detected on 6 out of 20 chromosomes. Meta-QTL possessed narrower confidence intervals than the original QTL and candidate genes were identified within each meta-QTL. These candidate genes elucidate potential natural genetic variation in genes contributing to protein and oil biosynthesis and accumulation, providing meaningful information to further soybean breeding programs.

  17. Meta-Analyses of QTLs Associated with Protein and Oil Contents and Compositions in Soybean [Glycine max (L.) Merr.] Seed

    PubMed Central

    Van, Kyujung; McHale, Leah K.

    2017-01-01

    Soybean [Glycine max (L.) Merr.] is a valuable and nutritious crop in part due to the high protein meal and vegetable oil produced from its seed. Soybean producers desire cultivars with both elevated seed protein and oil concentrations as well as specific amino acid and fatty acid profiles. Numerous studies have identified quantitative trait loci (QTLs) associated with seed composition traits, but validation of these QTLs has rarely been carried out. In this study, we have collected information, including genetic location and additive effects, on each QTL for seed contents of protein and oil, as well as amino acid and fatty acid compositions from over 80 studies. Using BioMercator V. 4.2, a meta-QTL analysis was performed with genetic information comprised of 175 QTLs for protein, 205 QTLs for oil, 156 QTLs for amino acids, and 113 QTLs for fatty acids. A total of 55 meta-QTL for seed composition were detected on 6 out of 20 chromosomes. Meta-QTL possessed narrower confidence intervals than the original QTL and candidate genes were identified within each meta-QTL. These candidate genes elucidate potential natural genetic variation in genes contributing to protein and oil biosynthesis and accumulation, providing meaningful information to further soybean breeding programs. PMID:28587169

  18. Uptake and translocation of imidacloprid, clothianidin and flupyradifurone in seed-treated soybeans.

    PubMed

    Stamm, Mitchell D; Heng-Moss, Tiffany M; Baxendale, Frederick P; Siegfried, Blair D; Blankenship, Erin E; Nauen, Ralf

    2016-06-01

    Seed treatment insecticides have become a popular management option for early-season insect control. This study investigated the total uptake and translocation of seed-applied [(14) C]imidacloprid, [(14) C]clothianidin and [(14) C]flupyradifurone into different plant parts in three soybean vegetative stages (VC, V1 and V2). The effects of soil moisture stress on insecticide uptake and translocation were also assessed among treatments. We hypothesized that (1) uptake and translocation would be different among the insecticides owing to differences in water solubility, and (2) moisture stress would increase insecticide uptake and translocation. Uptake and translocation did not follow a clear trend in the three vegetative stages. Initially, flupyradifurone uptake was greater than clothianidin uptake in VC soybeans. In V1 soybeans, differences in uptake among the three insecticides were not apparent and unaffected by soil moisture stress. Clothianidin was negatively affected by soil moisture stress in V2 soybeans, while imidacloprid and flupyradifurone were unaffected. Specifically, soil moisture stress had a positive effect on the distribution of flupyradifurone in leaves. This was not observed with the neonicotinoids. This study enhances our understanding of the uptake and distribution of insecticides used as seed treatments in soybean. The uptake and translocation of these insecticides differed in response to soil moisture stress. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Genomic organization, phylogenetic comparison, and expression profiles of the SPL family genes and their regulation in soybean.

    PubMed

    Tripathi, Rajiv K; Goel, Ridhi; Kumari, Sweta; Dahuja, Anil

    2017-03-01

    SQUAMOSA Promoter-Binding Protein-Like (SPL) genes form a major family of plant-specific transcription factors and play an important role in plant growth and development. In this study, we report the identification of 41 SPL genes (GmSPLs) in the soybean genome. Phylogenetic analysis revealed that these genes were divided into five groups (groups 1-5). Further, exon/intron structure and motif composition revealed that the GmSPL genes are conserved within their same group. The N-terminal zinc finger 1 (Zn1) of the SBP domain was a CCCH (Cys3His1) and the C terminus zinc finger 2 (Zn2) was a CCHC (Cys2HisCys) type. The 41 GmSPL genes were distributed unevenly on 17 of the 20 chromosomes, with tandem and segmental duplication events. We found that segmental duplication has made an important contribution to soybean SPL gene family expansion. The Ka/Ks ratios revealed that the duplicated GmSPL genes evolved under the effect of purifying selection. In addition, 17 of the 41 GmSPLs were found as targets of miR156; these might be involved in their posttranscriptional regulation through miR156. Importantly, RLM-RACE analysis confirmed the GmmiR156-mediated cleavage of GmSPL2a transcript in 2-4 mm stage of soybean seed. Alternative splicing events in 9 GmSPLs were detected which produces transcripts and proteins of different lengths that may modulate protein signaling, binding, localization, stability, and other properties. Expression analysis of the soybean SPL genes in various tissues and different developmental stages of seed suggested distinct spatiotemporal patterns. Differences in the expression patterns of miR156-targeted and miR156-non-targeted soybean SPL genes suggest that miR156 plays key functions in soybean development. Our results provide an important foundation for further uncovering the crucial roles of GmSPLs in the development of soybean and other biological processes.

  20. Estimates of genetics and phenotypics parameters for the yield and quality of soybean seeds.

    PubMed

    Zambiazzi, E V; Bruzi, A T; Guilherme, S R; Pereira, D R; Lima, J G; Zuffo, A M; Ribeiro, F O; Mendes, A E S; Godinho, S H M; Carvalho, M L M

    2017-09-27

    Estimating genotype x environment (GxE) parameters for quality and yield in soybean seed grown in different environments in Minas Gerais State was the goal of this study, as well as to evaluate interaction effects of GxE for soybean seeds yield and quality. Seeds were produced in three locations in Minas Gerais State (Lavras, Inconfidentes, and Patos de Minas) in 2013/14 and 2014/15 seasons. Field experiments were conducted in randomized blocks in a factorial 17 x 6 (GxE), and three replications. Seed yield and quality were evaluated for germination in substrates paper and sand, seedling emergence, speed emergency index, mechanical damage by sodium hypochlorite, electrical conductivity, speed aging, vigor and viability of seeds by tetrazolium test in laboratory using completely randomized design. Quadratic component genotypic, GXE variance component, genotype determination coefficient, genetic variation coefficient and environmental variation coefficient were estimated using the Genes software. Percentage analysis of genotypes contribution, environments and genotype x environment interaction were conducted by sites combination two by two and three sites combination, using the R software. Considering genotypes selection of broad adaptation, TMG 1179 RR, CD 2737 RR, and CD 237 RR associated better yield performance at high physical and physiological potential of seed. Environmental effect was more expressive for most of the characters related to soybean seed quality. GxE interaction effects were expressive though genotypes did not present coincidental behavior in different environments.

  1. Effect of Fungicide Seed Treatments on Fusarium virguliforme and Sudden Death Syndrome of Soybean

    USDA-ARS?s Scientific Manuscript database

    Sudden death syndrome (SDS) is a yield reducing disease increasing in prevalence across soybean producing states. Recent research indicates the SDS pathogen, Fusarium virguliforme, can infect as early as initial radicle emergence. This suggests fungicide seed treatments could offer some protection a...

  2. Laboratory evaluations of Lepidopteran-active soybean seed treatments on survivorship of fall armyworm (Lepidoptera:Noctuidae) larvae

    USDA-ARS?s Scientific Manuscript database

    Two anthranilic diamide insecticides, chlorantraniliprole and cyantraniliprole, were evaluated as soybean, Glycine max L., seed treatments for control of fall armyworm, Spodoptera frugiperda (J. E. Smith). Bioassays were conducted using 2nd instar larvae and plants from both field and greenhouse gr...

  3. 7 CFR 407.16 - Group risk plan for soybean.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... calculate indemnities. Planted acreage. Land in which the soybean seed has been placed by a machine... properly prepared for the planting method and production practice. Land on which seed is initially spread... accepted application; (b) Properly planted and reported by the acreage reporting date; (c) Planted with the...

  4. 7 CFR 407.16 - Group risk plan for soybean.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... calculate indemnities. Planted acreage. Land in which the soybean seed has been placed by a machine... properly prepared for the planting method and production practice. Land on which seed is initially spread... accepted application; (b) Properly planted and reported by the acreage reporting date; (c) Planted with the...

  5. Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean.

    PubMed

    Shine, M B; Guruprasad, K N; Anand, Anjali

    2012-07-01

    Our previous investigation reported the beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean. In this study, soybean seeds treated with static magnetic fields of 150 and 200 mT for 1 h were evaluated for reactive oxygen species (ROS) and activity of antioxidant enzymes. Superoxide and hydroxyl radicals were measured in embryos and hypocotyls of germinating seeds by electron paramagnetic resonance spectroscopy and kinetics of superoxide production; hydrogen peroxide and antioxidant activities were estimated spectrophotometrically. Magnetic field treatment resulted in enhanced production of ROS mediated by cell wall peroxidase while ascorbic acid content, superoxide dismutase and ascorbate peroxidase activity decreased in the hypocotyl of germinating seeds. An increase in the cytosolic peroxidase activity indicated that this antioxidant enzyme had a vital role in scavenging the increased H(2)O(2) produced in seedlings from the magnetically treated seeds. Hence, these studies contribute to our first report on the biochemical basis of enhanced germination and seedling growth in magnetically treated seeds of soybean in relation to increased production of ROS. Copyright © 2012 Wiley Periodicals, Inc.

  6. Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones.

    PubMed

    Shiojiri, Kaori; Ozawa, Rika; Yamashita, Ken-Ichi; Uefune, Masayoshi; Matsui, Kenji; Tsukamoto, Chigen; Tokumaru, Susumu; Takabayashi, Junji

    2017-01-30

    Field experiments were conducted over 3 years (2012, 2013, and 2015), in which half of the young stage soybean plants were exposed to volatiles from cut goldenrods three times over 2-3 weeks, while the other half remained unexposed. There was a significant reduction in the level of the total leaf damage on exposed soybean plants compared with unexposed ones. In 2015, the proportion of damage to plants by Spodoptera litura larvae, a dominant herbivore, was significantly less in the exposed field plots than in the unexposed plots. Under laboratory conditions, cut goldenrod volatiles induced the direct defenses of soybean plants against S. litura larvae and at least three major compounds, α-pinene, β-myrcene, and limonene, of cut goldenrod volatiles were involved in the induction. The number of undamaged seeds from the exposed plants was significantly higher than that from unexposed ones. Concentrations of isoflavones in the seeds were significantly higher in seeds from the exposed plants than in those from the unexposed plants. Future research evaluating the utility of weeding volatiles, as a form of plant-plant communications, in pest management programs is necessary.

  7. Effects of a hypogeomagnetic field on gravitropism and germination in soybean

    NASA Astrophysics Data System (ADS)

    Mo, Wei-chuan; Zhang, Zi-jian; Liu, Ying; Zhai, Guang-jie; Jiang, Yuan-da; He, Rong-qiao

    2011-05-01

    Any plants grown during long-term space missions will inevitably experience an extremely low magnetic field (i.e. a hypogeomagnetic field, HGMF). It is possible that the innate adaptation of plants to the earth's magnetic field (i.e. the geomagnetic field, GMF) would be disrupted. Effects of the HGMF on plant physiological and metabolic processes are unclear. In this study we established a hypogeomagnetic incubation system on the ground and investigated the effects of the HGMF on the gravitropism and germination of soybean seeds. The gravitropism angle, germination percentage, germination speed, water absorbance ratio, seed weight, radicle length, radicle weight, and radicle weight ratio of soybean seeds grown in the local field and the HGMF were compared. In general, the gravitropism angle in the HGMF was smaller than that in the local field when seeds were positioned before emergence in such a way that the direction of the radicle was opposite to that of gravity. The germination percentage, germination speed, and radicle weight ratio increased in the HGMF compared to the control. Our results indicate that the germination and gravitropism of soybean seeds are affected by elimination of the geomagnetic field.

  8. Warm temperatures or drought during seed maturation increase free alpha-tocopherol in seeds of soybean (Glycine max [L.] Merr.).

    PubMed

    Britz, Steven J; Kremer, Diane F

    2002-10-09

    Soybean seeds are an important source of dietary tocopherols, but like seeds of other dicotyledonous plants, they contain relatively little alpha-tocopherol, the form with the greatest vitamin E activity. To evaluate potential effects of environmental stress during seed maturation on tocopherols, soybeans were raised in greenhouses at nominal average temperatures of 23 degrees C or 28 degrees C during seed fill, with or without simultaneous drought (soil moisture at 10-25% of capacity), during normal growing seasons in 1999 (cvs. Essex and Forrest) and 2000 (cvs. Essex, Forrest, and Williams). Total free (nonesterified) tocopherols increased slightly in response to drought in Essex and Forrest. All three lines responded to elevated temperature and, to a lesser extent, drought with large (2-3-fold) increases in alpha-tocopherol and corresponding decreases in delta-tocopherol and gamma-tocopherol. The results suggest that weather or climate can significantly affect seed tocopherols. It may be possible to breed for elevated alpha-tocopherols by selecting for altered plant response to temperature.

  9. Environmental Stability of Seed Carbohydrate Profiles in Soybeans Containing Different Alleles of the Raffinose Synthase 2 (RS2) Gene.

    PubMed

    Bilyeu, Kristin D; Wiebold, William J

    2016-02-10

    Soybean [Glycine max (L.) Merr.] is important for the high protein meal used for livestock feed formulations. Carbohydrates contribute positively or negatively to the potential metabolizable energy in soybean meal. The positive carbohydrate present in soybean meal consists primarily of sucrose, whereas the negative carbohydrate components are the raffinose family of oligosaccharides (RFOs), raffinose and stachyose. Increasing sucrose and decreasing raffinose and stachyose are critical targets to improve soybean. In three recently characterized lines, variant alleles of the soybean raffinose synthase 2 (RS2) gene were associated with increased sucrose and decreased RFOs. The objective of this research was to compare the environmental stability of seed carbohydrates in soybean lines containing wild-type or variant alleles of RS2 utilizing a field location study and a date of planting study. The results define the carbohydrate variation in distinct regional and temporal environments using soybean lines with different alleles of the RS2 gene.

  10. Quantification of ozone exposure- and stomatal uptake-yield response relationships for soybean in Northeast China.

    PubMed

    Zhang, Weiwei; Feng, Zhaozhong; Wang, Xiaoke; Liu, Xiaobing; Hu, Enzhu

    2017-12-01

    High ground-level O 3 is a new threat to agricultural production in Northeast China with the increasing ambient O 3 concentration. Little is known about its impacts on soybean production in this key agricultural region. Accumulated O 3 exposure-response and stomatal O 3 flux-response relationships were developed during two continuous growing seasons to evaluate O 3 -induced yield reduction of four typical soybean cultivars in Northeast China. Results showed that critical levels of AOT40 (accumulated hourly O 3 concentrations over a threshold of 40nmol·mol -1 ), SUM06 (sum of all hourly average O 3 concentrations over 0.06μmol·mol -1 ) and W126 (sum of O 3 concentrations weighted by a sigmoidal function) in relation to 5% reduction in relative seed yield were 4.2, 7.6 and 6.8μmol·mol -1 ·h, respectively. The effect of O 3 on plants was influenced by leaf position in canopy. An improved Jarvis stomatal conductance model including leaf (node) position fitted well with field measurements. The best linear relationship between stomatal O 3 flux and relative soybean yield was obtained when phytotoxic ozone dose was integrated over a threshold of 9.6nmol·m -2 ·s -1 (POD 9.6 ) to represent the detoxification capacity of soybean. POD 9.6 and the commonly used POD 6 in relation to 5% reduction in relative seed yield of soybean were 0.9mmol·m -2 and 1.8mmol·m -2 , respectively. O 3 concentrations above ~38nmol·mol -1 contributed to POD 9.6 and caused seed yield loss in soybean. Current annual yield loss of soybean at ambient O 3 was estimated to range between 23.4% and 30.2%. The O 3 dose-response relationships and corresponding thresholds obtained here will benefit regional O 3 risk assessment on soybean production in Northeast China. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Development of a Rapid Point-of-Use DNA Test for the Screening of Genuity® Roundup Ready 2 Yield® Soybean in Seed Samples

    PubMed Central

    Chandu, Dilip; Paul, Sudakshina; Parker, Mathew; Dudin, Yelena; King-Sitzes, Jennifer; Perez, Tim; Mittanck, Don W.; Shah, Manali; Glenn, Kevin C.; Piepenburg, Olaf

    2016-01-01

    Testing for the presence of genetically modified material in seed samples is of critical importance for all stakeholders in the agricultural industry, including growers, seed manufacturers, and regulatory bodies. While rapid antibody-based testing for the transgenic protein has fulfilled this need in the past, the introduction of new variants of a given transgene demands new diagnostic regimen that allows distinguishing different traits at the nucleic acid level. Although such molecular tests can be performed by PCR in the laboratory, their requirement for expensive equipment and sophisticated operation have prevented its uptake in point-of-use applications. A recently developed isothermal DNA amplification technique, recombinase polymerase amplification (RPA), combines simple sample preparation and amplification work-flow procedures with the use of minimal detection equipment in real time. Here, we report the development of a highly sensitive and specific RPA-based detection system for Genuity Roundup Ready 2 Yield (RR2Y) material in soybean (Glycine max) seed samples and present the results of studies applying the method in both laboratory and field-type settings. PMID:27314015

  12. Evaluation of Exotically-Derived Soybean Breeding Lines for Seed Yield, Germination, Damage, and Composition under Dryland Production in the Midsouthern USA

    PubMed Central

    Bellaloui, Nacer; Smith, James R.; Mengistu, Alemu; Ray, Jeffery D.; Gillen, Anne M.

    2017-01-01

    Although the Early Soybean Production System (ESPS) in the Midsouthern USA increased seed yield under irrigated and non-irrigated conditions, heat stress and drought still lead to poor seed quality in heat sensitive soybean cultivars. Our breeding goal was to identify breeding lines that possess high germination, nutritional quality, and yield potential under high heat and dryland production conditions. Our hypothesis was that breeding lines derived from exotic germplasm might possess physiological and genetic traits allowing for higher seed germinability under high heat conditions. In a 2-year field experiment, breeding lines derived from exotic soybean accessions, previously selected for adaptability to the ESPS in maturity groups (MG) III and IV, were grown under non-irrigated conditions. Results showed that three exotic breeding lines had consistently superior germination across 2 years. These lines had a mean germination percentage of >80%. Two (25-1-1-4-1-1 and 34-3-1-2-4-1) out of the three lines with ≥80% germination in both years maintained high seed protein, oleic acid, N, P, K, B, Cu, and Mo in both years. Significant (P < 0.05) positive correlations were found between germination and oleic acid and with K and Cu in both years. Significant negative correlations were found between germination and linoleic acid, Ca, and hard seed in both years. There were positive correlations between germination and N, P, B, Mo, and palmitic acid only in 2013. A negative correlation was found between germination and green seed damage and linolenic acid in 2013 only. Seed wrinkling was significantly negatively correlated with germination in 2012 only. A lower content of Ca in the seed of high germinability genotypes may explain the lower rates of hard seed in those lines, which could lead to higher germination. Many of the differences in yield, germination, diseases, and seed composition between years are likely due to heat and rainfall differences between years. The results also showed the potential roles of seed minerals, especially K, Ca, B, Cu, and Mo, in maintaining high seed quality. The knowledge gained from this research will help breeders to select for soybean with high seed nutritional qualities and high germinability. PMID:28289420

  13. Adenylate Metabolism of Embryonic Axes from Deteriorated Soybean Seeds

    PubMed Central

    Anderson, James D.

    1977-01-01

    RNA and protein syntheses in axes excised from dry soybean (Glycine max L.) seeds at different levels of deterioration were assayed. Low rates of protein synthesis in slightly deteriorated seeds were not due to losses in ribosomal or soluble fraction activities. However, the lowered rates of RNA and protein syntheses of deteriorated seeds were associated with reduced ATP content of the tissues. Adenine and adenosine conversions to ATP were reduced in deteriorated axes, and these reductions were reflected in reduced incorporation of these compounds into RNA. PMID:16659903

  14. Protein and quality analyses of accessions from the USDA soybean germplasm collection for tofu production

    USDA-ARS?s Scientific Manuscript database

    Food-grade soybeans with large seed size, uniformity, clear hilum, and high 11S/7S ratio are favored by the food industry for making tofu. In order to search for soybean lines with desirable characteristics for making foods, twenty-two soybean lines were selected from the USDA-Soybean Germplasm Coll...

  15. 40 CFR 180.1113 - Lagenidium giganteum; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the raw agricultural commodities aspirated grain fractions; grass, forage; grass, hay; rice, grain; rice, straw; soybean, seed; soybean, forage; soybean, hay; rice, wild, grain. [74 FR 26535, June 3...

  16. 40 CFR 180.1113 - Lagenidium giganteum; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the raw agricultural commodities aspirated grain fractions; grass, forage; grass, hay; rice, grain; rice, straw; soybean, seed; soybean, forage; soybean, hay; rice, wild, grain. [74 FR 26535, June 3...

  17. 40 CFR 180.1113 - Lagenidium giganteum; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the raw agricultural commodities aspirated grain fractions; grass, forage; grass, hay; rice, grain; rice, straw; soybean, seed; soybean, forage; soybean, hay; rice, wild, grain. [74 FR 26535, June 3...

  18. 40 CFR 180.1113 - Lagenidium giganteum; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the raw agricultural commodities aspirated grain fractions; grass, forage; grass, hay; rice, grain; rice, straw; soybean, seed; soybean, forage; soybean, hay; rice, wild, grain. [74 FR 26535, June 3...

  19. 40 CFR 180.1113 - Lagenidium giganteum; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the raw agricultural commodities aspirated grain fractions; grass, forage; grass, hay; rice, grain; rice, straw; soybean, seed; soybean, forage; soybean, hay; rice, wild, grain. [74 FR 26535, June 3...

  20. Novel FAD2-1A alleles confer an elevated oleic acid phenotype in soybean seeds

    USDA-ARS?s Scientific Manuscript database

    To identify novel sources of genetic variation for the high oleic acid seed trait, soybean lines containing a higher fraction than normal of oleic acid were identified through a forward-genetic screen of a chemically mutagenized population. Mutant lines contained 30%- 40% of the oil fraction as olei...

  1. 49 CFR 1039.10 - Exemption of agricultural commodities except grain, soybeans, and sunflower seeds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 8 2014-10-01 2014-10-01 false Exemption of agricultural commodities except grain, soybeans, and sunflower seeds. 1039.10 Section 1039.10 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION GENERAL RULES AND REGULATIONS EXEMPTIONS § 1039.10 Exemption...

  2. 49 CFR 1039.10 - Exemption of agricultural commodities except grain, soybeans, and sunflower seeds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 8 2011-10-01 2011-10-01 false Exemption of agricultural commodities except grain, soybeans, and sunflower seeds. 1039.10 Section 1039.10 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION GENERAL RULES AND REGULATIONS EXEMPTIONS § 1039.10 Exemption...

  3. 49 CFR 1039.10 - Exemption of agricultural commodities except grain, soybeans, and sunflower seeds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 8 2013-10-01 2013-10-01 false Exemption of agricultural commodities except grain, soybeans, and sunflower seeds. 1039.10 Section 1039.10 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION GENERAL RULES AND REGULATIONS EXEMPTIONS § 1039.10 Exemption...

  4. 49 CFR 1039.10 - Exemption of agricultural commodities except grain, soybeans, and sunflower seeds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 8 2012-10-01 2012-10-01 false Exemption of agricultural commodities except grain, soybeans, and sunflower seeds. 1039.10 Section 1039.10 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION GENERAL RULES AND REGULATIONS EXEMPTIONS § 1039.10 Exemption...

  5. Inositol metabolism and phytase activity in normal and low phytic acid soybean seed

    USDA-ARS?s Scientific Manuscript database

    The genetic basis for the low seed phytic acid trait in soybean lines derived from the low phytic acid line (CX1834) of Wilcox et al (2000) is under investigation in several laboratories. Our objective was to measure metabolite levels associated with the phytic acid and raffinosaccharide biosyntheti...

  6. Proteomic analysis of anti-nutritional factors (ANF’s) in soybean seeds as affected by environmental and genetic factors

    USDA-ARS?s Scientific Manuscript database

    The genotype (G), environment (E), and the relationship between G and E on soybean seed anti-nutritional factors (ANFs) were examined under three different agro-climatic conditions. The field trials were conducted at Maryland, South Carolina, and South Dakota using nine region specific genotypes. At...

  7. 78 FR 32246 - Pesticide Products; Registration Applications for New Active Ingredients

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ..., crop subgroup 5A; leafy Brassica, greens, crop sub-group 5B; turnip, greens; edible-podded legume..., except soybean, crop subgroups 6C; foliage of legume vegetables, including soybeans, crop group 7, forage green vines; foliage of legume vegetables, including soybean, crop group 7, hay; soybean, seed; fruiting...

  8. Bean Pod Mottle Virus Spread in Insect Feeding Resistant Soybeans

    USDA-ARS?s Scientific Manuscript database

    Bean pod mottle virus (BPMV) reduces yield and seed quality in soybeans. No qualitative resistance to this virus has been found in soybean, although some tolerance is known. To test the hypothesis that virus incidence and movement would be reduced in soybeans with resistance to feeding by the viru...

  9. Lack of transgene and glyphosate effects on yield, and mineral and amino acid content of glyphosate-resistant soybean.

    PubMed

    Duke, Stephen O; Rimando, Agnes M; Reddy, Krishna N; Cizdziel, James V; Bellaloui, Nacer; Shaw, David R; Williams, Martin M; Maul, Jude E

    2018-05-01

    There has been controversy as to whether the glyphosate resistance gene and/or glyphosate applied to glyphosate-resistant (GR) soybean affect the content of cationic minerals (especially Mg, Mn and Fe), yield and amino acid content of GR soybean. A two-year field study (2013 and 2014) examined these questions at sites in Mississippi, USA. There were no effects of glyphosate, the GR transgene or field crop history (for a field with both no history of glyphosate use versus one with a long history of glyphosate use) on grain yield. Furthermore, these factors had no consistent effects on measured mineral (Al, As, Ba, Cd, Ca, Co, Cr, Cs, Cu, Fe, Ga, K, Li, Mg, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, V, Zn) content of leaves or harvested seed. Effects on minerals were small and inconsistent between years, treatments and mineral, and appeared to be random false positives. No notable effects on free or protein amino acids of the seed were measured, although glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), were found in the seed in concentrations consistent with previous studies. Neither glyphosate nor the GR transgene affect the content of the minerals measured in leaves and seed, harvested seed amino acid composition, or yield of GR soybean. Furthermore, soils with a legacy of GR crops have no effects on these parameters in soybean. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields

    PubMed Central

    Kuroda, Yosuke; Kaga, Akito; Tomooka, Norihiko; Yano, Hiroshi; Takada, Yoshitake; Kato, Shin; Vaughan, Duncan

    2013-01-01

    The objective of this study was to identify quantitative trait loci (QTL) affecting fitness of hybrids between wild soybean (Glycine soja) and cultivated soybean (Glycine max). Seed dormancy and seed number, both of which are important for fitness, were evaluated by testing artificial hybrids of G. soja × G. max in a multiple-site field trial. Generally, the fitness of the F1 hybrids and hybrid derivatives from self-pollination was lower than that of G. soja due to loss of seed dormancy, whereas the fitness of hybrid derivatives with higher proportions of G. soja genetic background was comparable with that of G. soja. These differences were genetically dissected into QTL for each population. Three QTLs for seed dormancy and one QTL for total seed number were detected in the F2 progenies of two diverse cross combinations. At those four QTLs, the G. max alleles reduced seed number and severely reduced seed survival during the winter, suggesting that major genes acquired during soybean adaptation to cultivation have a selective disadvantage in natural habitats. In progenies with a higher proportion of G. soja genetic background, the genetic effects of the G. max alleles were not expressed as phenotypes because the G. soja alleles were dominant over the G. max alleles. Considering the highly inbreeding nature of these species, most hybrid derivatives would disappear quickly in early self-pollinating generations in natural habitats because of the low fitness of plants carrying G. max alleles. PMID:23919159

  11. Hydroponic cultivation improves the nutritional quality of soybean and its products.

    PubMed

    Palermo, Mariantonella; Paradiso, Roberta; De Pascale, Stefania; Fogliano, Vincenzo

    2012-01-11

    Hydroponic cultivation allows the control of environmental conditions, saves irrigation water, increases productivity, and prevents plant infections. The use of this technique for large commodities such as soybean is not a relevant issue on fertile soils, but hydroponic soybean cultivation could provide proteins and oil in adverse environmental conditions. In this paper, the compositions of four cultivars of soybean seeds and their derivates, soy milk and okara, grown hydroponically were compared to that of the same cultivar obtained from soil cultivation in an open field. Besides proximal composition, the concentrations of phytic acid and isoflavones were monitored in the seeds, soy milk, and okara. Results demonstrated that, independent from the cultivar, hydroponic compared to soil cultivation promoted the accumulation of fats (from 17.37 to 21.94 g/100 g dry matter) and total dietary fiber (from 21.67 to 28.46 g/100 g dry matter) and reduced isoflavones concentration (from 17.04 to 7.66 mg/kg dry matter), whereas protein concentration was unaffected. The differences found in seed composition were confirmed in the respective okara products, but the effect of cultivation system was not significant looking at the soy milk composition. Data showed that hydroponic cultivation improved the nutritional quality of soybean seeds with regard to fats and dietary fiber. They also suggest that specific cultivars should be selected to obtain the desired nutritional features of the soybean raw material depending on its final destination.

  12. Effects of cold plasma treatment on seed germination and seedling growth of soybean

    PubMed Central

    Ling, Li; Jiafeng, Jiang; Jiangang, Li; Minchong, Shen; Xin, He; Hanliang, Shao; Yuanhua, Dong

    2014-01-01

    Effects of cold plasma treatment on soybean (Glycine max L. Merr cv. Zhongdou 40) seed germination and seedling growth were studied. Seeds were pre-treated with 0, 60, 80, 100 and 120 W of cold plasma for 15 s. Results showed that plasma treatments had positive effects on seed germination and seedling growth, and treatment of 80 W had the highest stimulatory effect. Germination and vigor indices significantly increased by 14.66% and 63.33%, respectively. Seed's water uptake improved by 14.03%, and apparent contact angle decreased by 26.19%. Characteristics of seedling growth, including shoot length, shoot dry weight, root length and root dry weight, significantly increased by 13.77%, 21.95%, 21.42% and 27.51%, respectively, compared with control. The seed reserve utilization, including weight of the mobilized seed reserve, seed reserve depletion percentage and seed reserve utilization efficiency significantly improved by cold plasma treatment. In addition, soluble sugar and protein contents were 16.51% and 25.08% higher than those of the control. Compared to a 21.95% increase in shoot weight, the root weight increased by 27.51% after treatment, indicating that plasma treatment had a greater stimulatory effect on plant roots. These results indicated that cold plasma treatment might promote the growth even yield of soybean. PMID:25080862

  13. Induction of systemic resistance of benzothiadiazole and humic Acid in soybean plants against fusarium wilt disease.

    PubMed

    Abdel-Monaim, Montaser Fawzy; Ismail, Mamdoh Ewis; Morsy, Kadry Mohamed

    2011-12-01

    The ability of benzothiadiazole (BTH) and/or humic acid (HA) used as seed soaking to induce systemic resistance against a pathogenic strain of Fusarium oxysporum was examined in four soybean cultivars under greenhouse conditions. Alone and in combination the inducers were able to protect soybean plants against damping-off and wilt diseases compared with check treatment. These results were confirmed under field conditions in two different locations (Minia and New Valley governorates). The tested treatments significantly reduced damping-off and wilt diseases and increased growth parameters, except the number of branches per plant and also increased seed yield. Application of BTH (0.25 g/L) + HA (4 g/L) was the most potent in this respect. Soybean seed soaking in BTH + HA produced the highest activities of the testes of oxidative enzymes followed by BTH in the four soybean cultivars. HA treatment resulted in the lowest increases of these oxidative enzymes. Similar results were obtained with total phenol but HA increased total phenol more than did BTH in all tested cultivars.

  14. Pulsed magnetic field: a contemporary approach offers to enhance plant growth and yield of soybean.

    PubMed

    Radhakrishnan, Ramalingam; Ranjitha Kumari, Bollipo Diana

    2012-02-01

    The possible involvement of pulsed magnetic field (PMF) pretreatment in development and yield of soybean was investigated. Seeds were subjected to 20 days with 1500 nT at 10.0 Hz of PMF for 5 h per day. PMF pretreatment increased the plant height, fresh and dry weight, and protein content with the changes of protein profile in 8 days old seedlings. In addition, activity of enzymes such as β-amylase, acid phosphatase, polyphenol oxidase and catalase was enhanced while α-amylase, alkaline phosphatase, protease and nitrate reductase activities declined due to PMF exposure. However, a considerable increment of Fe, Cu, Mn, Zn, Mg, K and Na contents with reduced level of Ca was found in PMF treated seedlings. The number of leaves, pods, seeds and length of pods, and weight of seeds were also remarkably higher in PMF treatment in contrast to controls. The results suggest that pretreatment of PMF plays important roles in improvement of crop productivity of soybean through the enhancement of protein, mineral accumulation and enzyme activities which leads to increase the growth and yield. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  15. Effects of processing and in vitro proteolytic digestion on soybean and yambean hemagglutinins.

    PubMed

    Ojimelukwe, P C; Onuoha, C C; Obanu, Z A

    1995-06-01

    Some conventional processing methods were applied on yambean and soybean seeds and flour samples. They include soaking fermentation, cooking whole seeds in the presence and absence of trona, autoclaving and dry heat treatment of flour samples. Hemagglutinating activity was assayed for after processing treatments. The hemagglutinating proteins from these seeds were classified based on their solubility properties. Effects of the presence of 0.01% concentration of trypsin, pepsin and proteases on agglutination of human red blood cells were also evaluated. Most processing methods, particularly cooking whole seeds for 1-2 h, soaking and fermentation, reduced hemagglutinating activity on cow red blood cells. Size reduction accompanied by heat treatment was effective in eliminating hemagglutination. Both the albumin and globulin fractions of the soybean showed hemagglutinating activity but only the albumin fraction of the yambean had agglutinating properties. Proteolytic action of proteases was more effective in reduction of hemagglutinating activity than that of trypsin and pepsin.

  16. Whole-genome resequencing identifies the molecular genetic cause for the absence of a Gy5 glycinin protein in soybean PI 603408

    USDA-ARS?s Scientific Manuscript database

    During ongoing proteomic analysis of the soybean (Glycine max (L.) Merr) germplasm collection, PI 603408 was identified as a landrace whose seeds lack accumulation of one of the major seed storage glycinin protein subunits. Whole genomic resequencing was used to identify a two-base deletion affectin...

  17. Stacking of a stearoyl-ACP thioesterase with a dual-silenced palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase in transgenic soybean.

    PubMed

    Park, Hyunwoo; Graef, George; Xu, Yixiang; Tenopir, Patrick; Clemente, Tom E

    2014-10-01

    Soybean (Glycine max (L.) Merr) is valued for both its protein and oil, whose seed is composed of 40% and 20% of each component, respectively. Given its high percentage of polyunsaturated fatty acids, linoleic acid and linolenic acid, soybean oil oxidative stability is relatively poor. Historically food processors have employed a partial hydrogenation process to soybean oil as a means to improve both the oxidative stability and functionality in end-use applications. However, the hydrogenation process leads to the formation of trans-fats, which are associated with negative cardiovascular health. As a means to circumvent the need for the hydrogenation process, genetic approaches are being pursued to improve oil quality in oilseeds. In this regard, we report here on the introduction of the mangosteen (Garcinia mangostana) stearoyl-ACP thioesterase into soybean and the subsequent stacking with an event that is dual-silenced in palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase expression in a seed-specific fashion. Phenotypic analyses on transgenic soybean expressing the mangosteen stearoyl-ACP thioesterase revealed increases in seed stearic acid levels up to 17%. The subsequent stacked with a soybean event silenced in both palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase activity, resulted in a seed lipid phenotype of approximately 11%-19% stearate and approximately 70% oleate. The oil profile created by the stack was maintained for four generations under greenhouse conditions and a fifth generation under a field environment. However, in generation six and seven under field conditions, the oleate levels decreased to 30%-40%, while the stearic level remained elevated. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. 40 CFR 180.368 - Metolachlor; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Soybean, hay 8.0 Soybean, seed 0.20 Tomato 0.10 Vegetable, foliage of legume, subgroup 7A, except soybean 15.0 Vegetable, legume, group 6 0.30 (2) Tolerances are established for residues of S-metolachlor... Turnip, greens 1.8 Vegetable, foliage of legume, except soybean, subgroup 7A 15.0 Vegetable, fruiting...

  19. The promise and limits for enhancing sulfur-containing amino acid content of soybean seed

    USDA-ARS?s Scientific Manuscript database

    Soybeans are an excellent source of protein in monogastric diets and rations with ~75% of soybeans produced worldwide used primarily for animal feed. Even though soybeans are protein-rich and have a well-balanced amino acid profile, the nutritive quality of this important crop could be further impr...

  20. EPR imaging and HPLC characterization of the pigment-based organic free radical in black soybean seeds.

    PubMed

    Nakagawa, Kouichi; Maeda, Hayato

    2017-02-01

    We investigated the location and distribution of paramagnetic species in dry black, brown, and yellow (normal) soybean seeds using electron paramagnetic resonance (EPR), X-band (9 GHz) EPR imaging (EPRI), and HPLC. EPR primarily detected two paramagnetic species in black soybean. These two different radical species were assigned as stable organic radical and Mn 2+  species based on the g values and hyperfine structures. The signal from the stable radical was noted at g ≈ 2.00 and was relatively strong and stable. Subsequent noninvasive two-dimensional (2D) EPRI of the radical present in black soybean revealed that the stable radical was primarily located in the pigmented region of the soybean coat, with very few radicals observed in the soybean cotyledon (interior). Pigments extracted from black soybean were analyzed using HPLC. The major compound was found to be cyanidin-3-glucoside. Multi-EPR and HPLC results indicate that the stable radical was only found within the pigmented region of the soybean coat, and it could be cyanidin-3-glucoside or an oxidative decomposition product.

  1. Proximate nutritional composition of CELSS crops grown at different CO2 partial pressures

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1994-01-01

    Two Controlled Ecological Life Support System (CELSS) candidate crops, soybean (Glycine max) and potato (Solanum tuberosum), were grown hydroponically in controlled environments maintained at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa (500 to 10,000 ppm at 101 kPa atmospheric pressure). Plants were harvested at maturity (90 days for soybean and 105 days for potato) and all tissues analyzed for proximate nutritional composition (i.e. protein, fat, carbohydrate, crude fiber, and ash content). Soybean seed ash and crude fiber were higher and carbohydrate was lower than values reported for field-grown seed. Potato tubers showed little difference from field-grown tubers. Crude fiber of soybean stems and leaves increased with increased CO2, as did soybean leaf protein (total nitrogen). Potato leaf and stem (combined) protein levels also increased with increased CO2, while leaf and stem carbohydrates decreased. Values for leaf and stem protein and ash were higher than values generally reported for field-grown plants for both species. Results suggest that CO2 partial pressure should have little influence on proximate composition of potato tubers or soybean seed, but that high ash and protein levels might be expected from leaves and stems of crops grown in controlled environments of a CELSS.

  2. Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean

    PubMed Central

    Wang, Youjing; Jiang, Lin; Chen, Jiaqi; Tao, Lei; An, Yimin; Cai, Hongsheng

    2018-01-01

    The WRKY transcription factors play an important role in the regulation of transcriptional reprogramming associated with plant abiotic stress responses. In this study, the WRKY transcription factor MsWRKY11, containing the plant-specific WRKY zinc finger DNA–binding motif, was isolated from alfalfa. The MsWRKY11 gene was detected in all plant tissues (root, stem, leaf, flower, and fruit), with high expression in root and leaf tissues. MsWRKY11 was upregulated in response to a variety of abiotic stresses, including salinity, alkalinity, cold, abscisic acid, and drought. Overexpression of MsWRKY11 in soybean enhanced the salt tolerance at the seedling stage. Transgenic soybean had a better salt-tolerant phenotype, and the hypocotyls were significantly longer than those of wild-type seeds after salt treatment. Furthermore, MsWRKY11 overexpression increased the contents of chlorophyll, proline, soluble sugar, superoxide dismutase, and catalase, but reduced the relative electrical conductivity and the contents of malonaldehyde, H2O2, and O2-. Plant height, pods per plant, seeds per plant, and 100-seed weight of transgenic MsWRKY11 soybean were higher than those of wild-type soybean, especially OX2. Results of the salt experiment showed that MsWRKY11 is involved in salt stress responses, and its overexpression improves salt tolerance in soybean. PMID:29466387

  3. Controlled environments alter nutrient content of soybeans

    NASA Astrophysics Data System (ADS)

    Jurgonski, L. J.; Smart, D. J.; Bugbee, B.; Nielsen, S. S.

    1997-01-01

    Information about compositional changes in plants grown in controlled environments is essential for developing a safe, nutritious diet for a Controlled Ecological Life-Support System (CELSS). Information now is available for some CELSS candidate crops, but detailed information has been lacking for soybeans. To determine the effect of environment on macronutrient and mineral composition of soybeans, plants were grown both in the field and in a controlled environment where the hydroponic nutrient solution, photosynthetic flux (PPF), and CO_2 level were manipulated to achieve rapid growth rates. Plants were harvested at seed maturity, separated into discrete parts, and oven dried prior to chemical analysis. Plant material was analyzed for proximate composition (moisture, protein, lipid, ash, and carbohydrate), total nitrogen (N), nonprotein N (NPN), nitrate, minerals, amino acid composition, and total dietary fiber. The effect of environment on composition varied by cultivar and plant part. Chamber-grown plants generally exhibited the following characteristics compared with field-grown plants: 1) increased total N and protein N for all plant parts, 2) increased nitrate in leaves and stems but not in seeds, 3) increased lipids in seeds, and 4) decreased Ca:P ratio for stems, pods, and leaves. These trends are consistent with data for other CELSS crops. Total N, protein N, and amino acid contents for 350 ppm CO_2 and 1000 ppm CO_2 were similar for seeds, but protein N and amino acid contents for leaves were higher at 350 ppm CO_2 than at 1000 ppm CO_2. Total dietary fiber content of soybean leaves was higher with 350 ppm CO_2 than with 1000 ppm CO_2. Such data will help in selecting of crop species, cultivars, and growing conditions to ensure safe, nutritious diets for CELSS.

  4. Complementary blending of meadowfoam seed oil methyl esters with biodiesel prepared from soybean and waste cooking oils to enhance fuel properties

    USDA-ARS?s Scientific Manuscript database

    The complementary blending of meadowfoam seed oil methyl esters (MFME) with soybean and waste cooking oil methyl esters (SME and WCME) was investigated. MFME prepared from cold-pressed meadowfoam oil exhibited an exceptionally high induction period (IP) of 66.2 h whereas SME and WCME yielded conside...

  5. Antioxidative and prooxidative effects in food lipids and synergism with α-tocopherol of açaí seed extracts and grape rachis extracts.

    PubMed

    Melo, Priscilla Siqueira; Arrivetti, Leandro de Oliveira Rodrigues; Alencar, Severino Matias de; Skibsted, Leif H

    2016-12-15

    Extracts of açaí seed and of grape rachis alone or in combination with α-tocopherol were evaluated as antioxidants in (i) bulk soybean oil, (ii) soybean oil liposomes and (iii) soybean-oil/water emulsions. The extracts made with 57% aqueous ethanol showed an antioxidant activity not dependent on concentration for grape rachis extracts and a concentration-dependent prooxidative activity for açaí seed extracts in bulk soybean oil. Both the extracts, however, protected liposome suspensions and oil/water emulsions against lipid oxidation. Synergism was demonstrated when extracts were combined with α-tocopherol, effects explained by the solubility of extract components in the water-phase and of α-tocopherol in the lipid-phase. Phenolic profiling of the extracts by U-HPLC-ESI-LTQ-MS was used to identify active antioxidants. Açaí seed and grape rachis extracts served as good sources of procyanidins and flavan-3-ols, imparted high antioxidant activity especially when combined with α-tocopherol and are suggested for protection of food oil/water emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Pod Mildew on Soybeans Can Mitigate the Damage to the Seed Arising from Field Mold at Harvest Time.

    PubMed

    Liu, Jiang; Deng, Juncai; Zhang, Ke; Wu, Haijun; Yang, Caiqiong; Zhang, Xiaowen; Du, Junbo; Shu, Kai; Yang, Wenyu

    2016-12-07

    Seedpods are the outermost barrier of legume plants encountered by pests and pathogens, but research on this tissue, especially regarding their chemical constituents, is limited. In the present study, a mildew-index-model-based cluster analysis was used to evaluate and identify groups of soybean genotypes with different organ-specific resistance against field mold. The constituents of soybean pods, including proteins, carbohydrates, fatty acids, and isoflavones, were analyzed. Linear regression and correlation analyses were also conducted between these main pod constituents and the organ-specific mildew indexes of seed (MIS) and pod (MIP). With increases in the contents of infection constituents, such as proteins, carbohydrates, and fatty acids, the MIP increased and the MIS decreased. The MIS decreased with increases in the contents of glycitein (GLE)-type isoflavonoids, which act as antibiotic constituents. Although the infection constituents in the soybean pods caused pod mildew, they also helped mitigate the corresponding seed mildew to a certain extent.

  7. 40 CFR 180.368 - Metolachlor; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Soybean, hay 8.0 Soybean, seed 0.20 Tomato 0.10 Vegetable, foliage of legume, subgroup 7A, except soybean 15.0 Vegetable, legume, group 6 0.30 (2) Tolerances are established for the combined residues (free... Sunflower, meal 1.0 Tomato, paste 0.30 Vegetable, foliage of legume, except soybean, subgroup 7A 15.0...

  8. Soybean Production Lesson Plan.

    ERIC Educational Resources Information Center

    Carlson, Keith R.

    These lesson plans for teaching soybean production in a secondary or postsecondary vocational agriculture class are organized in nine units and cover the following topics: raising soybeans, optimum tillage, fertilizer and lime, seed selection, pest management, planting, troubleshooting, double cropping, and harvesting. Each lesson plan contains…

  9. 40 CFR 180.429 - Chlorimuron ethyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., except strawberry, subgroup 13-07H 0.02 Corn, field, forage 0.5 Corn, field, grain 0.01 Corn, field, stover 2.0 Grain, aspirated fractions 3.0 Peanut 0.02 Soybean, forage 0.45 Soybean, hay 1.8 Soybean, seed...

  10. Leaching and sorption of neonicotinoid insecticides and fungicides from seed coatings

    USGS Publications Warehouse

    Smalling, Kelly; Hladik, Michelle; Sanders, Corey; Kuivila, Kathryn

    2018-01-01

    Seed coatings are a treatment used on a variety of crops to improve production and offer protection against pests and fungal outbreaks. The leaching of the active ingredients associated with the seed coatings and the sorption to soil was evaluated under laboratory conditions using commercially available corn and soybean seeds to study the fate and transport of these pesticides under controlled conditions. The active ingredients (AI) included one neonicotinoid insecticide (thiamethoxam) and five fungicides (azoxystrobin, fludioxonil, metalaxyl, sedaxane thiabendazole). An aqueous leaching experiment was conducted with treated corn and soybean seeds. Leaching potential was a function of solubility and seed type. The leaching of fludioxonil, was dependent on seed type with a shorter time to equilibrium on the corn compared to the soybean seeds. Sorption experiments with the treated seeds and a solution of the AIs were conducted using three different soil types. Sorption behavior was a function of soil organic matter as well as seed type. For most AIs, a negative relationship was observed between the aqueous concentration and the log Koc. Sorption to all soils tested was limited for the hydrophilic pesticides thiamethoxam and metalaxyl. However, partitioning for the more hydrophobic fungicides was dependent on both seed type and soil properties. The mobility of fludioxonil in the sorption experiment varied by seed type indicating that the adjuvants associated with the seed coating could potentially play a role in the environmental fate of fludioxonil. This is the first study to assess, under laboratory conditions, the fate of pesticides associated with seed coatings using commercially available treated seeds. This information can be used to understand how alterations in agricultural practices (e.g., increasing use of seed treatments) can impact the exposure (concentration and duration) and potential effects of these chemicals to aquatic and terrestrial organisms.

  11. Molecular characterization of the acquisition of longevity during seed maturation in soybean

    PubMed Central

    Lalanne, David; Rossi, Rubiana Falopa; Pelletier, Sandra; da Silva, Edvaldo Aparecido Amaral

    2017-01-01

    Seed longevity, defined as the ability to remain alive during storage, is an important agronomic factor. Poor longevity negatively impacts seedling establishment and consequently crop yield. This is particularly problematic for soybean as seeds have a short lifespan. While the economic importance of soybean has fueled a large number of transcriptome studies during embryogenesis and seed filling, the mechanisms regulating seed longevity during late maturation remain poorly understood. Here, a detailed physiological and molecular characterization of late seed maturation was performed in soybean to obtain a comprehensive overview of the regulatory genes that are potentially involved in longevity. Longevity appeared at physiological maturity at the end of seed filling before maturation drying and progressively doubled until the seeds reached the dry state. The increase in longevity was associated with the expression of genes encoding protective chaperones such as heat shock proteins and the repression of nuclear and chloroplast genes involved in a range of chloroplast activities, including photosynthesis. An increase in the raffinose family oligosaccharides (RFO)/sucrose ratio together with changes in RFO metabolism genes was also associated with longevity. A gene co-expression network analysis revealed 27 transcription factors whose expression profiles were highly correlated with longevity. Eight of them were previously identified in the longevity network of Medicago truncatula, including homologues of ERF110, HSF6AB, NFXL1 and members of the DREB2 family. The network also contained several transcription factors associated with auxin and developmental cell fate during flowering, organ growth and differentiation. A transcriptional transition occurred concomitant with seed chlorophyll loss and detachment from the mother plant, suggesting the activation of a post-abscission program. This transition was enriched with AP2/EREBP and WRKY transcription factors and genes associated with growth, germination and post-transcriptional processes, suggesting that this program prepares the seed for the dry quiescent state and germination. PMID:28700604

  12. Lipid Molecular Species Composition in Developing Soybean Cotyledons 1

    PubMed Central

    Wilson, Richard F.; Rinne, Robert W.

    1978-01-01

    The fatty acid composition of triglyceride and phospholipids in developing soybean cotyledons (Glycine max L., var. “Harosoy 63”) was analyzed at several stages of growth between 30 and 70 days after flowering. Changes observed in fatty acid composition within each lipid class were related to the levels of lipid molecular species present in the oil. Thirteen molecular species of triglyceride were identified in developing cotyledons, however three of these groups: trilinolenic, dilinolenic-monolinoleic, and linolenic-linoleic-oleic triglycerides, were not found in the mature seed. In immature cotyledons, trioleic and trilinoleic triglycerides accounted for 50% of the structures found; the level of these molecules decreased to 24.9% in the mature seed. The dilinoleic-monolinolenic triglycerides increased from 0.4 to 23.4% during cotyledon development. Changes in triglyceride composition were compared to the levels of molecular species for each phospholipid class. Dilinoleic and monosaturated monolinoleic phospholipid species were dominant in all phospholipid classes throughout development. PMID:16660395

  13. Air pollution effects on food quality. 2nd annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pell, E.J.

    1979-02-01

    Progress is reported in studies to determine the effect of acute, toxic exposures of ozone to alfalfa, potato, and soybean plants. The objective has been to correlate the foliar response with alterations in quality of the edible portion of the plant viz. the leaf, tuber and seed of alfalfa, potato and soybean, respectively. In 1977 we (1) modified our fumigation facilities, (2) developed protocol for studies with alfalfa and potato, and (3) conducted studies on flavonoid status of alfalfa and a series of parameters of potato tubers. In 1978 we (1) conducted more indepth studies with alfalfa, (2) repeated themore » potato study, (3) began to develop protocol for measuring additional parameters of alfalfa and potato quality, and (4) developed protocol for cultivating and exposing soybean plants.« less

  14. Insect growth regulator effects of azadirachtin and neem oil on survivorship, development and fecundity of Aphis glycines (Homoptera: Aphididae) and its predator, Harmonia axyridis (Coleoptera: Coccinellidae).

    PubMed

    Kraiss, Heidi; Cullen, Eileen M

    2008-06-01

    Aphis glycines Matsumura, an invasive insect pest in North American soybeans, is fed upon by a key biological control agent, Harmonia axyridis Pallas. Although biological control is preferentially relied upon to suppress insect pests in organic agriculture, approved insecticides, such as neem, are periodically utilized to reduce damaging pest populations. The authors evaluated direct spray treatments of two neem formulations, azadirachtin and neem seed oil, under controlled conditions for effects on survivorship, development time and fecundity in A. glycines and H. axyridis. Both azadirachtin and neem seed oil significantly increased aphid nymphal mortality (80 and 77% respectively) while significantly increasing development time of those surviving to adulthood. First-instar H. axyridis survival to adulthood was also significantly reduced by both neem formulations, while only azadirachtin reduced third-instar survivorship. Azadirachtin increased H. axyridis development time to adult when applied to both instars, while neem oil only increased time to adult when applied to first instar. Neither neem formulation affected the fecundity of either insect. Results are discussed within the context of future laboratory and field studies aimed at clarifying if neem-derived insecticides can be effectively integrated with biological control for soybean aphid management in organic soybeans. Copyright (c) 2008 Society of Chemical Industry.

  15. Conservation and diversification of the miR166 family in soybean and potential roles of newly identified miR166s.

    PubMed

    Li, Xuyan; Xie, Xin; Li, Ji; Cui, Yuhai; Hou, Yanming; Zhai, Lulu; Wang, Xiao; Fu, Yanli; Liu, Ranran; Bian, Shaomin

    2017-02-01

    microRNA166 (miR166) is a highly conserved family of miRNAs implicated in a wide range of cellular and physiological processes in plants. miR166 family generally comprises multiple miR166 members in plants, which might exhibit functional redundancy and specificity. The soybean miR166 family consists of 21 members according to the miRBase database. However, the evolutionary conservation and functional diversification of miR166 family members in soybean remain poorly understood. We identified five novel miR166s in soybean by data mining approach, thus enlarging the size of miR166 family from 21 to 26 members. Phylogenetic analyses of the 26 miR166s and their precursors indicated that soybean miR166 family exhibited both evolutionary conservation and diversification, and ten pairs of miR166 precursors with high sequence identity were individually grouped into a discrete clade in the phylogenetic tree. The analysis of genomic organization and evolution of MIR166 gene family revealed that eight segmental duplications and four tandem duplications might occur during evolution of the miR166 family in soybean. The cis-elements in promoters of MIR166 family genes and their putative targets pointed to their possible contributions to the functional conservation and diversification. The targets of soybean miR166s were predicted, and the cleavage of ATHB14-LIKE transcript was experimentally validated by RACE PCR. Further, the expression patterns of the five newly identified MIR166s and 12 target genes were examined during seed development and in response to abiotic stresses, which provided important clues for dissecting their functions and isoform specificity. This study enlarged the size of soybean miR166 family from 21 to 26 members, and the 26 soybean miR166s exhibited evolutionary conservation and diversification. These findings have laid a foundation for elucidating functional conservation and diversification of miR166 family members, especially during seed development or under abiotic stresses.

  16. Mapping of the genomic regions controlling seed storability in soybean (Glycine max L.).

    PubMed

    Dargahi, Hamidreza; Tanya, Patcharin; Srinives, Peerasak

    2014-08-01

    Seed storability is especially important in the tropics due to high temperature and relative humidity of storage environment that cause rapid deterioration of seeds in storage. The objective of this study was to use SSR markers to identify genomic regions associated with quantitative trait loci (QTLs) controlling seed storability based on relative germination rate in the F2:3 population derived from a cross between vegetable soybean line (MJ0004-6) with poor longevity and landrace cultivar from Myanmar (R18500) with good longevity. The F2:4 seeds harvested in 2011 and 2012 were used to investigate seed storability. The F2 population was genotyped with 148 markers and the genetic map consisted of 128 SSR loci which converged into 38 linkage groups covering 1664.3 cM of soybean genome. Single marker analysis revealed that 13 markers from six linkage groups (C1, D2, E, F, J and L) were associated with seed storability. Composite interval mapping identified a total of three QTLs on linkage groups C1, F and L with phenotypic variance explained ranging from 8.79 to 13.43%. The R18500 alleles increased seed storability at all of the detected QTLs. No common QTLs were found for storability of seeds harvested in 2011 and 2012. This study agreed with previous reports in other crops that genotype by environment interaction plays an important role in expression of seed storability.

  17. Resistance to toxin-mediated fungal infection: role of lignins, isoflavones, other seed phenolics, sugars and boron in the mechanism of resistance to charcoal rot disease in soybean

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to investigate the combined effects of charcoal rot and drought on total seed phenol, isoflavones, sugars, and boron in susceptible (S) and moderately resistant (MR) soybean genotypes to charcoal rot pathogen. A field experiment was conducted for two years under ir...

  18. Organically grown soybean production in the USA: Constraints and management of pathogens and insect pests

    USDA-ARS?s Scientific Manuscript database

    Soybean is the most produced and consumed oil seed crop worldwide. In 2013, 226 million metric tons were produced in over 70 countries. Organically produced soybean represented less than 0.1% of total world production. In the USA in 2011, the soybean crop was grown on about 32 million ha with 53 tho...

  19. Quantitative trait locus analysis of seed sulfur containing amino acids in two recombinant inbred line populations of soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean (Glycine max (L.) Merr.) is a major source of plant protein for humans and livestock. Low levels of sulfur containing amino acids (cysteine and methionine) in soybean protein is the main limitation of soybean meal as animal food. The objectives of this study were to identify and validate Q...

  20. 40 CFR 180.478 - Rimsulfuron; tolerances for residues

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the commodities. Commodity Parts per million Almond, hulls 0.09 Corn, field, forage 0.4 Corn, field, grain 0.1 Corn, field, stover 2.5 Fruit, citrus, group 10 0.01 Fruit, pome, group 11 0.01 Fruit, stone....1 Soybean, forage 0.25 Soybean, hay 1.2 Soybean, hulls 0.04 Soybean, seed 0.01 Tomato 0.05 (b...

  1. Functional analysis of the GmESR1 gene associated with soybean regeneration

    PubMed Central

    Chen, Qingshan; Liu, Ming; Xin, Dawei; Qi, Zhaoming; Li, Sinan; Ma, Yanlong; Wang, Lingshuang; Jin, Yangmei; Li, Wenbin; Wu, Xiaoxia; Su, An-yu

    2017-01-01

    Plant regeneration can occur via in vitro tissue culture through somatic embryogenesis or de novo shoot organogenesis. Transformation of soybean (Glycine max) is difficult, hence optimization of the transformation system for soybean regeneration is required. This study investigated ENHANCER OF SHOOT REGENERATION 1 (GmESR1), a soybean transcription factor that targets regeneration-associated genes. Sequence analysis showed that GmESR1 contained a conserved 57 amino acid APETALA 2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) DNA-binding domain. The relative expression level of GmESR1 was highest in young embryos, flowers and stems in the soybean cultivar ‘Dongnong 50’. To examine the function of GmESR1, transgenic Arabidopsis (Arabidopsis thaliana) and soybean plants overexpressing GmESR1 were generated. In Arabidopsis, overexpression of GmESR1 resulted in accelerated seed germination, and seedling shoot and root elongation. In soybean overexpression of GmESR1 also led to faster seed germination, and shoot and root elongation. GmESR1 specifically bound to the GCC-box. The results provide a foundation for the establishment of an efficient and stable transformation system for soybean. PMID:28403182

  2. 7 CFR 1412.1 - Applicability, statutory changes, interest, and contract provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., oats, upland cotton, rice, peanuts, soybeans, sunflower seed, rapeseed, canola, safflower, flaxseed, mustard seed, crambe, sesame seed, pulse crops, and other designated oilseeds as determined and announced...

  3. 7 CFR 1412.1 - Applicability, statutory changes, interest, and contract provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., oats, upland cotton, rice, peanuts, soybeans, sunflower seed, rapeseed, canola, safflower, flaxseed, mustard seed, crambe, sesame seed, pulse crops, and other designated oilseeds as determined and announced...

  4. Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene.

    PubMed

    Rao, Suryadevara S; Hildebrand, David

    2009-10-01

    The wild type (Wt) and mutant form of yeast (sphingolipid compensation) genes, SLC1 and SLC1-1, have been shown to have lysophosphatidic acid acyltransferase (LPAT) activities (Nageic et al. in J Biol Chem 269:22156-22163, 1993). Expression of these LPAT genes was reported to increase oil content in transgenic Arabidopsis and Brassica napus. It is of interest to determine if the TAG content increase would also be seen in soybeans. Therefore, the wild type SLC1 was expressed in soybean somatic embryos under the control of seed specific phaseolin promoter. Some transgenic somatic embryos and in both T2 and T3 transgenic seeds showed higher oil contents. Compared to controls, the average increase in triglyceride values went up by 1.5% in transgenic somatic embryos. A maximum of 3.2% increase in seed oil content was observed in a T3 line. Expression of the yeast Wt LPAT gene did not alter the fatty acid composition of the seed oil.

  5. Enhanced germination and gravitropism of soybean in a hypogeomagnetic field

    NASA Astrophysics Data System (ADS)

    Mo, Weichuan

    For the future manned space exploration, the duration of the missions would significantly in-crease. Investigating plant growth and development under the space environmental conditions is of essential importance for the food supply projects for the astronauts. Hypogeomagnetic field (HGMF), namely, extremely low magnetic field, is one of the main characters of the space environment. Germination is the first vital step of plant growth and development, which determines the final yield of plants. The effect of HGMF on plant growth, especially early ger-mination, still remains open. In this study, we established a hypogeomagnetic field (HGMF) incubation system, the remnant magnetic field inside no more than 250 nT. Soybean seeds were incubated at 25 in HGMF, and the very beginning of soybean germination, from water ab-sorbance of cotyledon to radicle emergence, was examined within 24 h. Our results showed that the germination ratio and weight ratio of emerged soybean radicles were markedly increased during germination in HGMF. Furthermore, the tropism angle of emerged radicle with gravity in HGMF was statistically smaller than that in GMF when the radicle direction was placed opposite to gravity before germination. These results indicate that the germination and gravit-ropism of soybean is enhanced in a hypogeomagnetic environment, This is a new finding about the early seed germination in such a low environmental magnetic field which is comparable to the magnetic field of Lunar Swirls on the Moon (a few hundred nT), and it might provide new perspectives on the space science researches concerning plant growth and food supply.

  6. Mutagenic effects of gamma rays on soybean (Glycine max L.) germination and seedlings

    NASA Astrophysics Data System (ADS)

    Kusmiyati, F.; Sutarno; Sas, M. G. A.; Herwibawa, B.

    2018-01-01

    Narrow genetic diversity is a main problem restricting the progress of soybean breeding. One way to improve genetic diversity of plant is through mutation. The purpose of this study was to investigate effect of different dose of gamma rays as induced mutagen on physiological, morphological, and anatomical markers during seed germination and seedling growth of soybean. Seeds of soybean cultivars Dering-1 were irradiated with 11 doses of gamma rays (0, 5, 10, 20, 40, 80, 160, 320, 640, 1280, and 2560 Gy [Gray]. The research design was arranged in a completely randomized block design in three replicates. Results showed that soybean seed exposed at high doses (640, 1280, and 2560 Gy) did not survive more than 20 days, the doses were then removed from anatomical evaluation. Higher doses of gamma rays siginificantly reduced germination percentage at the first count and final count, coefficient of germination velocity, germination rate index, germination index, seedling height and seedling root length, and significantly increased mean germination time, first day of germination, last day of germination, and time spread of germination. However, the effects of gamma rays were varies for density, width, and length of stomata. The LD50 obtained based on survival percentage was 314.78 Gy. It can be concluded that very low and low doses of gamma rays (5-320 Gy) might be used to study the improvement of soybean diversity.

  7. Biofortification of soybean meal: immunological properties of the 27 kDa γ-zein.

    PubMed

    Krishnan, Hari B; Jang, Sungchan; Kim, Won-Seok; Kerley, Monty S; Oliver, Melvin J; Trick, Harold N

    2011-02-23

    Legumes, including soybeans ( Glycine max ), are deficient in sulfur-containing amino acids, which are required for the optimal growth of monogastric animals. This deficiency can be overcome by expressing heterologous proteins rich in sulfur-containing amino acids in soybean seeds. A maize 27 kDa γ-zein, a cysteine-rich protein, has been successfully expressed in several crops including soybean, barley, and alfalfa with the intent to biofortify these crops for animal feed. Previous work has shown that the maize 27 kDa zein can withstand digestion by pepsin and elicit an immunogenic response in young pigs. By use of sera from patients who tested positive by ImmunoCAP assay for elevated IgE to maize proteins, specific IgE binding to the 27 kDa γ-zein is demonstrated. Bioinformatic analysis using the full-length and 80 amino acid sliding window FASTA searches identified significant sequence homology of the 27 kDa γ-zein with several known allergens. Immunoblot analysis using human serum that cross-reacts with maize seed proteins also revealed specific IgE-binding to the 27 kDa γ-zein in soybean seed protein extracts containing the 27 kDa zein. This study demonstrates for the first time the allergenicity potential of the 27 kDa γ-zein and the potential that this protein has to limit livestock performance when used in soybeans that serve as a biofortified feed supplement.

  8. The effect of partial substitution of roasted soybean seed with graded levels of sweet potato (Ipomoea batatas) leaf meal on growth performances and carcass characteristics of broiler chickens.

    PubMed

    Melesse, Aberra; Alemu, Temesgen; Banerjee, Sandip; Berihun, Kefyalew

    2016-06-30

    This study was designed to assess the effects of partial substitution of roasted soybean seed with sweet potato (Ipomoea batatas) leaf meal (SPLM) on growth performances and carcass components of broiler chickens. The experiment was a completely randomized design consisting of five dietary treatments replicated four times with ten chicks each. The control diet (treatment 1, T1) contained roasted soybean seed as the major protein source without SPLM and treatment diets containing SPLM at the levels of 30 g/kg (treatment 2, T2), 60 g/kg (treatment 3, T3), 90 g/kg (treatment 4, T4) and 120 g/kg (treatment 5, T5) by partially substituting the roasted soybean seed in the control diet. The results indicated that the body weight gain in chickens reared in T1 was (p<0.01) higher than those fed on T3, T4 and T5 diets. The individual feed intake in chickens reared in T1 was (p<0.001) higher than those fed on other treatment diets. The feed conversion ratio (kg feed/kg gain) of chickens fed on T1 was (p<0.05) lower than those reared in T4 and T5 diets. Chickens fed with T2 diet had numerically higher values of slaughter, dressed carcass and breast than those reared in T4 and T5 diets. It can be concluded that the partial substitution of roasted soybean seed with sweet potato leaf might be economically feasible feeding strategy of broiler chickens in smallholder poultry farm settings.

  9. Effects of different extraction methods on total phenolic content and antioxidant activity in soybean cultivars

    NASA Astrophysics Data System (ADS)

    Yusnawan, E.

    2018-01-01

    Soybean secondary metabolites particularly phenolic compounds act as chemical defence against biotic stress such as pathogen infection. Functional properties of these compounds have also been investigated. This study aimed to determine the effects of particle size and extraction methods on total flavonoid, phenolic contents as well as antioxidant activity in soybean seeds. This study also investigated the total phenolic contents and antioxidant activity of Indonesian soybean cultivars using the optimized extraction method. Soybean flour of ≤ 177 μm as many as 0.5 g was selected for extraction with 50% acetone for estimation of total phenolic and flavonoid contents and with 80% ethanol for antioxidant activity. Treatments of twice extraction either shaking followed by maceration or ultrasound-assisted extraction followed by maceration could be used to extract the secondary metabolite contents in soybean seeds. Flavonoid, phenolic contents and antioxidant activity of twenty soybean cultivars ranged from 0.23 to 0.44 mg CE/g, from 3.70 to 5.22 mg GAE/g, and from 4.97 to 9.04 µmol TE/g, respectively. A simple extraction with small amount of soybean flour such as investigated in this present study is effective to extract secondary metabolites especially when the availability of samples is limited such as breeding materials or soybean germplasm.

  10. Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-02-01

    Soybean seed is a major source of oil for human consumption worldwide and the main renewable feedstock for biodiesel production in North America. Increasing seed oil concentration in soybean [Glycine max (L.) Merrill] with no or minimal impact on protein concentration could be accelerated by exploiting quantitative trait loci (QTL) or gene-specific markers. Oil concentration in soybean is a polygenic trait regulated by many genes with mostly small effects and which is negatively associated with protein concentration. The objectives of this study were to discover and validate oil QTL in two recombinant inbred line (RIL) populations derived from crosses between three moderately high-oil soybean cultivars, OAC Wallace, OAC Glencoe, and RCAT Angora. The RIL populations were grown across several environments over 2 years in Ontario, Canada. In a population of 203 F(3:6) RILs from a cross of OAC Wallace and OAC Glencoe, a total of 11 genomic regions on nine different chromosomes were identified as associated with oil concentration using multiple QTL mapping and single-factor ANOVA. The percentage of the phenotypic variation accounted for by each QTL ranged from 4 to 11 %. Of the five QTL that were tested in a population of 211 F(3:5) RILs from the cross RCAT Angora × OAC Wallace, a "trait-based" bidirectional selective genotyping analysis validated four QTL (80 %). In addition, a total of seven two-way epistatic interactions were identified for oil concentration in this study. The QTL and epistatic interactions identified in this study could be used in marker-assisted introgression aimed at pyramiding high-oil alleles in soybean cultivars to increase oil concentration for biodiesel as well as edible oil applications.

  11. 7 CFR 1412.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... grain rice, medium grain rice, soybeans, sunflower seed, rapeseed, canola, safflower, flaxseed, mustard seed, crambe, sesame seed, pulse crops, and other oilseeds as determined by the Secretary. Crop year... Austrian, wrinkled seed, yellow, Umatilla, and green, excluding peas grown for the fresh, canning, or...

  12. 75 FR 34114 - Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... & 16); vegetables, legume, including soybeans (CG 6 & 7); canola, borage, crambe, cuphea, echium, flax... use as seed treatment on alfalfa, beans and peas including soybean and legume (CG 6 & 7); cotton... treatment on alfalfa, beans and peas including soybean and legume (CG 6 & 7); cotton, cereal grains (CG 15...

  13. 40 CFR 180.609 - Fluoxastrobin; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., subgroup 13-07G 1.9 Corn, field, forage 3.0 Corn, field, grain 0.02 Corn, field, stover 4.5 Leaf petioles subgroup 4B 4.0 Peanut 0.010 Peanut, hay 20.0 Peanut, refined oil 0.030 Soybean, forage 9.0 Soybean, hay 1.2 Soybean, hulls 0.20 Soybean, seed 0.05 Tomato, paste 1.5 Vegetable, fruiting, group 8 1.0...

  14. Effects of drought and elevated atmospheric carbon dioxide on seed nutrition and 15N and 13C natural abundance isotopes in soybean under controlled environments

    USDA-ARS?s Scientific Manuscript database

    Global climate changes due to elevated temperature and CO2 is expected to lead to high heat and drought in some regions, affecting crop production and seed nutrition. Soybean is one of the most valuable crops worldwide because of its content of protein (40%) and oil (20%), fatty acids, amino acids, ...

  15. The role of the testa during development and in establishment of dormancy of the legume seed

    PubMed Central

    Smýkal, Petr; Vernoud, Vanessa; Blair, Matthew W.; Soukup, Aleš; Thompson, Richard D.

    2014-01-01

    Timing of seed germination is one of the key steps in plant life cycles. It determines the beginning of plant growth in natural or agricultural ecosystems. In the wild, many seeds exhibit dormancy and will only germinate after exposure to certain environmental conditions. In contrast, crop seeds germinate as soon as they are imbibed usually at planting time. These domestication-triggered changes represent adaptations to cultivation and human harvesting. Germination is one of the common sets of traits recorded in different crops and termed the “domestication syndrome.” Moreover, legume seed imbibition has a crucial role in cooking properties. Different seed dormancy classes exist among plant species. Physical dormancy (often called hardseededness), as found in legumes, involves the development of a water-impermeable seed coat, caused by the presence of phenolics- and suberin-impregnated layers of palisade cells. The dormancy release mechanism primarily involves seed responses to temperature changes in the habitat, resulting in testa permeability to water. The underlying genetic controls in legumes have not been identified yet. However, positive correlation was shown between phenolics content (e.g., pigmentation), the requirement for oxidation and the activity of catechol oxidase in relation to pea seed dormancy, while epicatechin levels showed a significant positive correlation with soybean hardseededness. myeloblastosis family of transcription factors, WD40 proteins and enzymes of the anthocyanin biosynthesis pathway were involved in seed testa color in soybean, pea and Medicago, but were not tested directly in relation to seed dormancy. These phenolic compounds play important roles in defense against pathogens, as well as affecting the nutritional quality of products, and because of their health benefits, they are of industrial and medicinal interest. In this review, we discuss the role of the testa in mediating legume seed germination, with a focus on structural and chemical aspects. PMID:25101104

  16. Iron Release from Soybean Seed Ferritin Induced by Cinnamic Acid Derivatives.

    PubMed

    Sha, Xuejiao; Chen, Hai; Zhang, Jingsheng; Zhao, Guanghua

    2018-05-04

    Plant ferritin represents a novel class of iron supplement, which widely co-exists with phenolic acids in a plant diet. However, there are few reports on the effect of these phenolic acids on function of ferritin. In this study, we demonstrated that cinnamic acid derivatives, as widely occurring phenolic acids, can induce iron release from holo soybean seed ferritin (SSF) in a structure-dependent manner. The ability of the iron release from SSF by five cinnamic acids follows the sequence of Cinnamic acid > Chlorogenic acid > Ferulic acid > p -Coumaric acid > Trans -Cinnamic acid. Fluorescence titration in conjunction with dialysis results showed that all of these five compounds have a similar, weak ability to bind with protein, suggesting that their protein-binding ability is not related to their iron release activity. In contrast, both Fe 2+ -chelating activity and reducibility of these cinnamic acid derivatives are in good agreement with their ability to induce iron release from ferritin. These studies indicate that cinnamic acid and its derivatives could have a negative effect on iron stability of holo soybean seed ferritin in diet, and the Fe 2+ -chelating activity and reducibility of cinnamic acid and its derivatives have strong relations to the iron release of soybean seed ferritin.

  17. Functional characterization of GmBZL2 (AtBZR1 like gene) reveals the conserved BR signaling regulation in Glycine max

    PubMed Central

    Zhang, Yu; Zhang, Yan-Jie; Yang, Bao-Jun; Yu, Xian-Xian; Wang, Dun; Zu, Song-Hao; Xue, Hong-Wei; Lin, Wen-Hui

    2016-01-01

    Brassinosteroids (BRs) play key roles in plant growth and development, and regulate various agricultural traits. Enhanced BR signaling leads to increased seed number and yield in Arabidopsis bzr1-1D (AtBZR1P234L, gain-of-function mutant of the important transcription factor in BR signaling/effects). BR signal transduction pathway is well elucidated in Arabidopsis but less known in other species. Soybean is an important dicot crop producing edible oil and protein. Phylogenetic analysis reveals AtBZR1-like genes are highly conserved in angiosperm and there are 4 orthologues in soybean (GmBZL1-4). We here report the functional characterization of GmBZL2 (relatively highly expresses in flowers). The P234 site in AtBZR1 is conserved in GmBZL2 (P216) and mutation of GmBZL2P216L leads to GmBZL2 accumulation. GmBZL2P216L (GmBZL2*) in Arabidopsis results in enhanced BR signaling; including increased seed number per silique. GmBZL2* partially rescued the defects of bri1-5, further demonstrating the conserved function of GmBZL2 with AtBZR1. BR treatment promotes the accumulation, nuclear localization and dephosphorylation/phosphorylation ratio of GmBZL2, revealing that GmBZL2 activity is regulated conservatively by BR signaling. Our studies not only indicate the conserved regulatory mechanism of GmBZL2 and BR signaling pathway in soybean, but also suggest the potential application of GmBZL2 in soybean seed yield. PMID:27498784

  18. Functional characterization of GmBZL2 (AtBZR1 like gene) reveals the conserved BR signaling regulation in Glycine max.

    PubMed

    Zhang, Yu; Zhang, Yan-Jie; Yang, Bao-Jun; Yu, Xian-Xian; Wang, Dun; Zu, Song-Hao; Xue, Hong-Wei; Lin, Wen-Hui

    2016-08-08

    Brassinosteroids (BRs) play key roles in plant growth and development, and regulate various agricultural traits. Enhanced BR signaling leads to increased seed number and yield in Arabidopsis bzr1-1D (AtBZR1(P234L), gain-of-function mutant of the important transcription factor in BR signaling/effects). BR signal transduction pathway is well elucidated in Arabidopsis but less known in other species. Soybean is an important dicot crop producing edible oil and protein. Phylogenetic analysis reveals AtBZR1-like genes are highly conserved in angiosperm and there are 4 orthologues in soybean (GmBZL1-4). We here report the functional characterization of GmBZL2 (relatively highly expresses in flowers). The P234 site in AtBZR1 is conserved in GmBZL2 (P216) and mutation of GmBZL2(P216L) leads to GmBZL2 accumulation. GmBZL2(P216L) (GmBZL2*) in Arabidopsis results in enhanced BR signaling; including increased seed number per silique. GmBZL2* partially rescued the defects of bri1-5, further demonstrating the conserved function of GmBZL2 with AtBZR1. BR treatment promotes the accumulation, nuclear localization and dephosphorylation/phosphorylation ratio of GmBZL2, revealing that GmBZL2 activity is regulated conservatively by BR signaling. Our studies not only indicate the conserved regulatory mechanism of GmBZL2 and BR signaling pathway in soybean, but also suggest the potential application of GmBZL2 in soybean seed yield.

  19. Comparison of saponin composition and content in wild soybean (Glycine soja Sieb. and Zucc.) before and after germination.

    PubMed

    Krishnamurthy, Panneerselvam; Tsukamoto, Chigen; Takahashi, Yuya; Hongo, Yuji; Singh, Ram J; Lee, Jeong Dong; Chung, Gyuhwa

    2014-01-01

    Eight wild soybean accessions with different saponin phenotypes were used to examine saponin composition and relative saponin quantity in various tissues of mature seeds and two-week-old seedlings by LC-PDA/MS/MS. Saponin composition and content were varied according to tissues and accessions. The average total saponin concentration in 1 g mature dry seeds of wild soybean was 16.08 ± 3.13 μmol. In two-week-old seedlings, produced from 1 g mature seeds, it was 27.94 ± 6.52 μmol. Group A saponins were highly concentrated in seed hypocotyl (4.04 ± 0.71 μmol). High concentration of DDMP saponins (7.37 ± 5.22 μmol) and Sg-6 saponins (2.19 ± 0.59 μmol) was found in cotyledonary leaf. In seedlings, the amounts of group A and Sg-6 saponins reduced 2.3- and 1.3-folds, respectively, while DDMP + B + E saponins increased 2.5-fold than those of mature seeds. Our findings show that the group A and Sg-6 saponins in mature seeds were degraded and/or translocated by germination whereas DDMP saponins were newly synthesized.

  20. Advanced space design program to the Universities Space Research Association and the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1988-01-01

    The goal of the Fall 1987 class of EGM 4000 was the investigation of engineering aspects contributing to the development of NASA's Controlled Ecological Life Support System (CELSS). The areas investigated were the geometry of plant growth chambers, automated seeding of plants, remote sensing of plant health, and processing of grain into edible forms. The group investigating variable spacing of individual soybean plants designed growth trays consisting of three dimensional trapezoids arranged in a compact circular configuration. The automated seed manipulation and planting group investigated the electrical and mechanical properties of wheat seeds and developed three seeding concepts based upon these properties. The plant health and disease sensing group developed a list of reliable plant health indicators and investigated potential detection technologies.

  1. Imidacloprid seed treatments affect individual ant behavior and community structure but not egg predation, pest abundance or soybean yield.

    PubMed

    Penn, Hannah J; Dale, Andrew M

    2017-08-01

    Neonicotinoid seed treatments are under scrutiny because of their variable efficacy against crop pests and for their potential negative impacts on non-target organisms. Ants provide important biocontrol services in agroecosystems and can be indicators of ecosystem health. This study tested for effects of exposure to imidacloprid plus fungicide or fungicide-treated seeds on individual ant survival, locomotion and foraging capabilities and on field ant community structure, pest abundance, ant predation and yield. Cohorts of ants exposed to either type of treated seed had impaired locomotion and a higher incidence of morbidity and mortality but no loss of foraging capacity. In the field, we saw no difference in ant species richness, regardless of seed treatment. Blocks with imidacloprid did have higher species evenness and diversity, probably owing to variable effects of the insecticide on different ant species, particularly Tetramorium caespitum. Ant predation on sentinel eggs, pest abundance and soybean growth and yield were similar in the two treatments. Both seed treatments had lethal and sublethal effects on ant individuals, and the influence of imidacloprid seed coating in the field was manifested in altered ant community composition. Those effects, however, were not strong enough to affect egg predation, pest abundance or soybean yield in field blocks. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Genotyping-by-sequencing-based investigation of the genetic architecture responsible for a ~sevenfold increase in soybean seed stearic acid

    USDA-ARS?s Scientific Manuscript database

    Soybean oil is highly unsaturated and oxidatively unstable, rendering it non-ideal for most food applications. Until recently, the majority of soybean oil underwent partial chemical hydrogenation, a process which produces trans fats as an unavoidable consequence. Dietary intake of trans fat and most...

  3. First report of new phytoplasma diseases associated with soybean, sweet pepper, and passion fruit in Costa Rica

    USDA-ARS?s Scientific Manuscript database

    A new soybean disease outbreak occurred in 2002 in a soybean (Glycine max) plantation in Alajuela Province, Costa Rica. Symptoms in the affected plants included general stunting, little leaf, formation of excessive buds, and aborted seed pods. Another two diseases occurred in sweet pepper (Capsicum ...

  4. Registration of TN09-008 soybean cyst nematode resistant cultivar

    USDA-ARS?s Scientific Manuscript database

    The conventional soybean line TN09-008 (Reg. No. CV- , PI ) was released by University of Tennessee Agricultural Research in 2017 as a cultivar, based on high seed yield potential in Tennessee and the southern region. Soybean cultivar TN09-008 is resistant to HG types 1.2.5.7, 5.7, a...

  5. 40 CFR 180.630 - Flusilazole; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emergency exemptions granted by EPA. The tolerances expire and are revoked on the dates specified in the following table. Commodity Parts per million Expiration/revocation date Soybean, aspirated grain fractions 2.6 12/31/10 Soybean, seed 0.04 12/31/10 Soybean, oil 0.10 12/31/10 (c) Tolerances with regional...

  6. 40 CFR 180.630 - Flusilazole; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emergency exemptions granted by EPA. The tolerances expire and are revoked on the dates specified in the following table. Commodity Parts per million Expiration/revocation date Soybean, aspirated grain fractions 2.6 12/31/10 Soybean, seed 0.04 12/31/10 Soybean, oil 0.10 12/31/10 (c) Tolerances with regional...

  7. 40 CFR 180.630 - Flusilazole; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emergency exemptions granted by EPA. The tolerances expire and are revoked on the dates specified in the following table. Commodity Parts per million Expiration/revocation date Soybean, aspirated grain fractions 2.6 12/31/10 Soybean, seed 0.04 12/31/10 Soybean, oil 0.10 12/31/10 (c) Tolerances with regional...

  8. 40 CFR 180.630 - Flusilazole; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emergency exemptions granted by EPA. The tolerances expire and are revoked on the dates specified in the following table. Commodity Parts per million Expiration/revocation date Soybean, aspirated grain fractions 2.6 12/31/10 Soybean, seed 0.04 12/31/10 Soybean, oil 0.10 12/31/10 (c) Tolerances with regional...

  9. New alleles of FATB-1A to reduce palmitic acid levels in soybean

    USDA-ARS?s Scientific Manuscript database

    In wild-type soybeans, palmitic acid typically constitutes 10% of the total seed oil. Palmitic acid is a saturated fat linked to increased cholesterol levels, and reducing levels of saturated fats in soybean oil has been a breeding target. To identify novel and useful variation that could help in re...

  10. Cultivar and planting date selection for relay-cropping soybean with winter oilseeds

    USDA-ARS?s Scientific Manuscript database

    Double- and relay-cropping soybean with winter camelina (Camelina sativa L. Crantz) and pennycress (Thlaspi arvense L.) have been shown to be viable cropping systems for the Upper Midwest. Relaying soybean with these winter oilseeds can result in greater total seed yield (i.e., both combined) and ec...

  11. Association of green stem disorder with agronomic traits in soybean

    USDA-ARS?s Scientific Manuscript database

    Green stem disorder of soybean (GSD) is the occurrence of non-senescent, fleshy green stems of plants with normal, fully mature pods and seeds. Data on GSD incidence based on a percentage of plants in plots showing symptoms were collected for soybean cultivars in 86 trials from 2009 to 2012 at seven...

  12. 40 CFR 180.416 - Ethalfluralin; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)benzenamine] in or on the following raw agricultural commodities: Commodity Parts per million Bean, dry, seed 0.05 Dill, dried leaves 0.05 Dill, fresh leaves 0.05 Mustard, seed 0.05 Peanut 0.05 Pea, dry, seed 0.05 Potato 0.05 Rapeseed, seed 0.05 Safflower, seed 0.05 Soybean 0.05 Sunflower, seed 0.05 Vegetable...

  13. 40 CFR 180.416 - Ethalfluralin; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)benzenamine] in or on the following raw agricultural commodities: Commodity Parts per million Bean, dry, seed 0.05 Dill, dried leaves 0.05 Dill, fresh leaves 0.05 Mustard, seed 0.05 Peanut 0.05 Pea, dry, seed 0.05 Potato 0.05 Rapeseed, seed 0.05 Safflower, seed 0.05 Soybean 0.05 Sunflower, seed 0.05 Vegetable...

  14. An Efficient Method for the Isolation of Highly Purified RNA from Seeds for Use in Quantitative Transcriptome Analysis.

    PubMed

    Kanai, Masatake; Mano, Shoji; Nishimura, Mikio

    2017-01-11

    Plant seeds accumulate large amounts of storage reserves comprising biodegradable organic matter. Humans rely on seed storage reserves for food and as industrial materials. Gene expression profiles are powerful tools for investigating metabolic regulation in plant cells. Therefore, detailed, accurate gene expression profiles during seed development are required for crop breeding. Acquiring highly purified RNA is essential for producing these profiles. Efficient methods are needed to isolate highly purified RNA from seeds. Here, we describe a method for isolating RNA from seeds containing large amounts of oils, proteins, and polyphenols, which have inhibitory effects on high-purity RNA isolation. Our method enables highly purified RNA to be obtained from seeds without the use of phenol, chloroform, or additional processes for RNA purification. This method is applicable to Arabidopsis, rapeseed, and soybean seeds. Our method will be useful for monitoring the expression patterns of low level transcripts in developing and mature seeds.

  15. Effect of foliar application of chitosan and salicylic acid on the growth of soybean (Glycine max (L.) Merr.) varieties

    NASA Astrophysics Data System (ADS)

    Hasanah, Y.; Sembiring, M.

    2018-02-01

    Elicitors such as chitosan and salicylic acid could be used not only to increase isoflavone concentration of soybean seeds, but also to increase the growth and seed yield. The objective of the present study was to determine the effects of foliar application of elicitor compounds (i.e. chitosan, and salicylic acid)on the growth of two soybean varieties under dry land conditions. Experimental design was a randomized block design with 2 factors and 3 replications. The first factor was soybean varieties (Wilis and Devon). The second factor was foliar application of elicitors consisted of without elicitor; chitosan at V4 (four trifoliate leaves are fully developed); chitosan at R3 (early podding); chitosan at V4 and R3; salicylic acid at V4; salicylic acid at R3 and salicylic acid at V4 and R3. Parameters observed was plant height at 2-7 week after planting (WAP), shoot dry weight and root dry weight. The results suggest that the Wilis variety had higher plant height 7 WAP than Devon. The foliar application of chitosan increased the plant height at 7 WAP, shoot dry weight and root dry weight. The foliar application of chitosan at V4 and R3 on Devon variety increased shoot dry weight.

  16. Genetic Analysis of Seed Isoflavones, Protein, and Oil Contents in Soybean [Glycine max (L.) Merr.

    DTIC Science & Technology

    2014-09-13

    high contents of protein , oil, isoflavones, and other bioactive compounds. However, it is susceptible to many biotic stresses such fungal, bacterial...for protein , oil, and isoflavones contents in three recombinant inbred line (RIL) populations of soybean. We have achieved 100% of the goals. We have...Jun-2011 31-May-2014 Approved for Public Release; Distribution Unlimited Final Report: Genetic Analysis of Seed Isoflavones, Protein , and Oil

  17. Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase in diabetic mice.

    PubMed

    Kurimoto, Yuta; Shibayama, Yuki; Inoue, Seiya; Soga, Minoru; Takikawa, Masahito; Ito, Chiaki; Nanba, Fumio; Yoshida, Tadashi; Yamashita, Yoko; Ashida, Hitoshi; Tsuda, Takanori

    2013-06-12

    Black soybean seed coat has abundant levels of polyphenols such as anthocyanins (cyanidin 3-glucoside; C3G) and procyanidins (PCs). This study found that dietary black soybean seed coat extract (BE) ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase (AMPK) in type 2 diabetic mice. Dietary BE significantly reduced blood glucose levels and enhanced insulin sensitivity. AMPK was activated in the skeletal muscle and liver of diabetic mice fed BE. This activation was accompanied by the up-regulation of glucose transporter 4 in skeletal muscle and the down-regulation of gluconeogenesis in the liver. These changes resulted in improved hyperglycemia and insulin sensitivity in type 2 diabetic mice. In vitro studies using L6 myotubes showed that C3G and PCs significantly induced AMPK activation and enhanced glucose uptake into the cells.

  18. Oxidative stability and alpha-tocopherol retention in soybean oil with lemon seed extract (Citrus limon) under thermoxidation.

    PubMed

    Luzia, Débora Maria Moreno; Jorge, Neuza

    2009-11-01

    The synergistic effect of lemon seed extract with tert-butylhydroquinone (TBHQ) in soybean oil subjected to thermoxidation by Rancimat was investigated, and the influence of these antioxidants on a-tocopherol degradation in thermoxidized soybean oil. Control, LSE (2400 mg/kg Lemon Seed Extract), TBHQ (50 mg/kg), Mixture 1 (LSE + 50 mg/kg TBHQ) and Mixture 2 (LSE + 25 mg/kg TBHQ) were subjected to 180 degrees C for 20 h. Samples were taken at time 0, 5, 10, 15 and 20 h intervals and analysed for oxidative stability and alpha-tocopherol content. LSE and Mixtures 1 and 2 showed the capacity of retarding lipid oxidation when added to soya oil and also contributed to alpha-tocopherol retention in oil heated at high temperatures. However, Mixtures 1 and 2 added to the oil presented a greater antioxidant power, consequently proving the antioxidants synergistic effect.

  19. Pharmacokinetics and pharmacodynamics of injectable testosterone undecanoate in castrated cynomolgus monkeys (Macaca fascicularis) are independent of different oil vehicles.

    PubMed

    Wistuba, Joachim; Marc Luetjens, C; Kamischke, Axel; Gu, Yi-Qun; Schlatt, Stefan; Simoni, Manuela; Nieschlag, Eberhard

    2005-08-01

    Testosterone undecanoate (TU) dissolved in soybean oil was developed in China to improve the pharmacokinetics of this testosterone ester in comparison with TU in castor or tea seed oil. As a pre-clinical primate model, three groups of five castrated cynomolgus macaques received either a single intramuscular injection of 10 mg/kg body weight TU in soybean oil, in tea seed oil, or in castor oil (equals 6.3 mg pure T/kg body weight for all preparations). Testosterone, estradiol, luteinizing hormone, and follicle-stimulating hormone as well as prostate volume, body weight and ejaculate weight were evaluated. After injection supraphysiological testosterone levels were induced. There were no significant differences in the pharmacokinetics of the three TU preparations for testosterone and estradiol. The gonadotropin levels showed a high individual variation. Prostate volumes increased equally in all groups after administration and declined to castrate level afterwards. The results suggest that TU in soybean oil produces similar effects as TU in the other vehicles. This study in non-human primates provides no objection to testing of this new preparation in humans.

  20. Chemical Composition, Antioxidant and Biological Activities of the Essential Oil and Extract of the Seeds of Glycine max (Soybean) from North Iran.

    PubMed

    Ghahari, Somayeh; Alinezhad, Heshmatollah; Nematzadeh, Ghorban Ali; Tajbakhsh, Mahmood; Baharfar, Robabeh

    2017-04-01

    Glycine max (L.) Merrill (soybean) is a major leguminous crop, cultivated globally as well as in Iran. This study examines the chemical composition of soybean essential oil, and evaluates the antioxidant and antimicrobial activities of seeds on various plant pathogens that commonly cause irreparable damages to agricultural crops. The essential oil of soybean seeds was analyzed by gas chromatography coupled to mass spectrometry. Antimicrobial activity was tested against 14 microorganisms, including three gram-positive, five gram-negative bacteria, and six fungi, using disk diffusion method and the Minimum Inhibitory Concentration technique. The soybean seeds were also subjected to screening for possible antioxidant activity by using catalase, peroxidase, superoxide dismutase, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Forty components were identified, representing 96.68% of the total oil. The major constituents of the oil were carvacrol (13.44%), (E,E)-2,4-decadienal (9.15%), p-allylanisole (5.65%), p-cymene (4.87%), and limonene (4.75%). The oil showed significant activity against Pseudomonas syringae subsp. syringae, Rathayibacter toxicus with MIC = 25 µg/mL, and Pyricularia oryzae with MIC = 12.5 µg/mL. In addition, the free radical scavenging capacity of the essential oil was determined with an IC 50 value of 162.35 µg/mL. Our results suggest that this plant may be a potential source of biocide, for economical and environmentally friendly disease control strategies. It may also be a good candidate for further biological and pharmacological investigations.

  1. Production of Fatty Acid Components of Meadowfoam Oil in Somatic Soybean Embryos

    PubMed Central

    Cahoon, Edgar B.; Marillia, Elizabeth-France; Stecca, Kevin L.; Hall, Sarah E.; Taylor, David C.; Kinney, Anthony J.

    2000-01-01

    The seed oil of meadowfoam (Limnanthes alba) and other Limnanthes spp. is enriched in the unusual fatty acid Δ5-eicosenoic acid (20:1Δ5). This fatty acid has physical and chemical properties that make the seed oil of these plants useful for a number of industrial applications. An expressed sequence tag approach was used to identify cDNAs for enzymes involved in the biosynthesis of 20:1Δ5). By random sequencing of a library prepared from developing Limnanthes douglasii seeds, a class of cDNAs was identified that encode a homolog of acyl-coenzyme A (CoA) desaturases found in animals, fungi, and cyanobacteria. Expression of a cDNA for the L. douglasii acyl-CoA desaturase homolog in somatic soybean (Glycine max) embryos behind a strong seed-specific promoter resulted in the accumulation of Δ5-hexadecenoic acid to amounts of 2% to 3% (w/w) of the total fatty acids of single embryos. Δ5-Octadecenoic acid and 20:1Δ5 also composed <1% (w/w) each of the total fatty acids of these embryos. In addition, cDNAs were identified from the L. douglasii expressed sequence tags that encode a homolog of fatty acid elongase 1 (FAE1), a β-ketoacyl-CoA synthase that catalyzes the initial step of very long-chain fatty acid synthesis. Expression of the L. douglassi FAE1 homolog in somatic soybean embryos was accompanied by the accumulation of C20 and C22 fatty acids, principally as eicosanoic acid, to amounts of 18% (w/w) of the total fatty acids of single embryos. To partially reconstruct the biosynthetic pathway of 20:1Δ5 in transgenic plant tissues, cDNAs for the L. douglasii acyl-CoA desaturase and FAE1 were co-expressed in somatic soybean embryos. In the resulting transgenic embryos, 20:1Δ5 and Δ5-docosenoic acid composed up to 12% of the total fatty acids. PMID:10982439

  2. Production of fatty acid components of meadowfoam oil in somatic soybean embryos.

    PubMed

    Cahoon, E B; Marillia, E F; Stecca, K L; Hall, S E; Taylor, D C; Kinney, A J

    2000-09-01

    The seed oil of meadowfoam (Limnanthes alba) and other Limnanthes spp. is enriched in the unusual fatty acid Delta(5)-eicosenoic acid (20:1Delta(5)). This fatty acid has physical and chemical properties that make the seed oil of these plants useful for a number of industrial applications. An expressed sequence tag approach was used to identify cDNAs for enzymes involved in the biosynthesis of 20:1Delta(5)). By random sequencing of a library prepared from developing Limnanthes douglasii seeds, a class of cDNAs was identified that encode a homolog of acyl-coenzyme A (CoA) desaturases found in animals, fungi, and cyanobacteria. Expression of a cDNA for the L. douglasii acyl-CoA desaturase homolog in somatic soybean (Glycine max) embryos behind a strong seed-specific promoter resulted in the accumulation of Delta(5)-hexadecenoic acid to amounts of 2% to 3% (w/w) of the total fatty acids of single embryos. Delta(5)-Octadecenoic acid and 20:1Delta(5) also composed <1% (w/w) each of the total fatty acids of these embryos. In addition, cDNAs were identified from the L. douglasii expressed sequence tags that encode a homolog of fatty acid elongase 1 (FAE1), a beta-ketoacyl-CoA synthase that catalyzes the initial step of very long-chain fatty acid synthesis. Expression of the L. douglassi FAE1 homolog in somatic soybean embryos was accompanied by the accumulation of C(20) and C(22) fatty acids, principally as eicosanoic acid, to amounts of 18% (w/w) of the total fatty acids of single embryos. To partially reconstruct the biosynthetic pathway of 20:1Delta(5) in transgenic plant tissues, cDNAs for the L. douglasii acyl-CoA desaturase and FAE1 were co-expressed in somatic soybean embryos. In the resulting transgenic embryos, 20:1Delta(5) and Delta(5)-docosenoic acid composed up to 12% of the total fatty acids.

  3. Seed deterioration in flooded agricultural fields during winter

    USGS Publications Warehouse

    Nelms, C.O.; Twedt, D.J.

    1996-01-01

    We determined rate of seed deterioration for 3 crops (corn, rice, and soybean) and 8 weeds commonly found in agricultural fields and moist-soil management units in the Mississippi Alluvial Valley (MAV). The weeds were broadleaf signalgrass (Brachiaria platyphylla), junglerice barnyardgrass (Echinochloa colonum), morningglory (Ipomoea sp.), panic grass (Panicum sp.), bull paspalum (Paspalum boscianum), red rice (Oryza sativa), hemp sesbania (Sesbania exaltata), and bristlegrass (Setaria sp.). Weed seeds, except morningglory, deteriorated slower than corn and soybean, whereas rice decomposed slower than all weed seeds except red rice and bull paspalum. For land managers desiring to provide plant food for wintering waterfowl, rice is clearly the most persistent small grain crop in the MAV. Persistence of weed seeds under flooded conditions throughout winter makes them a cost-effective alternative to traditional crops on land managed for waterfowl.

  4. SNP markers linked to QTL conditioning plant height, lodging, and maturity in soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean (Glycine max L. Merr.) is a major crop and a leading source of protein meal and edible oil worldwide. Plant height (PHT), lodging (LDG), and days to maturity (MAT) are three important agronomic traits that influence the seed yield of soybean. The objective of this study was to map quantitati...

  5. Environmental stability of seed carbohydrate profiles in soybeans containing different alleles of the raffinose synthase 2 (RS2) gene

    USDA-ARS?s Scientific Manuscript database

    Soybean [Glycine max (L.) Merr] is an important crop because of the vegetable oil used for human consumption and the high protein meal used mainly for livestock feed formulations. For the highest quality soybean meal, the content of protein as well as the level of carbohydrates contributing positiv...

  6. Identification of Diaporthe longicolla on dry edible peas (Pisum sativum), dry edible beans (Phaseolus vulgaris) and soybeans (Glycine max) in North Dakota

    USDA-ARS?s Scientific Manuscript database

    Diaporthe longicolla is a fungal pathogen that causes Phomopsis seed decay and stem disease of soybean, economically important diseases in some U.S. states. Dry edible bean, dry edible pea and soybean stems with unidentified lesions were collected from fields in North Dakota. Diaporthe longicolla ...

  7. Identification of quantitative trait loci (QTL) controlling protein, oil, and five major fatty acids’ contents in soybean

    USDA-ARS?s Scientific Manuscript database

    Improved seed composition in soybean (Glycine max L. Merr.) for protein and oil quality is one of the major goals of soybean breeders. A group of genes that act as quantitative traits with their effects can alter protein, oil, palmitic, stearic, oleic, linoleic, and linolenic acids percentage in soy...

  8. Transformation of soybean Gy3 gene into Artemisaarenaria mediated by corona discharge

    NASA Astrophysics Data System (ADS)

    Chao, Lu-meng; Na, Ri; Xue, Dan; Xu, Yongze; Liu, Teng

    2013-03-01

    In order to improve the protein content of desert plant, a method of genetic transformation mediated by corona discharge was established. Artemisia seeds were processed in corona electric field for 120 min at 12 kV, and then soaked in 0.1 SSC media that contained Soybean Gy3 gene DNA to incubate for 12 h at 26 °C. Finally the seeds were inoculated on the differentiation medium. Polymerase Chain Reaction (PCR) and Reverse Transcription Polymerase Chain Reaction (RT-PCR) detection showed that the Soybean Gy3 gene had been successfully introduced into genomic DNA of the regenerated plants of Artemisaarenaria. The study provided a new way for corona discharge in plant genetic modification.

  9. Temporal association of Ca(2+)-dependent protein kinase with oil bodies during seed development in Santalum album L.: its biochemical characterization and significance.

    PubMed

    Anil, Veena S; Harmon, Alice C; Rao, K Sankara

    2003-04-01

    Calcium-dependent protein kinase (CDPK) is expressed in sandalwood (Santalum album L.) seeds under developmental regulation, and it is localized with spherical storage organelles in the endosperm [Anil et al. (2000) Plant Physiol. 122: 1035]. This study identifies these storage organelles as oil bodies. A 55 kDa protein associated with isolated oil bodies, showed Ca(2+)-dependent autophosphorylation and also cross-reacted with anti-soybean CDPK. The CDPK activity detected in the oil body-protein fraction was calmodulin-independent and sensitive to W7 (N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide) inhibition. Differences in Michaelis Menton kinetics, rate of histone phosphorylation and sensitivity to W7 inhibition between a soluble CDPK from embryos and the oil body-associated CDPK of endosperm suggest that these are tissue-specific isozymes. The association of CDPK with oil bodies of endosperm was found to show a temporal pattern during seed development. CDPK protein and activity, and the in vivo phosphorylation of Ser and Thr residues were detected strongly in the oil bodies of endosperm from maturing seed. Since oil body formation occurs during seed maturation, the observations indicate that CDPK and Ca(2+) may have a regulatory role during oil accumulation/oil body biogenesis. The detection of CDPK-protein and activity in oil bodies of groundnut, sesame, cotton, sunflower, soybean and safflower suggests the ubiquity of the association of CDPKs with oil bodies.

  10. Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr).

    PubMed

    Yuan, Feng-Jie; Zhu, Dan-Hua; Deng, Bo; Fu, Xu-Jun; Dong, De-Kun; Zhu, Shen-Long; Li, Bai-Quan; Shu, Qing-Yao

    2009-05-13

    Reduction of phytic acid in soybean seeds has the potential to improve the nutritional value of soybean meal and lessen phosphorus pollution in large scale animal farming. The objective of this study was to assess the effect of two new low phytic acid (LPA) mutations on seed quality and nutritional traits. Multilocation/season comparative analyses showed that the two mutations did not affect the concentration of crude protein, any of the individual amino acids, crude oil, and individual saturated fatty acids. Among other traits, Gm-lpa-TW75-1 had consistently higher sucrose contents (+47.4-86.1%) and lower raffinose contents (-74.2 to -84.3%) than those of wild type (WT) parent Taiwan 75; Gm-lpa-ZC-2 had higher total isoflavone contents (3038.8-4305.4 microg/g) than its parent Zhechun # 3 (1583.6-2644.9 microg/g) in all environments. Further tests of homozygous F(3) progenies of the cross Gm-lpa-ZC-2 x Wuxing # 4 (WT variety) showed that LPA lines had a mean content of total isoflavone significantly higher than WT lines. This study demonstrated that two LPA mutant genes have no negative effects on seed quality and nutritional traits; they instead have the potential to improve a few other properties. Therefore, these two mutant genes are valuable genetic resources for breeding high quality soybean varieties.

  11. Anthocyanins extracted from black soybean seed coat protect primary cortical neurons against in vitro ischemia.

    PubMed

    Bhuiyan, Mohammad Iqbal Hossain; Kim, Joo Youn; Ha, Tae Joung; Kim, Seong Yun; Cho, Kyung-Ok

    2012-01-01

    The present study investigated the neuroprotective effects of anthocyanins extracted from black soybean (cv. Cheongja 3, Glycine max (L.) MERR.) seed coat against oxygen-glucose deprivation (OGD) and glutamate-induced cell death in rat primary cortical neurons. Lactate dehydrogenase (LDH) release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assays were employed to assess cell membrane damage and viability of primary neurons, respectively. OGD-induced cell death in 7 d in vitro primary cortical neurons was found to be OGD duration-dependent, and approximately 3.5 h of OGD resulted in ≈60% cell death. Treatment with black soybean anthocyanins dose-dependently prevented membrane damage and increased the viability of primary neurons that were exposed to OGD. Glutamate-induced neuronal cell death was dependent on the glutamate concentration at relatively low concentrations and the number of days the cells remained in culture. Interestingly, black soybean anthocyanins did not protect against glutamate-induced neuronal cell death. They did, however, inhibit the excessive generation of reactive oxygen species (ROS) and preserve mitochondrial membrane potential (MMP) in primary neurons exposed to OGD. In agreement with the neuroprotective effect of crude black soybean anthocyanins, purified cyanidin-3-glucoside (C3G), the major component of anthocyanins, also offered dose-dependent neuroprotection against OGD-induced neuronal cell death. Moreover, black soybean C3G markedly prevented excessive generation of ROS and preserved MMP in primary neurons that were exposed to OGD. Collectively, these results suggest that the neuroprotection of primary rat cortical neurons by anthocyanins that were extracted from black soybean seed coat might be mediated through oxidative stress inhibition and MMP preservation but not through glutamate-induced excitotoxicity attenuation.

  12. Investigation of endogenous soybean food allergens by using a 2-dimensional gel electrophoresis approach.

    PubMed

    Rouquié, David; Capt, Annabelle; Eby, William H; Sekar, Vaithilingam; Hérouet-Guicheney, Corinne

    2010-12-01

    As part of the safety assessment of genetically modified (GM) soybean, 2-dimensional gel electrophoresis analyses were performed with the isoxaflutole and glyphosate tolerant soybean FG72, its non-GM near-isogenic counterpart (Jack) and three commercial non-GM soybean lines. The objective was to compare the known endogenous human food allergens in seeds in the five different soybean lines in order to evaluate any potential unintended effect(s) of the genetic modification. In total, 37 protein spots representing five well known soybean food allergen groups were quantified in each genotype. Qualitatively, all the allergenic proteins were detected in the different genetic backgrounds. Quantitatively, among 37 protein spots, the levels of accumulation of three allergens were slightly lower in the GM soybean than in the non-GM counterparts. Specifically, while the levels of two of these three allergens fell within the normal range of variation observed in the four non-GM varieties, the level of the third allergen was slightly below the normal range. Overall, there was no significant increase in the level of allergens in FG72 soybean seeds. Therefore, the FG72 soybean can be considered as safe as its non-GM counterpart with regards to endogenous allergenicity. Additional research is needed to evaluate the biological variability in the levels of endogenous soybean allergens and the correlation between level of allergens and allergenic potential in order to improve the interpretation of these data in the safety assessment of GM soybean context. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Identification and characterization of large DNA deletions affecting oil quality traits in soybean seeds through transcriptome sequencing analysis.

    PubMed

    Goettel, Wolfgang; Ramirez, Martha; Upchurch, Robert G; An, Yong-Qiang Charles

    2016-08-01

    Identification and characterization of a 254-kb genomic deletion on a duplicated chromosome segment that resulted in a low level of palmitic acid in soybean seeds using transcriptome sequencing. A large number of soybean genotypes varying in seed oil composition and content have been identified. Understanding the molecular mechanisms underlying these variations is important for breeders to effectively utilize them as a genetic resource. Through design and application of a bioinformatics approach, we identified nine co-regulated gene clusters by comparing seed transcriptomes of nine soybean genotypes varying in oil composition and content. We demonstrated that four gene clusters in the genotypes M23, Jack and N0304-303-3 coincided with large-scale genome rearrangements. The co-regulated gene clusters in M23 and Jack mapped to a previously described 164-kb deletion and a copy number amplification of the Rhg1 locus, respectively. The coordinately down-regulated gene clusters in N0304-303-3 were caused by a 254-kb deletion containing 19 genes including a fatty acyl-ACP thioesterase B gene (FATB1a). This deletion was associated with reduced palmitic acid content in seeds and was the molecular cause of a previously reported nonfunctional FATB1a allele, fap nc . The M23 and N0304-304-3 deletions were located in duplicated genome segments retained from the Glycine-specific whole genome duplication that occurred 13 million years ago. The homoeologous genes in these duplicated regions shared a strong similarity in both their encoded protein sequences and transcript accumulation levels, suggesting that they may have conserved and important functions in seeds. The functional conservation of homoeologous genes may result in genetic redundancy and gene dosage effects for their associated seed traits, explaining why the large deletion did not cause lethal effects or completely eliminate palmitic acid in N0304-303-3.

  14. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean.

    PubMed

    Wang, Xianzhi; Jiang, Guo-Liang; Green, Marci; Scott, Roy A; Song, Qijian; Hyten, David L; Cregan, Perry B

    2014-10-01

    Soybean seeds contain high levels of oil and protein, and are the important sources of vegetable oil and plant protein for human consumption and livestock feed. Increased seed yield, oil and protein contents are the main objectives of soybean breeding. The objectives of this study were to identify and validate quantitative trait loci (QTLs) associated with seed yield, oil and protein contents in two recombinant inbred line populations, and to evaluate the consistency of QTLs across different environments, studies and genetic backgrounds. Both the mapping population (SD02-4-59 × A02-381100) and validation population (SD02-911 × SD00-1501) were phenotyped for the three traits in multiple environments. Genetic analysis indicated that oil and protein contents showed high heritabilities while yield exhibited a lower heritability in both populations. Based on a linkage map constructed previously with the mapping population and using composite interval mapping and/or interval mapping analysis, 12 QTLs for seed yield, 16 QTLs for oil content and 11 QTLs for protein content were consistently detected in multiple environments and/or the average data over all environments. Of the QTLs detected in the mapping population, five QTLs for seed yield, eight QTLs for oil content and five QTLs for protein content were confirmed in the validation population by single marker analysis in at least one environment and the average data and by ANOVA over all environments. Eight of these validated QTLs were newly identified. Compared with the other studies, seven QTLs for seed yield, eight QTLs for oil content and nine QTLs for protein content further verified the previously reported QTLs. These QTLs will be useful for breeding higher yield and better quality cultivars, and help effectively and efficiently improve yield potential and nutritional quality in soybean.

  15. Comparative Analysis of Tocopherol Biosynthesis Genes and Its Transcriptional Regulation in Soybean Seeds.

    PubMed

    T, Vinutha; Bansal, Navita; Kumari, Khushboo; Prashat G, Rama; Sreevathsa, Rohini; Krishnan, Veda; Kumari, Sweta; Dahuja, Anil; Lal, S K; Sachdev, Archana; Praveen, Shelly

    2017-12-20

    Tocopherols composed of four isoforms (α, β, γ, and δ) and its biosynthesis comprises of three pathways: methylerythritol 4-phosphate (MEP), shikimate (SK) and tocopherol-core pathways regulated by 25 enzymes. To understand pathway regulatory mechanism at transcriptional level, gene expression profile of tocopherol-biosynthesis genes in two soybean genotypes was carried out, the results showed significantly differential expression of 5 genes: 1-deoxy-d-xylulose-5-P-reductoisomerase (DXR), geranyl geranyl reductase (GGDR) from MEP, arogenate dehydrogenase (TyrA), tyrosine aminotransferase (TAT) from SK and γ-tocopherol methyl transferase 3 (γ-TMT3) from tocopherol-core pathways. Expression data were further analyzed for total tocopherol (T-toc) and α-tocopherol (α-toc) content by coregulation network and gene clustering approaches, the results showed least and strong association of γ-TMT3/tocopherol cyclase (TC) and DXR/DXS, respectively, with gene clusters of tocopherol biosynthesis suggested the specific role of γ-TMT3/TC in determining tocopherol accumulation and intricacy of DXR/DXS genes in coordinating precursor pathways toward tocopherol biosynthesis in soybean seeds. Thus, the present study provides insight into the major role of these genes regulating the tocopherol synthesis in soybean seeds.

  16. Soybean fruit development and set at the node level under combined photoperiod and radiation conditions

    PubMed Central

    Nico, Magalí; Mantese, Anita I.; Miralles, Daniel J.; Kantolic, Adriana G.

    2016-01-01

    In soybean, long days during post-flowering increase seed number. This positive photoperiodic effect on seed number has been previously associated with increments in the amount of radiation accumulated during the crop cycle because long days extend the duration of the crop cycle. However, evidence of intra-nodal processes independent of the availability of assimilates suggests that photoperiodic effects at the node level might also contribute to pod set. This work aims to identify the main mechanisms responsible for the increase in pod number per node in response to long days; including the dynamics of flowering, pod development, growth and set at the node level. Long days increased pods per node on the main stems, by increasing pods on lateral racemes (usually dominated positions) at some main stem nodes. Long days lengthened the flowering period and thereby increased the number of opened flowers on lateral racemes. The flowering period was prolonged under long days because effective seed filling was delayed on primary racemes (dominant positions). Long days also delayed the development of flowers into pods with filling seeds, delaying the initiation of pod elongation without modifying pod elongation rate. The embryo development matched the external pod length irrespective of the pod’s chronological age. These results suggest that long days during post-flowering enhance pod number per node through a relief of the competition between pods of different hierarchy within the node. The photoperiodic effect on the development of dominant pods, delaying their elongation and therefore postponing their active growth, extends flowering and allows pod set at positions that are usually dominated. PMID:26512057

  17. Chip-based nanoflow high performance liquid chromatography coupled to mass spectrometry for profiling of soybean flavonoids.

    PubMed

    Chang, Yuwei; Zhao, Chunxia; Wu, Zeming; Zhou, Jia; Zhao, Sumin; Lu, Xin; Xu, Guowang

    2012-08-01

    In this work a chip-based nano HPLC coupled MS (HPLC-chip/MS) method with a simple sample preparation procedure was developed for the flavonoid profiling of soybean. The analytical properties of the method including the linearity (R(2) , 0.992-0.995), reproducibility (RSD, 1.50-7.66%), intraday precision (RSD, 1.41-5.14%) and interday precision (RSD, 2.76-16.90%) were satisfactory. Compared with the conventional HPLC/MS method, a fast extraction and analysis procedure was applied and more flavonoids were detected in a single run. Additionally, 13 flavonoids in soybean seed were identified for the first time. The method was then applied to the profiling of six varieties of soybean sowed at the same place. A clear discrimination was observed among different cultivars, three isoflavones, accounting for nearly 80% of total flavonoid contents, were found increased in the spring soybeans compared with the summer cultivars. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Proximate Composition of Seed and Biomass from Soybean Plants Grown at Different Carbon Dioxide (CO2) Concentrations

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.

    1990-01-01

    Soybean plants were grown for 90 days at 500, 1000, 2000, and 5000 ubar (ppm) carbon dioxide (CO2) and compared for proximate nutritional value. For both cultivars (MC and PX), seed protein levels were highest at 1000 (39.3 and 41.9 percent for MC and PX) and lowest at 2000 (34.7 and 38.9 percent for MC and PX). Seed fat (oil) levels were highest at 2000 (21.2 and 20.9 percent for MC and PX) and lowest at 5000 (13.6 and 16.6 percent for MC and PX). Seed carbohydrate levels were highest at 500 (31.5 and 28.4 percent for MC and PX) and lowest at 2000 (20.9 and 20.8 percent for MC and PX). When adjusted for total seed yield per unit growing area, the highest production of protein and carbohydrate occurred with MC at 1000, while equally high amounts of fat were produced with MC at 1000 and 2000. Seed set and pod development at 2000 were delayed in comparison to other CO2 treatments; thus the proportionately high fat and low protein at 2000 may have been a result of the delay in plant maturity rather than CO2 concentration. Stem crude fiber and carbohydrate levels for both cultivars increased with increased CO2. Leaf protein and crude fiber levels also tended to rise with increased CO2 but leaf carbohydrate levels decreased as CO2 was increased. The results suggest that CO2 effects on total seed yield out-weighed any potential advantages to changes in seed composition.

  19. Fungal Diversity in Field Mold-Damaged Soybean Fruits and Pathogenicity Identification Based on High-Throughput rDNA Sequencing

    PubMed Central

    Liu, Jiang; Deng, Jun-cai; Yang, Cai-qiong; Huang, Ni; Chang, Xiao-li; Zhang, Jing; Yang, Feng; Liu, Wei-guo; Wang, Xiao-chun; Yong, Tai-wen; Du, Jun-bo; Shu, Kai; Yang, Wen-yu

    2017-01-01

    Continuous rain and an abnormally wet climate during harvest can easily lead to soybean plants being damaged by field mold (FM), which can reduce seed yield and quality. However, to date, the underlying pathogen and its resistance mechanism have remained unclear. The objective of the present study was to investigate the fungal diversity of various soybean varieties and to identify and confirm the FM pathogenic fungi. A total of 62,382 fungal ITS1 sequences clustered into 164 operational taxonomic units (OTUs) with 97% sequence similarity; 69 taxa were recovered from the samples by internal transcribed spacer (ITS) region sequencing. The fungal community compositions differed among the tested soybeans, with 42 OTUs being amplified from all varieties. The quadratic relationships between fungal diversity and organ-specific mildew indexes were analyzed, confirming that mildew on soybean pods can mitigate FM damage to the seeds. In addition, four potentially pathogenic fungi were isolated from FM-damaged soybean fruits; morphological and molecular identification confirmed these fungi as Aspergillus flavus, A. niger, Fusarium moniliforme, and Penicillium chrysogenum. Further re-inoculation experiments demonstrated that F. moniliforme is dominant among these FM pathogenic fungi. These results lay the foundation for future studies on mitigating or preventing FM damage to soybean. PMID:28515718

  20. Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA.

    PubMed

    Kanazashi, Yuhei; Hirose, Aya; Takahashi, Ippei; Mikami, Masafumi; Endo, Masaki; Hirose, Sakiko; Toki, Seiichi; Kaga, Akito; Naito, Ken; Ishimoto, Masao; Abe, Jun; Yamada, Tetsuya

    2018-03-01

    Using a gRNA and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two GmPPD loci in soybean. Mutations in GmPPD loci were confirmed in at least 33% of T 2 seeds. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system is a powerful tool for site-directed mutagenesis in crops. Using a single guide RNA (gRNA) and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two homoeologous loci in soybean (Glycine max), GmPPD1 and GmPPD2, which encode the orthologs of Arabidopsis thaliana PEAPOD (PPD). Most of the T 1 plants had heterozygous and/or chimeric mutations for the targeted loci. The sequencing analysis of T 1 and T 2 generations indicates that putative mutation induced in the T 0 plant is transmitted to the T 1 generation. The inheritable mutation induced in the T 1 plant was also detected. This result indicates that continuous induction of mutations during T 1 plant development increases the occurrence of mutations in germ cells, which ensures the transmission of mutations to the next generation. Simultaneous site-directed mutagenesis in both GmPPD loci was confirmed in at least 33% of T 2 seeds examined. Approximately 19% of double mutants did not contain the Cas9/gRNA expression construct. Double mutants with frameshift mutations in both GmPPD1 and GmPPD2 had dome-shaped trifoliate leaves, extremely twisted pods, and produced few seeds. Taken together, our data indicate that continuous induction of mutations in the whole plant and advancing generations of transgenic plants enable efficient simultaneous site-directed mutagenesis in duplicated loci in soybean.

  1. Correlation, path analysis and heritability estimation for agronomic traits contribute to yield on soybean

    NASA Astrophysics Data System (ADS)

    Sulistyo, A.; Purwantoro; Sari, K. P.

    2018-01-01

    Selection is a routine activity in plant breeding programs that must be done by plant breeders in obtaining superior plant genotypes. The use of appropriate selection criteria will determine the effectiveness of selection activities. The purpose of this study was to analysis the inheritable agronomic traits that contribute to soybean yield. A total of 91 soybean lines were planted in Muneng Experimental Station, Probolinggo District, East Java Province, Indonesia in 2016. All soybean lines were arranged in randomized complete block design with two replicates. Correlation analysis, path analysis and heritability estimation were performed on days to flowering, days to maturing, plant height, number of branches, number of fertile nodes, number of filled pods, weight of 100 seeds, and yield to determine selection criteria on soybean breeding program. The results showed that the heritability value of almost all agronomic traits observed is high except for the number of fertile nodes with low heritability. The result of correlation analysis shows that days to flowering, plant height and number of fertile nodes have positive correlation with seed yield per plot (0.056, 0.444, and 0.100, respectively). In addition, path analysis showed that plant height and number of fertile nodes have highest positive direct effect on soybean yield. Based on this result, plant height can be selected as one of selection criteria in soybean breeding program to obtain high yielding soybean variety.

  2. Processing of Brassica seeds for feedstock in biofuels production

    USDA-ARS?s Scientific Manuscript database

    Several Brassica species are currently being evaluated to develop regionalized production systems based on their suitability to the environment and with the prevailing practices of growing commodity food crops like wheat, corn, and soybeans. This integrated approach to farming will provide high qual...

  3. 7 CFR 1436.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., dryers, processing plants, or cold storage facilities used for the storage and handling of any..., oats, wheat, barley, rice, raw or refined sugar, soybeans, sunflower seed, canola, rapeseed, safflower, flaxseed, mustard seed, crambe, sesame seed, other oilseeds as determined and announced by CCC, dry peas...

  4. 7 CFR 1436.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., dryers, processing plants, or cold storage facilities used for the storage and handling of any..., oats, wheat, barley, rice, raw or refined sugar, soybeans, sunflower seed, canola, rapeseed, safflower, flaxseed, mustard seed, crambe, sesame seed, other oilseeds as determined and announced by CCC, dry peas...

  5. 7 CFR 1436.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., dryers, processing plants, or cold storage facilities used for the storage and handling of any..., oats, wheat, barley, rice, raw or refined sugar, soybeans, sunflower seed, canola, rapeseed, safflower, flaxseed, mustard seed, crambe, sesame seed, other oilseeds as determined and announced by CCC, dry peas...

  6. 40 CFR 180.617 - Metconazole; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... byproducts 0.04 Corn, field, forage 3.0 Corn, field, grain 0.02 Corn, field, stover 30 Corn, pop, grain 0.02 Corn, pop, stover 30 Corn, sweet, forage 3.0 Corn, sweet, kernel plus cob with husks removed 0.01 Corn... Soybean, hay 6.0 Soybean, hulls 0.08 Soybean, seed 0.05 Sugarcane, cane 0.06 Vegetable, tuberous and corn...

  7. Evaluation of late vegetative and reproductive stage soybeans for resistance to soybean aphid (Hemiptera: Aphididae).

    PubMed

    Prochaska, T J; Pierson, L M; Baldin, E L L; Hunt, T E; Heng-Moss, T M; Reese, J C

    2013-04-01

    The soybean aphid, Aphis glycines Matsumura, has become the most significant soybean [Glycine max (L.) Merrill] insect pest in the north central soybean production region of North America. The objectives of this research were to measure selected genotypes for resistance to the soybean aphid in the later vegetative and reproductive stages under field conditions, and confirm the presence of tolerance in KS4202. The results from 2007 to 2011 indicate that KS4202 can support aphid populations with minimal yield loss at levels where significant yield loss would be expected in most other genotypes. The common Nebraska cultivar, 'Asgrow 2703', appears to show signs of tolerance as well. None of the yield parameters were significantly different between the aphid infested and noninfested treatments. Based on our results, genotypes may compensate for aphid feeding in different ways. Asgrow 2703 appears to produce a similar number of seeds as its noninfested counterpart, although the seeds produced are slightly smaller. Field evaluation of tolerance in KS4202 indicated a yield loss of only 13% at 34,585-53,508 cumulative aphid-days, when 24-36% yield loss would have been expected.

  8. Genome Re-Sequencing of Semi-Wild Soybean Reveals a Complex Soja Population Structure and Deep Introgression

    PubMed Central

    Wu, Sanling; Wang, Ying-Ying; Ye, Chu-Yu; Bai, Xuefei; Li, Zefeng; Yan, Chenghai; Wang, Weidi; Wang, Ziqiang; Shu, Qingyao; Xie, Jiahua; Lee, Suk-Ha; Fan, Longjiang

    2014-01-01

    Semi-wild soybean is a unique type of soybean that retains both wild and domesticated characteristics, which provides an important intermediate type for understanding the evolution of the subgenus Soja population in the Glycine genus. In this study, a semi-wild soybean line (Maliaodou) and a wild line (Lanxi 1) collected from the lower Yangtze regions were deeply sequenced while nine other semi-wild lines were sequenced to a 3-fold genome coverage. Sequence analysis revealed that (1) no independent phylogenetic branch covering all 10 semi-wild lines was observed in the Soja phylogenetic tree; (2) besides two distinct subpopulations of wild and cultivated soybean in the Soja population structure, all semi-wild lines were mixed with some wild lines into a subpopulation rather than an independent one or an intermediate transition type of soybean domestication; (3) high heterozygous rates (0.19–0.49) were observed in several semi-wild lines; and (4) over 100 putative selective regions were identified by selective sweep analysis, including those related to the development of seed size. Our results suggested a hybridization origin for the semi-wild soybean, which makes a complex Soja population structure. PMID:25265539

  9. 7 CFR 810.1605 - Special grades and special grade requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... bulblets in a 1,000 gram portion. (b) Purple mottled or stained soybeans. Soybeans with pink or purple seed coats as determined on a portion of approximately 400 grams with the use of an FGIS Interpretive Line...

  10. 7 CFR 810.1605 - Special grades and special grade requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... bulblets in a 1,000 gram portion. (b) Purple mottled or stained soybeans. Soybeans with pink or purple seed coats as determined on a portion of approximately 400 grams with the use of an FGIS Interpretive Line...

  11. 7 CFR 810.1605 - Special grades and special grade requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... bulblets in a 1,000 gram portion. (b) Purple mottled or stained soybeans. Soybeans with pink or purple seed coats as determined on a portion of approximately 400 grams with the use of an FGIS Interpretive Line...

  12. 7 CFR 810.1605 - Special grades and special grade requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... bulblets in a 1,000 gram portion. (b) Purple mottled or stained soybeans. Soybeans with pink or purple seed coats as determined on a portion of approximately 400 grams with the use of an FGIS Interpretive Line...

  13. 7 CFR 810.1605 - Special grades and special grade requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... bulblets in a 1,000 gram portion. (b) Purple mottled or stained soybeans. Soybeans with pink or purple seed coats as determined on a portion of approximately 400 grams with the use of an FGIS Interpretive Line...

  14. Development of soybeans with low P34 allergen protein concentration for reduced allergenicity of soy foods.

    PubMed

    Watanabe, Daisuke; Adányi, Nóra; Takács, Krisztina; Maczó, Anita; Nagy, András; Gelencsér, Éva; Pachner, Martin; Lauter, Kathrin; Baumgartner, Sabine; Vollmann, Johann

    2017-02-01

    In soybean, at least 16 seed proteins have been identified as causing allergenic reactions in sensitive individuals. As a soybean genebank accession low in the immunodominant protein P34 (Gly m Bd 30K) has recently been found, introgression of the low-P34 trait into adapted soybean germplasm has been attempted in order to improve the safety of food products containing soybean protein. Therefore, marker-assisted selection and proteomics were applied to identify and characterize low-P34 soybeans. In low-P34 lines selected from a cross-population, concentrations of the P34 protein as identified with a polyclonal antibody were reduced by 50-70% as compared to P34-containing controls. Using 2D electrophoresis and immunoblotting, the reduction of P34 protein was verified in low-P34 lines. This result was confirmed by liquid chromatographic-tandem mass spectrometric analysis, which revealed either a reduction or complete absence of the authentic P34 protein as suggested from presence or absence of a unique peptide useful for discriminating between conventional and low-P34 lines. Marker-assisted selection proved useful for identifying low-P34 soybean lines for the development of hypoallergenic soy foods. The status of the P34 protein in low-P34 lines needs further characterization. In addition, the food safety relevance of low-P34 soybeans should be tested in clinical studies. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. 7 CFR 1421.9 - Basic loan rates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., oats, grain sorghum, rice, peanuts, soybean, canola, flaxseed, mustard seed, rapeseed, safflower, sunflower seed, dry peas, lentils, chickpeas, crambe, sesame seed, wool, mohair and other crops designated... single loan rate in each county for each kind of other oilseeds, such as but not limited to, sunflower...

  16. 7 CFR 1421.9 - Basic loan rates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., oats, grain sorghum, rice, peanuts, soybean, canola, flaxseed, mustard seed, rapeseed, safflower, sunflower seed, dry peas, lentils, chickpeas, crambe, sesame seed, wool, mohair and other crops designated... single loan rate in each county for each kind of other oilseeds, such as but not limited to, sunflower...

  17. International Space Station (ISS)

    NASA Image and Video Library

    2002-07-10

    This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  18. Mechanical behaviour of selected bulk oilseeds under compression loading

    NASA Astrophysics Data System (ADS)

    Mizera, Č.; Herák, D.; Hrabě, P.; Aleš, Z.; Pavlů, J.

    2017-09-01

    Pressing of vegetable oils plays an important role in modern agriculture. This study was focused on the linear pressing of soybean seeds (Glycine max L.), Jatropha seeds (Jatropha curcas L.) and palm kernel (Elaeisguineensis). For pressing test the compressive device (ZDM, model 50, Germany) was used. The maximum pressing force of 100 kN with a compression speed of 1 mm s-1 was used to record the force-deformation characteristics. The pressing vessel with diameter 60 mm and initial height of seeds 80 mm were used. The specific energy per gram of oil of soybean, palm kernel and Jatropha was 158.92 ± 7.21, 128.78 ± 8.36 and 68.26 ± 5.94 J.goil-1, respectively. The oil content of soybean, palm kernel and Jatropha was 20.4 ± 1.23, 44.7 ± 2.27 and 34.2 ± 1.75 %, respectively. Water concentration, dynamic and kinematic viscosity of obtained oils was also determined.

  19. Chemometric dissimilarity in nutritive value of popularly consumed Nigerian brown and white common beans.

    PubMed

    Moyib, Oluwasayo Kehinde; Alashiri, Ganiyy Olasunkanmi; Adejoye, Oluseyi Damilola

    2015-01-01

    Brown beans are the preferred varieties over the white beans in Nigeria due to their assumed richer nutrients. This study was aimed at assessing and characterising some popular Nigerian common beans for their nutritive value based on seed coat colour. Three varieties, each, of Nigerian brown and white beans, and one, each, of French bean and soybean were analysed for 19 nutrients. Z-statistics test showed that Nigerian beans are nutritionally analogous to French bean and soybean. Analysis of variance showed that seed coat colour varied with proximate nutrients, Ca, Fe, and Vit C. Chemometric analysis methods revealed superior beans for macro and micro nutrients and presented clearer groupings among the beans for seed coat colour. The study estimated a moderate genetic distance (GD) that will facilitate transfer of useful genes and intercrossing among the beans. It also offers an opportunity to integrate French bean and soybean into genetic improvement programs in Nigerian common beans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Growth and quality of soybean sprouts (Glycine max L. Merrill) as affected by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Yun, Juan; Li, Xihong; Fan, Xuetong; Li, Weili; Jiang, Yuqian

    2013-01-01

    In this study, soybean seeds and sprouts (Glycine max L. Merrill) were exposed to radiation doses up to 3.0 kGy. The irradiated and non-irradiated seeds were germinated, and then germination rate, sprouts length, vitamin C content, antioxidants and visual and olfactory quality were determined after irradiation. Results indicated that there was no significant difference in the germination rate and sprouts length between the control and 0.3 kGy treated soybeans, however, the reductions in sprouts length of the 1.0 kGy and 3.0 kGy treated samples were quite significant with reductions of 20.4% and 58.8%, respectively. Irradiated sprouts had similar visual and olfactory quality as the non-irradiated one. Therefore, irradiation of seeds alone would have limited value in terms of commercial use due to reduced germination and length of sprouts. However, irradiation of sprouts at doses up to 3.0 kGy was feasible to enhance microbial safety of sprouts.

  1. Effects of foliar boron application on seed composition, cell wall boron, and seed δ15N and δ13C isotopes in water-stressed soybean plants

    PubMed Central

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A.; Abel, Craig A.

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha−1. The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS–B); water stressed plants with FB (WS+B); watered plants without FB (W–B), and watered plants with FB (W+B). The treatment W–B was used as a control. Comparing with WS–B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W–B. However, seed stachyose concentrations increased by 43% in WS–B plants seed compared with W–B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS–B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ15N and δ13C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids. PMID:23888163

  2. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber.

    PubMed

    Wheeler, R M; Mackowiak, C L; Sager, J C; Knott, W M; Berry, W L

    1996-01-01

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  3. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1996-01-01

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  4. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    NASA Astrophysics Data System (ADS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  5. 40 CFR 180.617 - Metconazole; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... byproducts 0.04 Corn, field, forage 3.0 Corn, field, grain 0.02 Corn, field, stover 4.5 Corn, pop, grain 0.02 Corn, pop, stover 4.5 Corn, sweet, forage 3.0 Corn, sweet, kernel plus cob with husks removed 0.01 Corn... Soybean, hay 6.0 Soybean, hulls 0.08 Soybean, seed 0.05 Sugarcane, cane 0.06 Vegetable, tuberous and corn...

  6. 40 CFR 180.617 - Metconazole; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... byproducts 0.04 Corn, field, forage 3.0 Corn, field, grain 0.02 Corn, field, stover 4.5 Corn, pop, grain 0.02 Corn, pop, stover 4.5 Corn, sweet, forage 3.0 Corn, sweet, kernel plus cob with husks removed 0.01 Corn... Soybean, hay 6.0 Soybean, hulls 0.08 Soybean, seed 0.05 Sugarcane, cane 0.06 Vegetable, tuberous and corn...

  7. Effects of an EPSPS-transgenic soybean line ZUTS31 on root-associated bacterial communities during field growth

    PubMed Central

    Cheng, Jing; Wang, Gu-Hao; Zhu, Yin-Ling; Zhang, Li-Ya; Shou, Hui-Xia; Qi, Jin-Liang

    2018-01-01

    The increased worldwide commercial cultivation of transgenic crops during the past 20 years is accompanied with potential effects on the soil microbial communities, because many rhizosphere and endosphere bacteria play important roles in promoting plant health and growth. Previous studies reported that transgenic plants exert differential effects on soil microbial communities, especially rhizobacteria. Thus, this study compared the soybean root-associated bacterial communities between a 5-enolpyruvylshikimate-3-phosphate synthase -transgenic soybean line (ZUTS31 or simply Z31) and its recipient cultivar (Huachun3 or simply HC3) at the vegetative, flowering, and seed-filling stages. High-throughput sequencing of 16S rRNA gene (16S rDNA) V4 hypervariable region amplicons via Illumina MiSeq and real-time quantitative PCR (qPCR) were performed. Our results revealed no significant differences in the overall alpha diversity of root-associated bacterial communities at the three developmental stages and in the beta diversity of root-associated bacterial communities at the flowering stage between Z31 and HC3 under field growth. However, significant differences in the beta diversity of rhizosphere bacterial communities were found at the vegetative and seed-filling stages between the two groups. Furthermore, the results of next generation sequencing and qPCR showed that the relative abundances of root-associated main nitrogen-fixing bacterial genera, especially Bradyrhizobium in the roots, evidently changed from the flowering stage to the seed-filling stage. In conclusion, Z31 exerts transitory effects on the taxonomic diversity of rhizosphere bacterial communities at the vegetative and seed-filling stages compared to the control under field conditions. In addition, soybean developmental change evidently influences the main symbiotic nitrogen-fixing bacterial genera in the roots from the flowering stage to the seed-filling stage. PMID:29408918

  8. Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism.

    PubMed

    Houston, Norma L; Hajduch, Martin; Thelen, Jay J

    2009-10-01

    Seed maturation or seed filling is a phase of development that plays a major role in the storage reserve composition of a seed. In many plant seeds photosynthesis plays a major role in this process, although oilseeds, such as castor (Ricinus communis), are capable of accumulating oil without the benefit of photophosphorylation to augment energy demands. To characterize seed filling in castor, a systematic quantitative proteomics study was performed. Two-dimensional gel electrophoresis was used to resolve and quantify Cy-dye-labeled proteins expressed at 2, 3, 4, 5, and 6 weeks after flowering in biological triplicate. Expression profiles for 660 protein spot groups were established, and of these, 522 proteins were confidently identified by liquid chromatography-tandem mass spectrometry by mining against the castor genome. Identified proteins were classified according to function, and the most abundant groups of proteins were involved in protein destination and storage (34%), energy (19%), and metabolism (15%). Carbon assimilatory pathways in castor were compared with previous studies of photosynthetic oilseeds, soybean (Glycine max) and rapeseed (Brassica napus). These comparisons revealed differences in abundance and number of protein isoforms at numerous steps in glycolysis. One such difference was the number of enolase isoforms and their sum abundance; castor had approximately six times as many isoforms as soy and rapeseed. Furthermore, Rubisco was 11-fold less prominent in castor compared to rapeseed. These and other differences suggest some aspects of carbon flow, carbon recapture, as well as ATP and NADPH production in castor differs from photosynthetic oilseeds.

  9. 75 FR 31785 - Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... 5.96%. Propose uses: Barley, corn, dried shelled peas and beans, edible podded legumes vegetables... peas and beans, edible podded legume vegetables, oat, peanut, rye, sorghum, soybean, sunflower, wheat..., edible podded legume vegetables, oat, peanut, rye, sorghum, soybean, sunflower, wheat, and triticale seed...

  10. Glyphosate-tolerant soybeans remain compositionally equivalent to conventional soybeans (Glycine max L.) during three years of field testing.

    PubMed

    McCann, Melinda C; Liu, Keshun; Trujillo, William A; Dobert, Raymond C

    2005-06-29

    Previous studies have shown that the composition of glyphosate-tolerant soybeans (GTS) and selected processed fractions was substantially equivalent to that of conventional soybeans over a wide range of analytes. This study was designed to determine if the composition of GTS remains substantially equivalent to conventional soybeans over the course of several years and when introduced into multiple genetic backgrounds. Soybean seed samples of both GTS and conventional varieties were harvested during 2000, 2001, and 2002 and analyzed for the levels of proximates, lectin, trypsin inhibitor, and isoflavones. The measured analytes are representative of the basic nutritional and biologically active components in soybeans. Results show a similar range of natural variability for the GTS soybeans as well as conventional soybeans. It was concluded that the composition of commercial GTS over the three years of breeding into multiple varieties remains equivalent to that of conventional soybeans.

  11. Processing scale-up of sicklepod (Senna obtusifolia L.) seed.

    PubMed

    Harry-O'Kuru, Rogers E; Mohamed, Abdellatif

    2009-04-08

    Sicklepod (Senna obtusifolia L.) is an invasive weed species especially of soybean and other field crops in the southeastern United States. The seeds contain a small amount (5-7%) of a highly colored fat as well as various phenolics, proteins, and galactomannans. The color of sicklepod seed oil is such that the presence of a small amount of the weed seed in a soybean crush lowers the quality of the soybean oil. Sicklepod is very prolific, and even volunteer stands yield >1000 lb of seed per acre, and prudence calls for tapping the potential of this weed as an alternative economic crop in the affected region. Pursuant to this, we have shown in laboratory-scale work the feasibility of separating the components of sicklepod seed. However, at kilogram and higher processing quantities, difficulties arise leading to modification of the earlier approach in order to efficiently separate components of the defatted seed meal. In a version for cleanly separating the proteins, the defatted meal was extracted with 0.5 M NaCl solution to remove globular proteins. Prolamins were extracted from the pellet left after salt extraction using 80% ethanol, and glutelins were then obtained in 0.1 N alkali from the residual solids left from ethanol treatment. In a pilot-scale version for water-soluble polysaccharides, the defatted meal was stirred with deionized water (DI) and centrifuged. The pooled centrifugates were heated to 92 degrees C (20-25 min), filtered, cooled to room temperature, and passed through a column of Amberlite XAD-4 to separate the polysaccharides from the anthraquinones. Senna obtusifolia L. is a one-stop-shop of a seed (from food components to medicinals).

  12. Adjacent Habitat Influence on Stink Bug (Hemiptera: Pentatomidae) Densities and the Associated Damage at Field Corn and Soybean Edges

    PubMed Central

    Venugopal, P. Dilip; Coffey, Peter L.; Dively, Galen P.; Lamp, William O.

    2014-01-01

    The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields. PMID:25295593

  13. Adjacent habitat influence on stink bug (Hemiptera: Pentatomidae) densities and the associated damage at field corn and soybean edges.

    PubMed

    Venugopal, P Dilip; Coffey, Peter L; Dively, Galen P; Lamp, William O

    2014-01-01

    The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields.

  14. Tissue culture specificity of the tobacco ASA2 promoter driving hpt as a selectable marker for soybean transformation selection.

    PubMed

    Zernova, Olga; Zhong, Wei; Zhang, Xing-Hai; Widholm, Jack

    2008-11-01

    This study was carried out to determine if the tobacco anthranilate synthase ASA2 2.3 kb promoter drives tissue culture specific expression and if it is strong enough to drive hpt (hygromycin phosphotransferase) gene expression at a level sufficient to allow selection of transformed soybean embryogenic culture lines. A number of transformed cell lines were selected showing that the promoter was strong enough. Northern blot analysis of plant tissues did not detect hpt mRNA in the untransformed control or in the ASA2-hpt plants except in developing seeds while hpt mRNA was detected in all tissues of the CaMV35S-hpt positive control line plants. However, when the more sensitive RT-PCR assay was used all tissues of the ASA2-hpt plants except roots and mature seeds were found to contain detectable hpt mRNA. Embryogenic tissue cultures initiated from the ASA2-hpt plants contained hpt mRNA detectable by both northern and RT-PCR analysis and the cultures were hygromycin resistant. Friable callus initiated from leaves of ASA2-hpt plants did in some cases contain hpt mRNA that was only barely detectable by northern hybridization even though the callus was very hygromycin resistant. Thus the ASA2 promoter is strong enough to drive sufficient hpt expression in soybean embryogenic cultures for hygromycin selection and only very low levels of expression were found in most plant tissues with none in mature seeds.

  15. Foliar and Seed Application of Amino Acids Affects the Antioxidant Metabolism of the Soybean Crop.

    PubMed

    Teixeira, Walquíria F; Fagan, Evandro B; Soares, Luís H; Umburanas, Renan C; Reichardt, Klaus; Neto, Durval D

    2017-01-01

    In recent years, the application of natural substances on crops has been intensified in order to increase the resistance and yield of the soybean crop. Among these products are included plant biostimulants that may contain algae extracts, amino acids, and plant regulators in their composition. However, there is little information on the isolated effect of each of these constituents. The objective of this research was to evaluate the effect of the application of isolated amino acids on the antioxidant metabolism of the soybean crop. Experiments were carried out in a greenhouse and in the field with the application of the amino acids glutamate, phenylalanine, cysteine, glycine in seed treatment, and foliar application at V 4 growth stage. Antioxidant metabolism constituents evaluated were superoxide dismutase, catalase, peroxidase, hydrogen peroxide content, proline, and lipid peroxidation. In addition, resistance enzymes as polyphenol oxidase and phenylalanine ammonia-lyase (PAL) were evaluated. In both experiments, the use of cysteine, only in seed treatment and in both seed treatment and foliar application increased the activity of the enzyme PAL and catalase. Also in both experiments, the use of phenylalanine increased the activity of the enzyme PAL when the application was carried out as foliar application or both in seed treatment and foliar application. In the field experiment, the application of glutamate led to an increase in the activity of the catalase and PAL enzymes for seed treatment and foliar application. The use of the set of amino acids was only efficient in foliar application, which led to a greater activity of the enzymes peroxidase, PAL, and polyphenol oxidase. The other enzymes as well as lipid peroxidation and hydrogen peroxide presented different results according to the experiment. Therefore, glutamate, cysteine, phenylalanine, and glycine can act as signaling amino acids in soybean plants, since small doses are enough to increase the activity of the antioxidant enzymes.

  16. In situ analysis of soybeans and nuts by probe electrospray ionization mass spectrometry.

    PubMed

    Petroselli, Gabriela; Mandal, Mridul K; Chen, Lee C; Hiraoka, Kenzo; Nonami, Hiroshi; Erra-Balsells, Rosa

    2015-04-01

    The probe electrospray ionization (PESI) is an ESI-based ionization technique that generates electrospray from the tip of a solid metal needle. In the present work, we describe the PESI mass spectra obtained by in situ measurement of soybeans and several nuts (peanuts, walnuts, cashew nuts, macadamia nuts and almonds) using different solid needles as sampling probes. It was found that PESI-MS is a valuable approach for in situ lipid analysis of these seeds. The phospholipid and triacylglycerol PESI spectra of different nuts and soybean were compared by principal component analysis (PCA). PCA shows significant differences among the data of each family of seeds. Methanolic extracts of nuts and soybean were exposed to air and sunlight for several days. PESI mass spectra were recorded before and after the treatment. Along the aging of the oil (rancidification), the formation of oxidated species with variable number of hydroperoxide groups could be observed in the PESI spectra. The relative intensity of oxidated triacylglycerols signals increased with days of exposition. Monitoring sensitivity of PESI-MS was high. This method provides a fast, simple and sensitive technique for the analysis (detection and characterization) of lipids in seed tissue and degree of oxidation of the oil samples. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Effectiveness of bio-slurry on the growth and production of soybean (Glycine max (L.) Merrill)

    NASA Astrophysics Data System (ADS)

    Rafiuddin; Mollah, A.; Iswoyo, H.

    2018-05-01

    This research was aimed to determine the effectiveness of bio-slurry fertilizer on the growth and production of soybean plants which was conducted in the Pucak village, Tompobulu District, Maros Regency, South Sulawesi from July to October 2016. The research was set in randomized block design (RBD) with 8 treatments replicated three times. Treatment used were the application of bio-slurry consisted of 8 level of concentrations, namely: control (0 mL.liter-1 of water), 3, 5, 7, 9, 11, 13 and 15 mL.liter-1 of water. The variables measured were plant’s height, number of pods, weight of 100-seed, and soybean seeds’ yield per hectare. The results of research shows that the application of bio-slurry effectively improved growth and yield of soybean (pod’s number, 100-seed’s weight and seed yield per hectare). Optimal concentration of liquid bio-slurry to obtain maximum results were 9.27 mL.liter-1 of water for the highest number of pods (68.49 pods); concentration of 8.75 mL.liter-1 of water for heaviest weight of 100 grains (14.22 grams); and the concentration 8,12 mL.liter-1 of water for the highest production of seed per hectare (23.20 quintal).

  18. 7 CFR 1421.10 - Loan repayment rates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... grain rice, medium grain rice, and confectionery and each other kind of sunflower seed (other than oil sunflower seed)), a producer may repay a nonrecourse marketing assistance loan at a rate that is the lesser... a weekly basis in each county for oilseeds, except canola, flaxseed, soybeans, and sunflower seed...

  19. 7 CFR 1421.10 - Loan repayment rates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... grain rice, medium grain rice, and confectionery and each other kind of sunflower seed (other than oil sunflower seed)), a producer may repay a nonrecourse marketing assistance loan at a rate that is the lesser... a weekly basis in each county for oilseeds, except canola, flaxseed, soybeans, and sunflower seed...

  20. 7 CFR 810.1002 - Definition of other terms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, and wheat. (e) Sieves... seeds. All matter that passes through a 5/64 triangular-hole sieve after sieving according to procedures...-damaged, or otherwise materially damaged. (g) Wild oats. Seeds of Avena fatua L. and A. sterillis L...

  1. 7 CFR 810.1002 - Definition of other terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, and wheat. (e) Sieves... seeds. All matter that passes through a 5/64 triangular-hole sieve after sieving according to procedures...-damaged, or otherwise materially damaged. (g) Wild oats. Seeds of Avena fatua L. and A. sterillis L...

  2. 7 CFR 1412.1 - Applicability, statutory changes, interest, and contract provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., oats, upland cotton, rice, peanuts, soybeans, sunflower seed, rapeseed, canola, safflower, flaxseed, mustard seed, crambe, sesame seed, pulse crops, and other designated oilseeds as determined and announced... contract. Also, if any refund comes due to CCC under this part, interest will be due from the date of the...

  3. 7 CFR 1412.1 - Applicability, statutory changes, interest, and contract provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., oats, upland cotton, rice, peanuts, soybeans, sunflower seed, rapeseed, canola, safflower, flaxseed, mustard seed, crambe, sesame seed, pulse crops, and other designated oilseeds as determined and announced... contract. Also, if any refund comes due to CCC under this part, interest will be due from the date of the...

  4. 7 CFR 1412.1 - Applicability, statutory changes, interest, and contract provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., oats, upland cotton, rice, peanuts, soybeans, sunflower seed, rapeseed, canola, safflower, flaxseed, mustard seed, crambe, sesame seed, pulse crops, and other designated oilseeds as determined and announced... contract. Also, if any refund comes due to CCC under this part, interest will be due from the date of the...

  5. Soybean fruit development and set at the node level under combined photoperiod and radiation conditions.

    PubMed

    Nico, Magalí; Mantese, Anita I; Miralles, Daniel J; Kantolic, Adriana G

    2016-01-01

    In soybean, long days during post-flowering increase seed number. This positive photoperiodic effect on seed number has been previously associated with increments in the amount of radiation accumulated during the crop cycle because long days extend the duration of the crop cycle. However, evidence of intra-nodal processes independent of the availability of assimilates suggests that photoperiodic effects at the node level might also contribute to pod set. This work aims to identify the main mechanisms responsible for the increase in pod number per node in response to long days; including the dynamics of flowering, pod development, growth and set at the node level. Long days increased pods per node on the main stems, by increasing pods on lateral racemes (usually dominated positions) at some main stem nodes. Long days lengthened the flowering period and thereby increased the number of opened flowers on lateral racemes. The flowering period was prolonged under long days because effective seed filling was delayed on primary racemes (dominant positions). Long days also delayed the development of flowers into pods with filling seeds, delaying the initiation of pod elongation without modifying pod elongation rate. The embryo development matched the external pod length irrespective of the pod's chronological age. These results suggest that long days during post-flowering enhance pod number per node through a relief of the competition between pods of different hierarchy within the node. The photoperiodic effect on the development of dominant pods, delaying their elongation and therefore postponing their active growth, extends flowering and allows pod set at positions that are usually dominated. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Carbon and Nitrogen Provisions Alter the Metabolic Flux in Developing Soybean Embryos1[W][OA

    PubMed Central

    Allen, Doug K.; Young, Jamey D.

    2013-01-01

    Soybean (Glycine max) seeds store significant amounts of their biomass as protein, levels of which reflect the carbon and nitrogen received by the developing embryo. The relationship between carbon and nitrogen supply during filling and seed composition was examined through a series of embryo-culturing experiments. Three distinct ratios of carbon to nitrogen supply were further explored through metabolic flux analysis. Labeling experiments utilizing [U-13C5]glutamine, [U-13C4]asparagine, and [1,2-13C2]glucose were performed to assess embryo metabolism under altered feeding conditions and to create corresponding flux maps. Additionally, [U-14C12]sucrose, [U-14C6]glucose, [U-14C5]glutamine, and [U-14C4]asparagine were used to monitor differences in carbon allocation. The analyses revealed that: (1) protein concentration as a percentage of total soybean embryo biomass coincided with the carbon-to-nitrogen ratio; (2) altered nitrogen supply did not dramatically impact relative amino acid or storage protein subunit profiles; and (3) glutamine supply contributed 10% to 23% of the carbon for biomass production, including 9% to 19% of carbon to fatty acid biosynthesis and 32% to 46% of carbon to amino acids. Seed metabolism accommodated different levels of protein biosynthesis while maintaining a consistent rate of dry weight accumulation. Flux through ATP-citrate lyase, combined with malic enzyme activity, contributed significantly to acetyl-coenzyme A production. These fluxes changed with plastidic pyruvate kinase to maintain a supply of pyruvate for amino and fatty acids. The flux maps were independently validated by nitrogen balancing and highlight the robustness of primary metabolism. PMID:23314943

  7. Laser light and magnetic field stimulation effect on biochemical, enzymes activities and chlorophyll contents in soybean seeds and seedlings during early growth stages.

    PubMed

    Asghar, Tehseen; Jamil, Yasir; Iqbal, Munawar; Zia-Ul-Haq; Abbas, Mazhar

    2016-12-01

    Laser and magnetic field bio-stimulation attracted the keen interest of scientific community in view of their potential to enhance seed germination, seedling growth, physiological, biochemical and yield attributes of plants, cereal crops and vegetables. Present study was conducted to appraise the laser and magnetic field pre-sowing seed treatment effects on soybean sugar, protein, nitrogen, hydrogen peroxide (H 2 O 2 ) ascorbic acid (AsA), proline, phenolic and malondialdehyde (MDA) along with chlorophyll contents (Chl "a" "b" and total chlorophyll contents). Specific activities of enzymes such as protease (PRT), amylase (AMY), catalyst (CAT), superoxide dismutase (SOD) and peroxides (POD) were also assayed. The specific activity of enzymes (during germination and early growth), biochemical and chlorophyll contents were enhanced significantly under the effect of both laser and magnetic pre-sowing treatments. Magnetic field treatment effect was slightly higher than laser treatment except PRT, AMY and ascorbic acid contents. However, both treatments (laser and magnetic field) effects were significantly higher versus control (un-treated seeds). Results revealed that laser and magnetic field pre-sowing seed treatments have potential to enhance soybean biological moieties, chlorophyll contents and metabolically important enzymes (degrade stored food and scavenge reactive oxygen species). Future study should be focused on growth characteristics at later stages and yield attributes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Investigating the use of Active Crop Canopy Sensors for Soybean Management in Field Research and Production

    NASA Astrophysics Data System (ADS)

    Miller, Joshua Jay

    Approximately one-third of soybean yield gain is a result of improved agronomic practices, which includes disease and insect management. Treatments containing fungicide, insecticide, biological, and nutrient components were evaluated in Nebraska soybean fields during 2013 through 2015 to determine effects on soybean yield and profitability. The greatest yield (4.83 Mg ha -1, p=0.019) was achieved with a complete seed and pod set treatment, but resulted in the second lowest calculated net return (US151 ha -1, p=0.019) after accounting for fixed and variable costs at a soybean market price of US0.367 kg-1. The most profitable treatment was the fungicide seed treatment followed by no pod set treatment (US$241 ha-1, p=0.019). The use of pod set treatments in the absence of significant disease and insect pressure was not profitable in most instances. Crop canopy reflectance was measured several times throughout the season during 2014 and 2015 to evaluate normalized difference red edge (NDRE) index to predict soybean productivity. The NDRE values were used to calculate a cumulative reflectance value through the R6 growth stage, defined as area under the reflectance progress curve (AURPC). The AURPC values and seed yield were classified as top 25%, middle 50%, or bottom 25% by location. Multinomial regression determined that bottom AURPC values correctly predicted bottom yield 52.5% of the time (p=0.033), but ranged from 46.7 to 86.2% by location. Misclassifications by incorrectly identifying a bottom yield within the top AURPC ranged from 0.0% to 16.7% by location. The AURPC offers a novel method to delineate management zones in soybean production fields. Soybean canopy reflectance was also evaluated for the relationship between NDRE and soybean response to soybean cyst nematode (SCN; Heterodera glycines Ichinohe) infection. SCN-resistant and -susceptible varieties were planted in SCN-infested and non-infested sites during 2015 and 2016. Susceptible varieties yielded more than the resistant varieties at the non-infested sites by 245 kg ha-1 (p=0.004), and resistant varieties yielded more than the susceptible varieties at the SCN-infested sites by 340 kg ha -1 (p=0.0021). Measured NDRE values at R4 and R5 were different between resistant and susceptible varieties, but were not correlated with yield.

  9. Use of remote sensing, geographic information systems, and spatial statistics to assess spatio-temporal population dynamics of Heterodera glycines and soybean yield quantity and quality

    NASA Astrophysics Data System (ADS)

    Moreira, Antonio Jose De Araujo

    Soybean, Glycine max (L.) Merr., is an important source of oil and protein worldwide, and soybean cyst nematode (SCN), Heterodera glycines, is among the most important yield-limiting factors in soybean production worldwide. Early detection of SCN is difficult because soybean plants infected by SCN often do not exhibit visible symptoms. It was hypothesized, however, that reflectance data obtained by remote sensing from soybean canopies may be used to detect plant stress caused by SCN infection. Moreover, reflectance measurements may be related to soybean growth and yield. Two field experiments were conducted from 2000 to 2002 to study the relationships among reflectance data, quantity and quality of soybean yield, and SCN population densities. The best relationships between reflectance and the quantity of soybean grain yield occurred when reflectance data were obtained late August to early September. Similarly, reflectance was best related to seed oil and seed protein content and seed size when measured during late August/early September. Grain quality-reflectance relationships varied spatially and temporally. Reflectance measured early or late in the season had the best relationships with SCN population densities measured at planting. Soil properties likely affected reflectance measurements obtained at the beginning of the season and somehow may have been related to SCN population densities at planting. Reflectance data obtained at the end of the growing season likely was affected by early senescence of SCN-infected soybeans. Spatio-temporal aspects of SCN population densities in both experiments were assessed using spatial statistics and regression analyses. In the 2000 and 2001 growing seasons, spring-to-fall changes in SCN population densities were best related to SCN population densities at planting for both experiments. However, within-season changes in SCN population densities were best related to SCN population densities at harvest for both experiments in 2002. Variograms were fitted to the data to describe the spatial characteristics of SCN population densities in both fields at planting and at harvest from 2000 to 2003 and these parameters varied within seasons and during overwinter periods in both experiments. Distinct relationships between temporal and spatial changes in SCN population densities were not detected.

  10. Assessment of Genetically Modified Soybean in Relation to Natural Variation in the Soybean Seed Metabolome

    PubMed Central

    Clarke, Joseph D.; Alexander, Danny C.; Ward, Dennis P.; Ryals, John A.; Mitchell, Matthew W.; Wulff, Jacob E.; Guo, Lining

    2013-01-01

    Genetically modified (GM) crops currently constitute a significant and growing part of agriculture. An important aspect of GM crop adoption is to demonstrate safety and equivalence with respect to conventional crops. Untargeted metabolomics has the ability to profile diverse classes of metabolites and thus could be an adjunct for GM crop substantial equivalence assessment. To account for environmental effects and introgression of GM traits into diverse genetic backgrounds, we propose that the assessment for GM crop metabolic composition should be understood within the context of the natural variation for the crop. Using a non-targeted metabolomics platform, we profiled 169 metabolites and established their dynamic ranges from the seeds of 49 conventional soybean lines representing the current commercial genetic diversity. We further demonstrated that the metabolome of a GM line had no significant deviation from natural variation within the soybean metabolome, with the exception of changes in the targeted engineered pathway. PMID:24170158

  11. Effect of gamma irradiation on lipoxygenases, trypsin inhibitor, raffinose family oligosaccharides and nutritional factors of different seed coat colored soybean (Glycine max L.)

    NASA Astrophysics Data System (ADS)

    Kumar Dixit, Amit; Kumar, Vineet; Rani, Anita; Manjaya, J. G.; Bhatnagar, Deepak

    2011-04-01

    Three soybean genotypes Kalitur, Hara soya and NRC37 with black, green and yellow seed coat color, respectively, were gamma irradiated at 0.5, 2.0 and 5.0 kGy and tested for antinutritional and nutritional factors. Gamma irradiation at all doses reduced the level of lipoxygenase isomers, trypsin inhibitor (TI) and ascorbic acid in all the 3 soybean genotypes as compared to the unirradiated control. However, irradiation dose of 5.0 kGy increased the sucrose content of the soybean genotypes. No significant change was observed in oil, protein fatty acids and total tocopherol content of the 3 genotypes at any irradiation dose. It is suggested that inhibition of lipoxygenase, reduction in TI and ascorbic acid may be due to the breakage or oxidation of protein structure by the gamma irradiation. Similarly, gamma irradiation at higher doses may break glycosidic linkages in oligosaccharides to produce more sucrose and decrease the content of flatulence causing oligosaccharides.

  12. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping.

    PubMed

    Patil, Gunvant; Vuong, Tri D; Kale, Sandip; Valliyodan, Babu; Deshmukh, Rupesh; Zhu, Chengsong; Wu, Xiaolei; Bai, Yonghe; Yungbluth, Dennis; Lu, Fang; Kumpatla, Siva; Shannon, J Grover; Varshney, Rajeev K; Nguyen, Henry T

    2018-04-04

    The cultivated [Glycine max (L) Merr.] and wild [Glycine soja Siebold & Zucc.] soybean species comprise wide variation in seed composition traits. Compared to wild soybean, cultivated soybean contains low protein, high oil, and high sucrose. In this study, an interspecific population was derived from a cross between G. max (Williams 82) and G. soja (PI 483460B). This recombinant inbred line (RIL) population of 188 lines was sequenced at 0.3× depth. Based on 91 342 single nucleotide polymorphisms (SNPs), recombination events in RILs were defined, and a high-resolution bin map was developed (4070 bins). In addition to bin mapping, quantitative trait loci (QTL) analysis for protein, oil, and sucrose was performed using 3343 polymorphic SNPs (3K-SNP), derived from Illumina Infinium BeadChip sequencing platform. The QTL regions from both platforms were compared, and a significant concordance was observed between bin and 3K-SNP markers. Importantly, the bin map derived from next-generation sequencing technology enhanced mapping resolution (from 1325 to 50 Kb). A total of five, nine, and four QTLs were identified for protein, oil, and sucrose content, respectively, and some of the QTLs coincided with soybean domestication-related genomic loci. The major QTL for protein and oil were mapped on Chr. 20 (qPro_20) and suggested negative correlation between oil and protein. In terms of sucrose content, a novel and major QTL were identified on Chr. 8 (qSuc_08) and harbours putative genes involved in sugar transport. In addition, genome-wide association using 91 342 SNPs confirmed the genomic loci derived from QTL mapping. A QTL-based haplotype using whole-genome resequencing of 106 diverse soybean lines identified unique allelic variation in wild soybean that could be utilized to widen the genetic base in cultivated soybean. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Calorimetry, chemical composition and in vitro digestibility of oilseeds.

    PubMed

    Ítavo, Luís Carlos Vinhas; Soares, Cláudia Muniz; Ítavo, Camila Celeste Brandão Ferreira; Dias, Alexandre Menezes; Petit, Hélène Veronique; Leal, Eduardo Souza; de Souza, Anderson Dias Vieira

    2015-10-15

    The objective of the study was to determine the quality of sunflower, soybean, crambe, radish forage and physic nut, by measuring chemical composition, in vitro digestibility and kinetics of thermal decomposition processes of mass loss and heat flow. Lipid was inversely correlated with protein of whole seed (R = -0.67), meal (R = -0.95), and press cake (R = -0.78), and positively correlated with the enthalpy (ΔH) of whole seed. Soybean seed and meal presented a high in vitro digestibility but poor energy sources with ΔH averaging 5907.5 J/g and 2570.1J/g for whole seed and meal, respectively. As suggested by the release of heat, measured by ΔH, whole seeds of crambe (6295.1J/g), radish forage (6182.7 J/g), and physic nut (6420.0 J/g) may be potential energy sources for ruminant animals. The thermal analysis provided additional information besides that obtained from the usual wet chemistry and in vitro measurements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A population structure and genome-wide association analysis on the USDA soybean germplasm collection

    USDA-ARS?s Scientific Manuscript database

    Genotype-phenotype associations within the soybean (Glycine max) germplasm collection could provide valuable information on the frequency and distribution of alleles affecting economically important traits. Here we performed a genome-wide association study (GWAS) for seed protein and oil content in ...

  15. The Interactomic Analysis Reveals Pathogenic Protein Networks in Phomopsis longicolla Underlying Seed Decay of Soybean.

    PubMed

    Li, Shuxian; Musungu, Bryan; Lightfoot, David; Ji, Pingsheng

    2018-01-01

    Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla ) is the primary cause of Phomopsis seed decay (PSD) in soybean, Glycine max (L.) Merrill. This disease results in poor seed quality and is one of the most economically important seed diseases in soybean. The objectives of this study were to infer protein-protein interactions (PPI) and to identify conserved global networks and pathogenicity subnetworks in P. longicolla including orthologous pathways for cell signaling and pathogenesis. The interlog method used in the study identified 215,255 unique PPIs among 3,868 proteins. There were 1,414 pathogenicity related genes in P. longicolla identified using the pathogen host interaction (PHI) database. Additionally, 149 plant cell wall degrading enzymes (PCWDE) were detected. The network captured five different classes of carbohydrate degrading enzymes, including the auxiliary activities, carbohydrate esterases, glycoside hydrolases, glycosyl transferases, and carbohydrate binding molecules. From the PPI analysis, novel interacting partners were determined for each of the PCWDE classes. The most predominant class of PCWDE was a group of 60 glycoside hydrolases proteins. The glycoside hydrolase subnetwork was found to be interacting with 1,442 proteins within the network and was among the largest clusters. The orthologous proteins FUS3, HOG, CYP1, SGE1, and the g5566t.1 gene identified in this study could play an important role in pathogenicity. Therefore, the P. longicolla protein interactome (PiPhom) generated in this study can lead to a better understanding of PPIs in soybean pathogens. Furthermore, the PPI may aid in targeting of genes and proteins for further studies of the pathogenicity mechanisms.

  16. The Interactomic Analysis Reveals Pathogenic Protein Networks in Phomopsis longicolla Underlying Seed Decay of Soybean

    PubMed Central

    Li, Shuxian; Musungu, Bryan; Lightfoot, David; Ji, Pingsheng

    2018-01-01

    Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is the primary cause of Phomopsis seed decay (PSD) in soybean, Glycine max (L.) Merrill. This disease results in poor seed quality and is one of the most economically important seed diseases in soybean. The objectives of this study were to infer protein–protein interactions (PPI) and to identify conserved global networks and pathogenicity subnetworks in P. longicolla including orthologous pathways for cell signaling and pathogenesis. The interlog method used in the study identified 215,255 unique PPIs among 3,868 proteins. There were 1,414 pathogenicity related genes in P. longicolla identified using the pathogen host interaction (PHI) database. Additionally, 149 plant cell wall degrading enzymes (PCWDE) were detected. The network captured five different classes of carbohydrate degrading enzymes, including the auxiliary activities, carbohydrate esterases, glycoside hydrolases, glycosyl transferases, and carbohydrate binding molecules. From the PPI analysis, novel interacting partners were determined for each of the PCWDE classes. The most predominant class of PCWDE was a group of 60 glycoside hydrolases proteins. The glycoside hydrolase subnetwork was found to be interacting with 1,442 proteins within the network and was among the largest clusters. The orthologous proteins FUS3, HOG, CYP1, SGE1, and the g5566t.1 gene identified in this study could play an important role in pathogenicity. Therefore, the P. longicolla protein interactome (PiPhom) generated in this study can lead to a better understanding of PPIs in soybean pathogens. Furthermore, the PPI may aid in targeting of genes and proteins for further studies of the pathogenicity mechanisms. PMID:29666630

  17. Effects of crop residues of sunflower (Helianthus annuus), maize (Zea mays L.) and soybean (Glycine max) on growth and seed yields of sunflower.

    PubMed

    Srisa-Ard, K

    2007-04-15

    This pot experiment was carried out at Suranaree Technology University Experimental Farm, Northeast Thailand to investigate effects of crop residues of sunflower, maize and soybean on total dry weight, top dry weight, plant height, root dry weight and seed yield of sunflower plants with the use of Korat soil series (Oxic Paleustults) during the rainy season (July-October) of the 2001. The experiment was laid in a split plot arranged in a Completely Randomized Design (CRD) with four replications where the crop residues of maize, sunflower and soybean were used as main plots. Whilst crop residues of roots, top growth and roots+top growth were used as subplots. The results showed that crop residues derived from roots of both sunflower and soybean plants had their significant inhibition effects of allelopathic substances on plant height, root dry weight, top growth dry weight and total dry weight plant(-1) of the sunflower plants than those derived from top growth of both crops alone (sunflower and soybean). Maize plant residues had no significant inhibition effect on growth of subsequent crop of sunflower.

  18. Soybean resistance to stink bugs (Nezara viridula and Piezodorus guildinii) increases with exposure to solar UV-B radiation and correlates with isoflavonoid content in pods under field conditions.

    PubMed

    Zavala, Jorge A; Mazza, Carlos A; Dillon, Francisco M; Chludil, Hugo D; Ballaré, Carlos L

    2015-05-01

    Solar UV-B radiation (280-315 nm) has a significant influence on trophic relationships in natural and managed ecosystems, affecting plant-insect interactions. We explored the effects of ambient UV-B radiation on the levels of herbivory by stink bugs (Nezara viridula and Piezodorus guildinii) in field-grown soybean crops. The experiments included two levels of UV-B radiation (ambient and attenuated UV-B) and four soybean cultivars known to differ in their content of soluble leaf phenolics. Ambient UV-B radiation increased the accumulation of the isoflavonoids daidzin and genistin in the pods of all cultivars. Soybean crops grown under attenuated UV-B had higher numbers of unfilled pods and damaged seeds than crops grown under ambient UV-B radiation. Binary choice experiments with soybean branches demonstrated that stink bugs preferred branches of the attenuated UV-B treatment. We found a positive correlation between percentage of undamaged seeds and the contents of daidzin and genistin in pods. Our results suggest that constitutive and UV-B-induced isoflavonoids increase plant resistance to stink bugs under field conditions. © 2014 John Wiley & Sons Ltd.

  19. 7 CFR 1421.7 - Requesting marketing assistance loans and loan deficiency payments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... harvested: barley, canola, flaxseed, oats, rapeseed, crambe, sesame seed, and wheat. (2) May 31 of the year following the year in which the following crops are normally harvested: corn, grain sorghum, mustard seed, rice, safflower, soybeans, sunflower seed, dry peas, lentils, and chickpeas. (3) January 31 of the year...

  20. 7 CFR 1421.7 - Requesting marketing assistance loans and loan deficiency payments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... harvested: barley, canola, flaxseed, oats, rapeseed, crambe, sesame seed, and wheat. (2) May 31 of the year following the year in which the following crops are normally harvested: corn, grain sorghum, mustard seed, rice, safflower, soybeans, sunflower seed, dry peas, lentils, and chickpeas. (3) January 31 of the year...

  1. Osage orange (Maclura pomifera L) seed oil poly-(-a-hydroxy dibutylamine) triglycerides: Synthesis and characterization

    USDA-ARS?s Scientific Manuscript database

    In exploring alternative vegetable oils for non-food industrial applications, especially in temperate climates, tree seed oils that are not commonly seen as competitors to soybean, peanut, and corn oils can become valuable sources of new oils. Many trees produce edible fruits and seeds while others ...

  2. Apply Pesticides Correctly, A Guide for Commercial Applicators: Seed Treatment.

    ERIC Educational Resources Information Center

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide contains basic information to meet specific standards for pesticide applicators. The text is concerned with the types of seeds that require chemical protection against pests. Methods of treatment and labeling requirements for such seeds as rye, wheat, soybeans, peas, and grass hybrids are discussed. Safety and environmental precautions…

  3. International Space Station (ISS)

    NASA Image and Video Library

    2002-07-10

    Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  4. Effects of proton beam irradiation on seed germination and growth of soybean ( Glycine max L. Merr.)

    NASA Astrophysics Data System (ADS)

    Im, Juhyun; Kim, Woon Ji; Kim, Sang Hun; Ha, Bo-Keun

    2017-12-01

    The present study aimed to evaluate the morphological effects of proton beam irradiation on the seed germination, seedling survival, and plant growth of soybean. Seeds of three Korean elite cultivars (Kwangankong, Daepungkong, and Pungsannamulkong) were irradiated with a 57-MeV proton beam in the range of 50 - 400 Gy. The germination rates of all the varieties increased to > 95%; however, the survival rates were significantly reduced. At doses of > 300 Gy irradiation, the Daepungkong, Kwangankong, and Pungsannamulkong cultivars exhibited 39, 75, and 71% survival rates, respectively. In addition, plant height and the fresh weight of shoots and roots were significantly decreased by doses of > 100 Gy irradiation, as were the dry weights of the shoots and roots. However, SPAD values increased with increasing doses of irradiation. Abnormal plants with atypically branched stems, modified leaves, and chlorophyll mutations were observed. Based on the survival rate, plant growth inhibition, and mutation frequency, it appears that the optimum dosage of proton beam irradiation for soybean mutation breeding is between 250 and 300 Gy.

  5. A Multiplexed, Probe-Based Quantitative PCR Assay for DNA of Phytophthora sojae

    USDA-ARS?s Scientific Manuscript database

    Phytophthora sojae (Kaufm. & Gerd.) causes seed rot, pre- and post-emergence damping off, and sometimes foliar blight in soybean (Glycine max). Crop loss may approach 100% with susceptible cultivars. We report here the development of a unique quantitative PCR assay specific to DNA of P. sojae, and a...

  6. Characterization of soybean storage and allergen protein affected by environmental and genetic factors

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the impact of genetic variability and diverse environments on the protein composition of crop seed is of value for the comparative safety assessments in the development of genetically engineered (GMO) crops. The objective of this study was to determine the role of genotype (G), environ...

  7. Elevated atmospheric carbon dioxide and temperature affect seed composition, mineral nutrition, and 15N and 13C dynamics in soybean genotypes under controlled environments

    USDA-ARS?s Scientific Manuscript database

    Seed nutrition of crops can be affected by global climate changes due to elevated CO2 and elevated temperatures. Information on the effects of elevated CO2 and temperature on seed nutrition is very limited in spite of its importance to seed quality and food security. Therefore, the objective of this...

  8. A deletion mutation at the ep locus causes low seed coat peroxidase activity in soybean.

    PubMed

    Gijzen, M

    1997-11-01

    The Ep locus severely affects the amount of peroxidase enzyme in soybean seed coats. Plants containing the dominant Ep allele accumulate large amounts of peroxidase in the hourglass cells of the sub-epidermis. Homozygous recessive epep genotypes do not accumulate peroxidase in the hourglass cells and are much reduced in total seed coat peroxidase activity. To isolate the gene encoding the seed coat peroxidase and to determine whether it corresponds to the Ep locus, a cDNA library was constructed from developing seed coats and an abundant 1.3 kb peroxidase transcript was cloned. The corresponding structural gene was also isolated from a genomic library. Sequence analysis shows that the seed coat peroxidase is translated as a 352 amino acid precursor protein of 38 kDa. Processing of a putative 26 amino acid signal sequence results in a mature protein of 326 residues with a calculated mass of 35 kDa and a pl of 4.4. Using probes derived from the cDNA, genomic DNA blot hybridization and polymerase chain reaction analysis detected polymorphisms that distinguished EpEp and epep genotypes. Co-segregation of the polymorphisms in an F2 population from a cross of EpEp and epep plants shows that the Ep locus encodes the seed coat peroxidase protein. Comparison of Ep and ep alleles indicates that the recessive gene lacks 87 bp of sequence encompassing the translation start codon. Analysis by RNA blot hybridization shows that epep plants have drastically reduced amounts of peroxidase transcript compared with EpEp plants. The peroxidase mRNA is abundant in seed coat tissues of EpEp plants during the late stages of seed maturation, and could also be detected in root tissues, but not in the flower, embryo, pod or leaf. The results indicate that the lack of peroxidase accumulation in seed coats of homozygous recessive epep plants is due to a mutation of the structural gene that reduces transcript abundance.

  9. Improved Soybean Oil for Biodiesel Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom Clemente; Jon Van Gerpen

    2007-11-30

    The goal of this program was to generate information on the utility of soybean germplasm that produces oil, high in oleic acid and low in saturated fatty acids, for its use as a biodiesel. Moreover, data was ascertained on the quality of the derived soybean meal (protein component), and the agronomic performance of this novel soybean germplasm. Gathering data on these later two areas is critical, with respect to the first, soybean meal (protein) component is a major driver for commodity soybean, which is utilized as feed supplements in cattle, swine, poultry and more recently aquaculture production. Hence, it ismore » imperative that the resultant modulation in the fatty acid profile of the oil does not compromise the quality of the derived meal, for if it does, the net value of the novel soybean will be drastically reduced. Similarly, if the improved oil trait negative impacts the agronomics (i.e. yield) of the soybean, this in turn will reduce the value of the trait. Over the course of this program oil was extruded from approximately 350 bushels of soybean designated 335-13, which produces oil high in oleic acid (>85%) and low in saturated fatty acid (<6%). As predicted improvement in cold flow parameters were observed as compared to standard commodity soybean oil. Moreover, engine tests revealed that biodiesel derived from this novel oil mitigated NOx emissions. Seed quality of this soybean was not compromised with respect to total oil and protein, nor was the amino acid profile of the derived meal as compared to the respective control soybean cultivar with a conventional fatty acid profile. Importantly, the high oleic acid/low saturated fatty acids oil trait was not impacted by environment and yield was not compromised. Improving the genetic potential of soybean by exploiting the tools of biotechnology to improve upon the lipid quality of the seed for use in industrial applications such as biodiesel will aid in expanding the market for the crop. This in turn, may lead to job creation in rural areas of the country and help stimulate the agricultural economy. Moreover, production of soybean with enhanced oil quality for biodiesel may increase the attractiveness of this renewable, environmentally friendly fuel.« less

  10. [Effects of high temperature and humidity stress at the physiological maturity stage on seed vigor, main nutrients and coat structure of spring soybean].

    PubMed

    Shu, Ying-Jie; Wang, Shuang; Tao, Yuan; Song, Li-Run; Huang, Li-Yan; Zhou, Yu-Li; Ma, Hao

    2014-05-01

    A pot experiment was conducted to investigate the effects of high temperature and humidity stress [(40 +/- 2) degrees C/(30 +/- 2) degrees C, RH (95 +/- 5)%/(70 +/- 5)%, 10 h/14 h (day/night)] at the physiological maturity stage of two spring soybean cultivars (Xiangdou No. 3 and Ningzhen No. 1) on seed vigor indices, main nutritional components and coat anatomical structure. High temperature and humidity stress were found to cause the decrease of seed viability, germination potential, and germination percentage as well as the dehydrogenase and acid phosphatase activities, but increased the seed cell membrane permeability as well as H+, soluble sugar and leucine levels in the seed soaking liquid of each cultivar. Moreover, the stress led to irregular changes of seed oil and protein contents and alteration of anatomical structure of episperm and hilum in the two cultivars. A shortterm stress (less than 5 h) had no significant impact on seed vigor, but a long-term one (more than 48 h) caused rapid decrease of seed vigor indices. Xiangdou No. 3 showed less decreases in seed germination potential and enzyme activities, and less increase in extravasation content in the seed soaking liquid, had compact seed coat and intact hilum, suggesting it was more resistant to high temperature and humidity stress.

  11. Effect of germination on bioactive compounds of soybean (Glycine max)

    USDA-ARS?s Scientific Manuscript database

    Germination is the practice of soaking, draining, and keeping seeds until they produce sprouts. The increasing interest in functional and healthy food products has promoted the use of germinated soybean flour in the manufacture of foods for human consumption. It is well known that germination induce...

  12. 76 FR 34877 - Difenoconazole; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... non-occupational, non-dietary exposure (e.g., for lawn and garden pest control, indoor pest control...; chickpea; fruits, stone, group 12; soybean, hulls; soybean, seed; strawberry; and turnip greens. Syngenta... pursuant to 40 CFR part 2 may be disclosed publicly by EPA without prior notice. Submit a copy of your non...

  13. A vernonia diacylglycerol acyltransferase can increase renewable oil production

    USDA-ARS?s Scientific Manuscript database

    Increasing the production of plant oils such as soybean oil, a critical renewable resource for food and fuel, will be highly valuable. Successful breeding for higher oil levels in soybean, however, usually results in reduced protein, a second valuable seed component. We show that by manipulating a h...

  14. Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields

    USDA-ARS?s Scientific Manuscript database

    Terrestrial plants can harbor endophytic fungi that may induce changes in plants that in turn affect interactions with herbivorous insects attacking those plants. We evaluated whether the entomopathogenic fungi Beauveria bassiana and Metarhizium brunneum, applied to soybean seeds, could establish a...

  15. Seed Transmission of Soybean vein necrosis virus: The First Tospovirus Implicated in Seed Transmission.

    PubMed

    Groves, Carol; German, Thomas; Dasgupta, Ranjit; Mueller, Daren; Smith, Damon L

    2016-01-01

    Soybean vein necrosis virus (SVNV; genus Tospovirus; Family Bunyaviridae) is a negative-sense single-stranded RNA virus that has been detected across the United States and in Ontario, Canada. In 2013, a seed lot of a commercial soybean variety (Glycine max) with a high percentage of discolored, deformed and undersized seed was obtained. A random sample of this seed was planted in a growth room under standard conditions. Germination was greater than 90% and the resulting seedlings looked normal. Four composite samples of six plants each were tested by reverse transcription polymerase chain reaction (RT-PCR) using published primers complimentary to the S genomic segment of SVNV. Two composite leaflet samples retrieved from seedlings yielded amplicons with a size and sequence predictive of SVNV. Additional testing of twelve arbitrarily selected individual plants resulted in the identification of two SVNV positive plants. Experiments were repeated by growing seedlings from the same seed lot in an isolated room inside a thrips-proof cage to further eliminate any external source of infection. Also, increased care was taken to reduce any possible PCR contamination. Three positive plants out of forty-eight were found using these measures. Published and newly designed primers for the L and M RNAs of SVNV were also used to test the extracted RNA and strengthen the diagnosis of viral infection. In experiments, by three scientists, in two different labs all three genomic RNAs of SVNV were amplified in these plant materials. RNA-seq analysis was also conducted using RNA extracted from a composite seedling sample found to be SVNV-positive and a symptomatic sample collected from the field. This analysis revealed both sense and anti-sense reads from all three gene segments in both samples. We have shown that SVNV can be transmitted in seed to seedlings from an infected seed lot at a rate of 6%. To our knowledge this is the first report of seed-transmission of a Tospovirus.

  16. Tolerance in Maturity Groups V-VIII Soybean Cultivars to Heterodera glycines

    PubMed Central

    Hussey, R. S.; Boerma, H. R.

    1989-01-01

    Twenty-six susceptible and resistant soybean, Glycine max, cultivars in Maturity Groups V, VI, VII, and VIII were compared with Coker 156, Wright, and PI97100 for tolerance to Heterodera glycines races 3 and 14. Seed yields were compared in nematicide-treated (EDB, fenamiphos) and untreated plots at two H. glycines-infested locations over 3 years. Coker 488, DP 417, and NK S72-60 had the highest average tolerance indices ([yield in untreated plot + yield in nematicide-treated plot] x 100) of the race 3-susceptible cultivars to races 3 and 14. Plant height and seed weight of untreated soybean plants were suppressed in race 3-infested soil, but only plant height was suppressed at the race 14-infested location. Several race 3-resistant and race 14-susceptible cultivars were moderately tolerant to race 14. PMID:19287673

  17. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait

    PubMed Central

    2010-01-01

    Background The alteration of fatty acid profiles in soybean [Glycine max (L.) Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Results Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. Conclusions We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the mutant alleles. The resources described here for the creation of high oleic acid soybeans provide a framework to efficiently develop soybean varieties to meet changing market demands. PMID:20828382

  18. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait.

    PubMed

    Pham, Anh-Tung; Lee, Jeong-Dong; Shannon, J Grover; Bilyeu, Kristin D

    2010-09-09

    The alteration of fatty acid profiles in soybean [Glycine max (L.) Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the mutant alleles. The resources described here for the creation of high oleic acid soybeans provide a framework to efficiently develop soybean varieties to meet changing market demands.

  19. Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields.

    PubMed

    Clifton, Eric H; Jaronski, Stefan T; Coates, Brad S; Hodgson, Erin W; Gassmann, Aaron J

    2018-01-01

    Terrestrial plants can harbor endophytic fungi that may induce changes in plant physiology that in turn affect interactions with herbivorous insects. We evaluated whether the application of entomopathogenic fungi Beauveria bassiana and Metarhizium brunneum to soybean seeds could become endophytic and affect interactions with soybean aphid (Aphis glycines Matsumura). It was found that A. glycines population sizes increased on plants with M. brunneum (strain F52) seed inoculum, but no significant effects were shown with analogous treatments with B. bassiana (strain GHA). Fungi recovered from soybean plant tissues indicate that endophytism was established, and that B. bassiana was more prevalent. Metarhizium brunneum was only recovered from stems, but B. bassiana was recovered from stems and leaves. This work confirms that some entomopathogenic fungi can be endophytic in soybean, however, some of these fungi may have a negative effect on the plants by increasing susceptibility of soybean to A. glycines. We also used DNA sequence data to identify species of Metarhizium obtained from agricultural fields in Iowa. Phylogenetic analyses, based on DNA sequence data, found that all isolates were Metarhizium robertsii, which is consistent with past studies indicating a cosmopolitan distribution and wide host range for this species. These results are important for understanding the dynamics of implementing environmentally sustainable measures for the control of pest insects.

  20. Effectiveness of cow manure and mycorrhiza on the growth of soybean

    NASA Astrophysics Data System (ADS)

    Muktiyanta, M. N. A.; Samanhudi; Yunus, A.; Pujiasmanto, B.; Minardi, S.

    2018-03-01

    Soybean is one of the major food crop commodities in Indonesia. The needs of soybean each year is always increasing, but the the production rate is low. The research aimed to know the influence of treatment doses of cow manure and mycorrhiza towards growth and yield of soybeans. This research was conducted using Randomized Complete Block Design with two factors. The first factor is the dose of cow manure: S0 (0 g/plot), S1 (781.25 g/plot), S2 (1562.5 g/plot), and S3 (2343.75 g/plot). The second factor is the dose of mycorrhiza: M0 (0 g/plot), M1 (100 g/plot), and M2 (200 g/plot). The observed parameters is plant height, the number of productive branches, weight of 100 seeds, root length, fresh weight of biomass, dry weight of biomass, conversion calculation results of soybeans per hectacre and the percentage of roots infected with mycorrhiza. Data were analyzed with ANOVA at 5% significance level, continued with Duncan test at 5% confidence level. The results showed that no interaction between the two treatments. Doses of cow manure provides significant influence to plant height and the length of the root. Whereas, the doses of mycorrhiza provides significant effect to the number of productive branch, weight of 100 seeds, dry weight of biomass, and the conversion of soybean yield per hectare.

  1. Stearoyl-Acyl Carrier Protein Desaturase Mutations Uncover an Impact of Stearic Acid in Leaf and Nodule Structure.

    PubMed

    Lakhssassi, Naoufal; Colantonio, Vincent; Flowers, Nicholas D; Zhou, Zhou; Henry, Jason; Liu, Shiming; Meksem, Khalid

    2017-07-01

    Stearoyl-acyl carrier protein desaturase (SACPD-C) has been reported to control the accumulation of seed stearic acid; however, no study has previously reported its involvement in leaf stearic acid content and impact on leaf structure and morphology. A subset of an ethyl methanesulfonate mutagenized population of soybean ( Glycine max ) 'Forrest' was screened to identify mutants within the GmSACPD-C gene. Using a forward genetics approach, one nonsense and four missense Gmsacpd-c mutants were identified to have high levels of seed, nodule, and leaf stearic acid content. Homology modeling and in silico analysis of the GmSACPD-C enzyme revealed that most of these mutations were localized near or at conserved residues essential for diiron ion coordination. Soybeans carrying Gmsacpd-c mutations at conserved residues showed the highest stearic acid content, and these mutations were found to have deleterious effects on nodule development and function. Interestingly, mutations at nonconserved residues show an increase in stearic acid content yet retain healthy nodules. Thus, random mutagenesis and mutational analysis allows for the achievement of high seed stearic acid content with no associated negative agronomic characteristics. Additionally, expression analysis demonstrates that nodule leghemoglobin transcripts were significantly more abundant in soybeans with deleterious mutations at conserved residues of GmSACPD-C. Finally, we report that Gmsacpd-c mutations cause an increase in leaf stearic acid content and an alteration of leaf structure and morphology in addition to differences in nitrogen-fixing nodule structure. © 2017 American Society of Plant Biologists. All Rights Reserved.

  2. Identification of QTLs underlying seed micronutrients accumulation in 'MD96-5722' by 'Spencer' recombinant inbred lines of soybean

    USDA-ARS?s Scientific Manuscript database

    Genetic mapping of quantitative trait loci (QTL) associated with seed nutrition levels is almost non-existent. The objective of this study was to identify QTLs associated with seed micronutrients accumulation (concentration) in a population of 92 F5:7 recombinant inbred lines (RILs) that derived fro...

  3. 40 CFR 180.589 - Boscalid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., dried shelled, except soybean, subgroup 6C, except cowpea, field pea and grain lupin 2.5 Pea and bean, succulent shelled, subgroup 6B, except cowpea 0.6 Peanut 0.05 Peanut, meal 0.15 Peanut, refined oil 0.15... Cotton, undelinted seed 0.05 Cowpea, seed 0.1 Flax, seed 3.5 Grain, cereal, forage, fodder and straw...

  4. 40 CFR 180.589 - Boscalid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., dried shelled, except soybean, subgroup 6C, except cowpea, field pea and grain lupin 2.5 Pea and bean, succulent shelled, subgroup 6B, except cowpea 0.6 Peanut 0.05 Peanut, meal 0.15 Peanut, refined oil 0.15... Cotton, undelinted seed 0.05 Cowpea, seed 0.1 Flax, seed 3.5 Grain, cereal, forage, fodder and straw...

  5. [Queries related to the technology of soybean seed inoculation with Bradyrhizobium spp].

    PubMed

    Lodeiro, Aníbal R

    2015-01-01

    With the aim of exploiting symbiotic nitrogen fixation, soybean crops are inoculated with selected strains of Bradyrhizobium japonicum, Bradyrhizobium diazoefficiens or Bradyrhizobium elkanii (collectively referred to as Bradyrhizobium spp.). The most common method of inoculation used is seed inoculation, whether performed immediately before sowing or using preinoculated seeds or pretreated seeds by the professional seed treatment. The methodology of inoculation should not only cover the seeds with living rhizobia, but must also optimize the chances of these rhizobia to infect the roots and nodulate. To this end, inoculated rhizobia must be in such an amount and condition that would allow them to overcome the competition exerted by the rhizobia of the allochthonous population of the soil, which are usually less effective for nitrogen fixation and thus dilute the effect of inoculation on yield. This optimization requires solving some queries related to the current knowledge of seed inoculation, which are addressed in this article. I conclude that the aspects that require further research are the adhesion and survival of rhizobia on seeds, the release of rhizobia once the seeds are deposited in the soil, and the movement of rhizobia from the vicinity of the seeds to the infection sites in the roots. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Effects of boron nutrition and water stress on nitrogen fixation, seed d15N and d13C daynamics, and seed composition in soybean cultivars differing in maturities

    USDA-ARS?s Scientific Manuscript database

    Water stress is a major abiotic stress factor, resulting in a major yield loss and poor seed quality. Little information is available on the effects of B nutrition on seed composition under water stress. Therefore, the objective of the current research was to investigate the effects of foliar B nutr...

  7. Effect of lamp type and temperature on development, carbon partitioning and yield of soybean

    NASA Astrophysics Data System (ADS)

    Dougher, T. A. O.; Bugbee, B.

    1997-01-01

    Soybeans grown in controlled environments are commonly taller than field-grown plants. In controlled environments, including liquid hydroponics, height of the dwarf cultivar ``Hoyt'' was reduced from 46 to 33 cm when plants were grown under metal halide lamps compared to high pressure sodium lamps at the same photosynthetic photon flux. Metal halide lamps reduced total biomass 14% but did not significantly reduce seed yield. Neither increasing temperature nor altering the difference between day/night temperature affected plant height. Increasing temperature from 21 to 27 degC increased yield 32%. High temperature significantly increased carbon partitioning to stems and increased harvest index.

  8. Reduced abscisic acid content is responsible for enhanced sucrose accumulation by potassium nutrition in vegetable soybean seeds.

    PubMed

    Tu, Bingjie; Liu, Changkai; Tian, Bowen; Zhang, Qiuying; Liu, Xiaobing; Herbert, Stephen J

    2017-05-01

    In order to understand the physiological mechanism of potassium (K) application in enhancing sugar content of vegetable soybean seeds, pot experiments were conducted in 2014 and 2015 with two vegetable soybean (Glycine max L. Merr.) cultivars (c.v. Zhongkemaodou 1 and c.v. 121) under normal rate of nitrogen and phosphorus application. Three potassium (K) fertilization treatments were imposed: No K application (K0), 120 kg K 2 SO 4 ha -1 at seeding (K1), and 120 kg K 2 SO 4 ha -1 at seedling + 1% K 2 SO 4 foliar application at flowering (K2). Contents of indole-3-acetic acid (IAA), gibberellins (GA), cytokinins (ZR) and abscisic acid (ABA) in seeds were determined from 4 to 8 weeks after flowering. K fertilization increased the contents of IAA, GA, ZR, soluble sugar, sucrose and fresh pod yield, but reduced ABA content consistently. When the contents of soluble sugar and sucrose reached the highest level at 7 weeks after flowering for the 2 cultivars, the contents of IAA、GA、ZR all reached the lowest level in general. The content of ABA in seed was negatively correlated with the sucrose content (P < 0.01, r = -0.749**, -0.768** in 2014 and -0.535**, -0.791** in 2015 for c.v.121 and c.v. Zhongkemaodou 1 respectively). The changes in ratio of the ABA to (IAA + GA + ZR) from 4 to 8 weeks after flowering affected by K application were coincident to the changes of sucrose accumulation. The reduced ratio of ABA/(IAA + GA + ZR) affected by K nutrition particularly reduced abscisic acid content plays a critical role in enhancing sucrose content, which might be a partial mechanism involved in K nutrition to improve the quality of vegetable soybean.

  9. Association of green stem disorder with agronomic traits in soybean

    USDA-ARS?s Scientific Manuscript database

    Green stem disorder (GSD) of soybean is the occurrence of non-senescent, fleshy green stems of plants with normal, fully mature pods and seeds. The main focus of this study was to determine the relationship between GSD incidence and agronomic traits and to determine if GSD incidence was associated w...

  10. Epitopes from two soybean glycinin subunits antigenic in pigs

    USDA-ARS?s Scientific Manuscript database

    Background: Glycinin is a seed storage protein in soybean (Glycine max) that is allergenic in pigs. Glycinin is a hexamer composed of subunits consisting of a basic and acidic portion joined by disulfide bridges. There are 5 glycinin subunits designated Gy1-Gy5. Results: Twenty seven out of 30 pi...

  11. Genomewide association study of ionomic traits on diverse soybean populations from germplasm collections

    USDA-ARS?s Scientific Manuscript database

    The elemental content of a soybean seed is a determined by both genetic and environmental factors and is an important component of its nutritional value. The elemental content is stable, making the samples stored in germplasm repositories an intriguing source of experimental material. To test the ef...

  12. 40 CFR 180.407 - Thiodicarb; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... following food commodities or groups. The time-limited tolerances expire and are revoked on the dates listed in the following table: Commodity Parts per million Expiration/revocation date Broccoli 7.0 None..., undelinted seed 0.4 None Soybean, hulls 0.8 None Soybean 0.2 None Vegetable, leafy, except brassica, group 4...

  13. 40 CFR 180.407 - Thiodicarb; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following food commodities or groups. The time-limited tolerances expire and are revoked on the dates listed in the following table: Commodity Parts per million Expiration/revocation date Broccoli 7.0 None..., undelinted seed 0.4 None Soybean, hulls 0.8 None Soybean 0.2 None Vegetable, leafy, except brassica, group 4...

  14. 40 CFR 180.407 - Thiodicarb; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following food commodities or groups. The time-limited tolerances expire and are revoked on the dates listed in the following table: Commodity Parts per million Expiration/revocation date Broccoli 7.0 None..., undelinted seed 0.4 None Soybean, hulls 0.8 None Soybean 0.2 None Vegetable, leafy, except brassica, group 4...

  15. 40 CFR 180.407 - Thiodicarb; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... following food commodities or groups. The time-limited tolerances expire and are revoked on the dates listed in the following table: Commodity Parts per million Expiration/revocation date Broccoli 7.0 None..., undelinted seed 0.4 None Soybean, hulls 0.8 None Soybean 0.2 None Vegetable, leafy, except brassica, group 4...

  16. Use of sweet lupin (Lupinusalbus L. var. Multitalia) in feeding for Podolian young bulls and influence on productive performances and meat quality traits.

    PubMed

    Vicenti, A; Toteda, F; Turi, L Di; Cocca, C; Perrucci, M; Melodia, L; Ragni, M

    2009-06-01

    The objective of this study was to evaluate the effect of sweet lupin (Lupinusalbus L. var. Multitalia) as a substitute for soybean (Glicinemax [L] Merr.) in feed on the productive performance and meat quality of Podolian young bulls. The steers were divided into 2 homogeneous groups and were fed durum wheat (Triticumdurum L.), straw and a complete pellet feed containing 20% sweet lupin seeds or 16.5% soybean. Productive performances were similar for both groups. The values of pH, measured on Longissimuslumborum and Semitendinosus muscles 24h after slaughter, were similar. No differences were shown between groups regarding the colour characteristics of both muscles or the tenderness of the cooked meat. No statistical differences were found between diets regarding the fatty acid profile of meats, except for a significantly higher incidence of linoleic acid in the meat obtained from animals on soybean feed. In conclusion, comparable results were obtained when soybean was replaced with sweet lupin seeds in complete pellet feed for Podolian steers.

  17. Effects of Elevated CO2 on Plant Chemistry, Growth, Yield of Resistant Soybean, and Feeding of a Target Lepidoptera Pest, Spodoptera litura (Lepidoptera: Noctuidae).

    PubMed

    Yifei, Zhang; Yang, Dai; Guijun, Wan; Bin, Liu; Guangnan, Xing; Fajun, Chen

    2018-04-25

    Atmospheric CO2 level arising is an indisputable fact in the future climate change, as predicted, it could influence crops and their herbivorous insect pests. The growth and development, reproduction, and consumption of Spodoptera litura (F.) (Lepidoptera: Noctuidae) fed on resistant (cv. Lamar) and susceptible (cv. JLNMH) soybean grown under elevated (732.1 ± 9.99 μl/liter) and ambient (373.6 ± 9.21 μl/liter) CO2 were examined in open-top chambers from 2013 to 2015. Elevated CO2 promoted the above- and belowground-biomass accumulation and increased the root/shoot ratio of two soybean cultivars, and increased the seeds' yield for Lamar. Moreover, elevated CO2 significantly reduced the larval and pupal weight, prolonged the larval and pupal life span, and increased the feeding amount and excretion amount of two soybean cultivars. Significantly lower foliar nitrogen content and higher foliar sugar content and C/N ratio were observed in the sampled foliage of resistant and susceptible soybean cultivars grown under elevated CO2, which brought negative effects on the growth of S. litura, with the increment of foliar sugar content and C/N ratio were greater in the resistant soybean in contrast to the susceptible soybean. Furthermore, the increment of larval consumption was less than 50%, and the larval life span was prolonged more obvious of the larvae fed on resistant soybean compared with susceptible soybean under elevated CO2. It speculated that the future climatic change of atmospheric CO2 level arising would likely cause the increase of the soybean yield and the intake of S. litura, but the resistant soybean would improve the resistance of the target Lepidoptera pest, S. litura.

  18. Use of transgenic seeds in Brazilian agriculture and concentration of agricultural production to large agribusinesses.

    PubMed

    Marinho, C D; Martins, F J O; Amaral Júnior, A T; Gonçalves, L S A; Amaral, S C S; de Mello, M P

    2012-07-19

    We identified the commercial releases of genetically modified organisms (GMOs) in Brazil, their characteristics, the types of genetic transformation used, and the companies responsible for the development of these GMOs, classifying them into two categories: private companies, subdivided into multinational and national, and public institutions. The data came from the data bank of the national registration of cultivars and the service of national protection of cultivars of the Ministry of Agriculture, Fishing and Supply (MAPA). This survey was carried out from 1998 to February 12, 2011. Until this date, 27 GMOs had been approved, including five for soybean, 15 for maize and seven for cotton cultivars. These GMOs have been used for the development of 766 cultivars, of which, 305 are soybean, 445 are maize, and 13 are cotton cultivars. The Monsato Company controls 73.2% of the transgenic cultivars certified by the MAPA; a partnership between Dow AgroSciences and DuPont accounts for 21.4%, and Syngenta controls 4.96%. Seed supply by these companies is almost a monopoly supported by law, giving no choice for producers and leading to the fast replacement of conventional cultivars by transgenic cultivars, which are expensive and exclude small producers from the market, since seeds cannot be kept for later use. This situation concentrates production in the hands of a few large national agribusiness entrepreneurs.

  19. Black soybean seed coat polyphenols prevent B(a)P-induced DNA damage through modulating drug-metabolizing enzymes in HepG2 cells and ICR mice.

    PubMed

    Zhang, Tianshun; Jiang, Songyan; He, Chao; Kimura, Yuki; Yamashita, Yoko; Ashida, Hitoshi

    2013-04-15

    Black soybean seed coat is a rich source of polyphenols that have been reported to have various physiological functions. The present study investigated the potential protective effects of polyphenolic extracts from black soybean seed coat on DNA damage in human hepatoma HepG2 cells and ICR mice. The results from micronucleus (MN) assay revealed that black soybean seed coat extract (BE) at concentrations up to 25μg/mL was non-genotoxic. It is noteworthy that BE (at 4.85μg/mL) and its main components, procyanidins (PCs) and cyanidin 3-glucoside (C3G), at 10μM significantly reduced the genotoxic effect induced by benzo[a]pyrene [B(a)P]. To obtain insights into the underlying mechanism, we investigated BE and its main components on drug-metabolizing enzyme expression. The results of this study demonstrate that BE and its main components, PCs and C3G, down-regulated B(a)P-induced cytochrome P4501A1 (CYP1A1) expression by inhibiting the transformation of aryl hydrocarbon receptor. Moreover, they increased expression of detoxifying defense enzymes, glutathione S-transferases (GSTs) via increasing the binding of nuclear factor-erythroid-2-related factor 2 to antioxidant response elements. Collectively, we found that PCs and C3G, which are the main active compounds of BE, down-regulated CYP1A1 and up-regulated GST expression to protect B(a)P-induced DNA damage in HepG2 cells and ICR mice effectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Effects of glyphosate on the mineral content of glyphosate-resistant soybeans (Glycine max).

    PubMed

    Duke, Stephen O; Reddy, Krishna N; Bu, Kaixuan; Cizdziel, James V

    2012-07-11

    There are conflicting claims as to whether treatment with glyphosate adversely affects mineral nutrition of glyphosate-resistant (GR) crops. Those who have made claims of adverse effects have argued links between reduced Mn and diseases in these crops. This article describes experiments designed to determine the effects of a recommended rate (0.86 kg ha(-1)) of glyphosate applied once or twice on the mineral content of young and mature leaves, as well as in seeds produced by GR soybeans (Glycine max) in both the greenhouse and field using inductively coupled plasma mass spectrometry (ICP-MS). In the greenhouse, there were no effects of either one application (at 3 weeks after planting, WAP) or two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves sampled at 6, 9, and 12 WAP and in harvested seed. Se concentrations were too low for accurate detection in leaves, but there was also no effect of glyphosate applications on Se in the seeds. In the field study, there were no effects of two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves at either 9 or 12 WAP. There was also no effect on Se in the seeds. There was no difference in yield between control and glyphosate-treated GR soybeans in the field. The results indicate that glyphosate does not influence mineral nutrition of GR soybean at recommended rates for weed management in the field. Furthermore, the field studies confirm the results of greenhouse studies.

Top