Quach, David H.; Oliveira-Fernandes, Michelle; Gruner, Katherine A.; Tourtellotte, Warren G.
2013-01-01
Egr3 is a nerve growth factor (NGF)-induced transcriptional regulator that is essential for normal sympathetic nervous system development. Mice lacking Egr3 in the germline have sympathetic target tissue innervation abnormalities and physiologic sympathetic dysfunction similar to humans with dysautonomia. However, since Egr3 is widely expressed and has pleiotropic function, it has not been clear whether it has a role within sympathetic neurons and if so, what target genes it regulates to facilitate target tissue innervation. Here, we show that Egr3 expression within sympathetic neurons is required for their normal innervation since isolated sympathetic neurons lacking Egr3 have neurite outgrowth abnormalities when treated with NGF and mice with sympathetic neuron-restricted Egr3 ablation have target tissue innervation abnormalities similar to mice lacking Egr3 in all tissues. Microarray analysis performed on sympathetic neurons identified many target genes deregulated in the absence of Egr3, with some of the most significantly deregulated genes having roles in axonogenesis, dendritogenesis, and axon guidance. Using a novel genetic technique to visualize axons and dendrites in a subpopulation of randomly labeled sympathetic neurons, we found that Egr3 has an essential role in regulating sympathetic neuron dendrite morphology and terminal axon branching, but not in regulating sympathetic axon guidance to their targets. Together, these results indicate that Egr3 has a sympathetic neuron autonomous role in sympathetic nervous system development that involves modulating downstream target genes affecting the outgrowth and branching of sympathetic neuron dendrites and axons. PMID:23467373
O'Keeffe, Gerard W; Gutierrez, Humberto; Howard, Laura; Laurie, Christopher W; Osorio, Catarina; Gavaldà, Núria; Wyatt, Sean L; Davies, Alun M
2016-02-15
Nerve growth factor (NGF) is the prototypical target-derived neurotrophic factor required for sympathetic neuron survival and for the growth and ramification of sympathetic axons within most but not all sympathetic targets. This implies the operation of additional target-derived factors for regulating terminal sympathetic axon growth and branching. Here report that growth differentiation factor 5 (GDF5), a widely expressed member of the transforming growth factor beta (TGFβ) superfamily required for limb development, promoted axon growth from mouse superior cervical ganglion (SCG) neurons independently of NGF and enhanced axon growth in combination with NGF. GDF5 had no effect on neuronal survival and influenced axon growth during a narrow window of postnatal development when sympathetic axons are ramifying extensively in their targets in vivo. SCG neurons expressed all receptors capable of participating in GDF5 signaling at this stage of development. Using compartment cultures, we demonstrated that GDF5 exerted its growth promoting effect by acting directly on axons and by initiating retrograde canonical Smad signalling to the nucleus. GDF5 is synthesized in sympathetic targets, and examination of several anatomically circumscribed tissues in Gdf5 null mice revealed regional deficits in sympathetic innervation. There was a marked, highly significant reduction in the sympathetic innervation density of the iris, a smaller though significant reduction in the trachea, but no reduction in the submandibular salivary gland. There was no reduction in the number of neurons in the SCG. These findings show that GDF5 is a novel target-derived factor that promotes sympathetic axon growth and branching and makes a distinctive regional contribution to the establishment of sympathetic innervation, but unlike NGF, plays no role in regulating sympathetic neuron survival.
Protocol for culturing sympathetic neurons from rat superior cervical ganglia (SCG).
Zareen, Neela; Greene, Lloyd A
2009-01-30
The superior cervical ganglia (SCG) in rats are small, glossy, almond-shaped structures that contain sympathetic neurons. These neurons provide sympathetic innervations for the head and neck regions and they constitute a well-characterized and relatively homogeneous population (4). Sympathetic neurons are dependent on nerve growth factor (NGF) for survival, differentiation and axonal growth and the wide-spread availability of NGF facilitates their culture and experimental manipulation (2, 3, 6). For these reasons, cultured sympathetic neurons have been used in a wide variety of studies including neuronal development and differentiation, mechanisms of programmed and pathological cell death, and signal transduction (1, 2, 5, and 6). Dissecting out the SCG from newborn rats and culturing sympathetic neurons is not very complicated and can be mastered fairly quickly. In this article, we will describe in detail how to dissect out the SCG from newborn rat pups and to use them to establish cultures of sympathetic neurons. The article will also describe the preparatory steps and the various reagents and equipment that are needed to achieve this.
The MEK-ERK pathway negatively regulates bim expression through the 3' UTR in sympathetic neurons
2011-01-01
Background Apoptosis plays a critical role during neuronal development and disease. Developing sympathetic neurons depend on nerve growth factor (NGF) for survival during the late embryonic and early postnatal period and die by apoptosis in its absence. The proapoptotic BH3-only protein Bim increases in level after NGF withdrawal and is required for NGF withdrawal-induced death. The regulation of Bim expression in neurons is complex and this study describes a new mechanism by which an NGF-activated signalling pathway regulates bim gene expression in sympathetic neurons. Results We report that U0126, an inhibitor of the prosurvival MEK-ERK pathway, increases bim mRNA levels in sympathetic neurons in the presence of NGF. We find that this effect is independent of PI3-K-Akt and JNK-c-Jun signalling and is not mediated by the promoter, first exon or first intron of the bim gene. By performing 3' RACE and microinjection experiments with a new bim-LUC+3'UTR reporter construct, we show that U0126 increases bim expression via the bim 3' UTR. We demonstrate that this effect does not involve a change in bim mRNA stability and by using PD184352, a specific MEK1/2-ERK1/2 inhibitor, we show that this mechanism involves the MEK1/2-ERK1/2 pathway. Finally, we demonstrate that inhibition of MEK/ERK signalling independently reduces cell survival in NGF-treated sympathetic neurons. Conclusions These results suggest that in sympathetic neurons, MEK-ERK signalling negatively regulates bim expression via the 3' UTR and that this regulation is likely to be at the level of transcription. This data provides further insight into the different mechanisms by which survival signalling pathways regulate bim expression in neurons. PMID:21762482
Semaphorin 3A is a retrograde cell death signal in developing sympathetic neurons
Wehner, Amanda B.; Abdesselem, Houari; Dickendesher, Travis L.; Imai, Fumiyasu; Yoshida, Yutaka; Giger, Roman J.; Pierchala, Brian A.
2016-01-01
ABSTRACT During development of the peripheral nervous system, excess neurons are generated, most of which will be lost by programmed cell death due to a limited supply of neurotrophic factors from their targets. Other environmental factors, such as ‘competition factors' produced by neurons themselves, and axon guidance molecules have also been implicated in developmental cell death. Semaphorin 3A (Sema3A), in addition to its function as a chemorepulsive guidance cue, can also induce death of sensory neurons in vitro. The extent to which Sema3A regulates developmental cell death in vivo, however, is debated. We show that in compartmentalized cultures of rat sympathetic neurons, a Sema3A-initiated apoptosis signal is retrogradely transported from axon terminals to cell bodies to induce cell death. Sema3A-mediated apoptosis utilizes the extrinsic pathway and requires both neuropilin 1 and plexin A3. Sema3A is not retrogradely transported in older, survival factor-independent sympathetic neurons, and is much less effective at inducing apoptosis in these neurons. Importantly, deletion of either neuropilin 1 or plexin A3 significantly reduces developmental cell death in the superior cervical ganglia. Taken together, a Sema3A-initiated apoptotic signaling complex regulates the apoptosis of sympathetic neurons during the period of naturally occurring cell death. PMID:27143756
Dynamics of Phosphoinositide-Dependent Signaling in Sympathetic Neurons
Kruse, Martin; Vivas, Oscar; Traynor-Kaplan, Alexis
2016-01-01
In neurons, loss of plasma membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] leads to a decrease in exocytosis and changes in electrical excitability. Restoration of PI(4,5)P2 levels after phospholipase C activation is therefore essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We measured dynamic changes of PI(4,5)P2, phosphatidylinositol 4-phosphate, diacylglycerol, inositol 1,4,5-trisphosphate, and Ca2+ upon muscarinic stimulation in sympathetic neurons from adult male Sprague-Dawley rats with electrophysiological and optical approaches. We used this kinetic information to develop a quantitative description of neuronal phosphoinositide metabolism. The measurements and analysis show and explain faster synthesis of PI(4,5)P2 in sympathetic neurons than in electrically nonexcitable tsA201 cells. They can be used to understand dynamic effects of receptor-mediated phospholipase C activation on excitability and other PI(4,5)P2-dependent processes in neurons. SIGNIFICANCE STATEMENT Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a minor phospholipid in the cytoplasmic leaflet of the plasma membrane. Depletion of PI(4,5)P2 via phospholipase C-mediated hydrolysis leads to a decrease in exocytosis and alters electrical excitability in neurons. Restoration of PI(4,5)P2 is essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We studied the dynamics of phosphoinositide metabolism in sympathetic neurons upon muscarinic stimulation and used the kinetic information to develop a quantitative description of neuronal phosphoinositide metabolism. The measurements and analysis show a several-fold faster synthesis of PI(4,5)P2 in sympathetic neurons than in an electrically nonexcitable cell line, and provide a framework for future studies of PI(4,5)P2-dependent processes in neurons. PMID:26818524
Gilley, Jonathan; Coffer, Paul J.; Ham, Jonathan
2003-01-01
Developing sympathetic neurons die by apoptosis when deprived of NGF. BIM, a BH3-only member of the BCL-2 family, is induced after NGF withdrawal in these cells and contributes to NGF withdrawal–induced death. Here, we have investigated the involvement of the Forkhead box, class O (FOXO) subfamily of Forkhead transcription factors in the regulation of BIM expression by NGF. We find that overexpression of FOXO transcription factors induces BIM expression and promotes death of sympathetic neurons in a BIM-dependent manner. In addition, we find that FKHRL1 (FOXO3a) directly activates the bim promoter via two conserved FOXO binding sites and that mutation of these sites abolishes bim promoter activation after NGF withdrawal. Finally, we show that FOXO activity contributes to the NGF deprivation–induced death of sympathetic neurons. PMID:12913110
Sympathetic neurons are a powerful driver of myocyte function in cardiovascular disease.
Larsen, Hege E; Lefkimmiatis, Konstantinos; Paterson, David J
2016-12-14
Many therapeutic interventions in disease states of heightened cardiac sympathetic activity are targeted to the myocytes. However, emerging clinical data highlights a dominant role in disease progression by the neurons themselves. Here we describe a novel experimental model of the peripheral neuro-cardiac axis to study the neuron's ability to drive a myocyte cAMP phenotype. We employed a co-culture of neonatal ventricular myocytes and sympathetic stellate neurons from normal (WKY) and pro-hypertensive (SHR) rats that are sympathetically hyper-responsive and measured nicotine evoked cAMP responses in the myocytes using a fourth generation FRET cAMP sensor. We demonstrated the dominant role of neurons in driving the myocyte ß-adrenergic phenotype, where SHR cultures elicited heightened myocyte cAMP responses during neural activation. Moreover, cross-culturing healthy neurons onto diseased myocytes rescued the diseased cAMP response of the myocyte. Conversely, healthy myocytes developed a diseased cAMP response if diseased neurons were introduced. Our results provide evidence for a dominant role played by the neuron in driving the adrenergic phenotype seen in cardiovascular disease. We also highlight the potential of using healthy neurons to turn down the gain of neurotransmission, akin to a smart pre-synaptic ß-blocker.
Yang, Hong-jun; Peng, Kai-run; Hu, San-jue; Duan, Jian-hong
2007-11-01
To study the effect of botulinum toxin type A (BTXA) on spontaneous discharge and sympathetic- sensory coupling in chronically compressed dorsal root ganglion (DRG) neurons in rats. In chronically compressed rat DRG, spontaneous activities of the single fibers from DRG neurons were recorded and their changes observed after BTAX application on the damaged DGR. Sympathetic modulation of the spontaneous discharge from the compressed DRG neurons was observed by electric stimulation of the lumbar sympathetic trunk, and the changes in this effect were evaluated after intravenous BTXA injection in the rats. Active spontaneous discharges were recorded in the injured DRG neurons, and 47 injured DRG neurons responded to Ca2+-free artificial cerebrospinal fluid but not to BTXA treatment. Sixty-four percent of the neurons in the injured DRG responded to sympathetic stimulation, and this response was blocked by intravenously injection of BTXA. BTXA does not affect spontaneous activities of injured DRG neurons, but blocks sympathetic-sensory coupling in these neurons.
Neural mechanisms in nitric-oxide-deficient hypertension
NASA Technical Reports Server (NTRS)
Sander, M.; Victor, R. G.; Blomqvist, C. G. (Principal Investigator)
1999-01-01
Nitric oxide is hypothesized to be an inhibitory modulator of central sympathetic nervous outflow, and deficient neuronal nitric oxide production to cause sympathetic overactivity, which then contributes to nitric-oxide-deficient hypertension. The biochemical and neuroanatomical basis for this concept revolves around nitric oxide modulation of glutamatergic neurotransmission within brainstem vasomotor centers. The functional consequence of neuronal nitric oxide in blood pressure regulation is, however, marked by an apparent conflict in the literature. On one hand, conscious animal studies using sympathetic blockade suggest a significant role for neuronal nitric oxide deficiency in the development of nitric-oxide-deficient hypertension, and on the other hand, there is evidence against such a role derived from 'knock-out' mice lacking nitric-oxide synthase 1, the major source of neuronal nitric oxide.
Ignatius, Myron S; Unal Eroglu, Arife; Malireddy, Smitha; Gallagher, Glen; Nambiar, Roopa M; Henion, Paul D
2013-01-01
The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382) mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382) mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382) mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382) defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.
Inhibition of sympathetic sprouting in CCD rats by lacosamide.
Wang, Yuying; Huo, Fuquan
2018-05-14
Early hyperexcitability activity of injured nerve/neuron is critical for developing sympathetic nerve sprouting within dorsal root ganglia (DRG). Since lacosamide (LCM), an anticonvulsant, inhibits Na + channel. The present study tried to test the potential effect of LCM on inhibiting sympathetic sprouting in vivo. LCM (50 mg/kg) was daily injected intraperitoneally into rats subjected to chronic compression DRG (CCD), an animal model of neuropathic pain that exhibits sympathetic nerve sprouting, for the 1st 7 days after injury. Mechanical sensitivity was tested from day 3 to day 18 after injury, and then DRGs were removed off. Immunohistochemical staining for tyrosine hydroxylase (TH) was examined to observe sympathetic sprouting, and patch-clamp recording was performed to test the excitability and Na + current of DRG neurons. Early systemic LCM treatment significantly reduced TH immunoreactivity density in injured DRG, lowered the excitability level of injured DRG neurons, and increased paw withdrawal threshold (PWT). These effects on reducing sympathetic sprouting, inhibiting excitability and suppressing pain behavior were observed 10 days after the end of early LCM injection. In vitro 100 μM LCM instantly reduced the excitability of CCD neurons via inhibiting Na + current and reducing the amplitude of AP. All the findings suggest, for the first time, that early administration of LCM inhibited sympathetic sprouting and then alleviated neuropathic pain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
McKelvey, Laura; Gutierrez, Humberto; Nocentini, Giuseppe; Crampton, Sean J.; Davies, Alun M.; Riccardi, Carlo R.; O’keeffe, Gerard W.
2012-01-01
Summary NF-κB transcription factors play a key role in regulating the growth of neural processes in the developing PNS. Although several secreted proteins have been shown to activate NF-κB to inhibit the growth of developing sympathetic neurons, it is unknown how the endogenous level of NF-κB activity present in these neurons is restricted to allow neurite growth to occur during their normal development. Here we show that activation of the glucocorticoid-induced tumour necrosis factor receptor (GITR) inhibits NF-κB activation while promoting the activation of Erk in developing sympathetic neurons. Conversely, inhibition of GITR results in an increase in NF-κB dependent gene transcription and a decrease in Erk activation leading to a reduction in neurite growth. These findings show that GITR signalling can regulate the extent of sympathetic neurite growth through an inverse modulation of Erk and NF-κB signalling, which provides an optimal environment for NGF-promoted growth. PMID:23213379
Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.
Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne
2015-06-23
The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Spinal Cord Injury-Induced Dysautonomia via Plasticity in Paravertebral Sympathetic Postganglionic
2016-10-01
sympathetic chain of the guinea - pig . J Physiol 203:173-198. Bratton B, Davies P, Janig W, McAllen R (2010) Ganglionic transmission in a vasomotor...sympathetic neurons. Journal of neurophysiology 82:2747-2764. Lichtman JW, Purves D, Yip JW (1980) Innervation of sympathetic neurones in the guinea - pig ...10 6. PRODUCTS
Gillette, R G; Kramis, R C; Roberts, W J
1994-01-01
Prior findings from diverse studies have indicated that activity in axons located in the lumbar sympathetic chains contributes to the activation of spinal pain pathways and to low back pain; these studies have utilized sympathetic blocks in patients, electrical stimulation of the chain in conscious humans, and neuroanatomical mapping of afferent fiber projections. In the present study, dorsal horn neurons receiving nociceptor input from lumbar paraspinal tissues were tested for activation by electrical stimulation of the lumbar sympathetic chain in anesthetized cats. Of 83 neurons tested, 70% were responsive to sympathetic trunk stimulation. Excitatory responses, observed in both nociceptive specific and wide-dynamic-range neurons, were differentiable into two classes: non-entrained and entrained responses. Non-entrained responses were attenuated or blocked by systemic administration of the alpha-adrenergic antagonist phentolamine and are thought to result from sympathetic efferent activation of primary afferents in the units' receptive fields. Entrained responses were unaffected by phentolamine and are thought to result from electrical activation of somatic and/or visceral afferent fibers ascending through the sympathetic trunk into the dorsal horn. These findings from nocireceptive neurons serving lumbar paraspinal tissues suggest that low back pain may be exacerbated by activity in both efferent and afferent fibers located in the lumbar sympathetic chain, the efferent actions being mediated indirectly through sympathetic-sensory interactions in somatic and/or visceral tissues.
Atrophy and neuron loss: effects of a protein-deficient diet on sympathetic neurons.
Gomes, Silvio Pires; Nyengaard, Jens Randel; Misawa, Rúbia; Girotti, Priscila Azevedo; Castelucci, Patrìcia; Blazquez, Francisco Hernandez Javier; de Melo, Mariana Pereira; Ribeiro, Antonio Augusto Coppi
2009-12-01
Protein deficiency is one of the biggest public health problems in the world, accounting for about 30-40% of hospital admissions in developing countries. Nutritional deficiencies lead to alterations in the peripheral nervous system and in the digestive system. Most studies have focused on the effects of protein-deficient diets on the enteric neurons, but not on sympathetic ganglia, which supply extrinsic sympathetic input to the digestive system. Hence, in this study, we investigated whether a protein-restricted diet would affect the quantitative structure of rat coeliac ganglion neurons. Five male Wistar rats (undernourished group) were given a pre- and postnatal hypoproteinic diet receiving 5% casein, whereas the nourished group (n = 5) was fed with 20% casein (normoproteinic diet). Blood tests were carried out on the animals, e.g., glucose, leptin, and triglyceride plasma concentrations. The main structural findings in this study were that a protein-deficient diet (5% casein) caused coeliac ganglion (78%) and coeliac ganglion neurons (24%) to atrophy and led to neuron loss (63%). Therefore, the fall in the total number of coeliac ganglion neurons in protein-restricted rats contrasts strongly with no neuron losses previously described for the enteric neurons of animals subjected to similar protein-restriction diets. Discrepancies between our figures and the data for enteric neurons (using very similar protein-restriction protocols) may be attributable to the counting method used. In light of this, further systematic investigations comparing 2-D and 3-D quantitative methods are warranted to provide even more advanced data on the effects that a protein-deficient diet may exert on sympathetic neurons. (c) 2009 Wiley-Liss, Inc. Copyright 2009 Wiley-Liss, Inc.
Nörenberg, W; von Kügelgen, I; Meyer, A; Illes, P; Starke, K
2000-01-01
Cultured sympathetic neurones are depolarized and release noradrenaline in response to extracellular ATP, UDP and UTP. We examined the possibility that, in neurones cultured from rat thoracolumbar sympathetic ganglia, inhibition of the M-type potassium current might underlie the effects of UDP and UTP. Reverse transcriptase-polymerase chain reaction indicated that the cultured cells contained mRNA for P2Y2-, P2Y4- and P2Y6-receptors as well as for the KCNQ2- and KCNQ3-subunits which have been suggested to assemble into M-channels. In cultures of neurones taken from newborn as well as from 10 day-old rats, oxotremorine, the M-channel blocker Ba2+ and UDP all released previously stored [3H]-noradrenaline. The neurones possessed M-currents, the kinetic properties of which were similar in neurones from newborn and 9–12 day-old rats. UDP, UTP and ATP had no effect on M-currents in neurones prepared from newborn rats. Oxotremorine and Ba2+ substantially inhibited the current. ATP also had no effect on the M-current in neurones prepared from 9–12 day-old rats. Oxotremorine and Ba2+ again caused marked inhibition. In contrast to cultures from newborn animals, UDP and UTP attenuated the M-current in neurones from 9–12 day-old rats; however, the maximal inhibition was less than 30%. The results indicate that inhibition of the M-current is not involved in uracil nucleotide-induced transmitter release from rat cultured sympathetic neurones during early development. M-current inhibition may contribute to release at later stages, but only to a minor extent. The mechanism leading to noradrenaline release by UDP and UTP remains unknown. PMID:10683196
Nerve Growth Factor Inhibits Sympathetic Neurons' Response to an Injury Cytokine
NASA Astrophysics Data System (ADS)
Shadiack, Annette M.; Vaccariello, Stacey A.; Sun, Yi; Zigmond, Richard E.
1998-06-01
Axonal damage to adult peripheral neurons causes changes in neuronal gene expression. For example, axotomized sympathetic, sensory, and motor neurons begin to express galanin mRNA and protein, and recent evidence suggests that galanin plays a role in peripheral nerve regeneration. Previous studies in sympathetic and sensory neurons have established that galanin expression is triggered by two consequences of nerve transection: the induction of leukemia inhibitory factor (LIF) and the reduction in the availability of the target-derived factor, nerve growth factor. It is shown in the present study that no stimulation of galanin expression occurs following direct application of LIF to intact neurons in the superior cervical sympathetic ganglion. Injection of animals with an antiserum to nerve growth factor concomitant with the application of LIF, on the other hand, does stimulate galanin expression. The data suggest that the response of neurons to an injury factor, LIF, is affected by whether the neurons still receive trophic signals from their targets.
Lujan, Heidi L; Palani, Gurunanthan; Chen, Ying; Peduzzi, Jean D; Dicarlo, Stephen E
2009-05-01
Cholera toxin B subunit conjugated to saporin (SAP, a ribosomal inactivating protein that binds to and inactivates ribosomes) was injected in both stellate ganglia to evaluate the physiological response to targeted ablation of cardiac sympathetic neurons. Resting cardiac sympathetic activity (cardiac sympathetic tonus), exercise-induced sympathetic activity (heart rate responses to graded exercise), and reflex sympathetic activity (heart rate responses to graded doses of sodium nitroprusside, SNP) were determined in 18 adult conscious Sprague-Dawley male rats. Rats were randomly divided into the following three groups (n = 6/group): 1) control (no injection), 2) bilateral stellate ganglia injection of unconjugated cholera toxin B (CTB), and 3) bilateral stellate ganglia injection of cholera toxin B conjugated to SAP (CTB-SAP). CTB-SAP rats, compared with control and CTB rats, had reduced cardiac sympathetic tonus and reduced heart rate responses to graded exercise and graded doses of SNP. Furthermore, the number of stained neurons in the stellate ganglia and spinal cord (segments T(1)-T(4)) was reduced in CTB-SAP rats. Thus CTB-SAP retrogradely transported from the stellate ganglia is effective at ablating cardiac sympathetic neurons and reducing resting, exercise, and reflex sympathetic activity. Additional studies are required to further characterize the physiological responses to this procedure as well as determine if this new approach is safe and efficacious for the treatment of conditions associated with excess sympathetic activity (e.g., autonomic dysreflexia, hypertension, heart failure, and ventricular arrhythmias).
Nerve Growth Factor Sensitizes Adult Sympathetic Neurons to the Proinflammatory Peptide Bradykinin
Vivas, Oscar; Kruse, Martin
2014-01-01
Levels of nerve growth factor (NGF) are elevated in inflamed tissues. In sensory neurons, increases in NGF augment neuronal sensitivity (sensitization) to noxious stimuli. Here, we hypothesized that NGF also sensitizes sympathetic neurons to proinflammatory stimuli. We cultured superior cervical ganglion (SCG) neurons from adult male Sprague Dawley rats with or without added NGF and compared their responsiveness to bradykinin, a proinflammatory peptide. The NGF-cultured neurons exhibited significant depolarization, bursts of action potentials, and Ca2+ elevations after bradykinin application, whereas neurons cultured without NGF showed only slight changes in membrane potential and cytoplasmic Ca2+ levels. The NGF effect, which requires trkA receptors, takes hours to develop and days to reverse. We addressed the ionic mechanisms underlying this sensitization. NGF did not alter bradykinin-induced M-current inhibition or phosphatidylinositol 4,5-bisphosphate hydrolysis. Maxi-K channel-mediated current evoked by depolarizations was reduced by 50% by culturing neurons in NGF. Application of iberiotoxin or paxilline, blockers of Maxi-K channels, mimicked NGF treatment and sensitized neurons to bradykinin application. A calcium channel blocker also mimicked NGF treatment. We found that NGF reduces Maxi-K channel opening by decreasing the activity of nifedipine-sensitive calcium channels. In conclusion, culture in NGF reduces the activity of L-type calcium channels, and secondarily, the calcium-sensitive activity of Maxi-K channels, rendering sympathetic neurons electrically hyper-responsive to bradykinin. PMID:25186743
Resolved and open issues in chromaffin cell development.
Unsicker, Klaus; Huber, Katrin; Schober, Andreas; Kalcheim, Chaya
2013-01-01
Ten years of research within the DFG-funded Collaborative Research Grant SFB 488 at the University of Heidelberg have added many new facets to our understanding of chromaffin cell development. Glucocorticoid signaling is no longer the key for understanding the determination of the chromaffin phenotype, yet a novel role has been attributed to glucocorticoids: they are essential for the postnatal maintenance of adrenal and extra-adrenal chromaffin cells. Transcription factors, as, e.g. MASH1 and Phox2B, have similar, but also distinct functions in chromaffin and sympathetic neuronal development, and BMP-4 not only induces sympathoadrenal (SA) cells at the dorsal aorta and within the adrenal gland, but also promotes chromaffin cell maturation. Chromaffin cells and sympathetic neurons share a common progenitor in the dorsal neural tube (NT) in vivo, as revealed by single cell electroporations into the dorsal NT. Thus, specification of chromaffin cells is likely to occur after cell emigration either during migration or close to colonization of the target regions. Mechanisms underlying the specification of chromaffin cells vs. sympathetic neurons are currently being explored. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Zhang, Yan; Kerman, Ilan A; Laque, Amanda; Nguyen, Phillip; Faouzi, Miro; Louis, Gwendolyn W; Jones, Justin C; Rhodes, Chris; Münzberg, Heike
2011-02-02
Brown adipose tissue (BAT) thermogenesis is critical to maintain homoeothermia and is centrally controlled via sympathetic outputs. Body temperature and BAT activity also impact energy expenditure, and obesity is commonly associated with decreased BAT capacity and sympathetic tone. Severely obese mice that lack leptin or its receptor (LepRb) show decreased BAT capacity, sympathetic tone, and body temperature and thus are unable to adapt to acute cold exposure (Trayhurn et al., 1976). LepRb-expressing neurons are found in several hypothalamic sites, including the dorsomedial hypothalamus (DMH) and median preoptic area (mPOA), both critical sites to regulate sympathetic, thermoregulatory BAT circuits. Specifically, a subpopulation in the DMH/dorsal hypothalamic area (DHA) is stimulated by fever-inducing endotoxins or cold exposure (Dimicco and Zaretsky, 2007; Morrison et al., 2008). Using the retrograde, transsynaptic tracer pseudorabies virus (PRV) injected into the BAT of mice, we identified PRV-labeled LepRb neurons in the DMH/DHA and mPOA (and other sites), thus indicating their involvement in the regulation of sympathetic BAT circuits. Indeed, acute cold exposure induced c-Fos (as a surrogate for neuronal activity) in DMH/DHA LepRb neurons, and a large number of mPOA LepRb neurons project to the DMH/DHA. Furthermore, DMH/DHA LepRb neurons (and a subpopulation of LepRb mPOA neurons) project and synaptically couple to rostral raphe pallidus neurons, consistent with the current understanding of BAT thermoregulatory circuits from the DMH/DHA and mPOA (Dimicco and Zaretsky, 2007; Morrison et al., 2008). Thus, these data present strong evidence that LepRb neurons in the DMH/DHA and mPOA mediate thermoregulatory leptin action.
Moraes, Davi J A; Bonagamba, Leni G H; Costa, Kauê M; Costa-Silva, João H; Zoccal, Daniel B; Machado, Benedito H
2014-01-01
Individuals experiencing sustained hypoxia (SH) exhibit adjustments in the respiratory and autonomic functions by neural mechanisms not yet elucidated. In the present study we evaluated the central mechanisms underpinning the SH-induced changes in the respiratory pattern and their impact on the sympathetic outflow. Using a decerebrated arterially perfused in situ preparation, we verified that juvenile rats exposed to SH (10% O2) for 24 h presented an active expiratory pattern, with increased abdominal, hypoglossal and vagal activities during late-expiration (late-E). SH also enhanced the activity of augmenting-expiratory neurones and depressed the activity of post-inspiratory neurones of the Bötzinger complex (BötC) by mechanisms not related to changes in their intrinsic electrophysiological properties. SH rats exhibited high thoracic sympathetic activity and arterial pressure levels associated with an augmented firing frequency of pre-sympathetic neurones of the rostral ventrolateral medulla (RVLM) during the late-E phase. The antagonism of ionotropic glutamatergic receptors in the BötC/RVLM abolished the late-E bursts in expiratory and sympathetic outputs of SH rats, indicating that glutamatergic inputs to the BötC/RVLM are essential for the changes in the expiratory and sympathetic coupling observed in SH rats. We also observed that the usually silent late-E neurones of the retrotrapezoid nucleus/parafacial respiratory group became active in SH rats, suggesting that this neuronal population may provide the excitatory drive essential to the emergence of active expiration and sympathetic overactivity. We conclude that short-term SH induces the activation of medullary expiratory neurones, which affects the pattern of expiratory motor activity and its coupling with sympathetic activity. PMID:24614747
Distribution of TRPV1 and TRPV2 in the human stellate ganglion and spinal cord.
Kokubun, Souichi; Sato, Tadasu; Ogawa, Chikara; Kudo, Kai; Goto, Koju; Fujii, Yuki; Shimizu, Yoshinaka; Ichikawa, Hiroyuki
2015-03-17
Immunohistochemistry for the transient receptor potential cation channel subfamily V member 1 (TRPV1) and 2 (TRPV2) was performed on the stellate ganglion and spinal cord in human cadavers. In the stellate ganglion, 25.3% and 16.2% of sympathetic neurons contained TRPV1- and TRPV2-immunoreactivity, respectively. The cell size analysis also demonstrated that proportion of TRPV1- or TRPV2-immunoreactive (-IR) neurons among large (>600 μm(2)) sympathetic neurons (TRPV1, 30.7%; TRPV2, 27.0%) was higher than among small (<600 μm(2)) sympathetic neurons (TRPV1, 22.0%; TRPV2, 13.6%). The present study also demonstrated that 10.0% of sympathetic neurons in the stellate ganglion had pericellular TRPV2-IR nerve fibers. Fourteen percent of large neurons and 7.8% of small neurons were surrounded by TRPV2-IR nerve fibers. TRPV2-immunoreactivity was also detected in about 40% of neuronal cell bodies with pericellular TRPV2-IR nerve fibers. In the lateral horn of the human thoracic spinal cord, TRPV2-immunoreactivity was expressed by some neurons and many varicose fibers surrounding TRPV2-immunonegative neurons. TRPV2-IR pericellular fibers in the stellate ganglion may originate from the lateral horn of the spinal cord. There appears to be TRPV1- or TRPV2-IR sympathetic pathway in the human stellate ganglion and spinal cord. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
BDNF - A key player in cardiovascular system.
Pius-Sadowska, Ewa; Machaliński, Bogusław
2017-09-01
Neurotrophins (NTs) were first identified as target-derived survival factors for neurons of the central and peripheral nervous system (PNS). They are known to control neural cell fate, development and function. Independently of their neuronal properties, NTs exert unique cardiovascular activity. The heart is innervated by sensory, sympathetic and parasympathetic neurons, which require NTs during early development and in the establishment of mature properties, contributing to the maintenance of cardiovascular homeostasis. The identification of molecular mechanisms regulated by NTs and involved in the crosstalk between cardiac sympathetic nerves, cardiomyocytes, cardiac fibroblasts, and vascular cells, has a fundamental importance in both normal heart function and disease. The article aims to review the recent data on the effects of Brain-Derived Neurotrophic Factor (BDNF) on various cardiovascular neuronal and non-neuronal functions such as the modulation of synaptic properties of autonomic neurons, axonal outgrowth and sprouting, formation of the vascular and neural networks, smooth muscle migration, and control of endothelial cell survival and cardiomyocytes. Understanding these mechanisms may be crucial for developing novel therapeutic strategies, including stem cell-based therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, De-Pei; Zhou, Jing-Jing; Zhang, Jixiang; Pan, Hui-Lin
2017-11-01
NMDAR activity in the hypothalamic paraventricular nucleus (PVN) is increased and critically involved in heightened sympathetic vasomotor tone in hypertension. Calcium/calmodulin-dependent protein kinase II (CaMKII) binds to and modulates NMDAR activity. In this study, we determined the role of CaMKII in regulating NMDAR activity of PVN presympathetic neurons in male spontaneously hypertensive rats (SHRs). NMDAR-mediated EPSCs and puff NMDA-elicited currents were recorded in spinally projecting PVN neurons in SHRs and male Wistar-Kyoto (WKY) rats. The basal amplitude of evoked NMDAR-EPSCs and puff NMDA currents in retrogradely labeled PVN neurons were significantly higher in SHRs than in WKY rats. The CaMKII inhibitor autocamtide-2-related inhibitory peptide (AIP) normalized the increased amplitude of NMDAR-EPSCs and puff NMDA currents in labeled PVN neurons in SHRs but had no effect in WKY rats. Treatment with AIP also normalized the higher frequency of NMDAR-mediated miniature EPSCs of PVN neurons in SHRs. CaMKII-mediated phosphorylation level of GluN2B serine 1303 (S1303) in the PVN, but not in the hippocampus and frontal cortex, was significantly higher in SHRs than in WKY rats. Lowering blood pressure with celiac ganglionectomy in SHRs did not alter the increased level of phosphorylated GluN2B S1303 in the PVN. In addition, microinjection of AIP into the PVN significantly reduced arterial blood pressure and lumbar sympathetic nerve discharges in SHRs. Our findings suggest that CaMKII activity is increased in the PVN and contributes to potentiated presynaptic and postsynaptic NMDAR activity to elevate sympathetic vasomotor tone in hypertension. SIGNIFICANCE STATEMENT Heightened sympathetic vasomotor tone is a major contributor to the development of hypertension. Although glutamate NMDA receptor (NMDAR)-mediated excitatory drive in the hypothalamus plays a critical role in increased sympathetic output in hypertension, the molecular mechanism involved in potentiated NMDAR activity of hypothalamic presympathetic neurons remains unclear. Here we show that the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) is increased and plays a key role in the potentiated presynaptic and postsynaptic NMDAR activity of hypothalamic presympathetic neurons in hypertension. Also, the inhibition of CaMKII in the hypothalamus reduces elevated blood pressure and sympathetic nerve discharges in hypertension. This new knowledge extends our understanding of the mechanism of synaptic plasticity in the hypothalamus and suggests new strategies to treat neurogenic hypertension. Copyright © 2017 the authors 0270-6474/17/3710690-10$15.00/0.
Edward Hickman, F; Stanley, Emily M; Carter, Bruce D
2018-05-22
The p75 neurotrophin receptor (p75NTR) plays an integral role in patterning the sympathetic nervous system during development. Initially, p75NTR is expressed at low levels as sympathetic axons project toward their targets, which enables neurotrophin-3 (NT3) to activate TrkA receptors and promote growth. Upon reaching nerve growth factor (NGF) producing tissues, p75NTR is up regulated resulting in formation of TrkA-p75 complexes, which are high affinity binding sites selective for NGF, thereby blunting NT3 signaling. The level of p75NTR expressed on the neuron surface is instrumental in regulating trophic factor response; however, the mechanisms by which p75NTR expression is regulated are poorly understood. Here, we demonstrate a rapid, translation independent increase in surface expression of p75NTR in response to NGF in rat sympathetic neurons. p75NTR was mobilized to the neuron surface from GGA3-postitive vesicles through activation of the GTPase Arf6, which was stimulated by NGF, but not NT3 binding to TrkA. Arf6 activation required PI3 kinase activity and was prevented by an inhibitor of the cytohesin family of Arf6 GEFs. Overexpression of a constitutively active Arf6 mutant (Q67L) was sufficient to significantly increase surface expression of p75NTR even in the absence of NGF. Functionally, expression of active Arf6 markedly attenuated the ability of NT3 to promote neuronal survival and neurite outgrowth while the NGF response was unaltered. These data suggest that NGF activation of Arf6 through TrkA is critical for the increase in p75NTR surface expression that enables the switch in neurotrophin responsiveness during development in the sympathetic nervous system. SIGNIFICANCE STATEMENT p75NTR is instrumental in the regulation of neuronal survival and apoptosis during development and is also implicated as a contributor to aberrant neurodegeneration in numerous conditions. Therefore, a better understanding of the mechanisms that mediate p75NTR surface availability, may provide insight into how and why neurodegenerative processes manifest and reveal new therapeutic targets. Results from this study indicate a novel mechanism by which p75NTR can be rapidly shuttled to the cell surface from existing intracellular pools and explores a unique pathway by which NGF regulates the sympathetic innervation of target tissues, which has profound consequences for the function of these organs. Copyright © 2018 the authors.
Ye, Zeng-You; Li, De-Pei; Pan, Hui-Lin
2013-08-01
Increased glutamatergic input in the hypothalamic paraventricular nucleus (PVN) plays an important role in the development of hypertension. Group II metabotropic glutamate receptors are expressed in the PVN, but their involvement in regulating synaptic transmission and sympathetic outflow in hypertension is unclear. Here, we show that the group II metabotropic glutamate receptors agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) produced a significantly greater reduction in the frequency of spontaneous and miniature excitatory postsynaptic currents and in the amplitude of electrically evoked excitatory postsynaptic currents in retrogradely labeled spinally projecting PVN neurons in spontaneously hypertensive rats (SHRs) than in normotensive control rats. DCG-IV similarly decreased the frequency of GABAergic inhibitory postsynaptic currents of labeled PVN neurons in the 2 groups of rats. Strikingly, DCG-IV suppressed the firing of labeled PVN neurons only in SHRs. DCG-IV failed to inhibit the firing of PVN neurons of SHRs in the presence of ionotropic glutamate receptor antagonists. Lowering blood pressure with celiac ganglionectomy in SHRs normalized the DCG-IV effect on excitatory postsynaptic currents to the same level seen in control rats. Furthermore, microinjection of DCG-IV into the PVN significantly reduced blood pressure and sympathetic nerve activity in SHRs. Our findings provide new information that presynaptic group II metabotropic glutamate receptor activity at the glutamatergic terminals increases in the PVN in SHRs. Activation of group II metabotropic glutamate receptors in the PVN inhibits sympathetic vasomotor tone through attenuation of increased glutamatergic input and neuronal hyperactivity in SHRs.
Netrin-1 controls sympathetic arterial innervation.
Brunet, Isabelle; Gordon, Emma; Han, Jinah; Cristofaro, Brunella; Broqueres-You, Dong; Liu, Chun; Bouvrée, Karine; Zhang, Jiasheng; del Toro, Raquel; Mathivet, Thomas; Larrivée, Bruno; Jagu, Julia; Pibouin-Fragner, Laurence; Pardanaud, Luc; Machado, Maria J C; Kennedy, Timothy E; Zhuang, Zhen; Simons, Michael; Levy, Bernard I; Tessier-Lavigne, Marc; Grenz, Almut; Eltzschig, Holger; Eichmann, Anne
2014-07-01
Autonomic sympathetic nerves innervate peripheral resistance arteries, thereby regulating vascular tone and controlling blood supply to organs. Despite the fundamental importance of blood flow control, how sympathetic arterial innervation develops remains largely unknown. Here, we identified the axon guidance cue netrin-1 as an essential factor required for development of arterial innervation in mice. Netrin-1 was produced by arterial smooth muscle cells (SMCs) at the onset of innervation, and arterial innervation required the interaction of netrin-1 with its receptor, deleted in colorectal cancer (DCC), on sympathetic growth cones. Function-blocking approaches, including cell type-specific deletion of the genes encoding Ntn1 in SMCs and Dcc in sympathetic neurons, led to severe and selective reduction of sympathetic innervation and to defective vasoconstriction in resistance arteries. These findings indicate that netrin-1 and DCC are critical for the control of arterial innervation and blood flow regulation in peripheral organs.
Netrin-1 controls sympathetic arterial innervation
Brunet, Isabelle; Gordon, Emma; Han, Jinah; Cristofaro, Brunella; Broqueres-You, Dong; Liu, Chun; Bouvrée, Karine; Zhang, Jiasheng; del Toro, Raquel; Mathivet, Thomas; Larrivée, Bruno; Jagu, Julia; Pibouin-Fragner, Laurence; Pardanaud, Luc; Machado, Maria J.C.; Kennedy, Timothy E.; Zhuang, Zhen; Simons, Michael; Levy, Bernard I.; Tessier-Lavigne, Marc; Grenz, Almut; Eltzschig, Holger; Eichmann, Anne
2014-01-01
Autonomic sympathetic nerves innervate peripheral resistance arteries, thereby regulating vascular tone and controlling blood supply to organs. Despite the fundamental importance of blood flow control, how sympathetic arterial innervation develops remains largely unknown. Here, we identified the axon guidance cue netrin-1 as an essential factor required for development of arterial innervation in mice. Netrin-1 was produced by arterial smooth muscle cells (SMCs) at the onset of innervation, and arterial innervation required the interaction of netrin-1 with its receptor, deleted in colorectal cancer (DCC), on sympathetic growth cones. Function-blocking approaches, including cell type–specific deletion of the genes encoding Ntn1 in SMCs and Dcc in sympathetic neurons, led to severe and selective reduction of sympathetic innervation and to defective vasoconstriction in resistance arteries. These findings indicate that netrin-1 and DCC are critical for the control of arterial innervation and blood flow regulation in peripheral organs. PMID:24937433
Lehigh, Kathryn M; West, Katherine M; Ginty, David D
2017-04-04
Sympathetic neurons require NGF from their target fields for survival, axonal target innervation, dendritic growth and formation, and maintenance of synaptic inputs from preganglionic neurons. Target-derived NGF signals are propagated retrogradely, from distal axons to somata of sympathetic neurons via TrkA signaling endosomes. We report that a subset of TrkA endosomes that are transported from distal axons to cell bodies translocate into dendrites, where they are signaling competent and move bidirectionally, in close proximity to synaptic protein clusters. Using a strategy for spatially confined inhibition of TrkA kinase activity, we found that distal-axon-derived TrkA signaling endosomes are necessary within sympathetic neuron dendrites for maintenance of synapses. Thus, TrkA signaling endosomes have unique functions in different cellular compartments. Moreover, target-derived NGF mediates circuit formation and synapse maintenance through TrkA endosome signaling within dendrites to promote aggregation of postsynaptic protein complexes. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
RAGE mediates the inactivation of nAChRs in sympathetic neurons under high glucose conditions.
Chandna, Andrew R; Nair, Manoj; Chang, Christine; Pennington, Paul R; Yamamoto, Yasuhiko; Mousseau, Darrell D; Campanucci, Verónica A
2015-02-01
Autonomic dysfunction is a serious complication of diabetes and can lead to cardiovascular abnormalities and premature death. It was recently proposed that autonomic dysfunction is triggered by oxidation-mediated inactivation of neuronal nicotinic acetylcholine receptors (nAChRs), impairing synaptic transmission in sympathetic ganglia and resulting in autonomic failure. We investigated whether the receptor for advanced glycation end products (RAGE) and its role in the generation of reactive oxygen species (ROS) could be contributing to the events that initiate sympathetic malfunction under high glucose conditions. Using biochemical, live imaging and electrophysiological tools we demonstrated that exposure of sympathetic neurons to high glucose increases RAGE expression and oxidative markers, and that incubation with RAGE ligands (e.g. AGEs, S100 and HMGB1) mimics both ROS elevation and nAChR inactivation. In contrast, co-treatment with either antioxidants or an anti-RAGE IgG prevented the inactivation of nAChRs. Lastly, a role for RAGE in this context was corroborated by the lack of sensitivity of sympathetic neurons from RAGE knock-out mice to high glucose. These data define a pivotal role for RAGE in initiating the events associated with exposure of sympathetic neurons to high glucose, and strongly support RAGE signaling as a potential therapeutic target in the autonomic complications associated with diabetes. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Cloutier, Frank; Kalincik, Tomas; Lauschke, Jenny; Tuxworth, Gervase; Cavanagh, Brenton; Meedeniya, Adrian; Mackay-Sim, Alan; Carrive, Pascal; Waite, Phil
2016-12-01
Autonomic dysreflexia is a common complication after high level spinal cord injury and can be life-threatening. We have previously shown that the acute transplantation of olfactory ensheathing cells into the lesion site of rats transected at the fourth thoracic spinal cord level reduced autonomic dysreflexia up to 8weeks after spinal cord injury. This beneficial effect was correlated with changes in the morphology of sympathetic preganglionic neurons despite the olfactory cells surviving no longer than 3weeks. Thus the transitory presence of olfactory ensheathing cells at the injury site initiated long-term functional as well as morphological changes in the sympathetic preganglionic neurons. The primary aim of the present study was to evaluate whether olfactory ensheathing cells survive after transplantation within the parenchyma close to sympathetic preganglionic neurons and whether, in this position, they still reduce the duration of autonomic dysreflexia and modulate sympathetic preganglionic neuron morphology. The second aim was to quantify the density of synapses on the somata of sympathetic preganglionic neurons with the hypothesis that the reduction of autonomic dysreflexia requires synaptic changes. As a third aim, we evaluated the cell type-specificity of olfactory ensheathing cells by comparing their effects with a control group transplanted with fibroblasts. Animals transplanted with OECs had a faster recovery from hypertension induced by colorectal distension at 6 and 7weeks but not at 8weeks after T4 spinal cord transection. Olfactory ensheathing cells survived for at least 8weeks and were observed adjacent to sympathetic preganglionic neurons whose overall number of primary dendrites was reduced and the synaptic density on the somata increased, both caudal to the lesion site. Our results showed a long term cell type-specific effects of olfactory ensheathing cells on sympathetic preganglionic neurons morphology and on the synaptic density on their somata, and a transient cell type-specific reduction of autonomic dysreflexia. Copyright © 2016 Elsevier B.V. All rights reserved.
Functional neuroanatomy of the central noradrenergic system.
Szabadi, Elemer
2013-08-01
The central noradrenergic neurone, like the peripheral sympathetic neurone, is characterized by a diffusely arborizing terminal axonal network. The central neurones aggregate in distinct brainstem nuclei, of which the locus coeruleus (LC) is the most prominent. LC neurones project widely to most areas of the neuraxis, where they mediate dual effects: neuronal excitation by α₁-adrenoceptors and inhibition by α₂-adrenoceptors. The LC plays an important role in physiological regulatory networks. In the sleep/arousal network the LC promotes wakefulness, via excitatory projections to the cerebral cortex and other wakefulness-promoting nuclei, and inhibitory projections to sleep-promoting nuclei. The LC, together with other pontine noradrenergic nuclei, modulates autonomic functions by excitatory projections to preganglionic sympathetic, and inhibitory projections to preganglionic parasympathetic neurones. The LC also modulates the acute effects of light on physiological functions ('photomodulation'): stimulation of arousal and sympathetic activity by light via the LC opposes the inhibitory effects of light mediated by the ventrolateral preoptic nucleus on arousal and by the paraventricular nucleus on sympathetic activity. Photostimulation of arousal by light via the LC may enable diurnal animals to function during daytime. LC neurones degenerate early and progressively in Parkinson's disease and Alzheimer's disease, leading to cognitive impairment, depression and sleep disturbance.
Ryu, Vitaly; Watts, Alan G; Xue, Bingzhong; Bartness, Timothy J
2017-03-01
The brain networks connected to the sympathetic motor and sensory innervations of brown (BAT) and white (WAT) adipose tissues were originally described using two transneuronally transported viruses: the retrogradely transported pseudorabies virus (PRV), and the anterogradely transported H129 strain of herpes simplex virus-1 (HSV-1 H129). Further complexity was added to this network organization when combined injections of PRV and HSV-1 H129 into either BAT or WAT of the same animal generated sets of coinfected neurons in the brain, spinal cord, and sympathetic and dorsal root ganglia. These neurons are well positioned to act as sensorimotor links in the feedback circuits that control each fat pad. We have now determined the extent of sensorimotor crosstalk between interscapular BAT (IBAT) and inguinal WAT (IWAT). PRV152 and HSV-1 H129 were each injected into IBAT or IWAT of the same animal: H129 into IBAT and PRV152 into IWAT. The reverse configuration was applied in a different set of animals. We found single-labeled neurons together with H129+PRV152 coinfected neurons in multiple brain sites, with lesser numbers in the sympathetic and dorsal root ganglia that innervate IBAT and IWAT. We propose that these coinfected neurons mediate sensory-sympathetic motor crosstalk between IBAT and IWAT. Comparing the relative numbers of coinfected neurons between the two injection configurations showed a bias toward IBAT-sensory and IWAT-sympathetic motor feedback loops. These coinfected neurons provide a neuroanatomical framework for functional interactions between IBAT thermogenesis and IWAT lipolysis that occurs with cold exposure, food restriction/deprivation, exercise, and more generally with alterations in adiposity. Copyright © 2017 the American Physiological Society.
Indo, Yasuhiro
2015-05-01
Nerve growth factor (NGF) is a neurotrophic factor essential for the survival and maintenance of neurons. Congenital insensitivity to pain with anhidrosis (CIPA) is caused by loss-of-function mutations in NTRK1, which encodes a receptor tyrosine kinase, TrkA, for NGF. Mutations in NTRK1 cause the selective loss of NGF-dependent neurons, including both NGF-dependent primary afferents and sympathetic postganglionic neurons, in otherwise intact systems. The NGF-dependent primary afferents are thinly myelinated AΔ or unmyelinated C-fibers that are dependent on the NGF-TrkA system during development. NGF-dependent primary afferents are not only nociceptive neurons that transmit pain and temperature sensation, but also are polymodal receptors that play essential roles for interoception by monitoring various changes in the physiological status of all tissues in the body. In addition, they contribute to various inflammatory processes in acute, chronic and allergic inflammation. Together with sympathetic postganglionic neurons, they maintain the homeostasis of the body and emotional responses via interactions with the brain, immune and endocrine systems. Pain is closely related to emotions that accompany physical responses induced by systemic activation of the sympathetic nervous system. In contrast to a negative image of emotions in daily life, Antonio Damasio proposed the 'Somatic Marker Hypothesis', wherein emotions play critical roles in the decision-making and reasoning processes. According to this hypothesis, reciprocal communication between the brain and the body-proper are essential for emotional responses. Using the pathophysiology of CIPA as a foundation, this article suggests that NGF-dependent neurons constitute a part of the neuronal network required for homeostasis and emotional responses, and indicates that this network plays important roles in mediating the reciprocal communication between the brain and the body-proper.
Onen, Mehmet Resid; Yilmaz, Ilhan; Ramazanoglu, Leyla; Aydin, Mehmet Dumlu; Keles, Sadullah; Baykal, Orhan; Aydin, Nazan; Gundogdu, Cemal
2018-01-01
To investigate the relationship between neuron density of the superior cervical sympathetic ganglia and pupil diameter in subarachnoid hemorrhage. This study was conducted on 22 rabbits; 5 for the baseline control group, 5 for the SHAM group and 12 for the study group. Pupil diameters were measured via sunlight and ocular tomography on day 1 as the control values. Pupil diameters were re-measured after injecting 0.5 cc saline to the SHAM group, and autologous arterial blood into the cisterna magna of the study group. After 3 weeks, the brain, superior cervical sympathetic ganglia and ciliary ganglia were extracted with peripheral tissues bilaterally and examined histopathologically. Pupil diameters were compared with neuron densities of the sympathetic ganglia and ciliary ganglia which were examined using stereological methods. Baseline values were; normal pupil diameter 7.180±620 ?m and mean neuron density of the superior cervical sympathetic ganglia 6.321±510/mm3, degenerated neuron density of ciliary ganglia was 5±2/mm3 after histopathological examination in the control group. These values were measured as 6.850±578 ?m, 5.950±340/mm3 and 123±39/mm3 in the SHAM group and 9.910±840 ?m, 7.950±764/mm3 and 650±98/mm3 in the study group. A linear relationship was determined between neuron density of the superior cervical sympathetic ganglia and pupil diameters (p < 0.005). Degenerated ciliary ganglia neuron density had an inverse effect on pupil diameters in all groups (p < 0.0001). Highly degenerated neuron density of the ciliary ganglion is not responsible for pupil dilatation owing to parasympathetic pupilloconstrictor palsy, but high neuron density of the pupillodilatatory superior cervical sympathetic ganglia should be considered an important factor for pupil dilatation.
Fritzsch, Bernd; Elliott, Karen L; Glover, Joel C
2017-11-01
Several concepts developed in the nineteenth century have formed the basis of much of our neuroanatomical teaching today. Not all of these were based on solid evidence nor have withstood the test of time. Recent evidence on the evolution and development of the autonomic nervous system, combined with molecular insights into the development and diversification of motor neurons, challenges some of the ideas held for over 100 years about the organization of autonomic motor outflow. This review provides an overview of the original ideas and quality of supporting data and contrasts this with a more accurate and in depth insight provided by studies using modern techniques. Several lines of data demonstrate that branchial motor neurons are a distinct motor neuron population within the vertebrate brainstem, from which parasympathetic visceral motor neurons of the brainstem evolved. The lack of an autonomic nervous system in jawless vertebrates implies that spinal visceral motor neurons evolved out of spinal somatic motor neurons. Consistent with the evolutionary origin of brainstem parasympathetic motor neurons out of branchial motor neurons and spinal sympathetic motor neurons out of spinal motor neurons is the recent revision of the organization of the autonomic nervous system into a cranial parasympathetic and a spinal sympathetic division (e.g., there is no sacral parasympathetic division). We propose a new nomenclature that takes all of these new insights into account and avoids the conceptual misunderstandings and incorrect interpretation of limited and technically inferior data inherent in the old nomenclature.
Girard, Beatrice M; Keller, Emily T; Schutz, Kristin C; May, Victor; Braas, Karen M
2004-12-15
Pituitary adenylate cyclase activating polypeptides (PACAP) and PAC1 receptor signaling have diverse roles in central and peripheral nervous system development and function. In recent microarray analyses for PACAP and PAC1 receptor modulation of neuronal transcripts, the mRNA of Homer 1a (H1a), which encodes the noncrosslinking and immediate early gene product isoform of Homer, was identified to be strongly upregulated in superior cervical ganglion (SCG) sympathetic neurons. Given the prominent roles of Homer in synaptogenesis, synaptic protein complex assembly and receptor/channel signaling, we have examined the ability for PACAP to induce H1a expression in sympathetic, cortical and hippocampal neurons to evaluate more comprehensively the roles of PACAP in synaptic function. In both central and peripheral neuronal cultures, PACAP peptides increased transiently H1a transcript levels approximately 3.5- to 6-fold. From real-time quantitative PCR measurements, the temporal patterns of PACAP-mediated H1a mRNA induction among the different neuronal cultures appeared similar although the onset of sympathetic H1a transcript expression appeared protracted. The increase in H1a transcripts was accompanied by increases in H1a protein levels. Comparative studies with VIP and PACAP(6-38) antagonist demonstrated that the PACAP effects reflected PAC1 receptor activation and signaling. The PAC1 receptor isoforms expressed in central and peripheral neurons can engage diverse intracellular second messenger systems, and studies using selective signaling pathway inhibitors demonstrated that the cyclic AMP/PKA and MEK/ERK cascades are principal mediators of the PACAP-mediated H1a induction response. In modulating H1a transcript and protein expression, these studies may implicate broad roles for PACAP and PAC1 receptor signaling in synaptic development and plasticity.
Dempsey, Bowen; Le, Sheng; Turner, Anita; Bokiniec, Phil; Ramadas, Radhika; Bjaalie, Jan G.; Menuet, Clement; Neve, Rachael; Allen, Andrew M.; Goodchild, Ann K.; McMullan, Simon
2017-01-01
Spinally projecting neurons in the rostral ventrolateral medulla (RVLM) play a critical role in the generation of vasomotor sympathetic tone and are thought to receive convergent input from neurons at every level of the neuraxis; the factors that determine their ongoing activity remain unresolved. In this study we use a genetically restricted viral tracing strategy to definitively map their spatially diffuse connectome. We infected bulbospinal RVLM neurons with a recombinant rabies variant that drives reporter expression in monosynaptically connected input neurons and mapped their distribution using an MRI-based volumetric atlas and a novel image alignment and visualization tool that efficiently translates the positions of neurons captured in conventional photomicrographs to Cartesian coordinates. We identified prominent inputs from well-established neurohumoral and viscero-sympathetic sensory actuators, medullary autonomic and respiratory subnuclei, and supramedullary autonomic nuclei. The majority of inputs lay within the brainstem (88–94%), and included putative respiratory neurons in the pre-Bötzinger Complex and post-inspiratory complex that are therefore likely to underlie respiratory-sympathetic coupling. We also discovered a substantial and previously unrecognized input from the region immediately ventral to nucleus prepositus hypoglossi. In contrast, RVLM sympathetic premotor neurons were only sparsely innervated by suprapontine structures including the paraventricular nucleus, lateral hypothalamus, periaqueductal gray, and superior colliculus, and we found almost no evidence of direct inputs from the cortex or amygdala. Our approach can be used to quantify, standardize and share complete neuroanatomical datasets, and therefore provides researchers with a platform for presentation, analysis and independent reanalysis of connectomic data. PMID:28298886
Central pathway for spontaneous and prostaglandin E2-evoked cutaneous vasoconstriction.
Rathner, Joseph A; Madden, Christopher J; Morrison, Shaun F
2008-07-01
A reduction of heat loss to the environment through increased cutaneous vasoconstrictor (CVC) sympathetic outflow contributes to elevated body temperature during fever. We determined the role of neurons in the dorsomedial hypothalamus (DMH) in increases in CVC sympathetic tone evoked by PGE2 into the preoptic area (POA) in chloralose/urethane-anesthetized rats. The frequency of axonal action potentials of CVC sympathetic ganglion cells recorded from the surface of the tail artery was increased by 1.8 Hz following nanoinjections of bicuculline (50 pmol) into the DMH. PGE2 nanoinjection into the POA elicited a similar excitation of tail CVC neurons (+2.1 Hz). Subsequent to PGE2 into the POA, muscimol (400 pmol/side) into the DMH did not alter the activity of tail CVC neurons. Inhibition of neurons in the rostral raphé pallidus (rRPa) eliminated the spontaneous discharge of tail CVC neurons but only reduced the PGE2-evoked activity. Residual activity was abolished by subsequent muscimol into the rostral ventrolateral medulla. Transections through the neuraxis caudal to the POA increased the activity of tail CVC neurons, which were sustained through transections caudal to DMH. We conclude that while activation of neurons in the DMH is sufficient to activate tail CVC neurons, it is not necessary for their PGE2-evoked activity. These results support a CVC component of increased core temperature elicited by PGE2 in POA that arises from relief of a tonic inhibition from neurons in POA of CVC sympathetic premotor neurons in rRPa and is dependent on the excitation of CVC premotor neurons from a site caudal to DMH.
Synaptic Plasticity in Cardiac Innervation and Its Potential Role in Atrial Fibrillation
Ashton, Jesse L.; Burton, Rebecca A. B.; Bub, Gil; Smaill, Bruce H.; Montgomery, Johanna M.
2018-01-01
Synaptic plasticity is defined as the ability of synapses to change their strength of transmission. Plasticity of synaptic connections in the brain is a major focus of neuroscience research, as it is the primary mechanism underpinning learning and memory. Beyond the brain however, plasticity in peripheral neurons is less well understood, particularly in the neurons innervating the heart. The atria receive rich innervation from the autonomic branch of the peripheral nervous system. Sympathetic neurons are clustered in stellate and cervical ganglia alongside the spinal cord and extend fibers to the heart directly innervating the myocardium. These neurons are major drivers of hyperactive sympathetic activity observed in heart disease, ventricular arrhythmias, and sudden cardiac death. Both pre- and postsynaptic changes have been observed to occur at synapses formed by sympathetic ganglion neurons, suggesting that plasticity at sympathetic neuro-cardiac synapses is a major contributor to arrhythmias. Less is known about the plasticity in parasympathetic neurons located in clusters on the heart surface. These neuronal clusters, termed ganglionated plexi, or “little brains,” can independently modulate neural control of the heart and stimulation that enhances their excitability can induce arrhythmia such as atrial fibrillation. The ability of these neurons to alter parasympathetic activity suggests that plasticity may indeed occur at the synapses formed on and by ganglionated plexi neurons. Such changes may not only fine-tune autonomic innervation of the heart, but could also be a source of maladaptive plasticity during atrial fibrillation. PMID:29615932
Rostral dorsolateral pontine neurons with sympathetic nerve-related activity.
Barman, S M; Gebber, G L; Kitchens, H
1999-02-01
Spike-triggered averaging, arterial pulse-triggered analysis, and coherence analysis were used to classify rostral dorsolateral pontine (RDLP) neurons into groups whose naturally occurring discharges were correlated to only the 10-Hz rhythm (n = 29), to only the cardiac-related rhythm (n = 15), and to both rhythms (n = 15) in inferior cardiac sympathetic nerve discharge (SND) of urethan-anesthetized cats. Most of the neurons with activity correlated to only the cardiac-related rhythm were located medial to the other two groups of neurons. The firing rates of most RDLP neurons with activity correlated to only the 10-Hz rhythm (9 of 12) or both rhythms (7 of 8) were decreased during baroreceptor reflex-induced inhibition of SND produced by aortic obstruction; thus, they are presumed to be sympathoexcitatory. The firing rates of four of seven RDLP neurons with activity correlated to only the cardiac-related rhythm increased during baroreceptor reflex activation; thus, they may be sympathoinhibitory. We conclude that the RDLP contains a functionally heterogeneous population of neurons with sympathetic nerve-related activity. These neurons could not be antidromically activated by stimulation of the thoracic spinal cord.
Del Rio, Rodrigo; Quintanilla, Rodrigo A.; Orellana, Juan A.; Retamal, Mauricio A.
2015-01-01
Metabolic syndrome (MS) is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure, and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct, and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission, and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process. PMID:26648871
Putting together the clues of the everlasting neuro-cardiac liaison.
Franzoso, Mauro; Zaglia, Tania; Mongillo, Marco
2016-07-01
Starting from the late embryonic development, the sympathetic nervous system extensively innervates the heart and modulates its activity during the entire lifespan. The distribution of myocardial sympathetic processes is finely regulated by the secretion of limiting amounts of pro-survival neurotrophic factors by cardiac cells. Norepinephrine release by the neurons rapidly modulates myocardial electrophysiology, and increases the rate and force of cardiomyocyte contractions. Sympathetic processes establish direct interaction with cardiomyocytes, characterized by the presence of neurotransmitter vesicles and reduced cell-cell distance. Whether such contacts have a functional role in both neurotrophin- and catecholamine-dependent communication between the two cell types, is poorly understood. In this review we will address the effects of the sympathetic neuron activity on the myocardium and the hypothesis that the direct neuro-cardiac contact might have a key role both in norepinephrine and neurotrophin mediated signaling. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2016 Elsevier B.V. All rights reserved.
A Calcium-Dependent Chloride Current Increases Repetitive Firing in Mouse Sympathetic Neurons
Martinez-Pinna, Juan; Soriano, Sergi; Tudurí, Eva; Nadal, Angel; de Castro, Fernando
2018-01-01
Ca2+-activated ion channels shape membrane excitability in response to elevations in intracellular Ca2+. The most extensively studied Ca2+-sensitive ion channels are Ca2+-activated K+ channels, whereas the physiological importance of Ca2+-activated Cl- channels has been poorly studied. Here we show that a Ca2+-activated Cl- currents (CaCCs) modulate repetitive firing in mouse sympathetic ganglion cells. Electrophysiological recording of mouse sympathetic neurons in an in vitro preparation of the superior cervical ganglion (SCG) identifies neurons with two different firing patterns in response to long depolarizing current pulses (1 s). Neurons classified as phasic (Ph) made up 67% of the cell population whilst the remainders were tonic (T). When a high frequency train of spikes was induced by intracellular current injection, SCG sympathetic neurons reached an afterpotential mainly dependent on the ratio of activation of two Ca2+-dependent currents: the K+ [IK(Ca)] and CaCC. When the IK(Ca) was larger, an afterhyperpolarization was the predominant afterpotential but when the CaCC was larger, an afterdepolarization (ADP) was predominant. These afterpotentials can be observed after a single action potential (AP). Ph and T neurons had similar ADPs and hence, the CaCC does not seem to determine the firing pattern (Ph or T) of these neurons. However, inhibition of Ca2+-activated Cl- channels with anthracene-9′-carboxylic acid (9AC) selectively inhibits the ADP, reducing the firing frequency and the instantaneous frequency without affecting the characteristics of single- or first-spike firing of both Ph and T neurons. Furthermore, we found that the CaCC underlying the ADP was significantly larger in SCG neurons from males than from females. Furthermore, the CaCC ANO1/TMEM16A was more strongly expressed in male than in female SCGs. Blocking ADPs with 9AC did not modify synaptic transmission in either Ph or T neurons. We conclude that the CaCC responsible for ADPs increases repetitive firing in both Ph and T neurons, and it is more relevant in male mouse sympathetic ganglion neurons. PMID:29867553
A Calcium-Dependent Chloride Current Increases Repetitive Firing in Mouse Sympathetic Neurons.
Martinez-Pinna, Juan; Soriano, Sergi; Tudurí, Eva; Nadal, Angel; de Castro, Fernando
2018-01-01
Ca 2+ -activated ion channels shape membrane excitability in response to elevations in intracellular Ca 2+ . The most extensively studied Ca 2+ -sensitive ion channels are Ca 2+ -activated K + channels, whereas the physiological importance of Ca 2+ -activated Cl - channels has been poorly studied. Here we show that a Ca 2+ -activated Cl - currents (CaCCs) modulate repetitive firing in mouse sympathetic ganglion cells. Electrophysiological recording of mouse sympathetic neurons in an in vitro preparation of the superior cervical ganglion (SCG) identifies neurons with two different firing patterns in response to long depolarizing current pulses (1 s). Neurons classified as phasic (Ph) made up 67% of the cell population whilst the remainders were tonic (T). When a high frequency train of spikes was induced by intracellular current injection, SCG sympathetic neurons reached an afterpotential mainly dependent on the ratio of activation of two Ca 2+ -dependent currents: the K + [I K(Ca) ] and CaCC. When the I K(Ca) was larger, an afterhyperpolarization was the predominant afterpotential but when the CaCC was larger, an afterdepolarization (ADP) was predominant. These afterpotentials can be observed after a single action potential (AP). Ph and T neurons had similar ADPs and hence, the CaCC does not seem to determine the firing pattern (Ph or T) of these neurons. However, inhibition of Ca 2+ -activated Cl - channels with anthracene-9'-carboxylic acid (9AC) selectively inhibits the ADP, reducing the firing frequency and the instantaneous frequency without affecting the characteristics of single- or first-spike firing of both Ph and T neurons. Furthermore, we found that the CaCC underlying the ADP was significantly larger in SCG neurons from males than from females. Furthermore, the CaCC ANO1/TMEM16A was more strongly expressed in male than in female SCGs. Blocking ADPs with 9AC did not modify synaptic transmission in either Ph or T neurons. We conclude that the CaCC responsible for ADPs increases repetitive firing in both Ph and T neurons, and it is more relevant in male mouse sympathetic ganglion neurons.
Yi, Chun-Xia; Sun, Ning; Ackermans, Mariette T; Alkemade, Anneke; Foppen, Ewout; Shi, Jing; Serlie, Mireille J; Buijs, Ruud M; Fliers, Eric; Kalsbeek, Andries
2010-07-01
The unraveling of the elaborate brain networks that control glucose metabolism presents one of the current challenges in diabetes research. Within the central nervous system, the hypothalamus is regarded as the key brain area to regulate energy homeostasis. The aim of the present study was to investigate the hypothalamic mechanism involved in the hyperglycemic effects of the neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP). Endogenous glucose production (EGP) was determined during intracerebroventricular infusions of PACAP-38, vasoactive intestinal peptide (VIP), or their receptor agonists. The specificity of their receptors was examined by coinfusions of receptor antagonists. The possible neuronal pathway involved was investigated by 1) local injections in hypothalamic nuclei, 2) retrograde neuronal tracing from the thoracic spinal cord to hypothalamic preautonomic neurons together with Fos immunoreactivity, and 3) specific hepatic sympathetic or parasympathetic denervation to block the autonomic neuronal input to liver. Intracerebroventricular infusion of PACAP-38 increased EGP to a similar extent as a VIP/PACAP-2 (VPAC2) receptor agonist, and intracerebroventricular administration of VIP had significantly less influence on EGP. The PACAP-38 induced increase of EGP was significantly suppressed by preinfusion of a VPAC2 but not a PAC1 receptor antagonist, as well as by hepatic sympathetic but not parasympathetic denervation. In the hypothalamus, Fos immunoreactivity induced by PACAP-38 was colocalized within autonomic neurons in paraventricular nuclei projecting to preganglionic sympathetic neurons in the spinal cord. Local infusion of PACAP-38 directly into the PVN induced a significant increase of EGP. This study demonstrates that PACAP-38 signaling via sympathetic preautonomic neurons located in the paraventricular nucleus is an important component in the hypothalamic control of hepatic glucose production.
Mature neurons dynamically restrict apoptosis via redundant premitochondrial brakes.
Annis, Ryan P; Swahari, Vijay; Nakamura, Ayumi; Xie, Alison X; Hammond, Scott M; Deshmukh, Mohanish
2016-12-01
Apoptotic cell death is critical for the early development of the nervous system, but once the nervous system is established, the apoptotic pathway becomes highly restricted in mature neurons. However, the mechanisms underlying this increased resistance to apoptosis in these mature neurons are not completely understood. We have previously found that members of the miR-29 family of microRNAs (miRNAs) are induced with neuronal maturation and that overexpression of miR-29 was sufficient to restrict apoptosis in neurons. To determine whether endogenous miR-29 alone was responsible for the inhibition of cytochrome c release in mature neurons, we examined the status of the apoptotic pathway in sympathetic neurons deficient for all three miR-29 family members. Unexpectedly, we found that the apoptotic pathway remained largely restricted in miR-29-deficient mature neurons. We therefore probed for additional mechanisms by which mature neurons resist apoptosis. We identify miR-24 as another miRNA that is upregulated in the maturing cerebellum and sympathetic neurons that can act redundantly with miR-29 by targeting a similar repertoire of prodeath BH3-only genes. Overall, our results reveal that mature neurons engage multiple redundant brakes to restrict the apoptotic pathway and ensure their long-term survival. © 2016 Federation of European Biochemical Societies.
Tint, Irina; Jean, Daphney; Baas, Peter W.; Black, Mark M.
2009-01-01
Here we studied doublecortin (DCX) in cultured hippocampal and sympathetic neurons during axonal development. In both types of neurons, DCX is abundant in the growth cone, where it primarily localizes with microtubules. Its abundance is lowest on microtubules in the neck region of the growth cone and highest on microtubules extending into the actin-rich lamellar regions. Interestingly, the microtubule polymer richest in DCX is also deficient in tau. In hippocampal neurons but not sympathetic neurons, discrete focal patches of microtubules rich in DCX and deficient in tau are present along the axonal shaft. Invariably, these patches have actin-rich protrusions resembling those of growth cones. Many of the DCX/actin filament patches exhibit vigorous protrusive activity and also undergo a proximal-to-distal redistribution within the axon at average rates ≈ 2 μm/min, and thus closely resemble the growth-cone-like waves described by previous authors. Depletion of DCX using siRNA had little effect on the appearance of the growth cone or on axonal growth in either type of neuron. However, DCX depletion significantly delayed collateral branching in hippocampal neurons and also significantly lowered the frequency of actin-rich patches along hippocampal axons. Branching by sympathetic neurons, which occurs by growth cone splitting, was not impaired by DCX depletion. These findings reveal a functional relationship between the DCX/actin filament patches and collateral branching. Based on the striking resemblance of these patches to growth cones, we discuss the possibility that they reflect a mechanism for locally boosting morphogenetic activity to facilitate axonal growth and collateral branching. PMID:19726658
Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate.
Kalsbeek, Andries; Foppen, Ewout; Schalij, Ingrid; Van Heijningen, Caroline; van der Vliet, Jan; Fliers, Eric; Buijs, Ruud M
2008-09-15
The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target area of biological clock output and harbors the pre-autonomic neurons that control peripheral sympathetic and parasympathetic activity. Using local administration of GABA and glutamate receptor (ant)agonists in the PVN at different times of the light/dark-cycle we investigated whether daily changes in the activity of autonomic nervous system contribute to the control of plasma glucose and plasma insulin concentrations. Activation of neuronal activity in the PVN of non-feeding animals, either by administering a glutamatergic agonist or a GABAergic antagonist, induced hyperglycemia. The effect of the GABA-antagonist was time dependent, causing increased plasma glucose concentrations only when administered during the light period. The absence of a hyperglycemic effect of the GABA-antagonist in SCN-ablated animals provided further evidence for a daily change in GABAergic input from the SCN to the PVN. On the other hand, feeding-induced plasma glucose and insulin responses were suppressed by inhibition of PVN neuronal activity only during the dark period. These results indicate that the pre-autonomic neurons in the PVN are controlled by an interplay of inhibitory and excitatory inputs. Liver-dedicated sympathetic pre-autonomic neurons (responsible for hepatic glucose production) and pancreas-dedicated pre-autonomic parasympathetic neurons (responsible for insulin release) are controlled by inhibitory GABAergic contacts that are mainly active during the light period. Both sympathetic and parasympathetic pre-autonomic PVN neurons also receive excitatory inputs, either from the biological clock (sympathetic pre-autonomic neurons) or from non-clock areas (para-sympathetic pre-autonomic neurons), but the timing information is mainly provided by the GABAergic outputs of the biological clock.
Circadian Control of the Daily Plasma Glucose Rhythm: An Interplay of GABA and Glutamate
Kalsbeek, Andries; Foppen, Ewout; Schalij, Ingrid; Van Heijningen, Caroline; van der Vliet, Jan; Fliers, Eric; Buijs, Ruud M.
2008-01-01
The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target area of biological clock output and harbors the pre-autonomic neurons that control peripheral sympathetic and parasympathetic activity. Using local administration of GABA and glutamate receptor (ant)agonists in the PVN at different times of the light/dark-cycle we investigated whether daily changes in the activity of autonomic nervous system contribute to the control of plasma glucose and plasma insulin concentrations. Activation of neuronal activity in the PVN of non-feeding animals, either by administering a glutamatergic agonist or a GABAergic antagonist, induced hyperglycemia. The effect of the GABA-antagonist was time dependent, causing increased plasma glucose concentrations only when administered during the light period. The absence of a hyperglycemic effect of the GABA-antagonist in SCN-ablated animals provided further evidence for a daily change in GABAergic input from the SCN to the PVN. On the other hand, feeding-induced plasma glucose and insulin responses were suppressed by inhibition of PVN neuronal activity only during the dark period. These results indicate that the pre-autonomic neurons in the PVN are controlled by an interplay of inhibitory and excitatory inputs. Liver-dedicated sympathetic pre-autonomic neurons (responsible for hepatic glucose production) and pancreas-dedicated pre-autonomic parasympathetic neurons (responsible for insulin release) are controlled by inhibitory GABAergic contacts that are mainly active during the light period. Both sympathetic and parasympathetic pre-autonomic PVN neurons also receive excitatory inputs, either from the biological clock (sympathetic pre-autonomic neurons) or from non-clock areas (para-sympathetic pre-autonomic neurons), but the timing information is mainly provided by the GABAergic outputs of the biological clock. PMID:18791643
Hoyle, C H V; Pintor, J J
2010-06-01
To examine diadenosine tetraphosphate (Ap(4)A) for its ability to protect the eye from neurodegeneration induced by subconjunctival application of 6-hydroxydopamine (6-OHDA). Intraocular neurodegeneration of anterior structures was induced by subconjunctival injections of 6-OHDA. Animals were pre-treated with topical corneal applications of Ap(4)A or saline. 6-OHDA caused miosis, abnormal pupillary light reflexes, a precipitous drop in intraocular pressure and loss of VMAT2-labelled (vesicle monoamine transporter-2, a marker for sympathetic neurones) intraocular neurones. Pre-treatment with Ap(4)A prevented all of these changes from being induced by 6-OHDA, demonstrably preserving the sympathetic innervation of the ciliary processes. This neuroprotective action of Ap(4)A was not shared with the related compounds adenosine, ATP or diadenosine pentaphosphate. P2-receptor antagonists showed that the effects of Ap(4)A were mediated via a P2-receptor. Ap4A is a natural component of tears and aqueous humour, and its neuroprotective effect indicates that one of its physiological roles is to maintain neurones within the eye. Ap(4)A can prevent the degeneration of intraocular nerves, and it is suggested that this compound may provide the basis for a therapeutic intervention aimed at preventing or ameliorating the development of glaucoma associated with neurodegenerative diseases. Furthermore, subconjunctival application of 6-OHDA provides a useful model for studying diseases that cause ocular sympathetic dysautonomia.
Xiong, Liang; Liu, Yu; Zhou, Mingmin; Wang, Guangji; Quan, Dajun; Shen, Caijie; Shuai, Wei; Kong, Bin; Huang, Congxin; Huang, He
2018-05-31
The purpose of this study was to evaluate the cardiac electrophysiologic effects of targeted ablation of cardiac sympathetic neurons (TACSN) in a canine model of chronic myocardial infarction (MI). Thirty-eight anaesthetized dogs were randomly assigned into the sham-operated, MI, and MI-TACSN groups, respectively. Myocardial infarction-targeted ablation of cardiac sympathetic neuron was induced by injecting cholera toxin B subunit-saporin compound in the left stellate ganglion (LSG). Five weeks after surgery, the cardiac function, heart rate variability (HRV), ventricular electrophysiological parameters, LSG function and neural activity, serum norepinephrine (NE), nerve growth factor (NGF), and brain natriuretic peptide (BNP) levels were measured. Cardiac sympathetic innervation was determined with immunofluorescence staining of growth associated protein-43 (GAP43) and tyrosine hydroxylase (TH). Compared with MI group, TACSN significantly improved HRV, attenuated LSG function and activity, prolonged corrected QT interval, decreased Tpeak-Tend interval, prolonged ventricular effective refractory period (ERP), and action potential duration (APD), decreased the slopes of APD restitution curves, suppressed the APD alternans, increased ventricular fibrillation threshold, and reduced serum NE, NGF, and BNP levels. Moreover, the densities of GAP43 and TH-positive nerve fibres in the infarcted border zone in the MI-TACSN group were lower than those in the MI group. Targeted ablation of cardiac sympathetic neuron attenuates sympathetic remodelling and improves ventricular electrical remodelling in the chronic phase of MI. These data suggest that TACSN may be a novel approach to treating ventricular arrhythmias.
Bouilloux, Fabrice; Thireau, Jérôme; Ventéo, Stéphanie; Farah, Charlotte; Karam, Sarah; Dauvilliers, Yves; Valmier, Jean; Copeland, Neal G; Jenkins, Nancy A; Richard, Sylvain; Marmigère, Frédéric
2016-01-01
Although cardio-vascular incidents and sudden cardiac death (SCD) are among the leading causes of premature death in the general population, the origins remain unidentified in many cases. Genome-wide association studies have identified Meis1 as a risk factor for SCD. We report that Meis1 inactivation in the mouse neural crest leads to an altered sympatho-vagal regulation of cardiac rhythmicity in adults characterized by a chronotropic incompetence and cardiac conduction defects, thus increasing the susceptibility to SCD. We demonstrated that Meis1 is a major regulator of sympathetic target-field innervation and that Meis1 deficient sympathetic neurons die by apoptosis from early embryonic stages to perinatal stages. In addition, we showed that Meis1 regulates the transcription of key molecules necessary for the endosomal machinery. Accordingly, the traffic of Rab5+ endosomes is severely altered in Meis1-inactivated sympathetic neurons. These results suggest that Meis1 interacts with various trophic factors signaling pathways during postmitotic neurons differentiation. DOI: http://dx.doi.org/10.7554/eLife.11627.001 PMID:26857994
Peripheral chemoreceptors and cardiorespiratory coupling: a link to sympatho-excitation.
Zoccal, Daniel B
2015-02-01
What is the topic of this review? Chronic intermittent hypoxia (CIH), as observed in patients with obstructive sleep apnoea, is associated with the development of sympathetically mediated arterial hypertension. Nevertheless, the mechanisms underpinning the augmented sympathetic outflow in CIH still remain under investigation. What advances does it highlight? In this report, I present experimental evidence supporting the hypothesis that changes in the function of the respiratory network and coupling with the sympathetic nervous system may be considered as a novel and relevant mechanism for the increase in baseline sympathetic outflow in animals submitted to CIH. Chronic intermittent hypoxia (CIH) has been identified as a relevant risk factor for the development of enhanced sympathetic outflow and arterial hypertension. Several studies have highlighted the importance of peripheral chemoreceptors for the cardiovascular changes elicited by CIH. However, the effects of CIH on the central mechanisms regulating sympathetic outflow are not fully elucidated. Our research group has explored the hypothesis that the enhanced sympathetic drive following CIH exposure is, at least in part, dependent on alterations in the respiratory network and its interaction with the sympathetic nervous system. In this report, I discuss the changes in the discharge profile of baseline sympathetic activity in rats exposed to CIH, their association with the generation of active expiration and the interactions between expiratory and sympathetic neurones after CIH conditioning. Together, these findings are consistent with the theory that mechanisms of central respiratory-sympathetic coupling are a novel factor in the development of neurogenic hypertension. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.
Prior, Larissa J; Eikelis, Nina; Armitage, James A; Davern, Pamela J; Burke, Sandra L; Montani, Jean-Pierre; Barzel, Benjamin; Head, Geoffrey A
2010-04-01
The activation of the sympathetic nervous system through the central actions of the adipokine leptin has been suggested as a major mechanism by which obesity contributes to the development of hypertension. However, direct evidence for elevated sympathetic activity in obesity has been limited to muscle. The present study examined the renal sympathetic nerve activity and cardiovascular effects of a high-fat diet (HFD), as well as the changes in the sensitivity to intracerebroventricular leptin. New Zealand white rabbits fed a 13.5% HFD for 4 weeks showed modest weight gain but a 2- to 3-fold greater accumulation of visceral fat compared with control rabbits. Mean arterial pressure, heart rate, and plasma norepinephrine concentration increased by 8%, 26%, and 87%, respectively (P<0.05), after 3 weeks of HFD. Renal sympathetic nerve activity was 48% higher (P<0.05) in HFD compared with control diet rabbits and was correlated to plasma leptin (r=0.87; P<0.01). Intracerebroventricular leptin administration (5 to 100 microg) increased mean arterial pressure similarly in both groups, but renal sympathetic nerve activity increased more in HFD-fed rabbits. By contrast, intracerebroventricular leptin produced less neurons expressing c-Fos in HFD compared with control rabbits in regions important for appetite and sympathetic actions of leptin (arcuate: -54%, paraventricular: -69%, and dorsomedial hypothalamus: -65%). These results suggest that visceral fat accumulation through consumption of a HFD leads to marked sympathetic activation, which is related to increased responsiveness to central sympathoexcitatory effects of leptin. The paradoxical reduction in hypothalamic neuronal activation by leptin suggests a marked "selective leptin resistance" in these animals.
Indo, Yasuhiro
2009-05-11
Nerve growth factor (NGF) is a well-known neurotrophic factor essential for the survival and maintenance of sensory and sympathetic neurons. Congenital insensitivity to pain with anhidrosis (CIPA) is a genetic disorder due to loss-of-function mutations in the NTRK1 (also known as TRKA) gene encoding TrkA, a receptor tyrosine kinase for NGF. Patients with CIPA provide us a rare opportunity to explore the developmental and physiological function of the NGF-dependent neurons in behavior, cognitive, and mental activities that are not available in animal studies. Here, I discuss the significance of findings that patients with CIPA lack NGF-dependent neurons, including interoceptive polymodal receptors, sympathetic postganglionic neurons, and probably several types of neurons in the brain. They also exhibit characteristic emotional behavior or problems. Together, the NGF-TrkA system is essential for the establishment of a neural network for interoception and homeostasis that may underlie 'gut feelings'. Thus, NGF-dependent neurons play a crucial role in emotional experiences and decision-making processes. Prospective studies focused on these neurons might provide further insights into the neural basis of human emotion and feeling.
Kim, Young-Hwan; Ahn, Duck-Sun; Kim, Myeong Ok; Joeng, Ji-Hyun; Chung, Seungsoo
2014-01-01
The protease-activated receptor (PAR)-2 is highly expressed in endothelial cells and vascular smooth muscle cells. It plays a crucial role in regulating blood pressure via the modulation of peripheral vascular tone. Although several mechanisms have been suggested to explain PAR-2-induced hypotension, the precise mechanism remains to be elucidated. To investigate this possibility, we investigated the effects of PAR-2 activation on N-type Ca2+ currents (ICa-N) in isolated neurons of the celiac ganglion (CG), which is involved in the sympathetic regulation of mesenteric artery vascular tone. PAR-2 agonists irreversibly diminished voltage-gated Ca2+ currents (ICa), measured using the patch-clamp method, in rat CG neurons, whereas thrombin had little effect on ICa. This PAR-2-induced inhibition was almost completely prevented by ω-CgTx, a potent N-type Ca2+ channel blocker, suggesting the involvement of N-type Ca2+ channels in PAR-2-induced inhibition. In addition, PAR-2 agonists inhibited ICa–N in a voltage-independent manner in rat CG neurons. Moreover, PAR-2 agonists reduced action potential (AP) firing frequency as measured using the current-clamp method in rat CG neurons. This inhibition of AP firing induced by PAR-2 agonists was almost completely prevented by ω-CgTx, indicating that PAR-2 activation may regulate the membrane excitability of peripheral sympathetic neurons through modulation of N-type Ca2+ channels. In conclusion, the present findings demonstrate that the activation of PAR-2 suppresses peripheral sympathetic outflow by modulating N-type Ca2+ channel activity, which appears to be involved in PAR-2-induced hypotension, in peripheral sympathetic nerve terminals. PMID:25410909
Valsalva's maneuver revisited: a quantitative method yielding insights into human autonomic control
NASA Technical Reports Server (NTRS)
Smith, M. L.; Beightol, L. A.; Fritsch-Yelle, J. M.; Ellenbogen, K. A.; Porter, T. R.; Eckberg, D. L.
1996-01-01
Seventeen healthy supine subjects performed graded Valsalva maneuvers. In four subjects, transesophageal echographic aortic cross-sectional areas decreased during and increased after straining. During the first seconds of straining, when aortic cross-sectional area was declining and peripheral arterial pressure was rising, peroneal sympathetic muscle neurons were nearly silent. Then, as aortic cross-sectional area and peripheral pressure both declined, sympathetic muscle nerve activity increased, in proportion to the intensity of straining. Poststraining arterial pressure elevations were proportional to preceding increases of sympathetic activity. Sympathetic inhibition after straining persisted much longer than arterial and right atrial pressure elevations. Similarly, R-R intervals changed in parallel with peripheral arterial pressure, until approximately 45 s after the onset of straining, when R-R intervals were greater and arterial pressures were smaller than prestraining levels. Our conclusions are as follows: opposing changes of carotid and aortic baroreceptor inputs reduce sympathetic muscle and increase vagal cardiac motor neuronal firing; parallel changes of barorsensory inputs provoke reciprocal changes of sympathetic and direct changes of vagal firing; and pressure transients lasting only seconds reset arterial pressure-sympathetic and -vagal response relations.
Effects of endotoxin on monoamine metabolism in the rat.
NASA Technical Reports Server (NTRS)
Pohorecky, L. A.; Wurtman, R. J.; Taam, D.; Fine, J.
1972-01-01
Examination of effects of administered endotoxin on catecholamine metabolism in the rat brain, sympathetic neurons, and adrenal medulla. It is found that endotoxin, administered intraperitoneally, lowers the norepinephrine content in peripheral sympathetic neurons and the brain, and the catecholamine content in the adrenal medulla. It also accelerates the disappearance of H3-norepinephrine from all these tissues. It is therefore suggested that the effects of endotoxin on body temperature may be mediated in part by central non-adrenergic neurons.
Yanez, Andy A.; Harrell, Telvin; Sriranganathan, Heather J.; Ives, Angela M.; Bertke, Andrea S.
2017-01-01
Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons. PMID:28178213
Yanez, Andy A; Harrell, Telvin; Sriranganathan, Heather J; Ives, Angela M; Bertke, Andrea S
2017-02-07
Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons.
Krishnaswamy, Arjun; Cooper, Ellis
2012-01-01
Abstract An intriguing feature of several nicotinic acetylcholine receptors (nAChRs) on neurons is that their subunits contain a highly conserved cysteine residue located near the intracellular mouth of the receptor pore. The work summarized in this review indicates that α3β4-containing and α4β2-containing neuronal nAChRs, and possibly other subtypes, are inactivated by elevations in intracellular reactive oxygen species (ROS). This review discusses a model for the molecular mechanisms that underlie this inactivation. In addition, we explore the implications of this mechanism in the context of complications that arise from diabetes. We review the evidence that diabetes elevates cytosolic ROS in sympathetic neurons and inactivates postsynaptic α3β4-containing nAChRs shortly after the onset of diabetes, leading to a depression of synaptic transmission in sympathetic ganglia, an impairment of sympathetic reflexes. These effects of ROS on nAChR function are due to the highly conserved Cys residues in the receptors: replacing the cysteine residues in α3 allow ganglionic transmission and sympathetic reflexes to function normally in diabetes. This example from diabetes suggests that other diseases involving oxidative stress, such as Parkinson's disease, could lead to the inactivation of nAChRs on neurons and disrupt cholinergic nicotinic signalling. PMID:21969449
Walter, Gary C; Phillips, Robert J; McAdams, Jennifer L; Powley, Terry L
2016-09-01
A full description of the terminal architecture of sympathetic axons innervating the gastrointestinal (GI) tract has not been available. To label sympathetic fibers projecting to the gut muscle wall, dextran biotin was injected into the celiac and superior mesenteric ganglia (CSMG) of rats. Nine days postinjection, animals were euthanized and stomachs and small intestines were processed as whole mounts (submucosa and mucosa removed) to examine CSMG efferent terminals. Myenteric neurons were counterstained with Cuprolinic Blue; catecholaminergic axons were stained immunohistochemically for tyrosine hydroxylase. Essentially all dextran-labeled axons (135 of 136 sampled) were tyrosine hydroxylase-positive. Complete postganglionic arbors (n = 154) in the muscle wall were digitized and analyzed morphometrically. Individual sympathetic axons formed complex arbors of varicose neurites within myenteric ganglia/primary plexus and, concomitantly, long rectilinear arrays of neurites within circular muscle/secondary plexus or longitudinal muscle/tertiary plexus. Very few CSMG neurons projected exclusively (i.e., ∼100% of an arbor's varicose branches) to myenteric plexus (∼2%) or smooth muscle (∼14%). With less stringent inclusion criteria (i.e., ≥85% of an axon's varicose branches), larger minorities of neurons projected predominantly to either myenteric plexus (∼13%) or smooth muscle (∼27%). The majority (i.e., ∼60%) of all individual CSMG postganglionics formed mixed, heterotypic arbors that coinnervated extensively (>15% of their varicose branches per target) both myenteric ganglia and smooth muscle. The fact that ∼87% of all sympathetics projected either extensively or even predominantly to smooth muscle, while simultaneously contacting myenteric plexus, is consistent with the view that these neurons control GI muscle directly, if not exclusively. J. Comp. Neurol. 524:2577-2603, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Palus, Katarzyna; Całka, Jarosław
2015-01-01
This experiment was designed to establish the localization and neurochemical phenotyping of sympathetic neurons supplying prepyloric area of the porcine stomach in a physiological state and during acetylsalicylic acid (ASA) induced gastritis. In order to localize the sympathetic perikarya the stomachs of both control and acetylsalicylic acid treated (ASA group) animals were injected with neuronal retrograde tracer Fast Blue (FB). Seven days post FB injection, animals were divided into a control and ASA supplementation group. The ASA group was given 100 mg/kg of b.w. ASA orally for 21 days. On the 28th day all pigs were euthanized with gradual overdose of anesthetic. Then fourteen-micrometer-thick cryostat sections were processed for routine double-labeling immunofluorescence, using primary antisera directed towards tyrosine hydroxylase (TH), dopamine β-hydroxylase (DβH), neuropeptide Y (NPY), galanin (GAL), neuronal nitric oxide synthase (nNOS), leu 5-enkephalin (LENK), cocaine- and amphetamine- regulated transcript peptide (CART), calcitonin gene-related peptide (CGRP), substance P (SP) and vasoactive intestinal peptide (VIP). The data obtained in this study indicate that postganglionic sympathetic nerve fibers supplying prepyloric area of the porcine stomach originate from the coeliac-cranial mesenteric ganglion complex (CCMG). In control animals, the FB-labelled neurons expressed TH (94.85 ± 1.01%), DβH (97.10 ± 0.97%), NPY (46.88 ± 2.53%) and GAL (8.40 ± 0.53%). In ASA group, TH- and DβH- positive nerve cells were reduced (85.78 ± 2.65% and 88.82 ± 1.63% respectively). Moreover, ASA- induced gastritis resulted in increased expression of NPY (76.59 ± 3.02%) and GAL (26.45 ± 2.75%) as well as the novo-synthesis of nNOS (6.13 ± 1.11%) and LENK (4.77 ± 0.42%) in traced CCMG neurons. Additionally, a network of CART-, CGRP-, SP-, VIP-, LENK-, nNOS- immunoreactive (IR) nerve fibers encircling the FB-positive perikarya were observed in both intact and ASA-treated animals. The results of this study indicate involvement of these neuropeptides in the development or presumably counteraction of gastric inflammation.
Gao, Hong; Molinas, Adrien J.R.; Qiao, Xin
2017-01-01
Preautonomic neurons in the paraventricular nucleus (PVN) of the hypothalamus play a large role in the regulation of hepatic functions via the autonomic nervous system. Activation of hepatic sympathetic nerves increases glucose and lipid metabolism and contributes to the elevated hepatic glucose production observed in the type 2 diabetic condition. This augmented sympathetic output could originate from altered activity of liver-related PVN neurons. Remarkably, despite the importance of the brain-liver pathway, the cellular properties of liver-related neurons are not known. In this study, we provide the first evidence of overall activity of liver-related PVN neurons. Liver-related PVN neurons were identified with a retrograde, trans-synaptic, viral tracer in male lean and db/db mice and whole-cell patch-clamp recordings were conducted. In db/db mice, the majority of liver-related PVN neurons fired spontaneously; whereas, in lean mice the majority of liver-related PVN neurons were silent, indicating that liver-related PVN neurons are more active in db/db mice. Persistent, tonic inhibition was identified in liver-related PVN neurons; although, the magnitude of tonic inhibitory control was not different between lean and db/db mice. In addition, our study revealed that the transient receptor potential vanilloid type 1-dependent increase of excitatory neurotransmission was reduced in liver-related PVN neurons of db/db mice. These findings demonstrate plasticity of liver-related PVN neurons and a shift toward excitation in a diabetic mouse model. Our study suggests altered autonomic circuits at the level of the PVN, which can contribute to autonomic dysfunction and dysregulation of neural control of hepatic functions including glucose metabolism. SIGNIFICANCE STATEMENT A growing body of evidence suggests the importance of the autonomic control in the regulation of hepatic metabolism, which plays a major role in the development and progression of type 2 diabetes mellitus. Despite the importance of the brain-liver pathway, the overall activity of liver-related neurons in control and diabetic conditions is not known. This is a significant gap in knowledge, which prevents developing strategies to improve glucose homeostasis via altering the brain-liver pathway. One of the key findings of our study is the overall shift toward excitation in liver-related hypothalamic neurons in the diabetic condition. This overactivity may be one of the underlying mechanisms of elevated sympathetic activity known in metabolically compromised patients and animal models. PMID:29038244
Gao, Hong; Molinas, Adrien J R; Miyata, Kayoko; Qiao, Xin; Zsombok, Andrea
2017-11-15
Preautonomic neurons in the paraventricular nucleus (PVN) of the hypothalamus play a large role in the regulation of hepatic functions via the autonomic nervous system. Activation of hepatic sympathetic nerves increases glucose and lipid metabolism and contributes to the elevated hepatic glucose production observed in the type 2 diabetic condition. This augmented sympathetic output could originate from altered activity of liver-related PVN neurons. Remarkably, despite the importance of the brain-liver pathway, the cellular properties of liver-related neurons are not known. In this study, we provide the first evidence of overall activity of liver-related PVN neurons. Liver-related PVN neurons were identified with a retrograde, trans-synaptic, viral tracer in male lean and db/db mice and whole-cell patch-clamp recordings were conducted. In db/db mice, the majority of liver-related PVN neurons fired spontaneously; whereas, in lean mice the majority of liver-related PVN neurons were silent, indicating that liver-related PVN neurons are more active in db/db mice. Persistent, tonic inhibition was identified in liver-related PVN neurons; although, the magnitude of tonic inhibitory control was not different between lean and db/db mice. In addition, our study revealed that the transient receptor potential vanilloid type 1-dependent increase of excitatory neurotransmission was reduced in liver-related PVN neurons of db/db mice. These findings demonstrate plasticity of liver-related PVN neurons and a shift toward excitation in a diabetic mouse model. Our study suggests altered autonomic circuits at the level of the PVN, which can contribute to autonomic dysfunction and dysregulation of neural control of hepatic functions including glucose metabolism. SIGNIFICANCE STATEMENT A growing body of evidence suggests the importance of the autonomic control in the regulation of hepatic metabolism, which plays a major role in the development and progression of type 2 diabetes mellitus. Despite the importance of the brain-liver pathway, the overall activity of liver-related neurons in control and diabetic conditions is not known. This is a significant gap in knowledge, which prevents developing strategies to improve glucose homeostasis via altering the brain-liver pathway. One of the key findings of our study is the overall shift toward excitation in liver-related hypothalamic neurons in the diabetic condition. This overactivity may be one of the underlying mechanisms of elevated sympathetic activity known in metabolically compromised patients and animal models. Copyright © 2017 the authors 0270-6474/17/3711140-11$15.00/0.
Liu, Wei; Zheng, Jian-Quan; Liu, Zhen-Wei; Li, Li-Jun; Wan, Qin; Liu, Chuan-Gui
2002-12-25
To compare the difference in action sites between mecamylamine (MEC) and hexamethonium (HEX) on nicotinic receptors of sympathetic neurons, we investigated the effects of MEC and HEX on the nicotine-induced currents in cultured superior cervical ganglion neurons by whole-cell patch clamp technique. The IC(50) of MEC and HEX for antagonizing the effect of 0.08 mmol/L nicotine was 0.0012 and 0.0095 mmol/L, respectively. Both MEC and HEX accelerated the desensitization of nicotinic receptors. Furthermore, by comparing their effects at holding potentials 30, 70 and 110 mV, it was indicated that their suppressing effect on the nicotine-induced currents was voltage-dependent. However, different from that of HEX, the inhibitory effect of MEC increased with administering the mixture of MEC and nicotine at intervals of 3 min, indicating a use-dependent effect of MEC. It is concluded that the action site of MEC on nicotinic receptors of sympathetic neurons is different from that of HEX.
Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion
Valle-Leija, Pablo; Cancino-Rodezno, Angeles; Sánchez-Tafolla, Berardo M.; Arias, Erwin; Elinos, Diana; Feria, Jessica; Zetina, María E.; Morales, Miguel A.; Cifuentes, Fredy
2017-01-01
Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc), but are not thought to express a functional full-length TrkB receptor (TrkB-Fl). We, and others, have demonstrated that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG) of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR), 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR) analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase) signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity. PMID:28744222
Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion.
Valle-Leija, Pablo; Cancino-Rodezno, Angeles; Sánchez-Tafolla, Berardo M; Arias, Erwin; Elinos, Diana; Feria, Jessica; Zetina, María E; Morales, Miguel A; Cifuentes, Fredy
2017-01-01
Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc), but are not thought to express a functional full-length TrkB receptor (TrkB-Fl). We, and others, have demonstrated that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG) of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR), 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR) analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase) signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity.
Regulation of TRPV2 by axotomy in sympathetic, but not sensory neurons.
Gaudet, Andrew D; Williams, Sarah J; Hwi, Lucy P-R; Ramer, Matt S
2004-08-13
Neuropathic pain results from traumatic or disease-related insults to the nervous system. Mechanisms that have been postulated to underlie peripheral neuropathy commonly implicate afferent neurons that have been damaged but still project centrally to the spinal cord, and/or intact neurons that interact with degenerating distal portions of the injured neurons. One pain state that is observed following peripheral nerve injury in the rat is thermal hyperalgesia. The noxious heat-gated ion channel TRPV1 may be responsible for this increased sensitivity, as it is up-regulated in L4 dorsal root ganglion (DRG) neurons following L5 spinal nerve lesion (SpNL). The TRPV1 homologue TRPV2 (or VRL-1) is another member of the TRPV subfamily of TRP ion channels. TRPV2 is a nonselective cation channel activated by high noxious temperatures (>52 degrees C) and is present in a subset of medium- to large-diameter DRG neurons. To establish whether TRPV2 is endogenous to the spinal cord, we examined its expression in the dorsal horn following rhizotomy. We found no significant decrease in TRPV2 immunoreactivity, suggesting that TRPV2 is endogenous to the spinal cord. In order to determine whether TRPV2, like TRPV1, is regulated by peripheral axotomy, we performed L5 SpNL and characterized TRPV2 distribution in the DRG, spinal cord, brainstem, and sympathetic ganglia. Our results show that peripheral axotomy did not regulate TRPV2 in the DRG, spinal cord, or brainstem; however, TRPV2 was up-regulated in sympathetic postganglionic neurons following injury, suggesting a potential role for TRPV2 in sympathetically mediated neuropathic pain.
Lucas, Daniel; Bruns, Ingmar; Battista, Michela; Mendez-Ferrer, Simon; Magnon, Claire; Kunisaki, Yuya
2012-01-01
The mechanisms mediating hematopoietic stem and progenitor cell (HSPC) mobilization by G-CSF are complex. We have found previously that G-CSF–enforced mobilization is controlled by peripheral sympathetic nerves via norepinephrine (NE) signaling. In the present study, we show that G-CSF likely alters sympathetic tone directly and that methods to increase adrenergic activity in the BM microenvironment enhance progenitor mobilization. Peripheral sympathetic nerve neurons express the G-CSF receptor and ex vivo stimulation of peripheral sympathetic nerve neurons with G-CSF reduced NE reuptake significantly, suggesting that G-CSF potentiates the sympathetic tone by increasing NE availability. Based on these data, we investigated the NE reuptake inhibitor desipramine in HSPC mobilization. Whereas desipramine did not by itself elicit circulating HSPCs, it increased G-CSF–triggered mobilization efficiency significantly and rescued mobilization in a model mimicking “poor mobilizers.” Therefore, these data suggest that blockade of NE reuptake may be a novel therapeutic target to increase stem cell yield in patients. PMID:22422821
Shiuchi, Tetsuya; Haque, Mohammad Shahidul; Okamoto, Shiki; Inoue, Tsuyoshi; Kageyama, Haruaki; Lee, Suni; Toda, Chitoku; Suzuki, Atsushi; Bachman, Eric S; Kim, Young-Bum; Sakurai, Takashi; Yanagisawa, Masashi; Shioda, Seiji; Imoto, Keiji; Minokoshi, Yasuhiko
2009-12-01
Hypothalamic neurons containing orexin (hypocretin) are activated during motivated behaviors and active waking. We show that injection of orexin-A into the ventromedial hypothalamus (VMH) of mice or rats increased glucose uptake and promoted insulin-induced glucose uptake and glycogen synthesis in skeletal muscle, but not in white adipose tissue, by activating the sympathetic nervous system. These effects of orexin were blunted in mice lacking beta-adrenergic receptors but were restored by forced expression of the beta(2)-adrenergic receptor in both myocytes and nonmyocyte cells of skeletal muscle. Orexin neurons are activated by conditioned sweet tasting and directly excite VMH neurons, thereby increasing muscle glucose metabolism and its insulin sensitivity. Orexin and its receptor in VMH thus play a key role in the regulation of muscle glucose metabolism associated with highly motivated behavior by activating muscle sympathetic nerves and beta(2)-adrenergic signaling.
Effect of sympathetic activity on capsaicin-evoked pain, hyperalgesia, and vasodilatation.
Baron, R; Wasner, G; Borgstedt, R; Hastedt, E; Schulte, H; Binder, A; Kopper, F; Rowbotham, M; Levine, J D; Fields, H L
1999-03-23
Painful nerve and tissue injuries can be exacerbated by activity in sympathetic neurons. The mechanisms of sympathetically maintained pain (SMP) are unclear. To determine the effect of cutaneous sympathetic activity on pain induced by primary afferent C-nociceptor sensitization with capsaicin in humans. In healthy volunteers capsaicin was applied topically (n = 12) or injected into the forearm skin (n = 10) to induce spontaneous pain, dynamic and punctate mechanical hyperalgesia, and antidromic (axon reflex) vasodilatation (flare). Intensity of pain and hyperalgesia, axon reflex vasodilatation (laser Doppler), and flare size and area of hyperalgesia (planimetry) were assessed. The local skin temperature at the application and measurement sites was kept constant at 35 degrees C. In each individual the analyses were performed during the presence of high and low sympathetic skin activity induced by whole-body cooling and warming with a thermal suit. By this method sympathetic vasoconstrictor activity is modulated in the widest range that can be achieved physiologically. The degree of vasoconstrictor discharge was monitored by measuring skin blood flow (laser Doppler) and temperature (infrared thermometry) at the index finger. The intensity and spatial distribution of capsaicin-evoked spontaneous pain and dynamic and punctate mechanical hyperalgesia were identical during the presence of high and low sympathetic discharge. Antidromic vasodilatation and flare size were significantly diminished when sympathetic vasoconstrictor neurons were excited. Cutaneous sympathetic vasoconstrictor activity does not influence spontaneous pain and mechanical hyperalgesia after capsaicin-induced C-nociceptor sensitization. When using physiologic stimulation of sympathetic activity, the capsaicin model is not useful for elucidating mechanisms of SMP. In neuropathic pain states with SMP, different mechanisms may be present.
Furness, John B; Cho, Hyun-Jung; Hunne, Billie; Hirayama, Haruko; Callaghan, Brid P; Lomax, Alan E; Brock, James A
2012-06-01
Functional studies have shown that subsets of autonomic preganglionic neurons respond to ghrelin and ghrelin mimetics and in situ hybridisation has revealed receptor gene expression in the cell bodies of some preganglionic neurons. Our present goal has been to determine which preganglionic neurons express ghrelin receptors by using mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter for the ghrelin receptor (also called growth hormone secretagogue receptor). The retrograde tracer Fast Blue was injected into target organs of reporter mice under anaesthesia to identify specific functional subsets of postganglionic sympathetic neurons. Cryo-sections were immunohistochemically stained by using anti-EGFP and antibodies to neuronal markers. EGFP was detected in nerve terminal varicosities in all sympathetic chain, prevertebral and pelvic ganglia and in the adrenal medulla. Non-varicose fibres associated with the ganglia were also immunoreactive. No postganglionic cell bodies contained EGFP. In sympathetic chain ganglia, most neurons were surrounded by EGFP-positive terminals. In the stellate ganglion, neurons with choline acetyltransferase immunoreactivity, some being sudomotor neurons, lacked surrounding ghrelin-receptor-expressing terminals, although these terminals were found around other neurons. In the superior cervical ganglion, the ghrelin receptor terminals innervated subgroups of neurons including neuropeptide Y (NPY)-immunoreactive neurons that projected to the anterior chamber of the eye. However, large NPY-negative neurons projecting to the acini of the submaxillary gland were not innervated by EGFP-positive varicosities. In the celiaco-superior mesenteric ganglion, almost all neurons were surrounded by positive terminals but the VIP-immunoreactive terminals of intestinofugal neurons were EGFP-negative. The pelvic ganglia contained groups of neurons without ghrelin receptor terminal innervation and other groups with positive terminals around them. Ghrelin receptors are therefore expressed by subgroups of preganglionic neurons, including those of vasoconstrictor pathways and of pathways controlling gut function, but are absent from some other neurons, including those innervating sweat glands and the secretomotor neurons that supply the submaxillary salivary glands.
Ichige, Marcelo H A; Santos, Carla R; Jordão, Camila P; Ceroni, Alexandre; Negrão, Carlos E; Michelini, Lisete C
2016-11-01
Heart Failure (HF) is accompanied by reduced ventricular function, activation of compensatory neurohormonal mechanisms and marked autonomic dysfunction characterized by exaggerated sympathoexcitation and reduced parasympathetic activity. With 6 weeks of exercise training, HF-related loss of choline acetyltransferase (ChAT)-positive vagal preganglionic neurones is avoided, restoring the parasympathetic tonus to the heart, and the immunoreactivity of dopamine β-hydroxylase-positive premotor neurones that drive sympathetic outflow to the heart is reduced. Training-induced correction of autonomic dysfunction occurs even with the persistence of abnormal ventricular function. Strong positive correlation between improved parasympathetic tonus to the heart and increased ChAT immunoreactivity in vagal preganglionic neurones after training indicates this is a crucial mechanism to restore autonomic function in heart failure. Exercise training is an efficient tool to attenuate sympathoexcitation, a hallmark of heart failure (HF). Although sympathetic modulation in HF is widely studied, information regarding parasympathetic control is lacking. We examined the combined effects of sympathetic and vagal tonus to the heart in sedentary (Sed) and exercise trained (ET) HF rats and the contribution of respective premotor and preganglionic neurones. Wistar rats submitted to coronary artery ligation or sham surgery were assigned to training or sedentary protocols for 6 weeks. After haemodynamic, autonomic tonus (atropine and atenolol i.v.) and ventricular function determinations, brains were collected for immunoreactivity assays (choline acetyltransferase, ChATir; dopamine β-hydroxylase, DBHir) and neuronal counting in the dorsal motor nucleus of vagus (DMV), nucleus ambiguus (NA) and rostroventrolateral medulla (RVLM). HF-Sed vs. SHAM-Sed exhibited decreased exercise capacity, reduced ejection fraction, increased left ventricle end diastolic pressure, smaller positive and negative dP/dt, decreased intrinsic heart rate (IHR), lower parasympathetic and higher sympathetic tonus, reduced preganglionic vagal neurones and ChATir in the DMV/NA, and increased RVLM DBHir. Training increased treadmill performance, normalized autonomic tonus and IHR, restored the number of DMV and NA neurones and corrected ChATir without affecting ventricular function. There were strong positive correlations between parasympathetic tonus and ChATir in NA and DMV. RVLM DBHir was also normalized by training, but there was no change in neurone number and no correlation with sympathetic tonus. Training-induced preservation of preganglionic vagal neurones is crucial to normalize parasympathetic activity and restore autonomic balance to the heart even in the persistence of cardiac dysfunction. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Palkovits, Miklós; Šebeková, Katarína; Klenovics, Kristina Simon; Kebis, Anton; Fazeli, Gholamreza; Bahner, Udo; Heidland, August
2013-01-01
The effect of mild chronic renal failure (CRF) induced by 4/6-nephrectomy (4/6NX) on central neuronal activations was investigated by c-Fos immunohistochemistry staining and compared to sham-operated rats. In the 4/6 NX rats also the effect of the angiotensin receptor blocker, losartan, and the central sympatholyticum moxonidine was studied for two months. In serial brain sections Fos-immunoreactive neurons were localized and classified semiquantitatively. In 37 brain areas/nuclei several neurons with different functional properties were strongly affected in 4/6NX. It elicited a moderate to high Fos-activity in areas responsible for the monoaminergic innervation of the cerebral cortex, the limbic system, the thalamus and hypothalamus (e.g. noradrenergic neurons of the locus coeruleus, serotonergic neurons in dorsal raphe, histaminergic neurons in the tuberomamillary nucleus). Other monoaminergic cell groups (A5 noradrenaline, C1 adrenaline, medullary raphe serotonin neurons) and neurons in the hypothalamic paraventricular nucleus (innervating the sympathetic preganglionic neurons and affecting the peripheral sympathetic outflow) did not show Fos-activity. Stress- and pain-sensitive cortical/subcortical areas, neurons in the limbic system, the hypothalamus and the circumventricular organs were also affected by 4/6NX. Administration of losartan and more strongly moxonidine modulated most effects and particularly inhibited Fos-activity in locus coeruleus neurons. In conclusion, 4/6NX elicits high activity in central sympathetic, stress- and pain-related brain areas as well as in the limbic system, which can be ameliorated by losartan and particularly by moxonidine. These changes indicate a high sensitivity of CNS in initial stages of CKD which could be causative in clinical disturbances. PMID:23818940
Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo
2016-08-26
Agmatine, a putative endogenous ligand of imidazoline receptors, suppresses cardiovascular function by inhibiting peripheral sympathetic tone. However, the molecular identity of imidazoline receptor subtypes and its cellular mechanism underlying the agmatine-induced sympathetic suppression remains unknown. Meanwhile, N-type Ca(2+) channels are important for the regulation of NA release in the peripheral sympathetic nervous system. Therefore, it is possible that agmatine suppresses NA release in peripheral sympathetic nerve terminals by inhibiting Ca(2+) influx through N-type Ca(2+) channels. We tested this hypothesis by investigating agmatine effect on electrical field stimulation (EFS)-evoked contraction and NA release in endothelium-denuded rat superior mesenteric arterial strips. We also investigated the effect of agmatine on the N-type Ca(2+) current in superior cervical ganglion (SCG) neurons in rats. Our study demonstrates that agmatine suppresses peripheral sympathetic outflow via the imidazoline I2 receptor in rat mesenteric arteries. In addition, the agmatine-induced suppression of peripheral vascular sympathetic tone is mediated by modulating voltage-dependent N-type Ca(2+) channels in sympathetic nerve terminals. These results suggest a potential cellular mechanism for the agmatine-induced suppression of peripheral sympathetic tone. Furthermore, they provide basic and theoretical information regarding the development of new agents to treat hypertension. Copyright © 2016 Elsevier Inc. All rights reserved.
Molecular Analysis of Neurotoxin-Induced Apoptosis
2006-03-01
Chem. 270, 27489–27494. Anderson C. N. and Tolkovsky A. M. (1999) A role for MAPK/ERK in sympathetic neuron survival: protection against a p53 ...Kaplan D. (1999) Ras regulates sympathetic neuron survival by suppressing the p53 -mediated cell death pathway. J. Neurosci. 19, 9716–9727. Mikula M...for 30min. ProteinA /G-agarose beadswere added to themixture, and further incubation was carried out at 4 °C overnight. After incuba- tion, beads were
Regulation of axonal and dendritic growth by the extracellular calcium-sensing receptor (CaSR)
Vizard, Thomas N.; O'Keeffe, Gerard W.; Gutierrez, Humberto; Kos, Claudine H.; Riccardi, Daniela; Davies, Alun M.
2009-01-01
The extracellular calcium-sensing receptor (CaSR) monitors the systemic extracellular free ionized calcium level ([Ca2+]o) in organs involved in systemic [Ca2+]o homeostasis. However, the CaSR is also expressed in the nervous system where its role is unknown. Here we find high levels of the CaSR in perinatal mouse sympathetic neurons when their axons are innervating and branching extensively in their targets. Manipulating CaSR function in these neurons by varying [Ca2+]o, using CaSR agonists and antagonists or expressing a dominant-negative CaSR markedly affects neurite growth in vitro Sympathetic neurons lacking the CaSR have smaller neurite arbors in vitro, and sympathetic innervation density is reduced in CaSR-deficient mice in vivo. Hippocampal pyramidal neurons, which also express the CaSR, have smaller dendrites when transfected with dominant-negative CaSR in postnatal organotypic cultures. Our findings reveal a crucial role for the CaSR in regulating the growth of neural processes in the peripheral and central nervous systems. PMID:18223649
Presynaptic inhibition of transmitter release from rat sympathetic neurons by bradykinin.
Edelbauer, Hannah; Lechner, Stefan G; Mayer, Martina; Scholze, Thomas; Boehm, Stefan
2005-06-01
Bradykinin is known to stimulate neurons in rat sympathetic ganglia and to enhance transmitter release from their axons by interfering with the autoinhibitory feedback, actions that involve protein kinase C. Here, bradykinin caused a transient increase in the release of previously incorporated [3H] noradrenaline from primary cultures of dissociated rat sympathetic neurons. When this effect was abolished by tetrodotoxin, bradykinin caused an inhibition of tritium overflow triggered by depolarizing K+ concentrations. This inhibition was additive to that caused by the alpha2-adrenergic agonist UK 14304, desensitized within 12 min, was insensitive to pertussis toxin, and was enhanced when protein kinase C was inactivated. The effect was half maximal at 4 nm and antagonized competitively by the B2 receptor antagonist Hoe 140. The cyclooxygenase inhibitor indomethacin and the angiotensin converting enzyme inhibitor captopril did not alter the inhibition by bradykinin. The M-type K+ channel opener retigabine attenuated the secretagogue action of bradykinin, but left its inhibitory action unaltered. In whole-cell patch-clamp recordings, bradykinin reduced voltage-activated Ca2+ currents in a pertussis toxin-insensitive manner, and this action was additive to the inhibition by UK 14304. These results demonstrate that bradykinin inhibits noradrenaline release from rat sympathetic neurons via presynaptic B2 receptors. This effect does not involve cyclooxygenase products, M-type K+ channels, or protein kinase C, but rather an inhibition of voltage-gated Ca2+ channels.
NASA Technical Reports Server (NTRS)
Torigoe, Yasuhiro; Cernucan, Roxana D.; Nishimoto, Jo Ann S.; Blanks, Robert H. I.
1985-01-01
As a part of the study of the vestibular-autonomic pathways involved in motion sickness, the location and the morphology of preganglionic sympathetic neurons (PSNs) projecting via the greater splanchnic nerve were examined. Retrograde labeling of neurons was obtained by application of horseradish peroxidase to the cut end of the greater splanchnic nerve. Labeled PSNs were found, ipsilaterally, within the T1 to T11 spinal cord segments, with the highest density of neurons in T6. Most PSNs were located within the intermediolateral column, but a significant portion also occurred within the lateral funiculus, the intercalated region, and the central autonomic area; the proportion of labeling between the four regions depended on the spinal cord segment.
Salmanpour, Aryan; Brown, Lyndon J; Steinback, Craig D; Usselman, Charlotte W; Goswami, Ruma; Shoemaker, J Kevin
2011-06-01
We employed a novel action potential detection and classification technique to study the relationship between the recruitment of sympathetic action potentials (i.e., neurons) and the size of integrated sympathetic bursts in human muscle sympathetic nerve activity (MSNA). Multifiber postganglionic sympathetic nerve activity from the common fibular nerve was collected using microneurography in 10 healthy subjects at rest and during activation of sympathetic outflow using lower body negative pressure (LBNP). Burst occurrence increased with LBNP. Integrated burst strength (size) varied from 0.22 ± 0.07 V at rest to 0.28 ± 0.09 V during LBNP. Sympathetic burst size (i.e., peak height) was directly related to the number of action potentials within a sympathetic burst both at baseline (r = 0.75 ± 0.13; P < 0.001) and LBNP (r = 0.75 ± 0.12; P < 0.001). Also, the amplitude of detected action potentials within sympathetic bursts was directly related to the increased burst size at both baseline (r = 0.59 ± 0.16; P < 0.001) and LBNP (r = 0.61 ± 0.12; P < 0.001). In addition, the number of detected action potentials and the number of distinct action potential clusters within a given sympathetic burst were correlated at baseline (r = 0.7 ± 0.1; P < 0.001) and during LBNP (r = 0.74 ± 0.03; P < 0.001). Furthermore, action potential latency (i.e., an inverse index of neural conduction velocity) was decreased as a function of action potential size at baseline and LBNP. LBNP did not change the number of action potentials and unique clusters per sympathetic burst. It was concluded that there exists a hierarchical pattern of recruitment of additional faster conducting neurons of larger amplitude as the sympathetic bursts become stronger (i.e., larger amplitude bursts). This fundamental pattern was evident at rest and was not altered by the level of baroreceptor unloading applied in this study.
Bagnol, D; Jule, Y; Kirchner, G; Cupo, A; Roman, C
1993-02-01
Retrograde tracing with rhodamine fluorescent microspheres combined with fluorescein immunolabelling of methionine-enkephalin showed the presence of enkephalin-like material in neurons of the inferior mesenteric ganglion (sympathetic prevertebral ganglion) projecting to the distal colon in cat. Two weeks after injecting the microspheres into the wall of the distal colon, the inferior mesenteric ganglion was dissected out and incubated for 24 hours in a colchicine-containing culture medium in order to facilitate the detection of enkephalins in the soma of ganglion neurons. It was observed that retrogradely labelled ganglion cells contained enkephalin-like immunoreactive material. These ganglion cells corresponded to enkephalin-like postganglionic neurons, the terminals of which were located inside the wall of the distal colon. These enkephalin-like neurons were numerous and scattered throughout the ganglion. Sometimes enkephalin-like immunoreactive fibers, probably originating from spinal preganglionic neurons, ran close to immunoreactive and non-immunoreactive retrogradely labelled ganglion cells. This suggests that enkephalin-like immunoreactive fibers may make synaptic connections with enkephalin-like and non-enkephalin-like postganglionic neurons projecting to the distal colon. The present study establishes for the first time the existence of an enkephalin-like postganglionic pathway to the digestive tract originating from a sympathetic prevertebral ganglion. This finding indicates that the enkephalinergic innervation of the cat digestive tract may have at least two possible sources: (i) the sympathetic prevertebral ganglia; and (ii) the enteric nervous ganglia.
Photostimulation of Phox2b medullary neurons activates cardiorespiratory function in conscious rats.
Kanbar, Roy; Stornetta, Ruth L; Cash, Devin R; Lewis, Stephen J; Guyenet, Patrice G
2010-11-01
Hypoventilation is typically treated with positive pressure ventilation or, in extreme cases, by phrenic nerve stimulation. This preclinical study explores whether direct stimulation of central chemoreceptors could be used as an alternative method to stimulate breathing. To determine whether activation of the retrotrapezoid nucleus (RTN), which is located in the rostral ventrolateral medulla (RVLM), stimulates breathing with appropriate selectivity. A lentivirus was used to induce expression of the photoactivatable cationic channel channelrhodopsin-2 (ChR2) by RVLM Phox2b-containing neurons, a population that consists of central chemoreceptors (the ccRTN neurons) and blood pressure (BP)-regulating neurons (the C1 cells). The transfected neurons were activated with pulses of laser light. Respiratory effects were measured by plethysmography or diaphragmatic EMG recording and cardiovascular effects by monitoring BP, renal sympathetic nerve discharge, and the baroreflex. The RVLM contained 600 to 900 ChR2-transfected neurons (63% C1, 37% ccRTN). RVLM photostimulation significantly increased breathing rate (+42%), tidal volume (21%), minute volume (68%), and peak expiratory flow (48%). Photostimulation increased diaphragm EMG amplitude (19%) and frequency (21%). Photostimulation increased BP (4 mmHg) and renal sympathetic nerve discharge (43%) while decreasing heart rate (15 bpm). Photostimulation of ChR2-transfected RVLM Phox2b neurons produces a vigorous stimulation of breathing accompanied by a small sympathetically mediated increase in BP. These results demonstrate that breathing can be relatively selectively activated in resting unanesthetized mammals via optogenetic manipulation of RVLM neurons presumed to be central chemoreceptors. This methodology could perhaps be used in the future to enhance respiration in humans.
Renal mechanoreceptor dysfunction: an intermediate phenotype in spontaneously hypertensive rats.
DiBona, G F; Jones, S Y; Kopp, U C
1999-01-01
This study tested the hypothesis that decreased responsiveness of renal mechanosensitive neurons constitutes an intermediate phenotype in spontaneously hypertensive rats (SHR). Decreased responsiveness of these sensory neurons would contribute to increased renal sympathetic nerve activity and sodium retention, characteristic findings in hypertension. A backcross population, developed by mating borderline hypertensive rats with Wistar-Kyoto rats (WKY) (the F1 of a cross between an SHR and a normotensive WKY), was fed 8% NaCl food for 12 weeks from age 4 to 16 weeks. Responses to increases in ureteral pressure to 20 and 40 mm Hg in 80 backcross rats instrumented for measurement of mean arterial pressure and afferent renal nerve activity were determined. Mean arterial pressure ranged from 110 to 212 mm Hg and was inversely correlated with the magnitude of the increase in afferent renal nerve activity during increased ureteral pressure. Thus, decreased responsiveness of renal mechanosensitive neurons cosegregated with hypertension in this backcross population. This aspect of the complex quantitative trait of altered renal sympathetic neural control of renal function, ie, decreased renal mechanoreceptor responsiveness, is part of an intermediate phenotype in SHR.
Anatomy of the Vestibulo-automatic Outflow to the Gut
NASA Technical Reports Server (NTRS)
Torigoe, Y.
1985-01-01
Motion sickness can be induced by vestibular effects on the sympathetic portion of the autonomic nervous system. However, the pathways linking the vestibular and autonomic pathways are unknown. As a first step in this analysis, the locations of preganglionic sympathetic neurons (PSN) and dorsal root afferent ganglionic neurons (DRG) which supply sympathetic innervation to major portions of the gastrointestinal tract in rabbits were identified. The objective of a second series of experiments is to determine which of the brainstem nuclei project to the autonomic regions of the spinal cord that control gastrointestinal motility. To achieve this goal, a trans-synaptic retrograde tracer (3H-tetanus toxoid) is applied to the greater splanchnic nerve. This method allows the labeling of neurons within the brainstem that project only to the preganglionic synpathetic neurons. One structure that has been strongly implicated in mediating vestibulo-autonomic control is the cerebellum (i.e., nodulus and uvula). The outflow of these lobules to the autonomic regions of the brainstem is mediated by the fastigial nucleus. To determine the precise projections of the fastigial nucleus to the brainstem nuclei involved in emesis, anterograde tracer (3H-leucine) was injected into the fastigial nucleus in a third series of experiments.
Nakamura, Yoshiko; Nakamura, Kazuhiro; Matsumura, Kiyoshi; Kobayashi, Shigeo; Kaneko, Takeshi; Morrison, Shaun F.
2008-01-01
Fever is induced by the neuronal mechanism in the brain. Prostaglandin (PG) E2 acts as a pyrogenic mediator in the preoptic area (POA) probably through the EP3 subtype of PGE receptor expressed on GABAergic neurons, and this PGE2 action triggers neuronal pathways for sympathetic thermogenesis in peripheral effector organs including brown adipose tissue (BAT). To explore pyrogenic efferent pathways from the POA, we here determined projection targets of EP3 receptor-expressing POA neurons with a special focus on rat hypothalamic regions including the dorsomedial hypothalamic nucleus (DMH), which is known as a center for autonomic responses to stress. Among injections of cholera toxin b-subunit (CTb), a retrograde tracer, into hypothalamic regions at the rostrocaudal level of the DMH, injections into the DMH, lateral hypothalamic area (LH), and dorsal hypothalamic area (DH) resulted in EP3 receptor immunolabeling in substantial populations of CTb-labeled neurons in the POA. Bilateral microinjections of muscimol, a GABAA receptor agonist, into the DMH and a ventral region of the DH, but not those into the LH, inhibited thermogenic (BAT sympathetic nerve activity, BAT temperature, core body temperature, and expired CO2) and cardiovascular (arterial pressure and heart rate) responses to an intra-POA PGE2 microinjection. Further immunohistochemical observations revealed close association of POA-derived GABAergic axon swellings with DMH neurons projecting to the medullary raphe regions where sympathetic premotor neurons for febrile and thermoregulatory responses are localized. These results suggest that a direct projection of EP3 receptor-expressing POA neurons to the DMH/DH region mediates febrile responses via a GABAergic mechanism. PMID:16367780
The ALK receptor in sympathetic neuron development and neuroblastoma.
Janoueix-Lerosey, Isabelle; Lopez-Delisle, Lucille; Delattre, Olivier; Rohrer, Hermann
2018-05-01
The ALK gene encodes a tyrosine kinase receptor characterized by an expression pattern mainly restricted to the developing central and peripheral nervous systems. In 2008, the discovery of ALK activating mutations in neuroblastoma, a tumor of the sympathetic nervous system, represented a breakthrough in the understanding of the pathogenesis of this pediatric cancer and established mutated ALK as a tractable therapeutic target for precision medicine. Subsequent studies addressed the identity of ALK ligands, as well as its physiological function in the sympathoadrenal lineage, its role in neuroblastoma development and the signaling pathways triggered by mutated ALK. This review focuses on these different aspects of the ALK biology and summarizes the various therapeutic strategies relying on ALK inhibition in neuroblastoma, either as monotherapies or combinatory treatments.
Walters, Arthur S; Rye, David B
2009-05-01
Evidence is reviewed documenting an intimate relationship among restless legs syndrome (RLS) / periodic limb movements in sleep (PLMS) and hypertension and cardiovascular and cerebrovascular disease. Sympathetic overactivity is associated with RLS/PLMS, as manifested by increased pulse rate and blood pressure coincident with PLMS. Causality is far from definitive. Mechanisms are explored as to how RLS/PLMS may lead to high blood pressure, heart disease, and stroke: (a) the sympathetic hyperactivity associated with RLS/PLMS may lead to daytime hypertension that in turn leads to heart disease and stroke; (b) in the absence of daytime hypertension, this sympathetic hyperactivity may predispose to heart disease and stroke either directly or indirectly via atherosclerotic plaque formation and rupture; and (c) comorbidities associated with RLS/PLMS, such as renal failure, diabetes, iron deficiency, and insomnia, may predispose to heart disease and stroke. One theoretical cause for sympathetic hyperactivity is insufficient All diencephalospinal dopaminergic neuron inhibition of sympathetic preganglionic neurons residing in the intermediolateral cell columns of the spinal cord. We cannot exclude the possibility that peripheral vascular, cardiovascular, and cerebrovascular disease may also contribute to RLS/PLMS, and mechanisms for these possibilities are also discussed.
Keeler, Austin B; Suo, Dong; Park, Juyeon; Deppmann, Christopher D
2017-07-01
Postganglionic sympathetic neurons detect vascular derived neurotrophin 3 (NT3) via the axonally expressed receptor tyrosine kinase, TrkA, to promote chemo-attraction along intermediate targets. Once axons arrive to their final target, a structurally related neurotrophic factor, nerve growth factor (NGF), also acts through TrkA to promote final target innervation. Does TrkA signal differently at these different locales? We previously found that Coronin-1 is upregulated in sympathetic neurons upon exposure to NGF, thereby endowing the NGF-TrkA complex with new signaling capabilities (i.e. calcium signaling), which dampens axon growth and branching. Based on the notion that axons do not express functional levels of Coronin-1 prior to final target innervation, we developed an in vitro model for axon growth and branching along intermediate targets using Coro1a -/- neurons grown in NT3. We found that, similar to NGF-TrkA, NT3-TrkA is capable of inducing MAPK and PI3K in the presence or absence of Coronin-1. However, unlike NGF, NT3 does not induce calcium release from intracellular stores. Using a combination of pharmacology, knockout neurons and in vitro functional assays, we suggest that the NT3-TrkA complex uses Ras/MAPK and/or PI3K-AKT signaling to induce axon growth and inhibit axon branching along intermediate targets. However, in the presence of Coronin-1, these signaling pathways lose their ability to impact NT3 dependent axon growth or branching. This is consistent with a role for Coronin-1 as a molecular switch for axon behavior and suggests that Coronin-1 suppresses NT3 dependent axon behavior. Copyright © 2017 Elsevier Inc. All rights reserved.
Lechner, Stefan G; Mayer, Martina; Boehm, Stefan
2003-12-15
Acetylcholine has long been known to excite sympathetic neurons via M1 muscarinic receptors through an inhibition of M-currents. Nevertheless, it remained controversial whether activation of muscarinic receptors is also sufficient to trigger noradrenaline release from sympathetic neurons. In primary cultures of rat superior cervical ganglia, the muscarinic agonist oxotremorine M inhibited M-currents with half-maximal effects at 1 microM and induced the release of previously incorporated [3H]noradrenaline with half-maximal effects at 10 microM. This latter action was not affected by the nicotinic antagonist mecamylamine which, however, abolished currents through nicotinic receptors elicited by high oxotremorine M concentrations. Ablation of the signalling cascades linked to inhibitory G proteins by pertussis toxin potentiated the release stimulating effect of oxotremorine M, and the half-maximal concentration required to stimulate noradrenaline release was decreased to 3 microM. Pirenzepine antagonized the inhibition of M-currents and the induction of release by oxotremorine M with identical apparent affinity, and both effects were abolished by the muscarinic toxin 7. These results indicate that one muscarinic receptor subtype, namely M1, mediates these two effects. Retigabine, which enhances M-currents, abolished the release induced by oxotremorine M, but left electrically induced release unaltered. Moreover, retigabine shifted the voltage-dependent activation of M-currents by about 20 mV to more negative potentials and caused 20 mV hyperpolarisations of the membrane potential. In the absence of retigabine, oxotremorine M depolarised the neurons and elicited action potential discharges in 8 of 23 neurons; in its presence, oxotremorine M still caused equal depolarisations, but always failed to trigger action potentials. Action potential waveforms caused by current injection were not affected by retigabine. These results indicate that the inhibition of M-currents is the basis for the stimulation of transmitter release from sympathetic neurons via M1 muscarinic receptors.
Central Control of Brown Adipose Tissue Thermogenesis
Morrison, Shaun F.; Madden, Christopher J.; Tupone, Domenico
2011-01-01
Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. Mitochondrial oxidation in brown adipose tissue (BAT) is a significant source of neurally regulated metabolic heat production in many species from mouse to man. BAT thermogenesis is regulated by neural networks in the central nervous system which responds to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate BAT sympathetic nerve activity. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates BAT thermogenesis and includes the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E2, to increase body temperature during fever. The cold thermal afferent circuit from cutaneous thermal receptors, through second-order thermosensory neurons in the dorsal horn of the spinal cord ascends to activate neurons in the lateral parabrachial nucleus which drive GABAergic interneurons in the preoptic area (POA) to inhibit warm-sensitive, inhibitory output neurons of the POA. The resulting disinhibition of BAT thermogenesis-promoting neurons in the dorsomedial hypothalamus activates BAT sympathetic premotor neurons in the rostral ventromedial medulla, including the rostral raphe pallidus, which provide excitatory, and possibly disinhibitory, inputs to spinal sympathetic circuits to drive BAT thermogenesis. Other recently recognized central sites influencing BAT thermogenesis and energy expenditure are also described. PMID:22389645
Central control of thermogenesis in mammals
Morrison, Shaun F.; Nakamura, Kazuhiro; Madden, Christopher J.
2008-01-01
Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature in mammals and birds during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. The primary sources of neurally regulated metabolic heat production are mitochondrial oxidation in brown adipose tissue, increases in heart rate and shivering in skeletal muscle. Thermogenesis is regulated in each of these tissues by parallel networks in the central nervous system, which respond to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate the appropriate sympathetic and somatic efferents. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates thermogenesis and discusses the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E2, to increase body temperature. The cold thermal afferent circuit from cutaneous thermal receptors ascends via second-order thermosensory neurons in the dorsal horn of the spinal cord to activate neurons in the lateral parabrachial nucleus, which drive GABAergic interneurons in the preoptic area to inhibit warm-sensitive, inhibitory output neurons of the preoptic area. The resulting disinhibition of thermogenesis-promoting neurons in the dorsomedial hypothalamus and possibly of sympathetic and somatic premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, activates excitatory inputs to spinal sympathetic and somatic motor circuits to drive thermogenesis. PMID:18469069
Marcek, John; Okerberg, Carlin; Liu, Chang-Ning; Potter, David; Butler, Paul; Boucher, Magalie; Zorbas, Mark; Mouton, Peter; Nyengaard, Jens R; Somps, Chris
2016-10-01
Nerve growth factor (NGF) blocking therapies are an emerging and effective approach to pain management. However, concerns about the potential for adverse effects on the structure and function of the peripheral nervous system have slowed their development. Early studies using NGF antisera in adult rats reported effects on the size and number of neurons in the sympathetic chain ganglia. In the work described here, both young adult (6-8 week) and fully mature (7-8 month) rats were treated with muMab 911, a selective, murine, anti-NGF monoclonal antibody, to determine if systemic exposures to pharmacologically active levels of antibody for 1 month cause loss of neurons in the sympathetic superior cervical ganglia (SCG). State-of-the-art, unbiased stereology performed by two independent laboratories was used to determine the effects of muMab 911 on SCG neuronal number and size, as well as ganglion size. Following muMab 911 treatment, non-statistically significant trends toward smaller ganglia, and smaller and fewer neurons, were seen when routine, nonspecific stains were used in stereologic assessments. However, when noradrenergic neurons were identified using tyrosine hydroxylase (TH) immunoreactivity, trends toward fewer neurons observed with routine stains were not apparent. The only statistically significant effects detected were lower SCG weights in muMab 911-treated rats, and a smaller volume of TH immunoreactivity in neurons from younger rats treated with muMab 911. These results indicate that therapeutically relevant exposures to the anti-NGF monoclonal antibody muMab 911 for 1 month have no effect on neuron numbers within the SCG from young or old adult rats. Copyright © 2016 Elsevier B.V. All rights reserved.
Prior, Larissa J; Davern, Pamela J; Burke, Sandra L; Lim, Kyungjoon; Armitage, James A; Head, Geoffrey A
2014-02-01
Exposure to maternal obesity or a maternal diet rich in fat during development may have adverse outcomes in offspring, such as the development of obesity and hypertension. The present study examined the effect of a maternal high-fat diet (m-HFD) on offspring blood pressure and renal sympathetic nerve activity, responses to stress, and sensitivity to central administration of leptin and ghrelin. Offspring of New Zealand white rabbits fed a 13% HFD were slightly heavier than offspring from mothers fed a 4% maternal normal fat diet (P<0.05) but had 64% greater fat pad mass (P=0.015). Mean arterial pressure, heart rate, and renal sympathetic nerve activity at 4 months of age were 7%, 7%, and 24% greater, respectively (P<0.001), in m-HFD compared with maternal normal fat diet rabbits, and the renal sympathetic nerve activity response to airjet stress was enhanced in the m-HFD group. m-HFD offspring had markedly elevated pressor and renal sympathetic nerve activity responses to intracerebroventricular leptin (5-100 µg) and enhanced sympathetic responses to intracerebroventricular ghrelin (1-5 nmol). In contrast, there was resistance to the anorexic effects of intracerebroventricular leptin and less neuronal activation as detected by Fos immunohistochemistry in the arcuate (-57%; P<0.001) and paraventricular (-37%; P<0.05) nuclei of the hypothalamus in m-HFD offspring compared with maternal normal fat diet rabbits. We conclude that offspring from mothers consuming an HFD exhibit an adverse cardiovascular profile in adulthood because of altered central hypothalamic sensitivity to leptin and ghrelin.
Schmidt, Robert E.; Green, Karen G.; Feng, Dongyan; Dorsey, Denise A.; Parvin, Curtis A.; Lee, Jin-Moo; Xiao, Qinlgi; Brines, Michael
2008-01-01
Autonomic neuropathy is a significant diabetic complication resulting in increased morbidity and mortality. Studies of autopsied diabetic patients and several rodent models demonstrate that the neuropathologic hallmark of diabetic sympathetic autonomic neuropathy in prevertebral ganglia is the occurrence of synaptic pathology resulting in distinctive dystrophic neurites (“neuritic dystrophy”). Our prior studies show that neuritic dystrophy is reversed by exogenous IGF-I administration without altering the metabolic severity of diabetes, i.e. functioning as a neurotrophic substance. The description of erythropoietin (EPO) synergy with IGF-I function and the recent discovery of EPO’s multifaceted neuroprotective role suggested it might substitute for IGF-I in treatment of diabetic autonomic neuropathy. Our current studies demonstrate EPO receptor (EPO-R) mRNA in a cDNA set prepared from NGF-maintained rat sympathetic neuron cultures which decreased with NGF deprivation, a result which demonstrates clearly that sympathetic neurons express EPO-R, a result confirmed by immunohistochemistry. Treatment of STZ-diabetic NOD-SCID mice have demonstrated a dramatic preventative effect of EPO and carbamylated EPO (CEPO, which is neuroprotective but not hematopoietic) on the development of neuritic dystrophy. Neither EPO nor CEPO had a demonstrable effect on the metabolic severity of diabetes. Our results coupled with reported salutary effects of EPO on postural hypotension in a few clinical studies of EPO-treated anemic diabetic and non-diabetic patients may reflect a primary neurotrophic effect of EPO on the sympathetic autonomic nervous system, rather than a primary hematopoietic effect. These findings may represent a major clinical advance since EPO has been widely and safely used in anemic patients due to a variety of clinical conditions. PMID:17967455
Photostimulation of Phox2b Medullary Neurons Activates Cardiorespiratory Function in Conscious Rats
Kanbar, Roy; Stornetta, Ruth L.; Cash, Devin R.; Lewis, Stephen J.; Guyenet, Patrice G.
2010-01-01
Rationale: Hypoventilation is typically treated with positive pressure ventilation or, in extreme cases, by phrenic nerve stimulation. This preclinical study explores whether direct stimulation of central chemoreceptors could be used as an alternative method to stimulate breathing. Objectives: To determine whether activation of the retrotrapezoid nucleus (RTN), which is located in the rostral ventrolateral medulla (RVLM), stimulates breathing with appropriate selectivity. Methods: A lentivirus was used to induce expression of the photoactivatable cationic channel channelrhodopsin-2 (ChR2) by RVLM Phox2b-containing neurons, a population that consists of central chemoreceptors (the ccRTN neurons) and blood pressure (BP)-regulating neurons (the C1 cells). The transfected neurons were activated with pulses of laser light. Respiratory effects were measured by plethysmography or diaphragmatic EMG recording and cardiovascular effects by monitoring BP, renal sympathetic nerve discharge, and the baroreflex. Measurements and Main Results: The RVLM contained 600 to 900 ChR2-transfected neurons (63% C1, 37% ccRTN). RVLM photostimulation significantly increased breathing rate (+42%), tidal volume (21%), minute volume (68%), and peak expiratory flow (48%). Photostimulation increased diaphragm EMG amplitude (19%) and frequency (21%). Photostimulation increased BP (4 mmHg) and renal sympathetic nerve discharge (43%) while decreasing heart rate (15 bpm). Conclusions: Photostimulation of ChR2-transfected RVLM Phox2b neurons produces a vigorous stimulation of breathing accompanied by a small sympathetically mediated increase in BP. These results demonstrate that breathing can be relatively selectively activated in resting unanesthetized mammals via optogenetic manipulation of RVLM neurons presumed to be central chemoreceptors. This methodology could perhaps be used in the future to enhance respiration in humans. PMID:20622037
Neurofibromin and Neuronal Apoptosis
2006-07-01
role of familial pheochromocytoma genes, including succinate dehydrogenase (SDH) and Nf1, in modulating neuronal apoptosis following neurotrophin...gene products, in Nf1-/- sensory and sympathetic neurons; this work will also have relevance to the biology of familial pheochromocytoma . "So what...Schlisio, S. (2005). Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: Developmental culling and cancer. Cancer
Gavioli, Mariana; Lara, Aline; Almeida, Pedro W. M.; Lima, Augusto Martins; Damasceno, Denis D.; Rocha-Resende, Cibele; Ladeira, Marina; Resende, Rodrigo R.; Martinelli, Patricia M.; Melo, Marcos Barrouin; Brum, Patricia C.; Fontes, Marco Antonio Peliky; Souza Santos, Robson A.; Prado, Marco A. M.; Guatimosim, Silvia
2014-01-01
Cholinergic control of the heart is exerted by two distinct branches; the autonomic component represented by the parasympathetic nervous system, and the recently described non-neuronal cardiomyocyte cholinergic machinery. Previous evidence has shown that reduced cholinergic function leads to deleterious effects on the myocardium. Yet, whether conditions of increased cholinergic signaling can offset the pathological remodeling induced by sympathetic hyperactivity, and its consequences for these two cholinergic axes are unknown. Here, we investigated two models of sympathetic hyperactivity: i) the chronic beta-adrenergic receptor stimulation evoked by isoproterenol (ISO), and ii) the α2A/α2C-adrenergic receptor knockout (KO) mice that lack pre-synaptic adrenergic receptors. In both models, cholinergic signaling was increased by administration of the cholinesterase inhibitor, pyridostigmine. First, we observed that isoproterenol produces an autonomic imbalance characterized by increased sympathetic and reduced parasympathetic tone. Under this condition transcripts for cholinergic proteins were upregulated in ventricular myocytes, indicating that non-neuronal cholinergic machinery is activated during adrenergic overdrive. Pyridostigmine treatment prevented the effects of ISO on autonomic function and on the ventricular cholinergic machinery, and inhibited cardiac remodeling. α2A/α2C-KO mice presented reduced ventricular contraction when compared to wild-type mice, and this dysfunction was also reversed by cholinesterase inhibition. Thus, the cardiac parasympathetic system and non-neuronal cardiomyocyte cholinergic machinery are modulated in opposite directions under conditions of increased sympathetic drive or ACh availability. Moreover, our data support the idea that pyridostigmine by restoring ACh availability is beneficial in heart disease. PMID:24992197
Systemic Glucoregulation by Glucose-Sensing Neurons in the Ventromedial Hypothalamic Nucleus (VMH).
Shimazu, Takashi; Minokoshi, Yasuhiko
2017-05-01
The ventromedial hypothalamic nucleus (VMH) regulates glucose production in the liver as well as glucose uptake and utilization in peripheral tissues, including skeletal muscle and brown adipose tissue, via efferent sympathetic innervation and neuroendocrine mechanisms. The action of leptin on VMH neurons also increases glucose uptake in specific peripheral tissues through the sympathetic nervous system, with improved insulin sensitivity. On the other hand, subsets of VMH neurons, such as those that express steroidogenic factor 1 (SF1), sense changes in the ambient glucose concentration and are characterized as glucose-excited (GE) and glucose-inhibited (GI) neurons whose action potential frequency increases and decreases, respectively, as glucose levels rise. However, how these glucose-sensing (GE and GI) neurons in the VMH contribute to systemic glucoregulation remains poorly understood. In this review, we provide historical background and discuss recent advances related to glucoregulation by VMH neurons. In particular, the article describes the role of GE neurons in the control of peripheral glucose utilization and insulin sensitivity, which depend on mitochondrial uncoupling protein 2 of the neurons, as well as that of GI neurons in the control of hepatic glucose production through hypoglycemia-induced counterregulatory mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabinovitch, M.A.; Rose, C.P.; Rouleau, J.L.
1987-12-01
In heart failure secondary to chronic mechanical overload, cardiac sympathetic neurons demonstrate depressed catecholamine synthetic and transport function. To assess the potential of sympathetic neuronal imaging for detection of depressed transport function, serial scintigrams were acquired after the intravenous administration of metaiodobenzylguanidine (/sup 131/I) to 13 normal dogs, 3 autotransplanted (denervated) dogs, 5 dogs with left ventricular failure, and 5 dogs with compensated left ventricular hypertrophy due to a surgical arteriovenous shunt. Nine dogs were killed at 14 hours postinjection for determination of metaiodobenzylguanidine (/sup 131/I) and endogenous norepinephrine content in left atrium, left ventricle, liver, and spleen. By 4more » hours postinjection, autotransplanted dogs had a 39% reduction in mean left ventricular tracer accumulation, reflecting an absent intraneuronal tracer pool. Failure dogs demonstrated an accelerated early mean left ventricular tracer efflux rate (26.0%/hour versus 13.7%/hour in normals), reflecting a disproportionately increased extraneuronal tracer pool. They also showed reduced late left ventricular and left atrial concentrations of tracer, consistent with a reduced intraneuronal tracer pool. By contrast, compensated hypertrophy dogs demonstrated a normal early mean left ventricular tracer efflux rate (16.4%/hour) and essentially normal late left ventricular and left atrial concentrations of tracer. Metaiodobenzylguanidine (/sup 131/I) scintigraphic findings reflect the integrity of the cardiac sympathetic neuronal transport system in canine mechanical-overload heart failure. Metaiodobenzylguanidine (/sup 123/I) scintigraphy should be explored as a means of early detection of mechanical-overload heart failure in patients.« less
Nervous control of photophores in luminescent fishes.
Zaccone, Giacomo; Abelli, Luigi; Salpietro, Lorenza; Zaccone, Daniele; Macrì, Battesimo; Marino, Fabio
2011-07-01
Functional studies of the autonomic innervation in the photophores of luminescent fishes are scarce. The majority of studies have involved either the stimulation of isolated photophores or the modulatory effects of adrenaline-induced light emission. The fish skin is a highly complex organ that performs a wide variety of physiological processes and receives extensive nervous innervations. The latter includes autonomic nerve fibers of spinal sympathetic origin having a secretomotor function. More recent evidence indicates that neuropeptide-containing nerve fibers, such as those that express tachykinin and its NK1 receptor, neuropeptide Y, or nitric oxide, may also play an important role in the nervous control of photophores. There is no anatomical evidence that shows that nNOS positive (nitrergic) neurons form a population distinct from the secretomotor neurons with perikarya in the sympathetic ganglia. The distribution and function of the nitrergic nerves in the luminous cells, however, is less clear. It is likely that the chemical properties of the sympathetic postganglionic neurons in the ganglia of luminescent fishes are target-specific, such as observed in mammals. Copyright © 2010 Elsevier GmbH. All rights reserved.
Spinally projecting preproglucagon axons preferentially innervate sympathetic preganglionic neurons
Llewellyn-Smith, I.J.; Marina, N.; Manton, R.N.; Reimann, F.; Gribble, F.M.; Trapp, S.
2015-01-01
Glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarius (NTS) and medullary reticular formation, produce GLP-1. In transgenic mice expressing glucagon promoter-driven yellow fluorescent protein (YFP), these brainstem PPG neurons project to many central autonomic regions where GLP-1 receptors are expressed. The spinal cord also contains GLP-1 receptor mRNA but the distribution of spinal PPG axons is unknown. Here, we used two-color immunoperoxidase labeling to examine PPG innervation of spinal segments T1–S4 in YFP-PPG mice. Immunoreactivity for YFP identified spinal PPG axons and perikarya. We classified spinal neurons receiving PPG input by immunoreactivity for choline acetyltransferase (ChAT), nitric oxide synthase (NOS) and/or Fluorogold (FG) retrogradely transported from the peritoneal cavity. FG microinjected at T9 defined cell bodies that supplied spinal PPG innervation. The deep dorsal horn of lower lumbar cord contained YFP-immunoreactive neurons. Non-varicose, YFP-immunoreactive axons were prominent in the lateral funiculus, ventral white commissure and around the ventral median fissure. In T1–L2, varicose, YFP-containing axons closely apposed many ChAT-immunoreactive sympathetic preganglionic neurons (SPN) in the intermediolateral cell column (IML) and dorsal lamina X. In the sacral parasympathetic nucleus, about 10% of ChAT-immunoreactive preganglionic neurons received YFP appositions, as did occasional ChAT-positive motor neurons throughout the rostrocaudal extent of the ventral horn. YFP appositions also occurred on NOS-immunoreactive spinal interneurons and on spinal YFP-immunoreactive neurons. Injecting FG at T9 retrogradely labeled many YFP-PPG cell bodies in the medulla but none of the spinal YFP-immunoreactive neurons. These results show that brainstem PPG neurons innervate spinal autonomic and somatic motor neurons. The distributions of spinal PPG axons and spinal GLP-1 receptors correlate well. SPN receive the densest PPG innervation. Brainstem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to SPN or interneurons. PMID:25450967
A neuroprotective agent that inactivates prodegenerative TrkA and preserves mitochondria
Feinberg, Konstantin; Kolaj, Adelaida; Wu, Chen; Grinshtein, Natalie; Krieger, Jonathan R.; Moran, Michael F.; Rubin, Lee L.
2017-01-01
Axon degeneration is an early event and pathological in neurodegenerative conditions and nerve injuries. To discover agents that suppress neuronal death and axonal degeneration, we performed drug screens on primary rodent neurons and identified the pan-kinase inhibitor foretinib, which potently rescued sympathetic, sensory, and motor wt and SOD1 mutant neurons from trophic factor withdrawal-induced degeneration. By using primary sympathetic neurons grown in mass cultures and Campenot chambers, we show that foretinib protected neurons by suppressing both known degenerative pathways and a new pathway involving unliganded TrkA and transcriptional regulation of the proapoptotic BH3 family members BimEL, Harakiri,and Puma, culminating in preservation of mitochondria in the degenerative setting. Foretinib delayed chemotherapy-induced and Wallerian axonal degeneration in culture by preventing axotomy-induced local energy deficit and preserving mitochondria, and peripheral Wallerian degeneration in vivo. These findings identify a new axon degeneration pathway and a potentially clinically useful therapeutic drug. PMID:28877995
An ERβ agonist induces browning of subcutaneous abdominal fat pad in obese female mice.
Miao, Yi-Fei; Su, Wen; Dai, Yu-Bing; Wu, Wan-Fu; Huang, Bo; Barros, Rodrigo P A; Nguyen, Hao; Maneix, Laure; Guan, You-Fei; Warner, Margaret; Gustafsson, Jan-Åke
2016-12-06
Estrogen, via estrogen receptor alpha (ERα), exerts several beneficial effects on metabolism and energy homeostasis by controlling size, enzymatic activity and hormonal content of adipose tissue. The actions of estrogen on sympathetic ganglia, which are key players in the browning process, are less well known. In the present study we show that ERβ influences browning of subcutaneous adipose tissue (SAT) via its actions both on sympathetic ganglia and on the SAT itself. A 3-day-treatment with a selective ERβ agonist, LY3201, induced browning of SAT in 1-year-old obese WT and ERα -/- female mice. Browning was associated with increased expression of ERβ in the nuclei of neurons in the sympathetic ganglia, increase in tyrosine hydroxylase in both nerve terminals in the SAT and sympathetic ganglia neurons and an increase of β3-adrenoceptor in the SAT. LY3201 had no effect on browning in young female or male mice. In the case of young females browning was already maximal while in males there was very little expression of ERβ in the SAT and very little expression of the β3-adrenoceptor. The increase in both sympathetic tone and responsiveness of adipocytes to catecholamines reveals a novel role for ERβ in controlling browning of adipose tissue.
An ERβ agonist induces browning of subcutaneous abdominal fat pad in obese female mice
Miao, Yi-fei; Su, Wen; Dai, Yu-bing; Wu, Wan-fu; Huang, Bo; Barros, Rodrigo P. A.; Nguyen, Hao; Maneix, Laure; Guan, You-fei; Warner, Margaret; Gustafsson, Jan-Åke
2016-01-01
Estrogen, via estrogen receptor alpha (ERα), exerts several beneficial effects on metabolism and energy homeostasis by controlling size, enzymatic activity and hormonal content of adipose tissue. The actions of estrogen on sympathetic ganglia, which are key players in the browning process, are less well known. In the present study we show that ERβ influences browning of subcutaneous adipose tissue (SAT) via its actions both on sympathetic ganglia and on the SAT itself. A 3-day-treatment with a selective ERβ agonist, LY3201, induced browning of SAT in 1-year-old obese WT and ERα−/− female mice. Browning was associated with increased expression of ERβ in the nuclei of neurons in the sympathetic ganglia, increase in tyrosine hydroxylase in both nerve terminals in the SAT and sympathetic ganglia neurons and an increase of β3-adrenoceptor in the SAT. LY3201 had no effect on browning in young female or male mice. In the case of young females browning was already maximal while in males there was very little expression of ERβ in the SAT and very little expression of the β3-adrenoceptor. The increase in both sympathetic tone and responsiveness of adipocytes to catecholamines reveals a novel role for ERβ in controlling browning of adipose tissue. PMID:27922125
Peptides and neurotransmitters that affect renin secretion
NASA Technical Reports Server (NTRS)
Ganong, W. F.; Porter, J. P.; Bahnson, T. D.; Said, S. I.
1984-01-01
Substance P inhibits renin secretion. This polypeptide is a transmitter in primary afferent neurons and is released from the peripheral as well as the central portions of these neurons. It is present in afferent nerves from the kidneys. Neuropeptide Y, which is a cotransmitter with norepinephrine and epinephrine, is found in sympathetic neurons that are closely associated with and presumably innervate the juxtagolmerular cells. Its effect on renin secretion is unknown, but it produces renal vasoconstriction and natriuresis. Vasoactive intestinal polypeptide (VIP) is a cotransmitter with acetylocholine in cholinergic neurons, and this polypeptide stimulates renin secretion. We cannot find any evidence for its occurence in neurons in the kidneys, but various stimuli increase plasma VIP to levels comparable to those produced by doses of exogenous VIP which stimulated renin secretion. Neostigmine increases plasma VIP and plasma renin activity, and the VIP appears to be responsible for the increase in renin secretion, since the increase is not blocked by renal denervation or propranolol. Stimulation of various areas in the brain produces sympathetically mediated increases in plasma renin activity associated with increases in blood pressure. However, there is pharmacological evidence that the renin response can be separated from the blood pressure response. In anaesthetized dogs, drugs that increase central serotonergic discharge increase renin secretion without increasing blood pressure. In rats, activation of sertonergic neurons in the dorsal raphe nucleus increases renin secretion by a pathway that projects from this nucleus to the ventral hypothalamus, and from there to the kidneys via the sympathetic nervous system. The serotonin releasing drug parachloramphetamine also increases plasma VIP, but VIP does not appear to be the primary mediator of the renin response. There is preliminary evidence that the serotonergic neurons in the dorsal raphe nucleus are part of the pathway by which psychosocial stimuli increase renin secretion.
Longhurst, John C.; Tjen-A-Looi, Stephanie C.; Fu, Liang-Wu
2016-01-01
The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P < 0.05). The majority of these elPBN neurons contain vesicular glutamate transporter 3. In cats, epicardial bradykinin and electrical stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P < 0.05) after blockade of glutamate receptors with iontophoresis of kynurenic acid (Kyn, 25 mM). In separate cats, microinjection of Kyn (1.25 nmol/50 nl) into the elPBN reduced rVLM activity evoked by both bradykinin and electrical stimulation (n = 5, P < 0.05). Excitation of the elPBN with microinjection of dl-homocysteic acid (2 nmol/50 nl) significantly increased basal and CSAN-evoked rVLM activity. However, the enhanced rVLM activity induced by dl-homocysteic acid injected into the elPBN was reversed following iontophoresis of Kyn into the rVLM (n = 7, P < 0.05). These data suggest that cardiac sympathetic afferent stimulation activates cardiovascular neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway. PMID:27225950
Cardiovascular dysautonomia in Parkinson disease: from pathophysiology to pathogenesis.
Jain, Samay; Goldstein, David S
2012-06-01
Signs or symptoms of impaired autonomic regulation of circulation often attend Parkinson disease (PD). This review covers biomarkers and mechanisms of autonomic cardiovascular abnormalities in PD and related alpha-synucleinopathies. The clearest clinical laboratory correlate of dysautonomia in PD is loss of myocardial noradrenergic innervation, detected by cardiac sympathetic neuroimaging. About 30-40% of PD patients have orthostatic hypotension (OH), defined as a persistent, consistent fall in systolic blood pressure of at least 20 mmHg or diastolic blood pressure of at least 10 mmHg within 3 min of change in position from supine to standing. Neuroimaging evidence of cardiac sympathetic denervation is universal in PD with OH (PD+OH). In PD without OH about half the patients have diffuse left ventricular myocardial sympathetic denervation, a substantial minority have partial denervation confined to the inferolateral or apical walls, and a small number have normal innervation. Among patients with partial denervation the neuronal loss invariably progresses over time, and in those with normal innervation at least some loss eventually becomes evident. Thus, cardiac sympathetic denervation in PD occurs independently of the movement disorder. PD+OH also entails extra-cardiac noradrenergic denervation, but this is not as severe as in pure autonomic failure. PD+OH patients have failure of both the parasympathetic and sympathetic components of the arterial baroreflex. OH in PD therefore seems to reflect a "triple whammy" of cardiac and extra-cardiac noradrenergic denervation and baroreflex failure. In contrast, most patients with multiple system atrophy, which can resemble PD+OH clinically, do not have evidence for cardiac or extra-cardiac noradrenergic denervation. Catecholamines in the neuronal cytoplasm are potentially toxic, via spontaneous and enzyme-catalyzed oxidation. Normally cytoplasmic catecholamines are efficiently taken up into vesicles via the vesicular monoamine transporter. The recent finding of decreased vesicular uptake in Lewy body diseases therefore suggests a pathogenetic mechanism for loss of catecholaminergic neurons in the periphery and brain. Parkinson disease (PD) is one of the most common chronic neurodegenerative diseases of the elderly, and it is likely that as populations age PD will become even more prevalent and more of a public health burden. Severe depletion of dopaminergic neurons of the nigrostriatal system characterizes and likely produces the movement disorder (rest tremor, slowness of movement, rigid muscle tone, and postural instability) in PD. Over the past two decades, compelling evidence has accrued that PD also involves loss of noradrenergic neurons in the heart. This finding supports the view that loss of catecholaminergic neurons, both in the nigrostriatal system and the heart, is fundamental in PD. By the time PD manifests clinically, most of the nigrostriatal dopaminergic neurons are already lost. Identifying laboratory measures-biomarkers-of the disease process is therefore crucial for advances in treatment and prevention. Deposition of the protein, alpha-synuclein, in the form of Lewy bodies in catecholaminergic neurons is a pathologic hallmark of PD. Alpha-synucleinopathy in autonomic neurons may occur early in the pathogenetic process. The timing of cardiac noradrenergic denervation in PD is therefore a key issue. This review updates the field of autonomic cardiovascular abnormalities in PD and related disorders, with emphasis on relationships among striatal dopamine depletion, sympathetic noradrenergic denervation, and alpha-synucleinopathy. Copyright © 2011 Elsevier Inc. All rights reserved.
Reestablishment of Energy Balance in a Male Mouse Model With POMC Neuron Deletion of BMPR1A.
Townsend, Kristy L; Madden, Christopher J; Blaszkiewicz, Magdalena; McDougall, Lindsay; Tupone, Domenico; Lynes, Matthew D; Mishina, Yuji; Yu, Paul; Morrison, Shaun F; Tseng, Yu-Hua
2017-12-01
The regulation of energy balance involves complex processes in the brain, including coordination by hypothalamic neurons that contain pro-opiomelanocortin (POMC). We previously demonstrated that central bone morphogenetic protein (BMP) 7 reduced appetite. Now we show that a type 1 BMP receptor, BMPR1A, is colocalized with POMC neurons and that POMC-BMPR1A-knockout (KO) mice are hyperphagic, revealing physiological involvement of BMP signaling in anorectic POMC neurons in the regulation of appetite. Surprisingly, the hyperphagic POMC-BMPR1A-KO mice exhibited a lack of obesity, even on a 45% high-fat diet. This is because the brown adipose tissue (BAT) of KO animals exhibited increased sympathetic activation and greater thermogenic capacity owing to a reestablishment of energy balance, most likely stemming from a compensatory increase of BMPR1A in the whole hypothalamus of KO mice. Indeed, control animals given central BMP7 displayed increased energy expenditure and a specific increase in sympathetic nerve activity (SNA) in BAT. In these animals, pharmacological blockade of BMPR1A-SMAD signaling blunted the ability of BMP7 to increase energy expenditure or BAT SNA. Together, we demonstrated an important role for hypothalamic BMP signaling in the regulation of energy balance, including BMPR1A-mediated appetite regulation in POMC neurons as well as hypothalamic BMP-SMAD regulation of the sympathetic drive to BAT for thermogenesis. Copyright © 2017 Endocrine Society.
1985-01-01
Sympathetic neurons taken from rat superior cervical ganglia and grown in culture acquire cholinergic function under certain conditions. These cholinergic sympathetic neurons, however, retain a number of adrenergic properties, including the enzymes involved in the synthesis of norepinephrine (NE) and the storage of measurable amounts of NE. These neurons also retain a high affinity uptake system for NE; despite this, the majority of the synaptic vesicles remain clear even after incubation in catecholamines. The present study shows, however, that if these neurons are depolarized before incubation in catecholamine, the synaptic vesicles acquire dense cores indicative of amine storage. These manipulations are successful when cholinergic function is induced with either a medium that contains human placental serum and embryo extract or with heart-conditioned medium, and when the catecholamine is either NE or 5-hydroxydopamine. In some experiments, neurons are grown at low densities and shown to have cholinergic function by electrophysiological criteria. After incubation in NE, only 6% of the synaptic vesicles have dense cores. In contrast, similar neurons depolarized (80 mM K+) before incubation in catecholamine contain 82% dense-cored vesicles. These results are confirmed in network cultures where the percentage of dense-cored vesicles is increased 2.5 to 6.5 times by depolarizing the neurons before incubation with catecholamine. In both single neurons and in network cultures, the vesicle reloading is inhibited by reducing vesicle release during depolarization with an increased Mg++/Ca++ ratio or by blocking NE uptake either at the plasma membrane (desipramine) or at the vesicle membrane (reserpine). In addition, choline appears to play a competitive role because its presence during incubation in NE or after reloading results in decreased numbers of dense-cored vesicles. We conclude that the depolarization step preceding catecholamine incubation acts to empty the vesicles of acetylcholine, thus allowing them to reload with catecholamine. These data also suggest that the same vesicles may contain both neurotransmitters simultaneously. PMID:4008529
Neuronal migration on laminin in vitro.
Liang, S; Crutcher, K A
1992-03-20
Chick sympathetic (E-9) or telencephalic (E-7) neurons were cultured at low density on poly-DL-ornithine (PORN), poly-L-lysine (POLS), laminin or laminin-covered PORN or POLS and monitored with time-lapse videomicroscopy. Neurons migrated on laminin, or laminin-covered PORN or POLS, but not on PORN or POLS alone. Neuronal migration did not involve interactions with other cells indicating that neurons are capable of independent migration when exposed to a laminin substrate.
Felsted, Jennifer A; Chien, Cheng-Hao; Wang, Dongqing; Panessiti, Micaella; Ameroso, Dominique; Greenberg, Andrew; Feng, Guoping; Kong, Dong; Rios, Maribel
2017-12-05
The central mechanisms controlling glucose and lipid homeostasis are inadequately understood. We show that α2δ-1 is an essential regulator of glucose and lipid balance, acting in steroidogenic factor-1 (SF1) neurons of the ventromedial hypothalamus (VMH). These effects are body weight independent and involve regulation of SF1 + neuronal activity and sympathetic output to metabolic tissues. Accordingly, mice with α2δ-1 deletion in SF1 neurons exhibit glucose intolerance, altered lipolysis, and decreased cholesterol content in adipose tissue despite normal energy balance regulation. Profound reductions in the firing rate of SF1 neurons, decreased sympathetic output, and elevated circulating levels of serotonin are associated with these alterations. Normal calcium currents but reduced excitatory postsynaptic currents in mutant SF1 neurons implicate α2δ-1 in the promotion of excitatory synaptogenesis separate from its canonical role as a calcium channel subunit. Collectively, these findings identify an essential mechanism that regulates VMH neuronal activity and glycemic and lipid control and may be a target for tackling metabolic disease. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Activation of hypothalamic RIP-Cre neurons promotes beiging of WAT via sympathetic nervous system.
Wang, Baile; Li, Ang; Li, Xiaomu; Ho, Philip Wl; Wu, Donghai; Wang, Xiaoqi; Liu, Zhuohao; Wu, Kelvin Kl; Yau, Sonata Sy; Xu, Aimin; Cheng, Kenneth Ky
2018-04-01
Activation of brown adipose tissue (BAT) and beige fat by cold increases energy expenditure. Although their activation is known to be differentially regulated in part by hypothalamus, the underlying neural pathways and populations remain poorly characterized. Here, we show that activation of rat-insulin-promoter-Cre (RIP-Cre) neurons in ventromedial hypothalamus (VMH) preferentially promotes recruitment of beige fat via a selective control of sympathetic nervous system (SNS) outflow to subcutaneous white adipose tissue (sWAT), but has no effect on BAT Genetic ablation of APPL2 in RIP-Cre neurons diminishes beiging in sWAT without affecting BAT, leading to cold intolerance and obesity in mice. Such defects are reversed by activation of RIP-Cre neurons, inactivation of VMH AMPK, or treatment with a β3-adrenergic receptor agonist. Hypothalamic APPL2 enhances neuronal activation in VMH RIP-Cre neurons and raphe pallidus, thereby eliciting SNS outflow to sWAT and subsequent beiging. These data suggest that beige fat can be selectively activated by VMH RIP-Cre neurons, in which the APPL2-AMPK signaling axis is crucial for this defending mechanism to cold and obesity. © 2018 The Authors.
Brumovsky, Pablo R.; Seroogy, Kim B.; Lundgren, Kerstin H.; Watanabe, Masahiko; Hökfelt, Tomas; Gebhart, G. F.
2011-01-01
Glutamate is the main excitatory neurotransmitter in the nervous system, including in primary afferent neurons. However, to date a glutamatergic phenotype of autonomic neurons has not been described. Therefore, we explored the expression of vesicular glutamate transporters (VGLUTs) type 1, 2 and 3 in lumbar sympathetic chain (LSC) and major pelvic ganglion (MPG) of naïve BALB/C mice, as well as after pelvic nerve axotomy (PNA), using immunohistochemistry and in situ hybridization. Colocalization with activating transcription factor-3 (ATF-3), tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT) and calcitonin generelated peptide was also examined. Sham-PNA, sciatic nerve axotomy (SNA) or naïve mice were included. In naïve mice, VGLUT2-like immunoreactivity (LI) was only detected in fibers and varicosities in LSC and MPG; no ATF-3-immunoreactive (IR) neurons were visible. In contrast, PNA induced upregulation of VGLUT2 protein and transcript, as well as of ATF-3-LI in subpopulations of LSC neurons. Interestingly, VGLUT2-IR LSC neurons coexpressed ATF-3, and often lacked the noradrenergic marker TH. SNA only increased VGLUT2 protein and transcript in scattered LSC neurons. Neither PNA nor SNA upregulated VGLUT2 in MPG neurons. We also found perineuronal baskets immunoreactive either for VGLUT2 or the acetylcholinergic marker VAChT in non-PNA MPGs, usually around TH-IR neurons. VGLUT1-LI was restricted to some varicosities in MPGs, was absent in LSCs, and remained largely unaffected by PNA or SNA. This was confirmed by the lack of expression of VGLUT1 or VGLUT3 mRNAs in LSCs, even after PNA or SNA. Taken together, axotomy of visceral and non-visceral nerves results in a glutamatergic phenotype of some LSC neurons. In addition, we show previously non-described MPG perineuronal glutamatergic baskets. PMID:21596036
Cardinal, R; Nadeau, R; Laurent, C; Boudreau, G; Armour, J A
1996-09-01
To investigate the capacity of efferent sympathetic neurons to modulate the failing heart, stellate ganglion stimulation was performed in dogs with biventricular heart failure induced by rapid ventricular pacing (240 beats/min) for 4-6 weeks. Less noradrenaline was released from cardiac myoneural junctions into coronary sinus blood in response to left stellate ganglion stimulation in anesthetized failing heart preparations (582 pg/mL, lower and upper 95% confidence intervals of 288 and 1174 pg/mL, n = 19) compared with healthy heart preparations (6391 pg/mL, 95% confidence intervals of 4180 and 9770 pg/mL, n = 14; p < 0.001). There was substantial adrenaline extraction by failing hearts (49 +/- 6%), although it was slightly lower than in healthy heart preparations (65 +/- 9%, p = 0.055). In contrast with healthy heart preparations, no net release of adrenaline occurred during stellate ganglion stimulation in any of the failing heart preparations, and ventricular tissue levels of adrenaline fell below the sensitivity limit of the HPLC technique. In failing heart preparations, maximal electrical stimulation of right or left stellate ganglia resulted in minimal augmentation of left ventricular intramyocardial (17%) and chamber (12%) systolic pressures. These indices were augmented by 145 and 97%, respectively, following exogenous noradrenaline administration. Thus, the cardiac efferent sympathetic neurons' reduced capacity to release noradrenaline and modify cardiac function can contribute to reduction of sympathetic support to the failing heart.
Won, Yu-Jin; Lu, Van B; Puhl, Henry L; Ikeda, Stephen R
2013-12-04
Free fatty acids receptor 3 (FFA3, GPR41) and 2 (FFA2, GPR43), for which the short-chain fatty acids (SCFAs) acetate and propionate are agonist, have emerged as important G-protein-coupled receptors influenced by diet and gut flora composition. A recent study (Kimura et al., 2011) demonstrated functional expression of FFA3 in the rodent sympathetic nervous system (SNS) providing a potential link between nutritional status and autonomic function. However, little is known of the source of endogenous ligands, signaling pathways, or effectors in sympathetic neurons. In this study, we found that FFA3 and FFA2 are unevenly expressed in the rat SNS with higher transcript levels in prevertebral (e.g., celiac-superior mesenteric and major pelvic) versus paravertebral (e.g., superior cervical and stellate) ganglia. FFA3, whether heterologously or natively expressed, coupled via PTX-sensitive G-proteins to produce voltage-dependent inhibition of N-type Ca(2+) channels (Cav2.2) in sympathetic neurons. In addition to acetate and propionate, we show that β-hydroxybutyrate (BHB), a metabolite produced during ketogenic conditions, is also an FFA3 agonist. This contrasts with previous interpretations of BHB as an antagonist at FFA3. Together, these results indicate that endogenous BHB levels, especially when elevated under certain conditions, such as starvation, diabetic ketoacidosis, and ketogenic diets, play a potentially important role in regulating the activity of the SNS through FFA3.
Clonidine prevents enhancement of spinal sympathetic transmission by phosphodiesterase inhibitors.
Franz, D N; Madsen, P W
1982-02-12
Preganglionic sympathetic discharges, evoked by cervical stimulation in spinal cats, were rapidly and markedly enhanced for 1-2 h by aminophylline or isobutylmethylxanthine. Clonidine depressed intraspinal transmission and prevented enhancement by the xanthines; alpha 2-receptor antagonists blocked the effect of clonidine and not only restored but also markedly prolonged the enhancement by the xanthines. The results suggest that the excitability of sympathetic preganglionic neurons is regulated by cyclic AMP through activation of different subtypes of adrenergic receptors that are either positively or negatively coupled to adenylate cyclase.
Rusyniak, Daniel E.; Zaretskaia, Maria V.; Zaretsky, Dmitry V.; DiMicco, Joseph A.
2008-01-01
When given systemically to rats and humans, the drug of abuse 3–4 methylenedioxymethamphetamine (ecstasy, MDMA) elicits hyperthermia, hyperactivity, tachycardia, and hypertension. Chemically stimulating the dorsomedial hypothalamus (DMH), a brain region known to be involved in thermoregulation and in stress responses, causes similar effects. We therefore tested the hypothesis that neuronal activity in the DMH plays a role in MDMA-evoked sympathetic and behavioral responses by microinjecting artificial CSF or muscimol, a neuronal inhibitor, into the DMH prior to intravenous infusion of saline or MDMA in conscious rats. Core temperature, heart rate, mean arterial pressure and locomotor activity were recorded by telemetry every minute for 120 minutes. In rats previously microinjected with CSF, MDMA elicited significant increases from baseline in core temperature (+1.3 ± 0.3°C), locomotion (+50 ± 6 counts/min), heart rate (+142 ± 16 beats/min), and mean arterial pressure (+26 ±3 mmHg). Microinjecting muscimol into the DMH prior to MDMA prevented increases in core temperature and locomotion and attenuated increases in heart rate and mean arterial pressure. These results indicate that neuronal activity in the DMH is necessary for the sympathetic and behavioral responses evoked by MDMA. PMID:18586013
Holstein, Gay R.; Friedrich Jr., Victor L.; Martinelli, Giorgio P.; Ogorodnikov, Dmitri; Yakushin, Sergei B.; Cohen, Bernard
2012-01-01
The vestibular system sends projections to brainstem autonomic nuclei that modulate heart rate and blood pressure in response to changes in head and body position with regard to gravity. Consistent with this, binaural sinusoidally modulated galvanic vestibular stimulation (sGVS) in humans causes vasoconstriction in the legs, while low frequency (0.02–0.04 Hz) sGVS causes a rapid drop in heart rate and blood pressure in anesthetized rats. We have hypothesized that these responses occur through activation of vestibulo-sympathetic pathways. In the present study, c-Fos protein expression was examined in neurons of the vestibular nuclei and rostral ventrolateral medullary region (RVLM) that were activated by low frequency sGVS. We found c-Fos-labeled neurons in the spinal, medial, and superior vestibular nuclei (SpVN, MVN, and SVN, respectively) and the parasolitary nucleus. The highest density of c-Fos-positive vestibular nuclear neurons was observed in MVN, where immunolabeled cells were present throughout the rostro-caudal extent of the nucleus. c-Fos expression was concentrated in the parvocellular region and largely absent from magnocellular MVN. c-Fos-labeled cells were scattered throughout caudal SpVN, and the immunostained neurons in SVN were restricted to a discrete wedge-shaped area immediately lateral to the IVth ventricle. Immunofluorescence localization of c-Fos and glutamate revealed that approximately one third of the c-Fos-labeled vestibular neurons showed intense glutamate-like immunofluorescence, far in excess of the stain reflecting the metabolic pool of cytoplasmic glutamate. In the RVLM, which receives a direct projection from the vestibular nuclei and sends efferents to preganglionic sympathetic neurons in the spinal cord, we observed an approximately threefold increase in c-Fos labeling in the sGVS-activated rats. We conclude that localization of c-Fos protein following sGVS is a reliable marker for sGVS-activated neurons of the vestibulo-sympathetic pathway. PMID:22403566
Paring down on Descartes: a review of brain noradrenaline and sympathetic nervous function.
Lambert, G W
2001-12-01
1. The conceptual framework of mind-body interaction can be traced back to the seminal observations of the French philosopher and mathematician René Descartes (1596-1650). Descartes succeeded in eliminating the soul's apparent physiological role and established the brain as the body's control centre. 2. While the pivotal role played by the central nervous system (CNS) in the maintenance of physiological and psychological health has long been recognized, the development of methods designed for the direct examination of human CNS processes has only recently come to fruition. 3. There exists a substantial body of evidence derived from clinical and experimental studies indicating that CNS monoaminergic cell groups, in particular those using noradrenaline as their neurotransmitter, participate in the excitatory regulation of the sympathetic nervous system and the development and maintenance of the hypertensive state. 4. In essential hypertension, particularly in younger patients, there occurs an activation of sympathetic nervous outflows to the kidneys, heart and skeletal muscle. The existence of a correlation between subcortical brain noradrenaline turnover and total body noradrenaline spillover to plasma, resting blood pressure and heart rate provides further support for the observation that elevated subcortical noradrenergic activity subserves a sympathoexcitatory role in the regulation of sympathetic preganglionic neurons of the thorocolumbar cord.
Organization of the sympathetic innervation of the forelimb resistance vessels in the cat.
Backman, S B; Stein, R D; Polosa, C
1999-02-01
Detailed information on the outflow pathway of sympathetic vasoconstrictor fibers to the upper extremity is lacking. We studied the organization of the sympathetic innervation of the forelimb resistance vessels and of the sinoatrial (SA) node in the decerebrated, artificially respirated cat. The distal portion of sectioned individual rami T1-8 and the sympathetic chain immediately caudal to T8 on the right side were electrically stimulated while the right forelimb perfusion pressure (forelimb perfused at constant flow) and heart rate were recorded. Increases in perfusion pressure were evoked by stimulation of T2-8 (maximal response T7: 55 +/- 2.3 mm Hg). Responses were still evoked by stimulation of the sympathetic chain immediately caudal to T8 (44 +/- 15 mm Hg). Increases in heart rate were evoked by the stimulation of more rostral rami (T1-5; maximal response T3: 55.2 +/- 8 bpm). These vasoconstrictor and cardioacceleratory responses were blocked by the cholinergic antagonists hexamethonium and scopolamine. Sectioning of the vertebral nerve and the T1 ramus abolished the vasoconstrictor response. Stimulation of the vertebral nerve and of the proximal portion of the sectioned T1 ramus increased perfusion pressure (69 +/- 9 and 34 +/- 14 mm Hg, respectively), which was unaffected by ganglionic cholinergic block. These data suggest that forelimb resistance vessel control is subserved by sympathetic preganglionic neurons located mainly in the middle to caudal thoracic spinal segments. Some of the postganglionic axons subserving vasomotor function course through the T1 ramus, in addition to the vertebral nerve. Forelimb vasculature is controlled by sympathetic preganglionic neurons located in middle to caudal thoracic spinal segments and by postganglionic axons carried in the T1 ramus and vertebral nerve. This helps to provide the anatomical substrate of interruption of sympathetic outflow to the upper extremity produced by major conduction anesthesia of the stellate ganglion or spinal cord.
Vascular dysfunctions following spinal cord injury
Popa, F; Grigorean, VT; Onose, G; Sandu, AM; Popescu, M; Burnei, G; Strambu, V; Sinescu, C
2010-01-01
The aim of this article is to analyze the vascular dysfunctions occurring after spinal cord injury (SCI). Vascular dysfunctions are common complications of SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. Neuroanatomy and physiology of autonomic nervous system, sympathetic and parasympathetic, is reviewed. SCI implies disruption of descendent pathways from central centers to spinal sympathetic neurons, originating in intermediolateral nuclei of T1–L2 cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant vascular dysfunction. Spinal shock occurs during the acute phase following SCI and it is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe arterial hypotension and bradycardia. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life–threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5–T6). Arterial hypotension with orthostatic hypotension occurs in both acute and chronic phases. The etiology is multifactorial. We described a few factors influencing the orthostatic hypotension occurrence in SCI: sympathetic nervous system dysfunction, low plasma catecholamine levels, rennin–angiotensin–aldosterone activity, peripheral alpha–adrenoceptor hyperresponsiveness, impaired function of baroreceptors, hyponatremia and low plasmatic volume, cardiovascular deconditioning, morphologic changes in sympathetic neurons, plasticity within spinal circuits, and motor deficit leading to loss of skeletal muscle pumping activity. Additional associated cardiovascular concerns in SCI, such as deep vein thrombosis and long–term risk for coronary heart disease and systemic atherosclerosis are also described. Proper prophylaxis, including non–pharmacologic and pharmacological strategies, diminishes the occurrence of the vascular dysfunction following SCI. Each vascular disturbance requires a specific treatment. PMID:20945818
Myocardial ischaemia and the cardiac nervous system.
Armour, J A
1999-01-01
The intrinsic cardiac nervous system has been classically considered to contain only parasympathetic efferent postganglionic neurones which receive inputs from medullary parasympathetic efferent preganglionic neurones. In such a view, intrinsic cardiac ganglia act as simple relay stations of parasympathetic efferent neuronal input to the heart, the major autonomic control of the heart purported to reside solely in the brainstem and spinal cord. Data collected over the past two decades indicate that processing occurs within the mammalian intrinsic cardiac nervous system which involves afferent neurones, local circuit neurones (interconnecting neurones) as well as both sympathetic and parasympathetic efferent postganglionic neurones. As such, intrinsic cardiac ganglionic interactions represent the organ component of the hierarchy of intrathoracic nested feedback control loops which provide rapid and appropriate reflex coordination of efferent autonomic neuronal outflow to the heart. In such a concept, the intrinsic cardiac nervous system acts as a distributive processor, integrating parasympathetic and sympathetic efferent centrifugal information to the heart in addition to centripetal information arising from cardiac sensory neurites. A number of neurochemicals have been shown to influence the interneuronal interactions which occur within the intrathoracic cardiac nervous system. For instance, pharmacological interventions that modify beta-adrenergic or angiotensin II receptors affect cardiomyocyte function not only directly, but indirectly by influencing the capacity of intrathoracic neurones to regulate cardiomyocytes. Thus, current pharmacological management of heart disease may influence cardiomyocyte function directly as well as indirectly secondary to modifying the cardiac nervous system. This review presents a brief summary of developing concepts about the role of the cardiac nervous system in regulating the normal heart. In addition, it provides some tentative ideas concerning the importance of this nervous system in cardiac disease states with a view to stimulating further interest in neural control of the heart so that appropriate neurocardiological strategies can be devised for the management of heart disease.
Peripheral Nerve Fibers and Their Neurotransmitters in Osteoarthritis Pathology
Grässel, Susanne; Muschter, Dominique
2017-01-01
The importance of the nociceptive nervous system for maintaining tissue homeostasis has been known for some time, and it has also been suggested that organogenesis and tissue repair are under neuronal control. Changes in peripheral joint innervation are supposed to be partly responsible for degenerative alterations in joint tissues which contribute to development of osteoarthritis. Various resident cell types of the musculoskeletal system express receptors for sensory and sympathetic neurotransmitters, allowing response to peripheral neuronal stimuli. Among them are mesenchymal stem cells, synovial fibroblasts, bone cells and chondrocytes of different origin, which express distinct subtypes of adrenoceptors (AR), receptors for vasoactive intestinal peptide (VIP), substance P (SP) and calcitonin gene-related peptide (CGRP). Some of these cell types synthesize and secrete neuropeptides such as SP, and they are positive for tyrosine-hydroxylase (TH), the rate limiting enzyme for biosynthesis of catecholamines. Sensory and sympathetic neurotransmitters are involved in the pathology of inflammatory diseases such as rheumatoid arthritis (RA) which manifests mainly in the joints. In addition, they seem to play a role in pathogenesis of priori degenerative joint disorders such as osteoarthritis (OA). Altogether it is evident that sensory and sympathetic neurotransmitters have crucial trophic effects which are critical for joint tissue and bone homeostasis. They modulate articular cartilage, subchondral bone and synovial tissue properties in physiological and pathophysiological conditions, in addition to their classical neurological features. PMID:28452955
Oxygen-conserving reflexes of the brain: the current molecular knowledge
Schaller, B; Cornelius, J F; Sandu, N; Ottaviani, G; Perez-Pinzon, M A
2009-01-01
Abstract The trigemino-cardiac reflex (TCR) may be classified as a sub-phenomenon in the group of the so-called ‘oxygen-conserving reflexes’. Within seconds after the initiation of such a reflex, there is neither a powerful and differentiated activation of the sympathetic system with subsequent elevation in regional cerebral blood flow (CBF) with no changes in the cerebral metabolic rate of oxygen (CMRO2) or in the cerebral metabolic rate of glucose (CMRglc). Such an increase in regional CBF without a change of CMRO2 or CMRglc provides the brain with oxygen rapidly and efficiently and gives substantial evidence that the TCR is an oxygen-conserving reflex. This system, which mediates reflex protection projects via currently undefined pathways from the rostral ventrolateral medulla oblongata to the upper brainstem and/or thalamus which finally engage a small population of neurons in the cortex. This cortical centre appears to be dedicated to reflexively transduce a neuronal signal into cerebral vasodilatation and synchronization of electrocortical activity. Sympathetic excitation is mediated by cortical-spinal projection to spinal pre-ganglionic sympathetic neurons whereas bradycardia is mediated via projections to cardiovagal motor medullary neurons. The integrated reflex response serves to redistribute blood from viscera to brain in response to a challenge to cerebral metabolism, but seems also to initiate a preconditioning mechanism. Better and more detailed knowledge of the cascades, transmitters and molecules engaged in such endogenous (neuro) protection may provide new insights into novel therapeutic options for a range of disorders characterized by neuronal death and into cortical organization of the brain. PMID:19438971
Oxygen-conserving reflexes of the brain: the current molecular knowledge.
Schaller, B; Cornelius, J F; Sandu, N; Ottaviani, G; Perez-Pinzon, M A
2009-04-01
The trigemino-cardiac reflex (TCR) may be classified as a sub-phenomenon in the group of the so-called 'oxygen-conserving reflexes'. Within seconds after the initiation of such a reflex, there is neither a powerful and differentiated activation of the sympathetic system with subsequent elevation in regional cerebral blood flow (CBF) with no changes in the cerebral metabolic rate of oxygen (CMRO(2)) or in the cerebral metabolic rate of glucose (CMRglc). Such an increase in regional CBF without a change of CMRO(2) or CMRglc provides the brain with oxygen rapidly and efficiently and gives substantial evidence that the TCR is an oxygen-conserving reflex. This system, which mediates reflex protection projects via currently undefined pathways from the rostral ventrolateral medulla oblongata to the upper brainstem and/or thalamus which finally engage a small population of neurons in the cortex. This cortical centre appears to be dedicated to reflexively transduce a neuronal signal into cerebral vasodilatation and synchronization of electrocortical activity. Sympathetic excitation is mediated by cortical-spinal projection to spinal pre-ganglionic sympathetic neurons whereas bradycardia is mediated via projections to cardiovagal motor medullary neurons. The integrated reflex response serves to redistribute blood from viscera to brain in response to a challenge to cerebral metabolism, but seems also to initiate a preconditioning mechanism. Better and more detailed knowledge of the cascades, transmitters and molecules engaged in such endogenous (neuro) protection may provide new insights into novel therapeutic options for a range of disorders characterized by neuronal death and into cortical organization of the brain.
Waithe, Dominic; Ferron, Laurent; Dolphin, Annette C.
2011-01-01
The role(s) of the newly discovered stargazin-like γ-subunit proteins remains unclear; although they are now widely accepted to be transmembrane AMPA receptor regulatory proteins (TARPs), rather than Ca2+ channel subunits, it is possible that they have more general roles in trafficking within neurons. We previously found that γ7 subunit is associated with vesicles when it is expressed in neurons and other cells. Here, we show that γ7 is present mainly in retrogradely transported organelles in sympathetic neurons, where it colocalises with TrkA–YFP, and with the early endosome marker EEA1, suggesting that γ7 localises to signalling endosomes. It was not found to colocalise with markers of the endoplasmic reticulum, mitochondria, lysosomes or late endosomes. Furthermore, knockdown of endogenous γ7 by short hairpin RNA transfection into sympathetic neurons reduced neurite outgrowth. The same was true in the PC12 neuronal cell line, where neurite outgrowth was restored by overexpression of human γ7. These findings open the possibility that γ7 has an essential trafficking role in relation to neurite outgrowth as a component of endosomes involved in neurite extension and growth cone remodelling. PMID:21610096
Ikram, Fakhera; Ackermann, Sandra; Kahlert, Yvonne; Volland, Ruth; Roels, Frederik; Engesser, Anne; Hertwig, Falk; Kocak, Hayriye; Hero, Barbara; Dreidax, Daniel; Henrich, Kai-Oliver; Berthold, Frank; Nürnberg, Peter; Westermann, Frank; Fischer, Matthias
2016-02-01
Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5-aza-2'-deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re-expression of TFAP2B in IMR-32 and SH-EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR-32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up-regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down-regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA-induced neuronal differentiation of SH-SY5Y and SK-N-BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
The proinflammatory cytokine tumor necrosis factor-α excites subfornical organ neurons.
Simpson, Nick J; Ferguson, Alastair V
2017-09-01
Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine implicated in cardiovascular and autonomic regulation via actions in the central nervous system. TNF-α -/- mice do not develop angiotensin II (ANG II)-induced hypertension, and administration of TNF-α into the bloodstream of rats increases blood pressure and sympathetic tone. Recent studies have shown that lesion of the subfornical organ (SFO) attenuates the hypertensive and autonomic effects of TNF-α, while direct administration of TNF-α into the SFO increases blood pressure, suggesting the SFO to be a key site for the actions of TNF-α. Therefore, we used patch-clamp techniques to examine both acute and long-term effects of TNF-α on the excitability of Sprague-Dawley rat SFO neurons. It was observed that acute bath application of TNF-α depolarized SFO neurons and subsequently increased action potential firing rate. Furthermore, the magnitude of depolarization and the proportion of depolarized SFO neurons were concentration dependent. Interestingly, following 24-h incubation with TNF-α, the basal firing rate of the SFO neurons was increased and the rheobase was decreased, suggesting that TNF-α elevates SFO neuron excitability. This effect was likely mediated by the transient sodium current, as TNF-α increased the magnitude of the current and lowered its threshold of activation. In contrast, TNF-α did not appear to modulate either the delayed rectifier potassium current or the transient potassium current. These data suggest that acute and long-term TNF-α exposure elevates SFO neuron activity, providing a basis for TNF-α hypertensive and sympathetic effects. NEW & NOTEWORTHY Considerable recent evidence has suggested important links between inflammation and the pathological mechanisms underlying hypertension. The present study describes cellular mechanisms through which acute and long-term exposure of tumor necrosis factor-α (TNF-α) influences the activity of subfornical organ neurons by modulating the voltage-gated transient Na + current. This provides critical new information regarding the specific pathological mechanisms through which inflammation and TNF-α in particular may result in the development of hypertension. Copyright © 2017 the American Physiological Society.
Tourtellotte, Warren G.
2017-01-01
Peripheral neuropathies are highly prevalent and are most often associated with chronic disease, side effects from chemotherapy, or toxic-metabolic abnormalities. Neuropathies are less commonly caused by genetic mutations, but studies of the normal function of mutated proteins have identified particular vulnerabilities that often implicate mitochondrial dynamics and axon transport mechanisms. Hereditary sensory and autonomic neuropathies are a group of phenotypically related diseases caused by monogenic mutations that primarily affect sympathetic and sensory neurons. Here, I review evidence to indicate that many genetic neuropathies are caused by abnormalities in axon transport. Moreover, in hereditary sensory and autonomic neuropathies. There may be specific convergence on gene mutations that disrupt nerve growth factor signaling, upon which sympathetic and sensory neurons critically depend. PMID:26724390
BRANCHING PATTERNS OF INDIVIDUAL SYMPATHETIC NEURONS IN CULTURE
Bray, D.
1973-01-01
The growth of single sympathetic neurons in tissue culture was examined with particular regard to the way in which the patterns of axonal or dendritic processes (here called nerve fibers), were formed. The tips of the fibers were seen to advance in straight lines and to grow at rates that did not vary appreciably with time, with their position in the cell outgrowth, or with the fiber diameter. Most of the branch points were formed by the bifurcation of a fiber tip (growth cone), apparently at random, and thereafter remained at about the same distance from the cell body. It seemed that the final shape of a neuron was the result of the reiterated and largely autonomous activities of the growth cones. The other parts of the cell played a supportive role but, apart from this, had no obvious influence on the final pattern of branches formed. PMID:4687915
Ziegler, Karin A; Ahles, Andrea; Wille, Timo; Kerler, Julia; Ramanujam, Deepak; Engelhardt, Stefan
2018-01-01
Abstract Aims Cardiac inflammation has been suggested to be regulated by the sympathetic nervous system (SNS). However, due to the lack of methodology to surgically eliminate the myocardial SNS in mice, neuronal control of cardiac inflammation remains ill-defined. Here, we report a procedure for local cardiac sympathetic denervation in mice and tested its effect in a mouse model of heart failure post-myocardial infarction. Methods and results Upon preparation of the carotid bifurcation, the right and the left superior cervical ganglia were localized and their pre- and postganglionic branches dissected before removal of the ganglion. Ganglionectomy led to an almost entire loss of myocardial sympathetic innervation in the left ventricular anterior wall. When applied at the time of myocardial infarction (MI), cardiac sympathetic denervation did not affect acute myocardial damage and infarct size. In contrast, cardiac sympathetic denervation significantly attenuated chronic consequences of MI, including myocardial inflammation, myocyte hypertrophy, and overall cardiac dysfunction. Conclusion These data suggest a critical role for local sympathetic control of cardiac inflammation. Our model of myocardial sympathetic denervation in mice should prove useful to further dissect the molecular mechanisms underlying cardiac neural control. PMID:29186414
Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo
2017-03-04
Agmatine suppresses peripheral sympathetic tone by modulating Cav2.2 channels in peripheral sympathetic neurons. However, the detailed cellular signaling mechanism underlying the agmatine-induced Cav2.2 inhibition remains unclear. Therefore, in the present study, we investigated the electrophysiological mechanism for the agmatine-induced inhibition of Cav2.2 current (I Cav2.2 ) in rat celiac ganglion (CG) neurons. Consistent with previous reports, agmatine inhibited I Cav2.2 in a VI manner. The agmatine-induced inhibition of the I Cav2.2 current was also almost completely hindered by the blockade of the imidazoline I 2 receptor (IR 2 ), and an IR 2 agonist mimicked the inhibitory effect of agmatine on I Cav2.2 , implying involvement of IR 2 . The agmatine-induced I Cav2.2 inhibition was significantly hampered by the blockade of G protein or phospholipase C (PLC), but not by the pretreatment with pertussis toxin. In addition, diC8-phosphatidylinositol 4,5-bisphosphate (PIP 2 ) dialysis nearly completely hampered agmatine-induced inhibition, which became irreversible when PIP 2 resynthesis was blocked. These results suggest that in rat peripheral sympathetic neurons, agmatine-induced IR 2 activation suppresses Cav2.2 channel voltage-independently, and that the PLC-dependent PIP 2 hydrolysis is responsible for the agmatine-induced suppression of the Cav2.2 channel. Copyright © 2017 Elsevier Inc. All rights reserved.
Angel-Chavez, Luis I; Acosta-Gómez, Eduardo I; Morales-Avalos, Mario; Castro, Elena; Cruzblanca, Humberto
2015-01-01
In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.
Cardiovascular dysautonomia in Parkinson Disease: From pathophysiology to pathogenesis
Goldstein, David S.
2011-01-01
Signs or symptoms of impaired autonomic regulation of the circulation often attend Parkinson disease (PD). This review covers biomarkers and mechanisms of autonomic cardiovascular abnormalities in PD and related alpha-synucleinopathies. The clearest clinical laboratory correlate of dysautonomia in PD is loss of myocardial noradrenergic innervation, detected by cardiac sympathetic neuroimaging. About 30–40% of PD patients have orthostatic hypotension (OH), defined as a persistent, consistent fall in systolic blood pressure of at least 20 mm Hg or diastolic blood pressure of at least 10 mm Hg within three minutes of change in position from supine to standing. Neuroimaging evidence of cardiac sympathetic denervation is universal in PD with OH (PD+OH). In PD without OH about half the patients have diffuse left ventricular myocardial sympathetic denervation, a substantial minority have partial denervation confined to the inferolateral or apical walls, and a small number have normal innervation. Among patients with partial denervation the neuronal loss invariably progresses over time, and in those with normal innervation at least some loss eventually becomes evident. Thus, cardiac sympathetic denervation in PD occurs independently of the movement disorder. PD+OH also entails extra-cardiac noradrenergic denervation, but this is not as severe as in pure autonomic failure. PD+OH patients have failure of both the parasympathetic and sympathetic components of the arterial baroreflex. OH in PD therefore seems to reflect a “triple whammy” of cardiac and extra-cardiac noradrenergic denervation and baroreflex failure. In contrast, most patients with multiple system atrophy, which can resemble PD+OH clinically, do not have evidence for cardiac or extra-cardiac noradrenergic denervation. Catecholamines in the neuronal cytoplasm are potentially toxic, via spontaneous and enzyme-catalyzed oxidation. Normally cytoplasmic catecholamines are efficiently taken up into vesicles via the vesicular monoamine transporter. The recent finding of decreased vesicular uptake in Lewy body diseases therefore suggests a pathogenetic mechanism for loss of catecholaminergic neurons in the periphery and brain. PMID:22094370
Xi, Pengjiao; Du, Jianying; Liang, Huimin; Han, Jie; Wu, Zhaoxia; Wang, Haomin; He, Lu; Wang, Qiming; Ge, Haize; Li, Yongmei; Xue, Jie; Tian, Derun
2018-01-01
Obesity is increasingly becoming a major public health problem worldwide. Peripheral LKB1 inhibits white fat generation, but the effect of central LKB1 on diet-induced obesity (DIO) is unknown. Therefore, we examined whether LKB1 over-expression in the hypothalamus can inhibit the development of obesity. Adult male Sprague-Dawley rats were anesthetized and placed in a stereotaxic apparatus. LKB1-AAV-EGFP (2.0 × 108 or 2.0 × 1010 vector genomes) or Control-AAV-EGFP (2.0 × 108 vector genomes) was injected into the third ventricle. After administration, the rats were fed a high-fat diet (HFD) for 9 weeks to induce obesity. Rats fed a chow fat diet were used as normal controls. LKB1 delivery decreased body weight, energy intake, fat mass, and serum lipid levels. LKB1 also improved HFD-induced hepatic fatty degeneration. Interestingly, LKB1 over-expression in the hypothalamus activated the AMPK-POMC neurons-sympathetic nervous system (SNS) axis, which can release epinephrine to promote white fat browning. Conversely, the elevated expression of MC3R/MC4R inhibited food intake. These two factors worked together to inhibit the development of obesity. LKB1 in the hypothalamus may have therapeutic potential for DIO through the activation of the AMPK-POMC neurons-SNS axis. © 2018 The Author(s). Published by S. Karger AG, Basel.
Barman, Susan M; Yates, Bill J
2017-01-01
Sympathetic nerve activity (SNA) contributes appreciably to the control of physiological function, such that pathological alterations in SNA can lead to a variety of diseases. The goal of this review is to discuss the characteristics of SNA, briefly review the methodology that has been used to assess SNA and its control, and to describe the essential role of neurophysiological studies in conscious animals to provide additional insights into the regulation of SNA. Studies in both humans and animals have shown that SNA is rhythmic or organized into bursts whose frequency varies depending on experimental conditions and the species. These rhythms are generated by brainstem neurons, and conveyed to sympathetic preganglionic neurons through several pathways, including those emanating from the rostral ventrolateral medulla. Although rhythmic SNA is present in decerebrate animals (indicating that neurons in the brainstem and spinal cord are adequate to generate this activity), there is considerable evidence that a variety of supratentorial structures including the insular and prefrontal cortices, amygdala, and hypothalamic subnuclei provide inputs to the brainstem regions that regulate SNA. It is also known that the characteristics of SNA are altered during stress and particular behaviors such as the defense response and exercise. While it is a certainty that supratentorial structures contribute to changes in SNA during these behaviors, the neural underpinnings of the responses are yet to be established. Understanding how SNA is modified during affective responses and particular behaviors will require neurophysiological studies in awake, behaving animals, including those that entail recording activity from neurons that generate SNA. Recent studies have shown that responses of neurons in the central nervous system to most sensory inputs are context-specific. Future neurophysiological studies in conscious animals should also ascertain whether this general rule also applies to sensory signals that modify SNA.
Cardiac-locked bursts of muscle sympathetic nerve activity are absent in familial dysautonomia
Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Axelrod, Felicia B; Kaufmann, Horacio
2013-01-01
Familial dysautonomia (Riley–Day syndrome) is an hereditary sensory and autonomic neuropathy (HSAN type III), expressed at birth, that is associated with reduced pain and temperature sensibilities and absent baroreflexes, causing orthostatic hypotension as well as labile blood pressure that increases markedly during emotional excitement. Given the apparent absence of functional baroreceptor afferents, we tested the hypothesis that the normal cardiac-locked bursts of muscle sympathetic nerve activity (MSNA) are absent in patients with familial dysautonomia. Tungsten microelectrodes were inserted percutaneously into muscle or cutaneous fascicles of the common peroneal nerve in 12 patients with familial dysautonomia. Spontaneous bursts of MSNA were absent in all patients, but in five patients we found evidence of tonically firing sympathetic neurones, with no cardiac rhythmicity, that increased their spontaneous discharge during emotional arousal but not during a manoeuvre that unloads the baroreceptors. Conversely, skin sympathetic nerve activity (SSNA), recorded in four patients, appeared normal. We conclude that the loss of phasic bursts of MSNA and the loss of baroreflex modulation of muscle vasoconstrictor drive contributes to the poor control of blood pressure in familial dysautonomia, and that the increase in tonic firing of muscle vasoconstrictor neurones contributes to the increase in blood pressure during emotional excitement. PMID:23165765
Ferrarelli, Leslie K
2017-05-30
Acute psychological stress triggers signaling between sympathetic neurons and the spleen to protect against ischemic tissue damage. Copyright © 2017, American Association for the Advancement of Science.
Bulbospinal substance P and sympathetic regulation of the cardiovascular system: a review.
Helke, C J; Charlton, C G; Keeler, J R
1985-01-01
The neurotransmitter role of substance P in mediating sympathoexcitatory effects in the spinal cord and cardiovascular effects elicited from the ventral medulla is presented. SP neurons located in the ventral medulla project to the intermediolateral cell column (IML) of the thoracic spinal cord. Intrathecal administration of a SP analog excites sympathetic outflow to the cardiovascular system. Likewise, activation of the ventral medulla results in sympathetically mediated increases in blood pressure and heart rate which are blocked with SP antagonists. The IML contained a high density of SP binding sites through which the peptide likely exerts its sympathoexcitatory influence on the cardiovascular system.
Glycinergic inhibition of BAT sympathetic premotor neurons in rostral raphe pallidus.
Conceição, Ellen Paula Santos da; Madden, Christopher J; Morrison, Shaun F
2017-06-01
The rostral raphe pallidus (rRPa) contains sympathetic premotor neurons controlling thermogenesis in brown adipose tissue (BAT). We sought to determine whether a tonic activation of glycine A receptors (Gly A R) in the rRPa contributes to the inhibitory regulation of BAT sympathetic nerve activity (SNA) and of cardiovascular parameters in anesthetized rats. Nanoinjection of the Gly A R antagonist, strychnine (STR), into the rRPa of intact rats increased BAT SNA (peak: +495%), BAT temperature (T BAT , +1.1°C), expired CO 2 , (+0.4%), core body temperature (T CORE , +0.2°C), mean arterial pressure (MAP, +4 mmHg), and heart rate (HR, +57 beats/min). STR into rRPa in rats with a postdorsomedial hypothalamus transection produced similar increases in BAT thermogenic and cardiovascular parameters. Glycine nanoinjection into the rRPa evoked a potent inhibition of the cooling-evoked increases in BAT SNA (nadir: -74%), T BAT (-0.2°C), T CORE (-0.2°C), expired CO 2 (-0.2%), MAP (-8 mmHg), and HR (-22 beats/min) but had no effect on the increases in these variables evoked by STR nanoinjection into rRPa. Nanoinjection of GABA into the rRPa inhibited the STR-evoked BAT SNA (nadir: -86%) and reduced the expired CO 2 (-0.4%). Blockade of glutamate receptors in rRPa reduced the STR-evoked increases in BAT SNA (nadir: -61%), T BAT (-0.5°C), expired CO 2 (-0.3%), MAP (-9 mmHg), and HR (-33 beats/min). We conclude that a tonically active glycinergic input to the rRPa contributes to the inhibitory regulation of the discharge of BAT sympathetic premotor neurons and of BAT thermogenesis and energy expenditure. Copyright © 2017 the American Physiological Society.
Castro, Elena; Cruzblanca, Humberto
2015-01-01
In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels. PMID:25962132
PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation
Cork, Simon C.
2015-01-01
Within the brain, glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Additionally, GLP-1 influences the mesolimbic reward system to modulate the rewarding properties of palatable food. GLP-1 is produced in the gut and by hindbrain preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarii (NTS) and medullary intermediate reticular nucleus. Transgenic mice expressing glucagon promoter-driven yellow fluorescent protein revealed that PPG neurons not only project to central autonomic control regions and mesolimbic reward centers, but also strongly innervate spinal autonomic neurons. Therefore, these brain stem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to sympathetic preganglionic neurons. Electrical recordings from PPG neurons in vitro have revealed that they receive synaptic inputs from vagal afferents entering via the solitary tract. Vagal afferents convey satiation to the brain from signals like postprandial gastric distention or activation of peripheral GLP-1 receptors. CCK and leptin, short- and long-term satiety peptides, respectively, increased the electrical activity of PPG neurons, while ghrelin, an orexigenic peptide, had no effect. These findings indicate that satiation is a main driver of PPG neuronal activation. They also show that PPG neurons are in a prime position to respond to both immediate and long-term indicators of energy and feeding status, enabling regulation of both energy balance and general autonomic homeostasis. This review discusses the question of whether PPG neurons, rather than gut-derived GLP-1, are providing the physiological substrate for the effects elicited by central nervous system GLP-1 receptor activation. PMID:26290108
PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation.
Trapp, Stefan; Cork, Simon C
2015-10-15
Within the brain, glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Additionally, GLP-1 influences the mesolimbic reward system to modulate the rewarding properties of palatable food. GLP-1 is produced in the gut and by hindbrain preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarii (NTS) and medullary intermediate reticular nucleus. Transgenic mice expressing glucagon promoter-driven yellow fluorescent protein revealed that PPG neurons not only project to central autonomic control regions and mesolimbic reward centers, but also strongly innervate spinal autonomic neurons. Therefore, these brain stem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to sympathetic preganglionic neurons. Electrical recordings from PPG neurons in vitro have revealed that they receive synaptic inputs from vagal afferents entering via the solitary tract. Vagal afferents convey satiation to the brain from signals like postprandial gastric distention or activation of peripheral GLP-1 receptors. CCK and leptin, short- and long-term satiety peptides, respectively, increased the electrical activity of PPG neurons, while ghrelin, an orexigenic peptide, had no effect. These findings indicate that satiation is a main driver of PPG neuronal activation. They also show that PPG neurons are in a prime position to respond to both immediate and long-term indicators of energy and feeding status, enabling regulation of both energy balance and general autonomic homeostasis. This review discusses the question of whether PPG neurons, rather than gut-derived GLP-1, are providing the physiological substrate for the effects elicited by central nervous system GLP-1 receptor activation. Copyright © 2015 the American Physiological Society.
Damico, J.P.; Ervolino, E.; Torres, K.R.; Batagello, D.S.; Cruz-Rizzolo, R.J.; Casatti, C.A.; Bauer, J.A.
2012-01-01
The aim of this study was to identify immunoreactive neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) neurons in the autonomic and sensory ganglia, specifically neurons that innervate the rat temporomandibular joint (TMJ). A possible variation between the percentages of these neurons in acute and chronic phases of carrageenan-induced arthritis was examined. Retrograde neuronal tracing was combined with indirect immunofluorescence to identify NPY-immunoreactive (NPY-IR) and CGRP- immunoreactive (CGRP-IR) neurons that send nerve fibers to the normal and arthritic temporomandibular joint. In normal joints, NPY-IR neurons constitute 78±3%, 77±6% and 10±4% of double-labeled nucleated neuronal profile originated from the superior cervical, stellate and otic ganglia, respectively. These percentages in the sympathetic ganglia were significantly decreased in acute (58±2% for superior cervical ganglion and 58±8% for stellate ganglion) and chronic (60±2% for superior cervical ganglion and 59±15% for stellate ganglion) phases of arthritis, while in the otic ganglion these percentages were significantly increased to 19±5% and 13±3%, respectively. In the trigeminal ganglion, CGRP-IR neurons innervating the joint significantly increased from 31±3% in normal animals to 54±2% and 49±3% in the acute and chronic phases of arthritis, respectively. It can be concluded that NPY neurons that send nerve fibers to the rat temporomandibular joint are located mainly in the superior cervical, stellate and otic ganglia. Acute and chronic phases of carrageenan-induced arthritis lead to an increase in the percentage of NPY-IR parasympathetic and CGRP-IR sensory neurons and to a decrease in the percentage of NPY-IR sympathetic neurons related to TMJ innervation. PMID:23027347
Differentiated norepinephrine spillover in human skeletal muscle.
Karlsson, A K; Elam, M; Lönnroth, P; Sullivan, L; Friberg, P
1997-07-01
Most neurophysiological studies have shown similar sympathetic outflow to arm and leg. However, some direct microneurographic recordings indicate differentiated sympathetic outflow to limbs both at rest and during mental stress. Hence, differentiated levels of norepinephrine (NE) spillover could prevail. By steady-state infusion of [3H]NE and body composition determination by dual-energy X-ray absorptiometry-scan, we simultaneously assessed arm and leg NE spillover related to 100 g tissue and total limb weight. NE spillover was lower in leg than arm (0.26 vs. 1.51 pmol.min-1.100 g-1, P < 0.05), and the difference remained when expressed as a function of total limb weight (66 vs. 137 pmol/min, P < 0.05). Fractional extraction of [3H]NE was similar in arm and leg. Neuronal uptake blockade by desipramine was more effective in leg than arm; fractional extraction in leg decreased by 32% (P < 0.05) but was unaltered in arm. Thus a lower NE spillover was observed from leg than arm, possibly reflecting a lower sympathetic outflow and a more neuronally dependent reuptake.
Kalsbeek, Andries; La Fleur, Susanne; Van Heijningen, Caroline; Buijs, Ruud M
2004-09-01
Daily peak plasma glucose concentrations are attained shortly before awakening. Previous experiments indicated an important role for the biological clock, located in the suprachiasmatic nuclei (SCN), in the genesis of this anticipatory rise in plasma glucose concentrations by controlling hepatic glucose production. Here, we show that stimulation of NMDA receptors, or blockade of GABA receptors in the paraventricular nucleus of the hypothalamus (PVN) of conscious rats, caused a pronounced increase in plasma glucose concentrations. The local administration of TTX in brain areas afferent to the PVN revealed that an important part of the inhibitory inputs to the PVN was derived from the SCN. Using a transneuronal viral-tracing technique, we showed that the SCN is connected to the liver via both branches of the autonomic nervous system (ANS). The combination of a blockade of GABA receptors in the PVN with selective removal of either the sympathetic or parasympathetic branch of the hepatic ANS innervation showed that hyperglycemia produced by PVN stimulation was primarily attributable to an activation of the sympathetic input to the liver. We propose that the daily rise in plasma glucose concentrations is caused by an SCN-mediated withdrawal of GABAergic inputs to sympathetic preautonomic neurons in the PVN, resulting in an increased hepatic glucose production. The remarkable resemblance of the presently proposed control mechanism to that described previously for the control of daily melatonin rhythm suggests that the GABAergic control of sympathetic preautonomic neurons in the PVN is an important pathway for the SCN to control peripheral physiology.
Phillips, Robert J.; Hudson, Cherie N.; Powley, Terry L.
2013-01-01
It is well documented that the intrinsic enteric nervous system of the gastrointestinal (GI) tract sustains neuronal losses and reorganizes as it ages. In contrast, age-related remodeling of the extrinsic sympathetic projections to the wall of the gut is poorly characterized. The present experiment, therefore, surveyed the sympathetic projections to the aged small intestine for axonopathies. Furthermore, the experiment evaluated the specific prediction that catecholaminergic inputs undergo hyperplastic changes. Jejunal tissue was collected from 3-, 8-, 16-, and 24-month-old male Fischer 344 rats, prepared as whole mounts consisting of the muscularis, and processed immunohistochemically for tyrosine hydroxylase, the enzymatic marker for norepinephrine, and either the protein CD163 or the protein MHCII, both phenotypical markers for macrophages. Four distinctive sympathetic axonopathy profiles occurred in the small intestine of the aged rat: (1) swollen and dystrophic terminals, (2) tangled axons, (3) discrete hyperinnervated loci in the smooth muscle wall, including at the bases of Peyer's patches, and (4) ectopic hyperplastic or hyperinnervating axons in the serosa/subserosal layers. In many cases, the axonopathies occurred at localized and limited foci, involving only a few axon terminals, in a pattern consistent with incidences of focal ischemic, vascular, or traumatic insult. The present observations underscore the complexity of the processes of aging on the neural circuitry of the gut, with age-related GI functional impairments likely reflecting a constellation of adjustments that range from selective neuronal losses, through accumulation of cellular debris, to hyperplasias and hyperinnervation of sympathetic inputs. PMID:24104187
Neural mechanism of electroacupuncture's hypotensive effects
Li, Peng; Longhurst, John C.
2010-01-01
EA at P 5–6 and S 36–37 using low current and low frequency may be able to reduce elevated blood pressure in a subset of patients (~70%) with mild to moderate hypertension. The effect is slow in onset but is long-lasting. Experimental studies have shown that EA inhibition of cardiovascular sympathetic neurons that have been activated through visceral reflex stimulation is through activation of neurons in the arcuate nucleus of the hypothalamus, vlPAG in the midbrain and NRP in the medulla, which, in turn, inhibit the activity of premotor sympathetic neurons in the rVLM. The arcuate also provides direct projections to the rVLM that contain endorphins. Glutamate, acetylcholine, opioids, GABA, nociceptin, serotonin and endocannabinoids all appear to participate in the EA hypotensive response although their importance varies between nuclei. Thus, a number of mechanisms underlying the long-lasting effect of EA on cardiovascular function have been identified but clearly further investigation is warranted. PMID:20444652
Studies on the cellular localization of spinal cord substance P receptors.
Helke, C J; Charlton, C G; Wiley, R G
1986-10-01
Substance P-immunoreactivity and specific substance P binding sites are present in the spinal cord. Receptor autoradiography showed the discrete localization of substance P binding sites in both sensory and motor regions of the spinal cord and functional studies suggested an important role for substance P receptor activation in autonomic outflow, nociception, respiration and somatic motor function. In the current studies, we investigated the cellular localization of substance P binding sites in rat spinal cord using light microscopic autoradiography combined with several lesioning techniques. Unilateral injections of the suicide transport agent, ricin, into the superior cervical ganglion reduced substance P binding and cholinesterase-stained preganglionic sympathetic neurons in the intermediolateral cell column. However, unilateral electrolytic lesions of ventral medullary substance P neurons which project to the intermediolateral cell column did not alter the density of substance P binding in the intermediolateral cell column. Likewise, 6-hydroxydopamine and 5,7-dihydroxytryptamine, which destroy noradrenergic and serotonergic nerve terminals, did not reduce the substance P binding in the intermediolateral cell column. It appears, therefore, that the substance P binding sites are located postsynaptically on preganglionic sympathetic neurons rather than presynaptically on substance P-immunoreactive processes (i.e. as autoreceptors) or on monoamine nerve terminals. Unilateral injections of ricin into the phrenic nerve resulted in the unilateral destruction of phrenic motor neurons in the cervical spinal cord and caused a marked reduction in the substance P binding in the nucleus. Likewise, sciatic nerve injections of ricin caused a loss of associated motor neurons in the lateral portion of the ventral horn of the lumbar spinal cord and a reduction in the substance P binding. Sciatic nerve injections of ricin also destroyed afferent nerves of the associated dorsal root ganglia and increased the density of substance P binding in the dorsal horn. Capsaicin, which destroys small diameter primary sensory neurons, similarly increased the substance P binding in the dorsal horn. These studies show that the cellular localization of substance P binding sites can be determined by analysis of changes in substance P binding to discrete regions of spinal cord after selective lesions of specific groups of neurons. The data show the presence of substance P binding sites on preganglionic sympathetic neurons in the intermediolateral cell column and on somatic motor neurons in the ventral horn, including the phrenic motor nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)
Leptin regulates bone formation via the sympathetic nervous system
NASA Technical Reports Server (NTRS)
Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard
2002-01-01
We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.
Animal model of neuropathic tachycardia syndrome
NASA Technical Reports Server (NTRS)
Carson, R. P.; Appalsamy, M.; Diedrich, A.; Davis, T. L.; Robertson, D.
2001-01-01
Clinically relevant autonomic dysfunction can result from either complete or partial loss of sympathetic outflow to effector organs. Reported animal models of autonomic neuropathy have aimed to achieve complete lesions of sympathetic nerves, but incomplete lesions might be more relevant to certain clinical entities. We hypothesized that loss of sympathetic innervation would result in a predicted decrease in arterial pressure and a compensatory increase in heart rate. Increased heart rate due to loss of sympathetic innervation is seemingly paradoxical, but it provides a mechanistic explanation for clinical autonomic syndromes such as neuropathic postural tachycardia syndrome. Partially dysautonomic animals were generated by selectively lesioning postganglionic sympathetic neurons with 150 mg/kg 6-hydroxydopamine hydrobromide in male Sprague-Dawley rats. Blood pressure and heart rate were monitored using radiotelemetry. Systolic blood pressure decreased within hours postlesion (Delta>20 mm Hg). Within 4 days postlesion, heart rate rose and remained elevated above control levels. The severity of the lesion was determined functionally and pharmacologically by spectral analysis and responsiveness to tyramine. Low-frequency spectral power of systolic blood pressure was reduced postlesion and correlated with the diminished tyramine responsiveness (r=0.9572, P=0.0053). The tachycardia was abolished by treatment with the beta-antagonist propranolol, demonstrating that it was mediated by catecholamines acting on cardiac beta-receptors. Partial lesions of the autonomic nervous system have been hypothesized to underlie many disorders, including neuropathic postural tachycardia syndrome. This animal model may help us better understand the pathophysiology of autonomic dysfunction and lead to development of therapeutic interventions.
Defective pulmonary innervation and autonomic imbalance in congenital diaphragmatic hernia
Lath, Nikesh R.; Galambos, Csaba; Rocha, Alejandro Best; Malek, Marcus; Gittes, George K.
2012-01-01
Congenital diaphragmatic hernia (CDH) is associated with significant mortality due to lung hypoplasia and pulmonary hypertension. The role of embryonic pulmonary innervation in normal lung development and lung maldevelopment in CDH has not been defined. We hypothesize that developmental defects of intrapulmonary innervation, in particular autonomic innervation, occur in CDH. This abnormal embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. To define patterns of pulmonary innervation in CDH, human CDH and control lung autopsy specimens were stained with the pan-neural marker S-100. To further characterize patterns of overall and autonomic pulmonary innervation during lung development in CDH, the murine nitrofen model of CDH was utilized. Immunostaining for protein gene product 9.5 (a pan-neuronal marker), tyrosine hydroxylase (a sympathetic marker), vesicular acetylcholine transporter (a parasympathetic marker), or VIP (a parasympathetic marker) was performed on lung whole mounts and analyzed via confocal microscopy and three-dimensional reconstruction. Peribronchial and perivascular neuronal staining pattern is less complex in human CDH than control lung. In mice, protein gene product 9.5 staining reveals less complex neuronal branching and decreased neural tissue in nitrofen-treated lungs from embryonic day 12.5 to 16.5 compared with controls. Furthermore, nitrofen-treated embryonic lungs exhibited altered autonomic innervation, with a relative increase in sympathetic nerve staining and a decrease in parasympathetic nerve staining compared with controls. These results suggest a primary defect in pulmonary neural developmental in CDH, resulting in less complex neural innervation and autonomic imbalance. Defective embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. PMID:22114150
Yu, Sangho; Qualls-Creekmore, Emily; Rezai-Zadeh, Kavon; Jiang, Yanyan; Berthoud, Hans-Rudolf; Morrison, Christopher D; Derbenev, Andrei V; Zsombok, Andrea; Münzberg, Heike
2016-05-04
The preoptic area (POA) regulates body temperature, but is not considered a site for body weight control. A subpopulation of POA neurons express leptin receptors (LepRb(POA) neurons) and modulate reproductive function. However, LepRb(POA) neurons project to sympathetic premotor neurons that control brown adipose tissue (BAT) thermogenesis, suggesting an additional role in energy homeostasis and body weight regulation. We determined the role of LepRb(POA) neurons in energy homeostasis using cre-dependent viral vectors to selectively activate these neurons and analyzed functional outcomes in mice. We show that LepRb(POA) neurons mediate homeostatic adaptations to ambient temperature changes, and their pharmacogenetic activation drives robust suppression of energy expenditure and food intake, which lowers body temperature and body weight. Surprisingly, our data show that hypothermia-inducing LepRb(POA) neurons are glutamatergic, while GABAergic POA neurons, originally thought to mediate warm-induced inhibition of sympathetic premotor neurons, have no effect on energy expenditure. Our data suggest a new view into the neurochemical and functional properties of BAT-related POA circuits and highlight their additional role in modulating food intake and body weight. Brown adipose tissue (BAT)-induced thermogenesis is a promising therapeutic target to treat obesity and metabolic diseases. The preoptic area (POA) controls body temperature by modulating BAT activity, but its role in body weight homeostasis has not been addressed. LepRb(POA) neurons are BAT-related neurons and we show that they are sufficient to inhibit energy expenditure. We further show that LepRb(POA) neurons modulate food intake and body weight, which is mediated by temperature-dependent homeostatic responses. We further found that LepRb(POA) neurons are stimulatory glutamatergic neurons, contrary to prevalent models, providing a new view on thermoregulatory neural circuits. In summary, our study significantly expands our current understanding of central circuits and mechanisms that modulate energy homeostasis. Copyright © 2016 the authors 0270-6474/16/365034-13$15.00/0.
Qualls-Creekmore, Emily; Rezai-Zadeh, Kavon; Jiang, Yanyan; Berthoud, Hans-Rudolf; Morrison, Christopher D.; Derbenev, Andrei V.; Zsombok, Andrea
2016-01-01
The preoptic area (POA) regulates body temperature, but is not considered a site for body weight control. A subpopulation of POA neurons express leptin receptors (LepRbPOA neurons) and modulate reproductive function. However, LepRbPOA neurons project to sympathetic premotor neurons that control brown adipose tissue (BAT) thermogenesis, suggesting an additional role in energy homeostasis and body weight regulation. We determined the role of LepRbPOA neurons in energy homeostasis using cre-dependent viral vectors to selectively activate these neurons and analyzed functional outcomes in mice. We show that LepRbPOA neurons mediate homeostatic adaptations to ambient temperature changes, and their pharmacogenetic activation drives robust suppression of energy expenditure and food intake, which lowers body temperature and body weight. Surprisingly, our data show that hypothermia-inducing LepRbPOA neurons are glutamatergic, while GABAergic POA neurons, originally thought to mediate warm-induced inhibition of sympathetic premotor neurons, have no effect on energy expenditure. Our data suggest a new view into the neurochemical and functional properties of BAT-related POA circuits and highlight their additional role in modulating food intake and body weight. SIGNIFICANCE STATEMENT Brown adipose tissue (BAT)-induced thermogenesis is a promising therapeutic target to treat obesity and metabolic diseases. The preoptic area (POA) controls body temperature by modulating BAT activity, but its role in body weight homeostasis has not been addressed. LepRbPOA neurons are BAT-related neurons and we show that they are sufficient to inhibit energy expenditure. We further show that LepRbPOA neurons modulate food intake and body weight, which is mediated by temperature-dependent homeostatic responses. We further found that LepRbPOA neurons are stimulatory glutamatergic neurons, contrary to prevalent models, providing a new view on thermoregulatory neural circuits. In summary, our study significantly expands our current understanding of central circuits and mechanisms that modulate energy homeostasis. PMID:27147656
Alam, Goleeta; Cui, Hongjuan; Shi, Huilin; Yang, Liqun; Ding, Jane; Mao, Ling; Maltese, William A.; Ding, Han-Fei
2009-01-01
Amplification of the oncogene MYCN is a tumorigenic event in the development of a subset of neuroblastomas that commonly consist of undifferentiated or poorly differentiated neuroblasts with unfavorable clinical outcome. The cellular origin of these neuroblasts is unknown. Additionally, the cellular functions and target cells of MYCN in neuroblastoma development remain undefined. Here we examine the cell types that drive neuroblastoma development in TH-MYCN transgenic mice, an animal model of the human disease. Neuroblastoma development in these mice begins with hyperplastic lesions in early postnatal sympathetic ganglia. We show that both hyperplasia and primary tumors are composed predominantly of highly proliferative Phox2B+ neuronal progenitors. MYCN induces the expansion of these progenitors by both promoting their proliferation and preventing their differentiation. We further identify a minor population of undifferentiated nestin+ cells in both hyperplastic lesions and primary tumors that may serve as precursors of Phox2B+ neuronal progenitors. These findings establish the identity of neuroblasts that characterize the tumor phenotype and suggest a cellular pathway by which MYCN can promote neuroblastoma development. PMID:19608868
Pan, Linjie; Cirillo, John; Borgens, Richard Ben
2012-08-01
The remarkable polarity-dependent growth and anatomical organization of neurons in vitro produced by imposed direct current (DC) voltage gradients (electrical fields; Ef) can be mimicked by another type of electrical cue. This is a properly structured asymmetrical alternating current (AC) electrical field (A-ACEf). Here we provide details on the construction of an AC signal generator in which all components of an AC waveform can be individually controlled. We show that 1) conventional symmetrical AC voltage gradients will not induce growth, guidance, or architectural changes in sympathetic neurons. We also provide the first qualitative and quantitative data showing that an asymmetric AC application can indeed mimic the DC response in chick sympathetic neurons and their growing neurites. This shift in orientation and neuronal anatomy requires dieback of some neurites and the extension of others to produce a preferred orientation perpendicular to the gradient of voltage. Our new results may lead to a noninvasive means to modify nerve growth and organization by magnetic inductive coupling at distance. These data also indicate the possibility of a means to mimic DC-dependent release of drugs or other biologically active molecules from electrically sensitive that can be loaded with these chemical cargos. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.
1987-05-01
Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.
Howard, Laura; Wyatt, Sean; Nagappan, Guhan; Davies, Alun M.
2013-01-01
The somatosensory and sympathetic innervation of the vertebrate head is derived principally from the neurons of trigeminal and superior cervical ganglia (SCG), respectively. During development, the survival of both populations of neurons and the terminal growth and branching of their axons in the tissues they innervate is regulated by the supply of nerve growth factor (NGF) produced by these tissues. NGF is derived by proteolytic cleavage of a large precursor protein, proNGF, which is recognised to possess distinctive biological functions. Here, we show that proNGF promotes profuse neurite growth and branching from cultured postnatal mouse SCG neurons. In marked contrast, proNGF does not promote the growth of trigeminal neurites. Studies using compartment cultures demonstrated that proNGF acts locally on SCG neurites to promote growth. The neurite growth-promoting effect of proNGF is not observed in SCG neurons cultured from p75NTR-deficient mice, and proNGF does not phosphorylate the NGF receptor tyrosine kinase TrkA. These findings suggest that proNGF selectively promotes the growth of neurites from a subset of NGF-responsive neurons by a p75NTR-dependent mechanism during postnatal development when the axons of these neurons are ramifying within their targets in vivo. PMID:23633509
Xing, Jihong; Li, Jianhua
2017-01-01
Background/Aims Limb ischemia occurs in peripheral artery disease (PAD). Sympathetic nerve activity (SNA) that regulates blood flow directed to the ischemic limb is exaggerated during exercise in this disease, and transient receptor potential channel A1 (TRPA1) in thin-fiber muscle afferents contributes to the amplified sympathetic response. The purpose of the present study was to determine the role of proteinase-activated receptor-2 (PAR2) in regulating abnormal TRPA1 function and the TRPA1-mediated sympathetic component of the exercise pressor reflex. Methods A rat model of femoral artery ligation was employed to study PAD. Dorsal root ganglion (DRG) tissues were obtained to examine the protein levels of PAR2 using western blot analysis. Current responses induced by activation of TRPA1 in skeletal muscle DRG neurons were characterized using whole-cell patch clamp methods. The blood pressure response to static exercise (i.e., muscle contraction) and stimulation of TRPA1 was also examined after a blockade of PAR2. Results The expression of PAR2 was amplified in DRG neurons of the occluded limb, and PAR2 activation with SL-NH2 (a PAR2 agonist) increased the amplitude of TRPA1 currents to a greater degree in DRG neurons of the occluded limb. Moreover, FSLLRY-NH2 (a PAR antagonist) injected into the arterial blood supply of the hindlimb muscles significantly attenuated the pressor response to muscle contraction and TRPA1 stimulation in rats with occluded limbs. Conclusions The PAR2 signal in muscle sensory nerves contributes to the amplified exercise pressor reflex via TRPA1 mechanisms in rats with femoral artery ligation. These findings provide a pathophysiological basis for autonomic responses during exercise activity in PAD, which may potentially aid in the development of therapeutic approaches for improvement of blood flow in this disease. PMID:29131007
Esler, Murray; Lux, Alan; Jennings, Garry; Hastings, Jacqui; Socratous, Flora; Lambert, Gavin
2004-08-01
Heightened central sympathetic nervous outflow is common in essential hypertension, contributing to hypertension development and possibly also to complications. Acute sympathetic nervous activation is a proven trigger for adverse cardiovascular events. Accordingly, antihypertensive drugs inhibiting sympathetic outflow represent a theoretically attractive therapeutic option. To study the sympatholytic and blood pressure-lowering activity of the imidazoline binding agent rilmenidine at rest and during reflex sympathetic activation. We used a randomized, double-blind, 6-week cross-over study, with a 1-week placebo run-in period, two 2-week active treatment intervals (rilmenidine 1 mg twice daily or placebo) and intervening 1-week placebo washout. In 15 hypertensive patients, noradrenaline and adrenaline plasma kinetics and intra-arterial blood pressure measurements were performed at rest, after mental stress (difficult mental arithmetic) and during head-up tilting, at the end of the 2-week dosing periods. The noradrenaline spillover rate, indicative of whole body sympathetic activity, was reduced 35% by rilmenidine at rest (P < 0.01) and remained significantly lower during mental stress and tilting, although the increases in noradrenaline spillover with both stimuli were preserved. The effects on intra-arterial blood pressure ran in parallel, a fall in supine resting pressure, but no reduction in blood pressure rise during mental stress and a lack of fall in blood pressure with tilting. On placebo, adrenaline secretion was 0.88 +/- 0.15 nmol/min (mean +/- SE) at rest, increased by 0.42 +/- 0.23 nmol/min with mental stress (P = 0.019) and was unchanged with tilting. Rilmenidine left adrenaline secretion untouched under all conditions. The present study confirms a sympatholytic effect of rilmenidine during supine rest but preservation of sympathetic responses during mental stress and tilting, with the latter underlying a freedom from postural hypotension on the drug. The absence of suppression of reflexive sympathetic responses contrasts with the described effects of rilmenidine in experimental animals, and emphasizes the previously demonstrated unique importance in humans of suprabulbar noradrenergic neuronal projections from the brainstem in regulating tonic sympathetic activity, with these being inhibited by imidazoline binding agents. Sympathetic nervous inhibition with rilmenidine contrasted with an absence of suppression of adrenaline secretion, affirming that sympathetic nervous and adrenal medullary function can be disconnected.
Palus, Katarzyna; Całka, Jarosław
2016-03-01
The purpose of the present study was to determine the response of the porcine coeliac-superior mesenteric ganglion complex (CSMG) neurons projecting to the prepyloric area of the porcine stomach to peripheral neuronal damage following partial stomach resection. To identify the sympathetic neurons innervating the studied area of stomach, the neuronal retrograde tracer Fast Blue (FB) was applied to control and partial stomach resection (RES) groups. On the 22nd day after FB injection, following laparotomy, the partial resection of the previously FB-injected stomach prepyloric area was performed in animals of RES group. On the 28th day, all animals were re-anaesthetized and euthanized. The CSMG complex was then collected and processed for double-labeling immunofluorescence. In control animals, retrograde-labelled perikarya were immunoreactive to tyrosine hydroxylase (TH), dopamine β-hydroxylase (DβH), neuropeptide Y (NPY) and galanin (GAL). Partial stomach resection decreased the numbers of FB-positive neurons immunopositive for TH and DβH. However, the strong increase of NPY and GAL expression, as well as de novo-synthesis of neuronal nitric oxide synthase (nNOS) and leu5-Enkephalin (LENK) was noted in studied neurons. Furthermore, FB-positive neurons in all pigs were surrounded by a network of cocaine- and amphetamine-regulated transcript peptide (CART)-, calcitonin gene-related peptide (CGRP)-, and substance P (SP)-, vasoactive intestinal peptide (VIP)-, LENK- and nNOS- immunoreactive nerve fibers. This may suggest neuroprotective contribution of these neurotransmitters in traumatic responses of sympathetic neurons to peripheral axonal damage. Copyright © 2015 Elsevier B.V. All rights reserved.
Bundzikova-Osacka, Jana; Ghosal, Sriparna; Packard, Benjamin A; Ulrich-Lai, Yvonne M; Herman, James P
2015-01-01
Chronic stress causes hypothalamo-pituitary-adrenal (HPA) axis hyperactivity and cardiovascular dyshomeostasis. Noradrenergic (NA) neurons in the nucleus of the solitary tract (NTS) are considered to play a role in these changes. In this study, we tested the hypothesis that NTS NA A2 neurons are required for cardiovascular and HPA axis responses to both acute and chronic stress. Adult male rats received bilateral microinjection into the NTS of 6-hydroxydopamine (6-OHDA) to lesion A2 neurons [cardiovascular study, n = 5; HPA study, n = 5] or vehicle [cardiovascular study, n = 6; HPA study, n = 4]. Rats were exposed to acute restraint stress followed by 14 d of chronic variable stress (CVS). On the last day of testing, rats were placed in a novel elevated plus maze (EPM) to test post-CVS stress responses. Lesions of NTS A2 neurons reduced the tachycardic response to acute restraint, confirming that A2 neurons promote sympathetic activation following acute stress. In addition, CVS increased the ratio of low-frequency to high-frequency power for heart rate variability, indicative of sympathovagal imbalance, and this effect was significantly attenuated by 6-OHDA lesion. Lesions of NTS A2 neurons reduced acute restraint-induced corticosterone secretion, but did not affect the corticosterone response to the EPM, indicating that A2 neurons promote acute HPA axis responses, but are not involved in CVS-mediated HPA axis sensitization. Collectively, these data indicate that A2 neurons promote both cardiovascular and HPA axis responses to acute stress. Moreover, A2 catecholaminergic neurons may contribute to the potentially deleterious enhancement of sympathetic drive following chronic stress.
Bundzikova-Osacka, Jana; Ghosal, Sriparna; Packard, Benjamin A.; Ulrich-Lai, Yvonne M.; Herman, James P.
2015-01-01
Chronic stress causes hypothalamo-pituitary-adrenal (HPA) axis hyperactivity and cardiovascular dyshomeostasis. Noradrenergic neurons in the nucleus of the solitary tract (NTS) are considered to play a role in these changes. Here, we tested the hypothesis that NTS noradrenergic A2 neurons are required for cardiovascular and HPA axis responses to both acute and chronic stress. Adult male rats received bilateral microinjection into the NTS of 6-hydroxydopamine (6-OHDA) to lesion A2 neurons [cardiovascular study, n= 5; HPA study, n= 5], or vehicle [cardiovascular study, n= 6; HPA study, n= 4]. Rats were exposed to acute restraint stress followed by 14 days of chronic variable stress (CVS). On the last day of testing, rats were placed in a novel elevated plus maze (EPM) to test post-CVS stress responses. Lesions of NTS A2 neurons reduced the tachycardic response to acute restraint, confirming that A2 neurons promote sympathetic activation following acute stress. In addition, CVS increased the ratio of low frequency to high frequency power for heart rate variability, indicative of sympathovagal imbalance, and this effect was significantly attenuated by 6-OHDA lesion. Lesions of NTS A2 neurons reduced acute restraint-induced corticosterone secretion, but did not affect the corticosterone response to the EPM, indicating that A2 neurons promote acute HPA axis responses, but are not involved in CVS-mediated HPA axis sensitization. Collectively, these data indicate that A2 neurons promote both cardiovascular and HPA axis responses to acute stress. Moreover, A2 catecholaminergic neurons may contribute to the potentially deleterious enhancement of sympathetic drive following chronic stress. PMID:25765732
Takahashi, Hakuo; Yoshika, Masamichi; Komiyama, Yutaka; Nishimura, Masato
2011-01-01
The central nervous system has a key role in regulating the circulatory system by modulating the sympathetic and parasympathetic nervous systems, pituitary hormone release, and the baroreceptor reflex. Digoxin- and ouabain-like immunoreactive materials were found >20 years ago in the hypothalamic nuclei. These factors appeared to localize to the paraventricular and supraoptic nuclei and the nerve fibers at the circumventricular organs and supposed to affect electrolyte balance and blood pressure. The turnover rate of these materials increases with increasing sodium intake. As intracerebroventricular injection of ouabain increases blood pressure via sympathetic activation, an endogenous digitalis-like factor (EDLF) was thought to regulate cardiovascular system-related functions in the brain, particularly after sodium loading. Experiments conducted mainly in rats revealed that the mechanism of action of ouabain in the brain involves sodium ions, epithelial sodium channels (ENaCs) and the renin–angiotensin–aldosterone system (RAAS), all of which are affected by sodium loading. Rats fed a high-sodium diet develop elevated sodium levels in their cerebrospinal fluid, which activates ENaCs. Activated ENaCs and/or increased intracellular sodium in neurons activate the RAAS; this releases EDLF in the brain, activating the sympathetic nervous system. The RAAS promotes oxidative stress in the brain, further activating the RAAS and augmenting sympathetic outflow. Angiotensin II and aldosterone of peripheral origin act in the brain to activate this cascade, increasing sympathetic outflow and leading to hypertension. Thus, the brain Na+–ENaC–RAAS–EDLF axis activates sympathetic outflow and has a crucial role in essential and secondary hypertension. This report provides an overview of the central mechanism underlying hypertension and discusses the use of antihypertensive agents. PMID:21814209
Kinsman, Brian J; Browning, Kirsteen N; Stocker, Sean D
2017-09-15
Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol. Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in extracellular osmolarity and NaCl. In this study, we discovered that intracerebroventricular infusion or local OVLT injection of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any variable. In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in discharge frequency than equi-osmotic mannitol. Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase in OVLT neuronal discharge frequency than equi-osmotic sorbitol. Collectively, these novel data suggest that subsets of OVLT neurons respond differently to hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing. Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First, intracerebroventricular (icv) infusion (5 μl/10 min) of 1.0 m NaCl produced a significantly greater increase in lumbar sympathetic nerve activity (SNA), adrenal SNA and ABP than equi-osmotic sorbitol (2.0 osmol l -1 ). Second, OVLT microinjection (20 nl) of 1.0 m NaCl significantly raised lumbar SNA, adrenal SNA and ABP. Equi-osmotic sorbitol did not alter any variable. Third, in vitro whole-cell recordings demonstrate that 50% (18/36) of OVLT neurons display an increased discharge to both hypertonic NaCl (+7.5 mm) and mannitol (+15 mm). Of these neurons, 56% (10/18) displayed a greater discharge response to hypertonic NaCl vs mannitol. Fourth, in vivo single-unit recordings revealed that intracarotid injection of hypertonic NaCl produced a concentration-dependent increase in OVLT cell discharge, lumbar SNA and ABP. The responses to equi-osmotic infusions of hypertonic sorbitol were significantly smaller. Lastly, icv infusion of 0.5 m NaCl produced significantly greater increases in OVLT discharge and ABP than icv infusion of equi-osmotic sorbitol. Collectively, these findings indicate NaCl and osmotic stimuli produce different responses across OVLT neurons and may represent distinct cellular processes to regulate thirst, vasopressin secretion and autonomic function. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Coulibaly, Aminata P.; Gannon, Sean M.; Hawk, Kiel; Walsh, Brian F.; Isaacson, Lori G.
2013-01-01
The goals of the present study were to investigate the changes in sympathetic preganglionic neurons following transection of distal axons in the cervical sympathetic trunk (CST) that innervate the superior cervical ganglion (SCG) and to assess changes in the protein expression of brain derived neurotrophic factor (BDNF) and its receptor TrkB in the thoracic spinal cord. . At 1 week, a significant decrease in soma volume and reduced soma expression of choline acetyltransferase (ChAT) in the intermediolateral cell column (IML) of T1 spinal cord were observed, with both ChAT-ir and non-immunoreactive neurons expressing the injury marker activating transcription factor 3. . These changes were transient, and at later time points, ChAT expression and soma volume returned to control values and the number of ATF3 neurons declined. No evidence for cell loss or neuronal apoptosis was detected at any time point. Protein levels of BDNF and/or full length TrkB in the spinal cord were increased throughout the survival period. In the SCG, both ChAT-ir axons and ChAT protein remained decreased at 16 weeks, but were increased compared to the 10 week time point. These results suggest that though IML neurons show reduced ChAT expression and cell volume at 1 week following CST transection, at later time points, the neurons recovered and exhibited no significant signs of neurodegeneration. The alterations in BDNF and/or TrkB may have contributed to the survival of the IML neurons and the recovery of ChAT expression, as well as to the reinnervation of the SCG. PMID:23891533
Tupone, Domenico; Madden, Christopher J; Cano, Georgina; Morrison, Shaun F
2011-11-02
Orexin (hypocretin) neurons, located exclusively in the PeF-LH, which includes the perifornical area (PeF), the lateral hypothalamus (LH), and lateral portions of the medial hypothalamus, have widespread projections and influence many physiological functions, including the autonomic regulation of body temperature and energy metabolism. Narcolepsy is characterized by the loss of orexin neurons and by disrupted sleep, but also by dysregulation of body temperature and by a strong tendency for obesity. Heat production (thermogenesis) in brown adipose tissue (BAT) contributes to the maintenance of body temperature and, through energy consumption, to body weight regulation. We identified a neural substrate for the influence of orexin neurons on BAT thermogenesis in rat. Nanoinjection of orexin-A (12 pmol) into the rostral raphe pallidus (rRPa), the site of BAT sympathetic premotor neurons, produced large, sustained increases in BAT sympathetic outflow and in BAT thermogenesis. Activation of neurons in the PeF-LH also enhanced BAT thermogenesis over a long time course. Combining viral retrograde tracing from BAT, or cholera toxin subunit b tracing from rRPa, with orexin immunohistochemistry revealed synaptic connections to BAT from orexin neurons in PeF-LH and from rRPa neurons with closely apposed, varicose orexin fibers, as well as a direct, orexinergic projection from PeF-LH to rRPa. These results indicate a potent modulation of BAT thermogenesis by orexin released from the terminals of orexin neurons in PeF-LH directly into the rRPa and provide a potential mechanism contributing to the disrupted regulation of body temperature and energy metabolism in the absence of orexin.
Nakamura, Kazuhiro; Wu, Sheng-Xi; Fujiyama, Fumino; Okamoto, Keiko; Hioki, Hiroyuki; Kaneko, Takeshi
2004-03-01
To characterize glutamatergic axon terminals onto sympathetic preganglionic neurons (SPNs), we visualized immunohistochemically three vesicular glutamate transporters (VGLUTs) in the intermediolateral cell column (IML) of rat thoracic spinal cord. VGLUT2 and VGLUT3 immunoreactivities but not VGLUT1 immunoreactivity were distributed in the IML and found in terminals making asymmetric synapses and apposed to dendrites immunopositive for choline acetyltransferase, an SPN marker. VGLUT2 and VGLUT3 immunoreactivities were not co-localized with each other. A population of VGLUT2-immunoreactive but not VGLUT3-immunoreactive terminals were adrenergic or noradrenergic. Some of VGLUT3-immunoreactive but not VGLUT2-immunoreactive terminals contained serotonin. These results indicate at least two independent glutamatergic terminal populations, which include a distinct monoaminergic subpopulation, making excitatory inputs onto SPNs. Copyright 2004 Lippincott Williams & Wilkins
NASA Astrophysics Data System (ADS)
Mai, Fu-Der; Chen, Li-You; Ling, Yong-Chien; Chen, Bo-Jung; Wu, Un-In; Chang, Hung-Ming
2010-05-01
Excessive calcium influx in chemosensitive neurons of area postrema (AP) is detrimental for sympathetic activation and participates in the disruption of cardiovascular activities. Since total sleep deprivation (TSD) is a stressful condition known to harm the cardiovascular function, the present study is aimed to determine whether the in vivo calcium expression in AP would significantly alter following TSD by the use of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and calretinin (a specific calcium sensor protein in AP neurons) immunohistochemistry. The results indicated that in normal rats, the calcium intensity was estimated to be 0.5 × 10 5 at m/ z 40.08. However, following TSD, the intensity for calcium ions was greatly increased to 1.2 × 10 5. Molecular imaging revealed that after TSD, various strongly expressed calcium signals were distributed throughout AP with clear identified profiles instead of randomly scattered within this region in normal rats. Immunohistochemical staining corresponded well with ionic image in which a majority of calcium-enriched gathering co-localized with calretinin positive neurons. The functional significance of TSD-induced calcium augmentation was demonstrated by increased heart rate and mean arterial pressure, clinical markers for cardiovascular dysfunction. Considering AP-mediated sympathetic activation is important for cardiovascular regulation, exaggerated calcium influx in AP would render this neurocircuitry more vulnerable to over-excitation, which might serve as the underlying mechanism for the development of TSD-relevant cardiovascular deficiency.
Crotty, T P
2015-11-01
Experiments on canine lateral saphenous vein segments have shown that noradrenaline causes potent, flow dependent effects, at a threshold concentration comparable to that of plasma noradrenaline, when it stimulates a segment by diffusion from its microcirculation (vasa vasorum). The effects it causes contrast with those neuronal noradrenaline causes in vivo and that, in the light of the principle that all information is transmitted in patterns that need contrast to be detected - star patterns need darkness, sound patterns, quietness - has generated the hypothesis that plasma noradrenaline provides the obligatory contrast tissues need to detect and respond to the regulatory information encrypted in the diffusion pattern of neuronal noradrenaline. Based on the implications of that hypothesis, the controlled variable of the peripheral noradrenergic system is believed to be the maintenance of a set point balance between the contrasting effects of plasma and neuronal noradrenaline on a tissue. The hypothalamic sympathetic centres are believed to monitor that balance through the level of afferent sympathetic traffic they receive from a tissue and to correct any deviation it detects in the balance by adjusting the level of efferent sympathetic input it projects to the tissue. The failure of the centres to maintain the correct balance is believed to be responsible for inflammatory and genetic disorders. When the failure causes the balance to be polarised in favour of the effect of plasma noradrenaline that is believed to cause inflammatory diseases like dilator cardiac failure, renal hypertension, varicose veins and aneurysms; when it causes it to be polarised in favour of the effect of neuronal noradrenaline that is believed to cause genetic diseases like hypertrophic cardiopathy, pulmonary hypertension and stenoses and when, in pregnancy, a factor causes the polarity to favour plasma noradrenaline in all the maternal tissues except the uterus and conceptus, where it favours neuronal noradrenaline, that is believed to cause preeclampsia. Finally, the shift in the balance caused by the slow physiological increase in plasma noradrenaline concentration in life is believed to be responsible for ageing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of extracellular matrix in chick paravertebral sympathetic ganglia.
Luckenbill-Edds, L
1986-08-01
Alcian blue staining coupled with enzyme digestion or critical electrolyte staining revealed differences in the development of extracellular matrix (ECM) within sympathetic ganglia compared with the surrounding capsule. On day 5 of chick development (Hamburger-Hamilton stage 26) only hyaluronic acid (HA) could be detected in the ECM surrounding condensing primary ganglia. By day 7 (st 30) the ganglionic capsule contained HA, as well as sulfated glycosaminoglycans (GAGs), and this pattern continued into the adult stage. During the later stages of embryonic life (st 41-45) satellite cells appear, showing fine structural characteristics that point to their role in the secretion of intraganglionic ECM. Only during these stages could ECM be detected histochemically within ganglia, the same stages (days 15-19) when routine electron microscopic methods reveal collagen fibrils embedded in a granular ground substance. Thus, the intraganglionic environment appears as a separate compartment free of detectable amounts of GAG until late embryonic stages when ECM is secreted around satellite cells. This developmental pattern could represent a role of ECM in the histological stabilization of ganglia during the late stages of differentiation, since the appearance of intraganglionic ECM is correlated with the appearance of small dense-cored vesicles characteristic of adult neurons. The developmental pattern of ECM in differentiating sympathetic ganglia is compared with that of other tissues that undergo condensation and morphogenesis.
Lorton, Dianne; Bellinger, Denise L.
2015-01-01
Cross-talk between the sympathetic nervous system (SNS) and immune system is vital for health and well-being. Infection, tissue injury and inflammation raise firing rates of sympathetic nerves, increasing their release of norepinephrine (NE) in lymphoid organs and tissues. NE stimulation of β2-adrenergic receptors (ARs) in immune cells activates the cAMP-protein kinase A (PKA) intracellular signaling pathway, a pathway that interfaces with other signaling pathways that regulate proliferation, differentiation, maturation and effector functions in immune cells. Immune–SNS cross-talk is required to maintain homeostasis under normal conditions, to develop an immune response of appropriate magnitude after injury or immune challenge, and subsequently restore homeostasis. Typically, β2-AR-induced cAMP is immunosuppressive. However, many studies report actions of β2-AR stimulation in immune cells that are inconsistent with typical cAMP–PKA signal transduction. Research during the last decade in non-immune organs, has unveiled novel alternative signaling mechanisms induced by β2-AR activation, such as a signaling switch from cAMP–PKA to mitogen-activated protein kinase (MAPK) pathways. If alternative signaling occurs in immune cells, it may explain inconsistent findings of sympathetic regulation of immune function. Here, we review β2-AR signaling, assess the available evidence for alternative signaling in immune cells, and provide insight into the circumstances necessary for “signal switching” in immune cells. PMID:25768345
[Current concepts in pathophysiology of CRPS I].
Nickel, F T; Maihöfner, C
2010-02-01
Knowledge about the pathophysiology underlying the complex regional pain syndrome (CRPS) has increased over the last years. Classically, CRPS has been considered to be mainly driven by sympathetic dysfunction with sympathetically maintained pain being its major pathogenetic mechanism. Currently, the disease is understood as result of a complex interplay between altered somatosensory, motor, autonomic and inflammatory systems. Peripheral and central sensitization is a common feature in CRPS as in other neuropathic pain syndromes. One important mechanism is the sensitization of spinal dorsal horn cells via activation of postsynaptic NMDA-receptors by chronic C-fiber input. Differential activity of endogenous pain modulating systems may play a pivotal role in the development of CRPS, too. Neuronal plasticity of the somatosensory cortex accounts for central sensory signs. Also the motor system is subject to central adaptive changes in patients with CRPS. Calcitonin-gene related peptide (CGRP) and substance P mediate neurogenic inflammation. Additionally other proinflammatory cytokines involved in the inflammatory response in CRPS have been identified. In terms of the sympathetic nervous system, recent evidence rather points to a sensitization of adrenergic receptors than to increased efferent sympathetic activity. Particularly the expression of alpha (1)-adrenoceptors on nociceptive C-fibers may play a major role. These pathophysiological ideas do not exclude each other. In fact they complement one another. The variety of the involved systems may explain the versatile clinical picture of CRPS. Georg Thieme Verlag KG Stuttgart, New York.
Esler, M
1993-11-01
The proportionality which in general exists between rates of sympathetic nerve firing and the overflow of noradrenaline into the venous drainage of an organ provides the experimental justification for the use of measurements of noradrenaline in plasma as a biochemical measure of sympathetic nervous function. Static measurements of noradrenaline plasma concentration have several limitations. One is the confounding influence of noradrenaline plasma clearance on plasma concentration. Other drawbacks include the distortion arising from antecubital venous sampling (this represents but one venous drainage, that of the forearm), and the inability to detect regional differentiation of sympathetic responses. Clinical regional noradrenaline spillover measurements, performed with infusions of radiolabelled noradrenaline and sampling from centrally placed catheters, and derived from regional isotope dilution, overcome these deficiencies. The strength of the methodology is that sympathetic nervous function may be studied in the internal organs not accessible to nerve recording with microneurography. Examples of the regionalization of human sympathetic responses disclosed include the preferential activation of the cardiac sympathetic outflow with mental stress, cigarette smoking, aerobic exercise, cardiac failure, coronary insufficiency, essential hypertension and in ventricular arrhythmias, and the preferential stimulation or inhibition of the renal sympathetic nerves with low salt diets and mental stress, and with exercise training, respectively. By application of the same principles, regional release of the sympathetic cotransmitters neuropeptide Y and adrenaline can be studied in humans. Cotransmitter release, however, is detected only with some difficulty. In restricted circumstances we find evidence of regional cotransmitter release to plasma, such as the release of neuropeptide Y from the heart at the very high rates of sympathetic nerve firing occurring with aerobic exercise, and cardiac adrenaline release also with exercise and after loading of the neuronal adrenaline pool by intravenous infusion of adrenaline.
Stornetta, Ruth L.; Bochorishvili, Genrieta; DePuy, Seth D.; Burke, Peter G. R.; Abbott, Stephen B. G.
2013-01-01
The C1 neurons reside in the rostral and intermediate portions of the ventrolateral medulla (RVLM, IVLM). They use glutamate as a fast transmitter and synthesize catecholamines plus various neuropeptides. These neurons regulate the hypothalamic pituitary axis via direct projections to the paraventricular nucleus and regulate the autonomic nervous system via projections to sympathetic and parasympathetic preganglionic neurons. The presympathetic C1 cells, located in the RVLM, are probably organized in a roughly viscerotopic manner and most of them regulate the circulation. C1 cells are variously activated by hypoglycemia, infection or inflammation, hypoxia, nociception, and hypotension and contribute to most glucoprivic responses. C1 cells also stimulate breathing and activate brain stem noradrenergic neurons including the locus coeruleus. Based on the various effects attributed to the C1 cells, their axonal projections and what is currently known of their synaptic inputs, subsets of C1 cells appear to be differentially recruited by pain, hypoxia, infection/inflammation, hemorrhage, and hypoglycemia to produce a repertoire of stereotyped autonomic, metabolic, and neuroendocrine responses that help the organism survive physical injury and its associated cohort of acute infection, hypoxia, hypotension, and blood loss. C1 cells may also contribute to glucose and cardiovascular homeostasis in the absence of such physical stresses, and C1 cell hyperactivity may contribute to the increase in sympathetic nerve activity associated with diseases such as hypertension. PMID:23697799
Guyenet, Patrice G; Stornetta, Ruth L; Bochorishvili, Genrieta; Depuy, Seth D; Burke, Peter G R; Abbott, Stephen B G
2013-08-01
The C1 neurons reside in the rostral and intermediate portions of the ventrolateral medulla (RVLM, IVLM). They use glutamate as a fast transmitter and synthesize catecholamines plus various neuropeptides. These neurons regulate the hypothalamic pituitary axis via direct projections to the paraventricular nucleus and regulate the autonomic nervous system via projections to sympathetic and parasympathetic preganglionic neurons. The presympathetic C1 cells, located in the RVLM, are probably organized in a roughly viscerotopic manner and most of them regulate the circulation. C1 cells are variously activated by hypoglycemia, infection or inflammation, hypoxia, nociception, and hypotension and contribute to most glucoprivic responses. C1 cells also stimulate breathing and activate brain stem noradrenergic neurons including the locus coeruleus. Based on the various effects attributed to the C1 cells, their axonal projections and what is currently known of their synaptic inputs, subsets of C1 cells appear to be differentially recruited by pain, hypoxia, infection/inflammation, hemorrhage, and hypoglycemia to produce a repertoire of stereotyped autonomic, metabolic, and neuroendocrine responses that help the organism survive physical injury and its associated cohort of acute infection, hypoxia, hypotension, and blood loss. C1 cells may also contribute to glucose and cardiovascular homeostasis in the absence of such physical stresses, and C1 cell hyperactivity may contribute to the increase in sympathetic nerve activity associated with diseases such as hypertension.
NASA Technical Reports Server (NTRS)
Benarroch, E. E.; Smithson, I. L.; Low, P. A.; Parisi, J. E.
1998-01-01
The ventrolateral portion of the intermediate reticular formation of the medulla (ventrolateral medulla, VLM), including the C1/A1 groups of catecholaminergic neurons, is thought to be involved in control of sympathetic cardiovascular outflow, cardiorespiratory interactions, and reflex control of vasopressin release. As all these functions are affected in patients with multiple systems atrophy (MSA) with autonomic failure, we sought to test the hypothesis that catecholaminergic (tyrosine hydroxylase [TH]-positive) neurons of the VLM are depleted in these patients. Medullas were obtained at autopsy from 4 patients with MSA with prominent autonomic failure and 5 patients with no neurological disease. Patients with MSA had laboratory evidence of severe adrenergic sudomotor and cardiovagal failure. Tissue was immersion fixed in 2% paraformaldehyde at 4 degrees C for 24 hours and cut into 1-cm blocks in the coronal plane from throughout the medulla. Serial 50-microm sections were collected and one section every 300 microm was stained for TH. There was a pronounced depletion of TH neurons in the rostral VLM in all cases of MSA. There was also significant reduction of TH neurons in the caudal VLM in 3 MSA patients compared with 3 control subjects. In 2 MSA cases and in 2 control subjects, the thoracic spinal cord was available for study. There was also depletion of TH fibers and sympathetic preganglionic neurons (SPNs) in the 2 MSA cases examined. Thus, depletion of catecholaminergic neurons in the VLM may provide a substrate for some of the autonomic and endocrine manifestations of MSA.
Theory of antimotion sickness drug mechanisms.
NASA Technical Reports Server (NTRS)
Wood, D. C.; Graybiel, A.
1972-01-01
The results of a series of antimotion sickness drug evaluations indicates that drugs with central anticholinergic actions and drugs that increase central sympathetic activity are effective against motion sickness. The combination of these actions produces a synergistic effect against motion sickness. The effect of these medications on central acetylcholine or on norepinephrine could alter a balance between the neurons in the vestibular and reticular areas which influence motion sickness and also sympathetic and parasympathetic reactions. It is suggested that this could be their mechanism of action in preventing motion sickness.
Vagal Nerve Stimulation Therapy: What Is Being Stimulated?
Kember, Guy; Ardell, Jeffrey L.; Armour, John A.; Zamir, Mair
2014-01-01
Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity. PMID:25479368
Lu, Jian-Hua; Wang, Xiao-Qin; Huang, Yan; Qiu, Yi-Hua; Peng, Yu-Ping
2015-06-15
Our previous work has shown that cerebellar interposed nucleus (IN) modulates immune function. Herein, we reveal mechanism underlying the immunomodulation. Treatment of bilateral cerebellar IN of rats with 3-mercaptopropionic acid (3-MP), a glutamic acid decarboxylase antagonist that reduces γ-aminobutyric acid (GABA) synthesis, enhanced cellular and humoral immune responses to bovine serum albumin, whereas injection of vigabatrin, a GABA-transaminase inhibitor that inhibits GABA degradation, in bilateral cerebellar IN attenuated the immune responses. The 3-MP or vigabatrin administrations in the cerebellar IN decreased or increased hypothalamic GABA content and lymphoid tissues' norepinephrine content, respectively, but did not alter adrenocortical or thyroid hormone levels in serum. In addition, a direct GABAergic projection from cerebellar IN to hypothalamus was found. These findings suggest that GABAergic neurons in cerebellar IN regulate immune system via hypothalamic and sympathetic pathways. Copyright © 2015 Elsevier B.V. All rights reserved.
Vagal nerve stimulation therapy: what is being stimulated?
Kember, Guy; Ardell, Jeffrey L; Armour, John A; Zamir, Mair
2014-01-01
Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity.
1984-12-13
containing neurons . Neurosci. 3:945-976. Lockridge, 0. (1982) Substance P hydrolysis by human serum cholinester- ase. J .̂ Neurochem. 36:106-110...physin neurons to neural targets in the rat and human . C Histochem. ’ Cytochem. 28:475-478. Stanek, K.A.; Ne i l , J . J . ; Sawyer, W.B. and Loewy, A.D...paragigantocellular nucleus. These data provided evidence for a neuronal system near the surface of the VM of the rat that increases sympathetic
Mechanosensing in hypothalamic osmosensory neurons.
Prager-Khoutorsky, Masha
2017-11-01
Osmosensory neurons are specialized cells activated by increases in blood osmolality to trigger thirst, secretion of the antidiuretic hormone vasopressin, and elevated sympathetic tone during dehydration. In addition to multiple extrinsic factors modulating their activity, osmosensory neurons are intrinsically osmosensitive, as they are activated by increased osmolality in the absence of neighboring cells or synaptic contacts. This intrinsic osmosensitivity is a mechanical process associated with osmolality-induced changes in cell volume. This review summarises recent findings revealing molecular mechanisms underlying the mechanical activation of osmosensory neurons and highlighting important roles of microtubules, actin, and mechanosensitive ion channels in this process. Copyright © 2017 Elsevier Ltd. All rights reserved.
de Souza, Bruno Palmieri; da Silva, Edilson Dantas; Jurkiewicz, Aron; Jurkiewicz, Neide Hyppolito
2014-09-05
The effects of acute treatment with sibutramine on the peripheral sympathetic neurotransmission in vas deferens of young rats were still not evaluated. Therefore, we carried out this study in order to verify the effects of acute sibutramine treatment on the neuronal- and exogenous agonist-induced contractions of the young rat vas deferens. Young 45-day-old male Wistar rats were pretreated with sibutramine 6 mg/kg and after 4h the vas deferens was used for experiment. The acute treatment with sibutramine was able to increase the potency (pD2) of noradrenaline and phenylephrine. Moreover, the efficacy (Emax) of noradrenaline was increased while the efficacy of serotonin and nicotine were decreased. The maximum effect induced by a single concentration of tyramine was diminished in the vas deferens from treated group. Moreover, the leftward shift of the noradrenaline curves promoted by uptake blockers (cocaine and corticosterone) and β-adrenoceptor antagonist (propranolol) was reduced in the vas deferens of treated group. The initial phasic and secondary tonic components of the neuronal-evoked contractions of vas deferens from treated group at the frequencies of 2 Hz were decreased. Moreover, only the initial phasic component at 5 Hz was diminished by the acute treatment with sibutramine. In conclusion, we showed that the acute treatment with sibutramine in young rats was able to affect the peripheral sympathetic nervous system by inhibition of noradrenaline uptake and reduction of the neuronal content of this neurotransmitter, leading to an enhancement of vas deferens sensitivity to noradrenaline. Copyright © 2014 Elsevier B.V. All rights reserved.
Ladd, Aliny A B Lobo; Ladd, Fernando V Lobo; da Silva, Andrea A P; Oliveira, Moacir F; de Souza, Romeu R; Coppi, Antonio A
2012-04-01
Whilst a fall in neuron numbers seems a common pattern during postnatal development, several authors have nonetheless reported an increase in neuron number, which may be associated with any one of a number of possible processes encapsulating either neurogenesis or late maturation and incomplete differentiation. Recent publications have thus added further fuel to the notion that a postnatal neurogenesis may indeed exist in sympathetic ganglia. In the light of these uncertainties surrounding the effects exerted by postnatal development on the number of superior cervical ganglion (SCG) neurons, we have used state-of-the-art design-based stereology to investigate the quantitative structure of SCG at four distinct timepoints after birth, viz., 1-3 days, 1 month, 12 months and 36 months. The main effects exerted by ageing on the SCG structure were: (i) a 77% increase in ganglion volume; (ii) stability in the total number of the whole population of SCG nerve cells (no change--either increase or decrease) during post-natal development; (iii) a higher proportion of uninucleate neurons to binucleate neurons only in newborn animals; (iv) a 130% increase in the volume of uninucleate cell bodies; and (v) the presence of BrdU positive neurons in animals at all ages. At the time of writing our results support the idea that neurogenesis takes place in the SCG of preás, albeit it warrants confirmation by further markers. We also hypothesise that a portfolio of other mechanisms: cell repair, maturation, differentiation and death may be equally intertwined and implicated in the numerical stability of SCG neurons during postnatal development. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
Tavazoie, S F; Tavazoie, M F; McIntosh, J M; Olivera, B M; Yoshikami, D
1997-03-01
1. The effects of two new acetylcholine receptor antagonists, alpha-conotoxin MII and alpha-conotoxin ImI, on nicotinic synaptic transmission in the 10th paravertebral sympathetic ganglion of the leopard frog (Rana pipiens) were examined. The preganglionic nerve was electrically stimulated (at low frequency, < or = 1 min-1, to avoid use-dependent changes) while compound action potentials of B and C neurones were monitored from the postganglionic nerve. 2. alpha-Conotoxins MII and ImI, at low micromolar concentrations, reversibly blocked both B and C waves, alpha-Conotoxin MII blocked the C wave more effectively than the B wave, whereas the potency of alpha-conotoxin ImI was opposite that of MII. The observation that nicotinic antagonists can differentially block synaptic transmission of B versus C neurones with opposite selectivities strongly suggests that these neurones possess distinct nicotinic receptors. 3. In addition to fast and slow B waves described by others. C waves with two temporally distinguishable components were present in our recordings. Each alpha-conotoxin affected fast and slow B waves similarly. Likewise, toxins did not discriminate between the two components of C waves. This suggests that all neurones within each major class (B or C) may have the same nicotinic receptors. 4. Synthetic forms of alpha-conotoxins MII and ImI were used in the present study. Their ease of synthesis and their specificities should make these toxins useful probes to investigate the various subtypes of neuronal nicotinic acetylcholine receptors.
1995-01-01
Amyloid beta-protein (A beta), the principal constituent of senile plaques seen in Alzheimer's disease (AD), is derived by proteolysis from the beta-amyloid precursor protein (beta PP). The mechanism of A beta production in neurons, which are hypothesized to be a rich source of A beta in brain, remains to be defined. In this study, we describe a detailed localization of cell surface beta PP and its subsequent trafficking in primary cultured neurons. Full-length cell surface beta PP was present primarily on perikarya and axons, the latter with a characteristic discontinuous pattern. At growth cones, cell surface beta PP was inconsistently detected. By visualizing the distribution of beta PP monoclonal antibodies added to intact cultures, beta PP was shown to be internalized from distal axons or terminals and retrogradely transported back to perikarya in organelles which colocalized with fluid-phase endocytic markers. Retrograde transport of beta PP was shown in both hippocampal and peripheral sympathetic neurons, the latter using a compartment culture system that isolated cell bodies from distal axons and terminals. In addition, we demonstrated that beta PP from distal axons was transcytotically transported to the surface of perikarya from distal axons in sympathetic neurons. Indirect evidence of this transcytotic pathway was obtained in hippocampal neurons using antisense oligonucleotide to the kinesin heavy chain to inhibit anterograde beta PP transport. Taken together, these results demonstrate novel aspects of beta PP trafficking in neurons, including retrograde axonal transport and transcytosis. Moreover, the axonal predominance of cell surface beta PP is unexpected in view of the recent report of polarized sorting of beta PP to the basolateral domain of MDCK cells. PMID:7721945
Natale, G; Ryskalin, L; Busceti, C L; Biagioni, F; Fornai, F
2017-09-01
The gastrointestinal tract is provided with extrinsic and intrinsic innervation. The extrinsic innervation includes the classic vagal parasympathetic and sympathetic components, with afferent sensitive and efferent secretomotor fibers. The intrinsic innervations is represented by the enteric nervous system (ENS), which is recognized as a complex neural network controlling a variety of cell populations, including smooth muscle cells, mucosal secretory cells, endocrine cells, microvasculature, immune and inflammatory cells. This is finalized to regulate gastrointestinal secretion, absorption and motility. In particular, this network is organized in several plexuses each one providing quite autonomous control of gastrointestinal functions (hence the definition of "second brain"). The similarity between ENS and CNS is further substantiated by the presence of local sensitive pseudo- unipolar ganglionic neurons with both peripheral and central branching which terminate in the enteric wall. A large variety of neurons and neurotransmitters takes part in the ENS. However, the nature of these neurons and their role in the regulation of gastrointestinal functions is debatable. In particular, the available literature reporting the specific nature of catecholamine- containing neurons provides conflicting evidence. This is critical both for understanding the specific role of each catecholamine in the gut and, mostly, to characterize specifically the enteric neuropathology occurring in a variety of diseases. An emphasis is posed on neurodegenerative disorders, such as Parkinson's disease, which is associated with the loss of catecholamine neurons. In this respect, the recognition of the nature of such neurons within the ENS would contribute to elucidate the pathological mechanisms which produce both CNS and ENS degeneration and to achieve more effective therapeutic approaches. Despite a great emphasis is posed on the role of noradrenaline to regulate enteric activities only a few reports are available on the anatomy and physiology of enteric dopamine neurons. Remarkably, this review limits the presence of enteric noradrenaline (and adrenaline) only within extrinsic sympathetic nerve terminals. This is based on careful morphological studies showing that the only catecholamine-containing neurons within ENS would be dopaminergic. This means that enteric pathology of catecholamine neurons should be conceived as axon pathology for noradrenaline neurons and whole cell pathology for dopamine neurons which would be the sole catecholamine cell within intrinsic circuitries affecting gut motility and secretions.The gastrointestinal tract is provided with extrinsic and intrinsic innervation. The extrinsic innervation includes the classic vagal parasympathetic and sympathetic components, with afferent sensitive and efferent secretomotor fibers. The intrinsic innervations is represented by the enteric nervous system (ENS), which is recognized as a complex neural network controlling a variety of cell populations, including smooth muscle cells, mucosal secretory cells, endocrine cells, microvasculature, immune and inflammatory cells. This is finalized to regulate gastrointestinal secretion, absorption and motility. In particular, this network is organized in several plexuses each one providing quite autonomous control of gastrointestinal functions (hence the definition of "second brain"). The similarity between ENS and CNS is further substantiated by the presence of local sensitive pseudounipolar ganglionic neurons with both peripheral and central branching which terminate in the enteric wall. A large variety of neurons and neurotransmitters takes part in the ENS. However, the nature of these neurons and their role in the regulation of gastrointestinal functions is debatable. In particular, the available literature reporting the specific nature of catecholamine-containing neurons provides conflicting evidence. This is critical both for understanding the specific role of each catecholamine in the gut and, mostly, to characterize specifically the enteric neuropathology occurring in a variety of diseases. An emphasis is posed on neurodegenerative disorders, such as including Parkinson's disease, which is associated with the loss of catecholamine neurons. In this respect, the recognition of the nature of such neurons within the ENS would contribute to elucidate the pathological mechanisms which produce both CNS and ENS degeneration and to achieve more effective therapeutic approaches. Despite a great emphasis is posed on the role of noradrenaline to regulate enteric activities only a few reports are available on the anatomy and physiology of enteric dopamine neurons. Remarkably, this review limits the presence of enteric noradrenaline (and adrenaline) only within extrinsic sympathetic nerve terminals. This is based on careful morphological studies showing that the only catecholamine-containing neurons within ENS would be dopaminergic. This means that enteric pathology of catecholamine neurons should be conceived as axon pathology for noradrenaline neurons and whole cell pathology for dopamine neurons which would be the sole catecholamine cell within intrinsic circuitries affecting gut motility and secretions.
Dampney, Roger A L; Furlong, Teri M; Horiuchi, Jouji; Iigaya, Kamon
2013-04-01
The midbrain periaqueductal grey (PAG) contains four longitudinal columns, referred to as the dorsomedial (dmPAG), dorsolateral (dlPAG), lateral (lPAG) and ventrolateral (vlPAG) subdivisions, which collectively have a pivotal role in integrating behavioural and physiological responses to external stressors as well as other functions. This review is focussed on the dlPAG, which is believed to be an important component of the central mechanisms that generate the defensive response to acute psychological stressors, such as the presence of a predator or other immediate threat. The anatomical connections of the dlPAG are highly specific and distinctly different from those of the other PAG subregions. The chemical properties of the dlPAG are also distinctly different from the other PAG subregions (e.g. there is a very high density of neurons that synthesize nitric oxide in the dlPAG but very few such neurons in the other PAG subregions). Recent functional studies have demonstrated that neurons in the dlPAG exert a powerful control over both sympathetic and respiratory activity, and that the pattern of the evoked respiratory changes is also distinctly different from those evoked from other PAG subregions. These studies also showed that the sympathetic and respiratory changes evoked from the dlPAG are highly correlated, suggesting the possibility that a common population of "command neurons" within this region may generate the sympathetic and respiratory changes that accompany defensive behavioural responses to acute psychological stressors. Finally, although the anatomical connections and functional properties of the dlPAG are distinctly different from the other PAG subregions, they have many similarities with adjacent parts of the superior colliculus, suggesting that the dlPAG and deep layers of the superior colliculus may be part of a common defence system in the midbrain. Copyright © 2013 Elsevier B.V. All rights reserved.
Naar, Jan; Jaye, Deborah; Linde, Cecilia; Neužil, Petr; Doškář, Petr; Málek, Filip; Braunschweig, Frieder; Lund, Lars H; Mortensen, Lars; Linderoth, Bengt; Lind, Göran; Bone, Dianna; Scholte, Arthur J; Kueffer, Fred; Koehler, Jodi; Shahgaldi, Kambiz; Lang, Otto; Ståhlberg, Marcus
2017-05-01
Spinal cord stimulation (SCS) reduces sympathetic activity in animal models of heart failure with reduced ejection fraction (HF) but limited data exist of SCS in patients with HF. The aim of the present study was to test the primary hypothesis that SCS reduces cardiac sympathetic nerve activity in HF patients. Secondary hypotheses were that SCS improves left ventricular function and dimension, exercise capacity, and clinical variables relevant to HF. HF patients with a SCS device previously participating in the DEFEAT-HF trial were included in this crossover study with 6-week intervention periods (SCS-ON and SCS-OFF). SCS (50 Hz, 210-μs pulse duration, aiming at T2-T4 segments) was delivered for 12 hours daily. Indices of myocardial sympathetic neuronal function (heart-to-mediastinum ratio, HMR) and activity (washout rate, WR) were assessed using 123 I-metaiodobenzylguanidine (MIBG) scintigraphy. Echocardiography, exercise testing, and clinical data collection were also performed. We included 13 patients (65.3 ± 8.0 years, nine males) and MIBG scintigraphy data were available in 10. HMR was not different comparing SCS-ON (1.37 ± 0.16) and SCS-OFF (1.41 ± 0.21, P = 0.46). WR was also unchanged comparing SCS-ON (41.5 ± 5.3) and SCS-OFF (39.1 ± 5.8, P = 0.30). Similarly, average New York Heart Association class (2.4 ± 0.5 vs 2.3 ± 0.6, P = 0.34), quality of life score (24 ± 16 vs 24 ± 16, P = 0.94), and left ventricular dimension and function as well as exercise capacity were all unchanged comparing SCS-ON and SCS-OFF. In patients with HF, SCS (12 hours daily, targeting the T2-T4 segments of the spinal cord) does not appear to influence cardiac sympathetic neuronal activity or function as assessed by MIBG scintigraphy. © 2017 Wiley Periodicals, Inc.
Actions of rilmenidine on neurogenic hypertension in BPH/2J genetically hypertensive mice.
Jackson, Kristy L; Palma-Rigo, Kesia; Nguyen-Huu, Thu-Phuc; Davern, Pamela J; Head, Geoffrey A
2014-03-01
BPH/2J hypertensive mice have an exaggerated sympathetic contribution to blood pressure (BP). Premotor sympathetic neurons within the rostroventrolateral medulla (RVLM) are a major source of sympathetic vasomotor tone and major site of action of the centrally acting sympatholytic agent, rilmenidine. The relative cardiovascular effect of rilmenidine in BPH/2J versus normotensive BPN/3J mice was used as an indicator of the involvement of the RVLM in the sympathetic contribution to hypertension in BPH/2J mice. BPH/2J and BPN/3J mice were pre-implanted with telemetry devices to measure BP in conscious unrestrained mice. Rilmenidine was administered acutely (n=7-9/group), orally for 14 days, at a wide range of doses (n=5/group), and also infused intracerebroventricularly for 7 days (n=6/group). Acute intraperitoneal rilmenidine induced greater depressor and bradycardic responses in BPH/2J than BPN/3J mice (Pstrain<0.01). Both responses were reduced by atropine pre-treatment, with the remaining hypotensive effect being small and comparable between strains (Pstrain=1.0). This suggests that vagally induced reductions in cardiac output were responsible for the hypotension. Chronic intracerebroventricularly infused rilmenidine reduced BP from baseline marginally in BPH/2J mice during the dark (active) period (-6.5 ± 2 mmHg; P=0.006). Chronic orally administered rilmenidine (1-12 mg/kg per day) also had minimal effect on 24-h BP in both strains (P>0.16). The sympathetic vasomotor inhibitory effect of rilmenidine is minimal in both strains and similar in hypertensive BPH/2J and BPN/3J mice. Thus, hypertension in BPH/2J mice is not likely mediated by greater neuronal activity in the RVLM, and agents such as rilmenidine would be an ineffective treatment for this form of neurogenic hypertension.
Nordström, Viola; Willershäuser, Monja; Herzer, Silke; Rozman, Jan; von Bohlen Und Halbach, Oliver; Meldner, Sascha; Rothermel, Ulrike; Kaden, Sylvia; Roth, Fabian C; Waldeck, Clemens; Gretz, Norbert; de Angelis, Martin Hrabě; Draguhn, Andreas; Klingenspor, Martin; Gröne, Hermann-Josef; Jennemann, Richard
2013-01-01
Hypothalamic neurons are main regulators of energy homeostasis. Neuronal function essentially depends on plasma membrane-located gangliosides. The present work demonstrates that hypothalamic integration of metabolic signals requires neuronal expression of glucosylceramide synthase (GCS; UDP-glucose:ceramide glucosyltransferase). As a major mechanism of central nervous system (CNS) metabolic control, we demonstrate that GCS-derived gangliosides interacting with leptin receptors (ObR) in the neuronal membrane modulate leptin-stimulated formation of signaling metabolites in hypothalamic neurons. Furthermore, ganglioside-depleted hypothalamic neurons fail to adapt their activity (c-Fos) in response to alterations in peripheral energy signals. Consequently, mice with inducible forebrain neuron-specific deletion of the UDP-glucose:ceramide glucosyltransferase gene (Ugcg) display obesity, hypothermia, and lower sympathetic activity. Recombinant adeno-associated virus (rAAV)-mediated Ugcg delivery to the arcuate nucleus (Arc) significantly ameliorated obesity, specifying gangliosides as seminal components for hypothalamic regulation of body energy homeostasis.
The role of insulin receptor signaling in the brain.
Plum, Leona; Schubert, Markus; Brüning, Jens C
2005-03-01
The insulin receptor (IR) is expressed in various regions of the developing and adult brain, and its functions have become the focus of recent research. Insulin enters the central nervous system (CNS) through the blood-brain barrier by receptor-mediated transport to regulate food intake, sympathetic activity and peripheral insulin action through the inhibition of hepatic gluconeogenesis and reproductive endocrinology. On a molecular level, some of the effects of insulin converge with those of the leptin signaling machinery at the point of activation of phosphatidylinositol 3-kinase (PI3K), resulting in the regulation of ATP-dependent potassium channels. Furthermore, insulin inhibits neuronal apoptosis via activation of protein kinase B in vitro, and it regulates phosphorylation of tau, metabolism of the amyloid precursor protein and clearance of beta-amyloid from the brain in vivo. These findings indicate that neuronal IR signaling has a direct role in the link between energy homeostasis, reproduction and the development of neurodegenerative diseases.
Ives, Angela M.
2017-01-01
ABSTRACT Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect and establish latency in peripheral neurons, from which they can reactivate to cause recurrent disease throughout the life of the host. Stress is associated with the exacerbation of clinical symptoms and the induction of recurrences in humans and animal models. The viruses preferentially replicate and establish latency in different subtypes of sensory neurons, as well as in neurons of the autonomic nervous system that are highly responsive to stress hormones. To determine if stress-related hormones modulate productive HSV-1 and HSV-2 infections within sensory and autonomic neurons, we analyzed viral DNA and the production of viral progeny after treatment of primary adult murine neuronal cultures with the stress hormones epinephrine and corticosterone. Both sensory trigeminal ganglion (TG) and sympathetic superior cervical ganglion (SCG) neurons expressed adrenergic receptors (activated by epinephrine) and the glucocorticoid receptor (activated by corticosterone). Productive HSV infection colocalized with these receptors in SCG but not in TG neurons. In productively infected neuronal cultures, epinephrine treatment significantly increased the levels of HSV-1 DNA replication and production of viral progeny in SCG neurons, but no significant differences were found in TG neurons. In contrast, corticosterone significantly decreased the levels of HSV-2 DNA replication and production of viral progeny in SCG neurons but not in TG neurons. Thus, the stress-related hormones epinephrine and corticosterone selectively modulate acute HSV-1 and HSV-2 infections in autonomic, but not sensory, neurons. IMPORTANCE Stress exacerbates acute disease symptoms resulting from HSV-1 and HSV-2 infections and is associated with the appearance of recurrent skin lesions in millions of people. Although stress hormones are thought to impact HSV-1 and HSV-2 through immune system suppression, sensory and autonomic neurons that become infected by HSV-1 and HSV-2 express stress hormone receptors and are responsive to hormone fluctuations. Our results show that autonomic neurons are more responsive to epinephrine and corticosterone than are sensory neurons, demonstrating that the autonomic nervous system plays a substantial role in HSV pathogenesis. Furthermore, these results suggest that stress responses have the potential to differentially impact HSV-1 and HSV-2 so as to produce divergent outcomes of infection. PMID:28404850
POLYETHYLENEIMINE (PEI)-MEDIATED TRANSFECTION OF SYMPATHETIC NEURONS IN VITRO. (R826248)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Wilkinson, D J; Thompson, J M; Lambert, G W; Jennings, G L; Schwarz, R G; Jefferys, D; Turner, A G; Esler, M D
1998-06-01
The sympathetic nervous system has long been believed to be involved in the pathogenesis of panic disorder, but studies to date, most using peripheral venous catecholamine measurements, have yielded conflicting and equivocal results. We tested sympathetic nervous function in patients with panic disorder by using more sensitive methods. Sympathetic nervous and adrenal medullary function was measured by using direct nerve recording (clinical microneurography) and whole-body and cardiac catecholamine kinetics in 13 patients with panic disorder as defined by the DSM-IV, and 14 healthy control subjects. Measurements were made at rest, during laboratory stress (forced mental arithmetic), and, for 4 patients, during panic attacks occurring spontaneously in the laboratory setting. Muscle sympathetic activity, arterial plasma concentration of norepinephrine, and the total and cardiac norepinephrine spillover rates to plasma were similar in patients and control subjects at rest, as was whole-body epinephrine secretion. Epinephrine spillover from the heart was elevated in patients with panic disorder (P=.01). Responses to laboratory mental stress were almost identical in patient and control groups. During panic attacks, there were marked increases in epinephrine secretion and large increases in the sympathetic activity in muscle in 2 patients but smaller changes in the total norepinephrine spillover to plasma. Whole-body and regional sympathetic nervous activity are not elevated at rest in patients with panic disorder. Epinephrine is released from the heart at rest in patients with panic disorder, possibly due to loading of cardiac neuronal stores by uptake from plasma during surges of epinephrine secretion in panic attacks. Contrary to popular belief, the sympathetic nervous system is not globally activated during panic attacks.
Reflex regulation of airway sympathetic nerves in guinea-pigs
Oh, Eun Joo; Mazzone, Stuart B; Canning, Brendan J; Weinreich, Daniel
2006-01-01
Sympathetic nerves innervate the airways of most species but their reflex regulation has been essentially unstudied. Here we demonstrate sympathetic nerve-mediated reflex relaxation of airway smooth muscle measured in situ in the guinea-pig trachea. Retrograde tracing, immunohistochemistry and electrophysiological analysis identified a population of substance P-containing capsaicin-sensitive spinal afferent neurones in the upper thoracic (T1–T4) dorsal root ganglia (DRG) that innervate the airways and lung. After bilateral vagotomy, atropine pretreatment and precontraction of the trachealis with histamine, nebulized capsaicin (10–60 μm) evoked a 63 ± 7% reversal of the histamine-induced contraction of the trachealis. Either the β-adrenoceptor antagonist propranolol (2 μm, administered directly to the trachea) or bilateral sympathetic nerve denervation of the trachea essentially abolished these reflexes (10 ± 9% and 6 ± 4% relaxations, respectively), suggesting that they were mediated primarily, if not exclusively, by sympathetic adrenergic nerve activation. Cutting the upper thoracic dorsal roots carrying the central processes of airway spinal afferents also markedly blocked the relaxations (9 ± 5% relaxation). Comparable inhibitory effects were observed following intravenous pretreatment with neurokinin receptor antagonists (3 ± 7% relaxations). These reflexes were not accompanied by consistent changes in heart rate or blood pressure. By contrast, stimulating the rostral cut ends of the cervical vagus nerves also evoked a sympathetic adrenergic nerve-mediated relaxation that were accompanied by marked alterations in blood pressure. The results indicate that the capsaicin-induced reflex-mediated relaxation of airway smooth muscle following vagotomy is mediated by sequential activation of tachykinin-containing spinal afferent and sympathetic efferent nerves innervating airways. This sympathetic nerve-mediated response may serve to oppose airway contraction induced by parasympathetic nerve activation in the airways. PMID:16581869
Central efferent pathways for cold-defensive and febrile shivering.
Nakamura, Kazuhiro; Morrison, Shaun F
2011-07-15
Shivering is a remarkable somatomotor thermogenic response that is controlled by brain mechanisms. We recorded EMGs in anaesthetized rats to elucidate the central neural circuitry for shivering and identified several brain regions whose thermoregulatory neurons comprise the efferent pathway driving shivering responses to skin cooling and pyrogenic stimulation. We simultaneously monitored parameters from sympathetic effectors: brown adipose tissue (BAT) temperature for non-shivering thermogenesis and arterial pressure and heart rate for cardiovascular responses. Acute skin cooling consistently increased EMG, BAT temperature and heart rate and these responses were eliminated by inhibition of neurons in the median preoptic nucleus (MnPO) with nanoinjection of muscimol. Stimulation of the MnPO evoked shivering, BAT thermogenesis and tachycardia, which were all reversed by antagonizing GABA(A) receptors in the medial preoptic area (MPO). Inhibition of neurons in the dorsomedial hypothalamus (DMH) or rostral raphe pallidus nucleus (rRPa) with muscimol or activation of 5-HT1A receptors in the rRPa with 8-OH-DPAT eliminated the shivering, BAT thermogenic, tachycardic and pressor responses evoked by skin cooling or by nanoinjection of prostaglandin (PG) E2, a pyrogenic mediator, into the MPO. These data are summarized with a schematic model in which the shivering as well as the sympathetic responses for cold defence and fever are driven by descending excitatory signalling through the DMH and the rRPa, which is under a tonic inhibitory control from a local circuit in the preoptic area. These results provide the interesting notion that, under the demand for increasing levels of heat production, parallel central efferent pathways control the somatic and sympathetic motor systems to drive thermogenesis.
Central efferent pathways for cold-defensive and febrile shivering
Nakamura, Kazuhiro; Morrison, Shaun F
2011-01-01
Abstract Shivering is a remarkable somatomotor thermogenic response that is controlled by brain mechanisms. We recorded EMGs in anaesthetized rats to elucidate the central neural circuitry for shivering and identified several brain regions whose thermoregulatory neurons comprise the efferent pathway driving shivering responses to skin cooling and pyrogenic stimulation. We simultaneously monitored parameters from sympathetic effectors: brown adipose tissue (BAT) temperature for non-shivering thermogenesis and arterial pressure and heart rate for cardiovascular responses. Acute skin cooling consistently increased EMG, BAT temperature and heart rate and these responses were eliminated by inhibition of neurons in the median preoptic nucleus (MnPO) with nanoinjection of muscimol. Stimulation of the MnPO evoked shivering, BAT thermogenesis and tachycardia, which were all reversed by antagonizing GABAA receptors in the medial preoptic area (MPO). Inhibition of neurons in the dorsomedial hypothalamus (DMH) or rostral raphe pallidus nucleus (rRPa) with muscimol or activation of 5-HT1A receptors in the rRPa with 8-OH-DPAT eliminated the shivering, BAT thermogenic, tachycardic and pressor responses evoked by skin cooling or by nanoinjection of prostaglandin (PG) E2, a pyrogenic mediator, into the MPO. These data are summarized with a schematic model in which the shivering as well as the sympathetic responses for cold defence and fever are driven by descending excitatory signalling through the DMH and the rRPa, which is under a tonic inhibitory control from a local circuit in the preoptic area. These results provide the interesting notion that, under the demand for increasing levels of heat production, parallel central efferent pathways control the somatic and sympathetic motor systems to drive thermogenesis. PMID:21610139
Uno, Kenji; Yamada, Tetsuya; Ishigaki, Yasushi; Imai, Junta; Hasegawa, Yutaka; Sawada, Shojiro; Kaneko, Keizo; Ono, Hiraku; Asano, Tomoichiro; Oka, Yoshitomo; Katagiri, Hideki
2015-08-13
Metabolism is coordinated among tissues and organs via neuronal signals. Levels of circulating amino acids (AAs), which are elevated in obesity, activate the intracellular target of rapamycin complex-1 (mTORC1)/S6kinase (S6K) pathway in the liver. Here we demonstrate that hepatic AA/mTORC1/S6K signalling modulates systemic lipid metabolism via a mechanism involving neuronal inter-tissue communication. Hepatic expression of an AA transporter, SNAT2, activates the mTORC1/S6K pathway, and markedly elevates serum triglycerides (TGs), while downregulating adipose lipoprotein lipase (LPL). Hepatic Rheb or active-S6K expression have similar metabolic effects, whereas hepatic expression of dominant-negative-S6K inhibits TG elevation in SNAT2 mice. Denervation, pharmacological deafferentation and β-blocker administration suppress obesity-related hypertriglyceridemia with adipose LPL upregulation, suggesting that signals are transduced between liver and adipose tissue via a neuronal pathway consisting of afferent vagal and efferent sympathetic nerves. Thus, the neuronal mechanism uncovered here serves to coordinate amino acid and lipid levels and contributes to the development of obesity-related hypertriglyceridemia.
Neural control of the kidney: functionally specific renal sympathetic nerve fibers.
DiBona, G F
2000-11-01
The sympathetic nervous system provides differentiated regulation of the functions of various organs. This differentiated regulation occurs via mechanisms that operate at multiple sites within the classic reflex arc: peripherally at the level of afferent input stimuli to various reflex pathways, centrally at the level of interconnections between various central neuron pools, and peripherally at the level of efferent fibers targeted to various effectors within the organ. In the kidney, increased renal sympathetic nerve activity regulates the functions of the intrarenal effectors: the tubules, the blood vessels, and the juxtaglomerular granular cells. This enables a physiologically appropriate coordination between the circulatory, filtration, reabsorptive, excretory, and renin secretory contributions to overall renal function. Anatomically, each of these effectors has a dual pattern of innervation consisting of a specific and selective innervation by unmyelinated slowly conducting C-type renal sympathetic nerve fibers in addition to an innervation that is shared among all the effectors. This arrangement permits the maximum flexibility in the coordination of physiologically appropriate responses of the tubules, the blood vessels, and the juxtaglomerular granular cells to a variety of homeostatic requirements.
Functionally specific renal sympathetic nerve fibers: role in cardiovascular regulation.
DiBona, G F
2001-06-01
The sympathetic nervous system provides differentiated regulation of the functions of various organs. This differentiated regulation occurs through mechanisms that operate at multiple sites within the classic reflex arc: peripherally at the level of afferent input stimuli to various reflex pathways, centrally at the level of interconnections between various central neuron pools, and peripherally at the level of efferent fibers targeted to various effectors within the organ. In the kidney, increased renal sympathetic nerve activity regulates the functions of the intrarenal effectors: the tubules, the blood vessels, and the juxtaglomerular granular cells. This enables a physiologically appropriate coordination between the circulatory, filtration, reabsorptive, excretory, and renin secretory contributions to overall renal function. Anatomically, each of these effectors has a dual pattern of innervation consisting of a specific and selective innervation by unmyelinated slowly conducting C-type renal sympathetic nerve fibers and an innervation that is shared among all the effectors. This arrangement facilitates maximum flexibility in the coordination of the tubules, the blood vessels, and the juxtaglomerular granular cells so as to produce physiologically appropriate responses to a variety of homeostatic requirements.
Peripheral choline acetyltransferase in rat skin demonstrated by immunohistochemistry.
Hanada, Keiji; Kishimoto, Saburo; Bellier, Jean-Pierre; Kimura, Hiroshi
2013-03-01
Conventional choline acetyltransferase immunohistochemistry has been used widely for visualizing central cholinergic neurons and fibers but not often for labeling peripheral structures, probably because of their poor staining. The recent identification of the peripheral type of choline acetyltransferase (pChAT) has enabled the clear immunohistochemical detection of many known peripheral cholinergic elements. Here, we report the presence of pChAT-immunoreactive nerve fibers in rat skin. Intensely stained nerve fibers were distributed in association with eccrine sweat glands, blood vessels, hair follicles and portions just beneath the epidermis. These results suggest that pChAT-positive nerves participate in the sympathetic cholinergic innervation of eccrine sweat glands. Moreover, pChAT also appears to play a role in cutaneous sensory nerve endings. These findings are supported by the presence of many pChAT-positive neuronal cells in the sympathetic ganglion and dorsal root ganglion. Thus, pChAT immunohistochemistry should provide a novel and unique tool for studying cholinergic nerves in the skin.
Immunization with neuronal nicotinic acetylcholine receptor induces neurological autoimmune disease
Lennon, Vanda A.; Ermilov, Leonid G.; Szurszewski, Joseph H.; Vernino, Steven
2003-01-01
Neuronal nicotinic AChRs (nAChRs) are implicated in the pathogenesis of diverse neurological disorders and in the regulation of small-cell lung carcinoma growth. Twelve subunits have been identified in vertebrates, and mutations of one are recognized in a rare form of human epilepsy. Mice with genetically manipulated neuronal nAChR subunits exhibit behavioral or autonomic phenotypes. Here, we report the first model of an acquired neuronal nAChR disorder and evidence for its pertinence to paraneoplastic neurological autoimmunity. Rabbits immunized once with recombinant α3 subunit (residues 1–205) develop profound gastrointestinal hypomotility, dilated pupils with impaired light response, and grossly distended bladders. As in patients with idiopathic and paraneoplastic autoimmune autonomic neuropathy, the severity parallels serum levels of ganglionic nAChR autoantibody. Failure of neurotransmission through abdominal sympathetic ganglia, with retention of neuronal viability, confirms that the disorder is a postsynaptic channelopathy. In addition, we found ganglionic nAChR protein in small-cell carcinoma lines, identifying this cancer as a potential initiator of ganglionic nAChR autoimmunity. The data support our hypothesis that immune responses driven by distinct neuronal nAChR subtypes expressed in small-cell carcinomas account for several lung cancer–related paraneoplastic disorders affecting cholinergic systems, including autoimmune autonomic neuropathy, seizures, dementia, and movement disorders. PMID:12639997
Regulation of lipid metabolism by energy availability: a role for the central nervous system.
Nogueiras, R; López, M; Diéguez, C
2010-03-01
The central nervous system (CNS) is crucial in the regulation of energy homeostasis. Many neuroanatomical studies have shown that the white adipose tissue (WAT) is innervated by the sympathetic nervous system, which plays a critical role in adipocyte lipid metabolism. Therefore, there are currently numerous reports indicating that signals from the CNS control the amount of fat by modulating the storage or oxidation of fatty acids. Importantly, some CNS pathways regulate adipocyte metabolism independently of food intake, suggesting that some signals possess alternative mechanisms to regulate energy homeostasis. In this review, we mainly focus on how neuronal circuits within the hypothalamus, such as leptin- ghrelin-and resistin-responsive neurons, as well as melanocortins, neuropeptide Y, and the cannabinoid system exert their actions on lipid metabolism in peripheral tissues such as WAT, liver or muscle. Dissecting the complicated interactions between peripheral signals and neuronal circuits regulating lipid metabolism might open new avenues for the development of new therapies preventing and treating obesity and its associated cardiometabolic sequelae.
Developmental expression of VGF mRNA in the prenatal and postnatal rat.
Snyder, S E; Pintar, J E; Salton, S R
1998-04-27
VGF is a developmentally regulated, secretory peptide precursor that is expressed by neurons and neuroendocrine cells and that has its transcription and secretion induced rapidly by neurotrophins and by depolarization. To gain insight into the possible functions and regulation of VGF in vivo, we have characterized the distribution of VGF mRNA in the developing rat nervous system. VGF expression was first detectable at embryonic day 11.5 in the primordia of cranial, sympathetic, and dorsal root ganglia, and its distribution expanded throughout development to include significant expression throughout the brain, spinal cord, and retina of the adult rat. The earliest expression of VGF, therefore, appeared in the peripheral nervous system as developing neurons settled in their designated ganglia. In many regions of the brain, VGF mRNA levels were found to be highest during periods when axonal outgrowth and synaptogenesis predominate. Areas of the central nervous system that contain predominantly dividing cells never displayed any VGF mRNA expression, nor did the vast majority of nonneural tissues.
Assessment of cardiac sympathetic neuronal function using PET imaging.
Bengel, Frank M; Schwaiger, Markus
2004-01-01
The autonomic nervous system plays a key role for regulation of cardiac performance, and the importance of alterations of innervation in the pathophysiology of various heart diseases has been increasingly emphasized. Nuclear imaging techniques have been established that allow for global and regional investigation of the myocardial nervous system. The guanethidine analog iodine 123 metaiodobenzylguanidine (MIBG) has been introduced for scintigraphic mapping of presynaptic sympathetic innervation and is available today for imaging on a broad clinical basis. Not much later than MIBG, positron emission tomography (PET) has also been established for characterizing the cardiac autonomic nervous system. Although PET is methodologically demanding and less widely available, it provides substantial advantages. High spatial and temporal resolution along with routinely available attenuation correction allows for detailed definition of tracer kinetics and makes noninvasive absolute quantification a reality. Furthermore, a series of different radiolabeled catecholamines, catecholamine analogs, and receptor ligands are available. Those are often more physiologic than MIBG and well understood with regard to their tracer physiologic properties. PET imaging of sympathetic neuronal function has been successfully applied to gain mechanistic insights into myocardial biology and pathology. Available tracers allow dissection of processes of presynaptic and postsynaptic innervation contributing to cardiovascular disease. This review summarizes characteristics of currently available PET tracers for cardiac neuroimaging along with the major findings derived from their application in health and disease.
Nguyen, Ngoc Ly T.; Barr, Candace L.; Ryu, Vitaly; Cao, Qiang; Bartness, Timothy J.
2017-01-01
White adipose tissue (WAT) and brown adipose tissue (BAT) are innervated and regulated by the sympathetic nervous system (SNS). It is not clear, however, whether there are shared or separate central SNS outflows to WAT and BAT that regulate their function. We injected two isogenic strains of pseudorabies virus, a retrograde transneuronal viral tract tracer, with unique fluorescent reporters into interscapular BAT (IBAT) and inguinal WAT (IWAT) of the same Siberian hamsters to define SNS pathways to both. To test the functional importance of SNS coordinated control of BAT and WAT, we exposed hamsters with denervated SNS nerves to IBAT to 4°C for 16–24 h and measured core and fat temperatures and norepinephrine turnover (NETO) and uncoupling protein 1 (UCP1) expression in fat tissues. Overall, there were more SNS neurons innervating IBAT than IWAT across the neuroaxis. However, there was a greater percentage of singly labeled IWAT neurons in midbrain reticular nuclei than singly labeled IBAT neurons. The hindbrain had ~30–40% of doubly labeled neurons while the forebrain had ~25% suggesting shared SNS circuitry to BAT and WAT across the brain. The raphe nucleus, a key region in thermoregulation, had ~40% doubly labeled neurons. Hamsters with IBAT SNS denervation maintained core body temperature during acute cold challenge and had increased beige adipocyte formation in IWAT. They also had increased IWAT NETO, temperature, and UCP1 expression compared with intact hamsters. These data provide strong neuroanatomical and functional evidence of WAT and BAT SNS cross talk for thermoregulation and beige adipocyte formation. PMID:27881398
Herring, Neil; Cranley, James; Lokale, Michael N.; Li, Dan; Shanks, Julia; Alston, Eric N.; Girard, Beatrice M.; Carter, Emma; Parsons, Rodney L.; Habecker, Beth A.; Paterson, David J.
2012-01-01
The autonomic phenotype of congestive cardiac failure is characterised by high sympathetic drive and impaired vagal tone, which are independent predictors of mortality. We hypothesize that impaired bradycardia to peripheral vagal stimulation following high-level sympathetic drive is due to sympatho-vagal crosstalk by the adrenergic co-transmitters galanin and neuropeptide-Y (NPY). Moreover we hypothesize that galanin acts similarly to NPY by reducing vagal acetylcholine release via a receptor mediated, protein kinase-dependent pathway. Prolonged right stellate ganglion stimulation (10 Hz, 2 min, in the presence of 10 μM metoprolol) in an isolated guinea pig atrial preparation with dual autonomic innervation leads to a significant (p < 0.05) reduction in the magnitude of vagal bradycardia (5 Hz) maintained over the subsequent 20 min (n = 6). Immunohistochemistry demonstrated the presence of galanin in a small number of tyrosine hydroxylase positive neurons from freshly dissected stellate ganglion tissue sections. Following 3 days of tissue culture however, most stellate neurons expressed galanin. Stellate stimulation caused the release of low levels of galanin and significantly higher levels of NPY into the surrounding perfusate (n = 6, using ELISA). The reduction in vagal bradycardia post sympathetic stimulation was partially reversed by the galanin receptor antagonist M40 after 10 min (1 μM, n = 5), and completely reversed with the NPY Y2 receptor antagonist BIIE 0246 at all time points (1 μM, n = 6). Exogenous galanin (n = 6, 50–500 nM) also reduced the heart rate response to vagal stimulation but had no effect on the response to carbamylcholine that produced similar degrees of bradycardia (n = 6). Galanin (500 nM) also significantly attenuated the release of 3H-acetylcholine from isolated atria during field stimulation (5 Hz, n = 5). The effect of galanin on vagal bradycardia could be abolished by the galanin receptor antagonist M40 (n = 5). Importantly the GalR1 receptor was immunofluorescently co-localised with choline acetyl-transferase containing neurons at the sinoatrial node. The protein kinase C inhibitor calphostin (100 nM, n = 6) abolished the effect of galanin on vagal bradycardia whilst the protein kinase A inhibitor H89 (500 nM, n = 6) had no effect. These results demonstrate that prolonged sympathetic activation releases the slowly diffusing adrenergic co-transmitter galanin in addition to NPY, and that this contributes to the attenuation in vagal bradycardia via a reduction in acetylcholine release. This effect is mediated by GalR1 receptors on vagal neurons coupled to protein kinase C dependent signalling pathways. The role of galanin may become more important following an acute injury response where galanin expression is increased. PMID:22172449
Mariga, Abigail; Mitre, Mariela; Chao, Moses V.
2017-01-01
Growth factor withdrawal has been studied across different species and has been shown to have dramatic consequences on cell survival. In the nervous system, withdrawal of nerve growth factor (NGF) from sympathetic and sensory neurons results in substantial neuronal cell death, signifying a requirement for NGF for the survival of neurons in the peripheral nervous system (PNS). In contrast to the PNS, withdrawal of central nervous system (CNS) enriched brain-derived neurotrophic factor (BDNF) has little effect on cell survival but is indispensible for synaptic plasticity. Given that most early events in neuropsychiatric disorders are marked by a loss of synapses, lack of BDNF may thus be an important part of a cascade of events that leads to neuronal degeneration. Here we review reports on the effects of BDNF withdrawal on CNS neurons and discuss the relevance of the loss in disease. PMID:27015693
Nolan, Aoife M; Collins, Louise M; Wyatt, Sean L; Gutierrez, Humberto; O'Keeffe, Gerard W
2014-01-01
During development, the growth of neural processes is regulated by an array of cellular and molecular mechanisms which influence growth rate, direction and branching. Recently, many members of the TNF superfamily have been shown to be key regulators of neurite growth during development. The founder member of this family, TNFα can both promote and inhibit neurite growth depending on the cellular context. Specifically, transmembrane TNFα promotes neurite growth, while soluble TNFα inhibits it. While the growth promoting effects of TNFα are restricted to a defined developmental window of early postnatal development, whether the growth inhibitory effects of soluble TNFα occur throughout development is unknown. In this study we used the extensively studied, well characterised neurons of the superior cervical ganglion to show that the growth inhibitory effects of soluble TNFα are restricted to a specific period of late embryonic and early postnatal development. Furthermore, we show that this growth inhibitory effect of soluble TNFα requires NF-κB signalling at all developmental stages at which soluble TNFα inhibits neurite growth. These findings raise the possibility that increases in the amount of soluble TNFα in vivo, for example as a result of maternal inflammation, could negatively affect neurite growth in developing neurons at specific stages of development. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Julé, Y
1975-05-01
1. Using extracellular electrodes placed on the serosa, we recorded the modifications of the electrical activity of the colonic muslce fibers caused by the stimulation of vagal and splanchnic nerve fibers. 2. Vagal stimulation produces two types of junction potentials: excitatory junction potentials (EJPs) and inhibitory junction potentials (IJPs). The IJPs are elicited by stimulation of vagal fibers which innervate intramural non-adrenergic inhibitory neurons. 3. The conduction velocity of the nerve impulse along the vagal pre-ganglionic fibers is 1.01 m/sec for excitatory fibers and 0.5. m/sec for inhibitory fibers. 4. Splanchnic fiber stimulation causes EJP disappearance, blocking transmission between preganglionic fibers and intramural excitatory neurons, and a decrease in IJP amplitude that most likely indicates a previous hyperpolarization of the smooth muscle. 5. IJP persistence during splanchnic stimulation proves that sympathetic inhibition does not modify the transmission of the vagal influx onto the non-adrenergic inhibitory neurons of the intramural plexuses. 6. Through a comparative study of proximal and distal colonic innervation, we are able to show that there is a similar organization of both regions, that is a double inhibitory innervation: an adrenergic one of a sympathetic origin, and a non adrenergic one of a parasympathetic origin.
A leptin-regulated circuit controls glucose mobilization during noxious stimuli.
Flak, Jonathan N; Arble, Deanna; Pan, Warren; Patterson, Christa; Lanigan, Thomas; Goforth, Paulette B; Sacksner, Jamie; Joosten, Maja; Morgan, Donald A; Allison, Margaret B; Hayes, John; Feldman, Eva; Seeley, Randy J; Olson, David P; Rahmouni, Kamal; Myers, Martin G
2017-08-01
Adipocytes secrete the hormone leptin to signal the sufficiency of energy stores. Reductions in circulating leptin concentrations reflect a negative energy balance, which augments sympathetic nervous system (SNS) activation in response to metabolically demanding emergencies. This process ensures adequate glucose mobilization despite low energy stores. We report that leptin receptor-expressing neurons (LepRb neurons) in the periaqueductal gray (PAG), the largest population of LepRb neurons in the brain stem, mediate this process. Application of noxious stimuli, which often signal the need to mobilize glucose to support an appropriate response, activated PAG LepRb neurons, which project to and activate parabrachial nucleus (PBN) neurons that control SNS activation and glucose mobilization. Furthermore, activating PAG LepRb neurons increased SNS activity and blood glucose concentrations, while ablating LepRb in PAG neurons augmented glucose mobilization in response to noxious stimuli. Thus, decreased leptin action on PAG LepRb neurons augments the autonomic response to noxious stimuli, ensuring sufficient glucose mobilization during periods of acute demand in the face of diminished energy stores.
Kimura, Ikuo; Inoue, Daisuke; Maeda, Takeshi; Hara, Takafumi; Ichimura, Atsuhiko; Miyauchi, Satoshi; Kobayashi, Makio; Hirasawa, Akira; Tsujimoto, Gozoh
2011-05-10
The maintenance of energy homeostasis is essential for life, and its dysregulation leads to a variety of metabolic disorders. Under a fed condition, mammals use glucose as the main metabolic fuel, and short-chain fatty acids (SCFAs) produced by the colonic bacterial fermentation of dietary fiber also contribute a significant proportion of daily energy requirement. Under ketogenic conditions such as starvation and diabetes, ketone bodies produced in the liver from fatty acids are used as the main energy sources. To balance energy intake, dietary excess and starvation trigger an increase or a decrease in energy expenditure, respectively, by regulating the activity of the sympathetic nervous system (SNS). The regulation of metabolic homeostasis by glucose is well recognized; however, the roles of SCFAs and ketone bodies in maintaining energy balance remain unclear. Here, we show that SCFAs and ketone bodies directly regulate SNS activity via GPR41, a Gi/o protein-coupled receptor for SCFAs, at the level of the sympathetic ganglion. GPR41 was most abundantly expressed in sympathetic ganglia in mouse and humans. SCFA propionate promoted sympathetic outflow via GPR41. On the other hand, a ketone body, β-hydroxybutyrate, produced during starvation or diabetes, suppressed SNS activity by antagonizing GPR41. Pharmacological and siRNA experiments indicated that GPR41-mediated activation of sympathetic neurons involves Gβγ-PLCβ-MAPK signaling. Sympathetic regulation by SCFAs and ketone bodies correlated well with their respective effects on energy consumption. These findings establish that SCFAs and ketone bodies directly regulate GPR41-mediated SNS activity and thereby control body energy expenditure in maintaining metabolic homeostasis.
Morris, Judy L; Gibbins, Ian L; Jobling, Phillip
2005-01-01
Vasodilatation produced by stimulation of preganglionic neurones in lumbar and sacral pathways to pelvic ganglia was studied using an in vitro preparation of guinea-pig uterine artery and associated nerves in a partitioned bath allowing selective drug application to the ganglia or artery. Arterial diameter was monitored using real time video imaging. Vasodilatations produced by hypogastric nerve stimulation (HN; 300 pulses, 10 Hz) were significantly larger and longer in duration than with pelvic nerve stimulation (N = 18). Stimulation of ipsilateral lumbar splanchnic nerves or ipsilateral third lumbar ventral roots also produced prolonged vasodilatations. Blockade of ganglionic nicotinic receptors (0.1–1 mm hexamethonium) delayed the onset and sometimes reduced the peak amplitude of dilatations, but slow dilatations persisted in 16 of 18 preparations. These dilatations were not reduced further by 3 μm capsaicin applied to the artery and ganglia, or ganglionic application of 1 μm hyoscine, 30–100 μm suramin or 10 μm CNQX. Dilatations were reduced slightly by ganglionic application of NK1 and NK3 receptor antagonists (SR140333, SR142801; 1 μm), but were reduced significantly by bathing the ganglia in 0.5 mm Ca2+ and 10 mm Mg2+. Intracellular recordings of paracervical ganglion neurones revealed fast excitatory postsynaptic potentials (EPSPs) in all neurones on HN stimulation (300 pulses, 10 Hz), and slow EPSPs (3–12 mV amplitude) in 25 of 37 neurones. Post-stimulus action potential discharge associated with slow EPSPs occurred in 16 of 37 neurones (firing rate 9.4 ± 1.5 Hz). Hexamethonium (0.1–1 mm) abolished fast EPSPs. Hexamethonium and hyoscine (1 μm) did not reduce slow EPSPs and associated post-stimulus firing in identified vasodilator neurones (with VIP immunoreactivity) or non-vasodilator paracervical neurones. These results demonstrate a predominantly sympathetic origin of autonomic pathways producing pelvic vasodilatation in females. Non-cholinergic mediators of slow transmission in pelvic ganglia produce prolonged firing of postganglionic neurones and long-lasting dilatations of the uterine artery. This mechanism would facilitate maintenance of pelvic vasodilatation on stimulation of preganglionic neurones during sexual activity. PMID:15802294
Balzamo, E; Joanny, P; Steinberg, J G; Oliver, C; Jammes, Y
1996-01-01
Substance P (SP), a neurotransmitter localized to primary sensory neurons, is found in the vagus nerve, nodose ganglion, sympathetic chain, and phrenic nerve in various animal species. However, the changes in endogeneous SP concentration under various circumstances that involve the participation of cardiorespiratory afferent nerves are still unexplored. In the present study, attention was focused on the variations in SP content measured by radioimmunoassay (RIA) in respiratory afferent nerves (vagus nerve, cervical sympathetic chain, phrenic nerve) and respiratory muscles (diaphragm, intercostal muscles) during positive inspiratory pressure (PIP) breathing alone or PIP with an expiratory threshold load (ETL) in rabbits. SP was found in all sampled structures in spontaneously breathing control animals, prevailing in the nodose ganglion. Left-versus right-sided differences were noticed in nerves. As compared with that in control animals, the SP concentration was markedly higher in vagal and sympathetic nervous structures during PIP or PIP with ETL, and also in the phrenic nerve during ETL breathing. The SP content did not vary in respiratory muscles. These observations suggest that two very common circumstances of mechanical ventilation are associated with an increased SP concentration in nervous structures participating in the control of breathing.
VGLUT1 and VGLUT2 innervation in autonomic regions of intact and transected rat spinal cord.
Llewellyn-Smith, Ida J; Martin, Carolyn L; Fenwick, Natalie M; Dicarlo, Stephen E; Lujan, Heidi L; Schreihofer, Ann M
2007-08-20
Fast excitatory neurotransmission to sympathetic and parasympathetic preganglionic neurons (SPN and PPN) is glutamatergic. To characterize this innervation in spinal autonomic regions, we localized immunoreactivity for vesicular glutamate transporters (VGLUTs) 1 and 2 in intact cords and after upper thoracic complete transections. Preganglionic neurons were retrogradely labeled by intraperitoneal Fluoro-Gold or with cholera toxin B (CTB) from superior cervical, celiac, or major pelvic ganglia or adrenal medulla. Glutamatergic somata were localized with in situ hybridization for VGLUT mRNA. In intact cords, all autonomic areas contained abundant VGLUT2-immunoreactive axons and synapses. CTB-immunoreactive SPN and PPN received many close appositions from VGLUT2-immunoreactive axons. VGLUT2-immunoreactive synapses occurred on Fluoro-Gold-labeled SPN. Somata with VGLUT2 mRNA occurred throughout the spinal gray matter. VGLUT2 immunoreactivity was not noticeably affected caudal to a transection. In contrast, in intact cords, VGLUT1-immunoreactive axons were sparse in the intermediolateral cell column (IML) and lumbosacral parasympathetic nucleus but moderately dense above the central canal. VGLUT1-immunoreactive close appositions were rare on SPN in the IML and the central autonomic area and on PPN. Transection reduced the density of VGLUT1-immunoreactive axons in sympathetic subnuclei but increased their density in the parasympathetic nucleus. Neuronal cell bodies with VGLUT1 mRNA occurred only in Clarke's column. These data indicate that SPN and PPN are densely innervated by VGLUT2-immunoreactive axons, some of which arise from spinal neurons. In contrast, the VGLUT1-immunoreactive innervation of spinal preganglionic neurons is sparse, and some may arise from supraspinal sources. Increased VGLUT1 immunoreactivity after transection may correlate with increased glutamatergic transmission to PPN. (c) 2007 Wiley-Liss, Inc.
L-Dihydroxyphenylserine (L-DOPS): a norepinephrine prodrug.
Goldstein, David S
2006-01-01
L-threo-3,4-dihydroxyphenylserine (L-DOPS, droxydopa) is a synthetic catecholamino acid. When taken orally, L-DOPS is converted to the sympathetic neurotransmitter, norepinephrine (NE), via decarboxylation catalyzed by L-aromatic-amino-acid decarboxylase (LAAAD). Plasma L-DOPS levels peak at about 3 h, followed by a monoexponential decline with a half-time of 2 to 3 h. Plasma levels of NE and of its main neuronal metabolite, dihydroxyphenylglycol (DHPG) peak approximately concurrently but at much lower concentrations. The relatively long half-time for disappearance of L-DOPS from plasma, compared to that of NE, explains their very different attained plasma concentrations. In patients with neurogenic orthostatic hypotension, L-DOPS increases blood pressure and ameliorates orthostatic intolerance. Inhibition of LAAAD, such as by treatment with carbidopa, which does not penetrate the blood-brain barrier, prevents the blood pressure effects of the drug, indicating that L-DOPS increases blood pressure by augmenting NE production outside the brain. Patients with pure autonomic failure (which usually entails loss of sympathetic noradrenergic nerves), and patients with multiple system atrophy (in which noradrenergic innervation remains intact) have similar plasma NE responses to L-DOPS. This suggests mainly non-neuronal production of NE from L-DOPS. L-DOPS is very effective in treatment of deficiency of dopamine-beta-hydroxylase (DBH), the enzyme required for conversion of dopamine to NE in sympathetic nerves. L-DOPS holds promise for treating other much more common conditions involving decreased DBH activity or NE deficiency, such as a variety of syndromes associated with neurogenic orthostatic hypotension.
A BAT-Centric Approach to the Treatment of Diabetes: Turn on the Brain.
Hankir, Mohammed K; Cowley, Michael A; Fenske, Wiebke K
2016-07-12
The marked (18)F-flurodeoxyglucose uptake by brown adipose tissue (BAT) enabled its identification in human positron emission tomography imaging studies. In this Perspective, we discuss how glucose extraction by BAT and beige adipose tissue (BeAT) sufficiently impacts on glycemic control. We then present a unique overview of the central circuits modulated by gluco-regulatory hormones, temperature, and glucose itself, which converge on sympathetic preganglionic neurons and whose activation syphon circulating glucose into BAT/BeAT. Targeted stimulation of the sympathetic nervous system at specific nodes to selectively recruit BAT/BeAT may represent a safe and effective means of treating diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.
Chen, Jun-An; Wichterle, Hynek
2012-01-01
Diversification of mammalian spinal motor neurons into hundreds of subtypes is critical for the maintenance of body posture and coordination of complex movements. Motor neuron differentiation is controlled by extrinsic signals that regulate intrinsic genetic programs specifying and consolidating motor neuron subtype identity. While transcription factors have been recognized as principal regulators of the intrinsic program, the role of posttranscriptional regulations has not been systematically tested. MicroRNAs produced by Dicer mediated cleavage of RNA hairpins contribute to gene regulation by posttranscriptional silencing. Here we used Olig2-cre conditional deletion of Dicer gene in motor neuron progenitors to examine effects of miRNA biogenesis disruption on postmitotic spinal motor neurons. We report that despite the initial increase in the number of motor neuron progenitors, disruption of Dicer function results in a loss of many limb- and sympathetic ganglia-innervating spinal motor neurons. Furthermore, it leads to defects in motor pool identity specification. Thus, our results indicate that miRNAs are an integral part of the genetic program controlling motor neuron survival and acquisition of subtype specific properties. PMID:22629237
The Central Nervous System and Bone Metabolism: An Evolving Story.
Dimitri, Paul; Rosen, Cliff
2017-05-01
Our understanding of the control of skeletal metabolism has undergone a dynamic shift in the last two decades, primarily driven by our understanding of energy metabolism. Evidence demonstrating that leptin not only influences bone cells directly, but that it also plays a pivotal role in controlling bone mass centrally, opened up an investigative process that has changed the way in which skeletal metabolism is now perceived. Other central regulators of bone metabolism have since been identified including neuropeptide Y (NPY), serotonin, endocannabinoids, cocaine- and amphetamine-regulated transcript (CART), adiponectin, melatonin and neuromedin U, controlling osteoblast and osteoclast differentiation, proliferation and function. The sympathetic nervous system was originally identified as the predominant efferent pathway mediating central signalling to control skeleton metabolism, in part regulated through circadian genes. More recent evidence points to a role of the parasympathetic nervous system in the control of skeletal metabolism either through muscarinic influence of sympathetic nerves in the brain or directly via nicotinic receptors on osteoclasts, thus providing evidence for broader autonomic skeletal regulation. Sensory innervation of bone has also received focus again widening our understanding of the complex neuronal regulation of bone mass. Whilst scientific advance in this field of bone metabolism has been rapid, progress is still required to understand how these model systems work in relation to the multiple confounders influencing skeletal metabolism, and the relative balance in these neuronal systems required for skeletal growth and development in childhood and maintaining skeletal integrity in adulthood.
Role of adrenal hormones in the synthesis of noradrenaline in cardiac sympathetic neurones
Bhagat, B.
1969-01-01
1. Adrenalectomy or adrenal demedullation affected neither the levels of endogenous catecholamines in the rat heart nor the accumulation of 3H-noradrenaline 1 hr after its intravenous administration. 2. Twenty-four hours after intravenous administration of labelled amine, however, its retention was markedly reduced in the heart of adrenalectomized or demedullated rats. Ganglionic blockade prevented this reduction. 3. Rate calculations from the decline of catecholamine levels after blockade of synthesis with α-methyl-tyrosine showed that cardiac synthesis of noradrenaline increased about four-fold after demedullation and about three-fold after adrenalectomy. This increase in synthesis may compensate for the loss of circulating catecholamines. 4. There was no change in catechol-o-methyl-transferase activity, but monoamine oxidase activity was increased in the homogenates of the heart of adrenalectomized and demedullated rats. The increase in the cardiac monoamine oxidase activity was markedly greater in the adrenalectomized rats than in the demedullated rats. 5. It is suggested that adrenal cortex insufficiency may modulate the rate of synthesis of noradrenaline and monoamine oxidase activity in cardiac sympathetic neurones. PMID:5360339
Calbindin-D28k immunoreactivity in the mice thoracic spinal cord after space flight
NASA Astrophysics Data System (ADS)
Porseva, Valentina V.; Shilkin, Valentin V.; Krasnov, Igor B.; Masliukov, Petr M.
2015-10-01
The aim of the work was to analyse changes in the location and morphological characteristics of calbindin (CB)-immunoreactive (IR) neurons of the thoracic spinal cord of C57BL/6N male mice after completion of a 30-day space flight on board the BION-M1 biosatellite (Russia, 2013). Space flight induced multidirectional changes of the number and morphological parameters of CB-positive neurons. The number of IR neurons increased in laminae I (from 10 to 17 neurons per section), II (from 42 to 67 cells per section) and IX (from two neurons per segment to two neurons per section), but CB disappeared in neurons of lamina VIII. Weightlessness did not affect the number of CB-IR neurons in laminae III-V and VII, including preganglionic sympathetic neurons. The cross-sectional area of CB-IR neurons decreased in lamina II and VII (group of partition cells) and increased in laminae III-V and IX. After a space flight, few very large neurons with long dendrites appeared in lamina IV. The results obtained give evidence about substantial changes in the calcium buffer system and imbalance of different groups of CB-IR neurons due to reduction of afferent information under microgravity.
Orexin modulates behavioral fear expression through the locus coeruleus.
Soya, Shingo; Takahashi, Tohru M; McHugh, Thomas J; Maejima, Takashi; Herlitze, Stefan; Abe, Manabu; Sakimura, Kenji; Sakurai, Takeshi
2017-11-20
Emotionally salient information activates orexin neurons in the lateral hypothalamus, leading to increase in sympathetic outflow and vigilance level. How this circuit alters animals' behavior remains unknown. Here we report that noradrenergic neurons in the locus coeruleus (NA LC neurons) projecting to the lateral amygdala (LA) receive synaptic input from orexin neurons. Pharmacogenetic/optogenetic silencing of this circuit as well as acute blockade of the orexin receptor-1 (OX1R) decreases conditioned fear responses. In contrast, optogenetic stimulation of this circuit potentiates freezing behavior against a similar but distinct context or cue. Increase of orexinergic tone by fasting also potentiates freezing behavior and LA activity, which are blocked by pharmacological blockade of OX1R in the LC. These findings demonstrate the circuit involving orexin, NA LC and LA neurons mediates fear-related behavior and suggests inappropriate excitation of this pathway may cause fear generalization sometimes seen in psychiatric disorders, such as PTSD.
Logan, C; Wingate, R J; McKay, I J; Lumsden, A
1998-07-15
Recent evidence suggests that in vertebrates the formation of distinct neuronal cell types is controlled by specific families of homeodomain transcription factors. Furthermore, the expression domains of a number of these genes correlates with functionally integrated neuronal populations. We have isolated two members of the divergent T-cell leukemia translocation (HOX11/Tlx) homeobox gene family from chick, Tlx-1 and Tlx-3, and show that they are expressed in differentiating neurons of both the peripheral and central nervous systems. In the peripheral nervous system, Tlx-1 and Tlx-3 are expressed in overlapping domains within the placodally derived components of a number of cranial sensory ganglia. Tlx-3, unlike Tlx-1, is also expressed in neural crest-derived dorsal root and sympathetic ganglia. In the CNS, both genes are expressed in longitudinal columns of neurons at specific dorsoventral levels of the hindbrain. Each column has distinct anterior and/or posterior limits that respect inter-rhombomeric boundaries. Tlx-3 is also expressed in D2 and D3 neurons of the spinal cord. Tlx-1 and Tlx-3 expression patterns within the peripheral and central nervous systems suggest that Tlx proteins may be involved not only in the differentiation and/or survival of specific neuronal populations but also in the establishment of neuronal circuitry. Furthermore, by analogy with the LIM genes, Tlx family members potentially define sensory columns early within the developing hindbrain in a combinatorial manner.
Sympathetic α₃β₂-nAChRs mediate cerebral neurogenic nitrergic vasodilation in the swine.
Lee, Reggie Hui-Chao; Liu, Yi-Qing; Chen, Po-Yi; Liu, Chin-Hung; Chen, Mei-Fang; Lin, Hung-Wen; Kuo, Jon-Son; Premkumar, Louis S; Lee, Tony Jer-Fu
2011-08-01
The α(7)-nicotinic ACh receptor (α(7)-nAChR) on sympathetic neurons innervating basilar arteries of pigs crossed bred between Landrace and Yorkshire (LY) is known to mediate nicotine-induced, β-amyloid (Aβ)-sensitive nitrergic neurogenic vasodilation. Preliminary studies, however, demonstrated that nicotine-induced cerebral vasodilation in pigs crossbred among Landrace, Yorkshire, and Duroc (LYD) was insensitive to Aβ and α-bungarotoxin (α-BGTX). We investigated nAChR subtype on sympathetic neurons innervating LYD basilar arteries. Nicotine-induced relaxation of porcine isolated basilar arteries was examined by tissue bath myography, inward currents on nAChR-expressing oocytes by two-electrode voltage recording, and mRNA and protein expression in the superior cervical ganglion (SCG) and middle cervical ganglion (MCG) by reverse transcription PCR and Western blotting. Nicotine-induced basilar arterial relaxation was not affected by Aβ, α-BGTX, and α-conotoxin IMI (α(7)-nAChR antagonists), or α-conotoxin AuIB (α(3)β(4)-nAChR antagonist) but was inhibited by tropinone and tropane (α(3)-containing nAChR antagonists) and α-conotoxin MII (selective α(3)β(2)-nAChR antagonist). Nicotine-induced inward currents in α(3)β(2)-nAChR-expressing oocytes were inhibited by α-conotoxin MII but not by α-BGTX, Aβ, or α-conotoxin AuIB. mRNAs of α(3)-, α(7)-, β(2)-, and β(4)-subunits were expressed in both SCGs and MCGs with significantly higher mRNAs of α(3)-, β(2)-, and β(4)-subunits than that of α(7)-subunit. The Aβ-insensitive sympathetic α(3)β(2)-nAChR mediates nicotine-induced cerebral nitrergic neurogenic vasodilation in LYD pigs. The different finding from Aβ-sensitive α(7)-nAChR in basilar arteries of LY pigs may offer a partial explanation for different sensitivities of individuals to Aβ in causing diminished cerebral nitrergic vasodilation in diseases involving Aβ.
Hervonen, H; Eränkö, O
1975-01-01
Lumbar sympathetic ganglia of 12-day-old chick embryos were cultured in organ cultures for 14 days with 1, 10 or 100 mg/l of hydrocortisone or without it. Catecholamines were demonstrated by the formaldehyde-induced fluorescence method. For electron microscopy, the cultures were fixed with glutarialdehyde and osmium tetroxide. Two types of cells with catecholamine fluoresecence were observed in the control cultures: (1) weakly fluorescent sympathetic neurons and sympathicoblasts with long nerve fibres, which were the most common cell type in the explant, and (2) brightly fluorescent cells with or without fluorescent processes, which were less common and were scattered in the explant. Hydrocortisone caused a great increase in the number of the brightly fluorescent cells. With 10 mg/l of hydrocortisone the increase was about ten-fold as compared with the control cultures. There was no change in the morphology of the cells, nor could any change be observed in the fluorescence intensity by eye. Electron microscopically the mature neurons were the most common cell type on the surface of the culture, while more immature sympathicoblasts were seen in the deeper layers. Cells were also found which contained large numbers of catecholamine-strong granular vesicles 105-275 nm in diameter. These cells were infrequent. They had round vesicular nuclei and resembled also in other respects sympathicoblasts or young nerve cells. One such cell was found in mitotic division by electron microscopy. Hydrocortisone caused a marked increase in the number of these granule-containing cells and their processes. Cells which could have been classified as the small intensely fluorescent cells of the mammalian ganglion type or their electron microscopic equivalent, the granule-containing cells were found neither in the control cultures nor in the hydrocortisone-containing cultures. It is concluded that most brightly fluorescent cells in cultured sympathetic ganglia of the chick are nerve cells or sympathicoblasts rich in amine-storing granular vesicles.
Phillips, Robert J; Powley, Terry L
2012-07-02
Interactions between macrophages and the autonomic innervation of gastrointestinal (GI) tract smooth muscle have received little experimental attention. To better understand this relationship, immunohistochemistry was performed on GI whole mounts from rats at three ages. The phenotypes, morphologies, and distributions of gut macrophages are consistent with the cells performing extensive housekeeping functions in the smooth muscle layers. Specifically, a dense population of macrophages was located throughout the muscle wall where they were distributed among the muscle fibers and along the vasculature. Macrophages were also associated with ganglia and connectives of the myenteric plexus and with the sympathetic innervation. Additionally, these cells were in tight registration with the dendrites and axons of the myenteric neurons as well as the varicosities along the length of the sympathetic axons, suggestive of a contribution by the macrophages to the homeostasis of both synapses and contacts between the various elements of the enteric circuitry. Similarly, macrophages were involved in the presumed elimination of neuropathies as indicated by their association with dystrophic neurons and neurites which are located throughout the myenteric plexus and smooth muscle wall of aged rats. Importantly, the patterns of macrophage-neuron interactions in the gut paralleled the much more extensively characterized interactions of macrophages (i.e., microglia) and neurons in the CNS. The present observations in the PNS as well as extrapolations from homologous microglia in the CNS suggest that GI macrophages play significant roles in maintaining the nervous system of the gut in the face of wear and tear, disease, and aging. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhang, Chengmi; Wang, Zhenmeng; Dong, Jing; Pan, Ruirui; Qiu, Haibo; Zhang, Jinmin; Zhang, Peng; Zheng, Jijian; Yu, Weifeng
2014-01-01
Autonomic dysfunction as a partial contributing factor to cardiovascular instability in jaundiced patients is often associated with increased serum bilirubin levels. Whether increased serum bilirubin levels could directly inhibit sympathetic ganglion transmission by blocking neuronal nicotinic acetylcholine receptors (nAChRs) remains to be elucidated. Conventional patch-clamp recordings were used to study the effect of bilirubin on nAChRs currents from enzymatically dissociated rat superior cervical ganglia (SCG) neurons. The results showed that low concnetrations (0.5 and 2 μM) of bilirubin enhanced the peak ACh-evoked currents, while high concentrations (3 to 5.5 µM) of bilirubin suppressed the currents with an IC50 of 4 ± 0.5 μM. In addition, bilirubin decreased the extent of desensitization of nAChRs in a concentration-dependent manner. This inhibitory effect of bilirubin on nAChRs channel currents was non-competitive and voltage independent. Bilirubin partly improved the inhibitory effect of forskolin on ACh-induced currents without affecting the action of H-89. These data suggest that the dual effects of enhancement and suppression of bilirubin on nAChR function may be ascribed to the action mechanism of positive allosteric modulation and direct blockade. Thus, suppression of sympathetic ganglionic transmission through postganglionic nAChRs inhibition may partially contribute to the adverse cardiovascular effects in jaundiced patients. PMID:25503810
NASA Technical Reports Server (NTRS)
Nishino, H.
1977-01-01
Unit activity of lateral hypothalamic area (LHA) and Ventromedian nuclei (VMN) was recorded in urethane anesthetized male rats. A 5 to 10 sec. a 3-5 min and a circadian rhythmicity were observed. In about 15% of all neurons, spontaneous activity of LHA and VMN showed reciprocal relationships. Subthreshold stimuli applied at a slow rate in the septum and the suprachiasmatic nuclei (SCN) suppressed the rhythms without changing firing rates. On the other hand, stimulation of the optic nerve at a rate of 5 to 10/sec increased firing rates in 1/3 of neurons of SCN. Iontophoretically applied acetylcholine increased 80% of tested neurons of SCN, whereas norepinephrine, dopamine and 5 HT inhibited 64, 60 and 75% of SCN neurons respectively. These inhibitions were much stronger in neurons, the activity of which was increased by optic nerve stimulation. Stimulation of the SCN inhibited the tonic activity in cervical sympathetic nerves.
Brauer, M. Mónica; Smith, Peter G.
2014-01-01
The female reproductive tract undergoes remarkable functional and structural changes associated with cycling, conception and pregnancy, and it is likely advantageous to both individual and species to alter relationships between reproductive tissues and innervation. For several decades, it has been appreciated that the mammalian uterus undergoes massive sympathetic axon depletion in late pregnancy, possibly representing an adaptation to promote smooth muscle quiescence and sustained blood flow. Innervation to other structures such as cervix and vagina also undergo pregnancy-related changes in innervation that may facilitate parturition. These tissues provide highly tractable models for examining cellular and molecular mechanisms underlying peripheral nervous system plasticity. Studies show that estrogen elicits rapid degeneration of sympathetic terminal axons in myometrium, which regenerate under low-estrogen conditions. Degeneration is mediated by the target tissue: under estrogen's influence, the myometrium produces proteins repulsive to sympathetic axons including BDNF, neurotrimin, semaphorins, and pro-NGF, and extracellular matrix components are remodeled. Interestingly, nerve depletion does not involve diminished levels of classical sympathetic neurotrophins that promote axon growth. Estrogen also affects sympathetic neuron neurotrophin receptor expression in ways that appear to favor pro-degenerative effects of the target tissue. In contrast to the uterus, estrogen depletes vaginal autonomic and nociceptive axons, with the latter driven in part by estrogen-induced suppression BMP4 synthesis. These findings illustrate that hormonally mediated physiological plasticity is a highly complex phenomenon involving multiple, predominantly repulsive target-derived factors acting in concert to achieve rapid and selective reductions in innervation. PMID:25530517
Ito, Koji; Hirooka, Yoshitaka; Matsukawa, Ryuichi; Nakano, Masatsugu; Sunagawa, Kenji
2012-01-01
Depression often coexists with cardiovascular disease, such as hypertension and heart failure, in which sympathetic hyperactivation is critically involved. Reduction in the brain sigma-1 receptor (S1R) functions in depression pathogenesis via neuronal activity modulation. We hypothesized that reduced brain S1R exacerbates heart failure, especially with pressure overload via sympathetic hyperactivation and worsening depression. Male Institute of Cancer Research mice were treated with aortic banding and, 4 weeks thereafter, fed a high-salt diet for an additional 4 weeks to accelerate cardiac dysfunction (AB-H). Compared with sham-operated controls (Sham), AB-H showed augmented sympathetic activity, decreased per cent fractional shortening, increased left ventricular dimensions, and significantly lower brain S1R expression. Intracerebroventricular (ICV) infusion of S1R agonist PRE084 increased brain S1R expression, lowered sympathetic activity, and improved cardiac function in AB-H. ICV infusion of S1R antagonist BD1063 increased sympathetic activity and decreased cardiac function in Sham. Tail suspension test was used to evaluate the index of depression-like behaviour, with immobility time and strain amplitude recorded as markers of struggle activity using a force transducer. Immobility time increased and strain amplitude decreased in AB-H compared with Sham, and these changes were attenuated by ICV infusion of PRE084. These results indicate that decreased brain S1R contributes to the relationship between heart failure and depression in a mouse model of pressure overload.
Schotzinger, R J; Landis, S C
1990-05-01
Histochemical, immunocytochemical, and radioenzymatic techniques were used to examine the neurotransmitter-related properties of the innervation of thoracic hairy skin in rats during adulthood and postnatal development. In the adult, catecholamine-containing fibers were associated with blood vessels and piloerector muscles, and ran in nerve bundles throughout the dermis. The distribution of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers was identical. Neuronal fibers displaying neuropeptide Y (NPY) immunoreactivity were seen in association with blood vessels. Double-labeling studies suggested that most, if not all, NPY-IR fibers were also TH-IR and likewise most, if not all, vessel-associated TH-IR fibers were also NPY-IR. Calcitonin gene-related peptide (CGRP)-IR fibers were observed near and penetrating into the epidermis, in close association with hair follicles and blood vessels, and in nerve bundles. A similar distribution of substance P (SP)-IR fibers was evident. In adult animals treated as neonates with the sympathetic neurotoxin 6-hydroxydopamine, a virtual absence of TH-IR and NPY-IR fibers was observed, whereas the distribution of CGRP-IR and SP-IR fibers appeared unaltered. During postnatal development, a generalized increase in the number, fluorescence intensity, and varicose morphology of neuronal fibers displaying catecholamine fluorescence, NPY-IR, CGRP-IR, and SP-IR was observed. By postnatal day 21, the distribution of the above fibers had reached essentially adult levels, although the density of epidermal-associated CGRP-IR and SP-IR fibers was significantly greater than in the adult. The following were not evident in thoracic hairy skin at any timepoint examined: choline acetyltransferase activity, acetylcholinesterase histochemical staining or immunoreactivity, fibers displaying immunoreactivity to vasoactive intestinal peptide, cholecystokinin, or leucine-enkephalin. The present study demonstrates that the thoracic hairy skin in developing and adult rats receives an abundant sympathetic catecholaminergic and sensory innervation, but not a cholinergic innervation.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Bär, Karl-Jürgen; Boettger, Michael Karl; Neubauer, Rene; Grotelüschen, Marei; Jochum, Thomas; Baier, Vico; Sauer, Heinrich; Voss, Andreas
2006-09-01
Many symptoms of alcohol withdrawal (AW) such as tachycardia or elevated blood pressure might be explained by increased peripheral and central adrenergic activity. In contrast to many neurochemical studies of sympathetic activation during AW, only very few studies investigated autonomic balance using neurophysiological methods. We investigated heart rate variability (HRV) and sympathetic skin response (SSR) in male patients suffering from mild AW syndrome (n = 20, no treatment required) and in patients with moderate to severe AW syndrome (n = 20, clomethiazole treatment) in the acute stage. Sympathovagal influence was quantified using measures of time and frequency domain of HRV as well as modern nonlinear parameters (compression entropy). Furthermore, we obtained latencies and amplitudes of SSR to quantify isolated sympathetic influence. Measures were obtained during the climax of withdrawal symptomatology before treatment, 1 day after climax, and shortly before discharge from hospital. Alcohol withdrawal scores were obtained and correlated to autonomic measures. Ambulatory blood pressure and AW scores revealed characteristic withdrawal symptoms in both patient groups. Apart from the nonlinear parameter compression entropy, Hc, measures of HRV revealed no sign of autonomic dysfunction in contrast to the significantly increased heart rates at the time of admission. Latencies and amplitudes of SSR did not indicate any increase of sympathetic activity. A negative correlation was found between Hc and mental withdrawal symptoms. We show here that classical measures for autonomic nervous system activity such as HRV and SSR are not suitable for describing the autonomic changes seen in acute AW, although a major role for the sympathetic nervous system has been proposed. This might be due to multiple dysregulation of metabolites in AWS or to subtle alcohol-induced damage to neuronal structures, issues that should be addressed in future studies.
Cardiac dysfunctions following spinal cord injury
Sandu, AM; Popescu, M; Iacobini, MA; Stoian, R; Neascu, C; Popa, F
2009-01-01
The aim of this article is to analyze cardiac dysfunctions occurring after spinal cord injury (SCI). Cardiac dysfunctions are common complications following SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. We reviewed epidemiology of cardiac disturbances after SCI, and neuroanatomy and pathophysiology of autonomic nervous system, sympathetic and parasympathetic. SCI causes disruption of descendent pathways from central control centers to spinal sympathetic neurons, originating into intermediolateral nuclei of T1–L2 spinal cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant cardiac dysfunction. Impairment of autonomic nervous control system, mostly in patients with cervical or high thoracic SCI, causes cardiac dysrrhythmias, especially bradycardia and, rarely, cardiac arrest, or tachyarrhytmias and hypotension. Specific complication dependent on the period of time after trauma like spinal shock and autonomic dysreflexia are also reviewed. Spinal shock occurs during the acute phase following SCI and is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe bradycardia and hypotension. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life–threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5–T6). Besides all this, additional cardiac complications, such as cardiac deconditioning and coronary heart disease may also occur. Proper prophylaxis, including nonpharmacologic and pharmacological strategies and cardiac rehabilitation diminish occurrence of the cardiac dysfunction following SCI. Each type of cardiac disturbance requires specific treatment. PMID:20108532
Truths, errors, and lies around "reflex sympathetic dystrophy" and "complex regional pain syndrome".
Ochoa, J L
1999-10-01
The shifting paradigm of reflex sympathetic dystrophy-sympathetically maintained pains-complex regional pain syndrome is characterized by vestigial truths and understandable errors, but also unjustifiable lies. It is true that patients with organically based neuropathic pain harbor unquestionable and physiologically demonstrable evidence of nerve fiber dysfunction leading to a predictable clinical profile with stereotyped temporal evolution. In turn, patients with psychogenic pseudoneuropathy, sustained by conversion-somatization-malingering, not only lack physiological evidence of structural nerve fiber disease but display a characteristically atypical, half-subjective, psychophysical sensory-motor profile. The objective vasomotor signs may have any variety of neurogenic, vasogenic, and psychogenic origins. Neurological differential diagnosis of "neuropathic pain" versus pseudoneuropathy is straight forward provided that stringent requirements of neurological semeiology are not bypassed. Embarrassing conceptual errors explain the assumption that there exists a clinically relevant "sympathetically maintained pain" status. Errors include historical misinterpretation of vasomotor signs in symptomatic body parts, and misconstruing symptomatic relief after "diagnostic" sympathetic blocks, due to lack of consideration of the placebo effect which explains the outcome. It is a lie that sympatholysis may specifically cure patients with unqualified "reflex sympathetic dystrophy." This was already stated by the father of sympathectomy, René Leriche, more than half a century ago. As extrapolated from observations in animals with gross experimental nerve injury, adducing hypothetical, untestable, secondary central neuron sensitization to explain psychophysical sensory-motor complaints displayed by patients with blatantly absent nerve fiber injury, is not an error, but a lie. While conceptual errors are not only forgivable, but natural to inexact medical science, lies particularly when entrepreneurially inspired are condemnable and call for peer intervention.
AV3V lesions reduce the pressor response to L-glutamate into the RVLM.
Vieira, Alexandre Antonio; Colombari, Eduardo; De Luca, Laurival A; Colombari, Débora Simões de Almeida; Menani, José V
2006-05-01
Neurons from the rostral ventrolateral medulla (RVLM) directly activate sympathetic pre-ganglionic neurons in the spinal cord. Hypertensive responses and sympathetic activation produced by different stimuli are strongly affected by lesions of the preoptic periventricular tissue surrounding the anteroventral third ventricle (AV3V region). Therefore, in the present study, we investigated the effects of acute (1 day) and chronic (15 days) electrolytic lesions of the AV3V region on the pressor responses produced by injections of the excitatory amino acid L-glutamate into the RVLM of unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula implanted into the RVLM were used. The pressor responses produced by injections of L-glutamate (1, 5 and 10 nmol/100 nl) into the RVLM were reduced 1 day (9 +/- 4, 39 +/- 6 and 37 +/- 4 mm Hg, respectively) and 15 days after AV3V lesions (13 +/- 6, 39 +/- 4 and 43 +/- 4 mm Hg, respectively, vs. sham lesions: 29 +/- 3, 50 +/- 2 and 58 +/- 3 mm Hg, respectively). Injections of L-glutamate into the RVLM in sham or AV3V-lesioned rats produced no significant change in the heart rate (HR). Baroreflex bradycardia and tachycardia produced by iv phenylephrine or sodium nitroprusside, respectively, and the pressor and bradycardic responses to chemoreflex activation with iv potassium cyanide were not modified by AV3V lesions. The results suggest that signals from the AV3V region are important for sympathetic activation induced by L-glutamate into the RVLM.
Sabetghadam, A; Korim, W S; Verberne, A J M
2017-03-01
Adrenaline is an important counter-regulatory hormone that helps restore glucose homeostasis during hypoglycaemia. However, the neurocircuitry that connects the brain glucose sensors and the adrenal sympathetic outflow to the chromaffin cells is poorly understood. We used electrical microstimulation of the perifornical hypothalamus (PeH) and the rostral ventrolateral medulla (RVLM) combined with adrenal sympathetic nerve activity (ASNA) recording to examine the relationship between the RVLM, the PeH and ASNA. In urethane-anaesthetised male Sprague-Dawley rats, intermittent single pulse electrical stimulation of the rostroventrolateral medulla (RVLM) elicited an evoked ASNA response that consisted of early (60±3ms) and late peaks (135±4ms) of preganglionic and postganglionic activity. In contrast, RVLM stimulation evoked responses in lumbar sympathetic nerve activity that were almost entirely postganglionic. PeH stimulation also produced an evoked excitatory response consisting of both preganglionic and postganglionic excitatory peaks in ASNA. Both peaks in ASNA following RVLM stimulation were reduced by intrathecal kynurenic acid (KYN) injection. In addition, the ASNA response to systemic neuroglucoprivation induced by 2-deoxy-d-glucose was abolished by bilateral microinjection of KYN into the RVLM. This suggests that a glutamatergic pathway from the perifornical hypothalamus (PeH) relays in the RVLM to activate the adrenal SPN and so modulate ASNA. The main findings of this study are that (i) adrenal premotor neurons in the RVLM may be, at least in part, glutamatergic and (ii) that the input to these neurons that is activated during neuroglucoprivation is also glutamatergic. Copyright © 2017 Elsevier B.V. All rights reserved.
Lingappa, Jaisri R.; Zigmond, Richard E.
2013-01-01
The cervical sympathetic trunks (CST) contain axons of preganglionic neurons that innervate the superior cervical ganglia (SCG). Since, regeneration of CST fibers can be extensive and can reestablish certain specific patterns of SCG connections, restoration of end organ function would be expected. This expectation was examined with respect to the pineal gland, an organ innervated by the two SCG. The activity of pineal serotonin N-acetyltransferase (NAT) exhibits a large circadian rhythm, with activity high at night, which is dependent on the gland’s sympathetic input. Thirty six hours after the CST were crushed bilaterally, nocturnal NAT was decreased by 99%. Three months later, enzyme activity had recovered only to 15% of control values, a recovery dependent on regeneration of CST fibers. Nevertheless, a small day-night rhythm was present in lesioned animals. Neither the density of the gland’s adrenergic innervation nor the ability of an adrenergic agonist to stimulate NAT activity was reduced in rats with regenerated CST. In addition, stimulation of the regenerated CST at a variety of frequencies was at least as effective in increasing NAT activity as seen with control nerves. These data suggest that the failure of pineal function to recover is not due to a quantitative deficit in the extent of reinnervation or in synaptic efficacy. Rather, we suggest that there is some loss of specificity in the synaptic connections made in the SCG during reinnervation, resulting in a loss of the central neuronal information necessary for directing a normal NAT rhythm and thus normal pineal function. PMID:23486957
EFFECT OF PREGNANCY ON AUTOREGULATION OF CEREBRAL BLOOD FLOW IN ANTERIOR VERSUS POSTERIOR CEREBRUM
Cipolla, Marilyn J.; Bishop, Nicole; Chan, Siu-Lung
2012-01-01
Severe pre/eclampsia are associated with brain edema that forms preferentially in the posterior cerebral cortex possibly due to decreased sympathetic innervation of posterior cerebral arteries and less effective autoregulation during acute hypertension. In the present study, we examined the effect of pregnancy on the effectiveness of cerebral blood flow autoregulation using laser Doppler flowmetry and edema formation by wet:dry weight in acute hypertension induced by phenylephrine infusion in the anterior and posterior cerebrum from nonpregnant (n=8) and late-pregnant (n=6) Sprague Dawley rats. In addition, we compared the effect of pregnancy on sympathetic innervation by tyrosine hydroxylase staining of posterior and middle cerebral arteries (n=5–6/group) and endothelial and neuronal nitric oxide synthase expression using quantitative polymerase chain reaction (n=3/group). In nonpregnant animals, there was no difference in autoregulation between anterior and posterior cerebrum. However, in late-pregnant animals, the threshold of cerebral blood flow autoregulation was shifted to lower pressures in the posterior cerebrum, which was associated with increased neuronal nitric oxide synthase expression in the posterior cerebral cortex vs. anterior. Compared to the nonpregnant state, pregnancy increased the threshold of autoregulation in both brain regions that was related to decreased expression of endothelial nitric oxide synthase. Lastly, acute hypertension during pregnancy caused greater edema formation in both brain cortices that was not due to changes in sympathetic innervation. These findings suggest that although pregnancy shifted the cerebral blood flow autoregulatory curve to higher pressures in both the anterior and posterior cortices, it did not protect from edema during acute hypertension. PMID:22824983
Effect of pregnancy on autoregulation of cerebral blood flow in anterior versus posterior cerebrum.
Cipolla, Marilyn J; Bishop, Nicole; Chan, Siu-Lung
2012-09-01
Severe preeclampsia and eclampsia are associated with brain edema that forms preferentially in the posterior cerebral cortex possibly because of decreased sympathetic innervation of posterior cerebral arteries and less effective autoregulation during acute hypertension. In the present study, we examined the effect of pregnancy on the effectiveness of cerebral blood flow autoregulation using laser Doppler flowmetry and edema formation by wet:dry weight in acute hypertension induced by phenylephrine infusion in the anterior and posterior cerebrum from nonpregnant (n=8) and late-pregnant (n=6) Sprague-Dawley rats. In addition, we compared the effect of pregnancy on sympathetic innervation by tyrosine hydroxylase staining of posterior and middle cerebral arteries (n=5-6 per group) and endothelial and neuronal NO synthase expression using quantitative PCR (n=3 per group). In nonpregnant animals, there was no difference in autoregulation between the anterior and posterior cerebrum. However, in late-pregnant animals, the threshold of cerebral blood flow autoregulation was shifted to lower pressures in the posterior cerebrum, which was associated with increased neuronal NO synthase expression in the posterior cerebral cortex versus anterior. Compared with the nonpregnant state, pregnancy increased the threshold of autoregulation in both brain regions that was related to decreased expression of endothelial NO synthase. Lastly, acute hypertension during pregnancy caused greater edema formation in both brain cortices that was not attributed to changes in sympathetic innervation. These findings suggest that, although pregnancy shifted the cerebral blood flow autoregulatory curve to higher pressures in both the anterior and posterior cortices, it did not protect from edema during acute hypertension.
Fischer, Harald; Harper, Alexander A; Anderson, Colin R; Adams, David J
2005-01-01
The effects of γ-aminobutyric acid (GABA) on the electrophysiological properties of intracardiac neurones were investigated in the intracardiac ganglion plexus in situ and in dissociated neurones from neonatal, juvenile and adult rat hearts. Focal application of GABA evoked a depolarizing, excitatory response in both intact and dissociated intracardiac ganglion neurones. Under voltage clamp, both GABA and muscimol elicited inward currents at −60 mV in a concentration-dependent manner. The fast, desensitizing currents were mimicked by the GABAA receptor agonists muscimol and taurine, and inhibited by the GABAA receptor antagonists, bicuculline and picrotoxin. The GABAA0 antagonist (1,2,5,6-tetrahydropyridin-4-yl)methyl phosphonic acid (TPMPA), had no effect on GABA-induced currents, suggesting that GABAA receptor-channels mediate the response. The GABA-evoked current amplitude recorded from dissociated neurones was age dependent whereby the peak current density measured at −100 mV was ∼ 20 times higher for intracardiac neurones obtained from neonatal rats (P2–5) compared with adult rats (P45–49). The decrease in GABA sensitivity occurred during the first two postnatal weeks and coincides with maturation of the sympathetic innervation of the rat heart. Immunohistochemical staining using antibodies against GABA demonstrate the presence of GABA in the intracardiac ganglion plexus of the neonatal rat heart. Taken together, these results suggest that GABA and taurine may act as modulators of neurotransmission and cardiac function in the developing mammalian intrinsic cardiac nervous system. PMID:15731187
Satb2-Independent Acquisition of the Cholinergic Sudomotor Phenotype in Rodents
Schütz, Burkhard; Schaäfer, Martin K.-H.; Gördes, Markus; Eiden, Lee E.; Weihe, Eberhard
2014-01-01
Expression of Satb2 (Special AT-rich sequence-binding protein-2) elicits expression of the vesicular acetylcholine transporter (VAChT) and choline acetyltransferase (ChAT) in cultured rat sympathetic neurons exposed to soluble differentiation factors. Here, we determined whether or not Satb2 plays a similar role in cholinergic differentiation in vivo, by comparing the postnatal profile of Satb2 expression in the rodent stellate ganglion to that of VAChT and ChAT. Throughout postnatal development, VAChT and ChAT were found to be co-expressed in a numerically stable subpopulation of rat stellate ganglion neurons. Nerve fibers innervating rat forepaw sweat glands on P1 were VAChT immunoreactive, while ChAT was detectable at this target only after P5. The postnatal abundance of VAChT transcripts in the stellate ganglion was at maximum already on P1, whereas ChAT mRNA levels increased from low levels on P1 to reach maximum levels between P5 and P21. Satb2 mRNA was detected in cholinergic neurons in the stellate ganglion beginning with P8, thus coincident with the onset of unequivocal detection of ChAT immunoreactivity in forepaw sweat gland endings. Satb2 knockout mice exhibited no change in the P1 cholinergic VAChT/ChAT co-phenotype in stellate ganglion neurons. Thus, cholinergic phenotype maturation involves first, early target (sweat-gland)-independent expression and trafficking of VAChT, and later, potentially target- and Satb2-dependent elevation of ChAT mRNA and protein transport into sweat gland endings. In rat sudomotor neurons that, unlike mouse sudomotor neurons, co-express calcitonin gene-related peptide (CGRP), Satb2 may also be related to the establishment of species-specific neuropeptide co-phenotypes during postnatal development. PMID:25239161
Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons.
Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David
2016-12-17
Orexin neurons are known to augment the sympathetic control of cardiovascular function, however the role of orexin neurons in parasympathetic cardiac regulation remains unclear. To test the hypothesis that orexin neurons contribute to parasympathetic control we selectively expressed channelrhodopsin-2 (ChR2) in orexin neurons in orexin-Cre transgenic rats and examined postsynaptic currents in cardiac vagal neurons (CVNs) in the dorsal motor nucleus of the vagus (DMV). Simultaneous photostimulation and recording in ChR2-expressing orexin neurons in the lateral hypothalamus resulted in reliable action potential firing as well as large whole-cell currents suggesting a strong expression of ChR2 and reliable optogenetic excitation. Photostimulation of ChR2-expressing fibers in the DMV elicited short-latency (ranging from 3.2ms to 8.5ms) postsynaptic currents in 16 out of 44 CVNs tested. These responses were heterogeneous and included excitatory glutamatergic (63%) and inhibitory GABAergic (37%) postsynaptic currents. The results from this study suggest different sub-population of orexin neurons may exert diverse influences on brainstem CVNs and therefore may play distinct functional roles in parasympathetic control of the heart. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
[Prosocial Development of Very Young Children.
ERIC Educational Resources Information Center
Pawl, Jeree, Ed.
1992-01-01
This newsletter presents five articles focusing on the social development of infants and very young children. The first article, "Sympathetic Behavior in Very Young Children," by Lois Barclay Murphy, gives examples of early sympathetic behavior, traces the development of sympathy, identifies individual patterns of sympathetic response,…
Fargali, Samira; Sadahiro, Masato; Jiang, Cheng; Frick, Amy L; Indall, Tricia; Cogliani, Valeria; Welagen, Jelle; Lin, Wei-Jye; Salton, Stephen R
2012-11-01
Members of the neurotrophin family, including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5, and other neurotrophic growth factors such as ciliary neurotrophic factor and artemin, regulate peripheral and central nervous system development and function. A subset of the neurotrophin-dependent pathways in the hypothalamus, brainstem, and spinal cord, and those that project via the sympathetic nervous system to peripheral metabolic tissues including brown and white adipose tissue, muscle and liver, regulate feeding, energy storage, and energy expenditure. We briefly review the role that neurotrophic growth factors play in energy balance, as regulators of neuronal survival and differentiation, neurogenesis, and circuit formation and function, and as inducers of critical gene products that control energy homeostasis.
Hernández-Cruz, Arturo; Escobar, Ariel L.; Jiménez, Nicolás
1997-01-01
The role of ryanodine-sensitive intracellular Ca2+ stores present in nonmuscular cells is not yet completely understood. Here we examine the physiological parameters determining the dynamics of caffeine-induced Ca2+ release in individual fura-2–loaded sympathetic neurons. Two ryanodine-sensitive release components were distinguished: an early, transient release (TR) and a delayed, persistent release (PR). The TR component shows refractoriness, depends on the filling status of the store, and requires caffeine concentrations ≥10 mM. Furthermore, it is selectively suppressed by tetracaine and intracellular BAPTA, which interfere with Ca2+-mediated feedback loops, suggesting that it constitutes a Ca2+-induced Ca2+-release phenomenon. The dynamics of release is markedly affected when Sr2+ substitutes for Ca2+, indicating that Sr2+ release may operate with lower feedback gain than Ca2+ release. Our data indicate that when the initial release occurs at an adequately fast rate, Ca2+ triggers further release, producing a regenerative response, which is interrupted by depletion of releasable Ca2+ and Ca2+-dependent inactivation. A compartmentalized linear diffusion model can reproduce caffeine responses: When the Ca2+ reservoir is full, the rapid initial Ca2+ rise determines a faster occupation of the ryanodine receptor Ca2+ activation site giving rise to a regenerative release. With the store only partially loaded, the slower initial Ca2+ rise allows the inactivating site of the release channel to become occupied nearly as quickly as the activating site, thereby suppressing the initial fast release. The PR component is less dependent on the store's Ca2+ content. This study suggests that transmembrane Ca2+ influx in rat sympathetic neurons does not evoke widespread amplification by CICR because of its inability to raise [Ca2+] near the Ca2+ release channels sufficiently fast to overcome their Ca2+-dependent inactivation. Conversely, caffeine-induced Ca2+ release can undergo considerable amplification especially when Ca2+ stores are full. We propose that the primary function of ryanodine-sensitive stores in neurons and perhaps in other nonmuscular cells, is to emphasize subcellular Ca2+ gradients resulting from agonist-induced intracellular release. The amplification gain is dependent both on the agonist concentration and on the filling status of intracellular Ca2+ stores. PMID:9041445
Muscarinic receptors as targets for anti-inflammatory therapy.
Sales, María Elena
2010-11-01
ACh, the main neurotransmitter in the neuronal cholinergic system, is synthesized by pre-ganglionic fibers of the sympathetic and parasympathetic autonomic nervous system and by post-ganglionic parasympathetic fibers. There is increasing experimental evidence that ACh is widely expressed in prokaryotic and eukaryotic non-neuronal cells. The neuronal and non-neuronal cholinergic systems comprise ACh, choline acetyltransferase and cholinesterase, enzymes that synthesize and catabolize ACh, and the nicotinic and muscarinic ACh receptors (nAChRs and mAChRs, respectively), which are the targets for ACh action. This review analyzes the participation of the cholinergic system, particularly through mAChRs, in inflammation, and discusses the role of the different mAChR antagonists that have been used to treat skin inflammatory disorders, asthma and COPD, as well as intestinal inflammation and systemic inflammatory diseases, to assess the potential application of these compounds as therapeutic tools.
Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats
NASA Technical Reports Server (NTRS)
Moffitt, Julia A.; Heesch, Cheryl M.; Hasser, Eileen M.
2002-01-01
Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.
Long-term moderate exercise accelerates the recovery of stress-evoked cardiovascular responses.
Hsu, Yuan-Chang; Tsai, Sheng-Feng; Yu, Lung; Chuang, Jih-Ing; Wu, Fong-Sen; Jen, Chauying J; Kuo, Yu-Min
2016-01-01
Psychological stress is an important global health problem. It is well documented that stress increases the incidences of various cardiovascular disorders. Regular exercise is known to reduce resting blood pressure (BP) and heart rate (HR). This study was designed to clarify the effects of long-term exercise on stress-evoked cardiovascular responses and to emphasize post-stress recovery effects. Male Wistar rats underwent 8 weeks of moderate treadmill training, with cardiovascular responses, autonomic nervous system activities and local Fos reactivity changes in the cardiovascular regulation center were monitored before, during and after immobilization stress. A spectral analysis of cardiovascular parameters was used to examine autonomic nervous activities. We found that long-term exercise (i) lowered resting BP, HR and sympathetic activity, but increased resting parasympathetic activity and baroreflex sensitivity (BRS); (ii) accelerated post-stress recovery of stress-evoked cardiovascular and sympathetic responses along with increased BRS and (iii) accelerated post-stress recovery of stress-evoked neuron activations in the paraventricular nucleus, but delayed it in the nucleus of the tractus solitarius. We conclude that, in rats, long-term exercise accelerated recovery of stress-evoked cardiovascular responses differentially altering hypothalamic and medullar neuron activities.
Nerve-mediated descending inhibition in the proximal colon of the rabbit.
Julé, Y
1980-12-01
1. Descending inhibition in the rabbit proximal colon, evoked by distension, was studied in vivo by recording extracellularly electrical activity from pressure electrodes placed on the serosa. 2. Distention produced, blow the level of the balloon, a brief hyperpolarization of smooth muscle fibres which could be recorded up to 20 cm from the point of distension. 3. This hyperpolarization like that produced by vagal stimulation (inhibitory junction potentials) persisted in the presence of sympathetic blocking agents and atropine, and was produced by non-adrenergic non-cholinergic intramural neurones. 4. In the presence of vagally evoked excitatory junction potentials (e.j.p.s), distension produced a transient inhibition of e.j.p.s, in addition to the hyperpolarization of smooth muscle. 5. The inhibition of these e.j.p.s persisted in the presence of sympathetic blocking agents, but in contrast to the hyperpolarization of smooth muscle produced by distension alone, was modulated by drugs interfering with 5-HT synthesis, re-uptake and activity. 6. The results indicate that descending inhibition in the rabbit proximal colon was produced by two distinct neuronal non-adrenergic inhibitory mechanisms exerted simultaneously on the smooth muscle and on the cholinergic excitatory pathways which innervate it.
Nerve-mediated descending inhibition in the proximal colon of the rabbit.
Julé, Y
1980-01-01
1. Descending inhibition in the rabbit proximal colon, evoked by distension, was studied in vivo by recording extracellularly electrical activity from pressure electrodes placed on the serosa. 2. Distention produced, blow the level of the balloon, a brief hyperpolarization of smooth muscle fibres which could be recorded up to 20 cm from the point of distension. 3. This hyperpolarization like that produced by vagal stimulation (inhibitory junction potentials) persisted in the presence of sympathetic blocking agents and atropine, and was produced by non-adrenergic non-cholinergic intramural neurones. 4. In the presence of vagally evoked excitatory junction potentials (e.j.p.s), distension produced a transient inhibition of e.j.p.s, in addition to the hyperpolarization of smooth muscle. 5. The inhibition of these e.j.p.s persisted in the presence of sympathetic blocking agents, but in contrast to the hyperpolarization of smooth muscle produced by distension alone, was modulated by drugs interfering with 5-HT synthesis, re-uptake and activity. 6. The results indicate that descending inhibition in the rabbit proximal colon was produced by two distinct neuronal non-adrenergic inhibitory mechanisms exerted simultaneously on the smooth muscle and on the cholinergic excitatory pathways which innervate it. PMID:6454779
Cui, Dapeng; Dougherty, Kimberly J.; Machacek, David W.; Sawchuk, Michael; Hochman, Shawn; Baro, Deborah J.
2009-01-01
Studies in the developing spinal cord suggest that different motoneuron (MN) cell types express very different genetic programs, but the degree to which adult programs differ is unknown. To compare genetic programs between adult MN columnar cell types, we used laser capture micro-dissection (LCM) and Affymetrix microarrays to create expression profiles for three columnar cell types: lateral and medial MNs from lumbar segments and sympathetic preganglionic motoneurons located in the thoracic intermediolateral nucleus. A comparison of the three expression profiles indicated that ~7% (813/11,552) of the genes showed significant differences in their expression levels. The largest differences were observed between sympathetic preganglionic MNs and the lateral motor column, with 6% (706/11,552) of the genes being differentially expressed. Significant differences in expression were observed for 1.8% (207/11,552) of the genes when comparing sympathetic preganglionic MNs with the medial motor column. Lateral and medial MNs showed the least divergence, with 1.3% (150/11,552) of the genes being differentially expressed. These data indicate that the amount of divergence in expression profiles between identified columnar MNs does not strictly correlate with divergence of function as defined by innervation patterns (somatic/muscle vs. autonomic/viscera). Classification of the differentially expressed genes with regard to function showed that they underpin all fundamental cell systems and processes, although most differentially expressed genes encode proteins involved in signal transduction. Mining the expression profiles to examine transcription factors essential for MN development suggested that many of the same transcription factors participatein combinatorial codes in embryonic and adult neurons, but patterns of expression change significantly. PMID:16317082
Regulation of Peripheral Catecholamine Responses to Acute Stress in Young Adult and Aged F-344 Rats.
McCarty; Pacak; Goldstein; Eisenhofer
1997-12-01
Young adult (3-month-old) and aged (24-month-old) Fischer-344 male rats received i.v. infusions of 3H-labeled norepinephrine (NE) and epinephrine (EPI) to examine the effects of aging on the neuronal uptake of NE and sympathoadrenal release of NE and EPI. Spillovers of NE and EPI into plasma and their clearance from the circulation were estimated from plasma concentrations of endogenous and 3H-labeled NE and EPI. The efficiency of neuronal uptake was assessed from changes in plasma clearance of NE and concentrations of its intraneuronal metabolite, dihydroxyphenylglycol (DHPG), during immobilization stress or neuronal uptake blockade with desipramine. Stress-induced increases in plasma NE and higher plasma NE concentrations in aged compared to young adult rats were due to both decreases in NE clearance and increases in NE spillover. EPI spillover and clearance were reduced in aged compared to young adult rats, so that plasma EPI levels did not differ between groups. Young adult and aged rats had similar desipramine-induced decreases in NE clearance, whereas desipramine-sensitive decreases and stress-induced increases in plasma DHPG were larger in aged rats. This indicates that neuronal uptake is intact and that increased NE spillover at rest and during stress in aged rats reflects increased NE release from sympathetic nerves. The results show that aging is associated with divergent decreases in EPI release from the adrenal medulla and increases in NE release from sympathetic nerves. Increased plasma concentrations of NE in aged compared to young adult rats also result from decreased circulatory clearance of NE, but this does not reflect any age-related impairment of NE reuptake.
Santisteban, Monica M; Zubcevic, Jasenka; Baekey, David M; Raizada, Mohan K
2013-08-01
It is widely accepted that the pathophysiology of hypertension involves autonomic nervous system dysfunction, as well as a multitude of immune responses. However, the close interplay of these systems in the development and establishment of high blood pressure and its associated pathophysiology remains elusive and is the subject of extensive investigation. It has been proposed that an imbalance of the neuro-immune systems is a result of an enhancement of the "proinflammatory sympathetic" arm in conjunction with dampening of the "anti-inflammatory parasympathetic" arm of the autonomic nervous system. In addition to the neuronal modulation of the immune system, it is proposed that key inflammatory responses are relayed back to the central nervous system and alter the neuronal communication to the periphery. The overall objective of this review is to critically discuss recent advances in the understanding of autonomic immune modulation, and propose a unifying hypothesis underlying the mechanisms leading to the development and maintenance of hypertension, with particular emphasis on the bone marrow, as it is a crucial meeting point for neural, immune, and vascular networks.
Caffeine-induced [Ca2+] oscillations in neurones of frog sympathetic ganglia
Cseresnyés, Zoltán; Bustamante, Alexander I; Schneider, Martin F
1999-01-01
Single cell fluorimetry was used to monitor caffeine-induced oscillations of cytosolic [Ca2+] in frog sympathetic ganglion neurones in 2.0 mm K+ Ringer solution.[Ca2+] oscillations decreased in frequency and exhibited three different amplitude patterns after the first large peak of [Ca2+]: (a) a series of big oscillations (BOs) of constant large amplitude (300–;400 nm), (b) a series of much smaller oscillations (SOs) (40–60 nm), or (c) a series of decaying oscillations (DOs) of rapidly decreasing amplitude.A model in which the oscillation amplitude was determined by the Ca2+ content of the endoplasmic reticulum (ER) whereas the oscillation frequency was controlled by how rapidly the cytosolic [Ca2+] reached the threshold for Ca2+-induced Ca2+ release (CICR) was able to simulate each observed pattern by varying the level of activity of the ER Ca2+ pump (SERCA), CICR and release-activated Ca2+ transport (RACT). A cumulative, cytosolic Ca2+-dependent inactivation of the plasma membrane (PM) Ca2+ influx or of the Ca2+-sensitive leak coefficient of the ryanodine receptors caused the oscillation frequency to decrease in the model.Transitions between BOs and SOs and changes in [Ca2+] oscillations caused by ryanodine, thapsigargin, lanthanum and FCCP could also be simulated.We conclude that RACT, SERCA, CICR and Ca2+-dependent PM Ca2+ influx are major mechanisms underlying [Ca2+] oscillations in these neurones. PMID:9831718
Functional Characterization of Lamina X Neurons in ex-Vivo Spinal Cord Preparation.
Krotov, Volodymyr; Tokhtamysh, Anastasia; Kopach, Olga; Dromaretsky, Andrew; Sheremet, Yevhenii; Belan, Pavel; Voitenko, Nana
2017-01-01
Functional properties of lamina X neurons in the spinal cord remain unknown despite the established role of this area for somatosensory integration, visceral nociception, autonomic regulation and motoneuron output modulation. Investigations of neuronal functioning in the lamina X have been hampered by technical challenges. Here we introduce an ex-vivo spinal cord preparation with both dorsal and ventral roots still attached for functional studies of the lamina X neurons and their connectivity using an oblique LED illumination for resolved visualization of lamina X neurons in a thick tissue. With the elaborated approach, we demonstrate electrophysiological characteristics of lamina X neurons by their membrane properties, firing pattern discharge and fiber innervation (either afferent or efferent). The tissue preparation has been also probed using Ca 2+ imaging with fluorescent Ca 2+ dyes (membrane-impermeable or -permeable) to demonstrate the depolarization-induced changes in intracellular calcium concentration in lamina X neurons. Finally, we performed visualization of subpopulations of lamina X neurons stained by retrograde labeling with aminostilbamidine dye to identify sympathetic preganglionic and projection neurons in the lamina X. Thus, the elaborated approach provides a reliable tool for investigation of functional properties and connectivity in specific neuronal subpopulations, boosting research of lamina X of the spinal cord.
[Research consortium Neuroimmunology and pain in the research network musculoskeletal diseases].
Schaible, H-G; Chang, H-D; Grässel, S; Haibel, H; Hess, A; Kamradt, T; Radbruch, A; Schett, G; Stein, C; Straub, R H
2018-05-01
The research consortium Neuroimmunology and Pain (Neuroimpa) explores the importance of the relationships between the immune system and the nervous system in musculoskeletal diseases for the generation of pain and for the course of fracture healing and arthritis. The spectrum of methods includes analyses at the single cell level, in vivo models of arthritis and fracture healing, imaging studies on brain function in animals and humans and analysis of data from patients. Proinflammatory cytokines significantly contribute to the generation of joint pain through neuronal cytokine receptors. Immune cells release opioid peptides which activate opioid receptors at peripheral nociceptors and thereby evoke hypoalgesia. The formation of new bone after fractures is significantly supported by the nervous system. The sympathetic nervous system promotes the development of immune-mediated arthritis. The studies show a significant analgesic potential of the neutralization of proinflammatory cytokines and of opioids which selectively inhibit peripheral neurons. Furthermore, they show that the modulation of neuronal mechanisms can beneficially influence the course of musculoskeletal diseases. Interventions in the interactions between the immune system and the nervous system hold a great therapeutic potential for the treatment of musculoskeletal diseases and pain.
Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension
Li, Wencheng; Peng, Hua; Mehaffey, Eamonn P.; Kimball, Christie D.; Grobe, Justin L.; van Gool, Jeanette M.G.; Sullivan, Michelle N.; Earley, Scott; Danser, A.H. Jan; Ichihara, Atsuhiro; Feng, Yumei
2013-01-01
The (pro)renin receptor, which binds both renin and prorenin, is a newly discovered component of the renin angiotensin system that is highly expressed in the central nervous system. The significance of brain PRRs in mediating local angiotensin II formation and regulating blood pressure remains unclear. The current study was performed to test the hypothesis that PRR-mediated, non-proteolytic activation of prorenin is the main source of angiotensin II in the brain. Thus, PRR knockout in the brain is expected to prevent angiotensin II formation and development of deoxycorticosterone acetate salt induced hypertension. A neuron-specific PRR (ATP6AP2) knockout mouse model was generated using the Cre-LoxP system. Physiological parameters were recorded by telemetry. (Pro)renin receptor expression, detected by immunostaining and RT-PCR, was significantly decreased in the brains of knockout compared with wide-type mice. Intracerebroventricular infusion of mouse prorenin increased blood pressure and angiotensin II formation in wild type mice. This hypertensive response was abolished in (pro)renin receptor knockout mice in association with a reduction in angiotensin II levels. Deoxycorticosterone acetate salt increased (pro)renin receptor expression and angiotensin II formation in the brains of wild-type mice, an effect that was attenuated in (pro)renin receptor knockout mice. (Pro)renin receptor knockout in neurons prevented the development of Deoxycorticosterone acetate salt-induced hypertension as well as activation of cardiac and vasomotor sympathetic tone. In conclusion, non-proteolytic activation of prorenin through binding to the PRR mediates angiotensin II formation in the brain. Neuron-specific PRR knockout prevents the development of deoxycorticosterone acetate salt-induced hypertension, possibly through diminished angiotensin II formation. PMID:24246383
Short and long sympathetic-sensory feedback loops in white fat
Ryu, Vitaly
2014-01-01
We previously demonstrated white adipose tissue (WAT) innervation using the established WAT retrograde sympathetic nervous system (SNS)-specific transneuronal viral tract tracer pseudorabies virus (PRV152) and showed its role in the control of lipolysis. Conversely, we demonstrated WAT sensory innervation using the established anterograde sensory system (SS)-specific transneuronal viral tracer, the H129 strain of herpes simplex virus-1, with sensory nerves showing responsiveness with increases in WAT SNS drive. Several brain areas were part of the SNS outflow to and SS inflow from WAT between these studies suggesting SNS-SS feedback loops. Therefore, we injected both PRV152 and H129 into inguinal WAT (IWAT) of Siberian hamsters. Animals were perfused on days 5 and 6 postinoculation after H129 and PRV152 injections, respectively, and brains, spinal cords, sympathetic, and dorsal root ganglia (DRG) were processed for immunohistochemical detection of each virus across the neuroaxis. The presence of H129+PRV152-colocalized neurons (∼50%) in the spinal segments innervating IWAT suggested short SNS-SS loops with significant coinfections (>60%) in discrete brain regions, signifying long SNS-SS loops. Notably, the most highly populated sites with the double-infected neurons were the medial part of medial preoptic nucleus, medial preoptic area, hypothalamic paraventricular nucleus, lateral hypothalamus, periaqueductal gray, oral part of the pontine reticular nucleus, and the nucleus of the solitary tract. Collectively, these results strongly indicate the neuroanatomical reality of the central SNS-SS feedback loops with short loops in the spinal cord and long loops in the brain, both likely involved in the control of lipolysis or other WAT pad-specific functions. PMID:24717676
Pawar, Hitesh N.; Balivada, Sivasai; Kenney, Michael J.
2017-01-01
Aging alters sympathetic nervous system (SNS) regulation, although central mechanisms are not well understood. In young rats the rostral ventral lateral medulla (RVLM) is critically involved in central SNS regulation and RVLM neuronal activity is mediated by a balance of excitatory and inhibitory ionotropic neurotransmitters and receptors, providing the foundation for hypothesizing that with advanced age the molecular substrate of RVLM ionotropic receptors is characterized by upregulated excitatory and downregulated inhibitory receptor subunits. This hypothesis was tested by comparing the relative mRNA expression and protein concentration of RVLM excitatory (NMDA and AMPA) and inhibitory (GABA and glycinergic) ionotropic neurotransmitter receptor subunits in young and aged Fischer (F344) rats. Brains were removed from anesthetized rats and the RVLM-containing area was micropunched and extracted RNA and protein were subsequently used for TaqMan qRT-PCR gene expression and quantitative ELISA analyses. Bilateral chemical inactivation of RVLM neurons and peripheral ganglionic blockade on visceral sympathetic nerve discharge (SND) was determined in additional experiments. The relative gene expression of RVLM NMDA and AMPA glutamate-gated receptor subunits and protein concentration of select receptor subunits did not differ between young and aged rats, and there were no age-related differences in the expression of RVLM ionotropic GABAA and Gly receptors, or of protein concentration of select GABAA subunits. RVLM muscimol microinjections significantly reduced visceral SND by 70±2% in aged F344 rats. Collectively these findings from this short communication support a functional role for the RVLM in regulation of sympathetic nerve outflow in aged rats, but provide no evidence for an ionotropic RVLM receptor-centric framework explaining age-associated changes in SNS regulation. PMID:28263869
Pawar, Hitesh N; Balivada, Sivasai; Kenney, Michael J
2017-05-01
Aging alters sympathetic nervous system (SNS) regulation, although central mechanisms are not well understood. In young rats the rostral ventral lateral medulla (RVLM) is critically involved in central SNS regulation and RVLM neuronal activity is mediated by a balance of excitatory and inhibitory ionotropic neurotransmitters and receptors, providing the foundation for hypothesizing that with advanced age the molecular substrate of RVLM ionotropic receptors is characterized by upregulated excitatory and downregulated inhibitory receptor subunits. This hypothesis was tested by comparing the relative mRNA expression and protein concentration of RVLM excitatory (NMDA and AMPA) and inhibitory (GABA and glycinergic) ionotropic neurotransmitter receptor subunits in young and aged Fischer (F344) rats. Brains were removed from anesthetized rats and the RVLM-containing area was micropunched and extracted RNA and protein were subsequently used for TaqMan qRT-PCR gene expression and quantitative ELISA analyses. Bilateral chemical inactivation of RVLM neurons and peripheral ganglionic blockade on visceral sympathetic nerve discharge (SND) was determined in additional experiments. The relative gene expression of RVLM NMDA and AMPA glutamate-gated receptor subunits and protein concentration of select receptor subunits did not differ between young and aged rats, and there were no age-related differences in the expression of RVLM ionotropic GABA A and Gly receptors, or of protein concentration of select GABA A subunits. RVLM muscimol microinjections significantly reduced visceral SND by 70±2% in aged F344 rats. Collectively these findings from this short communication support a functional role for the RVLM in regulation of sympathetic nerve outflow in aged rats, but provide no evidence for an ionotropic RVLM receptor-centric framework explaining age-associated changes in SNS regulation. Published by Elsevier Inc.
Seyedi, N; Maruyama, R; Levi, R
1999-08-01
We had shown that bradykinin (BK) generated by cardiac sympathetic nerve endings (i.e., synaptosomes) promotes exocytotic norepinephrine (NE) release in an autocrine mode. Because the synaptosomal preparation may include sensory C-fiber endings, which BK is known to stimulate, sensory nerves could contribute to the proadrenergic effects of BK in the heart. We report that BK is a potent releaser of NE from guinea pig heart synaptosomes (EC(50) approximately 20 nM), an effect mediated by B(2) receptors, and almost completely abolished by prior C-fiber destruction or blockade of calcitonin gene-related peptide and neurokinin-1 receptors. C-fiber destruction also greatly decreased BK-induced NE release from the intact heart, whereas tyramine-induced NE release was unaffected. Furthermore, C-fiber stimulation with capsaicin and activation of calcitonin gene-related peptide and neurokinin-1 receptors initiated NE release from cardiac synaptosomes, indicating that stimulation of sensory neurons in turn activates sympathetic nerve terminals. Thus, BK is likely to release NE in the heart in part by first liberating calcitonin gene-related peptide and Substance P from sensory nerve endings; these neuropeptides then stimulate specific receptors on sympathetic terminals. This action of BK is positively modulated by cyclooxygenase products, attenuated by activation of histamine H(3) receptors, and potentiated at a lower pH. The NE-releasing action of BK is likely to be enhanced in myocardial ischemia, when protons accumulate, C fibers become activated, and the production of prostaglandins and BK increases. Because NE is a major arrhythmogenic agent, the activation of this interneuronal signaling system between sensory and adrenergic neurons may contribute to ischemic dysrhythmias and sudden cardiac death.
Reversing Maladaptive Plasticity to Cure Autonomic Dysreflexia after Spinal Cord Injury
2016-10-01
official Department of the Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved...Autonomic dysreflexia (AD); Synaptogenesis; Sympathetic pre -ganglionic neurons (SPNs); Gabapentin (GBP); Thrombospondins (TSP); Calcium channel subunit a1d2...artery blood pressure (MABP), mean heart rate (MHR) 6 Experimental outline: Goal 1: Comparing SCI. AD events in the two mice strains
P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease.
Ralevic, Vera
2015-01-01
This review considers the expression and roles of P2X receptors in the cardiovascular system in health and disease and their potential as therapeutic targets. P2X receptors are ligand gated ion channels which are activated by the endogenous ligand ATP. They are formed from the assembly of three P2X subunit proteins from the complement of seven (P2X1-7), which can associate to form homomeric or heteromeric P2X receptors. The P2X1 receptor is widely expressed in the cardiovascular system, being located in the heart, in the smooth muscle of the majority of blood vessels and in platelets. P2X1 receptors expressed in blood vessels can be activated by ATP coreleased with noradrenaline as a sympathetic neurotransmitter, leading to smooth muscle depolarisation and contraction. There is evidence that the purinergic component of sympathetic neurotransmission is increased in hypertension, identifying P2X1 receptors as a possible therapeutic target in this disorder. P2X3 and P2X2/3 receptors are expressed on cardiac sympathetic neurones and may, through positive feedback of neuronal ATP at this prejunctional site, amplify sympathetic neurotransmission. Activation of P2X receptors expressed in the heart increases cardiac myocyte contractility, and an important role of the P2X4 receptor in this has been identified. Deletion of P2X4 receptors in the heart depresses contractile performance in models of heart failure, while overexpression of P2X4 receptors has been shown to be cardioprotective, thus P2X4 receptors may be therapeutic targets in the treatment of heart disease. P2X receptors have been identified on endothelial cells. Although immunoreactivity for all P2X1-7 receptor proteins has been shown on the endothelium, relatively little is known about their function, with the exception of the endothelial P2X4 receptor, which has been shown to mediate endothelium-dependent vasodilatation to ATP released during shear stress. The potential of P2X receptors as therapeutic targets in the treatment of cardiovascular disease is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria
There is large body evidence indicating that stress can lead to cardiovascular disease. However, the exact brain areas and the mechanisms involved remain to be revealed. Here, we performed a series of experiments to characterize the role of CRF1 receptor (CRF1R) in the stress response induced by naloxone-precipitated morphine withdrawal. The experiments were performed in the hypothalamic paraventricular nucleus (PVN) ventrolateral medulla (VLM), brain regions involved in the regulation of cardiovascular activity, and in the right ventricle by using genetically engineered mice lacking functional CRF1R levels (KO). Mice were treated with increasing doses of morphine and withdrawal was precipitated bymore » naloxone administration. Noradrenaline (NA) turnover, c-Fos, expression, PKA and TH phosphorylated at serine 40, was evaluated by high-performance liquid chromatography (HPLC), immunohistochemistry and immunoblotting. Morphine withdrawal induced an enhancement of NA turnover in PVN in parallel with an increase in TH neurons expressing c-Fos in VLM in wild-type mice. In addition we have demonstrated an increase in NA turnover, TH phosphorylated at serine 40 and PKA levels in heart. The main finding of the present study was that NA turnover, TH positive neurons that express c-Fos, TH phosphorylated at serine 40 and PKA expression observed during morphine withdrawal were significantly inhibited in CRF1R KO mice. Our results demonstrate that CRF/CRF1R activation may contribute to the adaptive changes induced by naloxone-precipitated withdrawal in the heart and in the brain areas which modulate the cardiac sympathetic function and suggest that CRF/CRF1R pathways could be contributing to cardiovascular disease associated to opioid addiction. - Highlights: • Naloxone-precipitated morphine withdrawal increases sympathetic activity in the PVN and heart. • Co-localization of TH phosphorylated at serine 40/c-Fos in the VLM after morphine withdrawal • Naloxone-precipitated morphine withdrawal increases PKA expression in the heart. • CRF1 receptor is implicated in the sympathetic activity induced by morphine withdrawal.« less
Hibernating myocardium results in partial sympathetic denervation and nerve sprouting.
Fernandez, Stanley F; Ovchinnikov, Vladislav; Canty, John M; Fallavollita, James A
2013-01-15
Hibernating myocardium due to chronic repetitive ischemia is associated with regional sympathetic nerve dysfunction and spontaneous arrhythmic death in the absence of infarction. Although inhomogeneity in regional sympathetic innervation is an acknowledged substrate for sudden death, the mechanism(s) responsible for these abnormalities in viable, dysfunctional myocardium (i.e., neural stunning vs. sympathetic denervation) and their association with nerve sprouting are unknown. Accordingly, markers of sympathetic nerve function and nerve sprouting were assessed in subendocardial tissue collected from chronically instrumented pigs with hibernating myocardium (n = 18) as well as sham-instrumented controls (n = 7). Hibernating myocardium exhibited evidence of partial sympathetic denervation compared with the normally perfused region and sham controls, with corresponding regional reductions in tyrosine hydroxylase protein (-32%, P < 0.001), norepinephrine uptake transport protein (-25%, P = 0.01), and tissue norepinephrine content (-45%, P < 0.001). Partial denervation induced nerve sprouting with regional increases in nerve growth factor precursor protein (31%, P = 0.01) and growth associated protein-43 (38%, P < 0.05). All of the changes in sympathetic nerve markers were similar in animals that developed sudden death (n = 9) compared with electively terminated pigs with hibernating myocardium (n = 9). In conclusion, sympathetic nerve dysfunction in hibernating myocardium is most consistent with partial sympathetic denervation and is associated with regional nerve sprouting. The extent of sympathetic remodeling is similar in animals that develop sudden death compared with survivors; this suggests that sympathetic remodeling in hibernating myocardium is not an independent trigger for sudden death. Nevertheless, sympathetic remodeling likely contributes to electrical instability in combination with other factors.
Hibernating myocardium results in partial sympathetic denervation and nerve sprouting
Fernandez, Stanley F.; Ovchinnikov, Vladislav; Canty, John M.
2013-01-01
Hibernating myocardium due to chronic repetitive ischemia is associated with regional sympathetic nerve dysfunction and spontaneous arrhythmic death in the absence of infarction. Although inhomogeneity in regional sympathetic innervation is an acknowledged substrate for sudden death, the mechanism(s) responsible for these abnormalities in viable, dysfunctional myocardium (i.e., neural stunning vs. sympathetic denervation) and their association with nerve sprouting are unknown. Accordingly, markers of sympathetic nerve function and nerve sprouting were assessed in subendocardial tissue collected from chronically instrumented pigs with hibernating myocardium (n = 18) as well as sham-instrumented controls (n = 7). Hibernating myocardium exhibited evidence of partial sympathetic denervation compared with the normally perfused region and sham controls, with corresponding regional reductions in tyrosine hydroxylase protein (−32%, P < 0.001), norepinephrine uptake transport protein (−25%, P = 0.01), and tissue norepinephrine content (−45%, P < 0.001). Partial denervation induced nerve sprouting with regional increases in nerve growth factor precursor protein (31%, P = 0.01) and growth associated protein-43 (38%, P < 0.05). All of the changes in sympathetic nerve markers were similar in animals that developed sudden death (n = 9) compared with electively terminated pigs with hibernating myocardium (n = 9). In conclusion, sympathetic nerve dysfunction in hibernating myocardium is most consistent with partial sympathetic denervation and is associated with regional nerve sprouting. The extent of sympathetic remodeling is similar in animals that develop sudden death compared with survivors; this suggests that sympathetic remodeling in hibernating myocardium is not an independent trigger for sudden death. Nevertheless, sympathetic remodeling likely contributes to electrical instability in combination with other factors. PMID:23125211
Enriori, Pablo J; Sinnayah, Puspha; Simonds, Stephanie E; Garcia Rudaz, Cecilia; Cowley, Michael A
2011-08-24
Leptin regulates body weight in mice by decreasing appetite and increasing sympathetic nerve activity (SNA), which increases energy expenditure in interscapular brown adipose tissue (iBAT). Diet-induced obese mice (DIO) are resistant to the anorectic actions of leptin. We evaluated whether leptin still stimulated sympathetic outflow in DIO mice. We measured iBAT temperature as a marker of SNA. We found that obese hyperleptinemic mice have higher iBAT temperature than mice on regular diet. Conversely, obese leptin-deficient ob/ob mice have lower iBAT temperature. Additionally, leptin increased SNA in obese (DIO and ob/ob) and control mice, despite DIO mice being resistant to anorectic action of leptin. We demonstrated that neurons in the dorsomedial hypothalamus (DMH) of DIO mice mediate the thermogenic responses to hyperleptinemia in obese mammals because blockade of leptin receptors in the DMH prevented the thermogenic effects of leptin. Peripheral Melotan II (MTII) injection increased iBAT temperature, but it was blunted by blockade of DMH melanocortin receptors (MC4Rs) by injecting agouti-related peptide (AgRP) directly into the DMH, suggesting a physiological role of the DMH on temperature regulation in animals with normal body weight. Nevertheless, obese mice without a functional melanocortin system (MC4R KO mice) have an increased sympathetic outflow to iBAT compared with their littermates, suggesting that higher leptin levels drive sympathoexcitation to iBAT by a melanocortin-independent pathway. Because the sympathetic nervous system contributes in regulating blood pressure, heart rate, and hepatic glucose production, selective leptin resistance may be a crucial mechanism linking adiposity and metabolic syndrome.
Scheiderer, Cary L; McCutchen, Eve; Thacker, Erin E; Kolasa, Krystyna; Ward, Matthew K; Parsons, Dee; Harrell, Lindy E; Dobrunz, Lynn E; McMahon, Lori L
2006-04-05
Degeneration of septohippocampal cholinergic neurons results in memory deficits attributable to loss of cholinergic modulation of hippocampal synaptic circuits. A remarkable consequence of cholinergic degeneration is the sprouting of noradrenergic sympathetic fibers from the superior cervical ganglia into hippocampus. The functional impact of sympathetic ingrowth on synaptic physiology has never been investigated. Here, we report that, at CA3-CA1 synapses, a Hebbian form of long-term depression (LTD) induced by muscarinic M1 receptor activation (mLTD) is lost after medial septal lesion. Unexpectedly, expression of mLTD is rescued by sympathetic sprouting. These effects are specific because LTP and other forms of LTD are unaffected. The rescue of mLTD expression is coupled temporally with the reappearance of cholinergic fibers in hippocampus, as assessed by the immunostaining of fibers for VAChT (vesicular acetylcholine transporter). Both the cholinergic reinnervation and mLTD rescue are prevented by bilateral superior cervical ganglionectomy, which also prevents the noradrenergic sympathetic sprouting. The new cholinergic fibers likely originate from the superior cervical ganglia because unilateral ganglionectomy, performed when cholinergic reinnervation is well established, removes the reinnervation on the ipsilateral side. Thus, the temporal coupling of the cholinergic reinnervation with mLTD rescue, together with the absence of reinnervation and mLTD expression after ganglionectomy, demonstrate that the autonomic-driven cholinergic reinnervation is essential for maintaining mLTD after central cholinergic cell death. We have discovered a novel phenomenon whereby the autonomic and central nervous systems experience structural rearrangement to replace lost cholinergic innervation in hippocampus, with the consequence of preserving a form of LTD that would otherwise be lost as a result of cholinergic degeneration.
Brain-mediated dysregulation of the bone marrow activity in angiotensin II-induced hypertension.
Jun, Joo Yun; Zubcevic, Jasenka; Qi, Yanfei; Afzal, Aqeela; Carvajal, Jessica Marulanda; Thinschmidt, Jeffrey S; Grant, Maria B; Mocco, J; Raizada, Mohan K
2012-11-01
Oxidative stress in the brain is implicated in increased sympathetic drive, inflammatory status, and vascular dysfunctions, associated with development and establishment of hypertension. However, little is known about the mechanism of this impaired brain-vascular communication. Here, we tested the hypothesis that increased oxidative stress in the brain cardioregulatory areas, such as the paraventricular nucleus of the hypothalamus, is driven by mitochondrial reactive oxygen species and leads to increased inflammatory cells (ICs) and decreased/dysfunctional endothelial progenitor cells (EPCs), thereby compromising vasculature repair and accelerating hypertension. Chronic angiotensin II infusion resulted in elevated blood pressure and sympathetic vasomotor drive, decreased spontaneous baroreflex gain, and increased microglia activation in the paraventricular nucleus. This was associated with 46% decrease in bone marrow (BM)-derived EPCs and 250% increase in BM ICs, resulting in 5-fold decrease of EPC/IC ratio in the BM. Treatment with mitochondrial-targeted antioxidant, a scavenger of mitochondrial O(2)(-·), intracerebroventricularly but not subcutaneously attenuated angiotensin II-induced hypertension, decreased activation of microglia in the paraventricular nucleus, and normalized EPCs/ICs. This functional communication between the brain and BM was confirmed by retrograde neuronal labeling from the BM with green fluorescent protein-tagged pseudorabies virus. Administration of green fluorescent protein-tagged pseudorabies virus into the BM resulted in predominant labeling of paraventricular nucleus neurons within 3 days, with some fluorescence in the nucleus tractus solitarius, the rostral ventrolateral medulla, and subfornical organ. Taken together, these data demonstrate that inhibition of mitochondrial reactive oxygen species attenuates angiotensin II-induced hypertension and corrects the imbalance in EPCs/ICs in the BM. They suggest that an imbalance in vascular reparative and ICs may perpetuate vascular pathophysiology in this model of hypertension.
Brain-Mediated Dysregulation of the Bone Marrow Activity in Angiotensin II-induced Hypertension
Jun, Joo Yun; Zubcevic, Jasenka; Qi, Yanfei; Afzal, Aqeela; Carvajal, Jessica Marulanda; Thinschmidt, Jeffrey S; Grant, Maria B.; Mocco, J; Raizada, Mohan K
2012-01-01
Oxidative stress in the brain is implicated in increased sympathetic drive, inflammatory status and vascular dysfunctions, associated with development and establishment of hypertension. However, little is known about the mechanism of this impaired brain-vascular communication. Here, we tested the hypothesis that increased oxidative stress in the brain cardioregulatory areas, such as the paraventricular nucleus (PVN) of the hypothalamus, is driven by mitochondrial reactive oxygen species (ROS) and leads to increased inflammatory cells (ICs) and decreased/dysfunctional endothelial progenitor cells (EPCs), thereby compromising vasculature repair and accelerating hypertension. Chronic angiotensin II (Ang II) infusion resulted in elevated blood pressure and sympathetic vasomotor drive, decreased spontaneous baroreflex gain, and increased microglia activation in the PVN. This was associated with 46% decrease in BM EPCs and 250% increase in BM ICs, resulting in 5 fold decrease of EPCs/ICs ratio in the BM. Treatment with mitoTEMPO, a scavenger of mitochondrial O2−• intracerebroventricularly but not subcutaneously, attenuated Ang II-induced hypertension, decreased activation of microglia in the PVN, and normalized EPCs/ICs. This functional communication between the brain and BM was confirmed by retrograde neuronal labeling from the BM with GFP-tagged pseudorabies virus (PRV). Administration of GFP-PRV into the BM resulted in predominant labeling of PVN neurons within 3 days, with some fluorescence in the NTS, RVLM and SFO. Taken together, these data demonstrate that inhibition of mitochondrial ROS attenuates Ang II-induced hypertension and corrects the imbalance in EPCs/ICs in the BM. They suggest that an imbalance in vascular reparative and ICs may perpetuate vascular pathophysiology in this model of hypertension. PMID:23045460
Przywara, D A; Bhave, S V; Bhave, A; Chowdhury, P S; Wakade, T D; Wakade, A R
1992-01-01
We studied the effects of lanthanum (La3+) on the release of 3H-norepinephrine (3H-NE), intracellular Ca2+ concentration, and voltage clamped Ca2+ and K+ currents in cultured sympathetic neurons. La3+ (0.1 to 10 microM) produced concentration-dependent inhibition of depolarization induced Ca2+ influx and 3H-NE release. La3+ was more potent and more efficacious in blocking 3H-NE release than the Ca(2+)-channel blockers cadmium and verapamil, which never blocked more than 70% of the release. At 3 microM, La3+ produced a complete block of the electrically stimulated rise in intracellular free Ca2+ ([Ca2+]i) in the cell body and the growth cone. The stimulation-evoked release of 3H-NE was also completely blocked by 3 microM La3+. However, 3 microM La3+ produced only a partial block of voltage clamped Ca2+ current (ICa). Following La3+ (10 microM) treatment 3H-NE release could be evoked by high K+ stimulation of neurons which were refractory to electrical stimulation. La3+ (1 microM) increased the hyperpolarization activated, 4-aminopyridine (4-AP) sensitive, transient K+ current (IA) with little effect on the late outward current elicited from depolarized holding potentials. We conclude that the effective block of electrically stimulated 3H-NE release is a result of the unique ability of La3+ to activate a stabilizing, outward K+ current at the same concentration that it blocks inward Ca2+ current.
Sun, Hao; Li, De-Pei; Chen, Shao-Rui; Hittelman, Walter N; Pan, Hui-Lin
2009-12-01
The arterial baroreceptor is critically involved in the autonomic regulation of homoeostasis. The transient receptor potential vanilloid 1 (TRPV1) receptor is expressed on both somatic and visceral sensory neurons. Here, we examined the TRPV1 innervation of baroreceptive pathways and its functional significance in the baroreflex. Resiniferatoxin (RTX), an ultrapotent analog of capsaicin, was used to ablate TRPV1-expressing afferent neurons and fibers in adult rats. Immunofluorescence labeling revealed that TRPV1 immunoreactivity was present on nerve fibers and terminals in the adventitia of the ascending aorta and aortic arch, the nodose ganglion neurons, and afferent fibers in the solitary tract of the brainstem. RTX treatment eliminated TRPV1 immunoreactivities in the aorta, nodose ganglion, and solitary tract. Renal sympathetic nerve activity, blood pressure, and heart rate were recorded in anesthetized rats. The baroreflex was triggered by lowering and raising blood pressure through intravenous infusion of sodium nitroprusside and phenylephrine, respectively. Inhibition of sympathetic nerve activity and heart rate by the phenylephrine-induced increase in blood pressure was largely impaired in RTX-treated rats. The maximum gain of the baroreflex function was significantly lower in RTX-treated than vehicle-treated rats. Furthermore, blocking of TRPV1 receptors significantly blunted the baroreflex and decreased the maximum gain of baroreflex function in the high blood pressure range. Our findings provide important new information that TRPV1 is expressed along the entire baroreceptive afferent pathway. TRPV1 receptors expressed on baroreceptive nerve endings can function as mechanoreceptors to detect the increase in blood pressure and maintain the homoeostasis.
Sun, Hao; Li, De-Pei; Chen, Shao-Rui; Hittelman, Walter N.
2009-01-01
The arterial baroreceptor is critically involved in the autonomic regulation of homoeostasis. The transient receptor potential vanilloid 1 (TRPV1) receptor is expressed on both somatic and visceral sensory neurons. Here, we examined the TRPV1 innervation of baroreceptive pathways and its functional significance in the baroreflex. Resiniferatoxin (RTX), an ultrapotent analog of capsaicin, was used to ablate TRPV1-expressing afferent neurons and fibers in adult rats. Immunofluorescence labeling revealed that TRPV1 immunoreactivity was present on nerve fibers and terminals in the adventitia of the ascending aorta and aortic arch, the nodose ganglion neurons, and afferent fibers in the solitary tract of the brainstem. RTX treatment eliminated TRPV1 immunoreactivities in the aorta, nodose ganglion, and solitary tract. Renal sympathetic nerve activity, blood pressure, and heart rate were recorded in anesthetized rats. The baroreflex was triggered by lowering and raising blood pressure through intravenous infusion of sodium nitroprusside and phenylephrine, respectively. Inhibition of sympathetic nerve activity and heart rate by the phenylephrine-induced increase in blood pressure was largely impaired in RTX-treated rats. The maximum gain of the baroreflex function was significantly lower in RTX-treated than vehicle-treated rats. Furthermore, blocking of TRPV1 receptors significantly blunted the baroreflex and decreased the maximum gain of baroreflex function in the high blood pressure range. Our findings provide important new information that TRPV1 is expressed along the entire baroreceptive afferent pathway. TRPV1 receptors expressed on baroreceptive nerve endings can function as mechanoreceptors to detect the increase in blood pressure and maintain the homoeostasis. PMID:19726694
Yolas, Coskun; Kanat, Ayhan; Aydin, Mehmet Dumlu; Altas, Ender; Kanat, Ilyas Ferit; Kazdal, Hizir; Duman, Aslihan; Gundogdu, Betul; Gursan, Nesrin
2016-02-01
Cardiac arrest is a major life-threatening complication of subarachnoid hemorrhage (SAH). Although medullary cardiocirculatuar center injury and central sympathetic overactivity have been suspected of initiating coronary artery spasm-induced cardiac arrest, we aimed to elucidate the effects of vagal ischemia at the brainstem on coronary vasospasm and sudden death in SAH. Twenty-six rabbits were randomly divided into 3 groups. Control (n = 5); SHAM (n = 8), and SAH group (n = 13). Experimental SAH was applied by injecting homologous blood into the cisterna magna, and the SHAM group was injected with isotonic saline solution also in the cisterna magna., Twenty-one days after the injection, histopathologic changes of the neuron density of nodose ganglia, the vasospasm index values of the coronary arteries, and the electrocardiographic events were analyzed. Increased vasospasm index of the coronary arteries and degenerated neuron density of nodose ganglion were significantly different between animals with SAH, control, and SHAM groups (P < 0.005). If neurons of the nodose ganglia are lesioned due to ischemic insult during SAH, the heart rhythm regulation by vagus afferent reflexes is disturbed. We found that there is causal relationship between nodose ganglion degeneration and coronary vasospasm. Our finding could be the reason that many cardiac events occur in patients with SAH. Vagal pathway paralysis induced by indirect sympathetic overactivity may trigger coronary vasospasm and heart rhythm disturbances. Our findings will aid in the planning of future experimental studies and in determining the clinical relevance of such studies. Copyright © 2016 Elsevier Inc. All rights reserved.
Lin, A M; Wang, Y; Su, C K; Lee, E H; Kuo, J S; Chai, C Y
1991-01-01
Previous studies have shown that paramedian reticular nucleus (PRN) possessed sympathetic and parasympathetic inhibitions on autonomic nervous system. In the present study, the cardiovascular reactions of PRN by locally-applied DL-homocysteic acid (DLH), acetylcholine (ACh), monoamines and electrophysiological properties of PRN neurons responding to intravenous injection of ACh and NE were studied in adult Sprague-Dawley rats. In PRN, electrical stimulation caused hypotension and mild bradycardia while microinjection of DLH, which excites only cell body of the neurons but not passing fibers, evoked similar responses. Furthermore, direct application of ACh, norepinephrine (NE) or serotonin (5-HT) in PRN also produced hypotension, suggesting that these putative neurotransmitters may be involved in the cardiovascular responses in PRN. The electrophysiological properties of PRN neurons were studied: Neurons in PRN could be categorized into three types according to their neuronal activities in response to the changes of systemic arterial blood pressure (SAP) by ACh or NE given intravenously. Type I neurons (25/69) were activated in the same direction of SAP changes. Type II neurons (17/69) responded opposite to the direction of SAP changes. Type III neurons (27/69) responded inconsistently to the changes of SAP. All the three types of neurons were excited by locally-applied DLH and possessed a similar unfiltered action potential duration of greater than 0.5 msec.
Ireland, D R; Davies, P J; McLachlan, E M
1999-01-01
1. The involvement of different presynaptic Ca2+ channels in transmission at 'weak' (subthreshold) and 'strong' (suprathreshold) synapses was investigated in guinea-pig paravertebral ganglia isolated in vitro. Selective Ca2+ channel antagonists were used to block excitatory synaptic currents evoked by stimulating single preganglionic axons. 2. The N-type Ca2+ channel blocker, omega-conotoxin GVIA (100 nM), reduced peak synaptic conductance by similar amounts at weak synapses (by 39 +/- 6 %) and strong synapses (34 +/- 6 %). 3. The P-type Ca2+ channel blocker, omega-agatoxin IVA (40 nM), significantly reduced transmitter release at weak synapses (by 42 +/- 6 %) but had only a small effect at strong synapses (reduced by 6 +/- 2 %). 4. Blockers of Q-, L- or T-type Ca2+ channels had no significant effects on peak synaptic conductance at either type of synapse. 5. We conclude that the two functionally distinct types of preganglionic terminal in sympathetic ganglia which synapse on the same neurone differ in their expression of particular types of voltage-dependent Ca2+ channels. Both types utilize N-type channels and channels resistant to blockade by specific antagonists, but Ca2+ entry through P-type channels makes a substantial contribution to acetylcholine release only at weak synapses.
Ireland, David R; Davies, Philip J; McLachlan, Elspeth M
1999-01-01
The involvement of different presynaptic Ca2+ channels in transmission at ‘weak’ (subthreshold) and ‘strong’ (suprathreshold) synapses was investigated in guinea-pig paravertebral ganglia isolated in vitro. Selective Ca2+ channel antagonists were used to block excitatory synaptic currents evoked by stimulating single preganglionic axons.The N-type Ca2+ channel blocker, ω-conotoxin GVIA (100 nm), reduced peak synaptic conductance by similar amounts at weak synapses (by 39 ± 6%) and strong synapses (34 ± 6%).The P-type Ca2+ channel blocker, ω-agatoxin IVA (40 nm), significantly reduced transmitter release at weak synapses (by 42 ± 6%) but had only a small effect at strong synapses (reduced by 6 ± 2%).Blockers of Q-, L- or T-type Ca2+ channels had no significant effects on peak synaptic conductance at either type of synapse.We conclude that the two functionally distinct types of preganglionic terminal in sympathetic ganglia which synapse on the same neurone differ in their expression of particular types of voltage-dependent Ca2+ channels. Both types utilize N-type channels and channels resistant to blockade by specific antagonists, but Ca2+ entry through P-type channels makes a substantial contribution to acetylcholine release only at weak synapses. PMID:9831716
Gou-Fàbregas, Myriam; Macià, Anna; Anerillas, Carlos; Vaquero, Marta; Jové, Mariona; Jain, Sanjay; Ribera, Joan; Encinas, Mario
2016-01-01
Smith-Lemli-Opitz syndrome (SLOS) is a rare disorder of cholesterol synthesis. Affected individuals exhibit growth failure, intellectual disability and a broad spectrum of developmental malformations. Among them, renal agenesis or hypoplasia, decreased innervation of the gut, and ptosis are consistent with impaired Ret signaling. Ret is a receptor tyrosine kinase that achieves full activity when recruited to lipid rafts. Mice mutant for Ret are born with no kidneys and enteric neurons, and display sympathetic nervous system defects causing ptosis. Since cholesterol is a critical component of lipid rafts, here we tested the hypothesis of whether the cause of the above malformations found in SLOS is defective Ret signaling owing to improper lipid raft composition or function. No defects consistent with decreased Ret signaling were found in newborn Dhcr7−/− mice, or in Dhcr7−/− mice lacking one copy of Ret. Although kidneys from Dhcr7−/− mice showed a mild branching defect in vitro, GDNF was able to support survival and downstream signaling of sympathetic neurons. Consistently, GFRα1 correctly partitioned to lipid rafts in brain tissue. Finally, replacement experiments demonstrated that 7-DHC efficiently supports Ret signaling in vitro. Taken together, our findings do not support a role of Ret signaling in the pathogenesis of SLOS. PMID:27334845
Sensing of glucose in the brain.
Thorens, Bernard
2012-01-01
The brain, and in particular the hypothalamus and brainstem, have been recognized for decades as important centers for the homeostatic control of feeding, energy expenditure, and glucose homeostasis. These structures contain neurons and neuronal circuits that may be directly or indirectly activated or inhibited by glucose, lipids, or amino acids. The detection by neurons of these nutrient cues may become deregulated, and possibly cause metabolic diseases such as obesity and diabetes. Thus, there is a major interest in identifying these neurons, how they respond to nutrients, the neuronal circuits they form, and the physiological function they control. Here I will review some aspects of glucose sensing by the brain. The brain is responsive to both hyperglycemia and hypoglycemia, and the glucose sensing cells involved are distributed in several anatomical sites that are connected to each other. These eventually control the activity of the sympathetic or parasympathetic nervous system, which regulates the function of peripheral organs such as liver, white and brown fat, muscle, and pancreatic islets alpha and beta cells. There is now evidence for an extreme diversity in the sensing mechanisms used, and these will be reviewed.
Ventral medullary neurones excited from the hypothalamic and mid-brain defence areas.
Hilton, S M; Smith, P R
1984-07-01
In cats anaesthetised with chloralose, the ventral medulla was explored in and around the strip previously identified as the location of the efferent pathway from the hypothalamic and mid-brain defence areas to the spinal cord, in a search for neurones excited by electrical stimulation of the defence areas. Such units were found mostly in the caudal part of this strip, at a depth of not more than 500 microns from the surface. Nearly all were located in the ventral part of nucleus paragigantocellularis lateralis (PGL) at the level of the rostral pole of the inferior olive. There was evidence of temporal and spatial facilitation, indicating a convergent excitatory input from the defence areas onto neurones in PGL. This is consistent with earlier evidence of a synaptic relay in the efferent pathway at this site. When the pathway is blocked at this site, arterial blood pressure falls profoundly, so activity in these neurones may be essential for the normal level of sympathetic nerve activity.
Common endocrine control of body weight, reproduction, and bone mass
NASA Technical Reports Server (NTRS)
Takeda, Shu; Elefteriou, Florent; Karsenty, Gerard
2003-01-01
Bone mass is maintained constant between puberty and menopause by the balance between osteoblast and osteoclast activity. The existence of a hormonal control of osteoblast activity has been speculated for years by analogy to osteoclast biology. Through the search for such humoral signal(s) regulating bone formation, leptin has been identified as a strong inhibitor of bone formation. Furthermore, intracerebroventricular infusion of leptin has shown that the effect of this adipocyte-derived hormone on bone is mediated via a brain relay. Subsequent studies have led to the identification of hypothalamic groups of neurons involved in leptin's antiosteogenic function. In addition, those neurons or neuronal pathways are distinct from neurons responsible for the regulation of energy metabolism. Finally, the peripheral mediator of leptin's antiosteogenic function has been identified as the sympathetic nervous system. Sympathomimetics administered to mice decreased bone formation and bone mass. Conversely, beta-blockers increased bone formation and bone mass and blunted the bone loss induced by ovariectomy.
An immunoelectron microscopic study of methionine-enkephalin structures in cat prevertebral ganglia.
Benfares, J; Henry, M; Cupo, A; Julé, Y
1995-03-01
Methionine-enkephalin-like immunoreactivity was detected in presynaptic nerve fibers and SIF cells in cat prevertebral ganglia. The immunoreactive nerve fibers contained a mixture of numerous small clear vesicles and a few large vesicles; the immunoreactivity was only confined to the large vesicles. Most of the immunoreactive fibers were in apposition with non-immunoreactive neuronal profiles, without any detectable synaptic membrane specializations. The other immunoreactive fibers formed synaptic contacts mainly with non-immunostained dendrites and to a lesser extent with axons and neuronal soma. The characterization at the ultrastructural level of the enkephalin-like immunoreactive structures is discussed as regards the modalities whereby opiates may be involved in sympathetic ganglionic transmission.
Functional role of A-type potassium currents in rat presympathetic PVN neurones
Sonner, Patrick M; Stern, Javier E
2007-01-01
Despite the fact that paraventricular nucleus (PVN) neurones innervating the rostral ventrolateral medulla (RVLM) play important roles in the control of sympathetic function both in physiological and pathological conditions, the precise mechanisms controlling their activity are still incompletely understood. In the present study, we evaluated whether the transient outward potassium current IA is expressed in PVN-RVLM neurones, characterized its biophysical and pharmacological properties, and determined its role in shaping action potentials and firing discharge in these neurones. Patch-clamp recordings obtained from retrogradely labelled, PVN-RVLM neurones indicate that a 4-AP sensitive, TEA insensitive current, with biophysical properties consistent with IA, is present in these neurones. Pharmacological blockade of IA depolarized resting Vm and prolonged Na+ action potential duration, by increasing its width and by slowing down its decay time course. Interestingly, blockade of IA either increased or decreased the firing activity of PVN-RVLM neurones, supporting the presence of subsets of PVN-RVLM neurones differentially modulated by IA. In all cases, the effects of IA on firing activity were prevented by a broad spectrum Ca2+ channel blocker. Immunohistochemical studies suggest that IA in PVN-RVLM neurons is mediated by Kv1.4 and/or Kv4.3 channel subunits. Overall, our results demonstrate the presence of IA in PVN-RVLM neurones, which actively modulates their action potential waveform and firing activity. These studies support IA as an important intrinsic mechanism controlling neuronal excitability in this central presympathetic neuronal population. PMID:17525115
NASA Technical Reports Server (NTRS)
Biaggioni, I.; Whetsell, W. O.; Jobe, J.; Nadeau, J. H.
1994-01-01
Animal studies have shown the importance of the nucleus tractus solitarii, a collection of neurons in the brain stem, in the acute regulation of blood pressure. Impulses arising from the carotid and aortic baroreceptors converge in this center, where the first synapse of the baroreflex is located. Stimulation of the nucleus tractus solitarii provides an inhibitory signal to other brain stem structures, particularly the rostral ventrolateral medulla, resulting in a reduction in sympathetic outflow and a decrease in blood pressure. Conversely, experimental lesions of the nucleus tractus solitarii lead to loss of baroreflex control of blood pressure, sympathetic activation, and severe hypertension in animals. In humans, baroreflex failure due to deafferentation of baroreceptors has been previously reported and is characterized by episodes of severe hypertension and tachycardia. We present a patient with an undetermined process of the central nervous system characterized pathologically by ubiquitous infarctions that were particularly prominent in the nucleus tractus solitarii bilaterally but spared the rostral ventrolateral medulla. Absence of a functioning baroreflex was evidenced by the lack of reflex tachycardia to the hypotensive effects of sodium nitroprusside, exaggerated pressor responses to handgrip and cold pressor test, and exaggerated depressor responses to meals and centrally acting alpha 2-agonists. This clinicopathological correlate suggests that the patient's baroreflex failure can be explained by the unique combination of the destruction of sympathetic inhibitory centers (ie, the nucleus tractus solitarii) and preservation of centers that exert a positive modulation on sympathetic tone (ie, the rostral ventrolateral medulla).
The plasminogen activator system modulates sympathetic nerve function.
Schaefer, Ulrich; Machida, Takuji; Vorlova, Sandra; Strickland, Sidney; Levi, Roberto
2006-09-04
Sympathetic neurons synthesize and release tissue plasminogen activator (t-PA). We investigated whether t-PA modulates sympathetic activity. t-PA inhibition markedly reduced contraction of the guinea pig vas deferens to electrical field stimulation (EFS) and norepinephrine (NE) exocytosis from cardiac synaptosomes. Recombinant t-PA (rt-PA) induced exocytotic and carrier-mediated NE release from cardiac synaptosomes and cultured neuroblastoma cells; this was a plasmin-independent effect but was potentiated by a fibrinogen cleavage product. Notably, hearts from t-PA-null mice released much less NE upon EFS than their wild-type (WT) controls (i.e., a 76.5% decrease; P<0.01), whereas hearts from plasminogen activator inhibitor-1 (PAI-1)-null mice released much more NE (i.e., a 275% increase; P<0.05). Furthermore, vasa deferentia from t-PA-null mice were hyporesponsive to EFS (P<0.0001) but were normalized by the addition of rt-PA. In contrast, vasa from PAI-1-null mice were much more responsive (P<0.05). Coronary NE overflow from hearts subjected to ischemia/reperfusion was much smaller in t-PA-null than in WT control mice (P<0.01). Furthermore, reperfusion arrhythmias were significantly reduced (P<0.05) in t-PA-null hearts. Thus, t-PA enhances NE release from sympathetic nerves and contributes to cardiac arrhythmias in ischemia/reperfusion. Because the risk of arrhythmias and sudden cardiac death is increased in hyperadrenergic conditions, targeting the NE-releasing effect of t-PA may have valuable therapeutic potential.
Cardiac autonomic neuropathy in patients with diabetes mellitus
Dimitropoulos, Gerasimos; Tahrani, Abd A; Stevens, Martin J
2014-01-01
Cardiac autonomic neuropathy (CAN) is an often overlooked and common complication of diabetes mellitus. CAN is associated with increased cardiovascular morbidity and mortality. The pathogenesis of CAN is complex and involves a cascade of pathways activated by hyperglycaemia resulting in neuronal ischaemia and cellular death. In addition, autoimmune and genetic factors are involved in the development of CAN. CAN might be subclinical for several years until the patient develops resting tachycardia, exercise intolerance, postural hypotension, cardiac dysfunction and diabetic cardiomyopathy. During its sub-clinical phase, heart rate variability that is influenced by the balance between parasympathetic and sympathetic tones can help in detecting CAN before the disease is symptomatic. Newer imaging techniques (such as scintigraphy) have allowed earlier detection of CAN in the pre-clinical phase and allowed better assessment of the sympathetic nervous system. One of the main difficulties in CAN research is the lack of a universally accepted definition of CAN; however, the Toronto Consensus Panel on Diabetic Neuropathy has recently issued guidance for the diagnosis and staging of CAN, and also proposed screening for CAN in patients with diabetes mellitus. A major challenge, however, is the lack of specific treatment to slow the progression or prevent the development of CAN. Lifestyle changes, improved metabolic control might prevent or slow the progression of CAN. Reversal will require combination of these treatments with new targeted therapeutic approaches. The aim of this article is to review the latest evidence regarding the epidemiology, pathogenesis, manifestations, diagnosis and treatment for CAN. PMID:24567799
Neurotrophins, growth-factor-regulated genes and the control of energy balance.
Salton, Stephen R J
2003-03-01
Neurotrophic growth factors are proteins that control neuronal differentiation and survival, and consequently play important roles in the developing and adult stages of the nervous system. Study of the genes that are regulated by these growth factors has provided insight into the proteins that are critical to the maturation of the nervous system, suggesting that select neurotrophins may play a role in the control of body homeostasis by the brain and peripheral nervous system. Our understanding of the mechanisms of action of neurotrophic growth factors has increased through experimental manipulation of cultured neurons and neuronal cell lines. In particular, the PC12 pheochromocytoma cell line, which displays many properties of adrenal chromaffin cells and undergoes differentiation into sympathetic neuron-like cells when treated with nerve growth factor, has been extensively investigated to identify components of neurotrophin signaling pathways as well as the genes that they regulate. VGF was one of the first neurotrophin-regulated clones identified in NGF-treated PC12 cells. Subsequent studies indicate that the vgf gene is regulated in vivo in the nervous system by neurotrophins, by electrical activity, in response to injury or seizure, and by feeding and the circadian clock. The vgf gene encodes a polypeptide rich in paired basic amino acids; this polypeptide is differentially processed in neuronal and neuroendocrine cells and is released via the regulated secretory pathway. Generation and analysis of knockout mice that fail to synthesize VGF indicate that this protein plays a critical, non-redundant role in the regulation of energy homeostasis, providing a possible link between neurotrophin function in the nervous system and the peripheral control of feeding and metabolic activity. Future experiments should clarify the sites and mechanisms of action of this neurotrophin-regulated neuronal and neuroendocrine protein.
Fargali, Samira; Sadahiro, Masato; Jiang, Cheng; Frick, Amy L.; Indall, Tricia; Cogliani, Valeria; Welagen, Jelle; Lin, Wei-jye; Salton, Stephen R.
2012-01-01
Members of the neurotrophin family, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5), and other neurotrophic growth factors such as ciliary neurotrophic factor (CNTF) and artemin, regulate peripheral and central nervous system development and function. A subset of the neurotrophin-dependent pathways in the hypothalamus, brainstem, and spinal cord, and those that project via the sympathetic nervous system to peripheral metabolic tissues including brown and white adipose tissue (BAT and WAT), muscle and liver, regulate feeding, energy storage, and energy expenditure. We briefly review the role that neurotrophic growth factors play in energy balance, as regulators of neuronal survival and differentiation, neurogenesis, and circuit formation and function, and as inducers of critical gene products that control energy homeostasis. PMID:22581449
M-currents and other potassium currents in bullfrog sympathetic neurones
Adams, P. R.; Brown, D. A.; Constanti, A.
1982-01-01
1. Bullfrog lumbar sympathetic neurones were voltage-clamped in vitro through twin micro-electrodes. Four different outward (K+) currents could be identified: (i) a large sustained voltage-sensitive delayed rectifier current (IK) activated at membrane potentials more positive than -25 mV; (ii) a calcium-dependent sustained outward current (IC) activated at similar positive potentials and peaking at +20 to +60 mV; (iii) a transient current (IA) activated at membrane potentials more positive than -60 mV after a hyperpolarizing pre-pulse, but which was rapidly and totally inactivated at all potentials within its activation range; and (iv) a new K+ current, the M-current (IM). 2. IM was detected as a non-inactivating current with a threshold at -60 mV. The underlying conductance GM showed a sigmoidal activation curve between -60 and -10 mV, with half-activation at -35 mV and a maximal value (ḠM) of 84±14 (S.E.M.) nS per neurone. The voltage sensitivity of GM could be expressed in terms of a simple Boltzmann distribution for a single multivalent gating particle. 3. IM activated and de-activated along an exponential time course with a time constant uniquely dependent upon voltage, maximizing at ≃ 150 ms at -35 mV at 22 °C. 4. Instantaneous current—voltage (I/V) curves were approximately linear in the presence of IM, suggesting that the M-channels do not show appreciable rectification. However, the time- and voltage-dependent opening of the M-channels induced considerable rectification in the steady-state I/V curves recorded under both voltage-clamp and current-clamp modes between -60 and -25 mV. Both time- and voltage-dependent rectification in the voltage responses to current injection over this range could be predicted from the kinetic properties of IM. 5. It is suggested that IM exerts a strong potential-clamping effect on the behaviour of these neurones at membrane potentials subthreshold to excitation. PMID:6294290
Loss of dorsomedial hypothalamic GLP-1 signaling reduces BAT thermogenesis and increases adiposity.
Lee, Shin J; Sanchez-Watts, Graciela; Krieger, Jean-Philippe; Pignalosa, Angelica; Norell, Puck N; Cortella, Alyssa; Pettersen, Klaus G; Vrdoljak, Dubravka; Hayes, Matthew R; Kanoski, Scott; Langhans, Wolfgang; Watts, Alan G
2018-05-01
Glucagon-like peptide-1 (GLP-1) neurons in the hindbrain densely innervate the dorsomedial hypothalamus (DMH), a nucleus strongly implicated in body weight regulation and the sympathetic control of brown adipose tissue (BAT) thermogenesis. Therefore, DMH GLP-1 receptors (GLP-1R) are well placed to regulate energy balance by controlling sympathetic outflow and BAT function. We investigate this possibility in adult male rats by using direct administration of GLP-1 (0.5 ug) into the DMH, knocking down DMH GLP-1R mRNA with viral-mediated RNA interference, and by examining the neurochemical phenotype of GLP-1R expressing cells in the DMH using in situ hybridization. GLP-1 administered into the DMH increased BAT thermogenesis and hepatic triglyceride (TG) mobilization. On the other hand, Glp1r knockdown (KD) in the DMH increased body weight gain and adiposity, with a concomitant reduction in energy expenditure (EE), BAT temperature, and uncoupling protein 1 (UCP1) expression. Moreover, DMH Glp1r KD induced hepatic steatosis, increased plasma TG, and elevated liver specific de-novo lipogenesis, effects that collectively contributed to insulin resistance. Interestingly, DMH Glp1r KD increased neuropeptide Y (NPY) mRNA expression in the DMH. GLP-1R mRNA in the DMH, however, was found in GABAergic not NPY neurons, consistent with a GLP-1R-dependent inhibition of NPY neurons that is mediated by local GABAergic neurons. Finally, DMH Glp1r KD attenuated the anorexigenic effects of the GLP-1R agonist exendin-4, highlighting an important role of DMH GLP-1R signaling in GLP-1-based therapies. Collectively, our data show that DMH GLP-1R signaling plays a key role for BAT thermogenesis and adiposity. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
Puente, Erika I; De la Cruz, Lizbeth; Arenas, Isabel; Elias-Viñas, David; Garcia, David E
2016-04-01
Tetrodotoxin-sensitive Na(+) currents have been extensively studied because they play a major role in neuronal firing and bursting. In this study, we showed that voltage-dependent Na(+) currents are regulated in a slow manner by oxotremorine (oxo-M) and angiotensin II in rat sympathetic neurons. We found that these currents can be readily inhibited through a signaling pathway mediated by G proteins and phospholipase C (PLC) β1. This inhibition is slowly established, pertussis toxin-insensitive, partially reversed within tens of seconds after oxo-M washout, and not relieved by a strong depolarization, suggesting a voltage-insensitive mechanism of inhibition. Specificity of the M1 receptor was tested by the MT-7 toxin. Activation and inactivation curves showed no shift in the voltage dependency under the inhibition by oxo-M. This inhibition is blocked by a PLC inhibitor (U73122, 1-(6-{[(17β)-3-Methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione), and recovery from inhibition is prevented by wortmannin, a PI3/4 kinase inhibitor. Hence, the pathway involves Gq/11 and is mediated by a diffusible second messenger. Oxo-M inhibition is occluded by screening phosphatidylinositol 4,5-bisphosphate (PIP2)-negative charges with poly-l-lysine and prevented by intracellular dialysis with a PIP2 analog. In addition, bisindolylmaleimide I, a specific ATP-competitive protein kinase C (PKC) inhibitor, rules out that this inhibition may be mediated by this protein kinase. Furthermore, oxo-M-induced suppression of Na(+) currents remains unchanged when neurons are treated with calphostin C, a PKC inhibitor that targets the diacylglycerol-binding site of the kinase. These results support a general mechanism of Na(+) current inhibition that is widely present in excitable cells through modulation of ion channels by specific G protein-coupled receptors. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Cough reflex hypersensitivity: A role for neurotrophins.
El-Hashim, Ahmed Z; Jaffal, Sahar M
2017-03-01
Cough is one of the most common complaints for which sufferers seek medical assistance. However, currently available drugs are not very effective in treating cough, particularly that which follows an upper respiratory tract infection. Nonetheless, there has been a significant increase in our understanding of the mechanisms and pathways of the defensive cough as well as the hypersensitive/pathophysiological cough, both at airway and central nervous system (CNS) levels. Numerous molecules and signaling pathways have been identified as potential targets for antitussive drugs, including neurotrophins (NTs). NTs belong to a family of trophic factors and are critical for the development and maintenance of neurons in the central and peripheral nervous system including sympathetic efferents, sensory neuron afferents, and immune cells. Nerve growth factor (NGF) was the first member of the NT family to be discovered, with wide ranging actions associated with synapse formation, survival, proliferation, apoptosis, axonal and dendritic outgrowth, expression and activity of functionally important proteins such as ion channels, receptors, and neurotransmitters. In addition, NGF has been implicated in several disease states particularly neuropathic pain and most recently in the sensitization of the cough reflex. This review will briefly address the peripheral and central sensitization mechanisms of airway neurons and will then focus on NGF signaling and its role in cough hypersensitivity.
Acetylcholine in adrenergic terminals of the cat iris
Ehinger, B.; Falck, B.; Persson, H.; Rosengren, A.-M.; Sporrong, B.
1970-01-01
1. Acetylcholine was bio-assayed in the normal cat iris, and also after selective sympathetic or parasympathetic denervation. Sympathetic denervation caused no significant change in the acetylcholine content of the cat iris, whereas selective parasympathetic denervation reduced the acetylcholine content below the level of detectability, which on the average was at about 5% of the acetylcholine content of the normal iris. 2. It is concluded that if adrenergic terminals contain any acetylcholine, it is less than what is detectable with the methods available at present, and most certainly less than 6% of the acetylcholine content of cholinergic neurones. 3. On the basis of these and other recently obtained observations, the hypothesis of Burn & Rand (1965) of a cholinergic link in the adrenergic transmission is discussed. It is proposed that it is more reasonable to suppose an interaction between peripheral adrenergic and cholinergic terminals than to presume a cholinergic mechanism within adrenergic nerve fibres. PMID:5503282
Acetylcholine in adrenergic terminals of the cat iris.
Ehinger, B; Falck, B; Persson, H; Rosengren, A M; Sporrong, B
1970-08-01
1. Acetylcholine was bio-assayed in the normal cat iris, and also after selective sympathetic or parasympathetic denervation. Sympathetic denervation caused no significant change in the acetylcholine content of the cat iris, whereas selective parasympathetic denervation reduced the acetylcholine content below the level of detectability, which on the average was at about 5% of the acetylcholine content of the normal iris.2. It is concluded that if adrenergic terminals contain any acetylcholine, it is less than what is detectable with the methods available at present, and most certainly less than 6% of the acetylcholine content of cholinergic neurones.3. On the basis of these and other recently obtained observations, the hypothesis of Burn & Rand (1965) of a cholinergic link in the adrenergic transmission is discussed. It is proposed that it is more reasonable to suppose an interaction between peripheral adrenergic and cholinergic terminals than to presume a cholinergic mechanism within adrenergic nerve fibres.
Laminin promotes neuritic regeneration from cultured peripheral and central neurons
1983-01-01
The ability of axons to grow through tissue in vivo during development or regeneration may be regulated by the availability of specific neurite-promoting macromolecules located within the extracellular matrix. We have used tissue culture methods to examine the relative ability of various extracellular matrix components to elicit neurite outgrowth from dissociated chick embryo parasympathetic (ciliary ganglion) neurons in serum-free monolayer culture. Purified laminin from both mouse and rat sources, as well as a partially purified polyornithine-binding neurite promoting factor (PNPF-1) from rat Schwannoma cells all stimulate neurite production from these neurons. Laminin and PNPF-1 are also potent stimulators of neurite growth from cultured neurons obtained from other peripheral as well as central neural tissues, specifically avian sympathetic and sensory ganglia and spinal cord, optic tectum, neural retina, and telencephalon, as well as from sensory ganglia of the neonatal mouse and hippocampal, septal, and striatal tissues of the fetal rat. A quantitative in vitro bioassay method using ciliary neurons was used to (a) measure and compare the specific neurite-promoting activities of these agents, (b) confirm that during the purification of laminin, the neurite-promoting activity co- purifies with the laminin protein, and (c) compare the influences of antilaminin antibodies on the neurite-promoting activity of laminin and PNPF-1. We conclude that laminin and PNPF-1 are distinct macromolecules capable of expressing their neurite-promoting activities even when presented in nanogram amounts. This neurite-promoting bioassay currently represents the most sensitive test for the biological activity of laminin. PMID:6643580
Effect of interscalene block on intraocular pressure and ocular perfusion pressure.
Basaran, Betul; Yilbas, Aysun Ankay; Gultekin, Zeki
2017-10-23
Interscalene block (ISB) is commonly associated with Horner's syndrome due to spread of local anesthetic to the cervical sympathetic chain. Postganglionic neurons that originate from superior cervical ganglia form the sympathetic innervation of eye. Decrease in sympathetic tone may change intraocular pressure (IOP) and ocular perfusion pressure (OPP). The aim of the study was to investigate whether ISB affects IOP and/or OPP. Thirty patients scheduled for ambulatory shoulder surgery under regional anesthesia with a single-shot ISB (15 mL 0.5% bupivacaine and 15 mL 2% lidocaine) were recruited. The IOP and OPP in both eyes, mean arterial pressure (MAP), heart rate (HR) and end-tidal CO 2 (ETCO 2 ) were measured before ISB and 5, 10, 20, 30 and 60 min after ISB in the beach-chair position. The baseline IOP and OPP were similar in the blocked and unblocked sides (IOP 17.60 ± 1.69 and 17.40 ± 1.96 respectively p = 0.432; OPP 49.80 ± 8.20 and 50 ± 8.07 respectively p = 0.432). The IOP in the blocked side significantly decreased between 10th to 60th min following ISB, compared to the baseline values (p < 0.001). The OPP in the blocked side significantly increased from 10th to 60th min (p < 0.001) whereas, there were no significant changes in IOP and OPP throughout the measurement period in the unblocked side. ISB decreased IOP in the blocked side. ISB could be considered as a safe regional technique of choice in elderly patients at high risk for developing glaucoma.
Posada-Quintero, Hugo F; Florian, John P; Orjuela-Cañón, Álvaro D; Chon, Ki H
2016-09-01
Time-domain indices of electrodermal activity (EDA) have been used as a marker of sympathetic tone. However, they often show high variation between subjects and low consistency, which has precluded their general use as a marker of sympathetic tone. To examine whether power spectral density analysis of EDA can provide more consistent results, we recently performed a variety of sympathetic tone-evoking experiments (43). We found significant increase in the spectral power in the frequency range of 0.045 to 0.25 Hz when sympathetic tone-evoking stimuli were induced. The sympathetic tone assessed by the power spectral density of EDA was found to have lower variation and more sensitivity for certain, but not all, stimuli compared with the time-domain analysis of EDA. We surmise that this lack of sensitivity in certain sympathetic tone-inducing conditions with time-invariant spectral analysis of EDA may lie in its inability to characterize time-varying dynamics of the sympathetic tone. To overcome the disadvantages of time-domain and time-invariant power spectral indices of EDA, we developed a highly sensitive index of sympathetic tone, based on time-frequency analysis of EDA signals. Its efficacy was tested using experiments designed to elicit sympathetic dynamics. Twelve subjects underwent four tests known to elicit sympathetic tone arousal: cold pressor, tilt table, stand test, and the Stroop task. We hypothesize that a more sensitive measure of sympathetic control can be developed using time-varying spectral analysis. Variable frequency complex demodulation, a recently developed technique for time-frequency analysis, was used to obtain spectral amplitudes associated with EDA. We found that the time-varying spectral frequency band 0.08-0.24 Hz was most responsive to stimulation. Spectral power for frequencies higher than 0.24 Hz were determined to be not related to the sympathetic dynamics because they comprised less than 5% of the total power. The mean value of time-varying spectral amplitudes in the frequency band 0.08-0.24 Hz were used as the index of sympathetic tone, termed TVSymp. TVSymp was found to be overall the most sensitive to the stimuli, as evidenced by a low coefficient of variation (0.54), and higher consistency (intra-class correlation, 0.96) and sensitivity (Youden's index > 0.75), area under the receiver operating characteristic (ROC) curve (>0.8, accuracy > 0.88) compared with time-domain and time-invariant spectral indices, including heart rate variability. Copyright © 2016 the American Physiological Society.
Classical pathology of sympathetic ophthalmia presented in a unique case.
Chen, Shida; Aronow, Mary E; Wang, Charles; Shen, Defen; Chan, Chi-Chao
2014-01-01
The ocular pathology of sympathetic ophthalmia is demonstrated in a 10 year-old boy who sustained a penetrating left globe injury and subsequently developed sympathetic ophthalmia in the right eye two months later. Two and a half weeks following extensive surgical repair of the left ruptured globe, he developed endophthalmitis and was treated with oral and topical fortified antibiotics. One month after the initial injury, a progressive corneal ulcer of the left eye led to perforation and the need for emergent corneal transplantation. The surgical specimen revealed fungus, Scedosporium dehoogii. The boy received systemic and topical anti-fungal therapy. Two months following the penetrating globe injury of the left eye, a granulomatous uveitis developed in the right eye. Sympathetic ophthalmia was suspected and the patient began treatment with topical and oral corticosteroids. Given the concern of vision loss secondary to sympathetic ophthalmia in the right eye, as well as poor vision and hypotony in the injured eye, the left eye was enucleated. Microscopically, granulomatous inflammation with giant cells was noted within a cyclitic membrane which filled the anterior and posterior chamber of the left globe. Other classic features including Dalen-Fuchs nodules were identified. Small, choroidal, ill-defined granulomas and relative sparing of the choriocapillaris were present. Molecular analysis did not identify evidence of remaining fungal infection. The pathology findings were consistent with previously described features of sympathetic ophthalmia. The present case is unique in that co-existing fungal infection may have potentiated the risk for developing sympathetic ophthalmia in the fellow eye.
Wu, Z-X; Satterfield, B E; Fedan, J S; Dey, R D
2002-11-01
Interleukin (IL)-1beta causes airway inflammation, enhances airway smooth muscle responsiveness, and alters neurotransmitter expression in sensory, sympathetic, and myenteric neurons. This study examines the role of intrinsic airway neurons in airway hyperresponsiveness (AHR) induced by IL-1beta. Ferrets were instilled intratracheally with IL-1beta (0.3 microg/0.3 ml) or saline (0.3 ml) once daily for 5 days. Tracheal smooth muscle contractility in vitro and substance P (SP) expression in tracheal neurons were assessed. Tracheal smooth muscle reactivity to acetylcholine (ACh) and methacholine (MCh) and smooth muscle contractions to electric field stimulation (EFS) both increased after IL-1beta. The IL-1beta-induced AHR was maintained in tracheal segments cultured for 24 h, a procedure that depletes SP from sensory nerves while maintaining viability of intrinsic airway neurons. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the IL-1beta-induced hyperreactivity to ACh and MCh and to EFS in cultured tracheal segments. SP-containing neurons in longitudinal trunk, SP innervation of superficial muscular plexus neurons, and SP nerve fiber density in tracheal smooth muscle all increased after treatment with IL-1beta. These results show that IL-1beta-enhanced cholinergic airway smooth muscle contractile responses are mediated by the actions of SP released from intrinsic airway neurons.
Xie, Wenrui; Chen, Sisi; Strong, Judith A.; Li, Ai-Ling; Lewkowich, Ian P.
2016-01-01
Some forms of chronic pain are maintained or enhanced by activity in the sympathetic nervous system (SNS), but attempts to model this have yielded conflicting findings. The SNS has both pro- and anti-inflammatory effects on immunity, confounding the interpretation of experiments using global sympathectomy methods. We performed a “microsympathectomy” by cutting the ipsilateral gray rami where they entered the spinal nerves near the L4 and L5 DRG. This led to profound sustained reductions in pain behaviors induced by local DRG inflammation (a rat model of low back pain) and by a peripheral paw inflammation model. Effects of microsympathectomy were evident within one day, making it unlikely that blocking sympathetic sprouting in the local DRGs or hindpaw was the sole mechanism. Prior microsympathectomy greatly reduced hyperexcitability of sensory neurons induced by local DRG inflammation observed 4 d later. Microsympathectomy reduced local inflammation and macrophage density in the affected tissues (as indicated by paw swelling and histochemical staining). Cytokine profiling in locally inflamed DRG showed increases in pro-inflammatory Type 1 cytokines and decreases in the Type 2 cytokines present at baseline, changes that were mitigated by microsympathectomy. Microsympathectomy was also effective in reducing established pain behaviors in the local DRG inflammation model. We conclude that the effect of sympathetic fibers in the L4/L5 gray rami in these models is pro-inflammatory. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some chronic inflammatory pain conditions. SIGNIFICANCE STATEMENT Sympathetic blockade is used for many pain conditions, but preclinical studies show both pro- and anti-nociceptive effects. The sympathetic nervous system also has both pro- and anti-inflammatory effects on immune tissues and cells. We examined effects of a very localized sympathectomy. By cutting the gray rami to the spinal nerves near the lumbar sensory ganglia, we avoided widespread sympathetic denervation. This procedure profoundly reduced mechanical pain behaviors induced by a back pain model and a model of peripheral inflammatory pain. One possible mechanism was reduction of inflammation in the sympathetically denervated regions. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some inflammatory conditions. PMID:27535916
Arterial innervation in development and disease.
Eichmann, Anne; Brunet, Isabelle
2014-09-03
Innervation of arteries by sympathetic nerves is well known to control blood supply to organs. Recent studies have elucidated the mechanisms that regulate the development of arterial innervation and show that in addition to vascular tone, sympathetic nerves may also influence arterial maturation and growth. Understanding sympathetic arterial innervation may lead to new approaches to treat peripheral arterial disease and hypertension. Copyright © 2014, American Association for the Advancement of Science.
Parker, Lindsay M; Damanhuri, Hanafi A; Fletcher, Sophie P S; Goodchild, Ann K
2015-04-16
Hypotensive drugs have been used to identify central neurons that mediate compensatory baroreceptor reflex responses. Such drugs also increase blood glucose. Our aim was to identify the neurochemical phenotypes of sympathetic preganglionic neurons (SPN) and adrenal chromaffin cells activated following hydralazine (HDZ; 10mg/kg) administration in rats, and utilize this and SPN target organ destination to ascribe their function as cardiovascular or glucose regulating. Blood glucose was measured and adrenal chromaffin cell activation was assessed using c-Fos immunoreactivity (-ir) and phosphorylation of tyrosine hydroxylase, respectively. The activation and neurochemical phenotype of SPN innervating the adrenal glands and celiac ganglia were determined using the retrograde tracer cholera toxin B subunit, in combination with in situ hybridization and immunohistochemistry. Blood glucose was elevated at multiple time points following HDZ administration but little evidence of chromaffin cell activation was seen suggesting non-adrenal mechanisms contribute to the sustained hyperglycemia. 16±0.1% of T4-T11 SPN contained c-Fos and of these: 24.3±1.4% projected to adrenal glands and 29±5.5% projected to celiac ganglia with the rest innervating other targets. 62.8±1.4% of SPN innervating adrenal glands were activated and 29.9±3.3% expressed PPE mRNA whereas 53.2±8.6% of SPN innervating celiac ganglia were activated and 31.2±8.8% expressed PPE mRNA. CART-ir SPN innervating each target were also activated and did not co-express PPE mRNA. Neurochemical coding reveals that HDZ administration activates both PPE+SPN, whose activity increase glucose mobilization causing hyperglycemia, as well as CART+SPN whose activity drive vasomotor responses mediated by baroreceptor unloading to raise vascular tone and heart rate. Copyright © 2015 Elsevier B.V. All rights reserved.
Gervasi, Noreen M; Scott, Shane S; Aschrafi, Armaz; Gale, Jenna; Vohra, Sanah N; MacGibeny, Margaret A; Kar, Amar N; Gioio, Anthony E; Kaplan, Barry B
2016-06-01
Synthesis and regulation of catecholamine neurotransmitters in the central nervous system are implicated in the pathogenesis of a number of neuropsychiatric disorders. To identify factors that regulate the presynaptic synthesis of catecholamines, we tested the hypothesis that the rate-limiting enzyme of the catecholamine biosynthetic pathway, tyrosine hydroxylase (TH), is locally synthesized in axons and presynaptic nerve terminals of noradrenergic neurons. To isolate pure axonal mRNA and protein, rat superior cervical ganglion sympathetic neurons were cultured in compartmentalized Campenot chambers. qRT-PCR and RNA in situ hybridization analyses showed that TH mRNA is present in distal axons. Colocalization experiments with nerve terminal marker proteins suggested that both TH mRNA and protein localize in regions of the axon that resemble nerve terminals (i.e., synaptic boutons). Analysis of polysome-bound RNA showed that TH mRNA is present in polysomes isolated from distal axons. Metabolic labeling of axonally synthesized proteins labeled with the methionine analog, L-azidohomoalanine, showed that TH is locally synthesized in axons. Moreover, the local transfection and translation of exogenous TH mRNA into distal axons facilitated axonal dopamine synthesis. Finally, using chimeric td-Tomato-tagged constructs, we identified a sequence element within the TH 3'UTR that is required for the axonal localization of the reporter mRNA. Taken together, our results provide the first direct evidence that TH mRNA is trafficked to the axon and that the mRNA is locally translated. These findings raise the interesting possibility that the biosynthesis of the catecholamine neurotransmitters is locally regulated in the axon and/or presynaptic nerve terminal. Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Clinical utility of sympathetic blockade in cardiovascular disease management.
Park, Chan Soon; Lee, Hae-Young
2017-04-01
A dysregulated sympathetic nervous system is a major factor in the development and progression of cardiovascular disease; thus, understanding the mechanism and function of the sympathetic nervous system and appropriately regulating sympathetic activity to treat various cardiovascular diseases are crucial. Areas covered: This review focused on previous studies in managing hypertension, atrial fibrillation, coronary artery disease, heart failure, and perioperative management with sympathetic blockade. We reviewed both pharmacological and non-pharmacological management. Expert commentary: Chronic sympathetic nervous system activation is related to several cardiovascular diseases mediated by various pathways. Advancement in measuring sympathetic activity makes visualizing noninvasively and evaluating the activation level even in single fibers possible. Evidence suggests that sympathetic blockade still has a role in managing hypertension and controlling the heart rate in atrial fibrillation. For ischemic heart disease, beta-adrenergic receptor antagonists have been considered a milestone drug to control symptoms and prevent long-term adverse effects, although its clinical implication has become less potent in the era of successful revascularization. Owing to pathologic involvement of sympathetic nervous system activation in heart failure progression, sympathetic blockade has proved its value in improving the clinical course of patients with heart failure.
Mechanisms of insulin action on sympathetic nerve activity
NASA Technical Reports Server (NTRS)
Muntzel, Martin S.; Anderson, Erling A.; Johnson, Alan Kim; Mark, Allyn L.
1996-01-01
Insulin resistance and hyperinsulinemia may contribute to the development of arterial hypertension. Although insulin may elevate arterial pressure, in part, through activation of the sympathetic nervous system, the sites and mechanisms of insulin-induced sympathetic excitation remain uncertain. While sympathoexcitation during insulin may be mediated by the baroreflex, or by modulation of norepinephrine release from sympathetic nerve endings, it has been shown repeatedly that insulin increases sympathetic outflow by actions on the central nervous system. Previous studies employing norepinephrine turnover have suggested that insulin causes sympathoexcitation by acting in the hypothalamus. Recent experiments from our laboratory involving direct measurements of regional sympathetic nerve activity have provided further evidence that insulin acts in the central nervous system. For example, administration of insulin into the third cerebralventricle increased lumbar but not renal or adrenal sympathetic nerve activity in normotensive rats. Interestingly, this pattern of regional sympathetic nerve responses to central neural administration of insulin is similar to that seen with systemic administration of insulin. Further, lesions of the anteroventral third ventricle hypothalamic (AV3V) region abolished increases in sympathetic activity to systemic administration of insulin with euglycemic clamp, suggesting that AV3V-related structures are critical for insulin-induced elevations in sympathetic outflow.
Control of food intake and energy expenditure by Nos1 neurons of the paraventricular hypothalamus.
Sutton, Amy K; Pei, Hongjuan; Burnett, Korri H; Myers, Martin G; Rhodes, Christopher J; Olson, David P
2014-11-12
The paraventricular nucleus of the hypothalamus (PVH) contains a heterogeneous cluster of Sim1-expressing cell types that comprise a major autonomic output nucleus and play critical roles in the control of food intake and energy homeostasis. The roles of specific PVH neuronal subtypes in energy balance have yet to be defined, however. The PVH contains nitric oxide synthase-1 (Nos1)-expressing (Nos1(PVH)) neurons of unknown function; these represent a subset of the larger population of Sim1-expressing PVH (Sim1(PVH)) neurons. To determine the role of Nos1(PVH) neurons in energy balance, we used Cre-dependent viral vectors to both map their efferent projections and test their functional output in mice. Here we show that Nos1(PVH) neurons project to hindbrain and spinal cord regions important for food intake and energy expenditure control. Moreover, pharmacogenetic activation of Nos1(PVH) neurons suppresses feeding to a similar extent as Sim1(PVH) neurons, and increases energy expenditure and activity. Furthermore, we found that oxytocin-expressing PVH neurons (OXT(PVH)) are a subset of Nos1(PVH) neurons. OXT(PVH) cells project to preganglionic, sympathetic neurons in the thoracic spinal cord and increase energy expenditure upon activation, though not to the same extent as Nos1(PVH) neurons; their activation fails to alter feeding, however. Thus, Nos1(PVH) neurons promote negative energy balance through changes in feeding and energy expenditure, whereas OXT(PVH) neurons regulate energy expenditure alone, suggesting a crucial role for non-OXT Nos1(PVH) neurons in feeding regulation. Copyright © 2014 the authors 0270-6474/14/3415306-13$15.00/0.
Sympathetic ophthalmia after injury in the iraq war.
Freidlin, Julie; Pak, John; Tessler, Howard H; Putterman, Allen M; Goldstein, Debra A
2006-01-01
A 21-year-old US soldier received a penetrating eye injury while fighting in Iraq and was treated with evisceration. Sympathetic ophthalmia developed, which responded well to steroid treatment. This is the first case of sympathetic ophthalmia after a war injury reported since World War II.
Sympathetic neural control of the kidney in hypertension.
DiBona, G F
1992-01-01
Efferent renal sympathetic nerve activity is elevated in human essential hypertension as well as in several forms of experimental hypertension in animals. In addition, bilateral complete renal denervation delays the development and/or attenuates the magnitude of the hypertension in several different forms of experimental hypertension in animals. Efferent renal sympathetic nerve activity is known to have dose-dependent effects on renal blood flow, the glomerular filtration rate, renal tubular sodium and water reabsorption, and the renin secretion rate, which are capable of contributing, singly or in combination, to the development, maintenance, and exacerbation of the hypertensive state. Of the many factors known to influence the central nervous system integrative regulation of efferent renal sympathetic nerve activity, two environmental factors, a high dietary sodium intake and environmental stress, are capable of significant interaction. This resultant increase in efferent renal sympathetic nerve activity and subsequent renal functional alterations can participate in the hypertensive process. This is especially evident in the presence of an underlying genetic predisposition to the development of hypertension. Thus, interactions between environmental and genetic influences can produce alterations in the sympathetic neural control of renal function that play an important role in hypertension.
Renal sympathetic nerve ablation for treatment-resistant hypertension
Krum, Henry; Schlaich, Markus; Sobotka, Paul
2013-01-01
Hypertension is a major risk factor for increased cardiovascular events with accelerated sympathetic nerve activity implicated in the pathogenesis and progression of disease. Blood pressure is not adequately controlled in many patients, despite the availability of effective pharmacotherapy. Novel procedure- as well as device-based strategies, such as percutaneous renal sympathetic nerve denervation, have been developed to improve blood pressure in these refractory patients. Renal sympathetic denervation not only reduces blood pressure but also renal as well as systemic sympathetic nerve activity in such patients. The reduction in blood pressure appears to be sustained over 3 years after the procedure, which suggests absence of re-innervation of renal sympathetic nerves. Safety appears to be adequate. This approach may also have potential in other disorders associated with enhanced sympathetic nerve activity such as congestive heart failure, chronic kidney disease and metabolic syndrome. This review will focus on the current status of percutaneous renal sympathetic nerve denervation, clinical efficacy and safety outcomes and prospects beyond refractory hypertension. PMID:23819768
Obersteiner, E. J.; Sharma, R. P.
1978-01-01
Ten day old chick sympathetic ganglia cultured in a microslide assembly were treated with a selected group of organophosphate pesticides to evaluate their cytotoxicity ranges, and the usefulness of such a model for screening pesticides. Examination by phase contrast and light microscopy for chemically-induced morphological alteration of nerve fibers, glial cells and neurons provided the criteria for quantitation and assessment of the toxic effects. Concentrations that produced half-maximal effects ranged from 1 × 10-6M (severely toxic) for methylparathian, diazinon, paraoxon, mevinphos, diisopropylfluorophosphate, tri-o-tolyl phosphate and its mixed isomers to a 1 × 10-3M (intermediate) for malathion, leptophos, coumaphos, mono- and dicrotophos. Some or no effects were evident at 1 × 102-M for O'ethyl-O-p-nitrophenyl phenyl phosphonothioate, tri-m-tolylphosphate, chlorpyriphos and triphenyl phosphate. In all instances, nerve fibers were more sensitive than neurons or glial cells to insecticides. All cellular growth was inhibited at 1 × 10-2M (except triphenyl phosphate). Below 1 x 10-7M, no inhibitory effects were evident. The secondary abnormalities included decreased cellular migration, diffuse cellular growth pattern, increased vacuolization, nerve fiber swelling and cellular degeneration. The cytotoxic effects of these chemicals do not appear to be related to in vivo toxicity or cholinesterase inhibition potential. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6. PMID:565668
Shibao, Cyndya; Okamoto, Luis E; Gamboa, Alfredo; Yu, Chang; Diedrich, Andre'; Raj, Satish R; Robertson, David; Biaggioni, Italo
2010-11-01
Orthostatic hypotension affects patients with autonomic failure producing considerable disability because of presyncopal symptoms. Severely affected patients may have residual sympathetic tone that can be engaged to increase blood pressure (BP) with the α-2 adrenergic antagonist yohimbine. This medication activates sympathetic outflow centrally and unrestrains norepinephrine release from noradrenergic neurons. Alternatively, the acetylcholinesterase inhibitor, pyridostigmine, can increase sympathetic tone by improving ganglionic cholinergic neurotransmission. Our purpose was to compare these complementary approaches and to explore whether the combination would lead to synergistic increases in BP. We compared the effects of 60 mg of pyridostigmine and 5.4 mg of yohimbine in a single-blind, randomized, placebo-controlled, crossover fashion. In a subset of patients we tested the combination of pyridostigmine and yohimbine. Our primary outcome was the change in standing diastolic BP 60 minutes after drug administration from baseline. We studied a total of 31 patients with severe autonomic failure. Yohimbine significantly improved standing diastolic BP as compared with placebo (11±3 mm Hg [95% CI: 6 to 16 mm Hg]; P<0.001). On the contrary, pyridostigmine did not increase the standing diastolic BP (0.6±3 mm Hg [95% CI: -5 to 5 mm Hg]; P=0.823). Only yohimbine showed a significant improvement in presyncopal symptoms. Sixteen patients received the combination of pyridostigmine and yohimbine, but no evidence of synergistic pressor effect was found. Engaging residual sympathetic tone with yohimbine is a more effective approach to improve orthostatic hypotension as compared with pyridostigmine in patients with severe orthostatic hypotension.
Shibao, Cyndya; Okamoto, Luis E.; Gamboa, Alfredo; Yu, Chang; Diedrich, Andre'; Raj, Satish R.; Robertson, David; Biaggioni, Italo
2010-01-01
Orthostatic hypotension affects patients with autonomic failure producing considerable disability because of pre-syncopal symptoms. Severely affected patients may have residual sympathetic tone that can be engaged to increase blood pressure with the alpha-2 adrenergic antagonist yohimbine. This medication activates sympathetic outflow centrally and unrestrains norepinephrine release from noradrenergic neurons. Alternatively, the acetylcholinesterase inhibitor, pyridostigmine, can increase sympathetic tone by improving ganglionic cholinergic neurotransmission. Our purpose was to compare these complementary approaches and test the hypothesis that the combination would lead to synergistic increases in blood pressure. We compared the effects of pyridostigmine 60 mg and yohimbine 5.4 mg in a single-blind, randomized, placebo-controlled, crossover fashion. In a subset of patients we tested the combination of pyridostigmine and yohimbine. Our primary outcome was the change in standing diastolic blood pressure 60 minutes after drug administration from baseline. We studied a total of 31 patients with confirmed severe autonomic failure. Yohimbine significantly improved standing diastolic blood pressure as compared to placebo (11±3 mm Hg 95%CI: 6 to 16, P <0.001). On the contrary, Pyridostigmine did not increase the standing diastolic blood pressure (0.6±3 mm Hg 95%CI: −5 to 5, P =0.823). Only yohimbine showed a significant improvement in presyncopal symptoms. Sixteen patients received the combination of pyridostigmine and yohimbine, but no evidence of synergistic pressor effect was found. Engaging residual sympathetic tone with yohimbine is a more effective approach to improve orthostatic hypotension as compared to pyridostigmine in patients with severe orthostatic hypotension. PMID:20837887
López Soto, Eduardo Javier; Gambino, Luisina Ongaro; Mustafá, Emilio Román
2014-01-01
Nervous system (NS) activity participates in metabolic homeostasis by detecting peripheral signal molecules derived from food intake and energy balance. High quality diets are thought to include fiber-rich foods like whole grain rice, breads, cereals, and grains. Several studies have associated high consumption of fiber-enriched diets with a reduced risk of diabetes, obesity, and gastrointestinal disorders. In the lower intestine, anaerobic fermentation of soluble fibers by microbiota produces short chain fatty acids (SCFAs), key energy molecules that have a recent identified leading role in the intestinal gluconeogenesis, promoting beneficial effects on glucose tolerance and insulin resistance. SCFAs are also signaling molecules that bind to specific G-protein coupled receptors (GPCRs) named Free Fatty Acid Receptor 3 (FFA3, GPR41) and 2 (FFA2, GPR43). However, how SCFAs impact NS activity through their GPCRs is poorly understood. Recently, studies have demonstrated the presence of FFA2 and FFA3 in the sympathetic NS of rat, mouse and human. Two studies have showed that FFA3 activation by SCFAs increases firing and norepinephrine (NE) release from sympathetic neurons. However, the recent study from the Ikeda Laboratory revealed that activation of FFA3 by SCFAs impairs N-type calcium channel (NTCC) activity, which contradicts the idea of FFA3 activation leading to increased action potential evoked NE release. Here we will discuss the scope of the latter study and the putative physiological role of SCFAs and FFAs in the sympathetic NS.
Kinugasa, Yusuke; Arakawa, Takashi; Murakami, Gen; Fujimiya, Mineko; Sugihara, Kenichi
2014-04-01
Fecal incontinence is a common problem after anal sphincter-preserving operations. The intersphincteric autonomic nerves supplying the internal anal sphincter (IAS) are formed by the union of: (1) nerve fibers from Auerbach's nerve plexus of the most distal part of the rectum and (2) the inferior rectal branches of the pelvic plexus (IRB-PX) running along the conjoint longitudinal muscle coat. The aim of the present study is to identify the detailed morphology of nerves to the IAS. The study comprised histological and immunohistochemical evaluations of paraffin-embedded sections from a large block of anal canal from the preserved 10 cadavers. The IRB-PX came from the superior aspect of the levator ani and ran into the anal canal on the anterolateral side. These nerves contained both sympathetic and parasympathetic fibers, but the sympathetic content was much higher than in nerves from the distal rectum. All intramural ganglion cells in the distal rectum were neuronal nitric oxide synthase-positive and tyrosine hydroxylase-negative and were restricted to above the squamous-columnar epithelial junction. Parasympathetic nerves formed a lattice-like plexus in the circular smooth muscles of the distal rectum, whereas the IAS contained short, longitudinally running sympathetic and parasympathetic nerves, although sympathetic nerves were dominant. The major autonomic nerve input to the IAS seemed not to originate from the distal rectum but from the IRB-PX. Injury to the IRB-PX during surgery seemed to result in loss of innervation to the major part of the IAS.
Bagnol, D; Herbrecht, F; Julé, Y; Jarry, T; Cupo, A
1993-09-22
The aim of the present study was to analyze changes in the enkephalin immunoreactivity of sympathetic prevertebral ganglia coeliac plexus and inferior mesenteric ganglion) and intestinal tract (myenteric plexus and external muscle layers) in cats 2 days after left thoracic splanchnic nerve ligation, using radioimmunoassay and immunohistochemical techniques. Specific polyclonal antibodies directed against methionine- and leucine-enkephalin were used. The nerve ligation led to a considerable increase in the enkephalin immunoreactivity in the cranial part of the ligated nerves. This finding confirms the presence, in the cat, of an enkephalin output originating from thoracic spinal structures which are probably enkephalin-containing preganglionic neurons. In prevertebral ganglia the nerve ligation induced a marked decrease in the enkephalin immunoreactivity, which was probably due to the interruption of thoracic enkephalin efferents projecting towards both the coeliac plexus and the inferior mesenteric ganglion. In the digestive tract, the nerve ligation depressed the methionine-enkephalin immunoreactivity only in the gastro-duodenal region, and had no effect on the ileo-colonic region. The results of the present study add to the growing evidence that the sympathetic nervous system is involved in regulating the enteric enkephalinergic innervation, which is probably involved in controlling the intestinal motility.
Ardell, Jeffrey L.; Cardinal, René; Vermeulen, Michel; Armour, J. Andrew
2009-01-01
Populations of intrathoracic extracardiac neurons transduce myocardial ischemia, thereby contributing to sympathetic control of regional cardiac indices during such pathology. Our objective was to determine whether electrical neuromodulation using spinal cord stimulation (SCS) modulates such local reflex control. In 10 anesthetized canines, middle cervical ganglion neurons were identified that transduce the ventricular milieu. Their capacity to transduce a global (rapid ventricular pacing) vs. regional (transient regional ischemia) ventricular stress was tested before and during SCS (50 Hz, 0.2 ms duration at 90% MT) applied to the dorsal aspect of the T1 to T4 spinal cord. Rapid ventricular pacing and transient myocardial ischemia both activated cardiac-related middle cervical ganglion neurons. SCS obtunded their capacity to reflexly respond to the regional ventricular ischemia, but not rapid ventricular pacing. In conclusion, spinal cord inputs to the intrathoracic extracardiac nervous system obtund the latter's capacity to transduce regional ventricular ischemia, but not global cardiac stress. Given the substantial body of literature indicating the adverse consequences of excessive adrenergic neuronal excitation on cardiac function, these data delineate the intrathoracic extracardiac nervous system as a potential target for neuromodulation therapy in minimizing such effects. PMID:19515981
Brumovsky, Pablo R.; Robinson, David R.; La, Jun-Ho; Seroogy, Kim B.; Lundgren, Kerstin H.; Albers, Kathryn M.; Kiyatkin, Michael E.; Seal, Rebecca P.; Edwards, Robert H.; Watanabe, Masahiko; Hökfelt, Tomas; Gebhart, G.F.
2013-01-01
Vesicular glutamate transporters (VGLUTs) have been extensively studied in various neuronal systems, but their expression in visceral sensory and autonomic neurons remains to be analyzed in detail. Here we studied VGLUTs type 1 and 2 (VGLUT1 and VGLUT2, respectively) in neurons innervating the mouse colorectum. Lumbosacral and thoracolumbar dorsal root ganglion (DRG), lumbar sympathetic chain (LSC), and major pelvic ganglion (MPG) neurons innervating the colorectum of BALB/C mice were retrogradely traced with Fast Blue, dissected, and processed for immunohistochemistry. Tissue from additional naïve mice was included. Previously characterized antibodies against VGLUT1, VGLUT2, and calcitonin gene-related peptide (CGRP) were used. Riboprobe in situ hybridization, using probes against VGLUT1 and VGLUT2, was also performed. Most colorectal DRG neurons expressed VGLUT2 and often colocalized with CGRP. A smaller percentage of neurons expressed VGLUT1. VGLUT2-immunoreactive (IR) neurons in the MPG were rare. Abundant VGLUT2-IR nerves were detected in all layers of the colorectum; VGLUT1-IR nerves were sparse. A subpopulation of myenteric plexus neurons expressed VGLUT2 protein and mRNA, but VGLUT1 mRNA was undetectable. In conclusion, we show 1) that most colorectal DRG neurons express VGLUT2, and to a lesser extent, VGLUT1; 2) abundance of VGLUT2-IR fibers innervating colorectum; and 3) a subpopulation of myenteric plexus neurons expressing VGLUT2. Altogether, our data suggests a role for VGLUT2 in colorectal glutamatergic neurotransmission, potentially influencing colorectal sensitivity and motility. PMID:21800314
Neural control of heart rate: the role of neuronal networking.
Kember, G; Armour, J A; Zamir, M
2011-05-21
Neural control of heart rate, particularly its sympathetic component, is generally thought to reside primarily in the central nervous system, though accumulating evidence suggests that intrathoracic extracardiac and intrinsic cardiac ganglia are also involved. We propose an integrated model in which the control of heart rate is achieved via three neuronal "levels" representing three control centers instead of the conventional one. Most importantly, in this model control is effected through networking between neuronal populations within and among these layers. The results obtained indicate that networking serves to process demands for systemic blood flow before transducing them to cardiac motor neurons. This provides the heart with a measure of protection against the possibility of "overdrive" implied by the currently held centrally driven system. The results also show that localized networking instabilities can lead to sporadic low frequency oscillations that have the characteristics of the well-known Mayer waves. The sporadic nature of Mayer waves has been unexplained so far and is of particular interest in clinical diagnosis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Classical Pathology of Sympathetic Ophthalmia Presented in a Unique Case
Chen, Shida; Aronow, Mary E; Wang, Charles; Shen, Defen; Chan, Chi-Chao
2014-01-01
The ocular pathology of sympathetic ophthalmia is demonstrated in a 10 year-old boy who sustained a penetrating left globe injury and subsequently developed sympathetic ophthalmia in the right eye two months later. Two and a half weeks following extensive surgical repair of the left ruptured globe, he developed endophthalmitis and was treated with oral and topical fortified antibiotics. One month after the initial injury, a progressive corneal ulcer of the left eye led to perforation and the need for emergent corneal transplantation. The surgical specimen revealed fungus, Scedosporium dehoogii. The boy received systemic and topical anti-fungal therapy. Two months following the penetrating globe injury of the left eye, a granulomatous uveitis developed in the right eye. Sympathetic ophthalmia was suspected and the patient began treatment with topical and oral corticosteroids. Given the concern of vision loss secondary to sympathetic ophthalmia in the right eye, as well as poor vision and hypotony in the injured eye, the left eye was enucleated. Microscopically, granulomatous inflammation with giant cells was noted within a cyclitic membrane which filled the anterior and posterior chamber of the left globe. Other classic features including Dalen-Fuchs nodules were identified. Small, choroidal, ill-defined granulomas and relative sparing of the choriocapillaris were present. Molecular analysis did not identify evidence of remaining fungal infection. The pathology findings were consistent with previously described features of sympathetic ophthalmia. The present case is unique in that co-existing fungal infection may have potentiated the risk for developing sympathetic ophthalmia in the fellow eye. PMID:25067979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Mei-Fang
The abuse of ketamine and amphetamine analogs is associated with incidence of hypertension and strokes involving activation of sympathetic activities. Large cerebral arteries at the base of the brain from several species receive dense sympathetic innervation which upon activation causes parasympathetic-nitrergic vasodilation with increased regional blood flow via axo-axonal interaction mechanism, serving as a protective mechanism to meet O{sub 2} demand in an acutely stressful situation. The present study was designed to examine effects of ketamine and amphetamine analogs on axo-axonal interaction-mediated neurogenic nitrergic vasodilation in porcine basilar arteries using techniques of blood-vessel myography, patch clamp and two-electrode voltage clamp,more » and calcium imaging. In U46619-contracted basilar arterial rings, nicotine (100 μM) and electrical depolarization of nitrergic nerves by transmural nerve stimulation (TNS, 8 Hz) elicited neurogenic nitrergic vasodilations. Ketamine and amphetamine analogs concentration-dependently inhibited nicotine-induced parasympathetic-nitrergic vasodilation without affecting that induced by TNS, nitroprusside or isoproterenol. Ketamine and amphetamine analogs also concentration-dependently blocked nicotine-induced inward currents in Xenopus oocytes expressing α3β2-nicotinic acetylcholine receptors (nAChRs), and nicotine-induced inward currents as well as calcium influxes in rat superior cervical ganglion neurons. The potency in inhibiting both inward-currents and calcium influxes is ketamine > methamphetamine > hydroxyamphetamine. These results indicate that ketamine and amphetamine analogs, by blocking nAChRs located on cerebral perivascular sympathetic nerves, reduce nicotine-induced, axo-axonal interaction mechanism-mediated neurogenic dilation of the basilar arteries. Chronic abuse of these drugs, therefore, may interfere with normal sympathetic-parasympathetic interaction mechanism resulting in diminished neurogenic vasodilation and, possibly, normal blood flow in the brainstem. - Highlights: • Ketamine/amphetamines inhibit nicotine-induced cerebral neurogenic vasdilation. • Ketamine/amphetamines block cerebral perivascular sympathetic nAChR-mediated current. • The inhibitory potency is ketamine > D-amphetamine > methamphetamine > OH-amphetamine.« less
Ramirez, Karol; Fornaguera-Trías, Jaime; Sheridan, John F
2017-01-01
Psychosocial stress is capable of causing immune dysregulation and increased neuroinflammatory signaling by repeated activation of the neuroendocrine and autonomic systems that may contribute to the development of anxiety and depression. The stress model of repeated social defeat (RSD) recapitulates many of the stress-driven alterations in the neuroimmune system seen in humans experiencing repeated forms of stress and associated affective disorders. For example, RSD-induced neuronal and microglia activation corresponds with sympathetic outflow to the peripheral immune system and increased ability of bone marrow derived myeloid progenitor cells (MPC) to redistribute throughout the body, including to the central nervous system (CNS), reinforcing stress-associated behaviors. An overview of the neuroendocrine, immunological, and behavioral stress-induced responses will be reviewed in this chapter using RSD to illustrate the mechanisms leading to stress-related alterations in inflammation in both the periphery and CNS, and stress-related changes in behavioral responses.
Intraoperative hypertensive crisis due to a catecholamine-secreting esthesioneuroblastoma.
Salmasi, Vafi; Schiavi, Adam; Binder, Zev A; Ruzevick, Jacob; Orr, Brent A; Burger, Peter C; Ball, Douglas W; Blitz, Ari M; Koch, Wayne M; Ishii, Masaru; Gallia, Gary L
2015-06-01
Although uncommon, esthesioneuroblastomas may produce clinically significant amounts of catecholamines. We report a patient with a catecholamine-secreting esthesioneuroblastoma who developed an intraoperative hypertensive crisis. A patient with a history of hypertension was referred to our skull base center for management of a residual esthesioneuroblastoma. A staged endonasal endoscopic approach was planned. At the conclusion of the first stage, a hypertensive crisis occurred. Workup revealed elevated levels of serum and urinary catecholamines. The patient was treated with alpha adrenoceptor blockade before the second stage. Serum catecholamine levels after this second stage were normal. On immunohistochemical analysis, the tumor cells were found to be positive for tyrosine hydroxylase, the rate limiting enzyme in catecholamine synthesis, and achaete-scute homologue 1, a transcription factor essential in the development of olfactory and sympathetic neurons. Catecholamine production should be considered in the differential of unexpected extreme hypertension during surgical resection of esthesioneuroblastoma. © 2015 Wiley Periodicals, Inc.
Intraoperative hypertensive crisis due to a catecholamine-secreting esthesioneuroblastoma
Salmasi, Vafi; Schiavi, Adam; Binder, Zev A.; Ruzevick, Jacob; Orr, Brent A.; Burger, Peter C.; Ball, Douglas W.; Blitz, Ari M.; Koch, Wayne M.; Ishii, Masaru; Gallia, Gary L.
2015-01-01
Background Although uncommon, esthesioneuroblastomas may produce clinically significant amounts of catecholamines. Methods We report a patient with a catecholamine-secreting esthesioneuroblastoma who developed intraoperative hypertensive crisis. Results A patient with history of hypertension was referred to our skull base center for management of a residual esthesioneuroblastoma. A staged endonasal endoscopic approach was planned. At the conclusion of the first stage, a hypertensive crisis occurred. Work-up revealed elevated levels of serum and urinary catecholamines. The patient was treated with alpha adrenoceptor blockade prior to the second stage. Serum catecholamine levels following this second stage were normal. On immunohistochemical analysis, the tumor cells were found to be positive for tyrosine hydroxylase, the rate limiting enzyme in cathecholamine synthesis, and achaete-scute homologue 1, a transcription factor essential in the development of olfactory and sympathetic neurons. Conclusion Catecholamine production should be considered in the differential of unexpected extreme hypertension during surgical resection of esthesioneuroblastoma. PMID:25352487
Oshima, Naoki; Onimaru, Hiroshi; Matsubara, Hidehito; Uchida, Takahiro; Watanabe, Atsushi; Imakiire, Toshihiko; Nishida, Yasuhiro; Kumagai, Hiroo
2017-03-06
Although patients with diabetes mellitus (DM) often exhibit hypertension, the mechanisms responsible for this correlation are not well known. We hypothesized that the bulbospinal neurons in the rostral ventrolateral medulla (RVLM) are affected by the levels of glucose, insulin, or incretins (glucagon like peptide-1 [GLP-1] or glucose-dependent insulinotropic peptide [GIP]) in patients with DM. To investigate whether RVLM neurons are activated by glucose, insulin, GLP-1, or GIP, we examined changes in the membrane potentials of bulbospinal RVLM neurons using whole-cell patch-clamp technique during superfusion with various levels of glucose or these hormones in neonatal Wistar rats. A brainstem-spinal cord preparation was used for the experiments. A low level of glucose stimulated bulbospinal RVLM neurons. During insulin superfusion, almost all the RVLM neurons were depolarized, while during GLP-1 or GIP superfusion, almost all the RVLM neurons were hyperpolarized. Next, histological examinations were performed to examine transporters for glucose and receptors for insulin, GLP-1, and GIP on RVLM neurons. Low-level glucose-depolarized RVLM neurons exhibited the presence of glucose transporter 3 (GLUT3). Meanwhile, insulin-depolarized, GLP-1-hyperpolarized, and GIP-hyperpolarized RVLM neurons showed each of the respective specific receptor. These results indicate that a low level of glucose stimulates bulbospinal RVLM neurons via specific transporters on these neurons, inducing hypertension. Furthermore, an increase in insulin or a reduction in incretins may also activate the sympathetic nervous system and induce hypertension by activating RVLM neurons via their own receptors. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Sympathetic Innervation Promotes Arterial Fate by Enhancing Endothelial ERK Activity.
Pardanaud, Luc; Pibouin-Fragner, Laurence; Dubrac, Alexandre; Mathivet, Thomas; English, Isabel; Brunet, Isabelle; Simons, Michael; Eichmann, Anne
2016-08-19
Arterial endothelial cells are morphologically, functionally, and molecularly distinct from those found in veins and lymphatic vessels. How arterial fate is acquired during development and maintained in adult vessels is incompletely understood. We set out to identify factors that promote arterial endothelial cell fate in vivo. We developed a functional assay, allowing us to monitor and manipulate arterial fate in vivo, using arteries isolated from quails that are grafted into the coelom of chick embryos. Endothelial cells migrate out from the grafted artery, and their colonization of host arteries and veins is quantified. Here we show that sympathetic innervation promotes arterial endothelial cell fate in vivo. Removal of sympathetic nerves decreases arterial fate and leads to colonization of veins, whereas exposure to sympathetic nerves or norepinephrine imposes arterial fate. Mechanistically, sympathetic nerves increase endothelial ERK (extracellular signal-regulated kinase) activity via adrenergic α1 and α2 receptors. These findings show that sympathetic innervation promotes arterial endothelial fate and may lead to novel approaches to improve arterialization in human disease. © 2016 American Heart Association, Inc.
Intrinsic cardiac nervous system in tachycardia induced heart failure.
Arora, Rakesh C; Cardinal, Rene; Smith, Frank M; Ardell, Jeffrey L; Dell'Italia, Louis J; Armour, J Andrew
2003-11-01
The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to influence cardiodynamics becomes obtunded.
1990-10-26
cerebral arteries may be from an enhanced sympathetic tonus modulated by endothelial prostacyclin synthesis (47) Prostacyclin, a potent vasodilator...right rear leg after treatment of the incision area with topical anesthetic (2% lidocaine ). An 78 endotracheal tube, smeared with topical anesthetic (2...influence the firing rate of 5-HT neurons and inhibit 5-HT synthesis (7,100,114). Adrenergic nerve endings have been localized in the Bl-B3, B7 and B9 cell
1987-09-01
capillaries (4), blood volumes calculated from plasma volume measures must correct for label that has left the system between the time of the injected dose...Splenic sequestration and contraction are mediated by the autonomic nervous system and blood-borne agents (10). Sympathetic nerve fibers from the truncus...sympathlcus and parasympathetic neurons of the nervus vagus (cranial nerve X) innervate the celiac plexus (8, 11). A subdivision of the celiac plexus
Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David
2017-04-01
Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested ( n = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function. NEW & NOTEWORTHY This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not GABAergic, neurotransmission in these pathways. Copyright © 2017 the American Physiological Society.
Li, Aihua; Roy, Sarah H; Nattie, Eugene E
2016-09-01
Activation of central chemoreceptors by CO2 increases sympathetic nerve activity (SNA), arterial blood pressure (ABP) and breathing. These effects are exaggerated in spontaneously hypertensive rats (SHRs), resulting in an augmented CO2 chemoreflex that affects both breathing and ABP. The augmented CO2 chemoreflex and the high ABP are measureable in young SHRs (postnatal day 30-58) and become greater in adult SHRs. Blockade of orexin receptors can normalize the augmented CO2 chemoreflex and the high ABP in young SHRs and normalize the augmented CO2 chemoreflex and significantly lower the high ABP in adult SHRs. In the hypothalamus, SHRs have more orexin neurons, and a greater proportion of them increase their activity with CO2 . The orexin system is overactive in SHRs and contributes to the augmented CO2 chemoreflex and hypertension. Modulation of the orexin system may be beneficial in the treatment of neurogenic hypertension. Activation of central chemoreceptors by CO2 increases arterial blood pressure (ABP), sympathetic nerve activity and breathing. In spontaneously hypertensive rats (SHRs), high ABP is associated with enhanced sympathetic nerve activity and peripheral chemoreflexes. We hypothesized that an augmented CO2 chemoreflex and overactive orexin system are linked with high ABP in both young (postnatal day 30-58) and adult SHRs (4-6 months). Our main findings are as follows. (i) An augmented CO2 chemoreflex and higher ABP in SHRs are measureable at a young age and increase in adulthood. In wakefulness, the ventilatory response to normoxic hypercapnia is higher in young SHRs (mean ± SEM: 179 ± 11% increase) than in age-matched normotensive Wistar-Kyoto rats (114 ± 9% increase), but lower than in adult SHRs (226 ± 10% increase; P < 0.05). The resting ABP is higher in young SHRs (122 ± 5 mmHg) than in age-matched Wistar-Kyoto rats (99 ± 5 mmHg), but lower than in adult SHRs (152 ± 4 mmHg; P < 0.05). (ii) Spontaneously hypertensive rats have more orexin neurons and more CO2 -activated orexin neurons in the hypothalamus. (iii) Antagonism of orexin receptors with a dual orexin receptor antagonist, almorexant, normalizes the augmented CO2 chemoreflex in young and adult SHRs and the high ABP in young SHRs and significantly lowers ABP in adult SHRs. (iv) Attenuation of peripheral chemoreflexes by hyperoxia does not abolish the augmented CO2 chemoreflex (breathing and ABP) in SHRs, which indicates an important role for the central chemoreflex. We suggest that an overactive orexin system may play an important role in the augmented central CO2 chemoreflex and in the development of hypertension in SHRs. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Central and peripheral nervous systems: master controllers in cancer metastasis.
Shi, Ming; Liu, Dan; Yang, Zhengyan; Guo, Ning
2013-12-01
Central and sympathetic nervous systems govern functional activities of many organs. Solid tumors like organs are also innervated by sympathetic nerve fibers. Neurotransmitters released from sympathetic nerve fibers can modulate biological behaviors of tumor cells. Multiple physiologic processes of tumor development may be dominated by central and sympathetic nervous systems as well. Recent studies suggest that dysfunction of central and sympathetic nervous systems and disorder of the hormone network induced by psychological stress may influence malignant progression of cancer by inhibiting the functions of immune system, regulating metabolic reprogramming of tumor cells, and inducing interactions between tumor and stromal cells. Over-release of inflammatory cytokines by tumors may aggravate emotional disorder, triggering the vicious cycles in tumor microenvironment and host macroenvironment. It is reasonable to hypothesize that cancer progression may be controlled by central and sympathetic nervous systems. In this review, we will focus on the recent information about the impacts of central and sympathetic nervous systems on tumor invasion and metastasis.
A Salicylate Sympathetic Ink from Consumer Chemicals
ERIC Educational Resources Information Center
Journal of Chemical Education, 2005
2005-01-01
A new sympathetic ink that produces a violet color upon development was developed to develop chemical demonstrations using consumer chemicals. The demonstration was to have a simple, relatively safe reagent system that could be used to make a brightly colored, highly visible "magic sign" for use in science outreach programs.
Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni
2013-03-19
Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.
de Queiroz, D B; Sastre, E; Caracuel, L; Callejo, M; Xavier, F E; Blanco-Rivero, J; Balfagón, G
2015-01-01
Background and Purpose We have reported that exposure to a diabetic intrauterine environment during pregnancy increases blood pressure in adult offspring, but the mechanisms involved are not completely understood. This study was designed to analyse a possible role of perivascular sympathetic and nitrergic innervation in the superior mesenteric artery (SMA) in this effect. Experimental Approach Diabetes was induced in pregnant Wistar rats by a single injection of streptozotocin. Endothelium-denuded vascular rings from the offspring of control (O-CR) and diabetic rats (O-DR) were used. Vasomotor responses to electrical field stimulation (EFS), NA and the NO donor DEA-NO were studied. The expressions of neuronal NOS (nNOS) and phospho-nNOS (P-nNOS) and release of NA, ATP and NO were determined. Sympathetic and nitrergic nerve densities were analysed by immunofluorescence. Key Results Blood pressure was higher in O-DR animals. EFS-induced vasoconstriction was greater in O-DR animals. This response was decreased by phentolamine more in O-DR animals than their controls. L-NAME increased EFS-induced vasoconstriction more strongly in O-DR than in O-CR segments. Vasomotor responses to NA or DEA-NO were not modified. NA, ATP and NO release was increased in segments from O-DR. nNOS expression was not modified, whereas P-nNOS expression was increased in O-DR. Sympathetic and nitrergic nerve densities were similar in both experimental groups. Conclusions and Implications The activity of sympathetic and nitrergic innervation is increased in SMA from O-DR animals. The net effect is an increase in EFS-induced contractions in these animals. These effects may contribute to the increased blood pressure observed in the offspring of diabetic rats. PMID:26177571
Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni
2013-01-01
Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors. PMID:23487769
Cardiac Iodine-123-Meta-Iodo-Benzylguanidine Uptake in Carotid Sinus Hypersensitivity.
Tan, Maw Pin; Murray, Alan; Hawkins, Terry; Chadwick, Thomas J; Kerr, Simon R J; Parry, Steve W
2015-01-01
Carotid sinus syndrome is the association of carotid sinus hypersensitivity with syncope, unexplained falls and drop attacks in generally older people. We evaluated cardiac sympathetic innervation in this disorder in individuals with carotid sinus syndrome, asymptomatic carotid sinus hypersensitivity and controls without carotid sinus hypersensitivity. Consecutive patients diagnosed with carotid sinus syndrome at a specialist falls and syncope unit were recruited. Asymptomatic carotid sinus hypersensitivity and non-carotid sinus hypersensitivity control participants recruited from a community-dwelling cohort. Cardiac sympathetic innervation was determined using Iodine-123-metaiodobenzylguanidine (123-I-MIBG) scanning. Heart to mediastinal uptake ratio (H:M) were determined for early and late uptake on planar scintigraphy at 20 minutes and 3 hours following intravenous injection of 123-I-MIBG. Forty-two subjects: carotid sinus syndrome (n = 21), asymptomatic carotid sinus hypersensitivity (n = 12) and no carotid sinus hypersensitivity (n = 9) were included. Compared to the non- carotid sinus hypersensitivity control group, the carotid sinus syndrome group had significantly higher early H:M (estimated mean difference, B = 0.40; 95% confidence interval, CI = 0.13 to 0.67, p = 0.005) and late H:M (B = 0.32; 95%CI = 0.03 to 0.62, p = 0.032). There was, however, no significant difference in early H:M (p = 0.326) or late H:M (p = 0.351) between the asymptomatic carotid sinus hypersensitivity group and non- carotid sinus hypersensitivity controls. Cardiac sympathetic neuronal activity is increased relative to age-matched controls in individuals with carotid sinus syndrome but not those with asymptomatic carotid sinus hypersensitivity. Blood pressure and heart rate measurements alone may therefore represent an over simplification in the assessment for carotid sinus syndrome and the relative increase in cardiac sympathetic innervation provides additional clues to understanding the mechanisms behind the symptomatic presentation of carotid sinus hypersensitivity.
Kalk, N J; Nutt, D J; Lingford-Hughes, A R
2011-01-01
The nature of the noradrenergic dysregulation in clinical anxiety disorders remains unclear. In panic disorder, the predominant view has been that central noradrenergic neuronal networks and/or the sympathetic nervous system was normal in patients at rest, but hyper-reactive to specific stimuli, for example carbon dioxide. These ideas have been extended to other anxiety disorders, which share with panic disorder characteristic subjective anxiety and physiological symptoms of excess sympathetic activity. For example, Generalized Anxiety Disorder is characterized by chronic free-floating anxiety, muscle tension, palpitation and insomnia. It has been proposed that there is chronic central hypersecretion of noradrenaline in Generalized Anxiety Disorder, with consequent hyporesponsiveness of central post-synaptic receptors. With regards to other disorders, it has been suggested that there is noradrenergic involvement or derangement, but a more specific hypothesis has not been enunciated. This paper reviews the evidence for noradrenergic dysfunction in anxiety disorders, derived from indirect measures of noradrenergic function in clinical populations.
Central sympathoexcitatory actions of angiotensin II: role of type 1 angiotensin II receptors.
DiBona, G F
1999-01-01
The role of the renin-angiotensin system in the control of sympathetic nerve activity is reviewed. Two general mechanisms are considered, one that involves the effects of circulating angiotensin II (AngII) on the central nervous system and a second that involves the central nervous system effects of AngII that originates within the central nervous system. The role of type 1 AngII receptors in discrete brain sites that mediate the sympathoexcitatory actions of AngII of either circulating or central nervous system origin is examined. AngII of circulating origin has ready access to the subfornical organ and area postrema, where it can bind to type 1 AngII receptors on neurons whose connections to the nucleus tractus solitarius and rostral ventrolateral medulla result in sympathoexcitation. In the rostral ventrolateral medulla, angiotensin peptides of central nervous system origin, likely involving angiotensin species in addition to AngII and binding to receptors other than type 1 or 2 AngII receptors, tonically support sympathetic nerve activity.
Hamon, David; Rajendran, Pradeep S; Chui, Ray W; Ajijola, Olujimi A; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S; Armour, J Andrew; Ardell, Jeffrey L; Shivkumar, Kalyanam
2017-04-01
Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system, a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on intrinsic cardiac nervous system function in generating cardiac neuronal and electric instability using a novel cardioneural mapping approach. In a porcine model (n=8), neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli ( P <0.001). Compared with fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response ( P <0.05 versus short CI), particularly on convergent neurons ( P <0.05), as well as neurons receiving sympathetic ( P <0.05) and parasympathetic input ( P <0.05). The greatest cardiac electric instability was also observed after variable (short) CI PVCs. Variable CI PVCs affect critical populations of intrinsic cardiac nervous system neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling, leading to cardiomyopathy. © 2017 American Heart Association, Inc.
Hamon, David; Rajendran, Pradeep S.; Chui, Ray W.; Ajijola, Olujimi A.; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S.; Armour, J. Andrew; Ardell, Jeffrey L.; Shivkumar, Kalyanam
2017-01-01
Background Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system (ICNS), a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on ICNS function in generating cardiac neuronal and electrical instability using a novel cardio-neural mapping approach. Methods and Results In a porcine model (n=8) neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli (P<0.001). Compared to fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response (P<0.05 versus short CI), particularly on convergent neurons (P<0.05), as well as neurons receiving sympathetic (P<0.05) and parasympathetic input (P<0.05). The greatest cardiac electrical instability was also observed following variable (short) CI PVCs. Conclusions Variable CI PVCs affect critical populations of ICNS neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling leading to cardiomyopathy. PMID:28408652
Kisspeptin level in the aging ovary is regulated by the sympathetic nervous system.
Fernandois, Daniela; Cruz, Gonzalo; Na, Eun Kyung; Lara, Hernán E; Paredes, Alfonso H
2017-01-01
Previous work has demonstrated that the increase in the activity of sympathetic nerves, which occurs during the subfertility period in female rats, causes an increase in follicular cyst development and impairs follicular development. In addition, the increase in ovarian sympathetic activity of aged rats correlates with an increased expression of kisspeptin (KISS1) in the ovary. This increase in KISS1 could participate in the decrease in follicular development that occurs during the subfertility period. We aimed to determine whether the blockade of ovarian sympathetic tone prevents the increase in KISS1 expression during reproductive aging and improves follicular development. We performed 2 experiments in rats: (1) an in vivo blockade of beta-adrenergic receptor with propranolol (5.0 mg/kg) and (2) an ovarian surgical denervation to modulate the sympathetic system at these ages. We measured Kisspeptin and follicle-stimulating hormone receptor (FSHR) mRNA and protein levels by qRT-PCR and western blot and counted primordial, primary and secondary follicles at 8, 10 and 12 months of age. The results showed that ovarian KISS1 decreased but FSHR increased after both propranolol administration and the surgical denervation in rats of 8, 10 and 12 months of age. An increase in FSHR was related to an increase in the number of smaller secondary follicles and a decreased number of primordial follicles at 8, 10 and 12 months of age. These results suggest that intraovarian KISS1 is regulated by sympathetic nerves via a beta-adrenergic receptor and participates locally in ovarian follicular development in reproductive aging. © 2017 Society for Endocrinology.
Renal neural mechanisms in salt-sensitive hypertension.
DiBona, G F
1995-01-01
Genetic forms of salt (NaCl)-sensitive hypertension are characterized by increased renal sympathetic nerve activity responses to environmental stimuli. The increases in renal sympathetic nerve activity produce marked changes in renal function with renal vasoconstriction and sodium and water retention which can contribute to the initiation, development and maintenance of hypertension. In genetic forms of NaCl-sensitive hypertension, increased dietary NaCl intake produces alterations in norepinephrine kinetics with decreased concentrations of norepinephrine in regions of the anterior hypothalamus which are critical for the regulation of peripheral sympathetic nerve activity. This local central decrease in tonic alpha 2 adrenoceptor sympathoinhibitory input leads to increased peripheral (renal) sympathetic nerve activity and hypertension. Similarly, with increased dietary NaCl intake, patients with NaCl-sensitive hypertension develop increased arterial pressure, renal vasoconstriction, increased glomerular capillary pressure and increased urinary albumin excretion. Thus, increased dietary NaCl intake can, via central nervous system actions, produce increases in renal sympathetic nerve activity whose renal functional effects contribute to the pathophysiology of hypertension.
Cockayne, Debra A; Dunn, Philip M; Zhong, Yu; Rong, Weifang; Hamilton, Sara G; Knight, Gillian E; Ruan, Huai-Zhen; Ma, Bei; Yip, Ping; Nunn, Philip; McMahon, Stephen B; Burnstock, Geoffrey; Ford, Anthony PDW
2005-01-01
Extracellular ATP plays a role in nociceptive signalling and sensory regulation of visceral function through ionotropic receptors variably composed of P2X2 and P2X3 subunits. P2X2 and P2X3 subunits can form homomultimeric P2X2, homomultimeric P2X3, or heteromultimeric P2X2/3 receptors. However, the relative contribution of these receptor subtypes to afferent functions of ATP in vivo is poorly understood. Here we describe null mutant mice lacking the P2X2 receptor subunit (P2X2−/−) and double mutant mice lacking both P2X2 and P2X3 subunits (P2X2/P2X3Dbl−/−), and compare these with previously characterized P2X3−/− mice. In patch-clamp studies, nodose, coeliac and superior cervical ganglia (SCG) neurones from wild-type mice responded to ATP with sustained inward currents, while dorsal root ganglia (DRG) neurones gave predominantly transient currents. Sensory neurones from P2X2−/− mice responded to ATP with only transient inward currents, while sympathetic neurones had barely detectable responses. Neurones from P2X2/P2X3Dbl−/− mice had minimal to no response to ATP. These data indicate that P2X receptors on sensory and sympathetic ganglion neurones involve almost exclusively P2X2 and P2X3 subunits. P2X2−/− and P2X2/P2X3Dbl−/− mice had reduced pain-related behaviours in response to intraplantar injection of formalin. Significantly, P2X3−/−, P2X2−/−, and P2X2/P2X3Dbl−/− mice had reduced urinary bladder reflexes and decreased pelvic afferent nerve activity in response to bladder distension. No deficits in a wide variety of CNS behavioural tests were observed in P2X2−/− mice. Taken together, these data extend our findings for P2X3−/− mice, and reveal an important contribution of heteromeric P2X2/3 receptors to nociceptive responses and mechanosensory transduction within the urinary bladder. PMID:15961431
Curcumin attenuates collagen-induced inflammatory response through the "gut-brain axis".
Dou, Yannong; Luo, Jinque; Wu, Xin; Wei, Zhifeng; Tong, Bei; Yu, Juntao; Wang, Ting; Zhang, Xinyu; Yang, Yan; Yuan, Xusheng; Zhao, Peng; Xia, Yufeng; Hu, Huijuan; Dai, Yue
2018-01-06
Previous studies have demonstrated that oral administration of curcumin exhibited an anti-arthritic effect despite its poor bioavailability. The present study aimed to explore whether the gut-brain axis is involved in the therapeutic effect of curcumin. The collagen-induced arthritis (CIA) rat model was induced by immunization with an emulsion of collagen II and complete Freund's adjuvant. Sympathetic and parasympathetic tones were measured by electrocardiographic recordings. Unilateral cervical vagotomy (VGX) was performed before the induction of CIA. The ChAT, AChE activities, and serum cytokine levels were determined by ELISA. The expression of the high-affinity choline transporter 1 (CHT1), ChAT, and vesicular acetylcholine transporter (VAChT) were determined by real-time PCR and immunohistochemical staining. The neuronal excitability of the vagus nerve was determined by whole-cell patch clamp recording. Oral administration of curcumin restored the imbalance between the sympathetic and parasympathetic tones in CIA rats and increased ChAT activity and expression of ChAT and VAChT in the gut, brain, and synovium. Additionally, VGX eliminated the effects of curcumin on arthritis and ACh biosynthesis and transport. Electrophysiological data showed that curcumin markedly increased neuronal excitability of the vagus nerve. Furthermore, selective α7 nAChR antagonists abolished the effects of curcumin on CIA. Our results demonstrate that curcumin attenuates CIA through the "gut-brain axis" by modulating the function of the cholinergic system. These findings provide a novel approach for mechanistic studies of anti-arthritic compounds with low oral absorption and bioavailability.
Role of the hypothalamic arcuate nucleus in cardiovascular regulation
Sapru, Hreday N.
2012-01-01
Recently the hypothalamic arcuate nucleus (Arc) has been implicated in cardiovascular regulation. Both pressor and depressor responses can be elicited by the chemical stimulation of the Arc. The direction of cardiovascular responses (increase or decrease) elicited from the Arc depends on the baseline blood pressure. The pressor responses are mediated via increase in sympathetic nerve activity and involve activation of the spinal ionotropic glutamate receptors. Arc-stimulation elicits tachycardic responses which are mediated via inhibition of vagal input and excitation of sympathetic input to the heart. The pathways within the brain mediating the pressor and tachycardic responses elicited from the Arc have not been delineated. The depressor responses to the Arc-stimulation are mediated via the hypothalamic paraventricular nucleus (PVN). Gamma aminobutyric acid type A receptors, neuropeptide Y1 receptors, and opiate receptors in the PVN mediate the depressor responses elicited from the Arc. Some circulating hormones (e.g., leptin and insulin) may reach the Arc via the leaky blood-brain barrier and elicit their cardiovascular effects. Although the Arc is involved in mediating the cardiovascular responses to intravenously injected angiotensin II and angiotensin-(1-12), these effects may not be due to leakage of these peptides across the blood-brain barrier in the Arc; instead, circulating angiotensins may act on neurons in the SFO and mediate cardiovascular actions via the projections of SFO neurons to the Arc. Cardiovascular responses elicited by acupuncture have been reported to be mediated by direct and indirect projections of the Arc to the RVLM. PMID:23260431
Everaert, K; de Waard, W I Q; Van Hoof, T; Kiekens, C; Mulliez, T; D'herde, C
2010-03-01
Review article. The neuroanatomy and physiology of psychogenic erection, cholinergic versus adrenergic innervation of emission and the predictability of outcome of vibration and electroejaculation require a review and synthesis. University Hospital Belgium. We reviewed the literature with PubMed 1973-2008. Erection, emission and ejaculation are separate phenomena and have different innervations. It is important to realize, which are the afferents and efferents and where the motor neuron of the end organ is located. When interpreting a specific lesion it is important to understand if postsynaptic fibres are intact or not. Afferents of erection, emission and ejaculation are the pudendal nerve and descending pathways from the brain. Erection is cholinergic and NO-mediated. Emission starts cholinergically (as a secretion) and ends sympathetically (as a contraction). Ejaculation is mainly adrenergic and somatic. For vibratory-evoked ejaculation, the reflex arch must be complete; for electroejaculation, the postsynaptic neurons (paravertebral ganglia) must be intact. Afferents of erection, emission and ejaculation are the pudendal nerve and descending pathways from the brain. Erection is cholinergic and NO-mediated. Emission starts cholinergically (as a secretion) and ends sympathetically (as a contraction). Ejaculation is mainly adrenergic and somatic. In neurogenic disease, a good knowledge of neuroanatomy and physiology makes understanding of sexual dysfunction possible and predictable. The minimal requirement for the success of penile vibration is a preserved reflex arch and the minimal requirement for the success of electroejaculation is the existence of intact post-ganglionic fibres.
Central neural control of thermoregulation and brown adipose tissue
Morrison, Shaun F.
2016-01-01
Central neural circuits orchestrate the homeostatic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response. This review summarizes the experimental underpinnings of our current model of the CNS pathways controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction controlling heat loss, and shivering and brown adipose tissue for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific, core efferent pathways within the CNS that share a common peripheral thermal sensory input. Via the lateral parabrachial nucleus, skin thermal afferent input reaches the hypothalamic preoptic area to inhibit warm-sensitive, inhibitory output neurons which control heat production by inhibiting thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to thermogenesis-controlling premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation of spinal circuits necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation and elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation. PMID:26924538
Central neural control of thermoregulation and brown adipose tissue.
Morrison, Shaun F
2016-04-01
Central neural circuits orchestrate the homeostatic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response. This review summarizes the experimental underpinnings of our current model of the CNS pathways controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction controlling heat loss, and shivering and brown adipose tissue for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific, core efferent pathways within the CNS that share a common peripheral thermal sensory input. Via the lateral parabrachial nucleus, skin thermal afferent input reaches the hypothalamic preoptic area to inhibit warm-sensitive, inhibitory output neurons which control heat production by inhibiting thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to thermogenesis-controlling premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation of spinal circuits necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation and elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Energy expenditure: a critical determinant of energy balance with key hypothalamic controls.
Richard, D
2007-09-01
Energy stores are regulated through complex neural controls exerted on both food intake and energy expenditure. These controls are insured by interconnected neurons that produce different peptides or classic neurotransmitters, which have been regrouped into anabolic' and catabolic' systems. While the control of energy intake has been addressed in numerous investigations, that of energy expenditure has, as yet, only received a moderate interest, even though energy expenditure represents a key determinant of energy balance. In laboratory rodents, in particular, a strong regulatory control is exerted on brown adipose tissue (BAT), which represent an efficient thermogenic effector. BAT thermogenesis is governed by the sympathetic nervous system (SNS), whose activity is controlled by neurons comprised in various brain regions, which include the paraventricular hypothalamic nucleus (PVH), the arcuate nucleus (ARC) and the lateral hypothalamus (LH). Proopiomelanocortin neurons from the ARC project to the PVH and terminate in the vicinity of the melanocortin-4 receptors, which are concentrated in the descending division of the PVH, which comprise neurons controlling the SNS outflow to BAT. The LH contains neurons producing melanin-concentrating hormone or orexins, which also are important peptides in the control of energy expenditure. These neurons are not only polysynaptically connected to BAT, but also linked to brains regions controlling motivated behaviors and locomotor activity and, consequently, their role in the control of energy expenditure could go beyond BAT thermogenesis.
McIlvried, Lisa A; Cruz, J Agustin; Borghesi, Lisa A; Gold, Michael S
2017-01-01
Aim of investigation Due to compelling evidence in support of links between sex, stress, sympathetic post-ganglionic innervation, dural immune cells, and migraine, our aim was to characterize the impacts of these factors on the type and proportion of immune cells in the dura. Methods Dural immune cells were obtained from naïve or stressed adult male and female Sprague Dawley rats for flow cytometry. Rats with surgical denervation of sympathetic post-ganglionic neurons of the dura were also studied. Results Immune cells comprise ∼17% of all cells in the dura. These included: macrophages/granulocytes ("Macs"; 63.2% of immune cells), dendritic cells (0.88%), T-cells (4.51%), natural killer T-cells (0.51%), natural killer cells (3.08%), and B-cells (20.0%). There were significantly more Macs and fewer B- and natural killer T-cells in the dura of females compared with males. Macs and dendritic cells were significantly increased by stress in males, but not females. In contrast, T-cells were significantly increased in females with a 24-hour delay following stress. Lastly, Macs, dendritic cells, and T-cells were significantly higher in sympathectomized-naïve males, but not females. Conclusions It may not only be possible, but necessary to use different strategies for the most effective treatment of migraine in men and women.
Central nervous system regulation of hepatic lipid and lipoprotein metabolism.
Taher, Jennifer; Farr, Sarah; Adeli, Khosrow
2017-02-01
Hepatic lipid and lipoprotein metabolism is an important determinant of fasting dyslipidemia and the development of fatty liver disease. Although endocrine factors like insulin have known effects on hepatic lipid homeostasis, emerging evidence also supports a regulatory role for the central nervous system (CNS) and neuronal networks. This review summarizes evidence implicating a bidirectional liver-brain axis in maintaining metabolic lipid homeostasis, and discusses clinical implications in insulin-resistant states. The liver utilizes sympathetic and parasympathetic afferent and efferent fibers to communicate with key regulatory centers in the brain including the hypothalamus. Hypothalamic anorexigenic and orexigenic peptides signal to the liver via neuronal networks to modulate lipid content and VLDL production. In addition, peripheral hormones such as insulin, leptin, and glucagon-like-peptide-1 exert control over hepatic lipid by acting directly within the CNS or via peripheral nerves. Central regulation of lipid metabolism in other organs including white and brown adipose tissue may also contribute to hepatic lipid content indirectly via free fatty acid release and changes in lipoprotein clearance. The CNS communicates with the liver in a bidirectional manner to regulate hepatic lipid metabolism and lipoprotein production. Impairments in these pathways may contribute to dyslipidemia and hepatic steatosis in insulin-resistant states.
Blood pressure long term regulation: A neural network model of the set point development
2011-01-01
Background The notion of the nucleus tractus solitarius (NTS) as a comparator evaluating the error signal between its rostral neural structures (RNS) and the cardiovascular receptor afferents into it has been recently presented. From this perspective, stress can cause hypertension via set point changes, so offering an answer to an old question. Even though the local blood flow to tissues is influenced by circulating vasoactive hormones and also by local factors, there is yet significant sympathetic control. It is well established that the state of maturation of sympathetic innervation of blood vessels at birth varies across animal species and it takes place mostly during the postnatal period. During ontogeny, chemoreceptors are functional; they discharge when the partial pressures of oxygen and carbon dioxide in the arterial blood are not normal. Methods The model is a simple biological plausible adaptative neural network to simulate the development of the sympathetic nervous control. It is hypothesized that during ontogeny, from the RNS afferents to the NTS, the optimal level of each sympathetic efferent discharge is learned through the chemoreceptors' feedback. Its mean discharge leads to normal oxygen and carbon dioxide levels in each tissue. Thus, the sympathetic efferent discharge sets at the optimal level if, despite maximal drift, the local blood flow is compensated for by autoregulation. Such optimal level produces minimum chemoreceptor output, which must be maintained by the nervous system. Since blood flow is controlled by arterial blood pressure, the long-term mean level is stabilized to regulate oxygen and carbon dioxide levels. After development, the cardiopulmonary reflexes play an important role in controlling efferent sympathetic nerve activity to the kidneys and modulating sodium and water excretion. Results Starting from fixed RNS afferents to the NTS and random synaptic weight values, the sympathetic efferents converged to the optimal values. When learning was completed, the output from the chemoreceptors became zero because the sympathetic efferents led to normal partial pressures of oxygen and carbon dioxide. Conclusions We introduce here a simple simulating computational theory to study, from a neurophysiologic point of view, the sympathetic development of cardiovascular regulation due to feedback signals sent off by cardiovascular receptors. The model simulates, too, how the NTS, as emergent property, acts as a comparator and how its rostral afferents behave as set point. PMID:21693057
Araz, Omer; Aydin, Mehmet Dumlu; Gundogdu, Betul; Altas, Ender; Cakir, Murteza; Calikoglu, Cagatay; Atalay, Canan; Gundogdu, Cemal
2015-01-01
Pulmonary arteries are mainly innervated by sympathetic vasoconstrictor and parasympathetic vasodilatory fibers. We examined whether there is a relationship between the neuron densities of hilar parasympathetic ganglia and pulmonary vasospasm in subarachnoid hemorrhage (SAH). Twenty-four rabbits were divided into two groups: control (n=8) and SAH (n=16). The animals were observed for 20 days following experimental SAH. The number of hilar parasympathetic ganglia and their neuron densities were determined. Proportion of pulmonary artery ring surface to lumen surface values was accepted as vasospasm index (VSI). Neuron densities of the hilar ganglia and VSI values were compared statistically. Animals in the SAH group experienced either mild (n=6) or severe (n=10) pulmonary artery vasospasm. In the control group, the mean VSI of pulmonary arteries was 0.777±0.048 and the hilar ganglion neuron density was estimated as 12.100±2.010/mm < sup > 3 < /sup > . In SAH animals with mild vasospasm, VSI=1.148±0.090 and neuron density was estimated as 10.110±1.430/mm < sup > 3 < /sup > ; in animals with severe vasospasm, VSI=1.500±0.120 and neuron density was estimated as 7.340±990/mm < sup > 3 < /sup > . There was an inverse correlation between quantity and neuron density of hilar ganglia and vasospasm index value. The low numbers and low density of hilar parasympathetic ganglia may be responsible for the more severe artery vasospasm in SAH.
Mazet, B; Miolan, J P; Niel, J P; Julé, Y; Roman, C
1989-01-01
The involvement of duodenal and gastric mechanoreceptors in the modulation of synaptic transmission was investigated in a rabbit sympathetic prevertebral ganglion. The present study was performed in vitro on the coeliac plexus connected to the stomach and the duodenum. The electrical activity of ganglionic neurons was recorded using intracellular recording techniques. The patterns of synaptic activation of these ganglionic neurons in response to the activation of mechanoreceptors by gastric or duodenal distension were investigated. Although gastric or duodenal distension was unable to elicit any fast synaptic activity in ganglionic neurons, it produced either an inhibition or a facilitation of the fast nicotinic excitatory postsynaptic potentials elicited by stimulation of the thoracic splanchnic nerves. In addition, this distension triggered long-lasting (3-11 min) modifications in the electrical properties of the ganglionic neurons, i.e. slow depolarizations (6-18 mV) or slow hyperpolarizations (3-6 mV), which were sometimes associated with a decrease in the input membrane resistance. After cooling of the nerves connecting the coeliac ganglia to the stomach, the activation of gastric or duodenal mechanoreceptors was no longer able to modify the fast synaptic activation or the electrical properties of the ganglionic neurons. The results demonstrate that gastric and duodenal mechanoreceptors project onto neurons of the coeliac ganglia and change their excitability as well as the central inputs they receive. The long duration of these modifications suggests that gastric and duodenal mechanoreceptors can modulate the activity of the neurons of the coeliac ganglia.
2011-01-01
Central neural circuits orchestrate the homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the research leading to a model representing our current understanding of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for control of heat loss, and brown adipose tissue, skeletal muscle, and the heart for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific core efferent pathways within the central nervous system (CNS) that share a common peripheral thermal sensory input. The thermal afferent circuit from cutaneous thermal receptors includes neurons in the spinal dorsal horn projecting to lateral parabrachial nucleus neurons that project to the medial aspect of the preoptic area. Within the preoptic area, warm-sensitive, inhibitory output neurons control heat production by reducing the discharge of thermogenesis-promoting neurons in the dorsomedial hypothalamus. The rostral ventromedial medulla, including the raphe pallidus, receives projections form the dorsomedial hypothalamus and contains spinally projecting premotor neurons that provide the excitatory drive to spinal circuits controlling the activity of thermogenic effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a platform for further understanding of the functional organization of central thermoregulation. PMID:21270352
Mironets, Eugene; Osei-Owusu, Patrick; Bracchi-Ricard, Valerie; Fischer, Roman; Owens, Elizabeth A; Ricard, Jerome; Wu, Di; Saltos, Tatiana; Collyer, Eileen; Hou, Shaoping; Bethea, John R; Tom, Veronica J
2018-04-25
Cardiovascular disease and susceptibility to infection are leading causes of morbidity and mortality for individuals with spinal cord injury (SCI). A major contributor to these is autonomic dysreflexia (AD), an amplified reaction of the autonomic nervous system (hallmarked by severe hypertension) in response to sensory stimuli below the injury. Maladaptive plasticity of the spinal sympathetic reflex circuit below the SCI results in AD intensification over time. Mechanisms underlying this maladaptive plasticity are poorly understood, restricting the identification of treatments. Thus, no preventative treatments are currently available. Neuroinflammation has been implicated in other pathologies associated with hyperexcitable neural circuits. Specifically, the soluble form of TNFα (sTNFα) is known to play a role in neuroplasticity. We hypothesize that persistent expression of sTNFα in spinal cord underlies AD exacerbation. To test this, we intrathecally administered XPro1595, a biologic that renders sTNFα nonfunctional, after complete, high-level SCI in female rats. This dramatically attenuated the intensification of colorectal distension-induced and naturally occurring AD events. This improvement is mediated via decreased sprouting of nociceptive primary afferents and activation of the spinal sympathetic reflex circuit. We also examined peripheral vascular function using ex vivo pressurized arterial preparations and immune function via flow cytometric analysis of splenocytes. Diminishing AD via pharmacological inhibition of sTNFα mitigated ensuing vascular hypersensitivity and immune dysfunction. This is the first demonstration that neuroinflammation-induced sTNFα is critical for altering the spinal sympathetic reflex circuit, elucidating a novel mechanism for AD. Importantly, we identify the first potential pharmacological, prophylactic treatment for this life-threatening syndrome. SIGNIFICANCE STATEMENT Autonomic dysreflexia (AD), a disorder that develops after spinal cord injury (SCI) and is hallmarked by sudden, extreme hypertension, contributes to cardiovascular disease and susceptibility to infection, respectively, two leading causes of mortality and morbidity in SCI patients. We demonstrate that neuroinflammation-induced expression of soluble TNFα plays a critical role in AD, elucidating a novel underlying mechanism. We found that intrathecal administration after SCI of a biologic that inhibits soluble TNFα signaling dramatically attenuates AD and significantly reduces AD-associated peripheral vascular and immune dysfunction. We identified mechanisms behind diminished plasticity of neuronal populations within the spinal sympathetic reflex circuit. This study is the first to pinpoint a potential pharmacological, prophylactic strategy to attenuate AD and ensuing cardiovascular and immune dysfunction. Copyright © 2018 the authors 0270-6474/18/384147-17$15.00/0.
Hunger-promoting hypothalamic neurons modulate effector and regulatory T-cell responses
Matarese, Giuseppe; Procaccini, Claudio; Menale, Ciro; Kim, Jae Geun; Kim, Jung Dae; Diano, Sabrina; Diano, Nadia; De Rosa, Veronica; Dietrich, Marcelo O.; Horvath, Tamas L.
2013-01-01
Whole-body energy metabolism is regulated by the hypothalamus and has an impact on diverse tissue functions. Here we show that selective knockdown of Sirtuin 1 Sirt1 in hypothalamic Agouti-related peptide-expressing neurons, which renders these cells less responsive to cues of low energy availability, significantly promotes CD4+ T-cell activation by increasing production of T helper 1 and 17 proinflammatory cytokines via mediation of the sympathetic nervous system. These phenomena were associated with an impaired thymic generation of forkhead box P3 (FoxP3+) naturally occurring regulatory T cells and their reduced suppressive capacity in the periphery, which resulted in increased delayed-type hypersensitivity responses and autoimmune disease susceptibility in mice. These observations unmask a previously unsuspected role of hypothalamic feeding circuits in the regulation of adaptive immune response. PMID:23530205
Chaparro-Vargas, Ramiro; Schilling, Claudia; Schredl, Michael; Cvetkovic, Dean
2016-01-01
The quantification of interdependencies within autonomic nervous system has gained increasing importance to characterise healthy and psychiatric disordered subjects. The present work introduces a biosignal processing approach, suggesting a computational resource to estimate coherent or synchronised interactions as an eventual supportive aid in the diagnosis of primary insomnia and schizophrenia pathologies. By deploying linear, nonlinear and statistical methods upon 25 electroencephalographic and electrocardiographic overnight sleep recordings, the assessment of cross-correlation, wavelet coherence and [Formula: see text]:[Formula: see text] phase synchronisation is focused on tracking discerning features amongst the clinical cohorts. Our results indicate that certain neuronal oscillations interact with cardiac power bands in distinctive ways responding to standardised sleep stages and patient groups, which promotes the hypothesis of subtle functional dynamics between neuronal assembles and (para)sympathetic activity subject to pathophysiological conditions.
Moy, Jennifer D.; Miller, Daniel J.; Catanzaro, Michael F.; Boyle, Bret M.; Ogburn, Sarah W.; Cotter, Lucy A.; McCall, Andrew A.
2012-01-01
The dorsolateral reticular formation of the caudal medulla, or the lateral tegmental field (LTF), has been classified as the brain's “vomiting center”, as well as an important region in regulating sympathetic outflow. We examined the responses of LTF neurons in cats to rotations of the body that activate vestibular receptors, as well as to stimulation of baroreceptors (through mechanical stretch of the carotid sinus) and gastrointestinal receptors (through the intragastric administration of the emetic compound copper sulfate). Approximately half of the LTF neurons exhibited graviceptive responses to vestibular stimulation, similar to primary afferents innervating otolith organs. The other half of the neurons had complex responses, including spatiotemporal convergence behavior, suggesting that they received convergent inputs from a variety of vestibular receptors. Neurons that received gastrointestinal and baroreceptor inputs had similar complex responses to vestibular stimulation; such responses are expected for neurons that contribute to the generation of motion sickness. LTF units with convergent baroreceptor and vestibular inputs may participate in producing the cardiovascular system components of motion sickness, such as the changes in skin blood flow that result in pallor. The administration of copper sulfate often modulated the gain of responses of LTF neurons to vestibular stimulation, particularly for units whose spontaneous firing rate was altered by infusion of drug (median of 459%). The present results raise the prospect that emetic signals from the gastrointestinal tract modify the processing of vestibular inputs by LTF neurons, thereby affecting the probability that vomiting will occur as a consequence of motion sickness. PMID:22955058
Lee, Shin J.; Kirigiti, Melissa; Lindsley, Sarah R; Loche, Alberto; Madden, Christopher J.; Morrison, Shaun F.; Smith, M Susan; Grove, Kevin L.
2013-01-01
The dorsomedial hypothalamus (DMH) has long been implicated in feeding behavior and thermogenesis. The DMH contains orexigenic neuropeptide Y (NPY) neurons, but the role of these neurons in the control of energy homeostasis is not well understood. NPY expression in the DMH is low under normal conditions in adult rodents, but is significantly increased during chronic hyperphagic conditions such as lactation and diet-induced obesity (DIO). To better understand the role of DMH-NPY neurons, we characterized the efferent projections of DMH-NPY neurons using the anterograde tracer biotinylated dextran amine (BDA) in lactating rats and DIO mice. In both models, BDA and NPY co-labeled fibers were mainly limited to the hypothalamus including the paraventricular nucleus of the hypothalamus (PVH), lateral hypothalamus/perifornical area (LH/PFA), and anteroventral periventricular nucleus (AVPV). Specifically in lactating rats, BDA and NPY co-labeled axonal swellings were in close apposition to CART expressing neurons in the PVH and AVPV. Although the DMH neurons project to the rostral raphe pallidus (rRPa) these projections did not contain NPY immunoreactivity in either the lactating rat or DIO mouse. Instead, the majority of BDA-labeled fibers in the rRPa were orexin positive. Furthermore, DMH-NPY projections were not observed within the nucleus of the solitary tract (NTS), another brainstem site critical for the regulation of sympathetic outflow. The present data suggest that NPY expression in the DMH during chronic hyperphagic conditions plays important roles in feeding behavior and thermogenesis by modulating neuronal functions within the hypothalamus, but not in the brainstem. PMID:23172177
Linares, Rosa; Hernández, Denisse; Morán, Carolina; Chavira, Roberto; Cárdenas, Mario; Domínguez, Roberto; Morales-Ledesma, Leticia
2013-07-17
Injecting estradiol valerate (EV) to pre-pubertal or adult female rat results in effects similar to those observed in women with polycystic ovarian syndrome (PCOS). One of the mechanisms involved in PCOS development is the hyperactivity of the sympathetic nervous system. In EV-induced PCOS rats, the unilateral sectioning of the superior ovarian nerve (SON) restores ovulation of the innervated ovary. This suggests that, in addition to the sympathetic innervation, other neural mechanisms are involved in the development/maintenance of PCOS. The aims of present study were analyze if the vagus nerve is one of the neural pathways participating in PCOS development. Ten-day old rats were injected with EV dissolved in corn oil. At 24-days of age sham-surgery, unilateral, or bilateral sectioning of the vagus nerve (vagotomy) was performed on these rats. The animals were sacrificed at 90-92 days of age, when they presented vaginal estrous preceded by a pro-estrus smear. In EV-induced PCOS rats, unilateral or bilateral vagotomy restored ovulation in both ovaries. Follicle-stimulating hormone (FSH) levels in PCOS rats with unilateral or bilateral vagotomy were lower than in control rats. This result suggests that in EV-induced PCOS rats the vagus nerve is a neural pathway participating in maintaining PCOS. The vagus nerve innervates the ovaries directly and indirectly through its synapsis in the celiac-superior-mesenteric ganglion, where the somas of neurons originating in the SON are located. Then, it is possible that vagotomy effects in EV-induced PCOS rats may be explained as a lack of communication between the central nervous system and the ovaries.
Castro, Analía E; Benitez, Sergio G; Farias Altamirano, Luz E; Savastano, Luis E; Patterson, Sean I; Muñoz, Estela M
2015-05-01
Circadian rhythms govern many aspects of mammalian physiology. The daily pattern of melatonin synthesis and secretion is one of the classic examples of circadian oscillations. It is mediated by a class of neuroendocrine cells known as pinealocytes which are not yet fully defined. An established method to evaluate functional and cytological characters is through the expression of lineage-specific transcriptional regulators. NeuroD1 is a basic helix-loop-helix transcription factor involved in the specification and maintenance of both endocrine and neuronal phenotypes. We have previously described developmental and adult regulation of NeuroD1 mRNA in the rodent pineal gland. However, the transcript levels were not influenced by the elimination of sympathetic input, suggesting that any rhythmicity of NeuroD1 might be found downstream of transcription. Here, we describe NeuroD1 protein expression and cellular localization in the rat pineal gland during development and the daily cycle. In embryonic and perinatal stages, protein expression follows the mRNA pattern and is predominantly nuclear. Thereafter, NeuroD1 is mostly found in pinealocyte nuclei in the early part of the night and in cytoplasm during the day, a rhythm maintained into adulthood. Additionally, nocturnal nuclear NeuroD1 levels are reduced after sympathetic disruption, an effect mimicked by the in vivo administration of α- and β-adrenoceptor blockers. NeuroD1 phosphorylation at two sites, Ser(274) and Ser(336) , associates with nuclear localization in pinealocytes. These data suggest that NeuroD1 influences pineal phenotype both during development and adulthood, in an autonomic and phosphorylation-dependent manner. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Menuet, C; Wlodek, M E; Fong, A Y; Allen, A M
2016-06-01
Sympathetic nerve activity to the cardiovascular system displays prominent respiratory-related modulation which leads to the generation of rhythmic oscillations in blood pressure called Traube-Hering waves. An amplification of this respiratory modulation of sympathetic activity is observed in hypertension of both genetic, the spontaneously hypertensive rat, and induced, chronic intermittent hypoxia or maternal protein restriction during gestation, origin. Male offspring of mothers with uteroplacental insufficiency, induced by bilateral uterine vessel ligation at 18 days of gestation, are also hypertensive in adulthood. In this study we examined whether these male offspring display altered respiratory modulation of sympathetic activity at pre-hypertensive ages compared to controls. Respiratory, cardiovascular and sympathetic parameters were examined using the working heart-brainstem preparation in 35 day old male rats that had reduced birth weight due to uteroplacental insufficiency. Whilst all respiratory parameters were not different between groups, we observed an enhanced respiratory-related burst of thoracic sympathetic nerve activity and amplified Traube-Hering waves in the growth-restricted group. This group also showed an increased sympathetic and bradycardic response to activation of peripheral chemoreceptors. The observations add support to the view that altered respiratory modulation of sympathetic activity represents a common mechanism involved in the development of several forms of hypertension. Copyright © 2015 Elsevier B.V. All rights reserved.
Chernin, Gil; Szwarcfiter, Iris; Bausback, Yvonne; Jonas, Michael
2017-05-01
To assess the safety and performance of a nonfocused and nonballooned ultrasonic (US) catheter-based renal sympathetic denervation (RDN) system in normotensive swine. RDN with the therapeutic intravascular US catheter was evaluated in 3 experiments: (i) therapeutic intravascular US RDN vs a control group of untreated animals with follow-up of 30, 45, and 90 days (n = 6; n = 12 renal arteries for each group); (ii) therapeutic intravascular US RDN vs radiofrequency (RF) RDN in the contralateral artery in the same animal (n = 2; n = 4 renal arteries); and (iii) therapeutic intravascular US RDN in a recently stent-implanted renal artery (n = 2; n = 4 renal arteries). In the first experiment, therapeutic intravascular US RDN was safe, without angiographic evidence of dissection or renal artery stenosis. Neuronal tissue vacuolization, nuclei pyknosis, and perineuronal inflammation were evident after RDN, without renal artery wall damage. Norepinephrine levels were significantly lower after therapeutic intravascular US RDN after 30, 45, and 90 days compared with the control group (200.17 pg/mg ± 63.35, 184.75 pg/mg ± 44.51, and 203.43 pg/mg ± 58.54, respectively, vs 342.42 pg/mg ± 79.97). In the second experiment, deeper neuronal ablation penetrance was found with therapeutic intravascular US RDN vs RF RDN (maximal penetrance from endothelium of 7.0 mm vs 3.5 mm, respectively). There was less damage to the artery wall after therapeutic intravascular US RDN than with RF RDN, after which edema and injured endothelium were seen. In the third experiment, denervation inside the stent-implanted segments was feasible without damage to the renal artery wall or stent. The therapeutic intravascular US system performed safely and reduced norepinephrine levels. Deeper penetrance and better preservation of vessel wall were observed with therapeutic intravascular US RDN vs RF RDN. Neuronal ablations were observed in stent-implanted renal arteries. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.
Chi, Jingyi; Wu, Zhuhao; Choi, Chan Hee J; Nguyen, Lily; Tegegne, Saba; Ackerman, Sarah E; Crane, Audrey; Marchildon, François; Tessier-Lavigne, Marc; Cohen, Paul
2018-01-09
While the cell-intrinsic pathways governing beige adipocyte development and phenotype have been increasingly delineated, comparatively little is known about how beige adipocytes interact with other cell types in fat. Here, we introduce a whole-tissue clearing method for adipose that permits immunolabeling and three-dimensional profiling of structures including thermogenic adipocytes and sympathetic innervation. We found that tissue architecture and sympathetic innervation differ significantly between subcutaneous and visceral depots. Subcutaneous fat demonstrates prominent regional variation in beige fat biogenesis with localization of UCP1 + beige adipocytes to areas with dense sympathetic neurites. We present evidence that the density of sympathetic projections is dependent on PRDM16 in adipocytes, providing another potential mechanism underlying the metabolic benefits mediated by PRDM16. This powerful imaging tool highlights the interaction of tissue components during beige fat biogenesis and reveals a previously undescribed mode of regulation of the sympathetic nervous system by adipocytes. Copyright © 2017 Elsevier Inc. All rights reserved.
Capitanio, Selene; Nanni, Cristina; Marini, Cecilia; Bonfiglioli, Rachele; Martignani, Cristian; Dib, Bassam; Fuccio, Chiara; Boriani, Giuseppe; Picori, Lorena; Boschi, Stefano; Morbelli, Silvia; Fanti, Stefano; Sambuceti, Gianmario
2015-11-01
Cardiac resynchronization therapy (CRT) is an accepted treatment in patients with end-stage heart failure. PET permits the absolute quantification of global and regional homogeneity in cardiac sympathetic innervation. We evaluated the variation of cardiac adrenergic activity in patients with idiopathic heart failure (IHF) disease (NYHA III-IV) after CRT using (11)C-hydroxyephedrine (HED) PET/CT. Ten IHF patients (mean age = 68; range = 55-81; average left ventricular ejection fraction 26 ± 4%) implanted with a resynchronization device underwent three HED PET/CT studies: PET 1 one week after inactive device implantation; PET 2, one week after PET 1 under stimulated rhythm; PET 3, at 3 months under active CRT. A dedicated software (PMOD 3.4 version) was used to estimate global and regional cardiac uptake of HED through 17 segment polar maps. At baseline, HED uptake was heterogeneously distributed throughout the left ventricle with a variation coefficient of 18 ± 5%. This variable markedly decreased after three months CRT (12 ± 5%, p < 0.01). Interestingly, subdividing the 170 myocardial segments (17 segments of each patient multiplied by the number of patients) into two groups, according to the median value of tracer uptake expressed as % of maximal myocardial uptake (76%), we observed a different behaviour depending on baseline innervation: HED uptake significantly increased only in segments with "impaired innervation" (SUV 2.61 ± 0.92 at PET1 and 3.05 ± 1.67 at three months, p < 0.01). As shown by HED PET/CT uptake and distribution, improvement in homogeneity of myocardial neuronal function reflected a selective improvement of tracer uptake in regions with more severe neuronal damage. These finding supported the presence of a myocardial regional variability in response of cardiac sympathetic system to CRT and a systemic response involving remote tissues with rich adrenergic innervation. This work might contribute to identify imaging parameters that could predict the response to CRT therapy. Copyright © 2015 Elsevier Inc. All rights reserved.
McCoy, P A; McMahon, L L
2010-07-14
Cholinergic innervation of hippocampus and cortex is required for some forms of learning and memory. Several reports have shown that activation of muscarinic m1 receptors induces a long-term depression (mLTD) at glutamate synapses in hippocampus and in several areas of cortex, including perirhinal and visual cortices. This plasticity likely contributes to cognitive function dependent upon the cholinergic system. In rodent models, degeneration of hippocampal cholinergic innervation following lesion of the medial septum stimulates sprouting of adrenergic sympathetic axons, originating from the superior cervical ganglia (SCG), into denervated hippocampal subfields. We previously reported that this adrenergic sympathetic sprouting occurs simultaneously with a reappearance of cholinergic fibers in hippocampus and rescue of mLTD at CA3-CA1 synapses. Because cholinergic neurons throughout basal forebrain degenerate in aging and Alzheimer's disease, it is critical to determine if this compensatory sprouting occurs in other regions impacted by cholinergic cell loss. To this end, we investigated whether lesion of the nucleus basalis magnocellularis (NbM) to cholinergically denervate cortex stimulates adrenergic sympathetic sprouting and the accompanying increase in cholinergic innervation. Further, we assessed whether the presence of sprouting positively correlates with the ability of glutamate synapses in acute visual cortex slices to express mLTD and low frequency stimulation induced LTD (LFS LTD), another cholinergic dependent form of plasticity in visual cortex. We found that both mLTD and LFS LTD are absent in animals when NbM lesion is combined with bilateral removal of the SCG to prevent possible compensatory sprouting. In contrast, when the SCG remain intact to permit sprouting in animals with NbM lesion, cholinergic fiber density is increased concurrently with adrenergic sympathetic sprouting, and mLTD and LFS LTD are preserved. Our findings suggest that autonomic compensation for central cholinergic degeneration is not specific to hippocampus, but is a general repair mechanism occurring in other brain regions important for normal cognitive function. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Does leptin cause an increase in blood pressure in animals and humans?
Simonds, Stephanie E; Pryor, Jack T; Cowley, Michael A
2017-01-01
Cardiovascular diseases (CVDs) are the number one cause of death globally. The risk for the development of CVDs is significantly increased in obesity. Leptin, the product of white adipose tissue, appears to contribute to the development of CVDs in obesity. Here, we discuss the premise that leptin engages the sympathetic nervous system and contributes to elevated blood pressure (BP) developing in obesity. The long-term regulation of BP is dependent on the activity of the autonomic nervous system and specifically the sympathetic nervous system. Sympathetic nerve activity is significantly increased in obese rodents and humans. Leptin increases sympathetic nerve activity in rodents and humans; however, leptin only consistently increases BP chronically in rodents. The ability of leptin to increase BP in rodents is via both hypothalamic and extrahypothalamic regions. In leptin-deficient and leptin receptor-deficient humans, leptin appears to be the key reason for decreased systolic BP. However, in other research conducted in humans, chronic administration of leptin does not elevate BP. Further research into the role of leptin in the development of CVDs, especially in humans, needs to be conducted.
Lipid Processing in the Brain: A Key Regulator of Systemic Metabolism
Bruce, Kimberley D.; Zsombok, Andrea; Eckel, Robert H.
2017-01-01
Metabolic disorders, particularly aberrations in lipid homeostasis, such as obesity, type 2 diabetes mellitus, and hypertriglyceridemia often manifest together as the metabolic syndrome (MetS). Despite major advances in our understanding of the pathogenesis of these disorders, the prevalence of the MetS continues to rise. It is becoming increasingly apparent that intermediary metabolism within the central nervous system is a major contributor to the regulation of systemic metabolism. In particular, lipid metabolism within the brain is tightly regulated to maintain neuronal structure and function and may signal nutrient status to modulate metabolism in key peripheral tissues such as the liver. There is now a growing body of evidence to suggest that fatty acid (FA) sensing in hypothalamic neurons via accumulation of FAs or FA metabolites may signal nutritional sufficiency and may decrease hepatic glucose production, lipogenesis, and VLDL-TG secretion. In addition, recent studies have highlighted the existence of liver-related neurons that have the potential to direct such signals through parasympathetic and sympathetic nervous system activity. However, to date whether these liver-related neurons are FA sensitive remain to be determined. The findings discussed in this review underscore the importance of the autonomic nervous system in the regulation of systemic metabolism and highlight the need for further research to determine the key features of FA neurons, which may serve as novel therapeutic targets for the treatment of metabolic disorders. PMID:28421037
Paraventricular Nucleus Modulates Excitatory Cardiovascular Reflexes during Electroacupuncture
Tjen-A-Looi, Stephanie C.; Guo, Zhi-Ling; Fu, Liang-Wu; Longhurst, John C.
2016-01-01
The paraventricular nucleus (PVN) regulates sympathetic outflow and blood pressure. Somatic afferent stimulation activates neurons in the hypothalamic PVN. Parvocellular PVN neurons project to sympathoexcitatory cardiovascular regions of the rostral ventrolateral medulla (rVLM). Electroacupuncture (EA) stimulates the median nerve (P5-P6) to modulate sympathoexcitatory responses. We hypothesized that the PVN and its projections to the rVLM participate in the EA-modulation of sympathoexcitatory cardiovascular responses. Cats were anesthetized and ventilated. Heart rate and mean blood pressure were monitored. Application of bradykinin every 10-min on the gallbladder induced consistent pressor reflex responses. Thirty-min of bilateral EA stimulation at acupoints P5-P6 reduced the pressor responses for at least 60-min. Inhibition of the PVN with naloxone reversed the EA-inhibition. Responses of cardiovascular barosensitive rVLM neurons evoked by splanchnic nerve stimulation were reduced by EA and then restored with opioid receptor blockade in the PVN. EA at P5-P6 decreased splanchnic evoked activity of cardiovascular barosensitive PVN neurons that also project directly to the rVLM. PVN neurons labeled with retrograde tracer from rVLM were co-labeled with μ-opioid receptors and juxtaposed to endorphinergic fibers. Thus, the PVN and its projection to rVLM are important in processing acupuncture modulation of elevated blood pressure responses through a PVN opioid mechanism. PMID:27181844
Carcamo, Cesar R
2015-08-01
The objective is to present a hypothesis to explain the sensory, autonomic, and motor disturbances associated with complex regional pain syndrome (CRPS) syndrome. The author reviewed the available and relevant literature, which was supplemented with research on experimental animal models, with a focus on how they may translate into humans, particularly in areas about pathophysiologic mechanisms of CRPS. We propose that different CRPS subtypes may result from facilitative or inhibitory influences exerted by the spinal-coeruleo-spinal pathway in three sites at the spinal cord: the dorsal horn (DH), intermediolateral cell column (IML) and ventral horn (VH). A facilitatory influence over DH may have a pronociceptive effect that explains exacerbated pain, sensory disturbances, and spreading sensitization and neuroinflammation. Conversely, a facilitatory influence over preganglionic neurons located in IML cell column may increase sympathetic outflow with peripheral vasoconstriction, which leads to cold skin, ipsilateral limb ischaemia, and sympathetically maintained pain (SMP). For patients presenting with these symptoms, a descending inhibitory influence would be predicted to result in decreased sympathetic outflow and warm skin, as well as impairment of peripheral vasoconstrictor reflexes. Finally, a descending inhibitory influence over VH could explain muscle weakness and decreased active range of motion, while also facilitating motor reflexes, tremor and dystonia. The proposed model provides a mechanistically based diagnostic scheme for classifying and explaining the sensory, autonomic and motor disturbances associated with CRPS syndrome. Wiley Periodicals, Inc.
Renal Sympathetic Denervation – A Review of Applications in Current Practice
Kapil, Vikas; Jain, Ajay K
2014-01-01
Resistant hypertension is associated with high morbidity and mortality despite numerous pharmacological strategies. A wealth of preclinical and clinical data have demonstrated that resistant hypertension is associated with elevated renal and central sympathetic tone. The development of interventional therapies to modulate the sympathetic nervous system potentially represents a paradigm shift in the strategy for blood pressure control in this subset of patients. Initial first-in-man and pivotal, randomised controlled trials of endovascular, radio-frequency renal sympathetic denervation have spawned numerous iterations of similar technology, as well as many novel concepts for achieving effective renal sympatholysis. This review details the current knowledge of these devices and the evidence base behind each technology. PMID:29588780
A thermosensory pathway that controls body temperature
Nakamura, Kazuhiro; Morrison, Shaun F.
2008-01-01
Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions governed by the nervous system. Here we show a novel somatosensory pathway, which essentially constitutes the afferent arm of the thermoregulatory reflex triggered by cutaneous sensation of environmental temperature changes. Using rat in vivo electrophysiological and anatomical approaches, we revealed that lateral parabrachial neurons play a pivotal role in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this ‘thermoregulatory afferent’ pathway exists in parallel with the spinothalamocortical somatosensory pathway mediating temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis—two mechanisms fundamental to the nervous system and to our survival. PMID:18084288
A thermosensory pathway that controls body temperature.
Nakamura, Kazuhiro; Morrison, Shaun F
2008-01-01
Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions that are governed by the nervous system. Here we describe a somatosensory pathway that essentially constitutes the afferent arm of the thermoregulatory reflex that is triggered by cutaneous sensation of environmental temperature changes. Using in vivo electrophysiological and anatomical approaches in the rat, we found that lateral parabrachial neurons are pivotal in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this 'thermoregulatory afferent' pathway exists in parallel with the spinothalamocortical somatosensory pathway that mediates temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis -- two mechanisms that are fundamental to the nervous system and to our survival.
Mitochondrial and ER Calcium Uptake and Release Fluxes and their Interplay in Intact Nerve Cells
NASA Astrophysics Data System (ADS)
Friel, David D.
Ionized free Ca ( Ca 2+) is a ubiquitous signaling ion that serves as the critical link between a variety of physiological stimuli and their intracellular effectors. Previous studies of reduced in vitro preparations have provided functional characterizations of various Ca 2+ channels, pumps and exchangers that regulate cellular Ca 2+ movements. However, little is known about the functional interplay between transporters that are expressed together in intact cells and orchestrate stimulus-evoked changes in [ Ca 2+]. This review summarizes recent progress in characterizing Ca 2+ transporters in sympathetic neurons, which provide an ideal model for studying Ca 2+ dynamics in neurons. Our results show how the functional interplay between Ca 2+ transport systems that are regulated by Ca 2+ in quantitatively differ-ent ways leads to emergent properties of Ca 2+ signaling that are expected to play a critical role in defining how Ca 2+ serves its role as a signaling ion.
Neuropeptide Y in the adult and fetal human pineal gland.
Møller, Morten; Phansuwan-Pujito, Pansiri; Badiu, Corin
2014-01-01
Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally.
Dual agonist occupancy of AT1-R–α2C-AR heterodimers results in atypical Gs-PKA signaling
Bellot, Morgane; Galandrin, Ségolène; Boularan, Cédric; Matthies, Heinrich J; Despas, Fabien; Denis, Colette; Javitch, Jonathan; Mazères, Serge; Sanni, Samra Joke; Pons, Véronique; Seguelas, Marie-Hélène; Hansen, Jakob L; Pathak, Atul; Galli, Aurelio; Sénard, Jean-Michel; Galés, Céline
2015-01-01
Hypersecretion of norepinephrine (NE) and angiotensin II (AngII) is a hallmark of major prevalent cardiovascular diseases that contribute to cardiac pathophysiology and morbidity. Herein, we explore whether heterodimerization of presynaptic AngII AT1 receptor (AT1-R) and NE α2C-adrenergic receptor (α2C-AR) could underlie their functional cross-talk to control NE secretion. Multiple bioluminescence resonance energy transfer and protein complementation assays allowed us to accurately probe the structures and functions of the α2C-AR–AT1-R dimer promoted by ligand binding to individual protomers. We found that dual agonist occupancy resulted in a conformation of the heterodimer different from that induced by active individual protomers and triggered atypical Gs-cAMP–PKA signaling. This specific pharmacological signaling unit was identified in vivo to promote not only NE hypersecretion in sympathetic neurons but also sympathetic hyperactivity in mice. Thus, we uncovered a new process by which GPCR heterodimerization creates an original functional pharmacological entity and that could constitute a promising new target in cardiovascular therapeutics. PMID:25706338
Role of leptin in energy expenditure: the hypothalamic perspective.
Pandit, R; Beerens, S; Adan, R A H
2017-06-01
The adipocyte-derived hormone leptin is a peripheral signal that informs the brain about the metabolic status of an organism. Although traditionally viewed as an appetite-suppressing hormone, studies in the past decade have highlighted the role of leptin in energy expenditure. Leptin has been shown to increase energy expenditure in particular through its effects on the cardiovascular system and brown adipose tissue (BAT) thermogenesis via the hypothalamus. The current review summarizes the role of leptin signaling in various hypothalamic nuclei and its effects on the sympathetic nervous system to influence blood pressure, heart rate, and BAT thermogenesis. Specifically, the role of leptin signaling on three different hypothalamic nuclei, the dorsomedial hypothalamus, the ventromedial hypothalamus, and the arcuate nucleus, is reviewed. It is known that all of these brain regions influence the sympathetic nervous system activity and thereby regulate BAT thermogenesis and the cardiovascular system. Thus the current work focuses on how leptin signaling in specific neuronal populations within these hypothalamic nuclei influences certain aspects of energy expenditure. Copyright © 2017 the American Physiological Society.
Neuropeptide Y in the Adult and Fetal Human Pineal Gland
Møller, Morten; Phansuwan-Pujito, Pansiri
2014-01-01
Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally. PMID:24757681
Orexin-A increases the firing activity of hippocampal CA1 neurons through orexin-1 receptors.
Chen, Xin-Yi; Chen, Lei; Du, Yi-Feng
2017-07-01
Orexins including two peptides, orexin-A and orexin-B, are produced in the posterior lateral hypothalamus. Much evidence has indicated that central orexinergic systems play numerous functions including energy metabolism, feeding behavior, sleep/wakefulness, and neuroendocrine and sympathetic activation. Morphological studies have shown that the hippocampal CA1 regions receive orexinergic innervation originating from the hypothalamus. Positive orexin-1 (OX 1 ) receptors are detected in the CA1 regions. Previous behavioral studies have shown that microinjection of OX 1 receptor antagonist into the hippocampus impairs acquisition and consolidation of spatial memory. However, up to now, little has been known about the direct electrophysiological effects of orexin-A on hippocampal CA1 neurons. Employing multibarrel single-unit extracellular recordings, the present study showed that micropressure administration of orexin-A significantly increased the spontaneous firing rate from 2.96 ± 0.85 to 8.45 ± 1.86 Hz (P < 0.001) in 15 out of the 23 hippocampal CA1 neurons in male rats. Furthermore, application of the specific OX 1 receptor antagonist SB-334867 alone significantly decreased the firing rate from 4.02 ± 1.08 to 2.11 ± 0.58 Hz in 7 out of the 17 neurons (P < 0.05), suggesting that endogenous orexinergic systems modulate the firing activity of CA1 neurons. Coapplication of SB-334867 completely blocked orexin-A-induced excitation of hippocampal CA1 neurons. The PLC pathway may be involved in activation of OX 1 receptor-induced excitation of CA1 neurons. Taken together, the present study's results suggest that orexin-A produces excitatory effects on hippocampal neurons via OX 1 receptors. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Guo, Zhi-Ling; Longhurst, John C.
2010-01-01
Electroacupuncture (EA) at the Jianshi-Neiguan acupoints (P5-P6, overlying the median nerve) attenuates sympathoexcitatory responses through activation of the arcuate nucleus (ARC) and ventrolateral periaqueductal gray (vlPAG). Activation of the ARC or vlPAG respectively leads to neuronal excitation of the both nuclei during EA. However, direct projections between these two nuclei that could participate in central neural processing during EA have not been identified. The vesicular glutamate transporter 3 (VGLUT3) marks glutamatergic neurons. Thus, the present study evaluated direct neuronal projections between the ARC and vlPAG during EA, focusing on neurons containing VGLUT3. Seven to ten days after unilateral microinjection of a rodamine-conjugated microsphere retrograde tracer (100 nl) into the vlPAG or ARC, rats were subjected to EA or served as a sham-operated control. Low frequency (2 Hz) EA was performed bilaterally for 30 min at the P5-P6 acupoints. Perikarya containing the microsphere tracer were found in the ARC and vlPAG of both groups. Compared to controls (needle placement without electrical stimulation), c-Fos immunoreactivity and neurons double-labeled with c-Fos, an immediate early gene and the tracer were increased significantly in the ARC and vlPAG of EA-treated rats (both P<0.01). Moreover, some neurons were triple-labeled with c-Fos, the retrograde tracer and VGLUT3 in the two nuclei following EA stimulation (P<0.01, both nuclei). These results suggest that direct reciprocal projections between the ARC and vlPAG are available to participate in prolonged modulation by EA of sympathetic activity and that VGLUT3-containing neurons are an important neuronal phenotype involved in this process. PMID:20836994
Pseudorabies Virus Infection Alters Neuronal Activity and Connectivity In Vitro
McCarthy, Kelly M.; Tank, David W.; Enquist, Lynn W.
2009-01-01
Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV), infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP) firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural function seen in PRV-infected animals. PMID:19876391
Estacion, Mark
2017-01-01
The Nav1.7 sodium channel is preferentially expressed within dorsal root ganglion (DRG) and sympathetic ganglion neurons. Gain-of-function mutations that cause the painful disorder inherited erythromelalgia (IEM) shift channel activation in a hyperpolarizing direction. When expressed within DRG neurons, these mutations produce a depolarization of resting membrane potential (RMP). The biophysical basis for the depolarized RMP has to date not been established. To explore the effect on RMP of the shift in activation associated with a prototypical IEM mutation (L858H), we used dynamic-clamp models that represent graded shifts that fractionate the effect of the mutation on activation voltage dependence. Dynamic-clamp recording from DRG neurons using a before-and-after protocol for each cell made it possible, even in the presence of cell-to-cell variation in starting RMP, to assess the effects of these graded mutant models. Our results demonstrate a nonlinear, progressively larger effect on RMP as the shift in activation voltage dependence becomes more hyperpolarized. The observed differences in RMP were predicted by the “late” current of each mutant model. Since the depolarization of RMP imposed by IEM mutant channels is known, in itself, to produce hyperexcitability of DRG neurons, the development of pharmacological agents that normalize or partially normalize activation voltage dependence of IEM mutant channels merits further study. NEW & NOTEWORTHY Inherited erythromelalgia (IEM), the first human pain disorder linked to a sodium channel, is widely regarded as a genetic model of neuropathic pain. IEM is produced by Nav1.7 mutations that hyperpolarize activation. These mutations produce a depolarization of resting membrane potential (RMP) in dorsal root ganglion neurons. Using dynamic clamp to explore the effect on RMP of the shift in activation, we demonstrate a nonlinear effect on RMP as the shift in activation voltage dependence becomes more hyperpolarized. PMID:28148645
Sympathetic nervous system influences on the kidney. Role in hypertension.
DiBona, G F
1989-03-01
Efferent renal sympathetic nerve activity (ERSNA) is elevated in human essential hypertension as well as several forms of experimental hypertension in animals. In addition, bilateral complete renal denervation delays the development and/or attenuates the magnitude of the hypertension in several different forms of experimental hypertension in animals. Efferent renal sympathetic nerve activity is known to have dose-dependent effects on renal blood flow and glomerular filtration rate, renal tubular sodium and water reabsorption, and renin secretion rate that are capable of contributing, singly or in combination, to the development, maintenance, and exacerbation of the hypertensive state. Of the many factors known to influence the central nervous system integrative regulation of ERSNA, two environmental factors, dietary sodium intake and environmental stress, are capable of significant interaction. This resultant increase in ERSNA and subsequent renal functional alterations can participate in the hypertensive process. This is especially evident in the presence of an underlying genetic predisposition to the development of hypertension. Thus, interactions between environmental and genetic influences can produce alterations in the sympathetic neural control of renal function that play an important role in hypertension.
Lambert, Elisabeth A; Teede, Helena; Sari, Carolina Ika; Jona, Eveline; Shorakae, Soulmaz; Woodington, Kiri; Hemmes, Robyn; Eikelis, Nina; Straznicky, Nora E; De Courten, Barbora; Dixon, John B; Schlaich, Markus P; Lambert, Gavin W
2015-12-01
Polycystic ovary syndrome (PCOS) is a common endocrine condition underpinned by insulin resistance and associated with increased risk of obesity, type 2 diabetes and adverse cardiovascular risk profile. Previous data suggest autonomic imbalance [elevated sympathetic nervous system (SNS) activity and decreased heart rate variability (HRV)] as well as endothelial dysfunction in PCOS. However, it is not clear whether these abnormalities are driven by obesity and metabolic disturbance or whether they are independently related to PCOS. We examined multiunit and single-unit muscle SNS activity (by microneurography), HRV (time and frequency domain analysis) and endothelial function [ischaemic reactive hyperaemia index (RHI) using the EndoPAT device] in 19 overweight/obese women with PCOS (BMI: 31·3 ± 1·5 kg/m(2), age: 31·3 ± 1·6 years) and compared them with 21 control overweight/obese women (BMI: 33·0 ± 1·4 kg/m(2), age: 28·2 ± 1·6 years) presenting a similar metabolic profile (fasting total, HDL and LDL cholesterol, glucose, triglycerides, insulin sensitivity and blood pressure). Women with PCOS had elevated multiunit muscle SNS activity (41 ± 2 vs 33 ± 3 bursts per 100 heartbeats, P < 0·05). Single-unit analysis showed that vasoconstrictor neurons were characterized by elevated firing rate and probability and incidence of multiple spikes (P < 0·01 for all parameters). Women with PCOS also had impaired endothelial function (RHI: 1·77 ± 0·14 vs 2·18 ± 0·14, P < 0·05). HRV did not differ between the groups. Women with PCOS have increased sympathetic drive and impaired endothelial function independent of obesity and metabolic disturbances. Sympathetic activation and endothelial dysfunction may confer greater cardiovascular risk in women with PCOS. © 2015 John Wiley & Sons Ltd.
Cardiac Iodine-123-Meta-Iodo-Benzylguanidine Uptake in Carotid Sinus Hypersensitivity
Tan, Maw Pin; Murray, Alan; Hawkins, Terry; Chadwick, Thomas J.; Kerr, Simon R. J.; Parry, Steve W.
2015-01-01
Background Carotid sinus syndrome is the association of carotid sinus hypersensitivity with syncope, unexplained falls and drop attacks in generally older people. We evaluated cardiac sympathetic innervation in this disorder in individuals with carotid sinus syndrome, asymptomatic carotid sinus hypersensitivity and controls without carotid sinus hypersensitivity. Methods Consecutive patients diagnosed with carotid sinus syndrome at a specialist falls and syncope unit were recruited. Asymptomatic carotid sinus hypersensitivity and non-carotid sinus hypersensitivity control participants recruited from a community-dwelling cohort. Cardiac sympathetic innervation was determined using Iodine-123-metaiodobenzylguanidine (123-I-MIBG) scanning. Heart to mediastinal uptake ratio (H:M) were determined for early and late uptake on planar scintigraphy at 20 minutes and 3 hours following intravenous injection of 123-I-MIBG. Results Forty-two subjects: carotid sinus syndrome (n = 21), asymptomatic carotid sinus hypersensitivity (n = 12) and no carotid sinus hypersensitivity (n = 9) were included. Compared to the non- carotid sinus hypersensitivity control group, the carotid sinus syndrome group had significantly higher early H:M (estimated mean difference, B = 0.40; 95% confidence interval, CI = 0.13 to 0.67, p = 0.005) and late H:M (B = 0.32; 95%CI = 0.03 to 0.62, p = 0.032). There was, however, no significant difference in early H:M (p = 0.326) or late H:M (p = 0.351) between the asymptomatic carotid sinus hypersensitivity group and non- carotid sinus hypersensitivity controls. Conclusions Cardiac sympathetic neuronal activity is increased relative to age-matched controls in individuals with carotid sinus syndrome but not those with asymptomatic carotid sinus hypersensitivity. Blood pressure and heart rate measurements alone may therefore represent an over simplification in the assessment for carotid sinus syndrome and the relative increase in cardiac sympathetic innervation provides additional clues to understanding the mechanisms behind the symptomatic presentation of carotid sinus hypersensitivity. PMID:26057525
Contribution of Orexin to the Neurogenic Hypertension in BPH/2J Mice.
Jackson, Kristy L; Dampney, Bruno W; Moretti, John-Luis; Stevenson, Emily R; Davern, Pamela J; Carrive, Pascal; Head, Geoffrey A
2016-05-01
BPH/2J mice are a genetic model of hypertension associated with an overactive sympathetic nervous system. Orexin is a neuropeptide which influences sympathetic activity and blood pressure. Orexin precursor mRNA expression is greater in hypothalamic tissue of BPH/2J compared with normotensive BPN/3J mice. To determine whether enhanced orexinergic signaling contributes to the hypertension, BPH/2J and BPN/3J mice were preimplanted with radiotelemetry probes to compare blood pressure 1 hour before and 5 hours after administration of almorexant, an orexin receptor antagonist. Mid frequency mean arterial pressure power and the depressor response to ganglion blockade were also used as indicators of sympathetic nervous system activity. Administration of almorexant at 100 (IP) and 300 mg/kg (oral) in BPH/2J mice during the dark-active period (2 hours after lights off) markedly reduced blood pressure (-16.1 ± 1.6 and -11.0 ± 1.1 mm Hg, respectively;P<0.001 compared with vehicle). However, when almorexant (100 mg/kg, IP) was administered during the light-inactive period (5 hours before lights off) no reduction from baseline was observed (P=0.64). The same dose of almorexant in BPN/3J mice had no effect on blood pressure during the dark (P=0.79) or light periods (P=0.24). Almorexant attenuated the depressor response to ganglion blockade (P=0.018) and reduced the mid frequency mean arterial pressure power in BPH/2J mice (P<0.001), but not BPN/3J mice (P=0.70). Immunohistochemical labeling revealed that BPH/2J mice have 29% more orexin neurons than BPN/3J mice which are preferentially located in the lateral hypothalamus. The results suggest that enhanced orexinergic signaling contributes to sympathetic overactivity and hypertension during the dark period in BPH/2J mice. © 2016 American Heart Association, Inc.
Nohara, Kazunari; Waraich, Rizwana S; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S; Karsenty, Gérard; Burcelin, Rémy; Mauvais-Jarvis, Franck
2013-06-15
Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.
Nohara, Kazunari; Waraich, Rizwana S.; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S.; Karsenty, Gérard; Burcelin, Rémy
2013-01-01
Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension. PMID:23612996
Maternal sympathetic stress impairs follicular development and puberty of the offspring.
Barra, Rafael; Cruz, Gonzalo; Mayerhofer, Artur; Paredes, Alfonso; Lara, Hernán E
2014-08-01
Chronic cold stress applied to adult rats activates ovarian sympathetic innervation and develops polycystic ovary (PCO) phenotype. The PCO syndrome in humans originates during early development and is expressed before or during puberty, which suggests that the condition derived from in utero exposure to neural- or metabolic-derived insults. We studied the effects of maternal sympathetic stress on the ovarian follicular development and on the onset of puberty of female offspring. Timed pregnant rats were exposed to chronic cold stress (4 °C, 3 h/daily from 1000 to 1300 h) during the entire pregnancy. Neonatal rats exposed to sympathetic stress during gestation had a lower number of primary, primordial, and secondary follicles in the ovary and a lower recruitment of primary and secondary follicles derived from the primordial follicular pool. The expression of the FSH receptor and response of the neonatal ovary to FSH were reduced. A decrease in nerve growth factor (NGF) mRNA was found without change in the low-affinity NGF receptor. The FSH-induced development of secondary follicles was decreased. At puberty, estradiol plasma levels decreased without changes in LH plasma levels. Puberty onset (as shown by the vaginal opening) was delayed. Ovarian norepinephrine (NE) was reduced; there was no change in its metabolite, 3-methoxy-4-hydroxyphenylglycol, in stressed rats and no change in NE turnover. The changes in ovarian NE in prepubertal rats stressed during gestation could represent a lower development of sympathetic nerves as a compensatory response to the chronically increased NE levels during gestation and hence participate in delaying reproductive performance in the rat. © 2014 Society for Reproduction and Fertility.
Friedrich, Victor L.; Martinelli, Giorgio P.; Prell, George D.; Holstein, Gay R.
2007-01-01
Imidazoleacetic acid-ribotide (IAA-RP) is a putative neurotransmitter/modulator recently discovered in mammalian brain. The present study examines the distribution of IAA-RP in the rat CNS using a highly specific antiserum raised in rabbit against IAA-RP with immunostaining of aldehyde-fixed rat CNS. IAA-RP-immunoreactive neurons were present throughout the neuraxis; neuroglia were not labeled. In each region, only a subset of the neuronal pool was immunostained. In the forebrain, ribotide-immunolabeled neurons were common in neocortex, in hippocampal formation, and in subcortical structures including basal ganglia, thalamus and hypothalamus. Labeling was prominent limbic areas including olfactory bulb, basal forebrain, pyriform cortex and amygdala. In the mid- and hindbrain, immunolabled neurons were concentrated in specific nuclei and, in some areas, in specific subregions of those nuclei. Structures of the motor system, including cranial nerve motor nuclei, precerebellar nuclei, the substantia nigra, and the red nucleus were clearly labeled. Staining was intense in cells and/or puncta in the rostral and caudal ventrolateral medullary reticular formation, nucleus tractus solitarius and the caudal vestibular nuclear complex. Within neurons, the ribotide was found predominantly in somata and dendrites; some myelinated axons and occasional synaptic terminals were also immunostained. These data indicate that IAA-RP contributes to the neurochemical phenotype of many neuronal populations further support our suggestion that, in autonomic structures, the IAA-RP may serve as a chemical mediator in complex circuits involved in blood pressure regulation and, more generally, sympathetic drive. PMID:17210242
Expression of PTHrP and PTH/PTHrP receptor 1 in the superior cervical ganglia of rats.
Filipović, Natalija; Vrdoljak, Marija; Vuica, Ana; Jerić, Milka; Jeličić Kadić, Antonia; Utrobičić, Toni; Mašek, Tomislav; Grković, Ivica
2014-12-01
PTHrP and its receptor PTHR1 are found in the CNS and peripheral nervous system. The presence of PTHrP mRNA has been detected in the superior cervical ganglion (SCG), but there are no data on the cellular distribution of PTHrP and PTHR1 in the SCG. Although it is known that ovarian activity and reproductive status influence sympathetic activity, and the PTHrP/PTHR1 system is influenced by estrogens in different tissues, it is not known whether these factors have a similar effect on expression of PTHrP and PTHR1 in the nervous system. Hence, we investigated the presence and distribution of PTHrP and PTHR1 in neurons and glia of the SCG of rats, as well as the influence of ovariectomy on their expression, by using immunohistochemistry. PTHrP and PTHR1 immunoreactivity was observed in cytoplasm as well as in nuclei of almost all neurons in the SCG. In male rats, intensity of PTHrP fluorescence was significantly higher in cytoplasm of NPY-, in comparison to NPY+ neurons (p < 0.05). In female rats, 2 months post-ovariectomy, significantly lower intensity of PTHrP fluorescence in cytoplasm of the SCG neurons was observed in comparison to sham operated animals (p < 0.05). In addition to neurons, PTHrP and PTHR1 immunoreactivity was observed in most of the glia and was not influenced by ovariectomy. Results show the expression of PTHrP and its receptor, PTHR1, in the majority of neurons and glial cells in the SCG of rats. Expression of PTHrP, but not PTHR1 in the cytoplasm of SCG neurons is influenced by ovarian activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Parkin loss of function contributes to RTP801 elevation and neurodegeneration in Parkinson's disease
Romaní-Aumedes, J; Canal, M; Martín-Flores, N; Sun, X; Pérez-Fernández, V; Wewering, S; Fernández-Santiago, R; Ezquerra, M; Pont-Sunyer, C; Lafuente, A; Alberch, J; Luebbert, H; Tolosa, E; Levy, O A; Greene, L A; Malagelada, C
2014-01-01
Mutations in the PARK2 gene are associated with an autosomal recessive form of juvenile parkinsonism (AR-JP). These mutations affect parkin solubility and impair its E3 ligase activity, leading to a toxic accumulation of proteins within susceptible neurons that results in a slow but progressive neuronal degeneration and cell death. Here, we report that RTP801/REDD1, a pro-apoptotic negative regulator of survival kinases mTOR and Akt, is one of such parkin substrates. We observed that parkin knockdown elevated RTP801 in sympathetic neurons and neuronal PC12 cells, whereas ectopic parkin enhanced RTP801 poly-ubiquitination and proteasomal degradation. In parkin knockout mouse brains and in human fibroblasts from AR-JP patients with parkin mutations, RTP801 levels were elevated. Moreover, in human postmortem PD brains with mutated parkin, nigral neurons were highly positive for RTP801. Further consistent with the idea that RTP801 is a substrate for parkin, the two endogenous proteins interacted in reciprocal co-immunoprecipitates of cell lysates. A potential physiological role for parkin-mediated RTP801 degradation is indicated by observations that parkin protects neuronal cells from death caused by RTP801 overexpression by mediating its degradation, whereas parkin knockdown exacerbates such death. Similarly, parkin knockdown enhanced RTP801 induction in neuronal cells exposed to the Parkinson's disease mimetic 6-hydroxydopamine and increased sensitivity to this toxin. This response to parkin loss of function appeared to be mediated by RTP801 as it was abolished by RTP801 knockdown. Taken together these results indicate that RTP801 is a novel parkin substrate that may contribute to neurodegeneration caused by loss of parkin expression or activity. PMID:25101677
Nucleus Ambiguus Cholinergic Neurons Activated by Acupuncture: Relation to Enkephalin
Guo, Zhi-Ling; Li, Min; Longhurst, John C.
2012-01-01
Acupuncture regulates autonomic function. Our previous studies have shown that electroacupuncture (EA) at the Jianshi–Neiguan acupoints (P5–P6, underlying the median nerve) inhibits central sympathetic outflow and attenuates excitatory cardiovascular reflexes, in part, through an opioid mechanism. It is unknown if EA at these acupoints influences the parasympathetic system. Thus, using c-Fos expression, we examined activation of nucleus ambiguus (NAmb) neurons by EA, their relation to cholinergic (preganglionic parasympathetic) neurons and those containing enkephalin. To enhance detection of cell bodies containing enkephalin, colchicine (90–100 μg/kg) was administered into the subarachnoid space of cats 30 hr prior to EA or sham-operated controls for EA. Following bilateral barodenervation and cervical vagotomy, either EA for 30 min at P5–P6 acupoints or control stimulation (needle placement at P5–P6 without stimulation) was applied. While perikarya containing enkephalin were observed in some medullary nuclei (e.g., râphe), only enkephalin-containing neuronal processes were found in the NAmb. Compared to controls (n=4), more c-Fos immunoreactivity, located principally in close proximity to fibers containing enkephalin was noted in the NAmb of EA-treated cats (n=5; P<0.01). Moreover, neurons double-labeled with c-Fos and choline acetyltransferase in the NAmb were identified in EA-treated, but not the control animals. These data demonstrate for the first time that EA activates preganglionic parasympathetic neurons in the NAmb. Because of their close proximity, these EA-activated neurons likely interact with nerve fibers containing enkephalin. These results suggest that EA at the P5–P6 acupoints has the potential to influence parasympathetic outflow and cardiovascular function, likely through an enkephalinergic mechanism. PMID:22306033
Persistent Genital Hyperinnervation Following Progesterone Administration to Adolescent Female Rats1
Liao, Zhaohui; Smith, Peter G.
2014-01-01
ABSTRACT Provoked vestibulodynia, a female pelvic pain syndrome affecting substantial numbers of women, is characterized by genital hypersensitivity and sensory hyperinnervation. Previous studies have shown that the risk of developing provoked vestibulodynia is markedly elevated following adolescent use of oral contraceptives with high progesterone content. We hypothesized that progesterone, a steroid hormone with known neurotropic properties, may alter genital innervation through direct or indirect actions. Female Sprague Dawley rats received progesterone (20 mg/kg subcutaneously) from Days 20–27; tissue was removed for analysis in some rats on Day 28, while others were ovariectomized on Day 43 and infused for 7 days with vehicle or 17beta estradiol. Progesterone resulted in overall increases in vaginal innervation at both Day 28 and 50 due to proliferation of peptidergic sensory and sympathetic (but not parasympathetic) axons. Estradiol reduced innervation in progesterone-treated and untreated groups. To assess the mechanisms of sensory hyperinnervation, we cultured dissociated dorsal root ganglion neurons and found that progesterone increases neurite outgrowth by small unmyelinated (but not myelinated) sensory neurons, it was receptor mediated, and it was nonadditive with NGF. Pretreatment of ganglion with progesterone also increased neurite outgrowth in response to vaginal target explants. However, pretreatment of vaginal target with progesterone did not improve outgrowth. We conclude that adolescent progesterone exposure may contribute to provoked vestibulodynia by eliciting persistent genital hyperinnervation via a direct effect on unmyelinated sensory nociceptor neurons and that estradiol, a well-documented therapeutic, may alleviate symptoms in part by reducing progesterone-induced sensory hyperinnervation. PMID:25359899
McDougal, David H.; Gamlin, Paul D.
2016-01-01
The autonomic nervous system influences numerous ocular functions. It does this by way of parasympathetic innervation from postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia, and by way of sympathetic innervation from postganglionic fibers that originate from neurons in the superior cervical ganglion. Ciliary ganglion neurons project to the ciliary body and the sphincter pupillae muscle of the iris to control ocular accommodation and pupil constriction, respectively. Superior cervical ganglion neurons project to the dilator pupillae muscle of the iris to control pupil dilation. Ocular blood flow is controlled both via direct autonomic influences on the vasculature of the optic nerve, choroid, ciliary body, and iris, as well as via indirect influences on retinal blood flow. In mammals, this vasculature is innervated by vasodilatory fibers from the pterygopalatine ganglion, and by vasoconstrictive fibers from the superior cervical ganglion. Intraocular pressure is regulated primarily through the balance of aqueous humor formation and outflow. Autonomic regulation of ciliary body blood vessels and the ciliary epithelium is an important determinant of aqueous humor formation; autonomic regulation of the trabecular meshwork and episcleral blood vessels is an important determinant of aqueous humor outflow. These tissues are all innervated by fibers from the pterygopalatine and superior cervical ganglia. In addition to these classical autonomic pathways, trigeminal sensory fibers exert local, intrinsic influences on many of these regions of the eye, as well as on some neurons within the ciliary and pterygopalatine ganglia. PMID:25589275
Seidler, Frederic J; Slotkin, Theodore A
2011-05-30
Early-life exposure to organophosphate pesticides leads to subsequent hyperresponsiveness of β-adrenergic receptor-mediated cell signaling that regulates hepatic gluconeogenesis, culminating in metabolic abnormalities resembling prediabetes. In the current study, we evaluated the effects of chlorpyrifos or parathion on presynaptic sympathetic innervation to determine whether the postsynaptic signaling effects are accompanied by defects in neuronal input. We administered either chlorpyrifos or parathion to newborn rats using exposure paradigms known to elicit the later metabolic changes but found no alterations in either hepatic or cardiac norepinephrine levels in adolescence or adulthood. However, shifting chlorpyrifos exposure to the prenatal period did evoke changes: exposure early in gestation produced subsequent elevations in norepinephrine, whereas later gestational exposure produced significant deficits. We also distinguished the organophosphate effects from those of the glucocorticoid, dexamethasone, a known endocrine disruptor that leads to later-life metabolic and cardiovascular disruption. Postnatal exposure to dexamethasone elicited deficits in peripheral norepinephrine levels but prenatal exposure did not. Our results indicate that early-life exposure to organophosphates leads to subsequent abnormalities of peripheral sympathetic innervation through mechanisms entirely distinct from those of glucocorticoids, ruling out the possibility that the organophosphate effects are secondary to stress or disruption of the HPA axis. Further, the effects on innervation were separable from those on postsynaptic signaling, differing in critical period as well as tissue- and sex-selectivity. Organophosphate targeting of both presynaptic and postsynaptic β-adrenergic sites, each with different critical periods of vulnerability, thus sets the stage for compounding of hepatic and cardiac functional abnormalities. Copyright © 2011 Elsevier Inc. All rights reserved.
Monoamine uptake inhibitors block alpha7-nAChR-mediated cerebral nitrergic neurogenic vasodilation.
Long, Cheng; Chen, Mei-Fang; Sarwinski, Susan J; Chen, Po-Yi; Si, Minliang; Hoffer, Barry J; Evans, M Steven; Lee, Tony J F
2006-07-01
We have proposed that activation of cerebral perivascular sympathetic alpha7-nicotinic acetylcholine receptors (alpha7-nAChRs) by nicotinic agonists releases norepinephrine, which then acts on parasympathetic nitrergic nerves, resulting in release of nitric oxide and vasodilation. Using patch-clamp electrophysiology, immunohistochemistry, and in vitro tissue bath myography, we tested this axo-axonal interaction hypothesis further by examining whether blocking norepinephrine reuptake enhanced alpha7-nAChR-mediated cerebral nitrergic neurogenic vasodilation. The results indicated that choline- and nicotine-induced alpha7-nAChR-mediated nitrergic neurogenic relaxation in endothelium-denuded isolated porcine basilar artery rings was enhanced by desipramine and imipramine at lower concentrations (0.03-0.1 microM) but inhibited at higher concentrations (0.3-10 microM). In cultured superior cervical ganglion (SCG) neurons of the pig and rat, choline (0.1-30 mM)-evoked inward currents were reversibly blocked by 1-30 microM mecamylamine, 1-30 microM methyllycaconitine, 10-300 nM alpha-bungarotoxin, and 0.1-10 microM desipramine and imipramine, providing electrophysiological evidence for the presence of similar functional alpha7-nAChRs in cerebral perivascular sympathetic neurons of pigs and rats. In alpha7-nAChR-expressing Xenopus oocytes, choline-elicited inward currents were attenuated by alpha-bungarotoxin, imipramine, and desipramine. These monoamine uptake inhibitors appeared to directly block the alpha7-nAChR, resulting in diminished nicotinic agonist-induced cerebral nitrergic vasodilation. The enhanced nitrergic vasodilation by lower concentrations of monoamine uptake inhibitors is likely due to a greater effect on monoamine uptake than on alpha7-nAChR blockade. These results further support the hypothesis of axo-axonal interaction in nitrergic regulation of cerebral vascular tone.
Arnerić, S P; Chow, S A; Bhatnagar, R K; Webb, R L; Fischer, L J; Long, J P
1984-02-01
Previous reports suggest that analogs of dopamine (DA) can produce hyperglycemia in rats by interacting with DA receptors. Experiments reported here indicate the site of action and describe the metabolic sequalae associated with the hyperglycemic effect of apomorphine (APO), produced in conscious unrestrained rats. Apomorphine was more potent when administered by intracerebroventricular (i.c.v.) injection than when given subcutaneously (s.c.). Very small doses of the DA receptor antagonist pimozide, given intraventricularly, blocked the hyperglycemic effect of apomorphine administered subcutaneously. Sectioning of the spinal cord at thoracic vertebra T1-2 or sectioning the greater splanchnic nerve blocked apomorphine-induced hyperglycemia; whereas section of the superior colliculus or section at T5-6 had no effect. A dose of apomorphine or epinephrine (EPI) producing a similar degree of hyperglycemia elevated the concentration of EPI in serum to a similar degree, and the increase in EPI in serum preceded the increase in glucose in serum. Fasting animals for 2 or 18 hr had no significant effect on EPI- or apomorphine-induced hyperglycemia despite a reduction (91-93%) of the glycogen content of liver and skeletal muscle during the 18 hr fast. 5-Methoxyindole-2-carboxylic acid (MICA), an inhibitor of gluconeogenesis, blocked EPI- and apomorphine-induced hyperglycemia in rats fasted for 18 hr. However, 5-methoxyindole-2-carboxylic acid was ineffective in blocking hyperglycemia in animals fasted for 2 hr. Changes in insulin or glucagon in serum alone cannot account for the hyperglycemic action of apomorphine. These data demonstrate that apomorphine interacts with central DA receptors located in the hindbrain to activate sympathetic neuronal activity to the adrenal gland which subsequently releases epinephrine to alter homeostasis of glucose. Epinephrine may then, depending on the nutritional status, facilitate glycogenolytic or gluconeogenic processes to produce hyperglycemia.
Pietruck, Christian; Grond, Stefan; Xie, Guo-Xi; Palmer, Pamela P
2003-05-01
Local anesthetics are used for local irrigation after many types of operations. However, recent evidence of toxic effects of local anesthetics at large concentrations during continuous administration suggests an advantage of using decreased local anesthetic concentrations for irrigation solutions. In this study, we determined whether smaller concentrations of local anesthetics may maintain an antiinflammatory and, therefore, analgesic effect without the risk of possible toxicity. Lidocaine and bupivacaine were studied for their ability to inhibit both components of neurogenic inflammation-C fiber-mediated and sympathetic postganglionic neuron (SPGN)-mediated inflammation-in the rat knee joint. Intraarticular lidocaine 0.02% reduced 5-hydroxytryptamine (5-HT)-induced (SPGN-mediated) plasma extravasation (PE) by 35%, and further decreases were obtained by perfusing larger concentrations of lidocaine. Intraarticular bupivacaine 0.025% inhibited 5-HT-induced PE by 60%, and a 95% inhibition was obtained with bupivacaine 0.05%. Larger local anesthetic concentrations were necessary to inhibit C fiber-mediated PE than those required to inhibit SPGN-mediated PE. Lidocaine 0.4% was required to reduce mustard oil-induced PE by 60%. Lidocaine 2% inhibited mustard oil-induced PE to baseline levels. Bupivacaine 0.1% was required for an 80% reduction of PE. Bupivacaine 0.25% inhibited mustard oil-induced PE to baseline levels. Our results demonstrate differential effects of local anesthetics on SPGN- and C fiber-mediated PE but confirm the concept of using smaller concentrations of local anesthetics to achieve inhibition of postoperative inflammation. Local anesthetic wound irrigation is often used to treat postoperative surgical pain. Large concentrations of local anesthetics are usually used, and these concentrations may have possible neurotoxic and myotoxic effects. Our results demonstrate antiinflammatory effects of lidocaine and bupivacaine at concentrations smaller than used clinically.
Walker, Ryan G; Foster, Andrew; Randolph, Chris L; Isaacson, Lori G
2009-02-19
Mature sympathetic neurons in the superior cervical ganglion (SCG) are regulated by target-derived neurotrophins such as nerve growth factor (NGF) and neurotrophin-3 (NT-3). High molecular weight NGF species and mature NT-3 are the predominant NGF and NT-3 protein isoforms in the SCG, yet it is unknown whether the presence of these species is dependent on intact connection with the target tissues. In an attempt to determine the role of peripheral targets in regulating the neurotrophin species found in the SCG, we investigated the NGF and NT-3 protein species present in the SCG following axotomy (transection) or injury of the post-ganglionic axons. Following a 7 day axotomy, the 22-24 kDa NGF species and the mature 14 kDa NT-3 species in the SCG were significantly reduced by 99% and 66% respectively, suggesting that intact connection with the target is necessary for the expression of these protein species. As expected, tyrosine hydroxylase (TH) protein in the SCG was significantly reduced by 80% at 7 days following axotomy. In order to distinguish between the effects of injury and loss of target connectivity, the SCG was examined following compression injury to the post-ganglionic nerves. Following injury, no reduction in the 22-24 kDa NGF or 14 kDa mature NT-3 species was observed in the SCG. TH protein was slightly, yet significantly, decreased in the SCG following injury. The findings of this study suggest that the presence of the 22-24 kDa NGF and mature 14 kDa NT-3 species in the SCG is dependent on connection with peripheral targets and may influence, at least in part, TH protein expression in adult sympathetic neurons.
Delmas, Patrick; Brown, David A; Dayrell, Mariza; Abogadie, Fe C; Caulfield, Malcolm P; Buckley, Noel J
1998-01-01
Using whole-cell and perforated-patch recordings, we have examined the part played by endogenous G-protein βγ subunits in neurotransmitter-mediated inhibition of N-type Ca2+ channel current ICa) in dissociated rat superior cervical sympathetic neurones. Expression of the C-terminus domain of β-adrenergic receptor kinase 1 (βARK1), which contains the consensus motif (QXXER) for binding Gβγ, reduced the fast (pertussis toxin (PTX)-sensitive) and voltage-dependent inhibition of ICa by noradrenaline and somatostatin, but not the slow (PTX-insensitive) and voltage-independent inhibition induced by angiotensin II. βARK1 peptide reduced GTP-γ-S-induced voltage-dependent and PTX-sensitive inhibition of ICa but not GTP-γ-S-mediated voltage-independent inhibition. Overexpression of Gβ1γ2, which mimicked the voltage-dependent inhibition by reducing ICa density and enhancing basal facilitation, occluded the voltage-dependent noradrenaline- and somatostatin-mediated inhibitions but not the inhibition mediated by angiotensin II. Co-expression of the C-terminus of βARK1 with β1 and γ2 subunits prevented the effects of Gβγ dimers on basal Ca2+ channel behaviour in a manner consistent with the sequestering of Gβγ. The expression of the C-terminus of βARK1 slowed down reinhibition kinetics of ICa following conditioning depolarizations and induced long-lasting facilitation by cumulatively sequestering βγ subunits. Our findings identify endogenous Gβγ as the mediator of the voltage-dependent, PTX-sensitive inhibition of ICa induced by both noradrenaline and somatostatin but not the voltage-independent, PTX-insensitive inhibition by angiotensin II. They also support the view that voltage-dependent inhibition results from a direct Gβγ-Ca2+ channel interaction. PMID:9490860
Verloop, Willemien L.; Beeftink, Martine M. A.; Santema, Bernadet T.; Bots, Michiel L.; Blankestijn, Peter J.; Cramer, Maarten J.; Doevendans, Pieter A.; Voskuil, Michiel
2015-01-01
Background Heart failure with preserved left ventricular ejection fraction (HFPEF) affects about half of all patients diagnosed with heart failure. The pathophysiological aspect of this complex disease state has been extensively explored, yet it is still not fully understood. Since the sympathetic nervous system is related to the development of systolic HF, we hypothesized that an increased sympathetic nerve activation (SNA) is also related to the development of HFPEF. This review summarizes the available literature regarding the relation between HFPEF and SNA. Methods and Results Electronic databases and reference lists through April 2014 were searched resulting in 7722 unique articles. Three authors independently evaluated citation titles and abstracts, resulting in 77 articles reporting about the role of the sympathetic nervous system and HFPEF. Of these 77 articles, 15 were included for critical appraisal: 6 animal and 9 human studies. Based on the critical appraisal, we selected 9 articles (3 animal, 6 human) for further analysis. In all the animal studies, isoproterenol was administered to mimic an increased sympathetic activity. In human studies, different modalities for assessment of sympathetic activity were used. The studies selected for further evaluation reported a clear relation between HFPEF and SNA. Conclusion Current literature confirms a relation between increased SNA and HFPEF. However, current literature is not able to distinguish whether enhanced SNA results in HFPEF, or HFPEF results in enhanced SNA. The most likely setting is a vicious circle in which HFPEF and SNA sustain each other. PMID:25658630
Stornetta, Ruth L; Sevigny, Charles P; Schreihofer, Ann M; Rosin, Diane L; Guyenet, Patrice G
2002-03-12
The main source of excitatory drive to the sympathetic preganglionic neurons that control blood pressure is from neurons located in the rostral ventrolateral medulla (RVLM). This monosynaptic input includes adrenergic (C1), peptidergic, and noncatecholaminergic neurons. Some of the cells in this pathway are suspected to be glutamatergic, but conclusive evidence is lacking. In the present study we sought to determine whether these presympathetic neurons express the vesicular glutamate transporter BNPI/VGLUT1 or the closely related gene DNPI, the rat homolog of the mouse vesicular glutamate transporter VGLUT2. Both BNPI/VGLUT1 and DNPI/VGLUT2 mRNAs were detected in the medulla oblongata by in situ hybridization, but only DNPI/VGLUT2 mRNA was present in the RVLM. Moreover, BNPI immunoreactivity was absent from the thoracic spinal cord lateral horn. DNPI/VGLUT2 mRNA was present in many medullary cells retrogradely labeled with Fluoro-Gold from the spinal cord (T2; four rats). Within the RVLM, 79% of the bulbospinal C1 cells contained DNPI/VGLUT2 mRNA. Bulbospinal noradrenergic A5 neurons did not contain DNPI/VGLUT2 mRNA. The RVLM of six unanesthetized rats subjected to 2 hours of hydralazine-induced hypotension contained tenfold more c-Fos-ir DNPI/VGLUT2 neurons than that of six saline-treated controls. c-Fos-ir DNPI/VGLUT2 neurons included C1 and non-C1 neurons (3:2 ratio). In seven barbiturate-anesthetized rats, 16 vasomotor presympathetic neurons were filled with biotinamide and analyzed for the presence of tyrosine hydroxylase immunoreactivity and/or DNPI/VGLUT2 mRNA. Biotinamide-labeled neurons included C1 and non-C1 cells. Most non-C1 (9/10) and C1 presympathetic cells (5/6) contained DNPI/VGLUT2 mRNA. In conclusion, DNPI/VGLUT2 is expressed by most blood pressure-regulating presympathetic cells of the RVLM. The data suggest that these neurons may be glutamatergic and that the C1 adrenergic phenotype is one of several secondary phenotypes that are differentially expressed by subgroups of these cells. Copyright 2002 Wiley-Liss, Inc.
Tutton, P J; Barkla, D H
1987-01-01
The role of extracellular amines such as noradrenaline and serotonin and their interaction with cyclic nucleotides and intracellular polyamines in the regulation of intestinal epithelial cell proliferation is reviewed with particular reference to the differences between normal and neoplastic cells. In respect to the normal epithelium of the small intestine there is a strong case to support the notion that cell proliferation is controlled by, amongst other things, sympathetic nerves. In colonic carcinomas, antagonists for certain serotonin receptors, for histamine H2 receptors and for dopamine D2 receptors inhibit both cell division and tumour growth. Because of the reproducible variations between tumour lines in the response to these antagonists, this inhibition appears to be due to a direct effect on the tumour cells rather than an indirect effect via the tumour host or stroma. This conclusion is supported by the cytocidal effects of toxic congeners of serotonin on the tumour cells. The most salient difference between the amine responses of normal and neoplastic cells relates to the issue of amine uptake. Proliferation of crypt cells is promoted by amine uptake inhibitors, presumably because they block amine re-uptake by the amine secreting cells--sympathetic neurones and enteroendocrine cells. However, tumour cell proliferation is strongly inhibited by amine uptake inhibitors, suggesting that neoplastic cells can, and need to take up the amine before being stimulated by it. Recent revelations in the field of oncogenes also support an important association between amines, cyclic nucleotides and cell division. The ras oncogenes code for a protein that is a member of a family of molecules which relay information from extracellular regulators, such as biogenic amines, to the intracellular regulators, including cyclic nucleotides. Evidence is presented suggesting that enteroendocrine cells, enterocytes, carcinoid tumour cells and adenocarcinoma cells all have the same embryonic origin and that cells exhibiting an admixture of endocrine and proliferative properties exist in colonic tumours, but not in the normal intestinal epithelium. Thus, it appears that in the normal intestine a clear structural and functional distinction exists between the regulating cells (i.e. the sympathetic neurones and enteroendocrine cells) and the regulated cells (i.e. the undifferentiated crypt cells): cells that have acquired a regulating role are no longer able to divide and cells which are able to divide do not take up or store amines.(ABSTRACT TRUNCATED AT 400 WORDS)
Harper, Ronald M; Kumar, Rajesh; Macey, Paul M; Harper, Rebecca K; Ogren, Jennifer A
2015-01-01
Congenital central hypoventilation syndrome (CCHS) patients show major autonomic alterations in addition to their better-known breathing deficiencies. The processes underlying CCHS, mutations in the PHOX2B gene, target autonomic neuronal development, with frame shift extent contributing to symptom severity. Many autonomic characteristics, such as impaired pupillary constriction and poor temperature regulation, reflect parasympathetic alterations, and can include disturbed alimentary processes, with malabsorption and intestinal motility dyscontrol. The sympathetic nervous system changes can exert life-threatening outcomes, with dysregulation of sympathetic outflow leading to high blood pressure, time-altered and dampened heart rate and breathing responses to challenges, cardiac arrhythmia, profuse sweating, and poor fluid regulation. The central mechanisms contributing to failed autonomic processes are readily apparent from structural and functional magnetic resonance imaging studies, which reveal substantial cortical thinning, tissue injury, and disrupted functional responses in hypothalamic, hippocampal, posterior thalamic, and basal ganglia sites and their descending projections, as well as insular, cingulate, and medial frontal cortices, which influence subcortical autonomic structures. Midbrain structures are also compromised, including the raphe system and its projections to cerebellar and medullary sites, the locus coeruleus, and medullary reflex integrating sites, including the dorsal and ventrolateral medullary nuclei. The damage to rostral autonomic sites overlaps metabolic, affective and cognitive regulatory regions, leading to hormonal disruption, anxiety, depression, behavioral control, and sudden death concerns. The injuries suggest that interventions for mitigating hypoxic exposure and nutrient loss may provide cellular protection, in the same fashion as interventions in other conditions with similar malabsorption, fluid turnover, or hypoxic exposure.
Recurrent postoperative CRPS I in patients with abnormal preoperative sympathetic function.
Ackerman, William E; Ahmad, Mahmood
2008-02-01
A complex regional pain syndrome of an extremity that has previously resolved can recur after repeat surgery at the same anatomic site. Complex regional pain syndrome is described as a disease of the autonomic nervous system. The purpose of this study was to evaluate preoperative and postoperative sympathetic function and the recurrence of complex regional pain syndrome type I (CRPS I) in patients after repeat carpal tunnel surgery. Thirty-four patients who developed CRPS I after initial carpal tunnel releases and required repeat open carpal tunnel surgeries were studied. Laser Doppler imaging (LDI) was used to assess preoperative sympathetic function 5-7 days prior to surgery and to assess postoperative sympathetic function 19-22 days after surgery or 20-22 days after resolution of the CRPS I. Sympathetic nervous system function was prospectively examined by testing reflex-evoked vasoconstrictor responses to sympathetic stimuli recorded with LDI of both hands. Patients were assigned to 1 of 2 groups based on LDI responses to sympathetic provocation. Group I (11 of 34) patients had abnormal preoperative LDI studies in the hands that had prior surgeries, whereas group II (23 of 34) patients had normal LDI studies. Each patient in this study had open repeat carpal tunnel surgery. In group I, 8 of 11 patients had recurrent CRPS I, whereas in group II, 3 of 23 patients had recurrent CRPS I. All of the recurrent CRPS I patients were successfully treated with sympathetic blockade, occupational therapy, and pharmacologic modalities. Repeat LDI after recurrent CRPS I resolution was abnormal in 8 of 8 group I patients and in 1 of 3 group II patients. CRPS I can recur after repeat hand surgery. Our study results may, however, identify those individuals who may readily benefit from perioperative therapies. Prognostic I.
Zhang, Chengmi; Wang, Zhenmeng; Zhang, Jinmin; Qiu, Haibo; Sun, Yuming; Yang, Liqun; Wu, Feixiang; Zheng, Jijian; Yu, Weifeng
2014-05-01
A number of case reports now indicate that rocuronium can induce a number of serious side effects. We hypothesized that these side effects might be mediated by the inhibition of nicotinic acetylcholine receptors (nAChRs) at superior cervical ganglion (SCG) neurons. Conventional patch clamp recordings were used to study the effects of rocuronium on nAChR currents from enzymatically dissociated rat SCG neurons. We found that ACh induced a peak transient inward current in rat SCG neurons. Additionally, rocuronium suppressed the peak ACh-evoked currents in rat SCG neurons in a concentration-dependent and competitive manner, and it increased the extent of desensitization of nAChRs. The inhibitory rate of rocuronium on nAChR currents did not change significantly at membrane potentials between -70 and -20 mV, suggesting that this inhibition was voltage independent. Lastly, rocuronium preapplication enhanced its inhibitory effect, indicating that this drug might prefer to act on the closed state of nAChR channels. In conclusion, rocuronium, at clinically relevant concentrations, directly inhibits nAChRs at the SCG by interacting with both opened and closed states. This inhibition is competitive, dose dependent, and voltage independent. Blockade of synaptic transmission in the sympathetic ganglia by rocuronium might have potentially inhibitory effects on the cardiovascular system.
Opioid microinjection into raphe magnus modulates cardiorespiratory function in mice and rats.
Hellman, Kevin M; Mendelson, Scott J; Mendez-Duarte, Marco A; Russell, James L; Mason, Peggy
2009-11-01
The raphe magnus (RM) participates in opioid analgesia and contains pain-modulatory neurons with respiration-related discharge. Here, we asked whether RM contributes to respiratory depression, the most prevalent lethal effect of opioids. To investigate whether opioidergic transmission in RM produces respiratory depression, we microinjected a mu-opioid receptor agonist, DAMGO, or morphine into the RM of awake rodents. In mice, opioid microinjection produced sustained decreases in respiratory rate (170 to 120 breaths/min), as well as heart rate (520 to 400 beats/min). Respiratory sinus arrhythmia, indicative of enhanced parasympathetic activity, was prevalent in mice receiving DAMGO microinjection. We performed similar experiments in rats but observed no changes in breathing rate or heart rate. Both rats and mice experienced significantly more episodes of bradypnea, indicative of impaired respiratory drive, after opioid microinjection. During spontaneous arousals, rats showed less tachycardia after opioid microinjection than before microinjection, suggestive of an attenuated sympathetic tone. Thus, activation of opioidergic signaling within RM produces effects beyond analgesia, including the unwanted destabilization of cardiorespiratory function. These adverse effects on homeostasis consequent to opioid microinjection imply a role for RM in regulating the balance of sympathetic and parasympathetic tone.
Waber-Wenger, Barbara; Forterre, Franck; Kuehni-Boghenbor, Kathrin; Danuser, Renzo; Stein, Jens Volker; Stoffel, Michael Hubert
2014-10-01
Although intervertebral disc herniation is a well-known disease in dogs, pain management for this condition has remained a challenge. The goal of the present study is to address the lack of information regarding the innervation of anatomical structures within the canine vertebral canal. Immunolabeling was performed with antibodies against protein gene product 9.5, Tuj-1 (neuron-specific class III β-tubulin), calcitonin gene-related peptide, and neuropeptide Y in combination with the lectin from Lycopersicon esculentum as a marker for blood vessels. Staining was indicative of both sensory and sympathetic fibers. Innervation density was the highest in lateral areas, intermediate in dorsal areas, and the lowest in ventral areas. In the dorsal longitudinal ligament (DLL), the highest innervation density was observed in the lateral regions. Innervation was lower at mid-vertebral levels than at intervertebral levels. The presence of sensory and sympathetic fibers in the canine dura and DLL suggests that pain may originate from both these structures. Due to these regional differences in sensory innervation patterns, trauma to intervertebral DLL and lateral dura is expected to be particularly painful. The results ought to provide a better basis for the assessment of medicinal and surgical procedures.
Neuroendocrine Mechanisms of Acupuncture in the Treatment of Hypertension
Zhou, Wei; Longhurst, John C.
2012-01-01
Hypertension affects approximately 1 billion individuals worldwide. Pharmacological therapy has not been perfected and often is associated with adverse side effects. Acupuncture is used as an adjunctive treatment for a number of cardiovascular diseases like hypertension. It has long been established that the two major contributors to systemic hypertension are the intrarenal renin-angiotensin system and chronic activation of the sympathetic nervous system. Recent evidence indicates that in some models of cardiovascular disease, blockade of AT1 receptors in the rostral ventrolateral medulla (rVLM) reduces sympathetic nerve activity and blood pressure, suggesting that overactivity of the angiotensin system in this nucleus may play a role in the maintenance of hypertension. Our experimental studies have shown that electroacupuncture stimulation activates neurons in the arcuate nucleus, ventrolateral gray, and nucleus raphe to inhibit the neural activity in the rVLM in a model of visceral reflex stimulation-induced hypertension. This paper will discuss current knowledge of the effects of acupuncture on central nervous system and how they contribute to regulation of acupuncture on the endocrine system to provide a perspective on the future of treatment of hypertension with this ancient technique. PMID:22216059
Effects of Adrenergic Blockade on Postpartum Adaptive Responses Induced by Labor Contractions
NASA Technical Reports Server (NTRS)
Ronca, April E.; Mills, N. A.; Lam, K. P.; Hayes, L. E.; Bowley, Susan M. (Technical Monitor)
2000-01-01
Prenatal exposure to labor contractions augments the expression of postnatal adaptive responses in newborn rats. Near-term rat fetuses exposed prenatally to simulated labor contractions and delivered by cesarean section breath and attach to nipples at greater frequencies than non-stimulated fetuses. Plasma NE (norepinephrine) and EPI (epinephrine) was significantly elevated in newborn rats exposed to vaginal birth or simulated labor contractions (compressions) with cesarean delivery as compared to non-compressed fetuses. In the present study, we investigated adrenergic mechanisms underlying labor-induced postnatal adaptive responses. Following spinal transection of late pregnant rat dams, fetuses were administered neurogenic or non-neurogenic adrenergic blockade: 1) bretylium (10 mg/kg sc) to prevent sympathetic neuronal release, 2) hexamethonium (30 mg/kg) to produce ganglionic blockade, 3) phenoxybenzanune (10mg/kg sc), an a- adrenergic receptor antagonist, 4) ICI-118551, 10 mg/kg sc), a b receptor antagonist, or 5) vehicle alone. Fetuses were either compressed (C) or non-compressed (NC) prior to cesarean delivery. a- and b- adrenergic antagonists reduced respiration and nipple attachment rates while sympathetic and vehicle alone did not. These results provide additional support for the hypothesis that adaptive neonatal effects of labor contractions are mediated by adrenal and extra-adrenal catecholamines.
Isern, Joan; García-García, Andrés; Martín, Ana M; Arranz, Lorena; Martín-Pérez, Daniel; Torroja, Carlos; Sánchez-Cabo, Fátima; Méndez-Ferrer, Simón
2014-01-01
Mesenchymal stem cells (MSCs) and osteolineage cells contribute to the hematopoietic stem cell (HSC) niche in the bone marrow of long bones. However, their developmental relationships remain unclear. In this study, we demonstrate that different MSC populations in the developing marrow of long bones have distinct functions. Proliferative mesoderm-derived nestin− MSCs participate in fetal skeletogenesis and lose MSC activity soon after birth. In contrast, quiescent neural crest-derived nestin+ cells preserve MSC activity, but do not generate fetal chondrocytes. Instead, they differentiate into HSC niche-forming MSCs, helping to establish the HSC niche by secreting Cxcl12. Perineural migration of these cells to the bone marrow requires the ErbB3 receptor. The neonatal Nestin-GFP+ Pdgfrα− cell population also contains Schwann cell precursors, but does not comprise mature Schwann cells. Thus, in the developing bone marrow HSC niche-forming MSCs share a common origin with sympathetic peripheral neurons and glial cells, and ontogenically distinct MSCs have non-overlapping functions in endochondrogenesis and HSC niche formation. DOI: http://dx.doi.org/10.7554/eLife.03696.001 PMID:25255216
1980-12-01
transferase or monoamine oxidase. These enzymes are similar to cholinesterase which destroys acetycholine, the agent secreted by the para- sympathetic nervous...the adrenergic neurons. Levels of norepinephrine are controlled in part by the intraneural metabolic activity of the enzyme monoamine oxidase. Chronic...GJ 4’ to Lu~ (n N. 0 N CIO.I V) m~ -4 4 V) -4 -- 4 ot o0m - N 0 LOlCD W m%0 w M %* " m m m v m v " -4 -4- inC-4J-4 - Coq 00.~. 0 a)) a. CD-v U X X x L
The Theory is Out There: The Use of ALPHA-2 Agonists in Treatment of Septic Shock.
Ferreira, Jason
2018-04-01
The sympathetic nervous system plays an important role in the initial response to sepsis. This response enables the host to respond to invading pathogens; however, prolonged activation can become pathological. The potential for unregulated sympathetic tone to become detrimental in the septic patient has fueled interest in the role and impact of sympathetic manipulation, including the selective inhibition of sympathetic tone to return and augment vascular reactivity. While conventional understanding of alpha 2 agonists activity is depletion of sympathetic outflow, novel evidence suggests mitigation rather than depletion. The mechanism by which these agents exert these properties remains controversial and appears to be condition-specific. The hypothesis by which alpha agonists affect the pathology of sepsis is multifactorial, but includes influence on inflammatory regulation, coagulopathy, dynamic flow, as well as vascular responsiveness and integrity. Theory and basic science evidence supports the use of α agonists in the septic population. The clinical evidence shedding light on this topic is limited and confounded by intention or trial design. Future evidence should focus on adjuvant therapy in patients progressing to or at high risk of shock development.
Obesity and adipokines: effects on sympathetic overactivity
Smith, Michael M; Minson, Christopher T
2012-01-01
Excess body weight is a major risk factor for cardiovascular disease, increasing the risk of hypertension, hyperglycaemia and dyslipidaemia, recognized as the metabolic syndrome. Adipose tissue acts as an endocrine organ by producing various signalling cytokines called adipokines (including leptin, free fatty acids, tumour necrosis factor-α, interleukin-6, C-reactive protein, angiotensinogen and adiponectin). A chronic dysregulation of certain adipokines can have deleterious effects on insulin signalling. Chronic sympathetic overactivity is also known to be present in central obesity, and recent findings demonstrate the consequence of an elevated sympathetic outflow to organs such as the heart, kidneys and blood vessels. Chronic sympathetic nervous system overactivity can also contribute to a further decline of insulin sensitivity, creating a vicious cycle that may contribute to the development of the metabolic syndrome and hypertension. The cause of this overactivity is not clear, but may be driven by certain adipokines. The purpose of this review is to summarize how obesity, notably central or visceral as observed in the metabolic syndrome, leads to adipokine expression contributing to changes in insulin sensitivity and overactivity of the sympathetic nervous system. PMID:22351630
Vivas, Oscar; Castro, Hector; Arenas, Isabel; Elías-Viñas, David; García, David E
2013-03-08
GPCRs regulate Ca(V)2.2 channels through both voltage dependent and independent inhibition pathways. The aim of the present work was to assess the phosphatidylinositol-4,5-bisphosphate (PIP2) as the molecule underlying the voltage independent inhibition of Ca(V)2.2 channels in SCG neurons. We used a double pulse protocol to study the voltage independent inhibition and changed the PIP(2) concentration by means of blocking the enzyme PLC, filling the cell with a PIP(2) analogue and preventing the PIP(2) resynthesis with wortmannin. We found that voltage independent inhibition requires the activation of PLC and can be hampered by internal dialysis of exogenous PIP(2). In addition, the recovery from voltage independent inhibition is blocked by inhibition of the enzymes involved in the resynthesis of PIP(2). These results support that the hydrolysis of PIP(2) is responsible for the voltage independent inhibition of Ca(V)2.2 channels. Copyright © 2013 Elsevier Inc. All rights reserved.
Rilmenidine produces mydriasis in cats by stimulation of CNS alpha 2-adrenoceptors.
Koss, M C
2003-02-01
1. Experiments were undertaken to determine if the imidazoline/alpha2-adrenoceptor agonist, rilmenidine, would produce mydriasis in cats and, if so, to delineate its site of action and determine if this effect is mediated by imidazoline receptors or alpha2-adrenoceptors. 2. Rilmenidine produced dose-related pupillary dilator responses in pentobarbital anaesthetized cats that were independent of sympathetic innervation to the iris but were dependent upon intact parasympathetic neuronal tone. The ED50 for rilmenidine-induced pupillary dilation was approximately 200 microg kg(-1), i.v., and was sustained for at least 1 h. 3. The highly selective alpha2-adrenoceptor antagonist, RS-79948, administered either before or after rilmenidine, antagonized rilmenidine-induced mydriasis. Neuronally induced reflex inhibition of parasympathetic nerve activity was also inhibited by administration of RS-79948. 4. These results suggest that rilmenidine acts like clonidine to produce pupillary dilation by inhibition of parasympathetic tone to the iris sphincter and that this central nervous system parasympatho-inhibition is mediated by alpha2-adrenoceptors, rather than imidazoline receptors.
Zheng, Huiyuan; Patterson, Laurel M; Berthoud, Hans-Rudolf
2005-05-02
Orexin-expressing neurons in the hypothalamus project throughout the neuraxis and are involved in regulation of the sleep/wake cycle, food intake, and autonomic functions. Here we specifically analyze the anatomical organization of orexin projections to the dorsal vagal complex (DVC) and raphe pallidus and effects on ingestive behavior and autonomic functions of local orexin-A administration in nonanesthetized rats. Retrograde tracing experiments revealed that as many as 20% of hypothalamic orexin neurons project to the DVC, where they form straight varicose axon profiles, some of which are in close anatomical apposition with tyrosine hydroxylase (TH)-, glucagon-like peptide-1-, gamma-aminobutyric acid-, and nitric oxide synthase-immunoreactive neurons in a nonselective manner. Similar contacts were frequently observed with neurons of the nucleus of the solitary tract whose activation by gastrointestinal food stimuli was demonstrated by the expression of nuclear c-Fos immunoreactivity. Orexin-A administration to the fourth ventricle induced significant Fos-expression throughout the DVC compared with saline control injections, with about 20-25% of TH-ir neurons among the stimulated ones. Fourth ventricular orexin injections also significantly stimulated chow and water intake in nonfood-deprived rats. Direct bilateral injections of orexin into the DVC increased intake of palatable high-fat pellets. Orexin-ir fibers also innervated raphe pallidus. Fourth ventricular orexin-A (1 nmol) activated Fos expression in the raphe pallidus and C1/A1 catecholaminergic neurons in the ventral medulla and increased body temperature, heart rate, and locomotor activity. The results confirm that hypothalamomedullary orexin projections are involved in a variety of physiological functions, including ingestive behavior and sympathetic outflow. Copyright 2005 Wiley-Liss, Inc.
Wu, Z-X; Dey, R D
2006-07-01
Nerve growth factor (NGF), a member of the neurotrophin family, enhances synthesis of neuropeptides in sensory and sympathetic neurons. The aim of this study was to examine the effect of NGF on airway responsiveness and determine whether these effects are mediated through synthesis and release of substance P (SP) from the intrinsic airway neurons. Ferrets were instilled intratracheally with NGF or saline. Tracheal smooth muscle contractility to methacholine and electrical field stimulation (EFS) was assessed in vitro. Contractions of isolated tracheal smooth muscle to EFS at 10 and 30 Hz were significantly increased in the NGF treatment group (10 Hz: 33.57 +/- 2.44%; 30 Hz: 40.12 +/- 2.78%) compared with the control group (10 Hz: 27.24 +/- 2.14%; 30 Hz: 33.33 +/- 2.31%). However, constrictive response to cholinergic agonist was not significantly altered between the NGF treatment group and the control group. The NGF-induced modulation of airway smooth muscle to EFS was maintained in tracheal segments cultured for 24 h, a procedure that causes a significant anatomic and functional loss of SP-containing sensory fibers while maintaining viability of intrinsic airway neurons. The number of SP-containing neurons in longitudinal trunk and superficial muscular plexus and SP nerve fiber density in tracheal smooth muscle all increased significantly in cultured trachea treated with NGF. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the NGF-induced increased contraction to EFS in cultured segments but had no effect in saline controls. These results show that the NGF-enhanced airway smooth muscle contractile responses to EFS are mediated by the actions of SP released from intrinsic airway neurons.
Bellier, J-P; Kimura, H
2011-12-01
The peripheral type of choline acetyltransferase (pChAT) is an isoform of the well-studied common type of choline acetyltransferase (cChAT), the synthesizing enzyme of acetylcholine. Since pChAT arises by exons skipping, its amino acid sequence is similar to that of cChAT, except the lack of a continuous peptide sequence encoded by all the four exons from 6 to 9. While cChAT expression has been observed in both the central and peripheral nervous systems, pChAT is preferentially expressed in the peripheral nervous system. pChAT appears to be a reliable marker for the visualization of peripheral cholinergic neurons and their processes, whereas other conventional markers including cChAT have not been used successfully for it. In mammals like rodents, pChAT immunoreactivity has been observed in most, if not all, physiologically identified peripheral cholinergic structures such as all parasympathetic postganglionic neurons and most neurons of the enteric nervous system. In addition, pChAT has been found in many peripheral neurons that are derived from the neural crest. These include sensory neurons of the trigeminal ganglion and the dorsal root ganglion, and sympathetic postganglionic neurons. Recent studies moreover indicate that pChAT, as well as cChAT, appears ubiquitously expressed among various species not only of vertebrate mammals but also of invertebrate mollusks. This finding implies that the alternative splicing mechanism to generate pChAT and cChAT has been preserved during evolution, probably for some functional benefits. Copyright © 2011 Elsevier B.V. All rights reserved.
Dimitrov, Eugene L.; Kim, Yoon Yi; Usdin, Ted B.
2012-01-01
Euthermia is critical for mammalian homeostasis. Circuits within the preoptic hypothalamus regulate temperature, with fine control exerted via descending GABAergic inhibition of presympathetic motor neurons that control brown adipose tissue (BAT) thermogenesis and cutaneous vascular tone. The thermoregulatory role of hypothalamic excitatory neurons is less clear. Here we report peptidergic regulation of preoptic glutamatergic neurons that contributes to temperature regulation. Tuberoinfundibular peptide of 39 residues (TIP39) is a ligand for the parathyroid hormone 2 receptor (PTH2R). Both peptide and receptor are abundant in the preoptic hypothalamus. Based on PTH2R and vesicular glutamate transporter 2 (VGlut2) immunolabeling in animals with retrograde tracer injection, PTH2R containing glutamatergic fibers are presynaptic to neurons projecting from the median preoptic nucleus (MnPO) to the dorsomedial hypothalamus. Transneuronal retrograde pathway tracing with pseudorabies virus revealed connectivity between MnPO VGlut2 and PTH2R neurons and BAT. MnPO injection of TIP39 increased body temperature by 2° C for several hours. Mice lacking TIP39 signaling, either because of PTH2R null mutation or brain delivery of a PTH2R antagonist had impaired heat production upon cold exposure, but no change in basal temperature and no impairment in response to a hot environment. Thus, TIP39 appears to act on PTH2Rs present on MnPO glutamatergic terminals to regulate their activation of projection neurons and subsequent sympathetic BAT activation. This excitatory mechanism of heat production appears to be activated on demand, during cold exposure, and parallels the tonic inhibitory GABAergic control of body temperature. PMID:22159128
Quantification of Cysteinyl-S-Nitrosylation by Fluorescence in Unbiased Proteomic Studies*
Wiktorowicz, John E.; Stafford, Susan; Rea, Harriet; Urvil, Petri; Soman, Kizhake; Kurosky, Alexander; Perez-Polo, J. Regino; Savidge, Tor C.
2011-01-01
Cysteinyl-S-nitrosylation has emerged as an important post-translational modification affecting protein function in health and disease. Great emphasis has been placed on global, unbiased quantification of S-nitrosylated proteins due to physiologic and oxidative stimuli. However, current strategies have been hampered by sample loss and altered protein electrophoretic mobility. Here, we describe a novel quantitative approach that combines accurate, sensitive fluorescence modification of cysteine S-nitrosylation that leaves electrophoretic mobility unaffected (SNOFlo), and introduce unique concepts for measuring changes in S-nitrosylation status relative to protein abundance. Its efficacy in defining the functional S-nitrosoproteome is demonstrated in two diverse biological applications: an in vivo rat hypoxia-ischemia reperfusion model, and antimicrobial S-nitrosoglutathione-driven transnitrosylation of an enteric microbial pathogen. The suitability of this approach for investigating endogenous S-nitrosylation is further demonstrated using Ingenuity Pathways analysis that identified nervous system and cellular development networks as the top two networks. Functional analysis of differentially S-nitrosylated proteins indicated their involvement in apoptosis, branching morphogenesis of axons, cortical neurons, and sympathetic neurites, neurogenesis, and calcium signaling. Major abundance changes were also observed for fibrillar proteins known to be stress-responsive in neurons and glia. Thus, both examples demonstrate the technique’s power in confirming the widespread involvement of S-nitrosylation in hypoxia-ischemia/reperfusion injury and in antimicrobial host responses. PMID:21615140
ERIC Educational Resources Information Center
Ribbers, G.; And Others
1995-01-01
This article reviews reflex sympathetic dystrophy (RSD), a symptom complex caused by a minor injury and characterized by pain, vasomotor and trophic disregulation, and motor impairments. Both an acute stage and a chronic stage are described. Implications for diagnosis, prevention of disabilities, and development of rehabilitation strategies are…
Emotion theory and research: highlights, unanswered questions, and emerging issues.
Izard, Carroll E
2009-01-01
Emotion feeling is a phase of neurobiological activity, the key component of emotions and emotion-cognition interactions. Emotion schemas, the most frequently occurring emotion experiences, are dynamic emotion-cognition interactions that may consist of momentary/situational responding or enduring traits of personality that emerge over developmental time. Emotions play a critical role in the evolution of consciousness and the operations of all mental processes. Types of emotion relate differentially to types or levels of consciousness. Unbridled imagination and the ability for sympathetic regulation of empathy may represent both potential gains and losses from the evolution and ontogeny of emotion processes and consciousness. Unresolved issues include psychology's neglect of levels of consciousness that are distinct from access or reflective consciousness and use of the term "unconscious mind" as a dumpster for all mental processes that are considered unreportable. The relation of memes and the mirror neuron system to empathy, sympathy, and cultural influences on the development of socioemotional skills are unresolved issues destined to attract future research.
Emotion Theory and Research: Highlights, Unanswered Questions, and Emerging Issues
Izard, Carroll E.
2009-01-01
Emotion feeling is a phase of neurobiological activity, the key component of emotions and emotion-cognition interactions. Emotion schemas, the most frequently occurring emotion experiences, are dynamic emotion-cognition interactions that may consist of momentary/ situational responding or enduring traits of personality that emerge over developmental time. Emotions play a critical role in the evolution of consciousness and the operations of all mental processes. Types of emotion relate differentially to types or levels of consciousness. Unbridled imagination and the ability for sympathetic regulation of empathy may represent both potential gains and losses from the evolution and ontogeny of emotion processes and consciousness. Unresolved issues include psychology’s neglect of levels of consciousness that are distinct from access or reflective consciousness and use of the term “unconscious mind” as a dumpster for all mental processes that are considered unreportable. The relation of memes and the mirror neuron system to empathy, sympathy, and cultural influences on the development of socioemotional skills are unresolved issues destined to attract future research. PMID:18729725
Regulation of CaV2 calcium channels by G protein coupled receptors
Zamponi, Gerald W.; Currie, Kevin P.M.
2012-01-01
Voltage gated calcium channels (Ca2+ channels) are key mediators of depolarization induced calcium influx into excitable cells, and thereby play pivotal roles in a wide array of physiological responses. This review focuses on the inhibition of CaV2 (N- and P/Q-type) Ca2+-channels by G protein coupled receptors (GPCRs), which exerts important autocrine/paracrine control over synaptic transmission and neuroendocrine secretion. Voltage-dependent inhibition is the most widespread mechanism, and involves direct binding of the G protein βγ dimer (Gβγ) to the α1 subunit of CaV2 channels. GPCRs can also recruit several other distinct mechanisms including phosphorylation, lipid signaling pathways, and channel trafficking that result in voltage-independent inhibition. Current knowledge of Gβγ-mediated inhibition is reviewed, including the molecular interactions involved, determinants of voltage-dependence, and crosstalk with other cell signaling pathways. A summary of recent developments in understanding the voltage-independent mechanisms prominent in sympathetic and sensory neurons is also included. PMID:23063655
Meth math: modeling temperature responses to methamphetamine.
Molkov, Yaroslav I; Zaretskaia, Maria V; Zaretsky, Dmitry V
2014-04-15
Methamphetamine (Meth) can evoke extreme hyperthermia, which correlates with neurotoxicity and death in laboratory animals and humans. The objective of this study was to uncover the mechanisms of a complex dose dependence of temperature responses to Meth by mathematical modeling of the neuronal circuitry. On the basis of previous studies, we composed an artificial neural network with the core comprising three sequentially connected nodes: excitatory, medullary, and sympathetic preganglionic neuronal (SPN). Meth directly stimulated the excitatory node, an inhibitory drive targeted the medullary node, and, in high doses, an additional excitatory drive affected the SPN node. All model parameters (weights of connections, sensitivities, and time constants) were subject to fitting experimental time series of temperature responses to 1, 3, 5, and 10 mg/kg Meth. Modeling suggested that the temperature response to the lowest dose of Meth, which caused an immediate and short hyperthermia, involves neuronal excitation at a supramedullary level. The delay in response after the intermediate doses of Meth is a result of neuronal inhibition at the medullary level. Finally, the rapid and robust increase in body temperature induced by the highest dose of Meth involves activation of high-dose excitatory drive. The impairment in the inhibitory mechanism can provoke a life-threatening temperature rise and makes it a plausible cause of fatal hyperthermia in Meth users. We expect that studying putative neuronal sites of Meth action and the neuromediators involved in a detailed model of this system may lead to more effective strategies for prevention and treatment of hyperthermia induced by amphetamine-like stimulants.
Regulation of Breathing and Autonomic Outflows by Chemoreceptors
Guyenet, Patrice G.
2016-01-01
Lung ventilation fluctuates widely with behavior but arterial PCO2 remains stable. Under normal conditions, the chemoreflexes contribute to PaCO2 stability by producing small corrective cardiorespiratory adjustments mediated by lower brainstem circuits. Carotid body (CB) information reaches the respiratory pattern generator (RPG) via nucleus solitarius (NTS) glutamatergic neurons which also target rostral ventrolateral medulla (RVLM) presympathetic neurons thereby raising sympathetic nerve activity (SNA). Chemoreceptors also regulate presympathetic neurons and cardiovagal preganglionic neurons indirectly via inputs from the RPG. Secondary effects of chemoreceptors on the autonomic outflows result from changes in lung stretch afferent and baroreceptor activity. Central respiratory chemosensitivity is caused by direct effects of acid on neurons and indirect effects of CO2 via astrocytes. Central respiratory chemoreceptors are not definitively identified but the retrotrapezoid nucleus (RTN) is a particularly strong candidate. The absence of RTN likely causes severe central apneas in congenital central hypoventilation syndrome. Like other stressors, intense chemosensory stimuli produce arousal and activate circuits that are wake- or attention-promoting. Such pathways (e.g., locus coeruleus, raphe, and orexin system) modulate the chemoreflexes in a state-dependent manner and their activation by strong chemosensory stimuli intensifies these reflexes. In essential hypertension, obstructive sleep apnea and congestive heart failure, chronically elevated CB afferent activity contributes to raising SNA but breathing is unchanged or becomes periodic (severe CHF). Extreme CNS hypoxia produces a stereotyped cardiorespiratory response (gasping, increased SNA). The effects of these various pathologies on brainstem cardiorespiratory networks are discussed, special consideration being given to the interactions between central and peripheral chemoreflexes. PMID:25428853
Li, Guilin; Liu, Shuangmei; Yang, Yang; Xie, Jinyan; Liu, Jun; Kong, Fanjun; Tu, Guihua; Wu, Raoping; Li, Guodong; Liang, Shangdong
2011-04-05
Sympathoexcitatory reflex is characterized by an increase in blood pressure and sympathetic nerve activity. P2X₃ receptors in SCG neurons are involved in increasing sympathoexcitatory reflex after myocardial ischemic (MI) injury. The present study is aimed to explore the effects of oxymatrine (Oxy) on the transmission of myocardial ischemic signaling mediated by P2X₃ receptors in rat superior cervical ganglia (SCG) and cervical dorsal root ganglia (DRG) in the sympathoexcitatory reflex after myocardial ischemic injury. In this study, the expression levels of P2X₃ immunoreactivity, mRNA and protein were analyzed in SCG and DRG neurons by immunohistochemistry, in situ hybridization and Western blotting. The results show that the myocardial ischemic injury induces the increase of the systolic blood pressure and heart rate and upregulates the expression of P2X₃ receptors in SCG and DRG neurons. Upregulated expression of P2X₃ receptors in SCG and DRG neurons subsequently leads to the aggravated sympathoexcitatory reflex. Oxymatrine reduces the systolic blood pressure and heart rate in myocardial ischemic rats. After myocardial ischemic rats are treated with oxymatrine, the expression levels of P2X₃ immunoreactivity, mRNA and protein are lower than those in myocardial ischemic rats. Oxymatrine may decrease the expression of P2X₃ receptor and depress the aggravated sympathoexcitatory reflex induced by the nociceptive transmission of myocardial ischemic injury via P2X₃ receptors of rat SCG and DRG neurons. Copyright © 2011 Elsevier Inc. All rights reserved.
Meth math: modeling temperature responses to methamphetamine
Molkov, Yaroslav I.; Zaretskaia, Maria V.
2014-01-01
Methamphetamine (Meth) can evoke extreme hyperthermia, which correlates with neurotoxicity and death in laboratory animals and humans. The objective of this study was to uncover the mechanisms of a complex dose dependence of temperature responses to Meth by mathematical modeling of the neuronal circuitry. On the basis of previous studies, we composed an artificial neural network with the core comprising three sequentially connected nodes: excitatory, medullary, and sympathetic preganglionic neuronal (SPN). Meth directly stimulated the excitatory node, an inhibitory drive targeted the medullary node, and, in high doses, an additional excitatory drive affected the SPN node. All model parameters (weights of connections, sensitivities, and time constants) were subject to fitting experimental time series of temperature responses to 1, 3, 5, and 10 mg/kg Meth. Modeling suggested that the temperature response to the lowest dose of Meth, which caused an immediate and short hyperthermia, involves neuronal excitation at a supramedullary level. The delay in response after the intermediate doses of Meth is a result of neuronal inhibition at the medullary level. Finally, the rapid and robust increase in body temperature induced by the highest dose of Meth involves activation of high-dose excitatory drive. The impairment in the inhibitory mechanism can provoke a life-threatening temperature rise and makes it a plausible cause of fatal hyperthermia in Meth users. We expect that studying putative neuronal sites of Meth action and the neuromediators involved in a detailed model of this system may lead to more effective strategies for prevention and treatment of hyperthermia induced by amphetamine-like stimulants. PMID:24500434
Role of N-type calcium channels in autonomic neurotransmission in guineapig isolated left atria
Serone, Adrian P; Angus, James A
1999-01-01
Calcium entry via neuronal calcium channels is essential for the process of neurotransmission. We investigated the calcium channel subtypes involved in the operation of cardiac autonomic neurotransmission by examining the effects of selective calcium channel blockers on the inotropic responses to electrical field stimulation (EFS) of driven (4 Hz) guineapig isolated left atria. In this tissue, a previous report (Hong & Chang, 1995) found no evidence for N-type channels involved in the vagal negative inotropic response and only weak involvement in sympathetic responses. The effects of cumulative concentrations of the selective N-type calcium channel blocker, ω-conotoxin GVIA (GVIA; 0.1–10 nM) and the nonselective N-, P/Q-type calcium channel blocker, ω-conotoxin MVIIC (MVIIC; 0.01–10 nM) were examined on the positive (with atropine, 1 μM present) and negative (with propranolol, 1 μM and clonidine, 1 μM present) inotropic responses to EFS (eight trains, each train four pulses per punctate stimulus). GVIA caused complete inhibition of both cardiac vagal and sympathetic inotropic responses to EFS. GVIA was equipotent at inhibiting positive (pIC50 9.29±0.08) and negative (pIC50 9.13±0.17) inotropic responses. MVIIC also mediated complete inhibition of inotropic responses to EFS and was 160 and 85 fold less potent than GVIA at inhibiting positive (pIC50 7.08±0.10) and negative (pIC50 7.20±0.14) inotropic responses, respectively. MVIIC was also equipotent at inhibiting both sympathetic and vagal responses. Our data demonstrates that N-type calcium channels account for all the calcium current required for cardiac autonomic neurotransmission in the guinea-pig isolated left atrium. PMID:10433500
Patel, Ameera X; Miller, Sam R; Nathan, Pradeep J; Kanakaraj, Ponmani; Napolitano, Antonella; Lawrence, Philip; Koch, Annelize; Bullmore, Edward T
2014-10-01
The orexin-hypocretin system is important for translating peripheral metabolic signals and central neuronal inputs to a diverse range of behaviors, from feeding, motivation and arousal, to sleep and wakefulness. Orexin signaling is thus an exciting potential therapeutic target for disorders of sleep, feeding, addiction, and stress. Here, we investigated the low dose pharmacology of orexin receptor antagonist, SB-649868, on neuroendocrine, sympathetic nervous system, and behavioral responses to insulin-induced hypoglycemic stress, in 24 healthy male subjects (aged 18-45 years; BMI 19.0-25.9 kg/m(2)), using a randomized, double-blind, placebo-controlled, within-subject crossover design. Alprazolam, a licensed benzodiazepine anxiolytic, was used as a positive comparator, as it has previously been validated using the insulin tolerance test (ITT) model in humans. Of the primary endpoints, ITT induced defined increases in pulse rate, plasma cortisol, and adrenocorticotropic hormone in the placebo condition, but these responses were not significantly impacted by alprazolam or SB-649868 pre-treatment. Of the secondary endpoints, ITT induced a defined increase in plasma concentrations of adrenaline, noradrenaline, growth hormone (GH), and prolactin in the placebo condition. Alprazolam pre-treatment significantly reduced the GH response to ITT (p < 0.003), the peak electromyography (p < 0.0001) and galvanic skin response (GSR, p = 0.04) to acoustic startle, the resting GSR (p = 0.01), and increased appetite following ITT (p < 0.0005). SB-649868 pre-treatment produced no significant results. We concluded that the ITT model may be informative for assessing the effects of drugs directly acting on the neuroendocrine or sympathetic nervous systems, but could not be validated for studying low dose orexin antagonist activity.
Bardgett, Megan E.; Chen, Qing-Hui; Guo, Qing; Calderon, Alfredo S.; Andrade, Mary Ann
2014-01-01
Autonomic and endocrine profiles of chronic hypertension and heart failure resemble those of acute dehydration. Importantly, all of these conditions are associated with exaggerated sympathetic nerve activity (SNA) driven by glutamatergic activation of the hypothalamic paraventricular nucleus (PVN). Here, studies sought to gain insight into mechanisms of disease by determining the role of PVN ionotropic glutamate receptors in supporting SNA and mean arterial pressure (MAP) during dehydration and by elucidating mechanisms regulating receptor activity. Blockade of PVN N-methyl-d-aspartate (NMDA) receptors reduced (P < 0.01) renal SNA and MAP in urethane-chloralose-anesthetized dehydrated (DH) (48 h water deprivation) rats, but had no effect in euhydrated (EH) controls. Blockade of PVN α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors had no effect in either group. NMDA in PVN caused dose-dependent increases of renal SNA and MAP in both groups, but the maximum agonist evoked response (Emax) of the renal SNA response was greater (P < 0.05) in DH rats. The latter was not explained by increased PVN expression of NMDA receptor NR1 subunit protein, increased PVN neuronal excitability, or decreased brain water content. Interestingly, PVN injection of the pan-specific excitatory amino acid transporter (EAAT) inhibitor dl-threo-β-benzyloxyaspartic acid produced smaller sympathoexcitatory and pressor responses in DH rats, which was associated with reduced glial expression of EAAT2 in PVN. Like chronic hypertension and heart failure, dehydration increases excitatory NMDA receptor tone in PVN. Reduced glial-mediated glutamate uptake was identified as a key contributing factor. Defective glutamate uptake in PVN could therefore be an important, but as yet unexplored, mechanism driving sympathetic hyperactivity in chronic cardiovascular diseases. PMID:24671240
Ramchandra, Rohit; Hood, Sally G; May, Clive N
2014-08-01
Heart failure (HF) is associated with increased cardiac and renal sympathetic drive, which are both independent predictors of poor prognosis. A candidate mechanism for the centrally mediated sympathoexcitation in HF is reduced synthesis of the inhibitory neuromodulator nitric oxide (NO), resulting from downregulation of neuronal NO synthase (nNOS). Therefore, we investigated the effects of increasing the levels of NO in the brain, or selectively in the paraventricular nucleus of the hypothalamus (PVN), on cardiac sympathetic nerve activity (CSNA) and baroreflex control of CSNA and heart rate in ovine pacing-induced HF. The resting level of CSNA was significantly higher in the HF than in the normal group, but the resting level of RSNA was unchanged. Intracerebroventricular infusion of the NO donor sodium nitroprusside (SNP; 500 μg · ml(-1)· h(-1)) in conscious normal sheep and sheep in HF inhibited CSNA and restored baroreflex control of heart rate, but there was no change in RSNA. Microinjection of SNP into the PVN did not cause a similar cardiac sympathoinhibition in either group, although the number of nNOS-positive cells was decreased in the PVN of sheep in HF. Reduction of endogenous NO with intracerebroventricular infusion of N(ω)-nitro-l-arginine methyl ester decreased CSNA in normal but not in HF sheep and caused no change in RSNA in either group. These findings indicate that endogenous NO in the brain provides tonic excitatory drive to increase resting CSNA in the normal state, but not in HF. In contrast, exogenously administered NO inhibited CSNA in both the normal and HF groups via an action on sites other than the PVN. Copyright © 2014 the American Physiological Society.
Kuo, Lydia E; Czarnecka, Magdalena; Kitlinska, Joanna B; Tilan, Jason U; Kvetnanský, Richard; Zukowska, Zofia
2008-12-01
In response to stress, some people lose while others gain weight. This is believed to be due to either increased beta-adrenergic activation, the body's main fat-burning mechanism, or increased intake of sugar- and fat-rich "comfort foods." A high-fat, high-sugar (HFS) diet alone, however, cannot account for the epidemic of obesity, and chronic stress alone tends to lower adiposity in mice. Here we discuss how chronic stress, when combined with an HFS diet, leads to abdominal obesity by releasing a sympathetic neurotransmitter, neuropeptide Y (NPY), directly into the adipose tissue. In vitro, when "stressed" with dexamethasone, sympathetic neurons shift toward expressing more NPY, which stimulates endothelial cell (angiogenesis) and preadipocyte proliferation, differentiation, and lipid-filling (adipogenesis) by activating the same NPY-Y2 receptors (Y2Rs). In vivo, chronic stress, consisting of cold water or aggression in HFS-fed mice, stimulates the release of NPY and the expression of Y2Rs in visceral fat, increasing its growth by 50% in 2 weeks. After 3 months, this results in metabolic syndrome-like symptoms with abdominal obesity, inflammation, hyperlipidemia, hyperinsulinemia, glucose intolerance, hepatic steatosis, and hypertension. Remarkably, local intra-fat Y2R inhibition pharmacologically or via adenoviral Y2R knock-down reverses or prevents fat accumulation and metabolic complications. These studies demonstrated for the first time that chronic stress, via the NPY-Y2R pathway, amplifies and accelerates diet-induced obesity and the metabolic syndrome. Our findings also suggest the use of local administration of Y2R antagonists for treatment of obesity and NPY-Y2 agonists for fat augmentation in other clinical applications.
Endothelial dysfunction impairs vascular neurotransmission in tail arteries.
Sousa, Joana B; Fresco, Paula; Diniz, Carmen
2015-01-01
The present study intends to clarify if endothelium dysfunction impairs vascular sympathetic neurotransmission. Electrically-evoked tritium overflow (100 pulses/5 Hz) was evaluated in arteries (intact and denuded) or exhibiting some degree of endothelium dysfunction (spontaneously hypertensive arteries), pre-incubated with [(3)H]-noradrenaline in the presence of enzymes (nitric oxide synthase (NOS); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; xanthine oxidase; cyclooxygenase; adenosine kinase) inhibitors and a nucleoside transporter inhibitor. Inhibition of endothelial nitric oxide synthase with L-NIO dihydrochloride reduced tritium overflow in intact arteries whereas inhibition of neuronal nitric oxide synthase with Nω-Propyl-L-arginine hydrochloride was devoid of effect showing that only endothelial nitric oxide synthase is involved in vascular sympathetic neuromodulation. Inhibition of enzymes involved in reactive oxygen species or prostaglandins production with apocynin and allopurinol or indomethacin, respectively, failed to alter tritium overflow. A facilitation or reduction of tritium overflow was observed in the presence of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or of 5-iodotubericidin, respectively, but only in intact arteries. These effects can be ascribed to a tonic inhibitory effect mediated by A1 receptors. In denuded and hypertensive arteries, 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidine (SCH 58261) reduced tritium overflow, suggesting the occurrence of a tonic activation of A2A receptors. When endogenous adenosine bioavailability was increased by the nucleoside transporter inhibitor, S-(4-Nitrobenzyl)-6-thioinosine, tritium overflow increased in intact, denuded and hypertensive arteries. Among the endothelium-derived substances studied that could alter vascular sympathetic transmission only adenosine/adenosine receptor mediated mechanisms were clearly impaired by endothelium injury/dysfunction. Copyright © 2014 Elsevier Ltd. All rights reserved.
Connor, E. A.; Parsons, R. L.
1984-01-01
Barium-induced alterations in fast excitatory postsynaptic currents (e.p.s.cs) have been studied in voltage-clamped bullfrog sympathetic ganglion B cells. In the presence of 2-8 mM barium, e.p.s.c. decay was prolonged and in many cells the e.p.s.c. decay phase deviated from a single exponential function. The decay phase in these cases was more accurately described as the sum of two exponential functions. The frequency of occurrence of a complex decay increased both with increasing barium concentration and with hyperpolarization. Miniature e.p.s.c. decay also was prolonged in barium-treated cells. E.p.s.c. amplitude was not markedly affected by barium (2-8 mM) in cells voltage-clamped to -50 mV whereas at -90 mV there was a progressive increase in peak size with increasing barium concentration. In control cells the e.p.s.c.-voltage relationship was linear between -20 and -100 mV; however, this relationship became progressively non-linear with membrane hyperpolarization in barium-treated cells. The e.p.s.c. reversal potential was shifted to a more negative value in the presence of barium. There was a voltage-dependent increase in charge movement during the e.p.s.c. in barium-treated cells which was not present in control cells. We conclude that the voltage-dependent alteration in e.p.s.c. decay time course, peak amplitude and charge movement in barium-treated cells is due to a direct postsynaptic action of barium on the kinetics of receptor-channel gating in postganglionic sympathetic neurones. PMID:6333261
The Impact of Emotional Solidarity on Residents' Attitude and Tourism Development.
Hasani, Ali; Moghavvemi, Sedigheh; Hamzah, Amran
2016-01-01
In many countries, especially one such as Malaysia, tourism has become a key factor in economic development, and the industry heavily relies on feedback from local residents. It is essential to observe and examine the perceptions of residents towards tourists and tourism development for better planning in realizing successful and sustainable tourism development. Therefore, this research measured the relationship between residents' welcoming nature, emotional closeness, and sympathetic understanding (emotional solidarity) towards tourists and their respective attitudes towards supporting tourism development. To test the proposed research model, we collected data using a questionnaire survey from 333 residents in rural areas in Malaysia. We used the structural equation modelling technique (Amos) to evaluate the research model, and the results revealed that the residents' willingness (welcoming nature) to accept tourists is the strongest factor that effects the residents' attitudes towards supporting tourism development. However, there was no significant relationship between residents' emotional closeness and their sympathetic understanding towards tourists with their attitude and support towards tourism development. Welcoming nature, emotional closeness, and sympathetic understanding are able to predict 48% of residents' attitudes towards tourism development and 62% of their support towards tourism development.
The Impact of Emotional Solidarity on Residents’ Attitude and Tourism Development
Hasani, Ali; Moghavvemi, Sedigheh; Hamzah, Amran
2016-01-01
In many countries, especially one such as Malaysia, tourism has become a key factor in economic development, and the industry heavily relies on feedback from local residents. It is essential to observe and examine the perceptions of residents towards tourists and tourism development for better planning in realizing successful and sustainable tourism development. Therefore, this research measured the relationship between residents’ welcoming nature, emotional closeness, and sympathetic understanding (emotional solidarity) towards tourists and their respective attitudes towards supporting tourism development. To test the proposed research model, we collected data using a questionnaire survey from 333 residents in rural areas in Malaysia. We used the structural equation modelling technique (Amos) to evaluate the research model, and the results revealed that the residents’ willingness (welcoming nature) to accept tourists is the strongest factor that effects the residents’ attitudes towards supporting tourism development. However, there was no significant relationship between residents’ emotional closeness and their sympathetic understanding towards tourists with their attitude and support towards tourism development. Welcoming nature, emotional closeness, and sympathetic understanding are able to predict 48% of residents’ attitudes towards tourism development and 62% of their support towards tourism development. PMID:27341569
Lessard, Andrée; Coleman, Christal G; Pickel, Virginia M
2010-06-01
Chronic intermittent hypoxia (CIH) is a frequent concomitant of sleep apnea, which can increase sympathetic nerve activity through mechanisms involving chemoreceptor inputs to the commissural nucleus of the solitary tract (cNTS). These chemosensory inputs co-store glutamate and substance P (SP), an endogenous ligand for neurokinin-1 (NK(1)) receptors. Acute hypoxia results in internalization of NK(1) receptors, suggesting that CIH also may affect the subcellular distribution of NK(1) receptors in subpopulations of cNTS neurons, some of which may express tyrosine hydroxylase, the rate-limiting enzyme for catecholamine synthesis (TH). To test this hypothesis, we examined dual immunolabeling for the NK(1) receptor and TH in the cNTS of male mice subjected to 10days or 35days of CIH or intermittent air. Electron microscopy revealed that NK(1) receptors and TH were almost exclusively localized within separate somatodendritic profiles in cNTS of control mice. In dendrites, immunogold particles identifying NK(1) receptors were prevalent in the cytoplasm and on the plasmalemmal surface. Compared with controls, CIH produced a significant region-specific decrease in the cytoplasmic (10 and 35days, P<0.05, unpaired Student t-test) and extrasynaptic plasmalemmal (35days, P<0.01, unpaired Student t-test) density of NK(1) immunogold particles exclusively in small (<0.1microm) dendrites without TH immunoreactivity. These results suggest that CIH produces a duration-dependent reduction in the availability of NK(1) receptors preferentially in small dendrites of non-catecholaminergic neurons in the cNTS. The implications of our findings are discussed with respect to their potential involvement in the slowly developing hypertension seen in sleep apnea patients. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Lessard, Andrée; Coleman, Christal G.; Pickel, Virginia M.
2010-01-01
Chronic intermittent hypoxia (CIH) is a frequent concomitant of sleep apnea, which can increase sympathetic nerve activity through mechanisms involving chemoreceptor inputs to the commissural nucleus of the solitary tract (cNTS). These chemosensory inputs co-store glutamate and substance P (SP), an endogenous ligand for neurokinin-1 (NK1) receptors. Acute hypoxia results in internalization of NK1 receptors, suggesting that CIH also may affect the subcellular distribution of NK1 receptors in subpopulations of cNTS neurons, some of which may express tyrosine hydroxylase, the rate-limiting enzyme for catecholamine synthesis (TH). To test this hypothesis, we examined dual immunolabeling for the NK1 receptor and TH in the cNTS of male mice subjected to 10 days or 35 days of CIH or intermittent air. Electron microscopy revealed that NK1 receptors and TH were almost exclusively localized within separate somatodendritic profiles in cNTS of control mice. In dendrites, immunogold particles identifying NK1 receptors were prevalent in the cytoplasm and on the plasmalemmal surface. Compared with controls, CIH produced a significant region-specific decrease in the cytoplasmic (10 and 35 days, P< 0.05, unpaired Student t-test) and extrasynaptic plasmalemmal (35 days, P< 0.01, unpaired Student t-test) density of NK1 immunogold particles exclusively in small (<0.1 µm) dendrites without TH immunoreactivity. These results suggest that CIH produces a duration-dependent reduction in the availability of NK1 receptors preferentially in small dendrites of non-catecholaminergic neurons in the cNTS. The implications of our findings are discussed with respect to their potential involvement in the slowly developing hypertension seen in sleep apnea patients. PMID:20206166
Characterization of the central neural projections to brown, white, and beige adipose tissue.
Wiedmann, Nicole M; Stefanidis, Aneta; Oldfield, Brian J
2017-11-01
The functional recruitment of classic brown adipose tissue (BAT) and inducible brown-like or beige fat is, to a large extent, dependent on intact sympathetic neural input. Whereas the central neural circuits directed specifically to BAT or white adipose tissue (WAT) are well established, there is only a developing insight into the nature of neural inputs common to both fat types. Moreover, there is no clear view of the specific central and peripheral innervation of the browned component of WAT: beige fat. The objective of the present study is to examine the neural input to both BAT and WAT in the same animal and, by exposing different cohorts of rats to either thermoneutral or cold conditions, define changes in central neural organization that will ensure that beige fat is appropriately recruited and modulated after browning of inguinal WAT (iWAT). At thermoneutrality, injection of the neurotropic (pseudorabies) viruses into BAT and WAT demonstrates that there are dedicated axonal projections, as well as collateral axonal branches of command neurons projecting to both types of fat. After cold exposure, central neural circuits directed to iWAT showed evidence of reorganization with a greater representation of command neurons projecting to both brown and beiged WAT in hypothalamic (paraventricular nucleus and lateral hypothalamus) and brainstem (raphe pallidus and locus coeruleus) sites. This shift was driven by a greater number of supraspinal neurons projecting to iWAT under cold conditions. These data provide evidence for a reorganization of the nervous system at the level of neural connectivity following browning of WAT.-Wiedmann, N. M., Stefanidis, A., Oldfield, B. J. Characterization of the central neural projections to brown, white, and beige adipose tissue. © FASEB.
Gioio, Anthony E.
2017-01-01
Abstract Tyrosine hydroxylase (TH) is the enzyme that catalyzes the rate-limiting step in the biosynthesis of the catecholamine neurotransmitters. In a previous communication, evidence was provided that TH mRNA is trafficked to the axon, where it is locally translated. In addition, a 50-bp sequence element in the 3′untranslated region (3’UTR) of TH mRNA was identified that directs TH mRNA to distal axons (i.e., zip-code). In the present study, the hypothesis was tested that local translation of TH plays an important role in the biosynthesis of the catecholamine neurotransmitters in the axon and/or presynaptic nerve terminal. Toward this end, a targeted deletion of the axonal transport sequence element was developed, using the lentiviral delivery of the CRISPR/Cas9 system, and two guide RNA (gRNA) sequences flanking the 50-bp cis-acting regulatory element in rat superior cervical ganglion (SCG) neurons. Deletion of the axonal transport element reduced TH mRNA levels in the distal axons and reduced the axonal protein levels of TH and TH activity as measured by phosphorylation of SER40 in SCG neurons. Moreover, deletion of the zip-code diminished the axonal levels of dopamine (DA) and norepinephrine (NE). Conversely, the local translation of exogenous TH mRNA in the distal axon enhanced TH levels and activity, and elevated axonal NE levels. Taken together, these results provide direct evidence to support the hypothesis that TH mRNA trafficking and local synthesis of TH play an important role in the synthesis of catecholamines in the axon and presynaptic terminal. PMID:28630892
Aschrafi, Armaz; Gioio, Anthony E; Dong, Lijin; Kaplan, Barry B
2017-01-01
Tyrosine hydroxylase (TH) is the enzyme that catalyzes the rate-limiting step in the biosynthesis of the catecholamine neurotransmitters. In a previous communication, evidence was provided that TH mRNA is trafficked to the axon, where it is locally translated. In addition, a 50-bp sequence element in the 3'untranslated region (3'UTR) of TH mRNA was identified that directs TH mRNA to distal axons (i.e., zip-code). In the present study, the hypothesis was tested that local translation of TH plays an important role in the biosynthesis of the catecholamine neurotransmitters in the axon and/or presynaptic nerve terminal. Toward this end, a targeted deletion of the axonal transport sequence element was developed, using the lentiviral delivery of the CRISPR/Cas9 system, and two guide RNA (gRNA) sequences flanking the 50-bp cis- acting regulatory element in rat superior cervical ganglion (SCG) neurons. Deletion of the axonal transport element reduced TH mRNA levels in the distal axons and reduced the axonal protein levels of TH and TH activity as measured by phosphorylation of SER40 in SCG neurons. Moreover, deletion of the zip-code diminished the axonal levels of dopamine (DA) and norepinephrine (NE). Conversely, the local translation of exogenous TH mRNA in the distal axon enhanced TH levels and activity, and elevated axonal NE levels. Taken together, these results provide direct evidence to support the hypothesis that TH mRNA trafficking and local synthesis of TH play an important role in the synthesis of catecholamines in the axon and presynaptic terminal.
1981-09-28
hypertension (Finch and Leach, 1970; Haeusler et al. 1972) depending on whether the peripheral or the central sympathetic nevous system was destroyed...Dissertation directed by: Motllal B. Pamnanl, M.D., Ph.D. Associate Professor, Department of Physiology The mechanism of the elevated systemic arterial...vascular Na"*"-K̂ pump activity and development of hypertension; and 4) investigate the role of the sympathetic nervous system and the AV3V region
Fu, Liang-Wu; Guo, Zhi-Ling; Longhurst, John C
2008-01-01
Myocardial ischaemia activates blood platelets, which in turn stimulate cardiac sympathetic afferents, leading to chest pain and sympathoexcitatory reflex cardiovascular responses. Previous studies have shown that activated platelets stimulate ischaemically sensitive cardiac sympathetic afferents, and that thromboxane A2 (TxA2) is one of the mediators released from activated platelets during myocardial ischaemia. The present study tested the hypothesis that endogenous TxA2 stimulates cardiac afferents during ischaemia through direct activation of TxA2 (TP) receptors coupled with the phospholipase C–protein kinase C (PLC–PKC) cellular pathway. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicantes (T2–T5) in anaesthetized cats. Single fields of 39 afferents (conduction velocity = 0.27–3.65 m s−1) were identified in the left or right ventricle initially with mechanical stimulation and confirmed with a stimulating electrode. Five minutes of myocardial ischaemia stimulated all 39 cardiac afferents (8 Aδ-, 31 C-fibres) and the responses of these 39 afferents to chemical stimuli were further studied in the following four protocols. In the first protocol, 2.5, 5 and 10 μg of the TxA2 mimetic, U46619, injected into the left atrium (LA), stimulated seven ischaemically sensitive cardiac afferents in a dose-dependent manner. Second, BM13,177, a selective TxA2 receptor antagonist, abolished the responses of six afferents to 5 μg of U46619 injected into the left atrium and attenuated the ischaemia-related increase in activity of seven other afferents by 44%. In contrast, cardiac afferents, in the absence of TP receptor blockade responded consistently to repeated administration of U46619 (n = 6) and to recurrent myocardial ischaemia (n = 7). In the fourth protocol, administration of PKC-(19–36), a selective PKC inhibitor, attenuated the responses of six other cardiac afferents to U46619 by 38%. Finally, using an immunohistochemical staining approach, we observed that TP receptors were expressed in cardiac sensory neurons in thoracic dorsal root ganglia. Taken together, these data indicate that endogenous TxA2 contributes to the activation of cardiac afferents during myocardial ischaemia through direct stimulation of TP receptors probably located in the cardiac sensory nervous system and that the stimulating effect of TxA2 on cardiac afferents is dependent, at least in part, upon the PLC–PKC cellular pathway. PMID:18483073
Sympathetic activation during early pregnancy in humans
Jarvis, Sara S; Shibata, Shigeki; Bivens, Tiffany B; Okada, Yoshiyuki; Casey, Brian M; Levine, Benjamin D; Fu, Qi
2012-01-01
Sympathetic activity has been reported to increase in normotensive pregnant women, and to be even greater in women with gestational hypertension and preeclampsia at term. Whether sympathetic overactivity develops early during pregnancy, remaining high throughout gestation, or whether it only occurs at term providing the substrate for hypertensive disorders is unknown. We tested the hypothesis that sympathetic activation occurs early during pregnancy in humans. Eleven healthy women (29 ± 3 (SD) years) without prior hypertensive pregnancies were tested during the mid-luteal phase (PRE) and early pregnancy (EARLY; 6.2 ± 1.2 weeks of gestation). Muscle sympathetic nerve activity (MSNA) and haemodynamics were measured supine, at 30 deg and 60 deg upright tilt for 5 min each. Blood samples were drawn for catecholamines, direct renin, and aldosterone. MSNA was significantly greater during EARLY than PRE (supine: 25 ± 8 vs. 14 ± 8 bursts min−1, 60 deg tilt: 49 ± 14 vs. 40 ± 10 bursts min−1; main effect, P < 0.05). Resting diastolic pressure trended lower (P = 0.09), heart rate was similar, total peripheral resistance decreased (2172 ± 364 vs. 2543 ± 352 dyne s cm−5; P < 0.05), sympathetic vascular transduction was blunted (0.10 ± 0.05 vs. 0.36 ± 0.47 units a.u.−1 min−1; P < 0.01), and both renin (supine: 27.9 ± 6.2 vs. 14.2 ± 8.7 pg ml−1, P < 0.01) and aldosterone (supine: 16.7 ± 14.1 vs. 7.7 ± 6.8 ng ml−1, P = 0.05) were higher during EARLY than PRE. These results suggest that sympathetic activation is a common characteristic of early pregnancy in humans despite reduced diastolic pressure and total peripheral resistance. These observations challenge conventional thinking about blood pressure regulation during pregnancy, showing marked sympathetic activation occurring within the first few weeks of conception, and may provide the substrate for pregnancy induced cardiovascular complications. PMID:22687610
Adrenergic receptors inhibit TRPV1 activity in the dorsal root ganglion neurons of rats.
Matsushita, Yumi; Manabe, Miki; Kitamura, Naoki; Shibuya, Izumi
2018-01-01
Transient receptor potential vanilloid type 1 (TRPV1) is a polymodal receptor channel that responds to multiple types of stimuli, such as heat, acid, mechanical pressure and some vanilloids. Capsaicin is the most commonly used vanilloid to stimulate TRPV1. TRPV1 channels are expressed in dorsal root ganglion neurons that extend to Aδ- and C-fibers and have a role in the transduction of noxious inputs to the skin into the electrical signals of the sensory nerve. Although noradrenergic nervous systems, including the descending antinociceptive system and the sympathetic nervous system, are known to modulate pain sensation, the functional association between TRPV1 and noradrenaline in primary sensory neurons has rarely been examined. In the present study, we examined the effects of noradrenaline on capsaicin-evoked currents in cultured dorsal root ganglion neurons of the rat by the whole-cell voltage clamp method. Noradrenaline at concentrations higher than 0.1 pM significantly reduced the amplitudes of the inward capsaicin currents recorded at -60 mV holding potential. This inhibitory action was reversed by either yohimbine (an α2 antagonist, 10 nM) or propranolol (a β antagonist, 10 nM). The α2 agonists, clonidine (1 pM) and dexmedetomidine (1 pM) inhibited capsaicin currents, and yohimbine (1 nM) reversed the effects of clonidine. The inhibitory action of noradrenaline was not seen in the neurons pretreated with pertussis toxin (100 μg/ml for 24 h) and the neurons dialyzed intracellularly with guanosine 5'- [β-thio] diphosphate (GDPβS, 200 μM), the catalytic subunit of protein kinase A (250 U/ml) or okadaic acid (1 μM). These results suggest that noradrenaline directly acts on dorsal root ganglion neurons to inhibit the activity of TRPV1 depending on the activation of α2-adrenoceptors followed by the inhibition of the adenylate cyclase/cAMP/protein kinase A pathway.
Effects of KCNQ2 gene truncation on M-type Kv7 potassium currents.
Robbins, Jon; Passmore, Gayle M; Abogadie, Fe C; Reilly, Joanne M; Brown, David A
2013-01-01
The KCNQ2 gene product, Kv7.2, is a subunit of the M-channel, a low-threshold voltage-gated K(+) channel that regulates mammalian and human neuronal excitability. Spontaneous mutations one of the KCNQ2 genes cause disorders of neural excitability such as Benign Familial Neonatal Seizures. However there appear to be no reports in which both human KCNQ2 genes are mutated. We therefore asked what happens to M-channel function when both KCNQ2 genes are disrupted. We addressed this using sympathetic neurons isolated from mice in which the KCNQ2 gene was truncated at a position corresponding to the second transmembrane domain of the Kv7.2 protein. Since homozygote KCNQ2-/- mice die postnatally, experiments were largely restricted to neurons from late embryos. Quantitative PCR revealed an absence of KCNQ2 mRNA in ganglia from KCNQ2-/- embryos but 100-120% increase of KCNQ3 and KCNQ5 mRNAs; KCNQ2+/- ganglia showed ∼30% less KCNQ2 mRNA than wild-type (+/+) ganglia but 40-50% more KCNQ3 and KCNQ5 mRNA. Neurons from KCNQ2-/- embryos showed a complete absence of M-current, even after applying the Kv7 channel enhancer, retigabine. Neurons from heterozygote KCNQ2+/- embryos had ∼60% reduced M-current. In contrast, M-currents in neurons from adult KCNQ2+/- mice were no smaller than those in neurons from wild-type mice. Measurements of tetraethylammonium block did not indicate an increased expression of Kv7.5-containing subunits, implying a compensatory increase in Kv7.2 expression from the remaining KCNQ2 gene. We conclude that mouse embryonic M-channels have an absolute requirement for Kv7.2 subunits for functionality, that the reduced M-channel activity in heterozygote KCNQ2+/- mouse embryos results primarily from a gene-dosage effect, and that there is a compensatory increase in Kv7.2 expression in adult mice.
Hainke, Susanne; Wildmann, Johannes; Del Rey, Adriana
2015-11-01
The existence of interactions between the immune and the sympathetic nervous systems is well established. Noradrenaline can promote or inhibit the immune response, and conversely, the immune response itself can affect noradrenaline concentration in lymphoid organs, such as the spleen. It is also well known that acetylcholine released by pre-ganglionic neurons can modulate noradrenaline release by the postsynaptic neuron. The spleen does not receive cholinergic innervation, but it has been reported that lymphocytes themselves can produce acetylcholine, and express acetylcholine receptors and acetylcholinesterase. We found that the spleen of not overtly immunized mice in which muscarinic type 1 acetylcholine receptors have been knocked out (M1KO) has higher noradrenaline concentrations than that of the wildtype mice, without comparable alterations in the heart, in parallel to a decreased number of IgG-producing B cells. Splenic lymphocytes from M1KO mice displayed increased in vitro-induced cytotoxicity, and this was observed only when CD4(+) T cells were present. In contrast, heterozygous acetylcholinesterase (AChE+/-) mice, had no alterations in splenic noradrenaline concentration, but the in vitro proliferation of AChE+/- CD4(+) T cells was increased. It is theoretically conceivable that reciprocal effects between neuronally and non-neuronally derived acetylcholine and noradrenaline might contribute to the results reported. Our results emphasize the need to consider the balance between the effects of these mediators for the final immunoregulatory outcome. Copyright © 2015 Elsevier B.V. All rights reserved.
Kozicz, Tamás; Bittencourt, Jackson C.; May, Paul J.; Reiner, Anton; Gamlin, Paul D. R.; Palkovits, Miklós; Horn, Anja K.E.; Toledo, Claudio A. B.; Ryabinin, Andrey E.
2013-01-01
The eponymous term nucleus of Edinger-Westphal (EW) has come to be used to describe two juxtaposed and somewhat intermingled cell groups of the midbrain that differ dramatically in their connectivity and neurochemistry. On one hand, the classically defined EW is the part of the oculomotor complex that is the source of the parasympathetic preganglionic motoneuron input to the ciliary ganglion (CG), through which it controls pupil constriction and lens accommodation. On the other hand, EW is applied to a population of centrally projecting neurons involved in sympathetic, consumptive and stress-related functions. This terminology problem arose because the name EW has historically been applied to the most prominent cell collection above or between the somatic oculomotor nuclei (III), an assumption based on the known location of the preganglionic motoneurons in monkeys. However, in many mammals, the nucleus designated as EW is not made up of cholinergic, preganglionic motoneurons supplying the CG, and instead contains neurons using peptides, such as urocortin 1, with diverse central projections. As a result, the literature has become increasingly confusing. To resolve this problem, we suggest that the term EW be supplemented with terminology based on connectivity. Specifically, we recommend that: 1. The cholinergic, preganglionic neurons supplying the CG be termed the Edinger-Westphal preganglionic (EWpg) population, and 2. The centrally projecting, peptidergic neurons be termed the Edinger-Westphal centrally projecting (EWcp) population. The history of this nomenclature problem and the rationale for our solutions are discussed in this review. PMID:21452224
Central circuitries for body temperature regulation and fever.
Nakamura, Kazuhiro
2011-11-01
Body temperature regulation is a fundamental homeostatic function that is governed by the central nervous system in homeothermic animals, including humans. The central thermoregulatory system also functions for host defense from invading pathogens by elevating body core temperature, a response known as fever. Thermoregulation and fever involve a variety of involuntary effector responses, and this review summarizes the current understandings of the central circuitry mechanisms that underlie nonshivering thermogenesis in brown adipose tissue, shivering thermogenesis in skeletal muscles, thermoregulatory cardiac regulation, heat-loss regulation through cutaneous vasomotion, and ACTH release. To defend thermal homeostasis from environmental thermal challenges, feedforward thermosensory information on environmental temperature sensed by skin thermoreceptors ascends through the spinal cord and lateral parabrachial nucleus to the preoptic area (POA). The POA also receives feedback signals from local thermosensitive neurons, as well as pyrogenic signals of prostaglandin E(2) produced in response to infection. These afferent signals are integrated and affect the activity of GABAergic inhibitory projection neurons descending from the POA to the dorsomedial hypothalamus (DMH) or to the rostral medullary raphe region (rMR). Attenuation of the descending inhibition by cooling or pyrogenic signals leads to disinhibition of thermogenic neurons in the DMH and sympathetic and somatic premotor neurons in the rMR, which then drive spinal motor output mechanisms to elicit thermogenesis, tachycardia, and cutaneous vasoconstriction. Warming signals enhance the descending inhibition from the POA to inhibit the motor outputs, resulting in cutaneous vasodilation and inhibited thermogenesis. This central thermoregulatory mechanism also functions for metabolic regulation and stress-induced hyperthermia.
Kaufmann, Horacio
2008-03-01
Neurogenic orthostatic hypotension results from failure to release norepinephrine, the neurotransmitter of sympathetic postganglionic neurons, appropriately upon standing. In double blind, cross over, placebo controlled trials, administration of droxidopa, a synthetic amino acid that is decarboxylated to norepinephrine by the enzyme L: -aromatic amino acid decarboxylase increases standing blood pressure, ameliorates symptoms of orthostatic hypotension and improves standing ability in patients with neurogenic orthostatic hypotension due to degenerative autonomic disorders. The pressor effect results from conversion of droxidopa to norepinephrine outside the central nervous system both in neural and non-neural tissue. This mechanism of action makes droxidopa effective in patients with central and peripheral autonomic disorders.
NASA Technical Reports Server (NTRS)
Ganong, W. F.; Gotoh, E.; Alper, R. H.
1985-01-01
The serotonin-releasing drug p-chloroamphetamine (PCA), as well as L-propranolol and chloriasondamine were used in a study which established that the pathway from the hypothalamus to the kidneys is sympathetic. Which hypothalamic nuclei mediate the response to PCA is being investigated experiments are being conducted to determine a readily reproducible psychological stimulus to renin secretion that can be used in rats. The effects of equithesin, urethane, and inactin on plasma renin activity were examined in preparation for tilting experiments. The relation of vasopressin-secreting neurons in the brain sem to PCA response was explored in Brattleboro rats that are congenitally unable to produce vasopressin in their hypothalami.
Zayzafoon, M.; Rymaszewski, M.; Heiny, J.; Rios, M.; Hauschka, P. V.
2012-01-01
Brain-derived neurotrophic factor (BDNF) plays important roles in neuronal differentiation/survival, the regulation of food intake, and the pathobiology of obesity and type 2 diabetes mellitus. BDNF and its receptor are expressed in osteoblasts and chondrocyte. BDNF in vitro has a positive effect on bone; whether central BDNF affects bone mass in vivo is not known. We therefore examined bone mass and energy use in brain-targeted BDNF conditional knockout mice (Bdnf2lox/2lox/93). The deletion of BDNF in the brain led to a metabolic phenotype characterized by hyperphagia, obesity, and increased abdominal white adipose tissue. Central BDNF deletion produces a marked skeletal phenotype characterized by increased femur length, elevated whole bone mineral density, and bone mineral content. The skeletal changes are developmentally regulated and appear concurrently with the metabolic phenotype, suggesting that the metabolic and skeletal actions of BDNF are linked. The increased bone development is evident in both the cortical and trabecular regions. Compared with control, Bdnf2lox/2lox/93 mice show greater trabecular bone volume (+50% for distal femur, P < 0.001; +35% for vertebral body, P < 0.001) and midfemoral cortical thickness (+11 to 17%, P < 0.05), measured at 3 and 6 months of age. The skeletal and metabolic phenotypes were gender dependent, with female being more affected than male mice. However, uncoupling protein-1 expression in brown fat, a marker of sympathetic tone, was not different between genotypes. We show that deletion of central BDNF expression in mice results in increased bone mass and white adipose tissue, with no significant changes in sympathetic signaling or peripheral serotonin, associated with hyperphagia, obesity, and leptin resistance. PMID:23011922
Splanchnic sympathetic nerves in the development of mild DOCA-salt hypertension
Kandlikar, Sachin S.
2011-01-01
We previously reported that mild deoxycorticosterone acetate (DOCA)-salt hypertension develops in the absence of generalized sympathoexcitation. However, sympathetic nervous system activity (SNA) is regionally heterogeneous, so we began to investigate the role of sympathetic nerves to specific regions. Our first study on that possibility revealed no contribution of renal nerves to hypertension development. The splanchnic sympathetic nerves are implicated in blood pressure (BP) regulation because splanchnic denervation effectively lowers BP in human hypertension. Here we tested the hypothesis that splanchnic SNA contributes to the development of mild DOCA-salt hypertension. Splanchnic denervation was achieved by celiac ganglionectomy (CGX) in one group of rats while another group underwent sham surgery (SHAM-GX). After DOCA treatment (50 mg/kg) in rats with both kidneys intact, CGX rats exhibited a significantly attenuated increase in BP compared with SHAM-GX rats (15.6 ± 2.2 vs. 25.6 ± 2.2 mmHg, day 28 after DOCA treatment). In other rats, whole body norepinephrine (NE) spillover, measured to determine if CGX attenuated hypertension development by reducing global SNA, was not found to be different between SHAM-GX and CGX rats. In a third group, nonhepatic splanchnic NE spillover was measured as an index of splanchnic SNA, but this was not different between SHAM (non-DOCA-treated) and DOCA rats during hypertension development. In a final group, CGX effectively abolished nonhepatic splanchnic NE spillover. These data suggest that an intact splanchnic innervation is necessary for mild DOCA-salt hypertension development but not increased splanchnic SNA or NE release. Increased splanchnic vascular reactivity to NE during DOCA-salt treatment is one possible explanation. PMID:21890693
Development summary of a sympathetic discharge CO2 laser for lidar use
NASA Technical Reports Server (NTRS)
Jaenisch, Holger M.; Johnson, R. Barry
1991-01-01
A commercial pulsed sympathetic discharge laser has been characterized and modified for use as a potential lidar. This report summarizes the initial findings and modifications made to the baseline system. The new laser performance is then checked with theory and operational results are presented. The laser has inherent mode instability and high chirp. Several solutions were tried and their results are presented.
Device-based approaches for renal nerve ablation for hypertension and beyond.
Thorp, Alicia A; Schlaich, Markus P
2015-01-01
Animal and human studies have demonstrated that chronic activation of renal sympathetic nerves is critical in the pathogenesis and perpetuation of treatment-resistant hypertension. Bilateral renal denervation has emerged as a safe and effective, non-pharmacological treatment for resistant hypertension that involves the selective ablation of efferent and afferent renal nerves to lower blood pressure. However, the most recent and largest randomized controlled trial failed to confirm the primacy of renal denervation over a sham procedure, prompting widespread re-evaluation of the therapy's efficacy. Disrupting renal afferent sympathetic signaling to the hypothalamus with renal denervation lowers central sympathetic tone, which has the potential to confer additional clinical benefits beyond blood pressure control. Specifically, there has been substantial interest in the use of renal denervation as either a primary or adjunct therapy in pathological conditions characterized by central sympathetic overactivity such as renal disease, heart failure and metabolic-associated disorders. Recent findings from pre-clinical and proof-of-concept studies appear promising with renal denervation shown to confer cardiovascular and metabolic benefits, largely independent of changes in blood pressure. This review explores the pathological rationale for targeting sympathetic renal nerves for blood pressure control. Latest developments in renal nerve ablation modalities designed to improve procedural success are discussed along with prospective findings on the efficacy of renal denervation to lower blood pressure in treatment-resistant hypertensive patients. Preliminary evidence in support of renal denervation as a possible therapeutic option in disease states characterized by central sympathetic overactivity is also presented.
Device-based approaches for renal nerve ablation for hypertension and beyond
Thorp, Alicia A.; Schlaich, Markus P.
2015-01-01
Animal and human studies have demonstrated that chronic activation of renal sympathetic nerves is critical in the pathogenesis and perpetuation of treatment-resistant hypertension. Bilateral renal denervation has emerged as a safe and effective, non-pharmacological treatment for resistant hypertension that involves the selective ablation of efferent and afferent renal nerves to lower blood pressure. However, the most recent and largest randomized controlled trial failed to confirm the primacy of renal denervation over a sham procedure, prompting widespread re-evaluation of the therapy's efficacy. Disrupting renal afferent sympathetic signaling to the hypothalamus with renal denervation lowers central sympathetic tone, which has the potential to confer additional clinical benefits beyond blood pressure control. Specifically, there has been substantial interest in the use of renal denervation as either a primary or adjunct therapy in pathological conditions characterized by central sympathetic overactivity such as renal disease, heart failure and metabolic-associated disorders. Recent findings from pre-clinical and proof-of-concept studies appear promising with renal denervation shown to confer cardiovascular and metabolic benefits, largely independent of changes in blood pressure. This review explores the pathological rationale for targeting sympathetic renal nerves for blood pressure control. Latest developments in renal nerve ablation modalities designed to improve procedural success are discussed along with prospective findings on the efficacy of renal denervation to lower blood pressure in treatment-resistant hypertensive patients. Preliminary evidence in support of renal denervation as a possible therapeutic option in disease states characterized by central sympathetic overactivity is also presented. PMID:26217232
Characterization of dermatoglyphics in PHOX2B-confirmed congenital central hypoventilation syndrome.
Todd, Emily S; Scott, Nicole M; Weese-Mayer, Debra E; Weinberg, Seth M; Berry-Kravis, Elizabeth M; Silvestri, Jean M; Kenny, Anna S; Hauptman, Susan A; Zhou, Lili; Marazita, Mary L
2006-08-01
Individuals with congenital central hypoventilation syndrome have characteristic variants in the PHOX2B gene (primarily polyalanine expansion mutations). The PHOX2B gene acts as a transcriptional activator in the promotion of pan-neuronal differentiation in the autonomic nervous system during early embryologic development, with a primary role in the sympathetic noradrenergic phenotype in vertebrates. Because sympathetic innervation has been hypothesized to affect the development of dermatoglyphic pattern types, we hypothesized that individuals with PHOX2B-confirmed congenital central hypoventilation syndrome would have characteristic dermatoglyphic patterning and that the dermatoglyphic phenotype would be related to the disease-defining PHOX2B genotype. Dermatoglyphic pattern type frequency, left/right symmetry, and genotype/phenotype correlation were assessed for 33 individuals with PHOX2B-confirmed congenital central hypoventilation syndrome and compared with published control data. Dermatoglyphic pattern type frequencies were altered in congenital central hypoventilation syndrome cases versus controls. In particular, there was an increase of arches in females and ulnar loops in males, with the largest differences for the left hand and for individuals with both congenital central hypoventilation syndrome and Hirschsprung disease. Dissimilarity scores between the congenital central hypoventilation syndrome and congenital central hypoventilation syndrome + Hirschsprung disease cases were not significantly different, nor were dissimilarity scores between all of the female and all of the male cases. No significant association was found between the number of polyalanine repeats in the PHOX2B genotypic category and dermatoglyphic pattern frequencies in the congenital central hypoventilation syndrome study groups. These results represent the first report describing specific dermatoglyphic patterning in congenital central hypoventilation syndrome and suggest a relationship between PHOX2B and the expression of dermatoglyphic pattern types. An expanded congenital central hypoventilation syndrome data set to include the full spectrum of PHOX2B mutations is necessary to further delineate the role of PHOX2B in dermatoglyphic patterning.
Augmentation of the Sympathetic Skin Response after Electrical Train Stimuli
Emmer, A.; Mangalo, S.; Kornhuber, M. E.
2012-01-01
It is well known that the size of the sympathetic skin response (SSR) depends on the stimulus strength. In the present investigation train stimuli (TS) were employed to study the behavior of the SSR when recruited above the usual level. The SSR was obtained in healthy human subjects over the palm of the hand after supramaximal single stimuli (SS) and trains of three (TS; interstimulus interval 3 ms) over the ipsilateral superficial radial nerve in 15 healthy volunteers. Ipsilateral to the stimulus site SSR amplitudes were 5.7 ± 5.3 (SS) and 7.7 ± 5.9 mV (TS; p < 0.001), and contralateral 6.3 ± 6.3 (SS) and 7.2 ± 4.9 mV (TS; not significant). The relative gain in amplitude after TS vs. SS was negatively correlated with the SSR amplitude after SS ipsilateral (p < 0.0005) and contralateral to the stimulus site (p < 0.01). The increase in SSR amplitudes after TS compared with SS is in line with temporal summation of the excitatory synaptic input in neurons generating the SSR. Driving the SSR with TS is of possible relevance for the investigation of disorders of the peripheral or central autonomic nervous system. PMID:23115555
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwaiger, M.; Hutchins, G.D.; Kalff, V.
Positron emission tomography in combination with the newly introduced catecholamine analogue ({sup 11}C)hydroxyephedrine (({sup 11}C)HED) enables the noninvasive delineation of sympathetic nerve terminals of the heart. To address the ongoing controversy over possible reinnervation of the human transplant, 5 healthy control subjects and 11 patients were studied after cardiac transplant by this imaging approach. Regional ({sup 11}C)HED retention was compared to regional blood flow as assessed by rubidium-82. Transplant patients were divided into two groups. Group I had recent (less than 1 yr, 4.4 +/- 2.3 mo) surgery, while group II patients underwent cardiac transplantation more than 2 yr beforemore » imaging (3.5 +/- 1.3 yr). ({sup 11}C)HED retention paralleled blood flow in normals, but was homogeneously reduced in group I. In contrast, group II patients revealed heterogeneous ({sup 11}C)HED retention, with increased uptake in the proximal anterior and septal wall. Quantitative evaluation of ({sup 11}C)HED retention revealed a 70% reduction in group I and 59% reduction in group II patients (P less than 0.001). In group II patients, ({sup 11}C)HED retention reached 60% of normal in the proximal anterior wall. These data suggest the presence of neuronal tissue in the transplanted human heart, which may reflect regional sympathetic reinnervation.« less
Abnormal cardiac autonomic regulation in mice lacking ASIC3.
Cheng, Ching-Feng; Kuo, Terry B J; Chen, Wei-Nan; Lin, Chao-Chieh; Chen, Chih-Cheng
2014-01-01
Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3(-/-) mice. Asic3(-/-) mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3(-/-) mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3(-/-) mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.
Wu, Celeste Yin-Chieh; Chen, Po-Yi; Chen, Mei-Fang; Kuo, Jon-Son; Lee, Tony Jer-Fu
2012-01-01
Memantine, an NMDA receptor antagonist used for treatment of Alzheimer’s disease (AD), is known to block the nicotinic acetylcholine receptors (nAChRs) in the central nervous system (CNS). In the present study, we examined by wire myography if memantine inhibited α3β2-nAChRs located on cerebral perivascular sympathetic nerve terminals originating in the superior cervical ganglion (SCG), thus, leading to inhibition of nicotine-induced nitrergic neurogenic dilation of isolated porcine basilar arteries. Memantine concentration-dependently blocked nicotine-induced neurogenic dilation of endothelium-denuded basilar arteries without affecting that induced by transmural nerve stimulation, sodium nitroprusside, or isoproterenol. Furthermore, memantine significantly inhibited nicotine-elicited inward currents in Xenopous oocytes expressing α3β2-, α7- or α4β2-nAChR, and nicotine-induced calcium influx in cultured rat SCG neurons. These results suggest that memantine is a non-specific antagonist for nAChR. By directly inhibiting α3β2-nAChRs located on the sympathetic nerve terminals, memantine blocks nicotine-induced neurogenic vasodilation of the porcine basilar arteries. This effect of memantine is expected to reduce the blood supply to the brain stem and possibly other brain regions, thus, decreasing its clinical efficacy in the treatment of Alzheimer’s disease. PMID:22792283
Muscarinic modulation of TREK currents in mouse sympathetic superior cervical ganglion neurons.
Rivas-Ramírez, P; Cadaveira-Mosquera, A; Lamas, J A; Reboreda, A
2015-07-01
Muscarinic receptors play a key role in the control of neurotransmission in the autonomic ganglia, which has mainly been ascribed to the regulation of potassium M-currents and voltage-dependent calcium currents. Muscarinic agonists provoke depolarization of the membrane potential and a reduction in spike frequency adaptation in postganglionic neurons, effects that may be explained by M-current inhibition. Here, we report the presence of a riluzole-activated current (IRIL ) that flows through the TREK-2 channels, and that is also inhibited by muscarinic agonists in neurons of the mouse superior cervical ganglion (mSCG). The muscarinic agonist oxotremorine-M (Oxo-M) inhibited the IRIL by 50%, an effect that was abolished by pretreatment with atropine or pirenzepine, but was unaffected in the presence of himbacine. Moreover, these antagonists had similar effects on single-channel TREK-2 currents. IRIL inhibition was unaffected by pretreatment with pertussis toxin. The protein kinase C blocker bisindolylmaleimide did not have an effect, and neither did the inositol triphosphate antagonist 2-aminoethoxydiphenylborane. Nevertheless, the IRIL was markedly attenuated by the phospholipase C (PLC) inhibitor ET-18-OCH3. Finally, the phosphatidylinositol-3-kinase/phosphatidylinositol-4-kinase inhibitor wortmannin strongly attenuated the IRIL , whereas blocking phosphatidylinositol 4,5-bisphosphate (PIP2 ) depletion consistently prevented IRIL inhibition by Oxo-M. These results demonstrate that TREK-2 currents in mSCG neurons are inhibited by muscarinic agonists that activate M1 muscarinic receptors, reducing PIP2 levels via a PLC-dependent pathway. The similarities between the signaling pathways regulating the IRIL and the M-current in the same neurons reflect an important role of this new pathway in the control of autonomic ganglia excitability. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Morros, C; Cedo, F
1994-01-01
To assess the results obtained in treatment of sympathetic reflex dystrophy by sympathetic endovenous blockades with reserpine in working patients. We reviewed 170 diagnoses of sympathetic reflex dystrophy in 165 patients. One hundred seven were located in the foot, 13 were in the knee and 50 were in the hand. All were treated once a week for 3 weeks with local sympathetic endovenous blocks with reserpine (1 mg in the upper extremity and 1.5 mg in the lower extremity). We analyzed the location, etiology, course, X-rays, gammagrams, psychological state, other treatments, associated conditions, number of blocks received and side effects. The results were classified as excellent, good, fair and nil. We particularly reviewed sympathetic reflex dystrophy associated to Colles' fractures. Five hundred forty endovenous sympathetic blocks with reserpine were performed. Results obtained were excellent in 57 (34%) patients, good in 77 (45%), fair in 29 (17%) and nil in 7 (4%). Sympathetic reflex dystrophy leads to loss of 215 +/- 91 working days. In patients with Colles' fracture without sympathetic reflex dystrophy the loss is 96 +/- 31 days, although this period lengthens to 115 +/- 15 days if the two conditions are associated in stage I and to loss of 193 +/- 71 days if the association is in stage II. Results of treating sympathetic reflex dystrophy with sympathetic endovenous blocks with reserpine are satisfactory, particularly when diagnosis and treatment are early, clearly demonstrating the usefulness of this technique in workplace medicine.
A search for activation of C-nociceptors by sympathetic fibers in complex regional pain syndrome
Campero, Mario; Bostock, Hugh; Baumann, Thomas K.; Ochoa, José L.
2010-01-01
Objective Although the term ‘reflex sympathetic dystrophy’ has been replaced by ‘complex regional pain syndrome’ (CRPS) type I, there remains a widespread presumption that the sympathetic nervous system is actively involved in mediating chronic neuropathic pain [“sympathetically maintained pain” (SMP)], even in the absence of detectable neuropathophysiology. Methods We have used microneurography to evaluate possible electrophysiological interactions in 24 patients diagnosed with CRPS I (n=13), or CRPS II (n=11) by simultaneously recording from single identified sympathetic efferent fibers and C nociceptors, while provoking sympathetic neural discharges in cutaneous nerves. Results We assessed potential effects of sympathetic activity upon 35 polymodal nociceptors and 19 mechano-insensitive nociceptors, recorded in CRPS I (26 nociceptors) and CRPS II patients (28 nociceptors). No evidence of activation of nociceptors related to sympathetic discharge was found, although nociceptors in 6 CRPS II patients exhibited unrelated spontaneous pathological nerve impulse activity. Conclusion We conclude that activation of nociceptors by sympathetic efferent discharges is not a cardinal pathogenic event in either CRPS I or CRPS II patients. Significance This study shows that sympathetic-nociceptor interactions, if they exist in patients communicating chronic neuropathic pain, must be the exception. PMID:20359942
Eyelid Opening with Trigeminal Proprioceptive Activation Regulates a Brainstem Arousal Mechanism.
Matsuo, Kiyoshi; Ban, Ryokuya; Hama, Yuki; Yuzuriha, Shunsuke
2015-01-01
Eyelid opening stretches mechanoreceptors in the supratarsal Müller muscle to activate the proprioceptive fiber supplied by the trigeminal mesencephalic nucleus. This proprioception induces reflex contractions of the slow-twitch fibers in the levator palpebrae superioris and frontalis muscles to sustain eyelid and eyebrow positions against gravity. The cell bodies of the trigeminal proprioceptive neurons in the mesencephalon potentially make gap-junctional connections with the locus coeruleus neurons. The locus coeruleus is implicated in arousal and autonomic function. Due to the relationship between arousal, ventromedial prefrontal cortex, and skin conductance, we assessed whether upgaze with trigeminal proprioceptive evocation activates sympathetically innervated sweat glands and the ventromedial prefrontal cortex. Specifically, we examined whether 60° upgaze induces palmar sweating and hemodynamic changes in the prefrontal cortex in 16 subjects. Sweating was monitored using a thumb-mounted perspiration meter, and prefrontal cortex activity was measured with 45-channel, functional near-infrared spectroscopy (fNIRS) and 2-channel NIRS at Fp1 and Fp2. In 16 subjects, palmar sweating was induced by upgaze and decreased in response to downgaze. Upgaze activated the ventromedial prefrontal cortex with an accumulation of integrated concentration changes in deoxyhemoglobin, oxyhemoglobin, and total hemoglobin levels in 12 subjects. Upgaze phasically and degree-dependently increased deoxyhemoglobin level at Fp1 and Fp2, whereas downgaze phasically decreased it in 16 subjects. Unilateral anesthetization of mechanoreceptors in the supratarsal Müller muscle used to significantly reduce trigeminal proprioceptive evocation ipsilaterally impaired the increased deoxyhemoglobin level by 60° upgaze at Fp1 or Fp2 in 6 subjects. We concluded that upgaze with strong trigeminal proprioceptive evocation was sufficient to phasically activate sympathetically innervated sweat glands and appeared to induce rapid oxygen consumption in the ventromedial prefrontal cortex and to rapidly produce deoxyhemoglobin to regulate physiological arousal. Thus, eyelid opening with trigeminal proprioceptive evocation may activate the ventromedial prefrontal cortex via the mesencephalic trigeminal nucleus and locus coeruleus.
Eyelid Opening with Trigeminal Proprioceptive Activation Regulates a Brainstem Arousal Mechanism
Matsuo, Kiyoshi; Ban, Ryokuya; Hama, Yuki; Yuzuriha, Shunsuke
2015-01-01
Eyelid opening stretches mechanoreceptors in the supratarsal Müller muscle to activate the proprioceptive fiber supplied by the trigeminal mesencephalic nucleus. This proprioception induces reflex contractions of the slow-twitch fibers in the levator palpebrae superioris and frontalis muscles to sustain eyelid and eyebrow positions against gravity. The cell bodies of the trigeminal proprioceptive neurons in the mesencephalon potentially make gap-junctional connections with the locus coeruleus neurons. The locus coeruleus is implicated in arousal and autonomic function. Due to the relationship between arousal, ventromedial prefrontal cortex, and skin conductance, we assessed whether upgaze with trigeminal proprioceptive evocation activates sympathetically innervated sweat glands and the ventromedial prefrontal cortex. Specifically, we examined whether 60° upgaze induces palmar sweating and hemodynamic changes in the prefrontal cortex in 16 subjects. Sweating was monitored using a thumb-mounted perspiration meter, and prefrontal cortex activity was measured with 45-channel, functional near-infrared spectroscopy (fNIRS) and 2-channel NIRS at Fp1 and Fp2. In 16 subjects, palmar sweating was induced by upgaze and decreased in response to downgaze. Upgaze activated the ventromedial prefrontal cortex with an accumulation of integrated concentration changes in deoxyhemoglobin, oxyhemoglobin, and total hemoglobin levels in 12 subjects. Upgaze phasically and degree-dependently increased deoxyhemoglobin level at Fp1 and Fp2, whereas downgaze phasically decreased it in 16 subjects. Unilateral anesthetization of mechanoreceptors in the supratarsal Müller muscle used to significantly reduce trigeminal proprioceptive evocation ipsilaterally impaired the increased deoxyhemoglobin level by 60° upgaze at Fp1 or Fp2 in 6 subjects. We concluded that upgaze with strong trigeminal proprioceptive evocation was sufficient to phasically activate sympathetically innervated sweat glands and appeared to induce rapid oxygen consumption in the ventromedial prefrontal cortex and to rapidly produce deoxyhemoglobin to regulate physiological arousal. Thus, eyelid opening with trigeminal proprioceptive evocation may activate the ventromedial prefrontal cortex via the mesencephalic trigeminal nucleus and locus coeruleus. PMID:26244675
Grassi, C; Deriu, F; Passatore, M
1993-09-01
1. In precollicular decerebrate rabbits we investigated the effect of sympathetic stimulation, at frequencies within the physiological range, on the tonic vibration reflex (TVR) elicited in jaw closing muscles by small amplitude vibrations applied to the mandible (15-50 microns, 150-180 Hz). The EMG activity was recorded bilaterally from masseter muscle and the force developed by the reflex was measured through an isometric transducer connected with the mandibular symphysis. 2. Unilateral stimulation of the peripheral stump of the cervical sympathetic by the TVR, and a marked decrease or disappearance of the ipsilateral EMG activity. No significant changes were detected in the EMG contralateral to the stimulated nerve. Bilateral CSN stimulation reduced by 60-90% the force reflexly produced by the jaw closing muscles and strongly decreased or suppressed EMG activity on both sides. This effect was often preceded by a transient TVR enhancement, very variable in amplitude and duration, which was concomitant with the modest increase in pulmonary ventilation induced by the sympathetic stimulation. 3. During bilateral CSN stimulation, an increase in the vibration amplitude by a factor of 1.5-2.5 was sufficient to restore the TVR reduced by sympathetic stimulation. 4. The depressant action exerted by sympathetic activation on the TVR is mediated by alpha-adrenergic receptors, since it was almost completely abolished by the I.V. administration of either phentolamine or prazosin, this last drug being a selective antagonist of alpha 1-adrenoceptors. The sympathetically induced decrease in the TVR was not mimicked by manoeuvres producing a large and sudden reduction or abolition of the blood flow to jaw muscles, such as unilateral or bilateral occlusion of the common carotid artery. 5. The effect of sympathetic stimulation was not significantly modified after denervation of the inferior dental arch and/or anaesthesia of the temporomandibular joint, i.e. after having reduced the afferent input from those receptors, potentially affected by CSN stimulation, which can elicit either a jaw opening reflex or a decrease in the activity of the jaw elevator muscle motoneurons. 6. These data suggest that, when the sympathetic nervous system is activated under physiological conditions, there is a marked depression of the stretch reflex which is independent of vasomotor changes and is probably due to a decrease in sensitivity of muscle spindle afferents.
Zanni, Eleonora Di; Bianchi, Giovanna; Ravazzolo, Roberto; Raffaghello, Lizzia; Ceccherini, Isabella; Bachetti, Tiziana
2017-01-01
The pathogenic role of the PHOX2B gene in neuroblastoma is indicated by heterozygous mutations in neuroblastoma patients and by gene overexpression in both neuroblastoma cell lines and tumor samples. PHOX2B encodes a transcription factor which is crucial for the correct development and differentiation of sympathetic neurons. PHOX2B overexpression is considered a prognostic marker for neuroblastoma and it is also used by clinicians to monitor minimal residual disease. Furthermore, it has been observed that neuronal differentiation in neuroblastoma is dependent on down-regulation of PHOX2B expression, which confirms that PHOX2B expression may be considered a target in neuroblastoma. Here, PHOX2B promoter or 3′ untranslated region were used as molecular targets in an in vitro high-throughput approach that led to the identification of molecules able to decrease PHOX2B expression at transcriptional and likely even at post-transcriptional levels. Further functional investigations carried out on PHOX2B mRNA levels and biological consequences, such as neuroblastoma cell apoptosis and growth, showed that chloroquine and mycophenolate mofetil are most promising agents for neuroblastoma therapy based on down-regulation of PHOX2B expression. Finally, a strong correlation between the effect of drugs in terms of down-regulation of PHOX2B expression and of biological consequences in neuroblastoma cells confirms the role of PHOX2B as a potential molecular target in neuroblastoma. PMID:29069774
Lau, C; Pylypiw, A; Ross, L L
1985-03-01
The sympathetic preganglionic neurons in the spinal cord receive dense serotonergic (5-HT) and catecholaminergic (CA) afferent inputs from the descending supraspinal pathways. In the rat spinal cord, the levels of these biogenic amines and their receptors are low at birth, but undergo rapid ontogenetic increases in the ensuing 2-3 postnatal weeks until the adult levels are reached. In many systems it has been shown that denervation of presynaptic neurons leads to an up-regulation of the number of postsynaptic receptors. To determine whether the 5-HT and CA receptors in the developing spinal cord are also subject to such transsynaptic regulation, we examined the ontogeny of serotonergic receptors and alpha- and beta-adrenergic receptors in thoracolumbar spinal cord of rats given neurotoxins which destroy serotonergic (5,7-dihydroxytryptamine (5,7-DHT)) or noradrenergic (6-hydroxydopamine (6-OHDA)) nerve terminals. Intracisternal administration of 5,7-DHT or 6-OHDA at 1 and 6 days of age prevented, respectively, the development of 5-HT and CA levels in the spinal cord. Rats lesioned with 5,7-DHT displayed a marked elevation of 5-HT receptors with a binding of 50% greater than controls at 1 week and a continuing increase to twice normal by 4 weeks. A similar pattern of up-regulation was also detected with the alpha-adrenergic receptor, as rats lesioned with 6-OHDA exhibited persistent increases in receptor concentration. However, in these same animals ontogeny of the beta-adrenergic receptor in the spinal cord remained virtually unaffected by the chemical lesion. In several other parts of the nervous system, it has been demonstrated that the beta-adrenergic sensitivity can be modulated by hormonal signals, particularly that of the thyroid hormones. This phenomenon was examined in the spinal cord and in confirmation with previous studies neonatal treatment of triiodothyronine (0.1 mg/kg, s.c. daily) was capable of evoking persistent increases in beta-adrenergic receptor binding. These results suggest that: (a) development of the postjunctional serotonergic and alpha-adrenergic receptors in the rat spinal cord can occur in the absence of the prejunctional nerve terminals and are subject to transsynaptic modulation; (b) beta-adrenergic receptors in the spinal cord also can develop after prejunctional lesions but are regulated by hormonal rather than neuronal factors.
Kessler, J A
1985-10-01
Interactions between peptidergic sensory nerves, noradrenergic sympathetic nerves, and cholinergic parasympathetic fibers were examined in the rat iris. The putative peptide neurotransmitter, substance P (SP), was used as an index of the trigeminal sensory innervation, tyrosine hydroxylase (TH) activity served to monitor the sympathetic fibers, and choline acetyltransferase (CAT) activity was used as an index of the parasympathetic innervation. Destruction of the sympathetic innervation by neonatal administration of 6-hydroxydopamine resulted in increased SP development and a smaller increase in CAT activity in the iris. Moreover, trigeminal ablation resulted in an increase in both TH and CAT activities. Finally, ciliary ganglionectomy resulted in increased SP and a smaller increase in TH activity in the iris. Administration of nerve growth factor (NGF) into the anterior chamber substantially increased both SP and TH activity in the iris and also increased CAT activity to a lesser extent. Moreover, administration of anti-NGF into the anterior chamber prevented both the sympathectomy-induced increases in SP and CAT, and the increases in TH and CAT activities after trigeminal ablation, suggesting that NGF mediated these increases. These observations suggest that the sympathetic, sensory, and parasympathetic innervations of the iris interact by altering availability of NGF elaborated by the iris. Regulation of iris CAT activity was examined in greater detail. Injection of the cholinergic toxin, AF64A, into the anterior chamber concurrently with ablation of the sympathetic and sensory innervations paradoxically increased CAT activity, whereas AF64A alone decreased CAT activity.(ABSTRACT TRUNCATED AT 250 WORDS)
Sympatho-renal axis in chronic disease.
Sobotka, Paul A; Mahfoud, Felix; Schlaich, Markus P; Hoppe, Uta C; Böhm, Michael; Krum, Henry
2011-12-01
Essential hypertension, insulin resistance, heart failure, congestion, diuretic resistance, and functional renal disease are all characterized by excessive central sympathetic drive. The contribution of the kidney's somatic afferent nerves, as an underlying cause of elevated central sympathetic drive, and the consequences of excessive efferent sympathetic signals to the kidney itself, as well as other organs, identify the renal sympathetic nerves as a uniquely logical therapeutic target for diseases linked by excessive central sympathetic drive. Clinical studies of renal denervation in patients with resistant hypertension using an endovascular radiofrequency ablation methodology have exposed the sympathetic link between these conditions. Renal denervation could be expected to simultaneously affect blood pressure, insulin resistance, sleep disorders, congestion in heart failure, cardiorenal syndrome and diuretic resistance. The striking epidemiologic evidence for coexistence of these disorders suggests common causal pathways. Chronic activation of the sympathetic nervous system has been associated with components of the metabolic syndrome, such as blood pressure elevation, obesity, dyslipidemia, and impaired fasting glucose with hyperinsulinemia. Over 50% of patients with essential hypertension are hyperinsulinemic, regardless of whether they are untreated or in a stable program of treatment. Insulin resistance is related to sympathetic drive via a bidirectional mechanism. In this manuscript, we review the data that suggests that selective impairment of renal somatic afferent and sympathetic efferent nerves in patients with resistant hypertension both reduces markers of central sympathetic drive and favorably impacts diseases linked through central sympathetics-insulin resistance, heart failure, congestion, diuretic resistance, and cardiorenal disorders.
van der Keylen, Piet; Garreis, Fabian; Steigleder, Ruth; Sommer, Daniel; Neuhuber, Winfried L; Wörl, Jürgen
2016-05-01
Enteric co-innervation is a peculiar innervation pattern of striated esophageal musculature. Both anatomical and functional data on enteric co-innervation related to various transmitters have been collected in different species, although its function remains enigmatic. However, it is unclear whether catecholaminergic components are involved in such a co-innervation. Thus, we examined to identify catecholaminergic neuronal elements and clarify their relationship to other innervation components in the esophagus, using immunohistochemistry with antibodies against tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT), choline acetyltransferase (ChAT) and protein gene product 9.5 (PGP 9.5), α-bungarotoxin (α-BT) and PCR with primers for amplification of cDNA encoding TH and dopamine-β-hydroxylase (DBH). TH-positive nerve fibers were abundant throughout the myenteric plexus and localized on about 14% of α-BT-labelled motor endplates differing from VAChT-positive vagal nerve terminals. TH-positive perikarya represented a subpopulation of only about 2.8% of all PGP 9.5-positive myenteric neurons. Analysis of mRNA showed both TH and DBH transcripts in the mouse esophagus. As ChAT-positive neurons in the compact formation of the nucleus ambiguus were negative for TH, the TH-positive nerve varicosities on motor endplates are presumably of enteric origin, although a sympathetic origin cannot be excluded. In the medulla oblongata, the cholinergic ambiguus neurons were densely supplied with TH-positive varicosities. Thus, catecholamines may modulate vagal motor innervation of esophageal-striated muscles not only at the peripheral level via enteric co-innervation but also at the central level via projections to the nucleus ambiguus. As Parkinson's disease, with a loss of central dopaminergic neurons, also affects the enteric nervous system and dysphagia is prevalent in patients with this disease, investigation of intrinsic catecholamines in the esophagus may be worthwhile to understand such a symptom.
The Human Sympathetic Nervous System Response to Spaceflight
NASA Technical Reports Server (NTRS)
Ertl, Andrew C.; Diedrich, Andre; Paranjape, Sachin Y.; Biaggioni, Italo; Robertson, Rose Marie; Lane, Lynda D.; Shiavi, Richard; Robertson, David
2003-01-01
The sympathetic nervous system is an important part of the autonomic (or automatic) nervous system. When an individual stands up, the sympathetic nervous system speeds the heart and constricts blood vessels to prevent a drop in blood pressure. A significant number of astronauts experience a drop in blood pressure when standing for prolonged periods after they return from spaceflight. Difficulty maintaining blood pressure with standing is also a daily problem for many patients. Indirect evidence available before the Neurolab mission suggested the problem in astronauts while in space might be due partially to reduced sympathetic nervous system activity. The purpose of this experiment was to identify whether sympathetic activity was reduced during spaceflight. Sympathetic nervous system activity can be determined in part by measuring heart rate, nerve activity going to blood vessels, and the release of the hormone norepinephrine into the blood. Norepinephrine is a neurotransmitter discharged from active sympathetic nerve terminals, so its rate of release can serve as a marker of sympathetic nervous system action. In addition to standard cardiovascular measurements (heart rate, blood pressure), we determined sympathetic nerve activity as well as norepinephrine release and clearance on four crewmembers on the Neurolab mission. Contrary to our expectation, the results demonstrated that the astronauts had mildly elevated resting sympathetic nervous system activity in space. Sympathetic nervous system responses to stresses that simulated the cardiovascular effects of standing (lower body negative pressure) were brisk both during and after spaceflight. We concluded that, in the astronauts tested, the activity and response of the sympathetic nervous system to cardiovascular stresses appeared intact and mildly elevated both during and after spaceflight. These changes returned to normal within a few days.
[Indications and possibilities of blockade of the sympathetic nerve].
Meyer, J
1987-04-01
Treatment of chronic pain through permanent or temporary interruption of sympathetic activity is marked by great clinical success, but nevertheless there are rather skeptical reports about long-term results of these blocks as therapeutic measures. There are many symptoms and signs of chronic pain, while diagnosis is expensive, the pathogenesis is complex, and the etiology is generally due to multiple factors. Indications for sympathetic blockade depend upon the possible means of access, as in the cervicothoracic, thoracic, lumbar, or sacral regions. General indications are: symptoms not limited segmentally within peripheral body areas; pain resulting from microtraumata and lesions of peripheral nerve branches; and pain caused by intensified sympathetic tone with consequent circulatory disturbances. Peripheral circulatory disturbances are the most common indication for sympathetic blockade, as the block produces a vasomotor reaction that leads to increased capillary circulation. Pain caused by herpes zoster, sudden hearing loss, hyperhidrosis, and pseudesthesia can also be influenced by sympathetic blockade. There are several possibilities for reducing or interrupting sympathetic activity; for us, however, blocking of the sympathetic trunk is the most important. During the last 16 years we performed 15,726 sympathetic blockades on 2385 patients, which included: 3735 stellate ganglion blocks, 6121 blocks of the lumbar sympathetic trunk, 5037 continuous peridural anesthesias, 29 blocks of the thoracic sympathetic trunk, and 12 celiac blocks. In 792 cases sympathetic blocks were performed using neurolytic drugs, in most cases 96% ethyl alcohol and less often 10% ammonium sulphate. Other possibilities, such as enteral administration or infusion of sympatholytic drugs, were not taken into consideration; regional intravascular injection of guanethidine can be recommended, however.(ABSTRACT TRUNCATED AT 250 WORDS)
The Jeremiah Metzger Lecture. The pathogenesis of fever in human subjects.
Wolff, S. M.; Dinarello, C. A.
1980-01-01
The pathogenesis of fever in man begins with the production of endogenous pyrogen by phagocytic leukocytes in response to exogenous pyrogens (toxic, immunologic or infectious agents). Endogenous pyrogen, a protein, is released from a variety of phagocytic leukocytes and enters the circulation after new messenger RNA and protein are synthesized. Fever is caused by an interaction of endogenous pyrogen with specialized receptors on or near thermosensitive neurons in the thermoregulatory center of the anterior hypothalamus. This interaction may cause local hypothalamic production of prostaglandins, monoamines and, possibly, cyclic AMP. From the anterior hypothalamus, information is transmitted through the posterior hypothalamus to the vasomotor center, which directs sympathetic-nerve fibers to constrict peripheral vessels and decrease heat dissipation. PMID:552177
Peripheral ganglia supplying the genital smooth musculature in the female pig: an experimental study
PANU, RINO; BO MINELLI, LUISA; BOTTI, MADDALENA; GAZZA, FERDINANDO; ACONE, FRANCA; PALMIERI, GIOVANNI
2001-01-01
The aim of the present study was to locate the sensory and autonomic ganglia innervating the female genital musculature in pigs. The retrograde neuronal tracers horseradish peroxidase (HRP) or fast blue (FB) were injected into the left retractor clitoridis muscle (RCM), which was treated as a typical model of the genital smooth musculature. Labelled cells were found in ipsilateral dorsal root ganglia Sl–S4, in bilateral sympathetic paravertebral ganglia from L5–L6 or L6–L7 to S3 and in the left and right caudal mesenteric ganglion. In two of the five animals treated, presumably preganglionic parasympathetic cells were labelled in the ipsilateral intermediate grey substance of the segments Sl–S2. PMID:11554508
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, A.I.; Keyomarsi, K.; Bryan, J.
1990-11-01
The authors have previously described a defective herpes simplex virus (HSV-1) vector system that permits that introduction of virtually any gene into nonmitotic cells. pHSVlac, the prototype vector, stably expresses Escherichia coli {beta}-galactosidase from a constitutive promoter in many human cell lines, in cultured rat neurons from throughout the nervous system, and in cells in the adult rat brain. HSV-1 vectors expressing other genes may prove useful for studying neuronal physiology or performing human gene therapy for neurological diseases, such as Parkinson disease or brain tumors. A HSV-1 temperature-sensitive (ts) mutant, ts K, has been used as helper virus; tsmore » mutants revert to wild type. In contrast, HSV-1 deletion mutants essentially cannot revert to wild type; therefore, use of a deletion mutant as helper virus might permit human gene therapy with HSV-1 vectors. They now report an efficient packaging system for HSV-1 VECTORS USING A DELETION MUTANT, d30EBA, as helper virus; virus is grown on the complementing cell line M64A. pHSVlac virus prepared using the deletion mutant packaging system stably expresses {beta}-galactosidase in cultured rat sympathetic neurons and glia. Both D30EBA and ts K contain a mutation in the IE3 gene of HSV-1 strain 17 and have the same phenotype; therefore, changing the helper virus from ts K to D30EBA does not alter the host range or other properties of the HSV-1 vector system.« less
Axonal localization and mitochondrial association of precursor microRNA 338
Vargas, Jose Norberto S.; Kar, Amar N.; Kowalak, Jeffrey A.; Gale, Jenna R.; Aschrafi, Armaz; Chen, Cai-Yun; Gioio, Anthony E.; Kaplan, Barry B.
2016-01-01
microRNAs (miRNAs) selectively localize to subcompartments of the neuron, such as dendrites, axons and presynaptic terminals, where they regulate the local protein synthesis of their putative target genes. In addition to mature miRNAs, precursor miRNAs (pre-miRNAs) have also been shown to localize to somatodendritic and axonal compartments. miRNA-338 (miR-338) regulates the local expression of several nuclear-encoded mitochondrial mRNAs within axons of sympathetic neurons. Previous work has shown that precursor miR-338 (pre-miR-338) introduced into the axon can be locally processed into mature miR-338, where it can regulate local ATP synthesis. However, the mechanisms underlying the localization of pre-miRNAs to the axonal compartment remain unknown. In this study, we investigated the axonal localization of pre-miR-338. Using proteomic and biochemical approaches, we provide evidence for the localization of pre-miR-338 to distal neuronal compartments and identify several constituents of the pre-miR-338 ribonucleoprotein complex. Furthermore, we found that pre-miR-338 is associated with the mitochondria in axons of superior cervical ganglion (SCG) neurons. The maintenance of mitochondrial function within axons requires the precise spatio-temporal synthesis of nuclear-encoded mRNAs, some of which are regulated by miR-338. Therefore, the association of pre-miR-338 with axonal mitochondria could serve as a reservoir of mature, biologically active miRNAs, which could coordinate the intra-axonal expression of multiple nuclear-encoded mitochondrial mRNAs. PMID:27229124
Karlsson, A K; Friberg, P; Lönnroth, P; Sullivan, L; Elam, M
1998-09-01
Centrally mediated sympathetic stimulation of subjects who have suffered a spinal cord injury (SCI) does not activate the decentralized part of the body below the level of the lesion, whereas experimental data indicate an exaggerated response above the level of the lesion. SCI subjects may exhibit an autonomic dysreflexia reaction following afferent stimulation below the level of the lesion. In order to investigate the function of the sympathetic nervous system above and below the level of the lesion, regional noradrenaline spillover was measured by means of steady-state isotope dilution technique above (forearm) and below (leg) the level of the lesion at baseline, during mental stress and following bladder stimulation in nine SCI subjects (mean age 41 years; level of injury C7-T4; mean duration of injury 13.8 years). The results from the SCI subjects were also compared with those from 10 weight- and age-matched control subjects, both at rest and during mental stress. Body composition was determined by dual energy X-ray absorptiometry scanning and arm/leg blood flow by occlusion plethysmography. At baseline, total and regional noradrenaline spillover did not differ between the groups. Mental stress increased mean arterial pressure in both groups. Heart rate (76 versus 64 beats/min; P < 0.05) and arm noradrenaline spillover (2.73 versus 1.71 pmol/min/100 g; P < 0.05) increased more in spinal cord injury subjects than in control subjects, whereas total body (2826 versus 3783 pmol/min; P < 0.01) and leg noradrenaline spillover (0.23 versus 0.41 pmol/min/100 g; P < 0.05) increased only in the control group. During bladder stimulation, SCI subjects reacted with a marked increase in mean arterial pressure and leg noradrenaline spillover (from 0.06 to 0.91 pmol/min/100 g; P < 0.05) and their leg blood flow decreased. Regional and total noradrenaline clearance were similar in the two groups. In conclusion, peripheral afferent stimulation below the level of the lesion in spinal cord injury subjects gives rise to a marked noradrenaline spillover from the decentralized part of the sympathetic nervous system suggesting a remaining, but qualitatively altered, neuronal function. Centrally mediated stimulation induced an exaggerated response above the level of the lesion.
Effects of one's sex and sex hormones on sympathetic responses to chemoreflex activation.
Usselman, Charlotte W; Steinback, Craig D; Shoemaker, J Kevin
2016-03-01
What is the topic of this review? This review summarizes sex-dependent differences in the sympathetic responses to chemoreflex activation, with a focus on the role of circulating sex hormones on the sympathetic outcomes. What advances does it highlight? The importance of circulating sex hormones for the regulation of sympathetic nerve activity in humans has only recently begun to be elucidated, and few studies have examined this effect during chemoreflex regulation. We review recent studies indicating that changes in circulating sex hormones are associated with alterations to chemoreflex-driven increases in sympathetic activity and highlight those areas which require further study. Sex-dependent differences in baseline sympathetic nerve activity are established, but little information exists on the influence of sex on sympathetic activation during chemoreflex stimulation. In this article, we review the evidence for the effect of sex on chemoreflex-driven increases in sympathetic nerve activity. We also review recent studies which indicate that changes in circulating sex hormones, as initiated by the menstrual cycle and hormonal contraceptive use, elicit notable changes in the muscle sympathetic activation during chemoreflex stimulation. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Han, Kuem Sun; Kim, Lin
2012-01-01
The purpose of this study was to review potential, physiological, hormonal and neuronal mechanisms that may mediate the sleep changes. This paper investigates the literatures regarding the activity of the hypothalamic-pituitary-adrenal (HPA) axis, one of the main neuroendocrine stress systems during sleep in order to identify relations between stress and sleep disorder and the treatment of stress-induced insomnia. Sleep and wakefulness are regulated by the aminergic, cholinergic brainstem and hypothalamic systems. Activation of the HPA and/or the sympathetic nervous systems results in wakefulness and these hormones including corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), cortisol or corticosterone, noradrenaline, and adrenaline, are associated with attention and arousal. Stress-related insomnia leads to a vicious circle by activating the HPA system. An awareness of the close interaction between sleep and stress systems is emerging and the hypothalamus is now recognized as a key center for sleep regulation, with hypothalamic neurontransmitter systems providing the framework for therapeutic advances. An updated understanding of these systems may allow researchers to elucidate neural mechanisms of sleep disorder and to develop effective intervention for sleep disorder. PMID:23319874
Schiller, Alicia M.; Pellegrino, Peter Ricci; Zucker, Irving H.
2016-01-01
Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. PMID:27514571
Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H
2017-05-01
Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. Copyright © 2016 Elsevier B.V. All rights reserved.
Impaired sympathetic vascular regulation in humans after acute dynamic exercise
NASA Technical Reports Server (NTRS)
Halliwill, J. R.; Taylor, J. A.; Eckberg, D. L.
1996-01-01
1. The reduction in vascular resistance which accompanies acute dynamic exercise does not subside immediately during recovery, resulting in a post-exercise hypotension. This sustained vasodilatation suggests that sympathetic vascular regulation is altered after exercise. 2. Therefore, we assessed the baroreflex control of sympathetic outflow in response to arterial pressure changes, and transduction of sympathetic activity into vascular resistance during a sympatho-excitatory stimulus (isometric handgrip exercise) after either exercise (60 min cycling at 60% peak aerobic power (VO2,peak)) or sham treatment (60 min seated rest) in nine healthy subjects. 3. Both muscle sympathetic nerve activity and calf vascular resistance were reduced after exercise (-29.7 +/- 8.8 and -25.3 +/- 9.1%, both P < 0.05). The baroreflex relation between diastolic pressure and sympathetic outflow was shifted downward after exercise (post-exercise intercept, 218 +/- 38 total integrated activity (heartbeat)-1; post-sham intercept, 318 +/- 51 total integrated activity (heartbeat)-1, P < 0.05), indicating less sympathetic outflow across all diastolic pressures. Further, the relation between sympathetic activity and vascular resistance was attenuated after exercise (post-exercise slope, 0.0031 +/- 0.0007 units (total integrated activity)-1 min; post-sham slope, 0.0100 +/- 0.0033 units (total integrated activity)-1 min, P < 0.05), indicating less vasoconstriction with any increase in sympathetic activity. 4. Thus, both baroreflex control of sympathetic outflow and the transduction of sympathetic activity into vascular resistance are altered after dynamic exercise. We conclude that the vasodilation which underlies post-exercise hypotension results from both neural and vascular phenomena.
Development of the peptidergic innervation of human heart.
Gordon, L; Polak, J M; Moscoso, G J; Smith, A; Kuhn, D M; Wharton, J
1993-01-01
The aim of the present investigation was to study the developing peptidergic innervation of the human fetal heart of 7-24 wk gestational age. An immunohistochemical approach was adopted and the total innervation visualised with antisera to general neuronal and Schwann cell markers, while the onset and development of specific neuropeptide-containing subpopulations were investigated using antisera to neuropeptide Y (NPY), somatostatin, vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP) and substance P (SP). Cardiac ganglia and nerves were demonstrated from 7 wk of gestation whereas peptide-immunoreactive nerves were not observed until the 10th week of gestation. NPY-immunoreactive nerve fibres constituted the major subpopulation of peptide-containing nerves identified in the fetal heart, exhibiting a descending atrial to ventricular density gradient, and were first identified during the 10th wk of gestation. Somatostatin- and VIP-immunoreactive nerves appeared at 10-12 wk of gestation and were mainly distributed in the atria. Somatostatin immunoreactivity was localised to cell bodies in cardiac ganglia, as well as to nerve fibres, indicating an intrinsic origin for this nerve subpopulation. Conversely, the other peptide-containing nerves appear to be of extrinsic origin, including those immunoreactive for VIP. Intracardiac neurons exhibit a transient expression of tyrosine hydroxylase immunoreactivity. Putative sympathetic nerve fibres, displaying tyrosine hydroxylase and NPY immunoreactivity, were demonstrated before the adrenergic innervation has previously been shown to be present by formaldehyde-induced fluorescence staining of catecholamines. The onset of the CGRP- and SP-immunoreactive innervation, at 18-24 wk of gestation, followed the appearance of other peptide-containing nerves, suggesting that the sensory, afferent innervation occurs later than the autonomic. The differential appearance and distribution of peptide-containing nerve subpopulations indicate that there is a chronological order to the development of the autonomic and sensory components of human cardiac innervation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:7505778
Reflex effects on renal nerve activity characteristics in spontaneously hypertensive rats.
DiBona, G F; Jones, S Y; Sawin, L L
1997-11-01
The effects of arterial and cardiac baroreflex activation on the discharge characteristics of renal sympathetic nerve activity were evaluated in conscious spontaneously hypertensive and Wistar-Kyoto rats. In spontaneously hypertensive rats compared with Wistar-Kyoto rats, (1) arterial baroreflex regulation of renal sympathetic nerve activity was reset to a higher arterial pressure and the gain was decreased and (2) cardiac baroreflex regulation of renal sympathetic nerve activity exhibited a lower gain. With the use of sympathetic peak detection analysis, the inhibition of integrated renal sympathetic nerve activity, which occurred during both increased arterial pressure (arterial baroreflex) and right atrial pressure (cardiac baroreflex), was due to parallel decreases in peak height with little change in peak frequency in both spontaneously hypertensive and Wistar-Kyoto rats. Arterial and cardiac baroreflex inhibition of renal sympathetic nerve activity in Wistar-Kyoto and spontaneously hypertensive rats is due to a parallel reduction in the number of active renal sympathetic nerve fibers.
Tsai, Ching-Yi; Chen, Chang-Han; Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H
2015-01-01
FLJ10540, originally identified as a microtubule-associated protein, induces cell proliferation and migration during tumorigenesis via the formation of FLJ10540-PI3K complex and enhancement of PI3K kinase activity. Interestingly, activation of PI3K/Akt cascade, leading to upregulation of nitric oxide synthase II (NOS II)/peroxynitrite signaling in the rostral ventrolateral medulla (RVLM), the brain stem site that maintains blood pressure and sympathetic vasomotor tone, mediates the impairment of brain stem cardiovascular regulation induced by the pesticide mevinphos. We evaluated the hypothesis that upregulation of FLJ10540 in the RVLM is upstream to this repertoire of signaling cascade that underpins mevinphos-induced circulatory depression. Microinjection bilaterally of mevinphos (10nmol) into the RVLM of anesthetized Sprague-Dawley rats induced a progressive hypotension that was accompanied by an increase (Phase I), followed by a decrease (Phase II) of an experimental index for baroreflex-mediated sympathetic vasomotor tone. There was augmentation in FLJ10540 mRNA in the RVLM or FLJ10540 protein in RVLM neurons, both of which were causally and temporally related to an augmentation of binding between the catalytic subunit (p110) and regulatory subunit (p85) of PI3K, phosphorylation of Akt at Thr308 site, and NOS II, superoxide or peroxynitrite level in the RVLM. Immunoneutralization of FJL10540 in the RVLM significantly antagonized those biochemical changes, and blunted the progressive hypotension and the reduced baroreflex-mediated sympathetic vasomotor tone during mevinphos intoxication. We conclude that upregulation of FLJ10540 in the RVLM elicits impairment of brain stem cardiovascular regulation that underpins circulatory depression during mevinphos intoxication via activation of PI3K/Akt/NOS II/peroxynitrite signaling cascade in the RVLM. Copyright © 2014 Elsevier Inc. All rights reserved.
Yamada, Yuko; Kinoshita, Hideyuki; Kuwahara, Koichiro; Nakagawa, Yasuaki; Kuwabara, Yoshihiro; Minami, Takeya; Yamada, Chinatsu; Shibata, Junko; Nakao, Kazuhiro; Cho, Kosai; Arai, Yuji; Yasuno, Shinji; Nishikimi, Toshio; Ueshima, Kenji; Kamakura, Shiro; Nishida, Motohiro; Kiyonaka, Shigeki; Mori, Yasuo; Kimura, Takeshi; Kangawa, Kenji; Nakao, Kazuwa
2014-10-01
Dysregulation of autonomic nervous system activity can trigger ventricular arrhythmias and sudden death in patients with heart failure. N-type Ca(2+) channels (NCCs) play an important role in sympathetic nervous system activation by regulating the calcium entry that triggers release of neurotransmitters from peripheral sympathetic nerve terminals. We have investigated the ability of NCC blockade to prevent lethal arrhythmias associated with heart failure. We compared the effects of cilnidipine, a dual N- and L-type Ca(2+) channel blocker, with those of nitrendipine, a selective L-type Ca(2+) channel blocker, in transgenic mice expressing a cardiac-specific, dominant-negative form of neuron-restrictive silencer factor (dnNRSF-Tg). In this mouse model of dilated cardiomyopathy leading to sudden arrhythmic death, cardiac structure and function did not significantly differ among the control, cilnidipine, and nitrendipine groups. However, cilnidipine dramatically reduced arrhythmias in dnNRSF-Tg mice, significantly improving their survival rate and correcting the imbalance between cardiac sympathetic and parasympathetic nervous system activity. A β-blocker, bisoprolol, showed similar effects in these mice. Genetic titration of NCCs, achieved by crossing dnNRSF-Tg mice with mice lacking CACNA1B, which encodes the α1 subunit of NCCs, improved the survival rate. With restoration of cardiac autonomic balance, dnNRSF-Tg;CACNA1B(+/-) mice showed fewer malignant arrhythmias than dnNRSF-Tg;CACNA1B(+/+) mice. Both pharmacological blockade of NCCs and their genetic titration improved cardiac autonomic balance and prevented lethal arrhythmias in a mouse model of dilated cardiomyopathy and sudden arrhythmic death. Our findings suggest that NCC blockade is a potentially useful approach to preventing sudden death in patients with heart failure. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.