A proposed intracortical visual prosthesis image processing system.
Srivastava, N R; Troyk, P
2005-01-01
It has been a goal of neuroprosthesis researchers to develop a system, which could provide artifical vision to a large population of individuals with blindness. It has been demonstrated by earlier researches that stimulating the visual cortex area electrically can evoke spatial visual percepts, i.e. phosphenes. The goal of visual cortex prosthesis is to stimulate the visual cortex area and generate a visual perception in real time to restore vision. Even though the normal working of the visual system is not been completely understood, the existing knowledge has inspired research groups to develop strategies to develop visual cortex prosthesis which can help blind patients in their daily activities. A major limitation in this work is the development of an image proceessing system for converting an electronic image, as captured by a camera, into a real-time data stream for stimulation of the implanted electrodes. This paper proposes a system, which will capture the image using a camera and use a dedicated hardware real time image processor to deliver electrical pulses to intracortical electrodes. This system has to be flexible enough to adapt to individual patients and to various strategies of image reconstruction. Here we consider a preliminary architecture for this system.
Neuron analysis of visual perception
NASA Technical Reports Server (NTRS)
Chow, K. L.
1980-01-01
The receptive fields of single cells in the visual system of cat and squirrel monkey were studied investigating the vestibular input affecting the cells, and the cell's responses during visual discrimination learning process. The receptive field characteristics of the rabbit visual system, its normal development, its abnormal development following visual deprivation, and on the structural and functional re-organization of the visual system following neo-natal and prenatal surgery were also studied. The results of each individual part of each investigation are detailed.
[Review of visual display system in flight simulator].
Xie, Guang-hui; Wei, Shao-ning
2003-06-01
Visual display system is the key part and plays a very important role in flight simulators and flight training devices. The developing history of visual display system is recalled and the principle and characters of some visual display systems including collimated display systems and back-projected collimated display systems are described. The future directions of visual display systems are analyzed.
Hsu, Chi-Lin; Chou, Chih-Hsuan; Huang, Shih-Chuan; Lin, Chia-Yi; Lin, Meng-Ying; Tung, Chun-Che; Lin, Chun-Yen; Lai, Ivan Pochou; Zou, Yan-Fang; Youngson, Neil A; Lin, Shau-Ping; Yang, Chang-Hao; Chen, Shih-Kuo; Gau, Susan Shur-Fen; Huang, Hsien-Sung
2018-03-15
Visual system development is light-experience dependent, which strongly implicates epigenetic mechanisms in light-regulated maturation. Among many epigenetic processes, genomic imprinting is an epigenetic mechanism through which monoallelic gene expression occurs in a parent-of-origin-specific manner. It is unknown if genomic imprinting contributes to visual system development. We profiled the transcriptome and imprintome during critical periods of mouse visual system development under normal- and dark-rearing conditions using B6/CAST F1 hybrid mice. We identified experience-regulated, isoform-specific and brain-region-specific imprinted genes. We also found imprinted microRNAs were predominantly clustered into the Dlk1-Dio3 imprinted locus with light experience affecting some imprinted miRNA expression. Our findings provide the first comprehensive analysis of light-experience regulation of the transcriptome and imprintome during critical periods of visual system development. Our results may contribute to therapeutic strategies for visual impairments and circadian rhythm disorders resulting from a dysfunctional imprintome.
Mechanisms Underlying Development of Visual Maps and Receptive Fields
Huberman, Andrew D.; Feller, Marla B.; Chapman, Barbara
2008-01-01
Patterns of synaptic connections in the visual system are remarkably precise. These connections dictate the receptive field properties of individual visual neurons and ultimately determine the quality of visual perception. Spontaneous neural activity is necessary for the development of various receptive field properties and visual feature maps. In recent years, attention has shifted to understanding the mechanisms by which spontaneous activity in the developing retina, lateral geniculate nucleus, and visual cortex instruct the axonal and dendritic refinements that give rise to orderly connections in the visual system. Axon guidance cues and a growing list of other molecules, including immune system factors, have also recently been implicated in visual circuit wiring. A major goal now is to determine how these molecules cooperate with spontaneous and visually evoked activity to give rise to the circuits underlying precise receptive field tuning and orderly visual maps. PMID:18558864
TOPICAL REVIEW: Prosthetic interfaces with the visual system: biological issues
NASA Astrophysics Data System (ADS)
Cohen, Ethan D.
2007-06-01
The design of effective visual prostheses for the blind represents a challenge for biomedical engineers and neuroscientists. Significant progress has been made in the miniaturization and processing power of prosthesis electronics; however development lags in the design and construction of effective machine brain interfaces with visual system neurons. This review summarizes what has been learned about stimulating neurons in the human and primate retina, lateral geniculate nucleus and visual cortex. Each level of the visual system presents unique challenges for neural interface design. Blind patients with the retinal degenerative disease retinitis pigmentosa (RP) are a common population in clinical trials of visual prostheses. The visual performance abilities of normals and RP patients are compared. To generate pattern vision in blind patients, the visual prosthetic interface must effectively stimulate the retinotopically organized neurons in the central visual field to elicit patterned visual percepts. The development of more biologically compatible methods of stimulating visual system neurons is critical to the development of finer spatial percepts. Prosthesis electrode arrays need to adapt to different optimal stimulus locations, stimulus patterns, and patient disease states.
Conceptual design study for an advanced cab and visual system, volume 2
NASA Technical Reports Server (NTRS)
Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.
1980-01-01
The performance, design, construction and testing requirements are defined for developing an advanced cab and visual system. The rotorcraft system integration simulator is composed of the advanced cab and visual system and the rotorcraft system motion generator, and is part of an existing simulation facility. User's applications for the simulator include rotorcraft design development, product improvement, threat assessment, and accident investigation.
Space shuttle visual simulation system design study
NASA Technical Reports Server (NTRS)
1973-01-01
A recommendation and a specification for the visual simulation system design for the space shuttle mission simulator are presented. A recommended visual system is described which most nearly meets the visual design requirements. The cost analysis of the recommended system covering design, development, manufacturing, and installation is reported. Four alternate systems are analyzed.
[Three-dimensional morphological modeling and visualization of wheat root system].
Tan, Feng; Tang, Liang; Hu, Jun-Cheng; Jiang, Hai-Yan; Cao, Wei-Xing; Zhu, Yan
2011-01-01
Crop three-dimensional (3D) morphological modeling and visualization is an important part of digital plant study. This paper aimed to develop a 3D morphological model of wheat root system based on the parameters of wheat root morphological features, and to realize the visualization of wheat root growth. According to the framework of visualization technology for wheat root growth, a 3D visualization model of wheat root axis, including root axis growth model, branch geometric model, and root axis curve model, was developed firstly. Then, by integrating root topology, the corresponding pixel was determined, and the whole wheat root system was three-dimensionally re-constructed by using the morphological feature parameters in the root morphological model. Finally, based on the platform of OpenGL, and by integrating the technologies of texture mapping, lighting rendering, and collision detection, the 3D visualization of wheat root growth was realized. The 3D output of wheat root system from the model was vivid, which could realize the 3D root system visualization of different wheat cultivars under different water regimes and nitrogen application rates. This study could lay a technical foundation for further development of an integral visualization system of wheat plant.
NASA Astrophysics Data System (ADS)
Makarov, V.; Korelin, O.; Koblyakov, D.; Kostin, S.; Komandirov, A.
2018-02-01
The article is devoted to the development of the Advanced Driver Assistance Systems (ADAS) for the GAZelle NEXT car. This project is aimed at developing a visual information system for the driver integrated into the windshield racks. The developed system implements the following functions: assistance in maneuvering and parking; Recognition of road signs; Warning the driver about the possibility of a frontal collision; Control of "blind" zones; "Transparent" vision in the windshield racks, widening the field of view, behind them; Visual and sound information about the traffic situation; Control and descent from the lane of the vehicle; Monitoring of the driver’s condition; navigation system; All-round review. The scheme of action of sensors of the developed system of visual information of the driver is provided. The moments of systems on a prototype of a vehicle are considered. Possible changes in the interior and dashboard of the car are given. The results of the implementation are aimed at the implementation of the system - improved informing of the driver about the environment and the development of an ergonomic interior for this system within the new Functional Salon of the Gazelle Next vehicle equipped with a visual information system for the driver.
DVV: a taxonomy for mixed reality visualization in image guided surgery.
Kersten-Oertel, Marta; Jannin, Pierre; Collins, D Louis
2012-02-01
Mixed reality visualizations are increasingly studied for use in image guided surgery (IGS) systems, yet few mixed reality systems have been introduced for daily use into the operating room (OR). This may be the result of several factors: the systems are developed from a technical perspective, are rarely evaluated in the field, and/or lack consideration of the end user and the constraints of the OR. We introduce the Data, Visualization processing, View (DVV) taxonomy which defines each of the major components required to implement a mixed reality IGS system. We propose that these components be considered and used as validation criteria for introducing a mixed reality IGS system into the OR. A taxonomy of IGS visualization systems is a step toward developing a common language that will help developers and end users discuss and understand the constituents of a mixed reality visualization system, facilitating a greater presence of future systems in the OR. We evaluate the DVV taxonomy based on its goodness of fit and completeness. We demonstrate the utility of the DVV taxonomy by classifying 17 state-of-the-art research papers in the domain of mixed reality visualization IGS systems. Our classification shows that few IGS visualization systems' components have been validated and even fewer are evaluated.
Development of the updated system of city underground pipelines based on Visual Studio
NASA Astrophysics Data System (ADS)
Zhang, Jianxiong; Zhu, Yun; Li, Xiangdong
2009-10-01
Our city has owned the integrated pipeline network management system with ArcGIS Engine 9.1 as the bottom development platform and with Oracle9i as basic database for storaging data. In this system, ArcGIS SDE9.1 is applied as the spatial data engine, and the system was a synthetic management software developed with Visual Studio visualization procedures development tools. As the pipeline update function of the system has the phenomenon of slower update and even sometimes the data lost, to ensure the underground pipeline data can real-time be updated conveniently and frequently, and the actuality and integrity of the underground pipeline data, we have increased a new update module in the system developed and researched by ourselves. The module has the powerful data update function, and can realize the function of inputting and outputting and rapid update volume of data. The new developed module adopts Visual Studio visualization procedures development tools, and uses access as the basic database to storage data. We can edit the graphics in AutoCAD software, and realize the database update using link between the graphics and the system. Practice shows that the update module has good compatibility with the original system, reliable and high update efficient of the database.
Parallel Visualization Co-Processing of Overnight CFD Propulsion Applications
NASA Technical Reports Server (NTRS)
Edwards, David E.; Haimes, Robert
1999-01-01
An interactive visualization system pV3 is being developed for the investigation of advanced computational methodologies employing visualization and parallel processing for the extraction of information contained in large-scale transient engineering simulations. Visual techniques for extracting information from the data in terms of cutting planes, iso-surfaces, particle tracing and vector fields are included in this system. This paper discusses improvements to the pV3 system developed under NASA's Affordable High Performance Computing project.
NASA Astrophysics Data System (ADS)
Anezaki, Takashi; Wakitani, Kouichi; Nakamura, Masatoshi; Kubo, Hiroyasu
Because visual inspection systems are difficult to tune, they create many problems for the kaizen process. This results in increased development costs and time to assure that the inspection systems function properly. In order to improve inspection system development, we designed an easy-tuning system called a “Program-less” visual inspection system. The ROI macro command which consisted of eight kinds of shape recognition macro commands and decision, operation, control commands was built. Furthermore, the macro command editing executive system was developed by the operation of only the GUI without editing source program. The validity of the ROI macro command was proved by the application of 488 places.
Interactive Learning System "VisMis" for Scientific Visualization Course
ERIC Educational Resources Information Center
Zhu, Xiaoming; Sun, Bo; Luo, Yanlin
2018-01-01
Now visualization courses have been taught at universities around the world. Keeping students motivated and actively engaged in this course can be a challenging task. In this paper we introduce our developed interactive learning system called VisMis (Visualization and Multi-modal Interaction System) for postgraduate scientific visualization course…
A Low-Cost Audio Prescription Labeling System Using RFID for Thai Visually-Impaired People.
Lertwiriyaprapa, Titipong; Fakkheow, Pirapong
2015-01-01
This research aims to develop a low-cost audio prescription labeling (APL) system for visually-impaired people by using the RFID system. The developed APL system includes the APL machine and APL software. The APL machine is for visually-impaired people while APL software allows caregivers to record all important information into the APL machine. The main objective of the development of the APL machine is to reduce costs and size by designing all of the electronic devices to fit into one print circuit board. Also, it is designed so that it is easy to use and can become an electronic aid for daily living. The developed APL software is based on Java and MySQL, both of which can operate on various operating platforms and are easy to develop as commercial software. The developed APL system was first evaluated by 5 experts. The APL system was also evaluated by 50 actual visually-impaired people (30 elders and 20 blind individuals) and 20 caregivers, pharmacists and nurses. After using the APL system, evaluations were carried out, and it can be concluded from the evaluation results that this proposed APL system can be effectively used for helping visually-impaired people in terms of self-medication.
6D Visualization of Multidimensional Data by Means of Cognitive Technology
NASA Astrophysics Data System (ADS)
Vitkovskiy, V.; Gorohov, V.; Komarinskiy, S.
2010-12-01
On the basis of the cognitive graphics concept, we worked out the SW-system for visualization and analysis. It allows to train and to aggravate intuition of researcher, to raise his interest and motivation to the creative, scientific cognition, to realize process of dialogue with the very problems simultaneously. The Space Hedgehog system is the next step in the cognitive means of the multidimensional data analyze. The technique and technology cognitive 6D visualization of the multidimensional data is developed on the basis of the cognitive visualization research and technology development. The Space Hedgehog system allows direct dynamic visualization of 6D objects. It is developed with use of experience of the program Space Walker creation and its applications.
NASA Astrophysics Data System (ADS)
Ye, Z.; Xiang, H.
2014-04-01
The paper discusses the basic principles and the problem solutions during the design and implementation of the mobile GIS system, and base on the research result, we developed the General Provincial Situation Visualization System Based on iOS of Shandong Province. The system is developed in the Objective-C programming language, and use the ArcGIS Runtime SDK for IOS as the development tool to call the "World-map Shandong" services to implement the development of the General Provincial Situation Visualization System Based on iOS devices. The system is currently available for download in the Appstore and is chosen as the typical application case of ESRI China ArcGIS API for iOS.
Feng, Haibo; Dong, Dinghui; Ma, Tengfei; Zhuang, Jinlei; Fu, Yili; Lv, Yi; Li, Liyi
2017-12-01
Surgical robot systems which can significantly improve surgical procedures have been widely used in laparoendoscopic single-site surgery (LESS). For a relative complex surgical procedure, the development of an in vivo visual robot system for LESS can effectively improve the visualization for surgical robot systems. In this work, an in vivo visual robot system with a new mechanism for LESS was investigated. A finite element method (FEM) analysis was carried out to ensure the safety of the in vivo visual robot during the movement, which was the most important concern for surgical purposes. A master-slave control strategy was adopted, in which the control model was established by off-line experiments. The in vivo visual robot system was verified by using a phantom box. The experiment results show that the robot system can successfully realize the expected functionalities and meet the demands of LESS. The experiment results indicate that the in vivo visual robot with high manipulability has great potential in clinical application. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
1985-01-01
A visual alert system resulted from circuitry developed by Applied Cybernetics Systems for Langley as part of a space related telemetry system. James Campman, Applied Cybernetics president, left the company and founded Grace Industries, Inc. to manufacture security devices based on the Langley technology. His visual alert system combines visual and audible alerts for hearing impaired people. The company also manufactures an arson detection device called the electronic nose, and is currently researching additional applications of the NASA technology.
NASA Technical Reports Server (NTRS)
Foyle, David C.; Kaiser, Mary K.; Johnson, Walter W.
1992-01-01
This paper reviews some of the sources of visual information that are available in the out-the-window scene and describes how these visual cues are important for routine pilotage and training, as well as the development of simulator visual systems and enhanced or synthetic vision systems for aircraft cockpits. It is shown how these visual cues may change or disappear under environmental or sensor conditions, and how the visual scene can be augmented by advanced displays to capitalize on the pilot's excellent ability to extract visual information from the visual scene.
Wiebrands, Michael; Malajczuk, Chris J; Woods, Andrew J; Rohl, Andrew L; Mancera, Ricardo L
2018-06-21
Molecular graphics systems are visualization tools which, upon integration into a 3D immersive environment, provide a unique virtual reality experience for research and teaching of biomolecular structure, function and interactions. We have developed a molecular structure and dynamics application, the Molecular Dynamics Visualization tool, that uses the Unity game engine combined with large scale, multi-user, stereoscopic visualization systems to deliver an immersive display experience, particularly with a large cylindrical projection display. The application is structured to separate the biomolecular modeling and visualization systems. The biomolecular model loading and analysis system was developed as a stand-alone C# library and provides the foundation for the custom visualization system built in Unity. All visual models displayed within the tool are generated using Unity-based procedural mesh building routines. A 3D user interface was built to allow seamless dynamic interaction with the model while being viewed in 3D space. Biomolecular structure analysis and display capabilities are exemplified with a range of complex systems involving cell membranes, protein folding and lipid droplets.
Component-Based Visualization System
NASA Technical Reports Server (NTRS)
Delgado, Francisco
2005-01-01
A software system has been developed that gives engineers and operations personnel with no "formal" programming expertise, but who are familiar with the Microsoft Windows operating system, the ability to create visualization displays to monitor the health and performance of aircraft/spacecraft. This software system is currently supporting the X38 V201 spacecraft component/system testing and is intended to give users the ability to create, test, deploy, and certify their subsystem displays in a fraction of the time that it would take to do so using previous software and programming methods. Within the visualization system there are three major components: the developer, the deployer, and the widget set. The developer is a blank canvas with widget menu items that give users the ability to easily create displays. The deployer is an application that allows for the deployment of the displays created using the developer application. The deployer has additional functionality that the developer does not have, such as printing of displays, screen captures to files, windowing of displays, and also serves as the interface into the documentation archive and help system. The third major component is the widget set. The widgets are the visual representation of the items that will make up the display (i.e., meters, dials, buttons, numerical indicators, string indicators, and the like). This software was developed using Visual C++ and uses COTS (commercial off-the-shelf) software where possible.
Physical Models that Provide Guidance in Visualization Deconstruction in an Inorganic Context
ERIC Educational Resources Information Center
Schiltz, Holly K.; Oliver-Hoyo, Maria T.
2012-01-01
Three physical model systems have been developed to help students deconstruct the visualization needed when learning symmetry and group theory. The systems provide students with physical and visual frames of reference to facilitate the complex visualization involved in symmetry concepts. The permanent reflection plane demonstration presents an…
Moderate Perinatal Thyroid Hormone Insufficiency Alters Visual System Function in Adult Rats
Thyroid hormone (TH) is critical for many aspects of neurodevelopment, such as the visual system, but may be disrupted by many environmental contaminants. The experimental data demonstrating a role for TH on visual system development generally derives from studies in which deve...
Designing a visualization system for hydrological data
NASA Astrophysics Data System (ADS)
Fuhrmann, Sven
2000-02-01
The field of hydrology is, as any other scientific field, strongly affected by a massive technological evolution. The spread of modern information and communication technology within the last three decades has led to an increased collection, availability and use of spatial and temporal digital hydrological data. In a two-year research period a working group in Muenster applied and developed methods for the visualization of digital hydrological data and the documentation of hydrological models. A low-cost multimedial, hydrological visualization system (HydroVIS) for the Weser river catchment was developed. The research group designed HydroVIS under freeware constraints and tried to show what kind of multimedia visualization techniques can be effectively used with a nonprofit hydrological visualization system. The system's visual components include features such as electronic maps, temporal and nontemporal cartographic animations, the display of geologic profiles, interactive diagrams and hypertext, including photographs and tables.
The foundations of development and deprivation in the visual system.
Daw, Nigel W
2009-06-15
The pioneering work of Torsten Wiesel and David Hubel on the development and deprivation of the visual system will be summarised, together with some comments on their influence, and some personal reminiscences by the author.
ERIC Educational Resources Information Center
Jan, James E.; Heaven, Roberta K. B.; Matsuba, Carey; Langley, M. Beth; Roman-Lantzy, Christine; Anthony, Tanni L
2013-01-01
Introduction: In recent years, major progress has been made in understanding the human visual system because of new investigative techniques. These developments often contradict older concepts about visual function. Methods: A detailed literature search and interprofessional discussions. Results: Recent innovative neurological tests are described…
The foundations of development and deprivation in the visual system
Daw, Nigel W
2009-01-01
The pioneering work of Torsten Wiesel and David Hubel on the development and deprivation of the visual system will be summarised, together with some comments on their influence, and some personal reminiscences by the author. PMID:19221122
A Unified Air-Sea Visualization System: Survey on Gridding Structures
NASA Technical Reports Server (NTRS)
Anand, Harsh; Moorhead, Robert
1995-01-01
The goal is to develop a Unified Air-Sea Visualization System (UASVS) to enable the rapid fusion of observational, archival, and model data for verification and analysis. To design and develop UASVS, modelers were polled to determine the gridding structures and visualization systems used, and their needs with respect to visual analysis. A basic UASVS requirement is to allow a modeler to explore multiple data sets within a single environment, or to interpolate multiple datasets onto one unified grid. From this survey, the UASVS should be able to visualize 3D scalar/vector fields; render isosurfaces; visualize arbitrary slices of the 3D data; visualize data defined on spectral element grids with the minimum number of interpolation stages; render contours; produce 3D vector plots and streamlines; provide unified visualization of satellite images, observations and model output overlays; display the visualization on a projection of the users choice; implement functions so the user can derive diagnostic values; animate the data to see the time-evolution; animate ocean and atmosphere at different rates; store the record of cursor movement, smooth the path, and animate a window around the moving path; repeatedly start and stop the visual time-stepping; generate VHS tape animations; work on a variety of workstations; and allow visualization across clusters of workstations and scalable high performance computer systems.
Developing Guidelines for Assessing Visual Analytics Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholtz, Jean
2011-07-01
In this paper, we develop guidelines for evaluating visual analytic environments based on a synthesis of reviews for the entries to the 2009 Visual Analytics Science and Technology (VAST) Symposium Challenge and from a user study with professional intelligence analysts. By analyzing the 2009 VAST Challenge reviews we gained a better understanding of what is important to our reviewers, both visualization researchers and professional analysts. We also report on a small user study with professional analysts to determine the important factors that they use in evaluating visual analysis systems. We then looked at guidelines developed by researchers in various domainsmore » and synthesized these into an initial set for use by others in the community. In a second part of the user study, we looked at guidelines for a new aspect of visual analytic systems – the generation of reports. Future visual analytic systems have been challenged to help analysts generate their reports. In our study we worked with analysts to understand the criteria they used to evaluate the quality of analytic reports. We propose that this knowledge will be useful as researchers look at systems to automate some of the report generation.1 Based on these efforts, we produced some initial guidelines for evaluating visual analytic environment and for evaluation of analytic reports. It is important to understand that these guidelines are initial drafts and are limited in scope because of the type of tasks for which the visual analytic systems used in the studies in this paper were designed. More research and refinement is needed by the Visual Analytics Community to provide additional evaluation guidelines for different types of visual analytic environments.« less
NASA Technical Reports Server (NTRS)
Berchem, J.; Raeder, J.; Walker, R. J.; Ashour-Abdalla, M.
1995-01-01
We report on the development of an interactive system for visualizing and analyzing numerical simulation results. This system is based on visualization modules which use the Application Visualization System (AVS) and the NCAR graphics packages. Examples from recent simulations are presented to illustrate how these modules can be used for displaying and manipulating simulation results to facilitate their comparison with phenomenological model results and observations.
FROMS3D: New Software for 3-D Visualization of Fracture Network System in Fractured Rock Masses
NASA Astrophysics Data System (ADS)
Noh, Y. H.; Um, J. G.; Choi, Y.
2014-12-01
A new software (FROMS3D) is presented to visualize fracture network system in 3-D. The software consists of several modules that play roles in management of borehole and field fracture data, fracture network modelling, visualization of fracture geometry in 3-D and calculation and visualization of intersections and equivalent pipes between fractures. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. The results have suggested that the developed software is effective in visualizing 3-D fracture network system, and can provide useful information to tackle the engineering geological problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.
Flight simulator with spaced visuals
NASA Technical Reports Server (NTRS)
Gilson, Richard D. (Inventor); Thurston, Marlin O. (Inventor); Olson, Karl W. (Inventor); Ventola, Ronald W. (Inventor)
1980-01-01
A flight simulator arrangement wherein a conventional, movable base flight trainer is combined with a visual cue display surface spaced a predetermined distance from an eye position within the trainer. Thus, three degrees of motive freedom (roll, pitch and crab) are provided for a visual proprioceptive, and vestibular cue system by the trainer while the remaining geometric visual cue image alterations are developed by a video system. A geometric approach to computing runway image eliminates a need to electronically compute trigonometric functions, while utilization of a line generator and designated vanishing point at the video system raster permits facile development of the images of the longitudinal edges of the runway.
NASA Astrophysics Data System (ADS)
Harris, E.
Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars Reconnaissance Orbiter and Lunar Base construction scenarios. Innovative solutions utilizing Immersive Visualization provide the key to streamlining the mission planning and optimizing engineering design phases of future aerospace missions.
METHODS FOR MONITORING THE EFFECTS OF ENVIRONMENTAL TOXINS ON THE VISUAL SYSTEM.
A high percentage of neurotoxic compounds adversely effect the visual system. Our goal is to apply the tools of vision science to problems of toxicological import, exposure-related alterations in visual physiology, psychophysical function, and ocular development. Methods can ...
A knowledge based system for scientific data visualization
NASA Technical Reports Server (NTRS)
Senay, Hikmet; Ignatius, Eve
1992-01-01
A knowledge-based system, called visualization tool assistant (VISTA), which was developed to assist scientists in the design of scientific data visualization techniques, is described. The system derives its knowledge from several sources which provide information about data characteristics, visualization primitives, and effective visual perception. The design methodology employed by the system is based on a sequence of transformations which decomposes a data set into a set of data partitions, maps this set of partitions to visualization primitives, and combines these primitives into a composite visualization technique design. Although the primary function of the system is to generate an effective visualization technique design for a given data set by using principles of visual perception the system also allows users to interactively modify the design, and renders the resulting image using a variety of rendering algorithms. The current version of the system primarily supports visualization techniques having applicability in earth and space sciences, although it may easily be extended to include other techniques useful in other disciplines such as computational fluid dynamics, finite-element analysis and medical imaging.
Advanced in Visualization of 3D Time-Dependent CFD Solutions
NASA Technical Reports Server (NTRS)
Lane, David A.; Lasinski, T. A. (Technical Monitor)
1995-01-01
Numerical simulations of complex 3D time-dependent (unsteady) flows are becoming increasingly feasible because of the progress in computing systems. Unfortunately, many existing flow visualization systems were developed for time-independent (steady) solutions and do not adequately depict solutions from unsteady flow simulations. Furthermore, most systems only handle one time step of the solutions individually and do not consider the time-dependent nature of the solutions. For example, instantaneous streamlines are computed by tracking the particles using one time step of the solution. However, for streaklines and timelines, particles need to be tracked through all time steps. Streaklines can reveal quite different information about the flow than those revealed by instantaneous streamlines. Comparisons of instantaneous streamlines with dynamic streaklines are shown. For a complex 3D flow simulation, it is common to generate a grid system with several millions of grid points and to have tens of thousands of time steps. The disk requirement for storing the flow data can easily be tens of gigabytes. Visualizing solutions of this magnitude is a challenging problem with today's computer hardware technology. Even interactive visualization of one time step of the flow data can be a problem for some existing flow visualization systems because of the size of the grid. Current approaches for visualizing complex 3D time-dependent CFD solutions are described. The flow visualization system developed at NASA Ames Research Center to compute time-dependent particle traces from unsteady CFD solutions is described. The system computes particle traces (streaklines) by integrating through the time steps. This system has been used by several NASA scientists to visualize their CFD time-dependent solutions. The flow visualization capabilities of this system are described, and visualization results are shown.
Wei, Jyh-Da; Tsai, Ming-Hung; Lee, Gen-Cher; Huang, Jeng-Hung; Lee, Der-Tsai
2009-01-01
Algorithm visualization is a unique research topic that integrates engineering skills such as computer graphics, system programming, database management, computer networks, etc., to facilitate algorithmic researchers in testing their ideas, demonstrating new findings, and teaching algorithm design in the classroom. Within the broad applications of algorithm visualization, there still remain performance issues that deserve further research, e.g., system portability, collaboration capability, and animation effect in 3D environments. Using modern technologies of Java programming, we develop an algorithm visualization and debugging system, dubbed GeoBuilder, for geometric computing. The GeoBuilder system features Java's promising portability, engagement of collaboration in algorithm development, and automatic camera positioning for tracking 3D geometric objects. In this paper, we describe the design of the GeoBuilder system and demonstrate its applications.
Visual Hybrid Development Learning System (VHDLS) framework for children with autism.
Banire, Bilikis; Jomhari, Nazean; Ahmad, Rodina
2015-10-01
The effect of education on children with autism serves as a relative cure for their deficits. As a result of this, they require special techniques to gain their attention and interest in learning as compared to typical children. Several studies have shown that these children are visual learners. In this study, we proposed a Visual Hybrid Development Learning System (VHDLS) framework that is based on an instructional design model, multimedia cognitive learning theory, and learning style in order to guide software developers in developing learning systems for children with autism. The results from this study showed that the attention of children with autism increased more with the proposed VHDLS framework.
A visual servo-based teleoperation robot system for closed diaphyseal fracture reduction.
Li, Changsheng; Wang, Tianmiao; Hu, Lei; Zhang, Lihai; Du, Hailong; Zhao, Lu; Wang, Lifeng; Tang, Peifu
2015-09-01
Common fracture treatments include open reduction and intramedullary nailing technology. However, these methods have disadvantages such as intraoperative X-ray radiation, delayed union or nonunion and postoperative rotation. Robots provide a novel solution to the aforementioned problems while posing new challenges. Against this scientific background, we develop a visual servo-based teleoperation robot system. In this article, we present a robot system, analyze the visual servo-based control system in detail and develop path planning for fracture reduction, inverse kinematics, and output forces of the reduction mechanism. A series of experimental tests is conducted on a bone model and an animal bone. The experimental results demonstrate the feasibility of the robot system. The robot system uses preoperative computed tomography data to realize high precision and perform minimally invasive teleoperation for fracture reduction via the visual servo-based control system while protecting surgeons from radiation. © IMechE 2015.
Real-time scalable visual analysis on mobile devices
NASA Astrophysics Data System (ADS)
Pattath, Avin; Ebert, David S.; May, Richard A.; Collins, Timothy F.; Pike, William
2008-02-01
Interactive visual presentation of information can help an analyst gain faster and better insight from data. When combined with situational or context information, visualization on mobile devices is invaluable to in-field responders and investigators. However, several challenges are posed by the form-factor of mobile devices in developing such systems. In this paper, we classify these challenges into two broad categories - issues in general mobile computing and issues specific to visual analysis on mobile devices. Using NetworkVis and Infostar as example systems, we illustrate some of the techniques that we employed to overcome many of the identified challenges. NetworkVis is an OpenVG-based real-time network monitoring and visualization system developed for Windows Mobile devices. Infostar is a flash-based interactive, real-time visualization application intended to provide attendees access to conference information. Linked time-synchronous visualization, stylus/button-based interactivity, vector graphics, overview-context techniques, details-on-demand and statistical information display are some of the highlights of these applications.
Modeling for Visual Feature Extraction Using Spiking Neural Networks
NASA Astrophysics Data System (ADS)
Kimura, Ichiro; Kuroe, Yasuaki; Kotera, Hiromichi; Murata, Tomoya
This paper develops models for “visual feature extraction” in biological systems by using “spiking neural network (SNN)”. The SNN is promising for developing the models because the information is encoded and processed by spike trains similar to biological neural networks. Two architectures of SNN are proposed for modeling the directionally selective and the motion parallax cell in neuro-sensory systems and they are trained so as to possess actual biological responses of each cell. To validate the developed models, their representation ability is investigated and their visual feature extraction mechanisms are discussed from the neurophysiological viewpoint. It is expected that this study can be the first step to developing a sensor system similar to the biological systems and also a complementary approach to investigating the function of the brain.
Prototype crawling robotics system for remote visual inspection of high-mast light poles.
DOT National Transportation Integrated Search
1997-01-01
This report presents the results of a project to develop a crawling robotics system for the remote visual inspection of high-mast light poles in Virginia. The first priority of this study was to develop a simple robotics application that would reduce...
A hierarchical, retinotopic proto-organization of the primate visual system at birth
Arcaro, Michael J; Livingstone, Margaret S
2017-01-01
The adult primate visual system comprises a series of hierarchically organized areas. Each cortical area contains a topographic map of visual space, with different areas extracting different kinds of information from the retinal input. Here we asked to what extent the newborn visual system resembles the adult organization. We find that hierarchical, topographic organization is present at birth and therefore constitutes a proto-organization for the entire primate visual system. Even within inferior temporal cortex, this proto-organization was already present, prior to the emergence of category selectivity (e.g., faces or scenes). We propose that this topographic organization provides the scaffolding for the subsequent development of visual cortex that commences at the onset of visual experience DOI: http://dx.doi.org/10.7554/eLife.26196.001 PMID:28671063
Information Visualization and Proposing New Interface for Movie Retrieval System (IMDB)
ERIC Educational Resources Information Center
Etemadpour, Ronak; Masood, Mona; Belaton, Bahari
2010-01-01
This research studies the development of a new prototype of visualization in support of movie retrieval. The goal of information visualization is unveiling of large amounts of data or abstract data set using visual presentation. With this knowledge the main goal is to develop a 2D presentation of information on movies from the IMDB (Internet Movie…
Fault-Tolerant Control For A Robotic Inspection System
NASA Technical Reports Server (NTRS)
Tso, Kam Sing
1995-01-01
Report describes first phase of continuing program of research on fault-tolerant control subsystem of telerobotic visual-inspection system. Goal of program to develop robotic system for remotely controlled visual inspection of structures in outer space.
Visual Complexity in Orthographic Learning: Modeling Learning across Writing System Variations
ERIC Educational Resources Information Center
Chang, Li-Yun; Plaut, David C.; Perfetti, Charles A.
2016-01-01
The visual complexity of orthographies varies across writing systems. Prior research has shown that complexity strongly influences the initial stage of reading development: the perceptual learning of grapheme forms. This study presents a computational simulation that examines the degree to which visual complexity leads to grapheme learning…
NASA Technical Reports Server (NTRS)
Wang, P.; Li, P.
1998-01-01
A high-resolution numerical study on parallel systems is reported on three-dimensional, time-dependent, thermal convective flows. A parallel implentation on the finite volume method with a multigrid scheme is discussed, and a parallel visualization systemm is developed on distributed systems for visualizing the flow.
Development of Visualization of Learning Outcomes Using Curriculum Mapping
ERIC Educational Resources Information Center
Ikuta, Takashi; Gotoh, Yasushi
2012-01-01
Niigata University has started to develop the Niigata University Bachelor Assessment System (NBAS). The objective is to have groups of teachers belonging to educational programs discuss whether visualized learning outcomes are comprehensible. Discussions based on teachers' subjective judgments showed in general that visualized learning outcomes…
Visual Impairment in Infants and Young Children.
ERIC Educational Resources Information Center
Teplin, Stuart W.
1995-01-01
This article reviews the structure, development, function, and assessment of the visual system and then considers: common eye problems of young children with visual impairment; impacts of severe impairment on child development; and the roles of early intervention professionals, ophthalmologists, and pediatricians in working with these children and…
NASA Astrophysics Data System (ADS)
Gomes, Gary G.
1986-05-01
A cost effective and supportable color visual system has been developed to provide the necessary visual cues to United States Air Force B-52 bomber pilots training to become proficient at the task of inflight refueling. This camera model visual system approach is not suitable for all simulation applications, but provides a cost effective alternative to digital image generation systems when high fidelity of a single movable object is required. The system consists of a three axis gimballed KC-l35 tanker model, a range carriage mounted color augmented monochrome television camera, interface electronics, a color light valve projector and an infinity optics display system.
NASA Astrophysics Data System (ADS)
Regmi, Raju; Mohan, Kavya; Mondal, Partha Pratim
2014-09-01
Visualization of intracellular organelles is achieved using a newly developed high throughput imaging cytometry system. This system interrogates the microfluidic channel using a sheet of light rather than the existing point-based scanning techniques. The advantages of the developed system are many, including, single-shot scanning of specimens flowing through the microfluidic channel at flow rate ranging from micro- to nano- lit./min. Moreover, this opens-up in-vivo imaging of sub-cellular structures and simultaneous cell counting in an imaging cytometry system. We recorded a maximum count of 2400 cells/min at a flow-rate of 700 nl/min, and simultaneous visualization of fluorescently-labeled mitochondrial network in HeLa cells during flow. The developed imaging cytometry system may find immediate application in biotechnology, fluorescence microscopy and nano-medicine.
Visualization of ocean forecast in BYTHOS
NASA Astrophysics Data System (ADS)
Zhuk, E.; Zodiatis, G.; Nikolaidis, A.; Stylianou, S.; Karaolia, A.
2016-08-01
The Cyprus Oceanography Center has been constantly searching for new ideas for developing and implementing innovative methods and new developments concerning the use of Information Systems in Oceanography, to suit both the Center's monitoring and forecasting products. Within the frame of this scope two major online managing and visualizing data systems have been developed and utilized, those of CYCOFOS and BYTHOS. The Cyprus Coastal Ocean Forecasting and Observing System - CYCOFOS provides a variety of operational predictions such as ultra high, high and medium resolution ocean forecasts in the Levantine Basin, offshore and coastal sea state forecasts in the Mediterranean and Black Sea, tide forecasting in the Mediterranean, ocean remote sensing in the Eastern Mediterranean and coastal and offshore monitoring. As a rich internet application, BYTHOS enables scientists to search, visualize and download oceanographic data online and in real time. The recent improving of BYTHOS system is the extension with access and visualization of CYCOFOS data and overlay forecast fields and observing data. The CYCOFOS data are stored at OPENDAP Server in netCDF format. To search, process and visualize it the php and python scripts were developed. Data visualization is achieved through Mapserver. The BYTHOS forecast access interface allows to search necessary forecasting field by recognizing type, parameter, region, level and time. Also it provides opportunity to overlay different forecast and observing data that can be used for complex analyze of sea basin aspects.
Analysis and Selection of a Remote Docking Simulation Visual Display System
NASA Technical Reports Server (NTRS)
Shields, N., Jr.; Fagg, M. F.
1984-01-01
The development of a remote docking simulation visual display system is examined. Video system and operator performance are discussed as well as operator command and control requirements and a design analysis of the reconfigurable work station.
Public health nurse perceptions of Omaha System data visualization.
Lee, Seonah; Kim, Era; Monsen, Karen A
2015-10-01
Electronic health records (EHRs) provide many benefits related to the storage, deployment, and retrieval of large amounts of patient data. However, EHRs have not fully met the need to reuse data for decision making on follow-up care plans. Visualization offers new ways to present health data, especially in EHRs. Well-designed data visualization allows clinicians to communicate information efficiently and effectively, contributing to improved interpretation of clinical data and better patient care monitoring and decision making. Public health nurse (PHN) perceptions of Omaha System data visualization prototypes for use in EHRs have not been evaluated. To visualize PHN-generated Omaha System data and assess PHN perceptions regarding the visual validity, helpfulness, usefulness, and importance of the visualizations, including interactive functionality. Time-oriented visualization for problems and outcomes and Matrix visualization for problems and interventions were developed using PHN-generated Omaha System data to help PHNs consume data and plan care at the point of care. Eleven PHNs evaluated prototype visualizations. Overall PHNs response to visualizations was positive, and feedback for improvement was provided. This study demonstrated the potential for using visualization techniques within EHRs to summarize Omaha System patient data for clinicians. Further research is needed to improve and refine these visualizations and assess the potential to incorporate visualizations within clinical EHRs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Pomerantz, M. I.; Lim, C.; Myint, S.; Woodward, G.; Balaram, J.; Kuo, C.
2012-01-01
he Jet Propulsion Laboratory's Entry, Descent and Landing (EDL) Reconstruction Task has developed a software system that provides mission operations personnel and analysts with a real time telemetry-based live display, playback and post-EDL reconstruction capability that leverages the existing high-fidelity, physics-based simulation framework and modern game engine-derived 3D visualization system developed in the JPL Dynamics and Real Time Simulation (DARTS) Lab. Developed as a multi-mission solution, the EDL Telemetry Visualization (ETV) system has been used for a variety of projects including NASA's Mars Science Laboratory (MSL), NASA'S Low Density Supersonic Decelerator (LDSD) and JPL's MoonRise Lunar sample return proposal.
Driver Distraction Using Visual-Based Sensors and Algorithms.
Fernández, Alberto; Usamentiaga, Rubén; Carús, Juan Luis; Casado, Rubén
2016-10-28
Driver distraction, defined as the diversion of attention away from activities critical for safe driving toward a competing activity, is increasingly recognized as a significant source of injuries and fatalities on the roadway. Additionally, the trend towards increasing the use of in-vehicle information systems is critical because they induce visual, biomechanical and cognitive distraction and may affect driving performance in qualitatively different ways. Non-intrusive methods are strongly preferred for monitoring distraction, and vision-based systems have appeared to be attractive for both drivers and researchers. Biomechanical, visual and cognitive distractions are the most commonly detected types in video-based algorithms. Many distraction detection systems only use a single visual cue and therefore, they may be easily disturbed when occlusion or illumination changes appear. Moreover, the combination of these visual cues is a key and challenging aspect in the development of robust distraction detection systems. These visual cues can be extracted mainly by using face monitoring systems but they should be completed with more visual cues (e.g., hands or body information) or even, distraction detection from specific actions (e.g., phone usage). Additionally, these algorithms should be included in an embedded device or system inside a car. This is not a trivial task and several requirements must be taken into account: reliability, real-time performance, low cost, small size, low power consumption, flexibility and short time-to-market. The key points for the development and implementation of sensors to carry out the detection of distraction will also be reviewed. This paper shows a review of the role of computer vision technology applied to the development of monitoring systems to detect distraction. Some key points considered as both future work and challenges ahead yet to be solved will also be addressed.
Driver Distraction Using Visual-Based Sensors and Algorithms
Fernández, Alberto; Usamentiaga, Rubén; Carús, Juan Luis; Casado, Rubén
2016-01-01
Driver distraction, defined as the diversion of attention away from activities critical for safe driving toward a competing activity, is increasingly recognized as a significant source of injuries and fatalities on the roadway. Additionally, the trend towards increasing the use of in-vehicle information systems is critical because they induce visual, biomechanical and cognitive distraction and may affect driving performance in qualitatively different ways. Non-intrusive methods are strongly preferred for monitoring distraction, and vision-based systems have appeared to be attractive for both drivers and researchers. Biomechanical, visual and cognitive distractions are the most commonly detected types in video-based algorithms. Many distraction detection systems only use a single visual cue and therefore, they may be easily disturbed when occlusion or illumination changes appear. Moreover, the combination of these visual cues is a key and challenging aspect in the development of robust distraction detection systems. These visual cues can be extracted mainly by using face monitoring systems but they should be completed with more visual cues (e.g., hands or body information) or even, distraction detection from specific actions (e.g., phone usage). Additionally, these algorithms should be included in an embedded device or system inside a car. This is not a trivial task and several requirements must be taken into account: reliability, real-time performance, low cost, small size, low power consumption, flexibility and short time-to-market. The key points for the development and implementation of sensors to carry out the detection of distraction will also be reviewed. This paper shows a review of the role of computer vision technology applied to the development of monitoring systems to detect distraction. Some key points considered as both future work and challenges ahead yet to be solved will also be addressed. PMID:27801822
VIPER: Virtual Intelligent Planetary Exploration Rover
NASA Technical Reports Server (NTRS)
Edwards, Laurence; Flueckiger, Lorenzo; Nguyen, Laurent; Washington, Richard
2001-01-01
Simulation and visualization of rover behavior are critical capabilities for scientists and rover operators to construct, test, and validate plans for commanding a remote rover. The VIPER system links these capabilities. using a high-fidelity virtual-reality (VR) environment. a kinematically accurate simulator, and a flexible plan executive to allow users to simulate and visualize possible execution outcomes of a plan under development. This work is part of a larger vision of a science-centered rover control environment, where a scientist may inspect and explore the environment via VR tools, specify science goals, and visualize the expected and actual behavior of the remote rover. The VIPER system is constructed from three generic systems, linked together via a minimal amount of customization into the integrated system. The complete system points out the power of combining plan execution, simulation, and visualization for envisioning rover behavior; it also demonstrates the utility of developing generic technologies. which can be combined in novel and useful ways.
NASA Astrophysics Data System (ADS)
Quinn, J. D.; Larour, E. Y.; Cheng, D. L. C.; Halkides, D. J.
2016-12-01
The Virtual Earth System Laboratory (VESL) is a Web-based tool, under development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. It contains features geared toward a range of applications, spanning research and outreach. It offers an intuitive user interface, in which model inputs are changed using sliders and other interactive components. Current capabilities include simulation of polar ice sheet responses to climate forcing, based on NASA's Ice Sheet System Model (ISSM). We believe that the visualization of data is most effective when tailored to the target audience, and that many of the best practices for modern Web design/development can be applied directly to the visualization of data: use of negative space, color schemes, typography, accessibility standards, tooltips, etc cetera. We present our prototype website, and invite input from potential users, including researchers, educators, and students.
75 FR 53342 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
...), Federal Bureau of Investigation (FBI), proposes to establish a new system of records, the Data Integration and Visualization System, JUSTICE/FBI-021, to support and enhance data search, integration... to develop more efficient methods to analyze FBI data. The Data Integration and Visualization System...
A Dynamic Systems Theory Model of Visual Perception Development
ERIC Educational Resources Information Center
Coté, Carol A.
2015-01-01
This article presents a model for understanding the development of visual perception from a dynamic systems theory perspective. It contrasts to a hierarchical or reductionist model that is often found in the occupational therapy literature. In this proposed model vision and ocular motor abilities are not foundational to perception, they are seen…
Neural network system for purposeful behavior based on foveal visual preprocessor
NASA Astrophysics Data System (ADS)
Golovan, Alexander V.; Shevtsova, Natalia A.; Klepatch, Arkadi A.
1996-10-01
Biologically plausible model of the system with an adaptive behavior in a priori environment and resistant to impairment has been developed. The system consists of input, learning, and output subsystems. The first subsystems classifies input patterns presented as n-dimensional vectors in accordance with some associative rule. The second one being a neural network determines adaptive responses of the system to input patterns. Arranged neural groups coding possible input patterns and appropriate output responses are formed during learning by means of negative reinforcement. Output subsystem maps a neural network activity into the system behavior in the environment. The system developed has been studied by computer simulation imitating a collision-free motion of a mobile robot. After some learning period the system 'moves' along a road without collisions. It is shown that in spite of impairment of some neural network elements the system functions reliably after relearning. Foveal visual preprocessor model developed earlier has been tested to form a kind of visual input to the system.
A new system for quantitative evaluation of infant gaze capabilities in a wide visual field.
Pratesi, Andrea; Cecchi, Francesca; Beani, Elena; Sgandurra, Giuseppina; Cioni, Giovanni; Laschi, Cecilia; Dario, Paolo
2015-09-07
The visual assessment of infants poses specific challenges: many techniques that are used on adults are based on the patient's response, and are not suitable for infants. Significant advances in the eye-tracking have made this assessment of infant visual capabilities easier, however, eye-tracking still requires the subject's collaboration, in most cases and thus limiting the application in infant research. Moreover, there is a lack of transferability to clinical practice, and thus it emerges the need for a new tool to measure the paradigms and explore the most common visual competences in a wide visual field. This work presents the design, development and preliminary testing of a new system for measuring infant's gaze in the wide visual field called CareToy C: CareToy for Clinics. The system is based on a commercial eye tracker (SmartEye) with six cameras running at 60 Hz, suitable for measuring an infant's gaze. In order to stimulate the infant visually and audibly, a mechanical structure has been designed to support five speakers and five screens at a specific distance (60 cm) and angle: one in the centre, two on the right-hand side and two on the left (at 30° and 60° respectively). Different tasks have been designed in order to evaluate the system capability to assess the infant's gaze movements during different conditions (such as gap, overlap or audio-visual paradigms). Nine healthy infants aged 4-10 months were assessed as they performed the visual tasks at random. We developed a system able to measure infant's gaze in a wide visual field covering a total visual range of ±60° from the centre with an intermediate evaluation at ±30°. Moreover, the same system, thanks to different integrated software, was able to provide different visual paradigms (as gap, overlap and audio-visual) assessing and comparing different visual and multisensory sub-competencies. The proposed system endowed the integration of a commercial eye-tracker into a purposive setup in a smart and innovative way. The proposed system is suitable for measuring and evaluating infant's gaze capabilities in a wide visual field, in order to provide quantitative data that can enrich the clinical assessment.
A survey of visualization systems for network security.
Shiravi, Hadi; Shiravi, Ali; Ghorbani, Ali A
2012-08-01
Security Visualization is a very young term. It expresses the idea that common visualization techniques have been designed for use cases that are not supportive of security-related data, demanding novel techniques fine tuned for the purpose of thorough analysis. Significant amount of work has been published in this area, but little work has been done to study this emerging visualization discipline. We offer a comprehensive review of network security visualization and provide a taxonomy in the form of five use-case classes encompassing nearly all recent works in this area. We outline the incorporated visualization techniques and data sources and provide an informative table to display our findings. From the analysis of these systems, we examine issues and concerns regarding network security visualization and provide guidelines and directions for future researchers and visual system developers.
OpinionSeer: interactive visualization of hotel customer feedback.
Wu, Yingcai; Wei, Furu; Liu, Shixia; Au, Norman; Cui, Weiwei; Zhou, Hong; Qu, Huamin
2010-01-01
The rapid development of Web technology has resulted in an increasing number of hotel customers sharing their opinions on the hotel services. Effective visual analysis of online customer opinions is needed, as it has a significant impact on building a successful business. In this paper, we present OpinionSeer, an interactive visualization system that could visually analyze a large collection of online hotel customer reviews. The system is built on a new visualization-centric opinion mining technique that considers uncertainty for faithfully modeling and analyzing customer opinions. A new visual representation is developed to convey customer opinions by augmenting well-established scatterplots and radial visualization. To provide multiple-level exploration, we introduce subjective logic to handle and organize subjective opinions with degrees of uncertainty. Several case studies illustrate the effectiveness and usefulness of OpinionSeer on analyzing relationships among multiple data dimensions and comparing opinions of different groups. Aside from data on hotel customer feedback, OpinionSeer could also be applied to visually analyze customer opinions on other products or services.
Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors
Burbridge, Timothy J.; Xu, Hong-Ping; Ackman, James B.; Ge, Xinxin; Zhang, Yueyi; Ye, Mei-Jun; Zhou, Z. Jimmy; Xu, Jian; Contractor, Anis; Crair, Michael C.
2014-01-01
SUMMARY The elaboration of nascent synaptic connections into highly ordered neural circuits is an integral feature of the developing vertebrate nervous system. In sensory systems, patterned spontaneous activity before the onset of sensation is thought to influence this process, but this conclusion remains controversial largely due to the inherent difficulty recording neural activity in early development. Here, we describe novel genetic and pharmacological manipulations of spontaneous retinal activity, assayed in vivo, that demonstrate a causal link between retinal waves and visual circuit refinement. We also report a de-coupling of downstream activity in retinorecipient regions of the developing brain after retinal wave disruption. Significantly, we show that the spatiotemporal characteristics of retinal waves affect the development of specific visual circuits. These results conclusively establish retinal waves as necessary and instructive for circuit refinement in the developing nervous system and reveal how neural circuits adjust to altered patterns of activity prior to experience. PMID:25466916
Hanken, Taylor; Young, Sam; Smilowitz, Karen; Chiampas, George; Waskowski, David
2016-10-01
As one of the largest marathons worldwide, the Bank of America Chicago Marathon (BACCM; Chicago, Illinois USA) accumulates high volumes of data. Race organizers and engaged agencies need the ability to access specific data in real-time. This report details a data visualization system designed for the Chicago Marathon and establishes key principles for event management data visualization. The data visualization system allows for efficient data communication among the organizing agencies of Chicago endurance events. Agencies can observe the progress of the race throughout the day and obtain needed information, such as the number and location of runners on the course and current weather conditions. Implementation of the system can reduce time-consuming, face-to-face interactions between involved agencies by having key data streams in one location, streamlining communications with the purpose of improving race logistics, as well as medical preparedness and response. Hanken T , Young S , Smilowitz K , Chiampas G , Waskowski D . Developing a data visualization system for the Bank of America Chicago Marathon (Chicago, Illinois USA). Prehosp Disaster Med. 2016;31(5):572-577.
Modeling human comprehension of data visualizations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzen, Laura E.; Haass, Michael Joseph; Divis, Kristin Marie
This project was inspired by two needs. The first is a need for tools to help scientists and engineers to design effective data visualizations for communicating information, whether to the user of a system, an analyst who must make decisions based on complex data, or in the context of a technical report or publication. Most scientists and engineers are not trained in visualization design, and they could benefit from simple metrics to assess how well their visualization's design conveys the intended message. In other words, will the most important information draw the viewer's attention? The second is the need formore » cognition-based metrics for evaluating new types of visualizations created by researchers in the information visualization and visual analytics communities. Evaluating visualizations is difficult even for experts. However, all visualization methods and techniques are intended to exploit the properties of the human visual system to convey information efficiently to a viewer. Thus, developing evaluation methods that are rooted in the scientific knowledge of the human visual system could be a useful approach. In this project, we conducted fundamental research on how humans make sense of abstract data visualizations, and how this process is influenced by their goals and prior experience. We then used that research to develop a new model, the Data Visualization Saliency Model, that can make accurate predictions about which features in an abstract visualization will draw a viewer's attention. The model is an evaluation tool that can address both of the needs described above, supporting both visualization research and Sandia mission needs.« less
Dutca, Laura M; Stasheff, Steven F; Hedberg-Buenz, Adam; Rudd, Danielle S; Batra, Nikhil; Blodi, Frederick R; Yorek, Matthew S; Yin, Terry; Shankar, Malini; Herlein, Judith A; Naidoo, Jacinth; Morlock, Lorraine; Williams, Noelle; Kardon, Randy H; Anderson, Michael G; Pieper, Andrew A; Harper, Matthew M
2014-12-02
Traumatic brain injury (TBI) frequently leads to chronic visual dysfunction. The purpose of this study was to investigate the effect of TBI on retinal ganglion cells (RGCs), and to test whether treatment with the novel neuroprotective compound P7C3-S243 could prevent in vivo functional deficits in the visual system. Blast-mediated TBI was modeled using an enclosed over-pressure blast chamber. The RGC physiology was evaluated using a multielectrode array and pattern electroretinogram (PERG). Histological analysis of RGC dendritic field and cell number were evaluated at the end of the study. Visual outcome measures also were evaluated based on treatment of mice with P7C3-S243 or vehicle control. We show that deficits in neutral position PERG after blast-mediated TBI occur in a temporally bimodal fashion, with temporary recovery 4 weeks after injury followed by chronically persistent dysfunction 12 weeks later. This later time point is associated with development of dendritic abnormalities and irreversible death of RGCs. We also demonstrate that ongoing pathologic processes during the temporary recovery latent period (including abnormalities of RGC physiology) lead to future dysfunction of the visual system. We report that modification of PERG to provocative postural tilt testing elicits changes in PERG measurements that correlate with a key in vitro measures of damage: the spontaneous and light-evoked activity of RGCs. Treatment with P7C3-S243 immediately after injury and throughout the temporary recovery latent period protects mice from developing chronic visual system dysfunction. Provocative PERG testing serves as a noninvasive test in the living organism to identify early damage to the visual system, which may reflect corresponding damage in the brain that is not otherwise detectable by noninvasive means. This provides the basis for developing an earlier diagnostic test to identify patients at risk for developing chronic CNS and visual system damage after TBI at an earlier stage when treatments may be more effective in preventing these sequelae. In addition, treatment with the neuroprotective agent P7C3-S243 after TBI protects from visual system dysfunction after TBI. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Dutca, Laura M.; Stasheff, Steven F.; Hedberg-Buenz, Adam; Rudd, Danielle S.; Batra, Nikhil; Blodi, Frederick R.; Yorek, Matthew S.; Yin, Terry; Shankar, Malini; Herlein, Judith A.; Naidoo, Jacinth; Morlock, Lorraine; Williams, Noelle; Kardon, Randy H.; Anderson, Michael G.; Pieper, Andrew A.; Harper, Matthew M.
2014-01-01
Purpose. Traumatic brain injury (TBI) frequently leads to chronic visual dysfunction. The purpose of this study was to investigate the effect of TBI on retinal ganglion cells (RGCs), and to test whether treatment with the novel neuroprotective compound P7C3-S243 could prevent in vivo functional deficits in the visual system. Methods. Blast-mediated TBI was modeled using an enclosed over-pressure blast chamber. The RGC physiology was evaluated using a multielectrode array and pattern electroretinogram (PERG). Histological analysis of RGC dendritic field and cell number were evaluated at the end of the study. Visual outcome measures also were evaluated based on treatment of mice with P7C3-S243 or vehicle control. Results. We show that deficits in neutral position PERG after blast-mediated TBI occur in a temporally bimodal fashion, with temporary recovery 4 weeks after injury followed by chronically persistent dysfunction 12 weeks later. This later time point is associated with development of dendritic abnormalities and irreversible death of RGCs. We also demonstrate that ongoing pathologic processes during the temporary recovery latent period (including abnormalities of RGC physiology) lead to future dysfunction of the visual system. We report that modification of PERG to provocative postural tilt testing elicits changes in PERG measurements that correlate with a key in vitro measures of damage: the spontaneous and light-evoked activity of RGCs. Treatment with P7C3-S243 immediately after injury and throughout the temporary recovery latent period protects mice from developing chronic visual system dysfunction. Conclusions. Provocative PERG testing serves as a noninvasive test in the living organism to identify early damage to the visual system, which may reflect corresponding damage in the brain that is not otherwise detectable by noninvasive means. This provides the basis for developing an earlier diagnostic test to identify patients at risk for developing chronic CNS and visual system damage after TBI at an earlier stage when treatments may be more effective in preventing these sequelae. In addition, treatment with the neuroprotective agent P7C3-S243 after TBI protects from visual system dysfunction after TBI. PMID:25468886
NASA Astrophysics Data System (ADS)
Demir, I.
2014-12-01
Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.
Nabel, Elisa M.; Morishita, Hirofumi
2013-01-01
Early temporary windows of heightened brain plasticity called critical periods developmentally sculpt neural circuits and contribute to adult behavior. Regulatory mechanisms of visual cortex development – the preeminent model of experience-dependent critical period plasticity-actively limit adult plasticity and have proved fruitful therapeutic targets to reopen plasticity and rewire faulty visual system connections later in life. Interestingly, these molecular mechanisms have been implicated in the regulation of plasticity in other functions beyond vision. Applying mechanistic understandings of critical period plasticity in the visual cortex to fear circuitry may provide a conceptual framework for developing novel therapeutic tools to mitigate aberrant fear responses in post traumatic stress disorder. In this review, we turn to the model of experience-dependent visual plasticity to provide novel insights for the mechanisms regulating plasticity in the fear system. Fear circuitry, particularly fear memory erasure, also undergoes age-related changes in experience-dependent plasticity. We consider the contributions of molecular brakes that halt visual critical period plasticity to circuitry underlying fear memory erasure. A major molecular brake in the visual cortex, perineuronal net formation, recently has been identified in the development of fear systems that are resilient to fear memory erasure. The roles of other molecular brakes, myelin-related Nogo receptor signaling and Lynx family proteins – endogenous inhibitors for nicotinic acetylcholine receptor, are explored in the context of fear memory plasticity. Such fear plasticity regulators, including epigenetic effects, provide promising targets for therapeutic interventions. PMID:24273519
Sensing Super-position: Visual Instrument Sensor Replacement
NASA Technical Reports Server (NTRS)
Maluf, David A.; Schipper, John F.
2006-01-01
The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This project addresses the technical feasibility of augmenting human vision through Sensing Super-position using a Visual Instrument Sensory Organ Replacement (VISOR). The current implementation of the VISOR device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of the human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an image-to-sound mapping system.
NASA Technical Reports Server (NTRS)
Chaudhary, Aashish; Votava, Petr; Nemani, Ramakrishna R.; Michaelis, Andrew; Kotfila, Chris
2016-01-01
We are developing capabilities for an integrated petabyte-scale Earth science collaborative analysis and visualization environment. The ultimate goal is to deploy this environment within the NASA Earth Exchange (NEX) and OpenNEX in order to enhance existing science data production pipelines in both high-performance computing (HPC) and cloud environments. Bridging of HPC and cloud is a fairly new concept under active research and this system significantly enhances the ability of the scientific community to accelerate analysis and visualization of Earth science data from NASA missions, model outputs and other sources. We have developed a web-based system that seamlessly interfaces with both high-performance computing (HPC) and cloud environments, providing tools that enable science teams to develop and deploy large-scale analysis, visualization and QA pipelines of both the production process and the data products, and enable sharing results with the community. Our project is developed in several stages each addressing separate challenge - workflow integration, parallel execution in either cloud or HPC environments and big-data analytics or visualization. This work benefits a number of existing and upcoming projects supported by NEX, such as the Web Enabled Landsat Data (WELD), where we are developing a new QA pipeline for the 25PB system.
Analytics and Visualization Pipelines for Big Data on the NASA Earth Exchange (NEX) and OpenNEX
NASA Astrophysics Data System (ADS)
Chaudhary, A.; Votava, P.; Nemani, R. R.; Michaelis, A.; Kotfila, C.
2016-12-01
We are developing capabilities for an integrated petabyte-scale Earth science collaborative analysis and visualization environment. The ultimate goal is to deploy this environment within the NASA Earth Exchange (NEX) and OpenNEX in order to enhance existing science data production pipelines in both high-performance computing (HPC) and cloud environments. Bridging of HPC and cloud is a fairly new concept under active research and this system significantly enhances the ability of the scientific community to accelerate analysis and visualization of Earth science data from NASA missions, model outputs and other sources. We have developed a web-based system that seamlessly interfaces with both high-performance computing (HPC) and cloud environments, providing tools that enable science teams to develop and deploy large-scale analysis, visualization and QA pipelines of both the production process and the data products, and enable sharing results with the community. Our project is developed in several stages each addressing separate challenge - workflow integration, parallel execution in either cloud or HPC environments and big-data analytics or visualization. This work benefits a number of existing and upcoming projects supported by NEX, such as the Web Enabled Landsat Data (WELD), where we are developing a new QA pipeline for the 25PB system.
Visual system manifestations of Alzheimer's disease.
Kusne, Yael; Wolf, Andrew B; Townley, Kate; Conway, Mandi; Peyman, Gholam A
2017-12-01
Alzheimer's disease (AD) is an increasingly common disease with massive personal and economic costs. While it has long been known that AD impacts the visual system, there has recently been an increased focus on understanding both pathophysiological mechanisms that may be shared between the eye and brain and how related biomarkers could be useful for AD diagnosis. Here, were review pertinent cellular and molecular mechanisms of AD pathophysiology, the presence of AD pathology in the visual system, associated functional changes, and potential development of diagnostic tools based on the visual system. Additionally, we discuss links between AD and visual disorders, including possible pathophysiological mechanisms and their relevance for improving our understanding of AD. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Visualizing request-flow comparison to aid performance diagnosis in distributed systems.
Sambasivan, Raja R; Shafer, Ilari; Mazurek, Michelle L; Ganger, Gregory R
2013-12-01
Distributed systems are complex to develop and administer, and performance problem diagnosis is particularly challenging. When performance degrades, the problem might be in any of the system's many components or could be a result of poor interactions among them. Recent research efforts have created tools that automatically localize the problem to a small number of potential culprits, but research is needed to understand what visualization techniques work best for helping distributed systems developers understand and explore their results. This paper compares the relative merits of three well-known visualization approaches (side-by-side, diff, and animation) in the context of presenting the results of one proven automated localization technique called request-flow comparison. Via a 26-person user study, which included real distributed systems developers, we identify the unique benefits that each approach provides for different problem types and usage modes.
Hierarchical Modelling Of Mobile, Seeing Robots
NASA Astrophysics Data System (ADS)
Luh, Cheng-Jye; Zeigler, Bernard P.
1990-03-01
This paper describes the implementation of a hierarchical robot simulation which supports the design of robots with vision and mobility. A seeing robot applies a classification expert system for visual identification of laboratory objects. The visual data acquisition algorithm used by the robot vision system has been developed to exploit multiple viewing distances and perspectives. Several different simulations have been run testing the visual logic in a laboratory environment. Much work remains to integrate the vision system with the rest of the robot system.
Hierarchical modelling of mobile, seeing robots
NASA Technical Reports Server (NTRS)
Luh, Cheng-Jye; Zeigler, Bernard P.
1990-01-01
This paper describes the implementation of a hierarchical robot simulation which supports the design of robots with vision and mobility. A seeing robot applies a classification expert system for visual identification of laboratory objects. The visual data acquisition algorithm used by the robot vision system has been developed to exploit multiple viewing distances and perspectives. Several different simulations have been run testing the visual logic in a laboratory environment. Much work remains to integrate the vision system with the rest of the robot system.
FPV: fast protein visualization using Java 3D.
Can, Tolga; Wang, Yujun; Wang, Yuan-Fang; Su, Jianwen
2003-05-22
Many tools have been developed to visualize protein structures. Tools that have been based on Java 3D((TM)) are compatible among different systems and they can be run remotely through web browsers. However, using Java 3D for visualization has some performance issues with it. The primary concerns about molecular visualization tools based on Java 3D are in their being slow in terms of interaction speed and in their inability to load large molecules. This behavior is especially apparent when the number of atoms to be displayed is huge, or when several proteins are to be displayed simultaneously for comparison. In this paper we present techniques for organizing a Java 3D scene graph to tackle these problems. We have developed a protein visualization system based on Java 3D and these techniques. We demonstrate the effectiveness of the proposed method by comparing the visualization component of our system with two other Java 3D based molecular visualization tools. In particular, for van der Waals display mode, with the efficient organization of the scene graph, we could achieve up to eight times improvement in rendering speed and could load molecules three times as large as the previous systems could. EPV is freely available with source code at the following URL: http://www.cs.ucsb.edu/~tcan/fpv/
A Forest Landscape Visualization System
Tim McDonald; Bryce Stokes
1998-01-01
A forest landscape visualization system was developed and used in creating realistic images depicting how an area might appear if harvested. The system uses a ray-tracing renderer to draw model trees on a virtual landscape. The system includes components to create landscape surfaces from digital elevation data, populate/cut trees within (polygonal) areas, and convert...
The development of a white cane which navigates the visually impaired.
Shiizu, Yuriko; Hirahara, Yoshiaki; Yanashima, Kenji; Magatani, Kazushige
2007-01-01
In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. This system is composed of colored navigation lines, RFID tags and an intelligent white cane. In our system, some colored marking tapes are set on along the walking route. These lines are called navigation line. And also RFID tags are set on this line at each landmark point. The intelligent white cane can sense a color of navigation line and receive tag information. By vibration of white cane, the system informs the visually impaired that he/she is walking along the navigation line. At the landmark point, the system also notifies area information to him/her by pre-recorded voice. Ten normal subjects who were blind folded with an eye mask were tested with this system. All of them were able to walk along the navigation line. The performance of the area information system was good. Therefore, we have concluded that our system will be extremely valuable in supporting the activities of the visually impaired.
Unilateral Amblyopia Affects Two Eyes: Fellow Eye Deficits in Amblyopia.
Meier, Kimberly; Giaschi, Deborah
2017-03-01
Unilateral amblyopia is a visual disorder that arises after selective disruption of visual input to one eye during critical periods of development. In the clinic, amblyopia is understood as poor visual acuity in an eye that was deprived of pattern vision early in life. By its nature, however, amblyopia has an adverse effect on the development of a binocular visual system and the interactions between signals from two eyes. Visual functions aside from visual acuity are impacted, and many studies have indicated compromised sensitivity in the fellow eye even though it demonstrates normal visual acuity. While these fellow eye deficits have been noted, no overarching theory has been proposed to describe why and under what conditions the fellow eye is impacted by amblyopia. Here, we consider four explanations that may account for decreased fellow eye sensitivity: the fellow eye is adversely impacted by treatment for amblyopia; the maturation of the fellow eye is delayed by amblyopia; fellow eye sensitivity is impacted for visual functions that rely on binocular cortex; and fellow eye deficits reflect an adaptive mechanism that works to equalize the sensitivity of the two eyes. To evaluate these ideas, we describe five visual functions that are commonly reported to be deficient in the amblyopic eye (hyperacuity, contrast sensitivity, spatial integration, global motion, and motion-defined form), and unify the current evidence for fellow eye deficits. Further research targeted at exploring fellow eye deficits in amblyopia will provide us with a broader understanding of normal visual development and how amblyopia impacts the developing visual system.
Measuring the performance of visual to auditory information conversion.
Tan, Shern Shiou; Maul, Tomás Henrique Bode; Mennie, Neil Russell
2013-01-01
Visual to auditory conversion systems have been in existence for several decades. Besides being among the front runners in providing visual capabilities to blind users, the auditory cues generated from image sonification systems are still easier to learn and adapt to compared to other similar techniques. Other advantages include low cost, easy customizability, and universality. However, every system developed so far has its own set of strengths and weaknesses. In order to improve these systems further, we propose an automated and quantitative method to measure the performance of such systems. With these quantitative measurements, it is possible to gauge the relative strengths and weaknesses of different systems and rank the systems accordingly. Performance is measured by both the interpretability and also the information preservation of visual to auditory conversions. Interpretability is measured by computing the correlation of inter image distance (IID) and inter sound distance (ISD) whereas the information preservation is computed by applying Information Theory to measure the entropy of both visual and corresponding auditory signals. These measurements provide a basis and some insights on how the systems work. With an automated interpretability measure as a standard, more image sonification systems can be developed, compared, and then improved. Even though the measure does not test systems as thoroughly as carefully designed psychological experiments, a quantitative measurement like the one proposed here can compare systems to a certain degree without incurring much cost. Underlying this research is the hope that a major breakthrough in image sonification systems will allow blind users to cost effectively regain enough visual functions to allow them to lead secure and productive lives.
Visual analysis and exploration of complex corporate shareholder networks
NASA Astrophysics Data System (ADS)
Tekušová, Tatiana; Kohlhammer, Jörn
2008-01-01
The analysis of large corporate shareholder network structures is an important task in corporate governance, in financing, and in financial investment domains. In a modern economy, large structures of cross-corporation, cross-border shareholder relationships exist, forming complex networks. These networks are often difficult to analyze with traditional approaches. An efficient visualization of the networks helps to reveal the interdependent shareholding formations and the controlling patterns. In this paper, we propose an effective visualization tool that supports the financial analyst in understanding complex shareholding networks. We develop an interactive visual analysis system by combining state-of-the-art visualization technologies with economic analysis methods. Our system is capable to reveal patterns in large corporate shareholder networks, allows the visual identification of the ultimate shareholders, and supports the visual analysis of integrated cash flow and control rights. We apply our system on an extensive real-world database of shareholder relationships, showing its usefulness for effective visual analysis.
New software for 3D fracture network analysis and visualization
NASA Astrophysics Data System (ADS)
Song, J.; Noh, Y.; Choi, Y.; Um, J.; Hwang, S.
2013-12-01
This study presents new software to perform analysis and visualization of the fracture network system in 3D. The developed software modules for the analysis and visualization, such as BOUNDARY, DISK3D, FNTWK3D, CSECT and BDM, have been developed using Microsoft Visual Basic.NET and Visualization TookKit (VTK) open-source library. Two case studies revealed that each module plays a role in construction of analysis domain, visualization of fracture geometry in 3D, calculation of equivalent pipes, production of cross-section map and management of borehole data, respectively. The developed software for analysis and visualization of the 3D fractured rock mass can be used to tackle the geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.
Tremblay, Emmanuel; Vannasing, Phetsamone; Roy, Marie-Sylvie; Lefebvre, Francine; Kombate, Damelan; Lassonde, Maryse; Lepore, Franco; McKerral, Michelle; Gallagher, Anne
2014-01-01
In the past decades, multiple studies have been interested in developmental patterns of the visual system in healthy infants. During the first year of life, differential maturational changes have been observed between the Magnocellular (P) and the Parvocellular (P) visual pathways. However, few studies investigated P and M system development in infants born prematurely. The aim of the present study was to characterize P and M system maturational differences between healthy preterm and fullterm infants through a critical period of visual maturation: the first year of life. Using a cross-sectional design, high-density electroencephalogram (EEG) was recorded in 31 healthy preterms and 41 fullterm infants of 3, 6, or 12 months (corrected age for premature babies). Three visual stimulations varying in contrast and spatial frequency were presented to stimulate preferentially the M pathway, the P pathway, or both systems simultaneously during EEG recordings. Results from early visual evoked potentials in response to the stimulation that activates simultaneously both systems revealed longer N1 latencies and smaller P1 amplitudes in preterm infants compared to fullterms. Moreover, preterms showed longer N1 and P1 latencies in response to stimuli assessing the M pathway at 3 months. No differences between preterms and fullterms were found when using the preferential P system stimulation. In order to identify the cerebral generator of each visual response, distributed source analyses were computed in 12-month-old infants using LORETA. Source analysis demonstrated an activation of the parietal dorsal region in fullterm infants, in response to the preferential M pathway, which was not seen in the preterms. Overall, these findings suggest that the Magnocellular pathway development is affected in premature infants. Although our VEP results suggest that premature children overcome, at least partially, the visual developmental delay with time, source analyses reveal abnormal brain activation of the Magnocellular pathway at 12 months of age. PMID:25268226
A navigation system for the visually impaired an intelligent white cane.
Fukasawa, A Jin; Magatani, Kazusihge
2012-01-01
In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. Our developed instrument consists of a navigation system and a map information system. These systems are installed on a white cane. Our navigation system can follow a colored navigation line that is set on the floor. In this system, a color sensor installed on the tip of a white cane, this sensor senses a color of navigation line and the system informs the visually impaired that he/she is walking along the navigation line by vibration. This color recognition system is controlled by a one-chip microprocessor. RFID tags and a receiver for these tags are used in the map information system. RFID tags are set on the colored navigation line. An antenna for RFID tags and a tag receiver are also installed on a white cane. The receiver receives the area information as a tag-number and notifies map information to the user by mp3 formatted pre-recorded voice. And now, we developed the direction identification technique. Using this technique, we can detect a user's walking direction. A triaxiality acceleration sensor is used in this system. Three normal subjects who were blindfolded with an eye mask were tested with our developed navigation system. All of them were able to walk along the navigation line perfectly. We think that the performance of the system is good. Therefore, our system will be extremely valuable in supporting the activities of the visually impaired.
DOT National Transportation Integrated Search
1998-03-30
The purpose of this project is to integrate a variety of geographic information systems : capabilities and telecommunication technologies for potential use in geographic network and : visualization applications. The specific technical goals of the pr...
Conceptual design study for a teleoperator visual system, phase 1
NASA Technical Reports Server (NTRS)
Adams, D.; Grant, C.; Johnson, C.; Meirick, R.; Polhemus, C.; Ray, A.; Rittenhouse, D.; Skidmore, R.
1972-01-01
Results are reported for work performed during the first phase of the conceptual design study for a teleoperator visual system. This phase consists of four tasks: General requirements, concept development, subsystem requirements and analysis, and concept evaluation.
FGF /FGFR Signal Induces Trachea Extension in the Drosophila Visual System
Chu, Wei-Chen; Lee, Yuan-Ming; Henry Sun, Yi
2013-01-01
The Drosophila compound eye is a large sensory organ that places a high demand on oxygen supplied by the tracheal system. Although the development and function of the Drosophila visual system has been extensively studied, the development and contribution of its tracheal system has not been systematically examined. To address this issue, we studied the tracheal patterns and developmental process in the Drosophila visual system. We found that the retinal tracheae are derived from air sacs in the head, and the ingrowth of retinal trachea begin at mid-pupal stage. The tracheal development has three stages. First, the air sacs form near the optic lobe in 42-47% of pupal development (pd). Second, in 47-52% pd, air sacs extend branches along the base of the retina following a posterior-to-anterior direction and further form the tracheal network under the fenestrated membrane (TNUFM). Third, the TNUFM extend fine branches into the retina following a proximal-to-distal direction after 60% pd. Furthermore, we found that the trachea extension in both retina and TNUFM are dependent on the FGF(Bnl)/FGFR(Btl) signaling. Our results also provided strong evidence that the photoreceptors are the source of the Bnl ligand to guide the trachea ingrowth. Our work is the first systematic study of the tracheal development in the visual system, and also the first study demonstrating the interactions of two well-studied systems: the eye and trachea. PMID:23991208
Study of Man-Machine Communications Systems for the Handicapped. Interim Report.
ERIC Educational Resources Information Center
Kafafian, Haig
Newly developed communications systems for exceptional children include Cybercom; CYBERTYPE; Cyberplace, a keyless keyboard; Cyberphone, a telephonic communication system for deaf and speech impaired persons; Cyberlamp, a visual display; Cyberview, a fiber optic bundle remote visual display; Cybersem, an interface for the blind, fingerless, and…
Categorical Perception of Chinese Characters by Simplified and Traditional Chinese Readers
ERIC Educational Resources Information Center
Yang, Ruoxiao; Wang, William Shi Yuan
2018-01-01
Recent research has shown that the visual complexity of orthographies across writing systems influences the development of orthographic representations. Simplified and traditional Chinese characters are usually regarded as the most visually complicated writing systems currently in use, with the traditional system showing a higher level of…
Flow Visualization and Laser Velocimetry for Wind Tunnels
NASA Technical Reports Server (NTRS)
Hunter, W. W., Jr. (Editor); Foughner, J. T., Jr. (Editor)
1982-01-01
The need for flow visualization and laser velocimetry were discussed. The purpose was threefold: (1) provide a state-of-the-art overview; (2) provide a forum for industry, universities, and government agencies to address problems in developing useful and productive flow visualization and laser velocimetry measurement techniques; and (3) provide discussion of recent developments and applications of flow visualization and laser velocimetry measurement techniques and instrumentation systems for wind tunnels including the 0.3-Meter Transonic Cryogenic Tunnel.
VisualEyes: a modular software system for oculomotor experimentation.
Guo, Yi; Kim, Eun H; Kim, Eun; Alvarez, Tara; Alvarez, Tara L
2011-03-25
Eye movement studies have provided a strong foundation forming an understanding of how the brain acquires visual information in both the normal and dysfunctional brain.(1) However, development of a platform to stimulate and store eye movements can require substantial programming, time and costs. Many systems do not offer the flexibility to program numerous stimuli for a variety of experimental needs. However, the VisualEyes System has a flexible architecture, allowing the operator to choose any background and foreground stimulus, program one or two screens for tandem or opposing eye movements and stimulate the left and right eye independently. This system can significantly reduce the programming development time needed to conduct an oculomotor study. The VisualEyes System will be discussed in three parts: 1) the oculomotor recording device to acquire eye movement responses, 2) the VisualEyes software written in LabView, to generate an array of stimuli and store responses as text files and 3) offline data analysis. Eye movements can be recorded by several types of instrumentation such as: a limbus tracking system, a sclera search coil, or a video image system. Typical eye movement stimuli such as saccadic steps, vergent ramps and vergent steps with the corresponding responses will be shown. In this video report, we demonstrate the flexibility of a system to create numerous visual stimuli and record eye movements that can be utilized by basic scientists and clinicians to study healthy as well as clinical populations.
Experience Report: Visual Programming in the Real World
NASA Technical Reports Server (NTRS)
Baroth, E.; Hartsough, C
1994-01-01
This paper reports direct experience with two commercial, widely used visual programming environments. While neither of these systems is object oriented, the tools have transformed the development process and indicate a direction for visual object oriented tools to proceed.
Assessing Functional Vision Using Microcomputers.
ERIC Educational Resources Information Center
Spencer, Simon; Ross, Malcolm
1989-01-01
The paper describes a software system which uses microcomputers to aid in the assessment of functional vision in visually impaired students. The software also aims to be visually stimulating and to develop hand-eye coordination, visual memory, and cognitive abilities. (DB)
Patient-Clinician Encounter Information Modeling Through Web Based Intelligent 3D Visual Interface
2002-09-01
system must allow immediate access to the lab data without the need to abort the evaluation process), and (5) must apply visual thinking principles. It... Systems Research, Incorporated For a period of five (5) years after completion of the project from which the data was generated, the Government’s rights...Report 3 Sigma Systems Research, Inc. List of Figures FIGURE 1. THE TWO MAJOR ELEMENTS OF THE DEVELOPED MEDICAL DATA VISUALIZATION FRAMEWORK ..... 7
Three-dimensional user interfaces for scientific visualization
NASA Technical Reports Server (NTRS)
Vandam, Andries
1995-01-01
The main goal of this project is to develop novel and productive user interface techniques for creating and managing visualizations of computational fluid dynamics (CFD) datasets. We have implemented an application framework in which we can visualize computational fluid dynamics user interfaces. This UI technology allows users to interactively place visualization probes in a dataset and modify some of their parameters. We have also implemented a time-critical scheduling system which strives to maintain a constant frame-rate regardless of the number of visualization techniques. In the past year, we have published parts of this research at two conferences, the research annotation system at Visualization 1994, and the 3D user interface at UIST 1994. The real-time scheduling system has been submitted to SIGGRAPH 1995 conference. Copies of these documents are included with this report.
NASA Technical Reports Server (NTRS)
1977-01-01
A preliminary design for a helicopter/VSTOL wide angle simulator image generation display system is studied. The visual system is to become part of a simulator capability to support Army aviation systems research and development within the near term. As required for the Army to simulate a wide range of aircraft characteristics, versatility and ease of changing cockpit configurations were primary considerations of the study. Due to the Army's interest in low altitude flight and descents into and landing in constrained areas, particular emphasis is given to wide field of view, resolution, brightness, contrast, and color. The visual display study includes a preliminary design, demonstrated feasibility of advanced concepts, and a plan for subsequent detail design and development. Analysis and tradeoff considerations for various visual system elements are outlined and discussed.
Real-Time Visualization of Network Behaviors for Situational Awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, Daniel M.; Bohn, Shawn J.; Love, Douglas V.
Plentiful, complex, and dynamic data make understanding the state of an enterprise network difficult. Although visualization can help analysts understand baseline behaviors in network traffic and identify off-normal events, visual analysis systems often do not scale well to operational data volumes (in the hundreds of millions to billions of transactions per day) nor to analysis of emergent trends in real-time data. We present a system that combines multiple, complementary visualization techniques coupled with in-stream analytics, behavioral modeling of network actors, and a high-throughput processing platform called MeDICi. This system provides situational understanding of real-time network activity to help analysts takemore » proactive response steps. We have developed these techniques using requirements gathered from the government users for which the tools are being developed. By linking multiple visualization tools to a streaming analytic pipeline, and designing each tool to support a particular kind of analysis (from high-level awareness to detailed investigation), analysts can understand the behavior of a network across multiple levels of abstraction.« less
NASA Astrophysics Data System (ADS)
Demir, I.
2015-12-01
Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. This presentation showcase information communication interfaces, games, and virtual and immersive reality applications for supporting teaching and learning of concepts in atmospheric and hydrological sciences. The information communication platforms utilizes latest web technologies and allow accessing and visualizing large scale data on the web. The simulation system is a web-based 3D interactive learning environment for teaching hydrological and atmospheric processes and concepts. The simulation systems provides a visually striking platform with realistic terrain and weather information, and water simulation. The web-based simulation system provides an environment for students to learn about the earth science processes, and effects of development and human activity on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users.
NASA Astrophysics Data System (ADS)
Duong, Tuan A.; Duong, Nghi; Le, Duong
2017-01-01
In this paper, we present an integration technique using a bio-inspired, control-based visual and olfactory receptor system to search for elusive targets in practical environments where the targets cannot be seen obviously by either sensory data. Bio-inspired Visual System is based on a modeling of extended visual pathway which consists of saccadic eye movements and visual pathway (vertebrate retina, lateral geniculate nucleus and visual cortex) to enable powerful target detections of noisy, partial, incomplete visual data. Olfactory receptor algorithm, namely spatial invariant independent component analysis, that was developed based on data of old factory receptor-electronic nose (enose) of Caltech, is adopted to enable the odorant target detection in an unknown environment. The integration of two systems is a vital approach and sets up a cornerstone for effective and low-cost of miniaturized UAVs or fly robots for future DOD and NASA missions, as well as for security systems in Internet of Things environments.
1986-12-26
NAVAL TRAINING SYSTEMS CENTER ORLANDO. FLORIDA IT FILE COPY THE EFFECTS OF ASYNCHRONOUS VISUAL DELAYS ON SIMULATOR FLIGHT PERFORMANCE AND THE...ASYNCHRONOUS VISUAL. DELAYS ON SI.WLATOR FLIGHT PERF OMANCE AND THE DEVELOPMENT OF SIMLATOR SICKNESS SYMPTOMATOLOGY K. C. Uliano, E. Y. Lambert, R. S. Kennedy...ACCESSION NO. N63733N SP-01 0785-7P6 I. 4780 11. TITLE (Include Security Classification) The Effects of Asynchronous Visual Delays on Simulator Flight
Oesterlein, Tobias Georg; Schmid, Jochen; Bauer, Silvio; Jadidi, Amir; Schmitt, Claus; Dössel, Olaf; Luik, Armin
2016-04-01
Progress in biomedical engineering has improved the hardware available for diagnosis and treatment of cardiac arrhythmias. But although huge amounts of intracardiac electrograms (EGMs) can be acquired during electrophysiological examinations, there is still a lack of software aiding diagnosis. The development of novel algorithms for the automated analysis of EGMs has proven difficult, due to the highly interdisciplinary nature of this task and hampered data access in clinical systems. Thus we developed a software platform, which allows rapid implementation of new algorithms, verification of their functionality and suitable visualization for discussion in the clinical environment. A software for visualization was developed in Qt5 and C++ utilizing the class library of VTK. The algorithms for signal analysis were implemented in MATLAB. Clinical data for analysis was exported from electroanatomical mapping systems. The visualization software KaPAVIE (Karlsruhe Platform for Analysis and Visualization of Intracardiac Electrograms) was implemented and tested on several clinical datasets. Both common and novel algorithms were implemented which address important clinical questions in diagnosis of different arrhythmias. It proved useful in discussions with clinicians due to its interactive and user-friendly design. Time after export from the clinical mapping system to visualization is below 5min. KaPAVIE(2) is a powerful platform for the development of novel algorithms in the clinical environment. Simultaneous and interactive visualization of measured EGM data and the results of analysis will aid diagnosis and help understanding the underlying mechanisms of complex arrhythmias like atrial fibrillation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A navigation system for the visually impaired using colored navigation lines and RFID tags.
Seto, First Tatsuya
2009-01-01
In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. Our developed instrument consists of a navigation system and a map information system. These systems are installed on a white cane. Our navigation system can follow a colored navigation line that is set on the floor. In this system, a color sensor installed on the tip of a white cane senses the colored navigation line, and the system informs the visually impaired that he/she is walking along the navigation line by vibration. The color recognition system is controlled by a one-chip microprocessor and this system can discriminate 6 colored navigation lines. RFID tags and a receiver for these tags are used in the map information system. The RFID tags and the RFID tag receiver are also installed on a white cane. The receiver receives tag information and notifies map information to the user by mp3 formatted pre-recorded voice. Three normal subjects who were blindfolded with an eye mask were tested with this system. All of them were able to walk along the navigation line. The performance of the map information system was good. Therefore, our system will be extremely valuable in supporting the activities of the visually impaired.
A GUI visualization system for airborne lidar image data to reconstruct 3D city model
NASA Astrophysics Data System (ADS)
Kawata, Yoshiyuki; Koizumi, Kohei
2015-10-01
A visualization toolbox system with graphical user interfaces (GUIs) was developed for the analysis of LiDAR point cloud data, as a compound object oriented widget application in IDL (Interractive Data Language). The main features in our system include file input and output abilities, data conversion capability from ascii formatted LiDAR point cloud data to LiDAR image data whose pixel value corresponds the altitude measured by LiDAR, visualization of 2D/3D images in various processing steps and automatic reconstruction ability of 3D city model. The performance and advantages of our graphical user interface (GUI) visualization system for LiDAR data are demonstrated.
Helbig, Carolin; Bilke, Lars; Bauer, Hans-Stefan; Böttinger, Michael; Kolditz, Olaf
2015-01-01
To achieve more realistic simulations, meteorologists develop and use models with increasing spatial and temporal resolution. The analyzing, comparing, and visualizing of resulting simulations becomes more and more challenging due to the growing amounts and multifaceted character of the data. Various data sources, numerous variables and multiple simulations lead to a complex database. Although a variety of software exists suited for the visualization of meteorological data, none of them fulfills all of the typical domain-specific requirements: support for quasi-standard data formats and different grid types, standard visualization techniques for scalar and vector data, visualization of the context (e.g., topography) and other static data, support for multiple presentation devices used in modern sciences (e.g., virtual reality), a user-friendly interface, and suitability for cooperative work. Instead of attempting to develop yet another new visualization system to fulfill all possible needs in this application domain, our approach is to provide a flexible workflow that combines different existing state-of-the-art visualization software components in order to hide the complexity of 3D data visualization tools from the end user. To complete the workflow and to enable the domain scientists to interactively visualize their data without advanced skills in 3D visualization systems, we developed a lightweight custom visualization application (MEVA - multifaceted environmental data visualization application) that supports the most relevant visualization and interaction techniques and can be easily deployed. Specifically, our workflow combines a variety of different data abstraction methods provided by a state-of-the-art 3D visualization application with the interaction and presentation features of a computer-games engine. Our customized application includes solutions for the analysis of multirun data, specifically with respect to data uncertainty and differences between simulation runs. In an iterative development process, our easy-to-use application was developed in close cooperation with meteorologists and visualization experts. The usability of the application has been validated with user tests. We report on how this application supports the users to prove and disprove existing hypotheses and discover new insights. In addition, the application has been used at public events to communicate research results.
Helbig, Carolin; Bilke, Lars; Bauer, Hans-Stefan; Böttinger, Michael; Kolditz, Olaf
2015-01-01
Background To achieve more realistic simulations, meteorologists develop and use models with increasing spatial and temporal resolution. The analyzing, comparing, and visualizing of resulting simulations becomes more and more challenging due to the growing amounts and multifaceted character of the data. Various data sources, numerous variables and multiple simulations lead to a complex database. Although a variety of software exists suited for the visualization of meteorological data, none of them fulfills all of the typical domain-specific requirements: support for quasi-standard data formats and different grid types, standard visualization techniques for scalar and vector data, visualization of the context (e.g., topography) and other static data, support for multiple presentation devices used in modern sciences (e.g., virtual reality), a user-friendly interface, and suitability for cooperative work. Methods and Results Instead of attempting to develop yet another new visualization system to fulfill all possible needs in this application domain, our approach is to provide a flexible workflow that combines different existing state-of-the-art visualization software components in order to hide the complexity of 3D data visualization tools from the end user. To complete the workflow and to enable the domain scientists to interactively visualize their data without advanced skills in 3D visualization systems, we developed a lightweight custom visualization application (MEVA - multifaceted environmental data visualization application) that supports the most relevant visualization and interaction techniques and can be easily deployed. Specifically, our workflow combines a variety of different data abstraction methods provided by a state-of-the-art 3D visualization application with the interaction and presentation features of a computer-games engine. Our customized application includes solutions for the analysis of multirun data, specifically with respect to data uncertainty and differences between simulation runs. In an iterative development process, our easy-to-use application was developed in close cooperation with meteorologists and visualization experts. The usability of the application has been validated with user tests. We report on how this application supports the users to prove and disprove existing hypotheses and discover new insights. In addition, the application has been used at public events to communicate research results. PMID:25915061
While microbial growth is well-understood in pure culture systems, less is known about growth in intact soil systems. The objective of this work was to develop a technique to allow visualization of the two-dimensional spatial distribution of bacterial growth o...
OCT-based angiography in real time with hand-held probe
NASA Astrophysics Data System (ADS)
Gelikonov, Grigory V.; Moiseev, Alexander A.; Ksenofontov, Sergey Y.; Terpelov, Dmitry A.; Gelikonov, Valentine M.
2018-03-01
This work is dedicated to development of the OCT system capable to visualize blood vessel network for everyday clinical use. Following problems were solved during the development: compensation of specific natural tissue displacements, induced by contact scanning mode and physiological motion of patients (e.g. respiratory and cardiac motions) and on-line visualization of vessel net to provide the feedback for system operator.
Local spatio-temporal analysis in vision systems
NASA Astrophysics Data System (ADS)
Geisler, Wilson S.; Bovik, Alan; Cormack, Lawrence; Ghosh, Joydeep; Gildeen, David
1994-07-01
The aims of this project are the following: (1) develop a physiologically and psychophysically based model of low-level human visual processing (a key component of which are local frequency coding mechanisms); (2) develop image models and image-processing methods based upon local frequency coding; (3) develop algorithms for performing certain complex visual tasks based upon local frequency representations, (4) develop models of human performance in certain complex tasks based upon our understanding of low-level processing; and (5) develop a computational testbed for implementing, evaluating and visualizing the proposed models and algorithms, using a massively parallel computer. Progress has been substantial on all aims. The highlights include the following: (1) completion of a number of psychophysical and physiological experiments revealing new, systematic and exciting properties of the primate (human and monkey) visual system; (2) further development of image models that can accurately represent the local frequency structure in complex images; (3) near completion in the construction of the Texas Active Vision Testbed; (4) development and testing of several new computer vision algorithms dealing with shape-from-texture, shape-from-stereo, and depth-from-focus; (5) implementation and evaluation of several new models of human visual performance; and (6) evaluation, purchase and installation of a MasPar parallel computer.
Interactive access and management for four-dimensional environmental data sets using McIDAS
NASA Technical Reports Server (NTRS)
Hibbard, William L.; Tripoli, Gregory J.
1991-01-01
Significant accomplishments in the following areas are presented: (1) enhancements to the visualization of 5-D data sets (VIS-5D); (2) development of the visualization of global images (VIS-GI) application; (3) design of the Visualization for Algorithm Development (VIS-AD) System; and (4) numerical modeling applications. The focus of current research and future research plans is presented and the following topics are addressed: (1) further enhancements to VIS-5D; (2) generalization and enhancement of the VIS-GI application; (3) the implementation of the VIS-AD System; and (4) plans for modeling applications.
A visual programming environment for the Navier-Stokes computer
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl; Crockett, Thomas W.; Middleton, David
1988-01-01
The Navier-Stokes computer is a high-performance, reconfigurable, pipelined machine designed to solve large computational fluid dynamics problems. Due to the complexity of the architecture, development of effective, high-level language compilers for the system appears to be a very difficult task. Consequently, a visual programming methodology has been developed which allows users to program the system at an architectural level by constructing diagrams of the pipeline configuration. These schematic program representations can then be checked for validity and automatically translated into machine code. The visual environment is illustrated by using a prototype graphical editor to program an example problem.
The Visual System of Zebrafish and its Use to Model Human Ocular Diseases
Gestri, Gaia; Link, Brian A; Neuhauss, Stephan CF
2011-01-01
Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually-driven behaviors in the newly hatched larvae. The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases. Here, we review the anatomy, physiology and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases. PMID:21595048
A GeoWall with Physics and Astronomy Applications
NASA Astrophysics Data System (ADS)
Dukes, Phillip; Bruton, Dan
2008-03-01
A GeoWall is a passive stereoscopic projection system that can be used by students, teachers, and researchers for visualization of the structure and dynamics of three-dimensional systems and data. The type of system described here adequately provides 3-D visualization in natural color for large or small groups of viewers. The name ``GeoWall'' derives from its initial development to visualize data in the geosciences.1 An early GeoWall system was developed by Paul Morin at the electronic visualization laboratory at the University of Minnesota and was applied in an introductory geology course in spring of 2001. Since that time, several stereoscopic media, which are applicable to introductory-level physics and astronomy classes, have been developed and released into the public domain. In addition to the GeoWall's application in the classroom, there is considerable value in its use as part of a general science outreach program. In this paper we briefly describe the theory of operation of stereoscopic projection and the basic necessary components of a GeoWall system. Then we briefly describe how we are using a GeoWall as an instructional tool for the classroom and informal astronomy education and in research. Finally, we list sources for several of the free software media in physics and astronomy available for use with a GeoWall system.
Tools for visually exploring biological networks.
Suderman, Matthew; Hallett, Michael
2007-10-15
Many tools exist for visually exploring biological networks including well-known examples such as Cytoscape, VisANT, Pathway Studio and Patika. These systems play a key role in the development of integrative biology, systems biology and integrative bioinformatics. The trend in the development of these tools is to go beyond 'static' representations of cellular state, towards a more dynamic model of cellular processes through the incorporation of gene expression data, subcellular localization information and time-dependent behavior. We provide a comprehensive review of the relative advantages and disadvantages of existing systems with two goals in mind: to aid researchers in efficiently identifying the appropriate existing tools for data visualization; to describe the necessary and realistic goals for the next generation of visualization tools. In view of the first goal, we provide in the Supplementary Material a systematic comparison of more than 35 existing tools in terms of over 25 different features. Supplementary data are available at Bioinformatics online.
[Development and application of emergency medical information management system].
Wang, Fang; Zhu, Baofeng; Chen, Jianrong; Wang, Jian; Gu, Chaoli; Liu, Buyun
2011-03-01
To meet the needs of clinical practice of rescuing critical illness and develop the information management system of the emergency medicine. Microsoft Visual FoxPro, which is one of Microsoft's visual programming tool, is used to develop computer-aided system included the information management system of the emergency medicine. The system mainly consists of the module of statistic analysis, the module of quality control of emergency rescue, the module of flow path of emergency rescue, the module of nursing care in emergency rescue, and the module of rescue training. It can realize the system management of emergency medicine and,process and analyze the emergency statistical data. This system is practical. It can optimize emergency clinical pathway, and meet the needs of clinical rescue.
NASA Astrophysics Data System (ADS)
Massof, Robert W.; Schmidt, Karen M.; Laby, Daniel M.; Kirschen, David; Meadows, David
2013-09-01
Visual acuity, a forced-choice psychophysical measure of visual spatial resolution, is the sine qua non of clinical visual impairment testing in ophthalmology and optometry patients with visual system disorders ranging from refractive error to retinal, optic nerve, or central visual system pathology. Visual acuity measures are standardized against a norm, but it is well known that visual acuity depends on a variety of stimulus parameters, including contrast and exposure duration. This paper asks if it is possible to estimate a single global visual state measure from visual acuity measures as a function of stimulus parameters that can represent the patient's overall visual health state with a single variable. Psychophysical theory (at the sensory level) and psychometric theory (at the decision level) are merged to identify the conditions that must be satisfied to derive a global visual state measure from parameterised visual acuity measures. A global visual state measurement model is developed and tested with forced-choice visual acuity measures from 116 subjects with no visual impairments and 560 subjects with uncorrected refractive error. The results are in agreement with the expectations of the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springmeyer, R R; Brugger, E; Cook, R
The Data group provides data analysis and visualization support to its customers. This consists primarily of the development and support of VisIt, a data analysis and visualization tool. Support ranges from answering questions about the tool, providing classes on how to use the tool, and performing data analysis and visualization for customers. The Information Management and Graphics Group supports and develops tools that enhance our ability to access, display, and understand large, complex data sets. Activities include applying visualization software for large scale data exploration; running video production labs on two networks; supporting graphics libraries and tools for end users;more » maintaining PowerWalls and assorted other displays; and developing software for searching and managing scientific data. Researchers in the Center for Applied Scientific Computing (CASC) work on various projects including the development of visualization techniques for large scale data exploration that are funded by the ASC program, among others. The researchers also have LDRD projects and collaborations with other lab researchers, academia, and industry. The IMG group is located in the Terascale Simulation Facility, home to Dawn, Atlas, BGL, and others, which includes both classified and unclassified visualization theaters, a visualization computer floor and deployment workshop, and video production labs. We continued to provide the traditional graphics group consulting and video production support. We maintained five PowerWalls and many other displays. We deployed a 576-node Opteron/IB cluster with 72 TB of memory providing a visualization production server on our classified network. We continue to support a 128-node Opteron/IB cluster providing a visualization production server for our unclassified systems and an older 256-node Opteron/IB cluster for the classified systems, as well as several smaller clusters to drive the PowerWalls. The visualization production systems includes NFS servers to provide dedicated storage for data analysis and visualization. The ASC projects have delivered new versions of visualization and scientific data management tools to end users and continue to refine them. VisIt had 4 releases during the past year, ending with VisIt 2.0. We released version 2.4 of Hopper, a Java application for managing and transferring files. This release included a graphical disk usage view which works on all types of connections and an aggregated copy feature for quickly transferring massive datasets quickly and efficiently to HPSS. We continue to use and develop Blockbuster and Telepath. Both the VisIt and IMG teams were engaged in a variety of movie production efforts during the past year in addition to the development tasks.« less
NASA Astrophysics Data System (ADS)
Santosa, H.; Ernawati, J.; Wulandari, L. D.
2018-03-01
The visual aesthetic experience in urban spaces is important in establishing a comfortable and satisfying experience for the community. The embodiment of a good visual image of urban space will encourage the emergence of positive perceptions and meanings stimulating the community to produce a good reaction to its urban space. Moreover, to establish a Good Governance in urban planning and design, it is necessary to boost and promote a community participation in the process of controlling the visual quality of urban space through the visual quality evaluation on urban street corridors. This study is an early stage as part of the development of ‘Landscape Visual Planning System’ on the commercial street corridor in Malang. Accordingly, the research aims to evaluate the physical characteristics and the public preferences of the spatial and visual aspects in five provincial road corridors in Malang. This study employs a field survey methods, and an environmental aesthetics approach through semantic differential method. The result of the identification of physical characteristics and the assessment of public preferences on the spatial and visual aspects of the five provincial streets serve as the basis for constructing the 3d interactive simulation scenarios in the Landscape Visual Planning System.
1998-12-15
A study analyzing battlefield visualization (BV) as a component of information dominance and superiority. This study outlines basic requirements for effective BV in terms of terrain data, information systems (synthetic environment; COA development and analysis tools) and BV development management, with a focus on technology insertion strategies. This study also reports on existing BV systems and provides 16 recommendations for Army BV support efforts, including interested organization, funding levels and duration of effort for each recommended action.
The Visual Representation and Acquisition of Driving Knowledge for Autonomous Vehicle
NASA Astrophysics Data System (ADS)
Zhang, Zhaoxia; Jiang, Qing; Li, Ping; Song, LiangTu; Wang, Rujing; Yu, Biao; Mei, Tao
2017-09-01
In this paper, the driving knowledge base of autonomous vehicle is designed. Based on the driving knowledge modeling system, the driving knowledge of autonomous vehicle is visually acquired, managed, stored, and maintenanced, which has vital significance for creating the development platform of intelligent decision-making systems of automatic driving expert systems for autonomous vehicle.
Development of a Visual System Interface to Support a Domain-Oriented Application Composition System
1993-03-23
Austin Texas, 1990. 25. Kang, Kyo C. and others. Feature-Oriented Domain Analysis ( FODA ) Feasibility Study. Tech- nical Report CMU/SEI-90-TR-21, Software...Validation and Analysis of the Architect Visual System. .. .. .. .. .... ....... 5-1 5.1 Validation Domain...5-2 5.3 Analysis .. .. .. .. .. .. .... .. .... .... .. .... .... .. ....... 5-2 5.3.1 The REFINE Environment
Direction discriminating hearing aid system
NASA Technical Reports Server (NTRS)
Jhabvala, M.; Lin, H. C.; Ward, G.
1991-01-01
A visual display was developed for people with substantial hearing loss in either one or both ears. The system consists of three discreet units; an eyeglass assembly for the visual display of the origin or direction of sounds; a stationary general purpose noise alarm; and a noise seeker wand.
Soldier-worn augmented reality system for tactical icon visualization
NASA Astrophysics Data System (ADS)
Roberts, David; Menozzi, Alberico; Clipp, Brian; Russler, Patrick; Cook, James; Karl, Robert; Wenger, Eric; Church, William; Mauger, Jennifer; Volpe, Chris; Argenta, Chris; Wille, Mark; Snarski, Stephen; Sherrill, Todd; Lupo, Jasper; Hobson, Ross; Frahm, Jan-Michael; Heinly, Jared
2012-06-01
This paper describes the development and demonstration of a soldier-worn augmented reality system testbed that provides intuitive 'heads-up' visualization of tactically-relevant geo-registered icons. Our system combines a robust soldier pose estimation capability with a helmet mounted see-through display to accurately overlay geo-registered iconography (i.e., navigation waypoints, blue forces, aircraft) on the soldier's view of reality. Applied Research Associates (ARA), in partnership with BAE Systems and the University of North Carolina - Chapel Hill (UNC-CH), has developed this testbed system in Phase 2 of the DARPA ULTRA-Vis (Urban Leader Tactical, Response, Awareness, and Visualization) program. The ULTRA-Vis testbed system functions in unprepared outdoor environments and is robust to numerous magnetic disturbances. We achieve accurate and robust pose estimation through fusion of inertial, magnetic, GPS, and computer vision data acquired from helmet kit sensors. Icons are rendered on a high-brightness, 40°×30° field of view see-through display. The system incorporates an information management engine to convert CoT (Cursor-on-Target) external data feeds into mil-standard icons for visualization. The user interface provides intuitive information display to support soldier navigation and situational awareness of mission-critical tactical information.
A web-based 3D geological information visualization system
NASA Astrophysics Data System (ADS)
Song, Renbo; Jiang, Nan
2013-03-01
Construction of 3D geological visualization system has attracted much more concern in GIS, computer modeling, simulation and visualization fields. It not only can effectively help geological interpretation and analysis work, but also can it can help leveling up geosciences professional education. In this paper, an applet-based method was introduced for developing a web-based 3D geological information visualization system. The main aims of this paper are to explore a rapid and low-cost development method for constructing a web-based 3D geological system. First, the borehole data stored in Excel spreadsheets was extracted and then stored in SQLSERVER database of a web server. Second, the JDBC data access component was utilized for providing the capability of access the database. Third, the user interface was implemented with applet component embedded in JSP page and the 3D viewing and querying functions were implemented with PickCanvas of Java3D. Last, the borehole data acquired from geological survey were used for test the system, and the test results has shown that related methods of this paper have a certain application values.
Neonatal Hypoglycaemia and Visual Development: A Review.
Paudel, Nabin; Chakraborty, Arijit; Anstice, Nicola; Jacobs, Robert J; Hegarty, Jo E; Harding, Jane E; Thompson, Benjamin
2017-01-01
Many newborn babies experience low blood glucose concentrations, a condition referred to as neonatal hypoglycaemia (NH). The effect of NH on visual development in infancy and childhood is of interest because the occipital lobes, which include the primary visual cortex and a number of extrastriate visual areas, may be particularly susceptible to NH-induced injury. In addition, a number of case series have suggested that NH can affect eye and optic nerve development. To review the existing literature concerning the effect of NH on the visual system. A PubMed, Embase, Medline, and Google Scholar literature search was conducted using prespecified MeSH terms. The literature reviewed revealed no clear evidence for an effect of NH on the development of the eye and optic nerve. Furthermore, occipital and occipital-parietal lobe injuries following NH often occurred in conjunction with comorbid conditions and were not clearly linked to subsequent visual dysfunction, possibly due to difficulties in measuring vision in young children and a lack of studies at older ages. A recent, large-scale, prospective study of NH outcomes at 2 years of age found no effect of mild-to-moderate NH on visual development. The effect of NH on visual development is unclear. It is currently unknown whether NH affects visual function in mid-to-late childhood when many visual functions reach adult levels. © 2017 S. Karger AG, Basel.
Neonatal hypoglycaemia and visual development: a review
Paudel, Nabin; Chakraborty, Arijit; Anstice, Nicola; Jacobs, Robert J; Hegarty, Jo E; Harding, Jane E; Thompson, Benjamin
2017-01-01
Background Many newborn babies experience low blood glucose concentrations, a condition referred to as neonatal hypoglycaemia (NH). The effect of NH on visual development in infancy and childhood is of interest because the occipital lobes, which include the primary visual cortex and a number of extra-striate visual areas, may be particularly susceptible to NH induced injury. In addition, a number of case series have suggested that NH can affect eye and optic nerve development. Objective To review the existing literature concerning the effect of NH on the visual system. Methods A PubMed, Embase, Medline and Google Scholar literature search was conducted using pre-specified MeSH terms. Results The literature reviewed revealed no clear evidence for an effect of NH on the development of the eye and optic nerve. Furthermore, occipital and occipital-parietal lobe injuries following NH often occurred in conjunction with co-morbid conditions and were not clearly linked to subsequent visual dysfunction, possibly due to difficulties in measuring vision in young children and a lack of studies at older ages. A recent, large scale, prospective study of NH outcomes at 2 years of age found no effect of mild to moderate NH on visual development. Conclusion The effect of NH on visual development is unclear. It is currently unknown whether NH affects visual function in mid to late childhood when many visual functions reach adult levels. PMID:28253512
Blaise George Grden
1979-01-01
This paper is an investigation of the Visual Management System (VMS) and the Visual Resource Inventory and Evaluation Process (VRIEP). Questionnaires were developed and sent to persons who were experienced with VMS and/or VRIEP. VMS has been found easier to under-stand and apply than VRIEP. The methodology of VRIEP has been found to he a more complete approach than...
NASA Astrophysics Data System (ADS)
Lim, Chen Kim; Tan, Kian Lam; Yusran, Hazwanni; Suppramaniam, Vicknesh
2017-10-01
Visual language or visual representation has been used in the past few years in order to express the knowledge in graphic. One of the important graphical elements is fractal and L-Systems is a mathematic-based grammatical model for modelling cell development and plant topology. From the plant model, L-Systems can be interpreted as music sound and score. In this paper, LSound which is a Visual Language Programming (VLP) framework has been developed to model plant to music sound and generate music score and vice versa. The objectives of this research has three folds: (i) To expand the grammar dictionary of L-Systems music based on visual programming, (ii) To design and produce a user-friendly and icon based visual language framework typically for L-Systems musical score generation which helps the basic learners in musical field and (iii) To generate music score from plant models and vice versa using L-Systems method. This research undergoes a four phases methodology where the plant is first modelled, then the music is interpreted, followed by the output of music sound through MIDI and finally score is generated. LSound is technically compared to other existing applications in the aspects of the capability of modelling the plant, rendering the music and generating the sound. It has been found that LSound is a flexible framework in which the plant can be easily altered through arrow-based programming and the music score can be altered through the music symbols and notes. This work encourages non-experts to understand L-Systems and music hand-in-hand.
Designing and visualizing the water-energy-food nexus system
NASA Astrophysics Data System (ADS)
Endo, A.; Kumazawa, T.; Yamada, M.; Kato, T.
2017-12-01
The objective of this study is to design and visualize a water-energy-food nexus system to identify the interrelationships between water-energy-food (WEF) resources and to understand the subsequent complexity of WEF nexus systems holistically, taking an interdisciplinary approach. Object-oriented concepts and ontology engineering methods were applied according to the hypothesis that the chains of changes in linkages between water, energy, and food resources holistically affect the water-energy-food nexus system, including natural and social systems, both temporally and spatially. The water-energy-food nexus system that is developed is significant because it allows us to: 1) visualize linkages between water, energy, and food resources in social and natural systems; 2) identify tradeoffs between these resources; 3) find a way of using resources efficiently or enhancing the synergy between the utilization of different resources; and 4) aid scenario planning using economic tools. The paper also discusses future challenges for applying the developed water-energy-food nexus system in other areas.
ERIC Educational Resources Information Center
Wang, Tsui-Ying; Huang, Ho-Chuan; Huang, Hsiu-Shuang
2006-01-01
We propose a computer-assisted cancellation test system (CACTS) to understand the visual attention performance and visual search strategies in school children. The main aim of this paper is to present our design and development of the CACTS and demonstrate some ways in which computer techniques can allow the educator not only to obtain more…
ERIC Educational Resources Information Center
Wilkinson, Krista M.; Light, Janice
2011-01-01
Purpose: Many individuals with complex communication needs may benefit from visual aided augmentative and alternative communication systems. In visual scene displays (VSDs), language concepts are embedded into a photograph of a naturalistic event. Humans play a central role in communication development and might be important elements in VSDs.…
The attentive brain: insights from developmental cognitive neuroscience.
Amso, Dima; Scerif, Gaia
2015-10-01
Visual attention functions as a filter to select environmental information for learning and memory, making it the first step in the eventual cascade of thought and action systems. Here, we review studies of typical and atypical visual attention development and explain how they offer insights into the mechanisms of adult visual attention. We detail interactions between visual processing and visual attention, as well as the contribution of visual attention to memory. Finally, we discuss genetic mechanisms underlying attention disorders and how attention may be modified by training.
Wilson, A; Fram, D; Sistar, J
1981-06-01
An Imsai 8080 microcomputer is being used to simultaneously generate a color graphics stimulus display and to record visual-evoked cortical potentials. A brief description of the hardware and software developed for this system is presented. Data storage and analysis techniques are also discussed.
Computer vision for general purpose visual inspection: a fuzzy logic approach
NASA Astrophysics Data System (ADS)
Chen, Y. H.
In automatic visual industrial inspection, computer vision systems have been widely used. Such systems are often application specific, and therefore require domain knowledge in order to have a successful implementation. Since visual inspection can be viewed as a decision making process, it is argued that the integration of fuzzy logic analysis and computer vision systems provides a practical approach to general purpose visual inspection applications. This paper describes the development of an integrated fuzzy-rule-based automatic visual inspection system. Domain knowledge about a particular application is represented as a set of fuzzy rules. From the status of predefined fuzzy variables, the set of fuzzy rules are defuzzified to give the inspection results. A practical application where IC marks (often in the forms of English characters and a company logo) inspection is demonstrated, which shows a more consistent result as compared to a conventional thresholding method.
Multimodal visualization interface for data management, self-learning and data presentation.
Van Sint Jan, S; Demondion, X; Clapworthy, G; Louryan, S; Rooze, M; Cotten, A; Viceconti, M
2006-10-01
A multimodal visualization software, called the Data Manager (DM), has been developed to increase interdisciplinary communication around the topic of visualization and modeling of various aspects of the human anatomy. Numerous tools used in Radiology are integrated in the interface that runs on standard personal computers. The available tools, combined to hierarchical data management and custom layouts, allow analyzing of medical imaging data using advanced features outside radiological premises (for example, for patient review, conference presentation or tutorial preparation). The system is free, and based on an open-source software development architecture, and therefore updates of the system for custom applications are possible.
Research and analysis of head-directed area-of-interest visual system concepts
NASA Technical Reports Server (NTRS)
Sinacori, J. B.
1983-01-01
An analysis and survey with conjecture supporting a preliminary data base design is presented. The data base is intended for use in a Computer Image Generator visual subsystem for a rotorcraft flight simulator that is used for rotorcraft systems development, not training. The approach taken was to attempt to identify the visual perception strategies used during terrain flight, survey environmental and image generation factors, and meld these into a preliminary data base design. This design is directed at Data Base developers, and hopefully will stimulate and aid their efforts to evolve such a Base that will support simulation of terrain flight operations.
Visualization of 3D CT-based anatomical models
NASA Astrophysics Data System (ADS)
Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.
2018-04-01
Biomedical volumetric data visualization techniques for the exploration purposes are well developed. Most of the known methods are inappropriate for surgery simulation systems due to lack of realism. A segmented data visualization is a well-known approach for the visualization of the structured volumetric data. The research is focused on improvement of the segmented data visualization technique by the aliasing problems resolution and the use of material transparency modeling for better semitransparent structures rendering.
Gaze distribution analysis and saliency prediction across age groups.
Krishna, Onkar; Helo, Andrea; Rämä, Pia; Aizawa, Kiyoharu
2018-01-01
Knowledge of the human visual system helps to develop better computational models of visual attention. State-of-the-art models have been developed to mimic the visual attention system of young adults that, however, largely ignore the variations that occur with age. In this paper, we investigated how visual scene processing changes with age and we propose an age-adapted framework that helps to develop a computational model that can predict saliency across different age groups. Our analysis uncovers how the explorativeness of an observer varies with age, how well saliency maps of an age group agree with fixation points of observers from the same or different age groups, and how age influences the center bias tendency. We analyzed the eye movement behavior of 82 observers belonging to four age groups while they explored visual scenes. Explorative- ness was quantified in terms of the entropy of a saliency map, and area under the curve (AUC) metrics was used to quantify the agreement analysis and the center bias tendency. Analysis results were used to develop age adapted saliency models. Our results suggest that the proposed age-adapted saliency model outperforms existing saliency models in predicting the regions of interest across age groups.
Hoshiba, Kotaro; Washizaki, Kai; Wakabayashi, Mizuho; Ishiki, Takahiro; Bando, Yoshiaki; Gabriel, Daniel; Nakadai, Kazuhiro; Okuno, Hiroshi G.
2017-01-01
In search and rescue activities, unmanned aerial vehicles (UAV) should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS) consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators. PMID:29099790
Hoshiba, Kotaro; Washizaki, Kai; Wakabayashi, Mizuho; Ishiki, Takahiro; Kumon, Makoto; Bando, Yoshiaki; Gabriel, Daniel; Nakadai, Kazuhiro; Okuno, Hiroshi G
2017-11-03
In search and rescue activities, unmanned aerial vehicles (UAV) should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS) consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators.
Can Visualizing Document Space Improve Users' Information Foraging?
ERIC Educational Resources Information Center
Song, Min
1998-01-01
This study shows how users access relevant information in a visualized document space and determine whether BiblioMapper, a visualization tool, strengthens an information retrieval (IR) system and makes it more usable. BiblioMapper, developed for a CISI collection, was evaluated by accuracy, time, and user satisfaction. Users' navigation…
Urban Space Explorer: A Visual Analytics System for Urban Planning.
Karduni, Alireza; Cho, Isaac; Wessel, Ginette; Ribarsky, William; Sauda, Eric; Dou, Wenwen
2017-01-01
Understanding people's behavior is fundamental to many planning professions (including transportation, community development, economic development, and urban design) that rely on data about frequently traveled routes, places, and social and cultural practices. Based on the results of a practitioner survey, the authors designed Urban Space Explorer, a visual analytics system that utilizes mobile social media to enable interactive exploration of public-space-related activity along spatial, temporal, and semantic dimensions.
Sensori-motor experience leads to changes in visual processing in the developing brain.
James, Karin Harman
2010-03-01
Since Broca's studies on language processing, cortical functional specialization has been considered to be integral to efficient neural processing. A fundamental question in cognitive neuroscience concerns the type of learning that is required for functional specialization to develop. To address this issue with respect to the development of neural specialization for letters, we used functional magnetic resonance imaging (fMRI) to compare brain activation patterns in pre-school children before and after different letter-learning conditions: a sensori-motor group practised printing letters during the learning phase, while the control group practised visual recognition. Results demonstrated an overall left-hemisphere bias for processing letters in these pre-literate participants, but, more interestingly, showed enhanced blood oxygen-level-dependent activation in the visual association cortex during letter perception only after sensori-motor (printing) learning. It is concluded that sensori-motor experience augments processing in the visual system of pre-school children. The change of activation in these neural circuits provides important evidence that 'learning-by-doing' can lay the foundation for, and potentially strengthen, the neural systems used for visual letter recognition.
A versatile stereoscopic visual display system for vestibular and oculomotor research.
Kramer, P D; Roberts, D C; Shelhamer, M; Zee, D S
1998-01-01
Testing of the vestibular system requires a vestibular stimulus (motion) and/or a visual stimulus. We have developed a versatile, low cost, stereoscopic visual display system, using "virtual reality" (VR) technology. The display system can produce images for each eye that correspond to targets at any virtual distance relative to the subject, and so require the appropriate ocular vergence. We elicited smooth pursuit, "stare" optokinetic nystagmus (OKN) and after-nystagmus (OKAN), vergence for targets at various distances, and short-term adaptation of the vestibulo-ocular reflex (VOR), using both conventional methods and the stereoscopic display. Pursuit, OKN, and OKAN were comparable with both methods. When used with a vestibular stimulus, VR induced appropriate adaptive changes of the phase and gain of the angular VOR. In addition, using the VR display system and a human linear acceleration sled, we adapted the phase of the linear VOR. The VR-based stimulus system not only offers an alternative to more cumbersome means of stimulating the visual system in vestibular experiments, it also can produce visual stimuli that would otherwise be impractical or impossible. Our techniques provide images without the latencies encountered in most VR systems. Its inherent versatility allows it to be useful in several different types of experiments, and because it is software driven it can be quickly adapted to provide a new stimulus. These two factors allow VR to provide considerable savings in time and money, as well as flexibility in developing experimental paradigms.
Semi-Immersive Virtual Turbine Engine Simulation System
NASA Astrophysics Data System (ADS)
Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea
2018-05-01
The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.
Fuzzy Logic-based expert system for evaluating cake quality of freeze-dried formulations.
Trnka, Hjalte; Wu, Jian X; Van De Weert, Marco; Grohganz, Holger; Rantanen, Jukka
2013-12-01
Freeze-drying of peptide and protein-based pharmaceuticals is an increasingly important field of research. The diverse nature of these compounds, limited understanding of excipient functionality, and difficult-to-analyze quality attributes together with the increasing importance of the biosimilarity concept complicate the development phase of safe and cost-effective drug products. To streamline the development phase and to make high-throughput formulation screening possible, efficient solutions for analyzing critical quality attributes such as cake quality with minimal material consumption are needed. The aim of this study was to develop a fuzzy logic system based on image analysis (IA) for analyzing cake quality. Freeze-dried samples with different visual quality attributes were prepared in well plates. Imaging solutions together with image analytical routines were developed for extracting critical visual features such as the degree of cake collapse, glassiness, and color uniformity. On the basis of the IA outputs, a fuzzy logic system for analysis of these freeze-dried cakes was constructed. After this development phase, the system was tested with a new screening well plate. The developed fuzzy logic-based system was found to give comparable quality scores with visual evaluation, making high-throughput classification of cake quality possible. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Demir, I.
2013-12-01
Recent developments in web technologies make it easy to manage and visualize large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The floodplain simulation system is a web-based 3D interactive flood simulation environment to create real world flooding scenarios. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create and modify predefined scenarios, control environmental parameters, and evaluate flood mitigation techniques. The web-based simulation system provides an environment to children and adults learn about the flooding, flood damage, and effects of development and human activity in the floodplain. The system provides various scenarios customized to fit the age and education level of the users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various flooding and land use scenarios.
NASA Astrophysics Data System (ADS)
Stewart, J.; Hackathorn, E. J.; Joyce, J.; Smith, J. S.
2014-12-01
Within our community data volume is rapidly expanding. These data have limited value if one cannot interact or visualize the data in a timely manner. The scientific community needs the ability to dynamically visualize, analyze, and interact with these data along with other environmental data in real-time regardless of the physical location or data format. Within the National Oceanic Atmospheric Administration's (NOAA's), the Earth System Research Laboratory (ESRL) is actively developing the NOAA Earth Information System (NEIS). Previously, the NEIS team investigated methods of data discovery and interoperability. The recent focus shifted to high performance real-time visualization allowing NEIS to bring massive amounts of 4-D data, including output from weather forecast models as well as data from different observations (surface obs, upper air, etc...) in one place. Our server side architecture provides a real-time stream processing system which utilizes server based NVIDIA Graphical Processing Units (GPU's) for data processing, wavelet based compression, and other preparation techniques for visualization, allows NEIS to minimize the bandwidth and latency for data delivery to end-users. Client side, users interact with NEIS services through the visualization application developed at ESRL called TerraViz. Terraviz is developed using the Unity game engine and takes advantage of the GPU's allowing a user to interact with large data sets in real time that might not have been possible before. Through these technologies, the NEIS team has improved accessibility to 'Big Data' along with providing tools allowing novel visualization and seamless integration of data across time and space regardless of data size, physical location, or data format. These capabilities provide the ability to see the global interactions and their importance for weather prediction. Additionally, they allow greater access than currently exists helping to foster scientific collaboration and new ideas. This presentation will provide an update of the recent enhancements of the NEIS architecture and visualization capabilities, challenges faced, as well as ongoing research activities related to this project.
Concrete bridge deck early problem detection and mitigation using robotics
NASA Astrophysics Data System (ADS)
Gucunski, Nenad; Yi, Jingang; Basily, Basily; Duong, Trung; Kim, Jinyoung; Balaguru, Perumalsamy; Parvardeh, Hooman; Maher, Ali; Najm, Husam
2015-04-01
More economical management of bridges can be achieved through early problem detection and mitigation. The paper describes development and implementation of two fully automated (robotic) systems for nondestructive evaluation (NDE) and minimally invasive rehabilitation of concrete bridge decks. The NDE system named RABIT was developed with the support from Federal Highway Administration (FHWA). It implements multiple NDE technologies, namely: electrical resistivity (ER), impact echo (IE), ground-penetrating radar (GPR), and ultrasonic surface waves (USW). In addition, the system utilizes advanced vision to substitute traditional visual inspection. The RABIT system collects data at significantly higher speeds than it is done using traditional NDE equipment. The associated platform for the enhanced interpretation of condition assessment in concrete bridge decks utilizes data integration, fusion, and deterioration and defect visualization. The interpretation and visualization platform specifically addresses data integration and fusion from the four NDE technologies. The data visualization platform facilitates an intuitive presentation of the main deterioration due to: corrosion, delamination, and concrete degradation, by integrating NDE survey results and high resolution deck surface imaging. The rehabilitation robotic system was developed with the support from National Institute of Standards and Technology-Technology Innovation Program (NIST-TIP). The system utilizes advanced robotics and novel materials to repair problems in concrete decks, primarily early stage delamination and internal cracking, using a minimally invasive approach. Since both systems use global positioning systems for navigation, some of the current efforts concentrate on their coordination for the most effective joint evaluation and rehabilitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanny, S; Bogue, J; Parsai, E
Purpose: Potential collisions between the gantry head and the patient or table assembly are difficult to detect in most treatment planning systems. We have developed and implemented a novel software package for the representation of potential gantry collisions with the couch assembly at the time of treatment planning. Methods: Physical dimensions of the Varian Edge linear accelerator treatment head were measured and reproduced using the Visual Python display package. A script was developed for the Pinnacle treatment planning system to generate a file with the relevant couch, gantry, and isocenter positions for each beam in a planning trial. A pythonmore » program was developed to parse the information from the TPS and produce a representative model of the couch/gantry system. Using the model and the Visual Python libraries, a rendering window is generated for each beam that allows the planner to evaluate the possibility of a collision. Results: Comparison against heuristic methods and direct verification on the machine validated the collision model generated by the software. Encounters of <1 cm between the gantry treatment head and table were visualized as collisions in our virtual model. Visual windows were created depicting the angle of collision for each beam, including the anticipated table coordinates. Visual rendering of a 6 arc trial with multiple couch positions was completed in under 1 minute, with network bandwidth being the primary bottleneck. Conclusion: The developed software allows for quick examination of possible collisions during the treatment planning process and helps to prevent major collisions prior to plan approval. The software can easily be implemented on future planning systems due to the versatility and platform independence of the Python programming language. Further integration of the software with the treatment planning system will allow the possibility of patient-gantry collision detection for a range of treatment machines.« less
Developing Visualization Support System for Teaching/Learning Database Normalization
ERIC Educational Resources Information Center
Folorunso, Olusegun; Akinwale, AdioTaofeek
2010-01-01
Purpose: In tertiary institution, some students find it hard to learn database design theory, in particular, database normalization. The purpose of this paper is to develop a visualization tool to give students an interactive hands-on experience in database normalization process. Design/methodology/approach: The model-view-controller architecture…
A Theory of the Visual System Biology Underlying Development of Spatial Frequency Lateralization
ERIC Educational Resources Information Center
Howard, Mary F.; Reggia, James A.
2007-01-01
The spatial frequency hypothesis contends that performance differences between the hemispheres on various visuospatial tasks are attributable to lateralized processing of the spatial frequency content of visual stimuli. Hellige has proposed that such lateralization could arise during infant development from the earlier maturation of the right…
Funnell, Elaine; Wilding, John
2011-02-01
We report a longitudinal study of an exceptional child (S.R.) whose early-acquired visual agnosia, following encephalitis at 8 weeks of age, did not prevent her from learning to construct an increasing vocabulary of visual object forms (drawn from different categories), albeit slowly. S.R. had problems perceiving subtle differences in shape; she was unable to segment local letters within global displays; and she would bring complex scenes close to her eyes: a symptom suggestive of an attempt to reduce visual crowding. Investigations revealed a robust ability to use the gestalt grouping factors of proximity and collinearity to detect fragmented forms in noisy backgrounds, compared with a very weak ability to segment fragmented forms on the basis of contrasts of shape. When contrasts in spatial grouping and shape were pitted against each other, shape made little contribution, consistent with problems in perceiving complex scenes, but when shape contrast was varied, and spatial grouping was held constant, S.R. showed the same hierarchy of difficulty as the controls, although her responses were slowed. This is the first report of a child's visual-perceptual development following very early neurological impairments to the visual cortex. Her ability to learn to perceive visual shape following damage at a rudimentary stage of perceptual development contrasts starkly with the loss of such ability in childhood cases of acquired visual agnosia that follow damage to the established perceptual system. Clearly, there is a critical period during which neurological damage to the highly active, early developing visual-perceptual system does not prevent but only impairs further learning.
Identification of visual evoked response parameters sensitive to pilot mental state
NASA Technical Reports Server (NTRS)
Zacharias, G. L.
1988-01-01
Systems analysis techniques were developed and demonstrated for modeling the electroencephalographic (EEG) steady state visual evoked response (ssVER), for use in EEG data compression and as an indicator of mental workload. The study focused on steady state frequency domain stimulation and response analysis, implemented with a sum-of-sines (SOS) stimulus generator and an off-line describing function response analyzer. Three major tasks were conducted: (1) VER related systems identification material was reviewed; (2) Software for experiment control and data analysis was developed and implemented; and (3) ssVER identification and modeling was demonstrated, via a mental loading experiment. It was found that a systems approach to ssVER functional modeling can serve as the basis for eventual development of a mental workload indicator. The review showed how transient visual evoked response (tVER) and ssVER research are related at the functional level, the software development showed how systems techniques can be used for ssVER characterization, and the pilot experiment showed how a simple model can be used to capture the basic dynamic response of the ssVER, under varying loads.
NASA Astrophysics Data System (ADS)
Inoue, Y.; Tsuruoka, K.; Arikawa, M.
2014-04-01
In this paper, we proposed a user interface that displays visual animations on geographic maps and timelines for depicting historical stories by representing causal relationships among events for time series. We have been developing an experimental software system for the spatial-temporal visualization of historical stories for tablet computers. Our proposed system makes people effectively learn historical stories using visual animations based on hierarchical structures of different scale timelines and maps.
A Prototype Flight-Deck Airflow Hazard Visualization System
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.
2004-01-01
Airflow hazards such as turbulence, vortices, or low-level wind shear can pose a threat to landing aircraft and are especially dangerous to helicopters. Because pilots usually cannot see airflow, they may be unaware of the extent of the hazard. We have developed a prototype airflow hazard visual display for use in helicopter cockpits to alleviate this problem. We report on the results of a preliminary usability study of our airflow hazard visualization system in helicopter-shipboard operations.
ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.
Huan, Tianxiao; Sivachenko, Andrey Y; Harrison, Scott H; Chen, Jake Y
2008-08-12
New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges according to associated data values. We demonstrated the advantages of these new capabilities through three biological network visualization case studies: human disease association network, drug-target interaction network and protein-peptide mapping network. The architectural design of ProteoLens makes it suitable for bioinformatics expert data analysts who are experienced with relational database management to perform large-scale integrated network visual explorations. ProteoLens is a promising visual analytic platform that will facilitate knowledge discoveries in future network and systems biology studies.
User-Centered Evaluation of Visual Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholtz, Jean C.
Visual analytics systems are becoming very popular. More domains now use interactive visualizations to analyze the ever-increasing amount and heterogeneity of data. More novel visualizations are being developed for more tasks and users. We need to ensure that these systems can be evaluated to determine that they are both useful and usable. A user-centered evaluation for visual analytics needs to be developed for these systems. While many of the typical human-computer interaction (HCI) evaluation methodologies can be applied as is, others will need modification. Additionally, new functionality in visual analytics systems needs new evaluation methodologies. There is a difference betweenmore » usability evaluations and user-centered evaluations. Usability looks at the efficiency, effectiveness, and user satisfaction of users carrying out tasks with software applications. User-centered evaluation looks more specifically at the utility provided to the users by the software. This is reflected in the evaluations done and in the metrics used. In the visual analytics domain this is very challenging as users are most likely experts in a particular domain, the tasks they do are often not well defined, the software they use needs to support large amounts of different kinds of data, and often the tasks last for months. These difficulties are discussed more in the section on User-centered Evaluation. Our goal is to provide a discussion of user-centered evaluation practices for visual analytics, including existing practices that can be carried out and new methodologies and metrics that need to be developed and agreed upon by the visual analytics community. The material provided here should be of use for both researchers and practitioners in the field of visual analytics. Researchers and practitioners in HCI and interested in visual analytics will find this information useful as well as a discussion on changes that need to be made to current HCI practices to make them more suitable to visual analytics. A history of analysis and analysis techniques and problems is provided as well as an introduction to user-centered evaluation and various evaluation techniques for readers from different disciplines. The understanding of these techniques is imperative if we wish to support analysis in the visual analytics software we develop. Currently the evaluations that are conducted and published for visual analytics software are very informal and consist mainly of comments from users or potential users. Our goal is to help researchers in visual analytics to conduct more formal user-centered evaluations. While these are time-consuming and expensive to carryout, the outcomes of these studies will have a defining impact on the field of visual analytics and help point the direction for future features and visualizations to incorporate. While many researchers view work in user-centered evaluation as a less-than-exciting area to work, the opposite is true. First of all, the goal is user-centered evaluation is to help visual analytics software developers, researchers, and designers improve their solutions and discover creative ways to better accommodate their users. Working with the users is extremely rewarding as well. While we use the term “users” in almost all situations there are a wide variety of users that all need to be accommodated. Moreover, the domains that use visual analytics are varied and expanding. Just understanding the complexities of a number of these domains is exciting. Researchers are trying out different visualizations and interactions as well. And of course, the size and variety of data are expanding rapidly. User-centered evaluation in this context is rapidly changing. There are no standard processes and metrics and thus those of us working on user-centered evaluation must be creative in our work with both the users and with the researchers and developers.« less
Critical periods and amblyopia.
Daw, N W
1998-04-01
During the past 20 years, basic science has shown that there are different critical periods for different visual functions during the development of the visual system. Visual functions processed at higher anatomical levels within the system have a later critical period than functions processed at lower levels. This general principle suggests that treatments for amblyopia should be followed in a logical sequence, with treatment for each visual function to be started before its critical period is over. However, critical periods for some visual functions, such as stereopsis, are not yet fully determined, and the optimal treatment is, therefore, unknown. This article summarizes the current extent of our knowledge and points to the gaps that need to be filled.
Immunostaining to visualize murine enteric nervous system development.
Barlow-Anacker, Amanda J; Erickson, Christopher S; Epstein, Miles L; Gosain, Ankush
2015-04-29
The enteric nervous system is formed by neural crest cells that proliferate, migrate and colonize the gut. Following colonization, neural crest cells must then differentiate into neurons with markers specific for their neurotransmitter phenotype. Cholinergic neurons, a major neurotransmitter phenotype in the enteric nervous system, are identified by staining for choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine. Historical efforts to visualize cholinergic neurons have been hampered by antibodies with differing specificities to central nervous system versus peripheral nervous system ChAT. We and others have overcome this limitation by using an antibody against placental ChAT, which recognizes both central and peripheral ChAT, to successfully visualize embryonic enteric cholinergic neurons. Additionally, we have compared this antibody to genetic reporters for ChAT and shown that the antibody is more reliable during embryogenesis. This protocol describes a technique for dissecting, fixing and immunostaining of the murine embryonic gastrointestinal tract to visualize enteric nervous system neurotransmitter expression.
Arakawa, Takahiro; Ando, Eri; Wang, Xin; Kumiko, Miyajima; Kudo, Hiroyuki; Saito, Hirokazu; Mitani, Tomoyo; Takahashi, Mitsuo; Mitsubayashi, Kohji
2012-01-01
A two-dimensional gaseous ethanol visualization system has been developed and demonstrated using a horseradish peroxidase-luminol-hydrogen peroxide system with high-purity luminol solution and a chemiluminescence (CL) enhancer. This system measures ethanol concentrations as intensities of CL via the luminol reaction. CL was emitted when the gaseous ethanol was injected onto an enzyme-immobilized membrane, which was employed as a screen for two-dimensional gas visualization. The average intensity of CL on the substrate was linearly related to the concentration of standard ethanol gas. These results were compared with the CL intensity of the CCD camera recording image in the visualization system. This system is available for gas components not only for spatial but also for temporal analysis in real time. A high-purity sodium salt HG solution (L-HG) instead of standard luminol solution and an enhancer, eosin Y (EY) solution, were adapted for improvement of CL intensity of the system. The visualization of gaseous ethanol was achieved at a detection limit of 3 ppm at optimized concentrations of L-HG solution and EY. Copyright © 2011 John Wiley & Sons, Ltd.
Van Weyenberg, Stephanie; Van Nuffel, Annelies; Lauwers, Ludwig; Vangeyte, Jürgen
2017-01-01
Simple Summary Most prototypes of systems to automatically detect lameness in dairy cattle are still not available on the market. Estimating their potential adoption rate could support developers in defining development goals towards commercially viable and well-adopted systems. We simulated the potential market shares of such prototypes to assess the effect of altering the system cost and detection performance on the potential adoption rate. We found that system cost and lameness detection performance indeed substantially influence the potential adoption rate. In order for farmers to prefer automatic detection over current visual detection, the usefulness that farmers attach to a system with specific characteristics should be higher than that of visual detection. As such, we concluded that low system costs and high detection performances are required before automatic lameness detection systems become applicable in practice. Abstract Most automatic lameness detection system prototypes have not yet been commercialized, and are hence not yet adopted in practice. Therefore, the objective of this study was to simulate the effect of detection performance (percentage missed lame cows and percentage false alarms) and system cost on the potential market share of three automatic lameness detection systems relative to visual detection: a system attached to the cow, a walkover system, and a camera system. Simulations were done using a utility model derived from survey responses obtained from dairy farmers in Flanders, Belgium. Overall, systems attached to the cow had the largest market potential, but were still not competitive with visual detection. Increasing the detection performance or lowering the system cost led to higher market shares for automatic systems at the expense of visual detection. The willingness to pay for extra performance was €2.57 per % less missed lame cows, €1.65 per % less false alerts, and €12.7 for lame leg indication, respectively. The presented results could be exploited by system designers to determine the effect of adjustments to the technology on a system’s potential adoption rate. PMID:28991188
DOT National Transportation Integrated Search
2012-03-01
The Integrated Remote Sensing and Visualization System (IRSV) was developed in Phase One of this project in order to : accommodate the needs of todays Bridge Engineers at the state and local level. Overall goals of this project are: : Better u...
ERIC Educational Resources Information Center
Mather, Richard
2015-01-01
This paper explores the application of canonical gradient analysis to evaluate and visualize student performance and acceptance of a learning system platform. The subject of evaluation is a first year BSc module for computer programming. This uses "Ceebot," an animated and immersive game-like development environment. Multivariate…
DOT National Transportation Integrated Search
2009-12-01
The Integrated Remote Sensing and Visualization System (IRSV) is being designed to accommodate the needs of todays Bridge Engineers at the : state and local level from several aspects that were documented in Volume One, Summary Report. The followi...
Embryo-specific expression of a visual reporter gene as a selection system for citrus transformation
Zambon, Flavia T.; Erpen, Lígia; Soriano, Leonardo; Grosser, Jude
2018-01-01
The embryo-specific Dc3 gene promoter driving the VvMybA1 anthocyanin regulatory gene was used to develop a visual selection system for the genetic transformation of citrus. Agrobacterium-mediated transformation of cell suspension cultures resulted in the production of purple transgenic somatic embryos that could be easily separated from the green non-transgenic embryos. The somatic embryos produced phenotypically normal plants devoid of any visual purple coloration. These results were also confirmed using protoplast transformation. There was minimal gene expression in unstressed one-year-old transgenic lines. Cold and drought stress did not have any effect on gene expression, while exogenous ABA and NaCl application resulted in a minor change in gene expression in several transgenic lines. When gas exchange was measured in intact leaves, the transgenic lines were similar to controls under the same environment. Our results provide conclusive evidence for the utilization of a plant-derived, embryo-specific visual reporter system for the genetic transformation of citrus. Such a system could aid in the development of an all-plant, consumer-friendly GM citrus tree. PMID:29293649
Data mining and visualization from planetary missions: the VESPA-Europlanet2020 activity
NASA Astrophysics Data System (ADS)
Longobardo, Andrea; Capria, Maria Teresa; Zinzi, Angelo; Ivanovski, Stavro; Giardino, Marco; di Persio, Giuseppe; Fonte, Sergio; Palomba, Ernesto; Antonelli, Lucio Angelo; Fonte, Sergio; Giommi, Paolo; Europlanet VESPA 2020 Team
2017-06-01
This paper presents the VESPA (Virtual European Solar and Planetary Access) activity, developed in the context of the Europlanet 2020 Horizon project, aimed at providing tools for analysis and visualization of planetary data provided by space missions. In particular, the activity is focused on minor bodies of the Solar System.The structure of the computation node, the algorithms developed for analysis of planetary surfaces and cometary comae and the tools for data visualization are presented.
A component-based software environment for visualizing large macromolecular assemblies.
Sanner, Michel F
2005-03-01
The interactive visualization of large biological assemblies poses a number of challenging problems, including the development of multiresolution representations and new interaction methods for navigating and analyzing these complex systems. An additional challenge is the development of flexible software environments that will facilitate the integration and interoperation of computational models and techniques from a wide variety of scientific disciplines. In this paper, we present a component-based software development strategy centered on the high-level, object-oriented, interpretive programming language: Python. We present several software components, discuss their integration, and describe some of their features that are relevant to the visualization of large molecular assemblies. Several examples are given to illustrate the interoperation of these software components and the integration of structural data from a variety of experimental sources. These examples illustrate how combining visual programming with component-based software development facilitates the rapid prototyping of novel visualization tools.
Foveal Processing Under Concurrent Peripheral Load in Profoundly Deaf Adults
2016-01-01
Development of the visual system typically proceeds in concert with the development of audition. One result is that the visual system of profoundly deaf individuals differs from that of those with typical auditory systems. While past research has suggested deaf people have enhanced attention in the visual periphery, it is still unclear whether or not this enhancement entails deficits in central vision. Profoundly deaf and typically hearing adults were administered a variant of the useful field of view task that independently assessed performance on concurrent central and peripheral tasks. Identification of a foveated target was impaired by a concurrent selective peripheral attention task, more so in profoundly deaf adults than in the typically hearing. Previous findings of enhanced performance on the peripheral task were not replicated. These data are discussed in terms of flexible allocation of spatial attention targeted towards perceived task demands, and support a modified “division of labor” hypothesis whereby attentional resources co-opted to process peripheral space result in reduced resources in the central visual field. PMID:26657078
A CAI System for Visually Impaired Children to Improve Abilities of Orientation and Mobility
NASA Astrophysics Data System (ADS)
Yoneda, Takahiro; Kudo, Hiroaki; Minagawa, Hiroki; Ohnishi, Noboru; Matsubara, Shizuya
Some visually impaired children have difficulty in simple locomotion, and need orientation and mobility training. We developed a computer assisted instruction system which assists this training. A user realizes a task given by a tactile map and synthesized speech. The user walks around a room according to the task. The system gives the gap of walk path from its target path via both auditory and tactile feedback after the end of a task. Then the user can understand how well the user walked. We describe the detail of the proposed system and task, and the experimental result with three visually impaired children.
DOT National Transportation Integrated Search
2012-06-01
The use of visual simulation tools to convey complex concepts has become a useful tool in education as well as in research. : This report describes a project that developed curriculum and visualization tools to train transportation engineering studen...
User Centered, Application Independent Visualization of National Airspace Data
NASA Technical Reports Server (NTRS)
Murphy, James R.; Hinton, Susan E.
2011-01-01
This paper describes an application independent software tool, IV4D, built to visualize animated and still 3D National Airspace System (NAS) data specifically for aeronautics engineers who research aggregate, as well as single, flight efficiencies and behavior. IV4D was origin ally developed in a joint effort between the National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (A FRL) to support the visualization of air traffic data from the Airspa ce Concept Evaluation System (ACES) simulation program. The three mai n challenges tackled by IV4D developers were: 1) determining how to d istill multiple NASA data formats into a few minimal dataset types; 2 ) creating an environment, consisting of a user interface, heuristic algorithms, and retained metadata, that facilitates easy setup and fa st visualization; and 3) maximizing the user?s ability to utilize the extended range of visualization available with AFRL?s existing 3D te chnologies. IV4D is currently being used by air traffic management re searchers at NASA?s Ames and Langley Research Centers to support data visualizations.
Loss of Neurofilament Labeling in the Primary Visual Cortex of Monocularly Deprived Monkeys
Duffy, Kevin R.; Livingstone, Margaret S.
2009-01-01
Visual experience during early life is important for the development of neural organizations that support visual function. Closing one eye (monocular deprivation) during this sensitive period can cause a reorganization of neural connections within the visual system that leaves the deprived eye functionally disconnected. We have assessed the pattern of neurofilament labeling in monocularly deprived macaque monkeys to examine the possibility that a cytoskeleton change contributes to deprivation-induced reorganization of neural connections within the primary visual cortex (V-1). Monocular deprivation for three months starting around the time of birth caused a significant loss of neurofilament labeling within deprived-eye ocular dominance columns. Three months of monocular deprivation initiated in adulthood did not produce a loss of neurofilament labeling. The evidence that neurofilament loss was found only when deprivation occurred during the sensitive period supports the notion that the loss permits restructuring of deprived-eye neural connections within the visual system. These results provide evidence that, in addition to reorganization of LGN inputs, the intrinsic circuitry of V-1 neurons is altered when monocular deprivation occurs early in development. PMID:15563721
Voice response system of color and pattern on clothes for visually handicapped person.
Miyake, Masao; Manabe, Yoshitsugu; Uranishi, Yuki; Imura, Masataka; Oshiro, Osamu
2013-01-01
For visually handicapped people, a mental support is important in their independent daily life and participation in a society. It is expected to develop a system which can recognize colors and patterns on clothes so that they can go out with less concerns. We have worked on a basic study into such a system, and developed a prototype system which can stably recognize colors and patterns and immediately provide these information in voice, when a user faces it to clothes. In the results of evaluation experiments it is shown that the prototype system is superior to the system in the basic study at the accuracy rate for the recognition of color and pattern.
NASA Astrophysics Data System (ADS)
Karam, Walid; Mokbel, Chafic; Greige, Hanna; Chollet, Gerard
2006-05-01
A GMM based audio visual speaker verification system is described and an Active Appearance Model with a linear speaker transformation system is used to evaluate the robustness of the verification. An Active Appearance Model (AAM) is used to automatically locate and track a speaker's face in a video recording. A Gaussian Mixture Model (GMM) based classifier (BECARS) is used for face verification. GMM training and testing is accomplished on DCT based extracted features of the detected faces. On the audio side, speech features are extracted and used for speaker verification with the GMM based classifier. Fusion of both audio and video modalities for audio visual speaker verification is compared with face verification and speaker verification systems. To improve the robustness of the multimodal biometric identity verification system, an audio visual imposture system is envisioned. It consists of an automatic voice transformation technique that an impostor may use to assume the identity of an authorized client. Features of the transformed voice are then combined with the corresponding appearance features and fed into the GMM based system BECARS for training. An attempt is made to increase the acceptance rate of the impostor and to analyzing the robustness of the verification system. Experiments are being conducted on the BANCA database, with a prospect of experimenting on the newly developed PDAtabase developed within the scope of the SecurePhone project.
Visual analytics as a translational cognitive science.
Fisher, Brian; Green, Tera Marie; Arias-Hernández, Richard
2011-07-01
Visual analytics is a new interdisciplinary field of study that calls for a more structured scientific approach to understanding the effects of interaction with complex graphical displays on human cognitive processes. Its primary goal is to support the design and evaluation of graphical information systems that better support cognitive processes in areas as diverse as scientific research and emergency management. The methodologies that make up this new field are as yet ill defined. This paper proposes a pathway for development of visual analytics as a translational cognitive science that bridges fundamental research in human/computer cognitive systems and design and evaluation of information systems in situ. Achieving this goal will require the development of enhanced field methods for conceptual decomposition of human/computer cognitive systems that maps onto laboratory studies, and improved methods for conducting laboratory investigations that might better map onto real-world cognitive processes in technology-rich environments. Copyright © 2011 Cognitive Science Society, Inc.
A Web-based Visualization System for Three Dimensional Geological Model using Open GIS
NASA Astrophysics Data System (ADS)
Nemoto, T.; Masumoto, S.; Nonogaki, S.
2017-12-01
A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.
Visual information mining in remote sensing image archives
NASA Astrophysics Data System (ADS)
Pelizzari, Andrea; Descargues, Vincent; Datcu, Mihai P.
2002-01-01
The present article focuses on the development of interactive exploratory tools for visually mining the image content in large remote sensing archives. Two aspects are treated: the iconic visualization of the global information in the archive and the progressive visualization of the image details. The proposed methods are integrated in the Image Information Mining (I2M) system. The images and image structure in the I2M system are indexed based on a probabilistic approach. The resulting links are managed by a relational data base. Both the intrinsic complexity of the observed images and the diversity of user requests result in a great number of associations in the data base. Thus new tools have been designed to visualize, in iconic representation the relationships created during a query or information mining operation: the visualization of the query results positioned on the geographical map, quick-looks gallery, visualization of the measure of goodness of the query, visualization of the image space for statistical evaluation purposes. Additionally the I2M system is enhanced with progressive detail visualization in order to allow better access for operator inspection. I2M is a three-tier Java architecture and is optimized for the Internet.
MRIVIEW: An interactive computational tool for investigation of brain structure and function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranken, D.; George, J.
MRIVIEW is a software system which uses image processing and visualization to provide neuroscience researchers with an integrated environment for combining functional and anatomical information. Key features of the software include semi-automated segmentation of volumetric head data and an interactive coordinate reconciliation method which utilizes surface visualization. The current system is a precursor to a computational brain atlas. We describe features this atlas will incorporate, including methods under development for visualizing brain functional data obtained from several different research modalities.
Design and implementation of a PC-based image-guided surgical system.
Stefansic, James D; Bass, W Andrew; Hartmann, Steven L; Beasley, Ryan A; Sinha, Tuhin K; Cash, David M; Herline, Alan J; Galloway, Robert L
2002-11-01
In interactive, image-guided surgery, current physical space position in the operating room is displayed on various sets of medical images used for surgical navigation. We have developed a PC-based surgical guidance system (ORION) which synchronously displays surgical position on up to four image sets and updates them in real time. There are three essential components which must be developed for this system: (1) accurately tracked instruments; (2) accurate registration techniques to map physical space to image space; and (3) methods to display and update the image sets on a computer monitor. For each of these components, we have developed a set of dynamic link libraries in MS Visual C++ 6.0 supporting various hardware tools and software techniques. Surgical instruments are tracked in physical space using an active optical tracking system. Several of the different registration algorithms were developed with a library of robust math kernel functions, and the accuracy of all registration techniques was thoroughly investigated. Our display was developed using the Win32 API for windows management and tomographic visualization, a frame grabber for live video capture, and OpenGL for visualization of surface renderings. We have begun to use this current implementation of our system for several surgical procedures, including open and minimally invasive liver surgery.
NASA Astrophysics Data System (ADS)
Dalphond, James M.
In modern classrooms, scientific probes are often used in science labs to engage students in inquiry-based learning. Many of these probes will never leave the classroom, closing the door on real world experimentation that may engage students. Also, these tools do not encourage students to share data across classrooms or schools. To address these limitations, we have developed a web-based system for collecting, storing, and visualizing sensor data, as well as a hardware package to interface existing classroom probes. This system, The Internet System for Networked Sensor Experimentation (iSENSE), was created to address these limitations. Development of the system began in 2007 and has proceeded through four phases: proof-of-concept prototype, technology demonstration, initial classroom deployment, and classroom testing. User testing and feedback during these phases guided development of the system. This thesis includes lessons learned during development and evaluation of the system in the hands of teachers and students. We developed three evaluations of this practical use. The first evaluation involved working closely with teachers to encourage them to integrate activities using the iSENSE system into their existing curriculum. We were looking for strengths of the approach and ease of integration. Second, we developed three "Activity Labs," which teachers used as embedded assessments. In these activities, students were asked to answer questions based on experiments or visualizations already entered into the iSENSE website. Lastly, teachers were interviewed after using the system to determine what they found valuable. This thesis makes contributions in two areas. It shows how an iterative design process was used to develop a system used in a science classroom, and it presents an analysis of the educational impact of the system on teachers and students.
Ertürk, Korhan Levent; Şengül, Gökhan
2012-01-01
We developed 3D simulation software of human organs/tissues; we developed a database to store the related data, a data management system to manage the created data, and a metadata system for the management of data. This approach provides two benefits: first of all the developed system does not require to keep the patient's/subject's medical images on the system, providing less memory usage. Besides the system also provides 3D simulation and modification options, which will help clinicians to use necessary tools for visualization and modification operations. The developed system is tested in a case study, in which a 3D human brain model is created and simulated from 2D MRI images of a human brain, and we extended the 3D model to include the spreading cortical depression (SCD) wave front, which is an electrical phoneme that is believed to cause the migraine. PMID:23258956
[Physiological mechanisms of the etiology of visual fatigue during work involving visual stress].
Korniushina, T A
2000-01-01
Physiological parameters of vision were studied in three professional groups (a total of 1204 subjects): microscope operators, subjects working with magnifying glasses, and computer users. General and specific features of visual system fatigue formation were identified. Because of complete (in microscope operators) or partial (in subjects working with magnifying glasses and display users) "deprivation" of accommodation, these subjects develop early presbyopia (at the age of 30-35 years). In microscope operators long strain of accommodation system leads to professional myopia, while display users develop pseudomyopia. The highest overstrain is observed after 4 years of work in microscope operators, after 5 years in magnifying glass users, and after 6 years in computer users.
Information visualization of the minority game
NASA Astrophysics Data System (ADS)
Jiang, W.; Herbert, R. D.; Webber, R.
2008-02-01
Many dynamical systems produce large quantities of data. How can the system be understood from the output data? Often people are simply overwhelmed by the data. Traditional tools such as tables and plots are often not adequate, and new techniques are needed to help people to analyze the system. In this paper, we propose the use of two spacefilling visualization tools to examine the output from a complex agent-based financial model. We measure the effectiveness and performance of these tools through usability experiments. Based on the experimental results, we develop two new visualization techniques that combine the advantages and discard the disadvantages of the information visualization tools. The model we use is an evolutionary version of the Minority Game which simulates a financial market.
Rocinante, a virtual collaborative visualizer
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, M.J.; Ice, L.G.
1996-12-31
With the goal of improving the ability of people around the world to share the development and use of intelligent systems, Sandia National Laboratories` Intelligent Systems and Robotics Center is developing new Virtual Collaborative Engineering (VCE) and Virtual Collaborative Control (VCC) technologies. A key area of VCE and VCC research is in shared visualization of virtual environments. This paper describes a Virtual Collaborative Visualizer (VCV), named Rocinante, that Sandia developed for VCE and VCC applications. Rocinante allows multiple participants to simultaneously view dynamic geometrically-defined environments. Each viewer can exclude extraneous detail or include additional information in the scene as desired.more » Shared information can be saved and later replayed in a stand-alone mode. Rocinante automatically scales visualization requirements with computer system capabilities. Models with 30,000 polygons and 4 Megabytes of texture display at 12 to 15 frames per second (fps) on an SGI Onyx and at 3 to 8 fps (without texture) on Indigo 2 Extreme computers. In its networked mode, Rocinante synchronizes its local geometric model with remote simulators and sensory systems by monitoring data transmitted through UDP packets. Rocinante`s scalability and performance make it an ideal VCC tool. Users throughout the country can monitor robot motions and the thinking behind their motion planners and simulators.« less
Mishina, Masahiro; Senda, Michio; Kiyosawa, Motohiro; Ishiwata, Kiichi; De Volder, Anne G; Nakano, Hideki; Toyama, Hinako; Oda, Kei-ichi; Kimura, Yuichi; Ishii, Kenji; Sasaki, Touru; Ohyama, Masashi; Komaba, Yuichi; Kobayashi, Shirou; Kitamura, Shin; Katayama, Yasuo
2003-05-01
Before the completion of visual development, visual deprivation impairs synaptic elimination in the visual cortex. The purpose of this study was to determine whether the distribution of central benzodiazepine receptor (BZR) is also altered in the visual cortex in subjects with early-onset blindness. Positron emission tomography was carried out with [(15)O]water and [(11)C]flumazenil on six blind subjects and seven sighted controls at rest. We found that the CBF was significantly higher in the visual cortex for the early-onset blind subjects than for the sighted control subjects. However, there was no significant difference in the BZR distribution in the visual cortex for the subject with early-onset blindness than for the sighted control subjects. These results demonstrated that early visual deprivation does not affect the distribution of GABA(A) receptors in the visual cortex with the sensitivity of our measurements. Synaptic elimination may be independent of visual experience in the GABAergic system of the human visual cortex during visual development.
Handa, T; Ishikawa, H; Shimizu, K; Kawamura, R; Nakayama, H; Sawada, K
2009-11-01
Virtual reality has recently been highlighted as a promising medium for visual presentation and entertainment. A novel apparatus for testing binocular visual function using a hemispherical visual display system, 'CyberDome', has been developed and tested. Subjects comprised 40 volunteers (mean age, 21.63 years) with corrected visual acuity of -0.08 (LogMAR) or better, and stereoacuity better than 100 s of arc on the Titmus stereo test. Subjects were able to experience visual perception like being surrounded by visual images, a feature of the 'CyberDome' hemispherical visual display system. Visual images to the right and left eyes were projected and superimposed on the dome screen, allowing test images to be seen independently by each eye using polarizing glasses. The hemispherical visual display was 1.4 m in diameter. Three test parameters were evaluated: simultaneous perception (subjective angle of strabismus), motor fusion amplitude (convergence and divergence), and stereopsis (binocular disparity at 1260, 840, and 420 s of arc). Testing was performed in volunteer subjects with normal binocular vision, and results were compared with those using a major amblyoscope. Subjective angle of strabismus and motor fusion amplitude showed a significant correlation between our test and the major amblyoscope. All subjects could perceive the stereoscopic target with a binocular disparity of 480 s of arc. Our novel apparatus using the CyberDome, a hemispherical visual display system, was able to quantitatively evaluate binocular function. This apparatus offers clinical promise in the evaluation of binocular function.
A comparative psychophysical approach to visual perception in primates.
Matsuno, Toyomi; Fujita, Kazuo
2009-04-01
Studies on the visual processing of primates, which have well developed visual systems, provide essential information about the perceptual bases of their higher-order cognitive abilities. Although the mechanisms underlying visual processing are largely shared between human and nonhuman primates, differences have also been reported. In this article, we review psychophysical investigations comparing the basic visual processing that operates in human and nonhuman species, and discuss the future contributions potentially deriving from such comparative psychophysical approaches to primate minds.
Daniel, Lorias Espinoza; Tapia, Fernando Montes; Arturo, Minor Martínez; Ricardo, Ordorica Flores
2014-12-01
The ability to handle and adapt to the visual perspectives generated by angled laparoscopes is crucial for skilled laparoscopic surgery. However, the control of the visual work space depends on the ability of the operator of the camera, who is often not the most experienced member of the surgical team. Here, we present a simple, low-cost option for surgical training that challenges the learner with static and dynamic visual perspectives at 30 degrees using a system that emulates the angled laparoscope. A system was developed using a low-cost camera and readily available materials to emulate the angled laparoscope. Nine participants undertook 3 tasks to test spatial adaptation to the static and dynamic visual perspectives at 30 degrees. Completing each task to a predefined satisfactory level ensured precision of execution of the tasks. Associated metrics (time and error rate) were recorded, and the performance of participants were determined. A total of 450 repetitions were performed by 9 residents at various stages of training. All the tasks were performed with a visual perspective of 30 degrees using the system. Junior residents were more proficient than senior residents. This system is a viable and low-cost alternative for developing the basic psychomotor skills necessary for the handling and adaptation to visual perspectives of 30 degrees, without depending on a laparoscopic tower, in junior residents. More advanced skills may then be acquired by other means, such as in the operating theater or through clinical experience.
The Visual Geophysical Exploration Environment: A Multi-dimensional Scientific Visualization
NASA Astrophysics Data System (ADS)
Pandya, R. E.; Domenico, B.; Murray, D.; Marlino, M. R.
2003-12-01
The Visual Geophysical Exploration Environment (VGEE) is an online learning environment designed to help undergraduate students understand fundamental Earth system science concepts. The guiding principle of the VGEE is the importance of hands-on interaction with scientific visualization and data. The VGEE consists of four elements: 1) an online, inquiry-based curriculum for guiding student exploration; 2) a suite of El Nino-related data sets adapted for student use; 3) a learner-centered interface to a scientific visualization tool; and 4) a set of concept models (interactive tools that help students understand fundamental scientific concepts). There are two key innovations featured in this interactive poster session. One is the integration of concept models and the visualization tool. Concept models are simple, interactive, Java-based illustrations of fundamental physical principles. We developed eight concept models and integrated them into the visualization tool to enable students to probe data. The ability to probe data using a concept model addresses the common problem of transfer: the difficulty students have in applying theoretical knowledge to everyday phenomenon. The other innovation is a visualization environment and data that are discoverable in digital libraries, and installed, configured, and used for investigations over the web. By collaborating with the Integrated Data Viewer developers, we were able to embed a web-launchable visualization tool and access to distributed data sets into the online curricula. The Thematic Real-time Environmental Data Distributed Services (THREDDS) project is working to provide catalogs of datasets that can be used in new VGEE curricula under development. By cataloging this curricula in the Digital Library for Earth System Education (DLESE), learners and educators can discover the data and visualization tool within a framework that guides their use.
NASA Astrophysics Data System (ADS)
Nathan Harris, E.; Morgenthaler, George W.
2004-07-01
Beginning in 1995, a team of 3-D engineering visualization experts assembled at the Lockheed Martin Space Systems Company and began to develop innovative virtual prototyping simulation tools for performing ground processing and real-time visualization of design and planning of aerospace missions. At the University of Colorado, a team of 3-D visualization experts also began developing the science of 3-D visualization and immersive visualization at the newly founded British Petroleum (BP) Center for visualization, which began operations in October, 2001. BP acquired ARCO in the year 2000 and awarded the 3-D flexible IVE developed by ARCO (beginning in 1990) to the University of Colorado, CU, the winner in a competition among 6 Universities. CU then hired Dr. G. Dorn, the leader of the ARCO team as Center Director, and the other experts to apply 3-D immersive visualization to aerospace and to other University Research fields, while continuing research on surface interpretation of seismic data and 3-D volumes. This paper recounts further progress and outlines plans in Aerospace applications at Lockheed Martin and CU.
Jones, P H; Shakdher, S; Singh, P
2017-04-01
Salient findings and interpretations from the canimpact clinical cancer research study are visually represented in two synthesis maps for the purpose of communicating an integrated presentation of the study to clinical cancer researchers and policymakers. Synthesis maps integrate evidence and expertise into a visual narrative for knowledge translation and communication. A clinical system synthesis map represents the current Canadian primary care and cancer practice systems, proposed as a visual knowledge translation from the mixed-methods canimpact study to inform Canadian clinical research, policy, and practice discourses. Two synthesis maps, drawn together from multiple canimpact investigations and sources, were required to articulate critical differences between the clinical system and patient perspectives. The synthesis map of Canada-wide clinical cancer systems illustrates the relationships between primary care and the full cancer continuum. A patient-centred map was developed to represent the cancer (and primary care) journeys as experienced by breast and colorectal cancer patients.
Exploratory Climate Data Visualization and Analysis Using DV3D and UVCDAT
NASA Technical Reports Server (NTRS)
Maxwell, Thomas
2012-01-01
Earth system scientists are being inundated by an explosion of data generated by ever-increasing resolution in both global models and remote sensors. Advanced tools for accessing, analyzing, and visualizing very large and complex climate data are required to maintain rapid progress in Earth system research. To meet this need, NASA, in collaboration with the Ultra-scale Visualization Climate Data Analysis Tools (UVCOAT) consortium, is developing exploratory climate data analysis and visualization tools which provide data analysis capabilities for the Earth System Grid (ESG). This paper describes DV3D, a UV-COAT package that enables exploratory analysis of climate simulation and observation datasets. OV3D provides user-friendly interfaces for visualization and analysis of climate data at a level appropriate for scientists. It features workflow inte rfaces, interactive 40 data exploration, hyperwall and stereo visualization, automated provenance generation, and parallel task execution. DV30's integration with CDAT's climate data management system (COMS) and other climate data analysis tools provides a wide range of high performance climate data analysis operations. DV3D expands the scientists' toolbox by incorporating a suite of rich new exploratory visualization and analysis methods for addressing the complexity of climate datasets.
Self-development of visual space perception by learning from the hand
NASA Astrophysics Data System (ADS)
Chung, Jae-Moon; Ohnishi, Noboru
1998-10-01
Animals have been considered to develop ability for interpreting images captured on their retina by themselves gradually from their birth. For this they do not need external supervisor. We think that the visual function is obtained together with the development of hand reaching and grasping operations which are executed by active interaction with environment. On the viewpoint of hand teaches eye, this paper shows how visual space perception is developed in a simulated robot. The robot has simplified human-like structure used for hand-eye coordination. From the experimental results it may be possible to validate the method to describe how visual space perception of biological systems is developed. In addition the description gives a way to self-calibrate the vision of intelligent robot based on learn by doing manner without external supervision.
Classroom Demonstration of the Visual Effects of Eye Diseases
Raphail, Ann-Marie; Bach, Emily C.; Hallock, Robert M.
2014-01-01
An understanding of the visual system is a fundamental aspect of many neuroscience and psychology courses. These classes often cover a variety of visual diseases that are correlated with the anatomy of the visual system, e.g., cataracts are caused by a clouding of the lens. Here, we describe an easy way to modify standard laboratory glasses/goggles to simulate the various perceptual deficits that accompany vision disorders such as astigmatism, cataracts, diabetic retinopathy, glaucoma, optic neuritis, posterior vitreous detachment, and retinitis pigmentosa. For example, when teaching about cataracts, students can put on glasses that mimic how severe cataracts affect one’s vision. Using the glasses will allow students to draw connections between the disorder, its perceptual deficits, and the underlying anatomy. We also discuss floaters in the eye and provide an easy method to allow students to detect their own floaters. Together, these demonstrations make for a more dynamic and interactive class on the visual system that will better link diseases of the eye to anatomy and perception, and allow undergraduate students to develop a better understanding of the visual system as a whole. PMID:24693262
Integrating visual learning within a model-based ATR system
NASA Astrophysics Data System (ADS)
Carlotto, Mark; Nebrich, Mark
2017-05-01
Automatic target recognition (ATR) systems, like human photo-interpreters, rely on a variety of visual information for detecting, classifying, and identifying manmade objects in aerial imagery. We describe the integration of a visual learning component into the Image Data Conditioner (IDC) for target/clutter and other visual classification tasks. The component is based on an implementation of a model of the visual cortex developed by Serre, Wolf, and Poggio. Visual learning in an ATR context requires the ability to recognize objects independent of location, scale, and rotation. Our method uses IDC to extract, rotate, and scale image chips at candidate target locations. A bootstrap learning method effectively extends the operation of the classifier beyond the training set and provides a measure of confidence. We show how the classifier can be used to learn other features that are difficult to compute from imagery such as target direction, and to assess the performance of the visual learning process itself.
Development of voice navigation system for the visually impaired by using IC tags.
Takatori, Norihiko; Nojima, Kengo; Matsumoto, Masashi; Yanashima, Kenji; Magatani, Kazushige
2006-01-01
There are about 300,000 visually impaired persons in Japan. Most of them are old persons and, cannot become skillful in using a white cane, even if they make effort to learn how to use a white cane. Therefore, some guiding system that supports the independent activities of the visually impaired are required. In this paper, we will describe about a developed white cane system that supports the independent walking of the visually impaired in the indoor space. This system is composed of colored navigation lines that include IC tags and an intelligent white cane that has a navigation computer. In our system colored navigation lines that are put on the floor of the target space from the start point to the destination and IC tags that are set at the landmark point are used for indication of the route to the destination. The white cane has a color sensor, an IC tag transceiver and a computer system that includes a voice processor. This white cane senses the navigation line that has target color by a color sensor. When a color sensor finds the target color, the white cane informs a white cane user that he/she is on the navigation line by vibration. So, only following this vibration, the user can reach the destination. However, at some landmark points, guidance is necessary. At these points, an IC tag is set under the navigation line. The cane makes communication with the tag and informs the user about the land mark pint by pre recorded voice. Ten normal subjects who were blindfolded were tested with our developed system. All of them could walk along navigation line. And the IC tag information system worked well. Therefore, we have concluded that our system will be a very valuable one to support activities of the visually impaired.
Image pattern recognition supporting interactive analysis and graphical visualization
NASA Technical Reports Server (NTRS)
Coggins, James M.
1992-01-01
Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.
A prototype feature system for feature retrieval using relationships
Choi, J.; Usery, E.L.
2009-01-01
Using a feature data model, geographic phenomena can be represented effectively by integrating space, theme, and time. This paper extends and implements a feature data model that supports query and visualization of geographic features using their non-spatial and temporal relationships. A prototype feature-oriented geographic information system (FOGIS) is then developed and storage of features named Feature Database is designed. Buildings from the U.S. Marine Corps Base, Camp Lejeune, North Carolina and subways in Chicago, Illinois are used to test the developed system. The results of the applications show the strength of the feature data model and the developed system 'FOGIS' when they utilize non-spatial and temporal relationships in order to retrieve and visualize individual features.
Conceptual design study for an advanced cab and visual system, volume 1
NASA Technical Reports Server (NTRS)
Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.
1980-01-01
A conceptual design study was conducted to define requirements for an advanced cab and visual system. The rotorcraft system integration simulator is for engineering studies in the area of mission associated vehicle handling qualities. Principally a technology survey and assessment of existing and proposed simulator visual display systems, image generation systems, modular cab designs, and simulator control station designs were performed and are discussed. State of the art survey data were used to synthesize a set of preliminary visual display system concepts of which five candidate display configurations were selected for further evaluation. Basic display concepts incorporated in these configurations included: real image projection, using either periscopes, fiber optic bundles, or scanned laser optics; and virtual imaging with helmet mounted displays. These display concepts were integrated in the study with a simulator cab concept employing a modular base for aircraft controls, crew seating, and instrumentation (or other) displays. A simple concept to induce vibration in the various modules was developed and is described. Results of evaluations and trade offs related to the candidate system concepts are given, along with a suggested weighting scheme for numerically comparing visual system performance characteristics.
The potential of the second sight system bionic eye implant for partial sight restoration.
Luo, Yvonne Hsu-Lin; Fukushige, Eka; Da Cruz, Lyndon
2016-07-01
Second Sight System bionic eye implant, a commercially available visual prosthesis developed by Second Sight Medical Products, has been implanted in over 125 patients with outer retinal dystrophies such as retinitis pigmentosa. The system has gained regulatory approval in both the USA and Europe, and aims to restore vision by electrical stimulation of the nerve cells of the inner retina. In this review, we present the safety profile of this implant from the international clinical trial and discuss the nature and levels of improvement in visual function achieved by patients implanted with the system. Expert commentary: Future developments for the system will be explored following the discussion of the current usefulness of the device, its limitation as and the areas in which further development is necessary.
Software-Based Visual Loan Calculator For Banking Industry
NASA Astrophysics Data System (ADS)
Isizoh, A. N.; Anazia, A. E.; Okide, S. O. 3; Onyeyili, T. I.; Okwaraoka, C. A. P.
2012-03-01
industry is very necessary in modern day banking system using many design techniques for security reasons. This paper thus presents the software-based design and implementation of a Visual Loan calculator for banking industry using Visual Basic .Net (VB.Net). The fundamental approach to this is to develop a Graphical User Interface (GUI) using VB.Net operating tools, and then developing a working program which calculates the interest of any loan obtained. The VB.Net programming was done, implemented and the software proved satisfactory.
NASA Astrophysics Data System (ADS)
Schiltz, Holly Kristine
Visualization skills are important in learning chemistry, as these skills have been shown to correlate to high ability in problem solving. Students' understanding of visual information and their problem-solving processes may only ever be accessed indirectly: verbalization, gestures, drawings, etc. In this research, deconstruction of complex visual concepts was aligned with the promotion of students' verbalization of visualized ideas to teach students to solve complex visual tasks independently. All instructional tools and teaching methods were developed in accordance with the principles of the theoretical framework, the Modeling Theory of Learning: deconstruction of visual representations into model components, comparisons to reality, and recognition of students' their problemsolving strategies. Three physical model systems were designed to provide students with visual and tangible representations of chemical concepts. The Permanent Reflection Plane Demonstration provided visual indicators that students used to support or invalidate the presence of a reflection plane. The 3-D Coordinate Axis system provided an environment that allowed students to visualize and physically enact symmetry operations in a relevant molecular context. The Proper Rotation Axis system was designed to provide a physical and visual frame of reference to showcase multiple symmetry elements that students must identify in a molecular model. Focus groups of students taking Inorganic chemistry working with the physical model systems demonstrated difficulty documenting and verbalizing processes and descriptions of visual concepts. Frequently asked student questions were classified, but students also interacted with visual information through gestures and model manipulations. In an effort to characterize how much students used visualization during lecture or recitation, we developed observation rubrics to gather information about students' visualization artifacts and examined the effect instructors' modeled visualization artifacts had on students. No patterns emerged from the passive observation of visualization artifacts in lecture or recitation, but the need to elicit visual information from students was made clear. Deconstruction proved to be a valuable method for instruction and assessment of visual information. Three strategies for using deconstruction in teaching were distilled from the lessons and observations of the student focus groups: begin with observations of what is given in an image and what it's composed of, identify the relationships between components to find additional operations in different environments about the molecule, and deconstructing steps of challenging questions can reveal mistakes. An intervention was developed to teach students to use deconstruction and verbalization to analyze complex visualization tasks and employ the principles of the theoretical framework. The activities were scaffolded to introduce increasingly challenging concepts to students, but also support them as they learned visually demanding chemistry concepts. Several themes were observed in the analysis of the visualization activities. Students used deconstruction by documenting which parts of the images were useful for interpretation of the visual. Students identified valid patterns and rules within the images, which signified understanding of arrangement of information presented in the representation. Successful strategy communication was identified when students documented personal strategies that allowed them to complete the activity tasks. Finally, students demonstrated the ability to extend symmetry skills to advanced applications they had not previously seen. This work shows how the use of deconstruction and verbalization may have a great impact on how students master difficult topics and combined, they offer students a powerful strategy to approach visually demanding chemistry problems and to the instructor a unique insight to mentally constructed strategies.
Models Extracted from Text for System-Software Safety Analyses
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2010-01-01
This presentation describes extraction and integration of requirements information and safety information in visualizations to support early review of completeness, correctness, and consistency of lengthy and diverse system safety analyses. Software tools have been developed and extended to perform the following tasks: 1) extract model parts and safety information from text in interface requirements documents, failure modes and effects analyses and hazard reports; 2) map and integrate the information to develop system architecture models and visualizations for safety analysts; and 3) provide model output to support virtual system integration testing. This presentation illustrates the methods and products with a rocket motor initiation case.
Equalizer: a scalable parallel rendering framework.
Eilemann, Stefan; Makhinya, Maxim; Pajarola, Renato
2009-01-01
Continuing improvements in CPU and GPU performances as well as increasing multi-core processor and cluster-based parallelism demand for flexible and scalable parallel rendering solutions that can exploit multipipe hardware accelerated graphics. In fact, to achieve interactive visualization, scalable rendering systems are essential to cope with the rapid growth of data sets. However, parallel rendering systems are non-trivial to develop and often only application specific implementations have been proposed. The task of developing a scalable parallel rendering framework is even more difficult if it should be generic to support various types of data and visualization applications, and at the same time work efficiently on a cluster with distributed graphics cards. In this paper we introduce a novel system called Equalizer, a toolkit for scalable parallel rendering based on OpenGL which provides an application programming interface (API) to develop scalable graphics applications for a wide range of systems ranging from large distributed visualization clusters and multi-processor multipipe graphics systems to single-processor single-pipe desktop machines. We describe the system architecture, the basic API, discuss its advantages over previous approaches, present example configurations and usage scenarios as well as scalability results.
Challenges in Visual Analysis of Ensembles
Crossno, Patricia
2018-04-12
Modeling physical phenomena through computational simulation increasingly relies on generating a collection of related runs, known as an ensemble. In this paper, we explore the challenges we face in developing analysis and visualization systems for large and complex ensemble data sets, which we seek to understand without having to view the results of every simulation run. Implementing approaches and ideas developed in response to this goal, we demonstrate the analysis of a 15K run material fracturing study using Slycat, our ensemble analysis system.
Challenges in Visual Analysis of Ensembles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crossno, Patricia
Modeling physical phenomena through computational simulation increasingly relies on generating a collection of related runs, known as an ensemble. In this paper, we explore the challenges we face in developing analysis and visualization systems for large and complex ensemble data sets, which we seek to understand without having to view the results of every simulation run. Implementing approaches and ideas developed in response to this goal, we demonstrate the analysis of a 15K run material fracturing study using Slycat, our ensemble analysis system.
ERIC Educational Resources Information Center
Phillips, Craig L.
2011-01-01
Global Positioning Systems' (GPS) technology is available for individuals with visual impairments to use in wayfinding and address Lowenfeld's "three limitations of blindness." The considerations and methodologies for teaching GPS usage have developed over time as GPS information and devices have been integrated into orientation and mobility…
Moderate perinatal thyroid hormone insufficiency alters visual system function in adult rats.
Boyes, William K; Degn, Laura; George, Barbara Jane; Gilbert, Mary E
2018-04-21
Thyroid hormone (TH) is critical for many aspects of neurodevelopment and can be disrupted by a variety of environmental contaminants. Sensory systems, including audition and vision are vulnerable to TH insufficiencies, but little data are available on visual system development at less than severe levels of TH deprivation. The goal of the current experiments was to explore dose-response relations between graded levels of TH insufficiency during development and the visual function of adult offspring. Pregnant Long Evans rats received 0 or 3 ppm (Experiment 1), or 0, 1, 2, or 3 ppm (Experiment 2) of propylthiouracil (PTU), an inhibitor of thyroid hormone synthesis, in drinking water from gestation day (GD) 6 to postnatal day (PN) 21. Treatment with PTU caused dose-related reductions of serum T4, with recovery on termination of exposure, and euthyroidism by the time of visual function testing. Tests of retinal (electroretinograms; ERGs) and visual cortex (visual evoked potentials; VEPs) function were assessed in adult offspring. Dark-adapted ERG a-waves, reflecting rod photoreceptors, were increased in amplitude by PTU. Light-adapted green flicker ERGs, reflecting M-cone photoreceptors, were reduced by PTU exposure. UV-flicker ERGs, reflecting S-cones, were not altered. Pattern-elicited VEPs were significantly reduced by 2 and 3 ppm PTU across a range of stimulus contrast values. The slope of VEP amplitude-log contrast functions was reduced by PTU, suggesting impaired visual contrast gain. Visual contrast gain primarily reflects function of visual cortex, and is responsible for adjusting sensitivity of perceptual mechanisms in response to changing visual scenes. The results indicate that moderate levels of pre-and post-natal TH insufficiency led to alterations in visual function of adult rats, including both retinal and visual cortex sites of dysfunction. Copyright © 2018. Published by Elsevier B.V.
Härer, Andreas; Torres-Dowdall, Julián; Meyer, Axel
2017-10-01
Colonization of novel habitats is typically challenging to organisms. In the initial stage after colonization, approximation to fitness optima in the new environment can occur by selection acting on standing genetic variation, modification of developmental patterns or phenotypic plasticity. Midas cichlids have recently colonized crater Lake Apoyo from great Lake Nicaragua. The photic environment of crater Lake Apoyo is shifted towards shorter wavelengths compared to great Lake Nicaragua and Midas cichlids from both lakes differ in visual sensitivity. We investigated the contribution of ontogeny and phenotypic plasticity in shaping the visual system of Midas cichlids after colonizing this novel photic environment. To this end, we measured cone opsin expression both during development and after experimental exposure to different light treatments. Midas cichlids from both lakes undergo ontogenetic changes in cone opsin expression, but visual sensitivity is consistently shifted towards shorter wavelengths in crater lake fish, which leads to a paedomorphic retention of their visual phenotype. This shift might be mediated by lower levels of thyroid hormone in crater lake Midas cichlids (measured indirectly as dio2 and dio3 gene expression). Exposing fish to different light treatments revealed that cone opsin expression is phenotypically plastic in both species during early development, with short and long wavelength light slowing or accelerating ontogenetic changes, respectively. Notably, this plastic response was maintained into adulthood only in the derived crater lake Midas cichlids. We conclude that the rapid evolution of Midas cichlids' visual system after colonizing crater Lake Apoyo was mediated by a shift in visual sensitivity during ontogeny and was further aided by phenotypic plasticity during development. © 2017 John Wiley & Sons Ltd.
Tachistoscopic exposure and masking of real three-dimensional scenes
Pothier, Stephen; Philbeck, John; Chichka, David; Gajewski, Daniel A.
2010-01-01
Although there are many well-known forms of visual cues specifying absolute and relative distance, little is known about how visual space perception develops at small temporal scales. How much time does the visual system require to extract the information in the various absolute and relative distance cues? In this article, we describe a system that may be used to address this issue by presenting brief exposures of real, three-dimensional scenes, followed by a masking stimulus. The system is composed of an electronic shutter (a liquid crystal smart window) for exposing the stimulus scene, and a liquid crystal projector coupled with an electromechanical shutter for presenting the masking stimulus. This system can be used in both full- and reduced-cue viewing conditions, under monocular and binocular viewing, and at distances limited only by the testing space. We describe a configuration that may be used for studying the microgenesis of visual space perception in the context of visually directed walking. PMID:19182129
Visual Hybrid Development Learning System (VHDLS) Framework for Children with Autism
ERIC Educational Resources Information Center
Banire, Bilikis; Jomhari, Nazean; Ahmad, Rodina
2015-01-01
The effect of education on children with autism serves as a relative cure for their deficits. As a result of this, they require special techniques to gain their attention and interest in learning as compared to typical children. Several studies have shown that these children are visual learners. In this study, we proposed a Visual Hybrid…
Retinal projections in the electric catfish (Malapterurus electricus).
Ebbesson, S O; O'Donnel, D
1980-01-01
The poorly developed visual system of the electric catfish was studied with silver-degeneration methods. Retinal projections were entirely contralateral to the hypothalamic optic nucleus, the lateral geniculate nucleus, the dorsomedial optic nucleus, the pretectal nuclei including the cortical nucleus, and the optic tectum. The small size and lack of differentiation of the visual system in the electric catfish suggest a relatively small role for this sensory system in this species.
NASA Astrophysics Data System (ADS)
Balbin, Jessie R.; Dela Cruz, Jennifer C.; Camba, Clarisse O.; Gozo, Angelo D.; Jimenez, Sheena Mariz B.; Tribiana, Aivje C.
2017-06-01
Acne vulgaris, commonly called as acne, is a skin problem that occurs when oil and dead skin cells clog up in a person's pores. This is because hormones change which makes the skin oilier. The problem is people really do not know the real assessment of sensitivity of their skin in terms of fluid development on their faces that tends to develop acne vulgaris, thus having more complications. This research aims to assess Acne Vulgaris using luminescent visualization system through optical imaging and integration of image processing algorithms. Specifically, this research aims to design a prototype for facial fluid analysis using luminescent visualization system through optical imaging and integration of fluorescent imaging system, and to classify different facial fluids present in each person. Throughout the process, some structures and layers of the face will be excluded, leaving only a mapped facial structure with acne regions. Facial fluid regions are distinguished from the acne region as they are characterized differently.
A Graphical Operator Interface for a Telerobotic Inspection System
NASA Technical Reports Server (NTRS)
Kim, W. S.; Tso, K. S.; Hayati, S.
1993-01-01
Operator interface has recently emerged as an important element for efficient and safe operatorinteractions with the telerobotic system. Recent advances in graphical user interface (GUI) andgraphics/video merging technologies enable development of more efficient, flexible operatorinterfaces. This paper describes an advanced graphical operator interface newly developed for aremote surface inspection system at Jet Propulsion Laboratory. The interface has been designed sothat remote surface inspection can be performed by a single operator with an integrated robot controland image inspection capability. It supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.
Strabismus and the Oculomotor System: Insights from Macaque Models
Das, Vallabh E.
2017-01-01
Disrupting binocular vision in infancy leads to strabismus and oftentimes to a variety of associated visual sensory deficits and oculomotor abnormalities. Investigation of this disorder has been aided by the development of various animal models, each of which has advantages and disadvantages. In comparison to studies of binocular visual responses in cortical structures, investigations of neural oculomotor structures that mediate the misalignment and abnormalities of eye movements have been more recent, and these studies have shown that different brain areas are intimately involved in driving several aspects of the strabismic condition, including horizontal misalignment, dissociated deviations, A and V patterns of strabismus, disconjugate eye movements, nystagmus, and fixation switch. The responses of cells in visual and oculomotor areas that potentially drive the sensory deficits and also eye alignment and eye movement abnormalities follow a general theme of disrupted calibration, lower sensitivity, and poorer specificity compared with the normally developed visual oculomotor system. PMID:28532347
Development of visual evoked potentials in neonates. A study using light emitting diode goggles.
Chin, K C; Taylor, M J; Menzies, R; Whyte, H
1985-01-01
We used a signal averager with light emitting diode goggles as the photostimulator to study the development of the visual evoked potentials in 40 normal neonates of between 23 and 42 weeks' gestation. All except two infants of less than 24 weeks' gestation had replicable visual evoked potentials. A negative peak of latency (mean (SD), 308 (21) msec) was present in all infants, but the development of the primary positive peak depended on maturity. Only infants of 37 weeks or more had a consistent positive peak of latency (mean (SD), 220 (22) msec). The practical simplicity and reliability of this technique has distinct advantages over previous conventional recording systems. Neonatal visual evoked potentials are shown to change with maturity. PMID:4091582
Interactive Visualization of Complex Seismic Data and Models Using Bokeh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Chengping; Ammon, Charles J.; Maceira, Monica
Visualizing multidimensional data and models becomes more challenging as the volume and resolution of seismic data and models increase. But thanks to the development of powerful and accessible computer systems, a model web browser can be used to visualize complex scientific data and models dynamically. In this paper, we present four examples of seismic model visualization using an open-source Python package Bokeh. One example is a visualization of a surface-wave dispersion data set, another presents a view of three-component seismograms, and two illustrate methods to explore a 3D seismic-velocity model. Unlike other 3D visualization packages, our visualization approach has amore » minimum requirement on users and is relatively easy to develop, provided you have reasonable programming skills. Finally, utilizing familiar web browsing interfaces, the dynamic tools provide us an effective and efficient approach to explore large data sets and models.« less
Interactive Visualization of Complex Seismic Data and Models Using Bokeh
Chai, Chengping; Ammon, Charles J.; Maceira, Monica; ...
2018-02-14
Visualizing multidimensional data and models becomes more challenging as the volume and resolution of seismic data and models increase. But thanks to the development of powerful and accessible computer systems, a model web browser can be used to visualize complex scientific data and models dynamically. In this paper, we present four examples of seismic model visualization using an open-source Python package Bokeh. One example is a visualization of a surface-wave dispersion data set, another presents a view of three-component seismograms, and two illustrate methods to explore a 3D seismic-velocity model. Unlike other 3D visualization packages, our visualization approach has amore » minimum requirement on users and is relatively easy to develop, provided you have reasonable programming skills. Finally, utilizing familiar web browsing interfaces, the dynamic tools provide us an effective and efficient approach to explore large data sets and models.« less
People-oriented Information Visualization Design
NASA Astrophysics Data System (ADS)
Chen, Zhiyong; Zhang, Bolun
2018-04-01
In the 21st century with rapid development, in the wake of the continuous progress of science and technology, human society enters the information era and the era of big data, and the lifestyle and aesthetic system also change accordingly, so the emerging field of information visualization is increasingly popular. Information visualization design is the process of visualizing all kinds of tedious information data, so as to quickly accept information and save time-cost. Along with the development of the process of information visualization, information design, also becomes hotter and hotter, and emotional design, people-oriented design is an indispensable part of in the design of information. This paper probes information visualization design through emotional analysis of information design based on the social context of people-oriented experience from the perspective of art design. Based on the three levels of emotional information design: instinct level, behavior level and reflective level research, to explore and discuss information visualization design.
Common Ground: An Interactive Visual Exploration and Discovery for Complex Health Data
2014-04-01
annotate other ontologies for the visual interface client. Finally, we are actively working on software development of both a backend server and the...the following infrastructure and resources. For the development and management of the ontologies, we installed a framework consisting of a server...that is being developed by Google. Using these 9 technologies, we developed an HTML5 client that runs on Windows, Mac OSX, Linux and mobile systems
Stronger Neural Dynamics Capture Changes in Infants' Visual Working Memory Capacity over Development
ERIC Educational Resources Information Center
Perone, Sammy; Simmering, Vanessa R.; Spencer, John P.
2011-01-01
Visual working memory (VWM) capacity has been studied extensively in adults, and methodological advances have enabled researchers to probe capacity limits in infancy using a preferential looking paradigm. Evidence suggests that capacity increases rapidly between 6 and 10 months of age. To understand how the VWM system develops, we must understand…
Software For Graphical Representation Of A Network
NASA Technical Reports Server (NTRS)
Mcallister, R. William; Mclellan, James P.
1993-01-01
System Visualization Tool (SVT) computer program developed to provide systems engineers with means of graphically representing networks. Generates diagrams illustrating structures and states of networks defined by users. Provides systems engineers powerful tool simplifing analysis of requirements and testing and maintenance of complex software-controlled systems. Employs visual models supporting analysis of chronological sequences of requirements, simulation data, and related software functions. Applied to pneumatic, hydraulic, and propellant-distribution networks. Used to define and view arbitrary configurations of such major hardware components of system as propellant tanks, valves, propellant lines, and engines. Also graphically displays status of each component. Advantage of SVT: utilizes visual cues to represent configuration of each component within network. Written in Turbo Pascal(R), version 5.0.
Transformation of an uncertain video search pipeline to a sketch-based visual analytics loop.
Legg, Philip A; Chung, David H S; Parry, Matthew L; Bown, Rhodri; Jones, Mark W; Griffiths, Iwan W; Chen, Min
2013-12-01
Traditional sketch-based image or video search systems rely on machine learning concepts as their core technology. However, in many applications, machine learning alone is impractical since videos may not be semantically annotated sufficiently, there may be a lack of suitable training data, and the search requirements of the user may frequently change for different tasks. In this work, we develop a visual analytics systems that overcomes the shortcomings of the traditional approach. We make use of a sketch-based interface to enable users to specify search requirement in a flexible manner without depending on semantic annotation. We employ active machine learning to train different analytical models for different types of search requirements. We use visualization to facilitate knowledge discovery at the different stages of visual analytics. This includes visualizing the parameter space of the trained model, visualizing the search space to support interactive browsing, visualizing candidature search results to support rapid interaction for active learning while minimizing watching videos, and visualizing aggregated information of the search results. We demonstrate the system for searching spatiotemporal attributes from sports video to identify key instances of the team and player performance.
Development of the navigation system for visually impaired.
Harada, Tetsuya; Kaneko, Yuki; Hirahara, Yoshiaki; Yanashima, Kenji; Magatani, Kazushige
2004-01-01
A white cane is a typical support instrument for the visually impaired. They use a white cane for the detection of obstacles while walking. So, the area where they have a mental map, they can walk using white cane without the help of others. However, they cannot walk independently in the unknown area, even if they use a white cane. Because, a white cane is a detecting device for obstacles and not a navigation device for their correct route. Now, we are developing the navigation system for the visually impaired which uses indoor space. In Japan, sometimes colored guide lines to the destination is used for a normal person. These lines are attached on the floor, we can reach the destination, if we walk along one of these line. In our system, a developed new white cane senses one colored guide line, and make notice to an user by vibration. This system recognizes the line of the color stuck on the floor by the optical sensor attached in the white cane. And in order to guide still more smoothly, infrared beacons (optical beacon), which can perform voice guidance, are also used.
Distributed visualization framework architecture
NASA Astrophysics Data System (ADS)
Mishchenko, Oleg; Raman, Sundaresan; Crawfis, Roger
2010-01-01
An architecture for distributed and collaborative visualization is presented. The design goals of the system are to create a lightweight, easy to use and extensible framework for reasearch in scientific visualization. The system provides both single user and collaborative distributed environment. System architecture employs a client-server model. Visualization projects can be synchronously accessed and modified from different client machines. We present a set of visualization use cases that illustrate the flexibility of our system. The framework provides a rich set of reusable components for creating new applications. These components make heavy use of leading design patterns. All components are based on the functionality of a small set of interfaces. This allows new components to be integrated seamlessly with little to no effort. All user input and higher-level control functionality interface with proxy objects supporting a concrete implementation of these interfaces. These light-weight objects can be easily streamed across the web and even integrated with smart clients running on a user's cell phone. The back-end is supported by concrete implementations wherever needed (for instance for rendering). A middle-tier manages any communication and synchronization with the proxy objects. In addition to the data components, we have developed several first-class GUI components for visualization. These include a layer compositor editor, a programmable shader editor, a material editor and various drawable editors. These GUI components interact strictly with the interfaces. Access to the various entities in the system is provided by an AssetManager. The asset manager keeps track of all of the registered proxies and responds to queries on the overall system. This allows all user components to be populated automatically. Hence if a new component is added that supports the IMaterial interface, any instances of this can be used in the various GUI components that work with this interface. One of the main features is an interactive shader designer. This allows rapid prototyping of new visualization renderings that are shader-based and greatly accelerates the development and debug cycle.
SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications
Kalinin, Alexandr A.; Palanimalai, Selvam; Dinov, Ivo D.
2018-01-01
The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis. PMID:29630069
SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications.
Kalinin, Alexandr A; Palanimalai, Selvam; Dinov, Ivo D
2017-04-01
The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis.
Wilaiprasitporn, Theerawit; Yagi, Tohru
2015-01-01
This research demonstrates the orientation-modulated attention effect on visual evoked potential. We combined this finding with our previous findings about the motion-modulated attention effect and used the result to develop novel visual stimuli for a personal identification number (PIN) application based on a brain-computer interface (BCI) framework. An electroencephalography amplifier with a single electrode channel was sufficient for our application. A computationally inexpensive algorithm and small datasets were used in processing. Seven healthy volunteers participated in experiments to measure offline performance. Mean accuracy was 83.3% at 13.9 bits/min. Encouraged by these results, we plan to continue developing the BCI-based personal identification application toward real-time systems.
Human Factors in Virtual Reality Development
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Proffitt, Dennis R.; Null, Cynthia H. (Technical Monitor)
1995-01-01
This half-day tutorial will provide an overview of basic perceptual functioning as it relates to the design of virtual environment systems. The tutorial consists of three parts. First, basic issues in visual perception will be presented, including discussions of the visual sensations of brightness and color, and the visual perception of depth relationships in three-dimensional space (with a special emphasis on motion -specified depth). The second section will discuss the importance of conducting human-factors user studies and evaluations. Examples and suggestions on how best to get help with user studies will be provided. Finally, we will discuss how, by drawing on their complementary competencies, perceptual psychologists and computer engineers can work as a team to develop optimal VR systems, technologies, and techniques.
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2013-12-01
As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools developed within the light of these challenges.
[Automated anesthesia record system].
Zhu, Tao; Liu, Jin
2005-12-01
Based on Client/Server architecture, a software of automated anesthesia record system running under Windows operation system and networks has been developed and programmed with Microsoft Visual C++ 6.0, Visual Basic 6.0 and SQL Server. The system can deal with patient's information throughout the anesthesia. It can collect and integrate the data from several kinds of medical equipment such as monitor, infusion pump and anesthesia machine automatically and real-time. After that, the system presents the anesthesia sheets automatically. The record system makes the anesthesia record more accurate and integral and can raise the anesthesiologist's working efficiency.
The visual and functional impacts of astigmatism and its clinical management.
Read, Scott A; Vincent, Stephen J; Collins, Michael J
2014-05-01
To provide a comprehensive overview of research examining the impact of astigmatism on clinical and functional measures of vision, the short and longer term adaptations to astigmatism that occur in the visual system, and the currently available clinical options for the management of patients with astigmatism. The presence of astigmatism can lead to substantial reductions in visual performance in a variety of clinical vision measures and functional visual tasks. Recent evidence demonstrates that astigmatic blur results in short-term adaptations in the visual system that appear to reduce the perceived impact of astigmatism on vision. In the longer term, uncorrected astigmatism in childhood can also significantly impact on visual development, resulting in amblyopia. Astigmatism is also associated with the development of spherical refractive errors. Although the clinical correction of small magnitudes of astigmatism is relatively straightforward, the precise, reliable correction of astigmatism (particularly high astigmatism) can be challenging. A wide variety of refractive corrections are now available for the patient with astigmatism, including spectacle, contact lens and surgical options. Astigmatism is one of the most common refractive errors managed in clinical ophthalmic practice. The significant visual and functional impacts of astigmatism emphasise the importance of its reliable clinical management. With continued improvements in ocular measurement techniques and developments in a range of different refractive correction technologies, the future promises the potential for more precise and comprehensive correction options for astigmatic patients. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
A prototype system based on visual interactive SDM called VGC
NASA Astrophysics Data System (ADS)
Jia, Zelu; Liu, Yaolin; Liu, Yanfang
2009-10-01
In many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. Spatial data mining recently emerges from a number of real applications, such as real-estate marketing, urban planning, weather forecasting, medical image analysis, road traffic accident analysis, etc. It demands for efficient solutions for many new, expensive, and complicated problems. For spatial data mining of large data sets to be effective, it is also important to include humans in the data exploration process and combine their flexibility, creativity, and general knowledge with the enormous storage capacity and computational power of today's computers. Visual spatial data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the information and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper a visual interactive spatial data mining prototype system (visual geo-classify) based on VC++6.0 and MapObject2.0 are designed and developed, the basic algorithms of the spatial data mining is used decision tree and Bayesian networks, and data classify are used training and learning and the integration of the two to realize. The result indicates it's a practical and extensible visual interactive spatial data mining tool.
ERIC Educational Resources Information Center
Shute, Valerie J.; Graf, Edith Aurora; Hansen, Eric G.
2006-01-01
This report summarizes the design and development of an adaptive e-learning prototype for middle school mathematics for use with both sighted and visually disabled students. Adaptation refers to the system's ability to adjust itself to suit particular characteristics of the learner. The main parts of the report describe the system's theoretical…
NASA Astrophysics Data System (ADS)
Wu, Xiaofang; Jiang, Liushi
2011-02-01
Usually in the traditional science and technology information system, the only text and table form are used to manage the data, and the mathematic statistics method is applied to analyze the data. It lacks for the spatial analysis and management of data. Therefore, GIS technology is introduced to visualize and analyze the information data on science and technology industry. Firstly, by using the developed platform-microsoft visual studio 2005 and ArcGIS Engine, the information visualization system on science and technology industry based on GIS is built up, which implements various functions, such as data storage and management, inquiry, statistics, chart analysis, thematic map representation. It can show the change of science and technology information from the space and time axis intuitively. Then, the data of science and technology in Guangdong province are taken as experimental data and are applied to the system. And by considering the factors of humanities, geography and economics so on, the situation and change tendency of science and technology information of different regions are analyzed and researched, and the corresponding suggestion and method are brought forward in order to provide the auxiliary support for development of science and technology industry in Guangdong province.
Ray-based approach to integrated 3D visual communication
NASA Astrophysics Data System (ADS)
Naemura, Takeshi; Harashima, Hiroshi
2001-02-01
For a high sense of reality in the next-generation communications, it is very important to realize three-dimensional (3D) spatial media, instead of existing 2D image media. In order to comprehensively deal with a variety of 3D visual data formats, the authors first introduce the concept of "Integrated 3D Visual Communication," which reflects the necessity of developing a neutral representation method independent of input/output systems. Then, the following discussions are concentrated on the ray-based approach to this concept, in which any visual sensation is considered to be derived from a set of light rays. This approach is a simple and straightforward to the problem of how to represent 3D space, which is an issue shared by various fields including 3D image communications, computer graphics, and virtual reality. This paper mainly presents the several developments in this approach, including some efficient methods of representing ray data, a real-time video-based rendering system, an interactive rendering system based on the integral photography, a concept of virtual object surface for the compression of tremendous amount of data, and a light ray capturing system using a telecentric lens. Experimental results demonstrate the effectiveness of the proposed techniques.
Exomars VisLoc- The Visual Localisation System for the Exomars Rover
NASA Astrophysics Data System (ADS)
Ward, R.; Hamilton, W.; Silva, N.; Pereira, V.
2016-08-01
Maintaining accurate knowledge of the current position of vehicles on the surface of Mars is a considerable problem. The lack of an orbital GPS means that the absolute position of a rover at any instant is very difficult to determine, and with that it is difficult to accurately and safely plan hazard avoidance manoeuvres.Some on-board methods of determining the evolving POSE of a rover are well known, such as using wheel odometry to keep a log of the distance travelled. However there are associated problems - wheels can slip in the martial soil providing odometry readings which can mislead navigation algorithms. One solution to this is to use a visual localisation system, which uses cameras to determine the actual rover motion from images of the terrain. By measuring movement from the terrain an independent measure of the actual movement can be obtained to a high degree of accuracy.This paper presents the progress of the project to develop a the Visual Localisation system for the ExoMars rover (VisLoc). The core algorithmm used in the system is known as OVO (Oxford Visual Odometry), developed at the Mobile Robotics Group at the University of Oxford. Over a number of projects this system has been adapted from its original purpose (navigation systems for autonomous vehicles) to be a viable system for the unique challenges associated with extra-terrestrial use.
Location perception: the X-Files parable.
Prinzmetal, William
2005-01-01
Three aspects of visual object location were investigated: (1) how the visual system integrates information for locating objects, (2) how attention operates to affect location perception, and (3) how the visual system deals with locating an object when multiple objects are present. The theories were described in terms of a parable (the X-Files parable). Then, computer simulations were developed. Finally, predictions derived from the simulations were tested. In the scenario described in the parable, we ask how a system of detectors might locate an alien spaceship, how attention might be implemented in such a spaceship detection system, and how the presence of one spaceship might influence the location perception of another alien spaceship. Experiment 1 demonstrated that location information is integrated with a spatial average rule. In Experiment 2, this rule was applied to a more-samples theory of attention. Experiment 3 demonstrated how the integration rule could account for various visual illusions.
On Assisting a Visual-Facial Affect Recognition System with Keyboard-Stroke Pattern Information
NASA Astrophysics Data System (ADS)
Stathopoulou, I.-O.; Alepis, E.; Tsihrintzis, G. A.; Virvou, M.
Towards realizing a multimodal affect recognition system, we are considering the advantages of assisting a visual-facial expression recognition system with keyboard-stroke pattern information. Our work is based on the assumption that the visual-facial and keyboard modalities are complementary to each other and that their combination can significantly improve the accuracy in affective user models. Specifically, we present and discuss the development and evaluation process of two corresponding affect recognition subsystems, with emphasis on the recognition of 6 basic emotional states, namely happiness, sadness, surprise, anger and disgust as well as the emotion-less state which we refer to as neutral. We find that emotion recognition by the visual-facial modality can be aided greatly by keyboard-stroke pattern information and the combination of the two modalities can lead to better results towards building a multimodal affect recognition system.
Single Platform Geolocation of Radio Frequency Emitters
2015-03-26
Error SNR Signal to Noise Ratio SOI Signal of Interest STK Systems Tool Kit UCA Uniform Circular Array WGS World Geodetic System xv SINGLE PLATFORM...Section 2.6 describes a method to visualize the confidence of estimated parameters. 2.1 Coordinate Systems and Reference Frames The following...be used to visualize the confidence surface using the method developed in Section 2.6. The NLO method will be shown to be the minimization of the
Survey of computer vision technology for UVA navigation
NASA Astrophysics Data System (ADS)
Xie, Bo; Fan, Xiang; Li, Sijian
2017-11-01
Navigation based on computer version technology, which has the characteristics of strong independence, high precision and is not susceptible to electrical interference, has attracted more and more attention in the filed of UAV navigation research. Early navigation project based on computer version technology mainly applied to autonomous ground robot. In recent years, the visual navigation system is widely applied to unmanned machine, deep space detector and underwater robot. That further stimulate the research of integrated navigation algorithm based on computer version technology. In China, with many types of UAV development and two lunar exploration, the three phase of the project started, there has been significant progress in the study of visual navigation. The paper expounds the development of navigation based on computer version technology in the filed of UAV navigation research and draw a conclusion that visual navigation is mainly applied to three aspects as follows.(1) Acquisition of UAV navigation parameters. The parameters, including UAV attitude, position and velocity information could be got according to the relationship between the images from sensors and carrier's attitude, the relationship between instant matching images and the reference images and the relationship between carrier's velocity and characteristics of sequential images.(2) Autonomous obstacle avoidance. There are many ways to achieve obstacle avoidance in UAV navigation. The methods based on computer version technology ,including feature matching, template matching, image frames and so on, are mainly introduced. (3) The target tracking, positioning. Using the obtained images, UAV position is calculated by using optical flow method, MeanShift algorithm, CamShift algorithm, Kalman filtering and particle filter algotithm. The paper expounds three kinds of mainstream visual system. (1) High speed visual system. It uses parallel structure, with which image detection and processing are carried out at high speed. The system is applied to rapid response system. (2) The visual system of distributed network. There are several discrete image data acquisition sensor in different locations, which transmit image data to the node processor to increase the sampling rate. (3) The visual system combined with observer. The system combines image sensors with the external observers to make up for lack of visual equipment. To some degree, these systems overcome lacks of the early visual system, including low frequency, low processing efficiency and strong noise. In the end, the difficulties of navigation based on computer version technology in practical application are briefly discussed. (1) Due to the huge workload of image operation , the real-time performance of the system is poor. (2) Due to the large environmental impact , the anti-interference ability of the system is poor.(3) Due to the ability to work in a particular environment, the system has poor adaptability.
Geoinformation web-system for processing and visualization of large archives of geo-referenced data
NASA Astrophysics Data System (ADS)
Gordov, E. P.; Okladnikov, I. G.; Titov, A. G.; Shulgina, T. M.
2010-12-01
Developed working model of information-computational system aimed at scientific research in area of climate change is presented. The system will allow processing and analysis of large archives of geophysical data obtained both from observations and modeling. Accumulated experience of developing information-computational web-systems providing computational processing and visualization of large archives of geo-referenced data was used during the implementation (Gordov et al, 2007; Okladnikov et al, 2008; Titov et al, 2009). Functional capabilities of the system comprise a set of procedures for mathematical and statistical analysis, processing and visualization of data. At present five archives of data are available for processing: 1st and 2nd editions of NCEP/NCAR Reanalysis, ECMWF ERA-40 Reanalysis, JMA/CRIEPI JRA-25 Reanalysis, and NOAA-CIRES XX Century Global Reanalysis Version I. To provide data processing functionality a computational modular kernel and class library providing data access for computational modules were developed. Currently a set of computational modules for climate change indices approved by WMO is available. Also a special module providing visualization of results and writing to Encapsulated Postscript, GeoTIFF and ESRI shape files was developed. As a technological basis for representation of cartographical information in Internet the GeoServer software conforming to OpenGIS standards is used. Integration of GIS-functionality with web-portal software to provide a basis for web-portal’s development as a part of geoinformation web-system is performed. Such geoinformation web-system is a next step in development of applied information-telecommunication systems offering to specialists from various scientific fields unique opportunities of performing reliable analysis of heterogeneous geophysical data using approved computational algorithms. It will allow a wide range of researchers to work with geophysical data without specific programming knowledge and to concentrate on solving their specific tasks. The system would be of special importance for education in climate change domain. This work is partially supported by RFBR grant #10-07-00547, SB RAS Basic Program Projects 4.31.1.5 and 4.31.2.7, SB RAS Integration Projects 4 and 9.
Integrated Data Visualization and Virtual Reality Tool
NASA Technical Reports Server (NTRS)
Dryer, David A.
1998-01-01
The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.
Visualizing planetary data by using 3D engines
NASA Astrophysics Data System (ADS)
Elgner, S.; Adeli, S.; Gwinner, K.; Preusker, F.; Kersten, E.; Matz, K.-D.; Roatsch, T.; Jaumann, R.; Oberst, J.
2017-09-01
We examined 3D gaming engines for their usefulness in visualizing large planetary image data sets. These tools allow us to include recent developments in the field of computer graphics in our scientific visualization systems and present data products interactively and in higher quality than before. We started to set up the first applications which will take use of virtual reality (VR) equipment.
ERIC Educational Resources Information Center
Cheung, Chi-Kim; Jhaveri, Aditi Dubey
2016-01-01
This paper argues that the planned introduction of visual literacy into the New Secondary School Curriculum can play a crucial role in enabling students to think critically and creatively in Hong Kong's highly visual landscape. As Hong Kong's educational system remains entrenched in long-established and conventional pedagogies, the primacy given…
van den Boomen, C.; van der Smagt, M. J.; Kemner, C.
2012-01-01
Visual form perception is essential for correct interpretation of, and interaction with, our environment. Form perception depends on visual acuity and processing of specific form characteristics, such as luminance contrast, spatial frequency, color, orientation, depth, and even motion information. As other cognitive processes, form perception matures with age. This paper aims at providing a concise overview of our current understanding of the typical development, from birth to adulthood, of form-characteristic processing, as measured both behaviorally and neurophysiologically. Two main conclusions can be drawn. First, the current literature conveys that for most reviewed characteristics a developmental pattern is apparent. These trajectories are discussed in relation to the organization of the visual system. The second conclusion is that significant gaps in the literature exist for several age-ranges. To complete our understanding of the typical and, by consequence, atypical development of visual mechanisms underlying form processing, future research should uncover these missing segments. PMID:22416236
Indoor space 3D visual reconstruction using mobile cart with laser scanner and cameras
NASA Astrophysics Data System (ADS)
Gashongore, Prince Dukundane; Kawasue, Kikuhito; Yoshida, Kumiko; Aoki, Ryota
2017-02-01
Indoor space 3D visual reconstruction has many applications and, once done accurately, it enables people to conduct different indoor activities in an efficient manner. For example, an effective and efficient emergency rescue response can be accomplished in a fire disaster situation by using 3D visual information of a destroyed building. Therefore, an accurate Indoor Space 3D visual reconstruction system which can be operated in any given environment without GPS has been developed using a Human-Operated mobile cart equipped with a laser scanner, CCD camera, omnidirectional camera and a computer. By using the system, accurate indoor 3D Visual Data is reconstructed automatically. The obtained 3D data can be used for rescue operations, guiding blind or partially sighted persons and so forth.
Semantic extraction and processing of medical records for patient-oriented visual index
NASA Astrophysics Data System (ADS)
Zheng, Weilin; Dong, Wenjie; Chen, Xiangjiao; Zhang, Jianguo
2012-02-01
To have comprehensive and completed understanding healthcare status of a patient, doctors need to search patient medical records from different healthcare information systems, such as PACS, RIS, HIS, USIS, as a reference of diagnosis and treatment decisions for the patient. However, it is time-consuming and tedious to do these procedures. In order to solve this kind of problems, we developed a patient-oriented visual index system (VIS) to use the visual technology to show health status and to retrieve the patients' examination information stored in each system with a 3D human model. In this presentation, we present a new approach about how to extract the semantic and characteristic information from the medical record systems such as RIS/USIS to create the 3D Visual Index. This approach includes following steps: (1) Building a medical characteristic semantic knowledge base; (2) Developing natural language processing (NLP) engine to perform semantic analysis and logical judgment on text-based medical records; (3) Applying the knowledge base and NLP engine on medical records to extract medical characteristics (e.g., the positive focus information), and then mapping extracted information to related organ/parts of 3D human model to create the visual index. We performed the testing procedures on 559 samples of radiological reports which include 853 focuses, and achieved 828 focuses' information. The successful rate of focus extraction is about 97.1%.
Foveal Processing Under Concurrent Peripheral Load in Profoundly Deaf Adults.
Dye, Matthew W G
2016-04-01
Development of the visual system typically proceeds in concert with the development of audition. One result is that the visual system of profoundly deaf individuals differs from that of those with typical auditory systems. While past research has suggested deaf people have enhanced attention in the visual periphery, it is still unclear whether or not this enhancement entails deficits in central vision. Profoundly deaf and typically hearing adults were administered a variant of the useful field of view task that independently assessed performance on concurrent central and peripheral tasks. Identification of a foveated target was impaired by a concurrent selective peripheral attention task, more so in profoundly deaf adults than in the typically hearing. Previous findings of enhanced performance on the peripheral task were not replicated. These data are discussed in terms of flexible allocation of spatial attention targeted towards perceived task demands, and support a modified "division of labor" hypothesis whereby attentional resources co-opted to process peripheral space result in reduced resources in the central visual field. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kauppinen, Tomi; Keßler, Carsten; Fritz, Fleur
2014-01-01
Background Healthcare organizations around the world are challenged by pressures to reduce cost, improve coordination and outcome, and provide more with less. This requires effective planning and evidence-based practice by generating important information from available data. Thus, flexible and user-friendly ways to represent, query, and visualize health data becomes increasingly important. International organizations such as the World Health Organization (WHO) regularly publish vital data on priority health topics that can be utilized for public health policy and health service development. However, the data in most portals is displayed in either Excel or PDF formats, which makes information discovery and reuse difficult. Linked Open Data (LOD)—a new Semantic Web set of best practice of standards to publish and link heterogeneous data—can be applied to the representation and management of public level health data to alleviate such challenges. However, the technologies behind building LOD systems and their effectiveness for health data are yet to be assessed. Objective The objective of this study is to evaluate whether Linked Data technologies are potential options for health information representation, visualization, and retrieval systems development and to identify the available tools and methodologies to build Linked Data-based health information systems. Methods We used the Resource Description Framework (RDF) for data representation, Fuseki triple store for data storage, and Sgvizler for information visualization. Additionally, we integrated SPARQL query interface for interacting with the data. We primarily use the WHO health observatory dataset to test the system. All the data were represented using RDF and interlinked with other related datasets on the Web of Data using Silk—a link discovery framework for Web of Data. A preliminary usability assessment was conducted following the System Usability Scale (SUS) method. Results We developed an LOD-based health information representation, querying, and visualization system by using Linked Data tools. We imported more than 20,000 HIV-related data elements on mortality, prevalence, incidence, and related variables, which are freely available from the WHO global health observatory database. Additionally, we automatically linked 5312 data elements from DBpedia, Bio2RDF, and LinkedCT using the Silk framework. The system users can retrieve and visualize health information according to their interests. For users who are not familiar with SPARQL queries, we integrated a Linked Data search engine interface to search and browse the data. We used the system to represent and store the data, facilitating flexible queries and different kinds of visualizations. The preliminary user evaluation score by public health data managers and users was 82 on the SUS usability measurement scale. The need to write queries in the interface was the main reported difficulty of LOD-based systems to the end user. Conclusions The system introduced in this article shows that current LOD technologies are a promising alternative to represent heterogeneous health data in a flexible and reusable manner so that they can serve intelligent queries, and ultimately support decision-making. However, the development of advanced text-based search engines is necessary to increase its usability especially for nontechnical users. Further research with large datasets is recommended in the future to unfold the potential of Linked Data and Semantic Web for future health information systems development. PMID:25601195
Tilahun, Binyam; Kauppinen, Tomi; Keßler, Carsten; Fritz, Fleur
2014-10-25
Healthcare organizations around the world are challenged by pressures to reduce cost, improve coordination and outcome, and provide more with less. This requires effective planning and evidence-based practice by generating important information from available data. Thus, flexible and user-friendly ways to represent, query, and visualize health data becomes increasingly important. International organizations such as the World Health Organization (WHO) regularly publish vital data on priority health topics that can be utilized for public health policy and health service development. However, the data in most portals is displayed in either Excel or PDF formats, which makes information discovery and reuse difficult. Linked Open Data (LOD)-a new Semantic Web set of best practice of standards to publish and link heterogeneous data-can be applied to the representation and management of public level health data to alleviate such challenges. However, the technologies behind building LOD systems and their effectiveness for health data are yet to be assessed. The objective of this study is to evaluate whether Linked Data technologies are potential options for health information representation, visualization, and retrieval systems development and to identify the available tools and methodologies to build Linked Data-based health information systems. We used the Resource Description Framework (RDF) for data representation, Fuseki triple store for data storage, and Sgvizler for information visualization. Additionally, we integrated SPARQL query interface for interacting with the data. We primarily use the WHO health observatory dataset to test the system. All the data were represented using RDF and interlinked with other related datasets on the Web of Data using Silk-a link discovery framework for Web of Data. A preliminary usability assessment was conducted following the System Usability Scale (SUS) method. We developed an LOD-based health information representation, querying, and visualization system by using Linked Data tools. We imported more than 20,000 HIV-related data elements on mortality, prevalence, incidence, and related variables, which are freely available from the WHO global health observatory database. Additionally, we automatically linked 5312 data elements from DBpedia, Bio2RDF, and LinkedCT using the Silk framework. The system users can retrieve and visualize health information according to their interests. For users who are not familiar with SPARQL queries, we integrated a Linked Data search engine interface to search and browse the data. We used the system to represent and store the data, facilitating flexible queries and different kinds of visualizations. The preliminary user evaluation score by public health data managers and users was 82 on the SUS usability measurement scale. The need to write queries in the interface was the main reported difficulty of LOD-based systems to the end user. The system introduced in this article shows that current LOD technologies are a promising alternative to represent heterogeneous health data in a flexible and reusable manner so that they can serve intelligent queries, and ultimately support decision-making. However, the development of advanced text-based search engines is necessary to increase its usability especially for nontechnical users. Further research with large datasets is recommended in the future to unfold the potential of Linked Data and Semantic Web for future health information systems development.
Freud, Erez; Ganel, Tzvi; Avidan, Galia; Gilaie-Dotan, Sharon
2016-03-01
According to the two visual systems model, the cortical visual system is segregated into a ventral pathway mediating object recognition, and a dorsal pathway mediating visuomotor control. In the present study we examined whether the visual control of action could develop normally even when visual perceptual abilities are compromised from early childhood onward. Using his fingers, LG, an individual with a rare developmental visual object agnosia, manually estimated (perceptual condition) the width of blocks that varied in width and length (but not in overall size), or simply picked them up across their width (grasping condition). LG's perceptual sensitivity to target width was profoundly impaired in the manual estimation task compared to matched controls. In contrast, the sensitivity to object shape during grasping, as measured by maximum grip aperture (MGA), the time to reach the MGA, the reaction time and the total movement time were all normal in LG. Further analysis, however, revealed that LG's sensitivity to object shape during grasping emerged at a later time stage during the movement compared to controls. Taken together, these results demonstrate a dissociation between action and perception of object shape, and also point to a distinction between different stages of the grasping movement, namely planning versus online control. Moreover, the present study implies that visuomotor abilities can develop normally even when perceptual abilities developed in a profoundly impaired fashion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Towards a Comprehensive Computational Simulation System for Turbomachinery
NASA Technical Reports Server (NTRS)
Shih, Ming-Hsin
1994-01-01
The objective of this work is to develop algorithms associated with a comprehensive computational simulation system for turbomachinery flow fields. This development is accomplished in a modular fashion. These modules includes grid generation, visualization, network, simulation, toolbox, and flow modules. An interactive grid generation module is customized to facilitate the grid generation process associated with complicated turbomachinery configurations. With its user-friendly graphical user interface, the user may interactively manipulate the default settings to obtain a quality grid within a fraction of time that is usually required for building a grid about the same geometry with a general-purpose grid generation code. Non-Uniform Rational B-Spline formulations are utilized in the algorithm to maintain geometry fidelity while redistributing grid points on the solid surfaces. Bezier curve formulation is used to allow interactive construction of inner boundaries. It is also utilized to allow interactive point distribution. Cascade surfaces are transformed from three-dimensional surfaces of revolution into two-dimensional parametric planes for easy manipulation. Such a transformation allows these manipulated plane grids to be mapped to surfaces of revolution by any generatrix definition. A sophisticated visualization module is developed to al-low visualization for both grid and flow solution, steady or unsteady. A network module is built to allow data transferring in the heterogeneous environment. A flow module is integrated into this system, using an existing turbomachinery flow code. A simulation module is developed to combine the network, flow, and visualization module to achieve near real-time flow simulation about turbomachinery geometries. A toolbox module is developed to support the overall task. A batch version of the grid generation module is developed to allow portability and has been extended to allow dynamic grid generation for pitch changing turbomachinery configurations. Various applications with different characteristics are presented to demonstrate the success of this system.
NASA Astrophysics Data System (ADS)
McDougall, C.; McLaughlin, J.
2008-12-01
NOAA has developed several programs aimed at facilitating the use of earth system science data and data visualizations by formal and informal educators. One of them, Science On a Sphere, a visualization display tool and system that uses networked LCD projectors to display animated global datasets onto the outside of a suspended, 1.7-meter diameter opaque sphere, enables science centers, museums, and universities to display real-time and current earth system science data. NOAA's Office of Education has provided grants to such education institutions to develop exhibits featuring Science On a Sphere (SOS) and create content for and evaluate audience impact. Currently, 20 public education institutions have permanent Science On a Sphere exhibits and 6 more will be installed soon. These institutions and others that are working to create and evaluate content for this system work collaboratively as a network to improve our collective knowledge about how to create educationally effective visualizations. Network members include other federal agencies, such as, NASA and the Dept. of Energy, and major museums such as Smithsonian and American Museum of Natural History, as well as a variety of mid-sized and small museums and universities. Although the audiences in these institutions vary widely in their scientific awareness and understanding, we find there are misconceptions and lack of familiarity with viewing visualizations that are common among the audiences. Through evaluations performed in these institutions we continue to evolve our understanding of how to create content that is understandable by those with minimal scientific literacy. The findings from our network will be presented including the importance of providing context, real-world connections and imagery to accompany the visualizations and the need for audience orientation before the visualizations are viewed. Additionally, we will review the publicly accessible virtual library housing over 200 datasets for SOS and any other real or virtual globe. These datasets represent contributions from NOAA, NASA, Dept. of Energy, and the public institutions that are displaying the spheres.
MIXING QUANTIFICATION BY VISUAL IMAGING ANALYSIS
This paper reports on development of a method for quantifying two measures of mixing, the scale and intensity of segregation, through flow visualization, video recording, and software analysis. This non-intrusive method analyzes a planar cross section of a flowing system from an ...
NASA Astrophysics Data System (ADS)
Wu, Qitao; Zhang, Hong-ou; Chen, Fengui; Dou, Jie
2008-10-01
After three decades' rapid economic development, Guangdong province faces to thorny problems related to pollution, resource shortage and environmental deterioration. What is worse, the future accelerated development, urbanization and industrialization also comes at the cost of regional imbalance with economic gaps growing and the quality of life in different regions degrading. Development and Reform Commission of Guangdong Province (GDDRC) started a spatial planning project under the national frame in 2007. The prospective project is expected to enhance the equality of different regions and balance the economic development with environmental protection and improved sustainability. This manuscript presents the results of scientific research aiming to develop a Spatial Decision Support System (SDSS) for this spatial planning project. The system composes four modules include the User interface module (UIM), Spatial Analyze module (SAM), Database management module (DMM) and Help module (HM) base on ArcInfo, JSP/Servlet, JavaScript, MapServer, Visual C++ and Visual Basic technologies. The web-based SDSS provides a user-friendly tool for local decision makers, regional planners and other stakeholders in understanding and visualizing the different territorial dimensions of economic development against sustainable environmental and exhausted resources, and in defining, comparing and prioritizing specific territorially-based actions in order to prevent non-sustainable development and implement relevant politics.
Numerical cognition is resilient to dramatic changes in early sensory experience.
Kanjlia, Shipra; Feigenson, Lisa; Bedny, Marina
2018-06-20
Humans and non-human animals can approximate large visual quantities without counting. The approximate number representations underlying this ability are noisy, with the amount of noise proportional to the quantity being represented. Numerate humans also have access to a separate system for representing exact quantities using number symbols and words; it is this second, exact system that supports most of formal mathematics. Although numerical approximation abilities and symbolic number abilities are distinct in representational format and in their phylogenetic and ontogenetic histories, they appear to be linked throughout development--individuals who can more precisely discriminate quantities without counting are better at math. The origins of this relationship are debated. On the one hand, symbolic number abilities may be directly linked to, perhaps even rooted in, numerical approximation abilities. On the other hand, the relationship between the two systems may simply reflect their independent relationships with visual abilities. To test this possibility, we asked whether approximate number and symbolic math abilities are linked in congenitally blind individuals who have never experienced visual sets or used visual strategies to learn math. Congenitally blind and blind-folded sighted participants completed an auditory numerical approximation task, as well as a symbolic arithmetic task and non-math control tasks. We found that the precision of approximate number representations was identical across congenitally blind and sighted groups, suggesting that the development of the Approximate Number System (ANS) does not depend on visual experience. Crucially, the relationship between numerical approximation and symbolic math abilities is preserved in congenitally blind individuals. These data support the idea that the Approximate Number System and symbolic number abilities are intrinsically linked, rather than indirectly linked through visual abilities. Copyright © 2018. Published by Elsevier B.V.
Three-Dimension Visualization for Primary Wheat Diseases Based on Simulation Model
NASA Astrophysics Data System (ADS)
Shijuan, Li; Yeping, Zhu
Crop simulation model has been becoming the core of agricultural production management and resource optimization management. Displaying crop growth process makes user observe the crop growth and development intuitionisticly. On the basis of understanding and grasping the occurrence condition, popularity season, key impact factors for main wheat diseases of stripe rust, leaf rust, stem rust, head blight and powdery mildew from research material and literature, we designed 3D visualization model for wheat growth and diseases occurrence. The model system will help farmer, technician and decision-maker to use crop growth simulation model better and provide decision-making support. Now 3D visualization model for wheat growth on the basis of simulation model has been developed, and the visualization model for primary wheat diseases is in the process of development.
Simulation and animation of sensor-driven robots.
Chen, C; Trivedi, M M; Bidlack, C R
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.
Biomechanical ToolKit: Open-source framework to visualize and process biomechanical data.
Barre, Arnaud; Armand, Stéphane
2014-04-01
C3D file format is widely used in the biomechanical field by companies and laboratories to store motion capture systems data. However, few software packages can visualize and modify the integrality of the data in the C3D file. Our objective was to develop an open-source and multi-platform framework to read, write, modify and visualize data from any motion analysis systems using standard (C3D) and proprietary file formats (used by many companies producing motion capture systems). The Biomechanical ToolKit (BTK) was developed to provide cost-effective and efficient tools for the biomechanical community to easily deal with motion analysis data. A large panel of operations is available to read, modify and process data through C++ API, bindings for high-level languages (Matlab, Octave, and Python), and standalone application (Mokka). All these tools are open-source and cross-platform and run on all major operating systems (Windows, Linux, MacOS X). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Job monitoring on DIRAC for Belle II distributed computing
NASA Astrophysics Data System (ADS)
Kato, Yuji; Hayasaka, Kiyoshi; Hara, Takanori; Miyake, Hideki; Ueda, Ikuo
2015-12-01
We developed a monitoring system for Belle II distributed computing, which consists of active and passive methods. In this paper we describe the passive monitoring system, where information stored in the DIRAC database is processed and visualized. We divide the DIRAC workload management flow into steps and store characteristic variables which indicate issues. These variables are chosen carefully based on our experiences, then visualized. As a result, we are able to effectively detect issues. Finally, we discuss the future development for automating log analysis, notification of issues, and disabling problematic sites.
NASA Astrophysics Data System (ADS)
Sudiartha, IKG; Catur Bawa, IGNB
2018-01-01
Information can not be separated from the social life of the community, especially in the world of education. One of the information fields is academic calendar information, activity agenda, announcement and campus activity news. In line with technological developments, text-based information is becoming obsolete. For that need creativity to present information more quickly, accurately and interesting by exploiting the development of digital technology and internet. In this paper will be developed applications for the provision of information in the form of visual display, applied to computer network system with multimedia applications. Network-based applications provide ease in updating data through internet services, attractive presentations with multimedia support. The application “Networking Visual Display Information Unit” can be used as a medium that provides information services for students and academic employee more interesting and ease in updating information than the bulletin board. The information presented in the form of Running Text, Latest Information, Agenda, Academic Calendar and Video provide an interesting presentation and in line with technological developments at the Politeknik Negeri Bali. Through this research is expected to create software “Networking Visual Display Information Unit” with optimal bandwidth usage by combining local data sources and data through the network. This research produces visual display design with optimal bandwidth usage and application in the form of supporting software.
A distributed analysis and visualization system for model and observational data
NASA Technical Reports Server (NTRS)
Wilhelmson, Robert B.
1994-01-01
Software was developed with NASA support to aid in the analysis and display of the massive amounts of data generated from satellites, observational field programs, and from model simulations. This software was developed in the context of the PATHFINDER (Probing ATmospHeric Flows in an Interactive and Distributed EnviRonment) Project. The overall aim of this project is to create a flexible, modular, and distributed environment for data handling, modeling simulations, data analysis, and visualization of atmospheric and fluid flows. Software completed with NASA support includes GEMPAK analysis, data handling, and display modules for which collaborators at NASA had primary responsibility, and prototype software modules for three-dimensional interactive and distributed control and display as well as data handling, for which NSCA was responsible. Overall process control was handled through a scientific and visualization application builder from Silicon Graphics known as the Iris Explorer. In addition, the GEMPAK related work (GEMVIS) was also ported to the Advanced Visualization System (AVS) application builder. Many modules were developed to enhance those already available in Iris Explorer including HDF file support, improved visualization and display, simple lattice math, and the handling of metadata through development of a new grid datatype. Complete source and runtime binaries along with on-line documentation is available via the World Wide Web at: http://redrock.ncsa.uiuc.edu/ PATHFINDER/pathre12/top/top.html.
Costa, Daniel G.; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian
2017-01-01
The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field. PMID:28067777
Costa, Daniel G; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian
2017-01-05
The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field.
Tromans, James Matthew; Harris, Mitchell; Stringer, Simon Maitland
2011-01-01
Experimental studies have provided evidence that the visual processing areas of the primate brain represent facial identity and facial expression within different subpopulations of neurons. For example, in non-human primates there is evidence that cells within the inferior temporal gyrus (TE) respond primarily to facial identity, while cells within the superior temporal sulcus (STS) respond to facial expression. More recently, it has been found that the orbitofrontal cortex (OFC) of non-human primates contains some cells that respond exclusively to changes in facial identity, while other cells respond exclusively to facial expression. How might the primate visual system develop physically separate representations of facial identity and expression given that the visual system is always exposed to simultaneous combinations of facial identity and expression during learning? In this paper, a biologically plausible neural network model, VisNet, of the ventral visual pathway is trained on a set of carefully-designed cartoon faces with different identities and expressions. The VisNet model architecture is composed of a hierarchical series of four Self-Organising Maps (SOMs), with associative learning in the feedforward synaptic connections between successive layers. During learning, the network develops separate clusters of cells that respond exclusively to either facial identity or facial expression. We interpret the performance of the network in terms of the learning properties of SOMs, which are able to exploit the statistical indendependence between facial identity and expression.
Robotic Attention Processing And Its Application To Visual Guidance
NASA Astrophysics Data System (ADS)
Barth, Matthew; Inoue, Hirochika
1988-03-01
This paper describes a method of real-time visual attention processing for robots performing visual guidance. This robot attention processing is based on a novel vision processor, the multi-window vision system that was developed at the University of Tokyo. The multi-window vision system is unique in that it only processes visual information inside local area windows. These local area windows are quite flexible in their ability to move anywhere on the visual screen, change their size and shape, and alter their pixel sampling rate. By using these windows for specific attention tasks, it is possible to perform high speed attention processing. The primary attention skills of detecting motion, tracking an object, and interpreting an image are all performed at high speed on the multi-window vision system. A basic robotic attention scheme using the attention skills was developed. The attention skills involved detection and tracking of salient visual features. The tracking and motion information thus obtained was utilized in producing the response to the visual stimulus. The response of the attention scheme was quick enough to be applicable to the real-time vision processing tasks of playing a video 'pong' game, and later using an automobile driving simulator. By detecting the motion of a 'ball' on a video screen and then tracking the movement, the attention scheme was able to control a 'paddle' in order to keep the ball in play. The response was faster than that of a human's, allowing the attention scheme to play the video game at higher speeds. Further, in the application to the driving simulator, the attention scheme was able to control both direction and velocity of a simulated vehicle following a lead car. These two applications show the potential of local visual processing in its use for robotic attention processing.
Stereoscopic augmented reality for laparoscopic surgery.
Kang, Xin; Azizian, Mahdi; Wilson, Emmanuel; Wu, Kyle; Martin, Aaron D; Kane, Timothy D; Peters, Craig A; Cleary, Kevin; Shekhar, Raj
2014-07-01
Conventional laparoscopes provide a flat representation of the three-dimensional (3D) operating field and are incapable of visualizing internal structures located beneath visible organ surfaces. Computed tomography (CT) and magnetic resonance (MR) images are difficult to fuse in real time with laparoscopic views due to the deformable nature of soft-tissue organs. Utilizing emerging camera technology, we have developed a real-time stereoscopic augmented-reality (AR) system for laparoscopic surgery by merging live laparoscopic ultrasound (LUS) with stereoscopic video. The system creates two new visual cues: (1) perception of true depth with improved understanding of 3D spatial relationships among anatomical structures, and (2) visualization of critical internal structures along with a more comprehensive visualization of the operating field. The stereoscopic AR system has been designed for near-term clinical translation with seamless integration into the existing surgical workflow. It is composed of a stereoscopic vision system, a LUS system, and an optical tracker. Specialized software processes streams of imaging data from the tracked devices and registers those in real time. The resulting two ultrasound-augmented video streams (one for the left and one for the right eye) give a live stereoscopic AR view of the operating field. The team conducted a series of stereoscopic AR interrogations of the liver, gallbladder, biliary tree, and kidneys in two swine. The preclinical studies demonstrated the feasibility of the stereoscopic AR system during in vivo procedures. Major internal structures could be easily identified. The system exhibited unobservable latency with acceptable image-to-video registration accuracy. We presented the first in vivo use of a complete system with stereoscopic AR visualization capability. This new capability introduces new visual cues and enhances visualization of the surgical anatomy. The system shows promise to improve the precision and expand the capacity of minimally invasive laparoscopic surgeries.
The role of the research simulator in the systems development of rotorcraft
NASA Technical Reports Server (NTRS)
Statler, I. C.; Deel, A.
1981-01-01
The potential application of the research simulator to future rotorcraft systems design, development, product improvement evaluations, and safety analysis is examined. Current simulation capabilities for fixed-wing aircraft are reviewed and the requirements of a rotorcraft simulator are defined. The visual system components, vertical motion simulator, cab, and computation system for a research simulator under development are described.
NASA Astrophysics Data System (ADS)
Kortenkamp, S.; Baldridge, A. M.; Bleamaster, L. F.; Buxner, S.; Canizo, T.; Crown, D. A.; Lebofsky, L. A.
2012-12-01
The Planetary Science Institute (PSI), in partnership with the Tucson Regional Science Center, offers a series of professional development workshops targeting K-8 science teachers in southern Arizona. Using NASA data sets, research results, and a team of PSI scientists and educators, our workshops provide teachers with in-depth content knowledge of fundamental concepts in astronomy, geology, and planetary science. Current workshops are: The Earth-Moon System, Exploring the Terrestrial Planets, Impact Cratering, The Asteroid-Meteorite Connection, Volcanoes of the Solar System, Deserts of the Solar System, and Astrobiology and the Search for Extrasolar Planets. Several workshops incorporate customized computer visualizations developed at PSI. These visualizations are designed to help teachers overcome the common misconceptions students have in fundamental areas of space science. For example, the simple geometric relationship between the sun, the moon, and Earth is a concept that is rife with misconceptions. How can the arrangement of these objects account for the constantly changing phases of the moon as well as the occasional eclipses of the sun and moon? Students at all levels often struggle to understand the explanation for phases and eclipses even after repeated instruction over many years. Traditional classroom techniques have proven to be insufficient at rooting out entrenched misconceptions. One problem stems from the difficulty of developing an accurate mental picture of the Earth-Moon system in space when a student's perspective has always been firmly planted on the ground. To address this problem our visualizations take the viewers on a journey beyond Earth, giving them a so-called "god's eye" view of how the Earth-Moon system would look from a distance. To make this journey as realistic as possible we use ray-tracing software, incorporate NASA mission images, and accurately portray rotational and orbital motion. During a workshop our visualizations are used in conjunction with more traditional classroom techniques. This combination instills a greater confidence in teachers' understanding of the concepts and therefore increases their ability to teach their students. To date we have produced over 100 unique visualizations to demonstrate many different fundamental concepts in the Earth and space sciences. Participants in each workshop are provided with digital copies of the visualizations in a variety of file formats. They also receive Keynote and PowerPoint templates pre-embedded with the visualizations to facility straightforward use on Macs or PCs in their classrooms. A measure of the success of PSI's workshops is that nearly 50% of our teachers have attended multiple workshops, and teachers often cite the visualizations as one of the top benefits of their experience. Details of our workshops as well as downloadable examples of some visualizations can be found at: www.psi.edu/epo. This work is supported by NASA EPOESS award NNX10AE56G: Workshops in Science Education and Resources (WISER): Planetary Perspectives.
Probe Scanning Support System by a Parallel Mechanism for Robotic Echography
NASA Astrophysics Data System (ADS)
Aoki, Yusuke; Kaneko, Kenta; Oyamada, Masami; Takachi, Yuuki; Masuda, Kohji
We propose a probe scanning support system based on force/visual servoing control for robotic echography. First, we have designed and formulated its inverse kinematics the construction of mechanism. Next, we have developed a scanning method of the ultrasound probe on body surface to construct visual servo system based on acquired echogram by the standalone medical robot to move the ultrasound probe on patient abdomen in three-dimension. The visual servo system detects local change of brightness in time series echogram, which is stabilized the position of the probe by conventional force servo system in the robot, to compensate not only periodical respiration motion but also body motion. Then we integrated control method of the visual servo with the force servo as a hybrid control in both of position and force. To confirm the ability to apply for actual abdomen, we experimented the total system to follow the gallbladder as a moving target to keep its position in the echogram by minimizing variation of reaction force on abdomen. As the result, the system has a potential to be applied to automatic detection of human internal organ.
2015-01-01
class within Microsoft Visual Studio . 2 It has been tested on and is compatible with Microsoft Vista, 7, and 8 and Visual Studio Express 2008...the ScreenRecorder utility assumes a basic understanding of compiling and running C++ code within Microsoft Visual Studio . This report does not...of Microsoft Visual Studio , the ScreenRecorder utility was developed as a C++ class that can be compiled as a library (static or dynamic) to be
NASA Technical Reports Server (NTRS)
Yuen, Vincent K.
1989-01-01
The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.
Automated Visual Cognitive Tasks for Recording Neural Activity Using a Floor Projection Maze
Kent, Brendon W.; Yang, Fang-Chi; Burwell, Rebecca D.
2014-01-01
Neuropsychological tasks used in primates to investigate mechanisms of learning and memory are typically visually guided cognitive tasks. We have developed visual cognitive tasks for rats using the Floor Projection Maze1,2 that are optimized for visual abilities of rats permitting stronger comparisons of experimental findings with other species. In order to investigate neural correlates of learning and memory, we have integrated electrophysiological recordings into fully automated cognitive tasks on the Floor Projection Maze1,2. Behavioral software interfaced with an animal tracking system allows monitoring of the animal's behavior with precise control of image presentation and reward contingencies for better trained animals. Integration with an in vivo electrophysiological recording system enables examination of behavioral correlates of neural activity at selected epochs of a given cognitive task. We describe protocols for a model system that combines automated visual presentation of information to rodents and intracranial reward with electrophysiological approaches. Our model system offers a sophisticated set of tools as a framework for other cognitive tasks to better isolate and identify specific mechanisms contributing to particular cognitive processes. PMID:24638057
Newborn chickens generate invariant object representations at the onset of visual object experience
Wood, Justin N.
2013-01-01
To recognize objects quickly and accurately, mature visual systems build invariant object representations that generalize across a range of novel viewing conditions (e.g., changes in viewpoint). To date, however, the origins of this core cognitive ability have not yet been established. To examine how invariant object recognition develops in a newborn visual system, I raised chickens from birth for 2 weeks within controlled-rearing chambers. These chambers provided complete control over all visual object experiences. In the first week of life, subjects’ visual object experience was limited to a single virtual object rotating through a 60° viewpoint range. In the second week of life, I examined whether subjects could recognize that virtual object from novel viewpoints. Newborn chickens were able to generate viewpoint-invariant representations that supported object recognition across large, novel, and complex changes in the object’s appearance. Thus, newborn visual systems can begin building invariant object representations at the onset of visual object experience. These abstract representations can be generated from sparse data, in this case from a visual world containing a single virtual object seen from a limited range of viewpoints. This study shows that powerful, robust, and invariant object recognition machinery is an inherent feature of the newborn brain. PMID:23918372
Bharadwaj, Shrikant R; Candy, T Rowan
2011-06-01
Clear and single binocular vision, a prerequisite for normal human visual development, is achieved through accommodation and vergence. Anisometropia is associated with abnormal visual development, but its impact on accommodation and vergence, and therefore on the individual's visual experience, is not known. This study determined the impact of transiently induced anisometropia on accommodative and vergence performance of the typically developing human visual system. One hundred eighteen subjects (age range, 2.9 months to 41.1 years) watched a cartoon movie that moved between 80 and 33 cm under six different viewing conditions: binocular and monocular, and with ±2 diopters (D) and ±4 D of lens-induced anisometropia. Twenty-one subjects (age range, 3.1 months to 12.1 years) also watched the movie with 11% induced aniseikonia. Accommodation and vergence were recorded in both eyes using a videoretinoscope (25 Hz). The main effect of viewing condition was statistically significant for both accommodation and vergence (both P < 0.001), with monocular accommodative and vergence gains statistically significantly smaller than the binocular and four induced anisometropia conditions (P < 0.001 for both accommodation and vergence). The main effect of age approached significance for accommodation (P = 0.06) and was not significant for vergence (P = 0.32). Accommodative and vergence gains with induced aniseikonia were not statistically significantly different from the binocular condition (both P > 0.5). Accommodative and vergence gains of the typically developing visual system deteriorated marginally (accommodation more than vergence) with transiently induced anisometropia (up to ±4 D) and did not deteriorate significantly with induced aniseikonia of 11%. Some binocular cues remained with ±4 D of induced anisometropia and 11% induced aniseikonia, as indicated by the accommodative and vergence gains being higher than in monocular viewing.
Candy, T. Rowan
2011-01-01
Purpose. Clear and single binocular vision, a prerequisite for normal human visual development, is achieved through accommodation and vergence. Anisometropia is associated with abnormal visual development, but its impact on accommodation and vergence, and therefore on the individual's visual experience, is not known. This study determined the impact of transiently induced anisometropia on accommodative and vergence performance of the typically developing human visual system. Methods. One hundred eighteen subjects (age range, 2.9 months to 41.1 years) watched a cartoon movie that moved between 80 and 33 cm under six different viewing conditions: binocular and monocular, and with ±2 diopters (D) and ±4 D of lens-induced anisometropia. Twenty-one subjects (age range, 3.1 months to 12.1 years) also watched the movie with 11% induced aniseikonia. Accommodation and vergence were recorded in both eyes using a videoretinoscope (25 Hz). Results. The main effect of viewing condition was statistically significant for both accommodation and vergence (both P < 0.001), with monocular accommodative and vergence gains statistically significantly smaller than the binocular and four induced anisometropia conditions (P < 0.001 for both accommodation and vergence). The main effect of age approached significance for accommodation (P = 0.06) and was not significant for vergence (P = 0.32). Accommodative and vergence gains with induced aniseikonia were not statistically significantly different from the binocular condition (both P > 0.5). Conclusions. Accommodative and vergence gains of the typically developing visual system deteriorated marginally (accommodation more than vergence) with transiently induced anisometropia (up to ±4 D) and did not deteriorate significantly with induced aniseikonia of 11%. Some binocular cues remained with ±4 D of induced anisometropia and 11% induced aniseikonia, as indicated by the accommodative and vergence gains being higher than in monocular viewing. PMID:21296822
Can human amblyopia be treated in adulthood?
Astle, Andrew T; McGraw, Paul V; Webb, Ben S
2011-09-01
Amblyopia is a common visual disorder that results in a spatial acuity deficit in the affected eye. Orthodox treatment is to occlude the unaffected eye for lengthy periods, largely determined by the severity of the visual deficit at diagnosis. Although this treatment is not without its problems (poor compliance, potential to reduce binocular function, etc) it is effective in many children with moderate to severe amblyopia. Diagnosis and initiation of treatment early in life are thought to be critical to the success of this form of therapy. Occlusion is rarely undertaken in older children (more than 10 years old) as the visual benefits are considered to be marginal. Therefore, in subjects where occlusion is not effective or those missed by mass screening programs, there is no alternative therapy available later in life. More recently, burgeoning evidence has begun to reveal previously unrecognized levels of residual neural plasticity in the adult brain and scientists have developed new genetic, pharmacological, and behavioral interventions to activate these latent mechanisms in order to harness their potential for visual recovery. Prominent amongst these is the concept of perceptual learning--the fact that repeatedly practicing a challenging visual task leads to substantial and enduring improvements in visual performance over time. In the normal visual system the improvements are highly specific to the attributes of the trained stimulus. However, in the amblyopic visual system, learned improvements have been shown to generalize to novel tasks. In this paper we ask whether amblyopic deficits can be reduced in adulthood and explore the pattern of transfer of learned improvements. We also show that developing training protocols that target the deficit in stereo acuity allows the recovery of normal stereo function even in adulthood. This information will help guide further development of learning-based interventions in this clinical group.
Can human amblyopia be treated in adulthood?
Astle, Andrew T.; McGraw, Paul V.; Webb, Ben S.
2012-01-01
Amblyopia is a common visual disorder that results in a spatial acuity deficit in the affected eye. Orthodox treatment is to occlude the unaffected eye for lengthy periods, largely determined by the severity of the visual deficit at diagnosis. Although this treatment is not without its problems (poor compliance, potential to reduce binocular function etc.) it is effective in many children with moderate to severe amblyopia. Diagnosis and initiation of treatment early in life are thought to be critical to the success of this form of therapy. Occlusion is rarely undertaken in older children (over 10 years old) as the visual benefits are considered to be marginal. Therefore, in subjects where occlusion is not effective or those missed by mass screening programmes there is no alternative therapy available later in life. More recently, burgeoning evidence has begun to reveal previously unrecognised levels of residual neural plasticity in the adult brain and scientists have developed new genetic, pharmacological and behavioural interventions to activate these latent mechanisms in order to harness their potential for visual recovery. Prominent amongst these is the concept of perceptual learning - the fact that repeatedly practicing a challenging visual task leads to substantial and enduring improvements in visual performance over time. In the normal visual system the improvements are highly specific to the attributes of the trained stimulus. However, in the amblyopic visual system learned improvements have been shown to generalize to novel tasks. In this paper we ask whether amblyopic deficits can be reduced in adulthood and explore the pattern of transfer of learned improvements. We also show that developing training protocols that target the deficit in stereo acuity allows the recovery of normal stereo function even in adulthood. This information will help guide further development of learning-based interventions in this clinical group. PMID:21870913
Real-time tracking using stereo and motion: Visual perception for space robotics
NASA Technical Reports Server (NTRS)
Nishihara, H. Keith; Thomas, Hans; Huber, Eric; Reid, C. Ann
1994-01-01
The state-of-the-art in computing technology is rapidly attaining the performance necessary to implement many early vision algorithms at real-time rates. This new capability is helping to accelerate progress in vision research by improving our ability to evaluate the performance of algorithms in dynamic environments. In particular, we are becoming much more aware of the relative stability of various visual measurements in the presence of camera motion and system noise. This new processing speed is also allowing us to raise our sights toward accomplishing much higher-level processing tasks, such as figure-ground separation and active object tracking, in real-time. This paper describes a methodology for using early visual measurements to accomplish higher-level tasks; it then presents an overview of the high-speed accelerators developed at Teleos to support early visual measurements. The final section describes the successful deployment of a real-time vision system to provide visual perception for the Extravehicular Activity Helper/Retriever robotic system in tests aboard NASA's KC135 reduced gravity aircraft.
A Conserved Developmental Mechanism Builds Complex Visual Systems in Insects and Vertebrates
Joly, Jean-Stéphane; Recher, Gaelle; Brombin, Alessandro; Ngo, Kathy; Hartenstein, Volker
2016-01-01
The visual systems of vertebrates and many other bilaterian clades consist of complex neural structures guiding a wide spectrum of behaviors. Homologies at the level of cell types and even discrete neural circuits have been proposed, but many questions of how the architecture of visual neuropils evolved among different phyla remain open. In this review we argue that the profound conservation of genetic and developmental steps generating the eye and its target neuropils in fish and fruit flies supports a homology between some core elements of bilaterian visual circuitries. Fish retina and tectum, and fly optic lobe, develop from a partitioned, unidirectionally proliferating neurectodermal domain that combines slowly dividing neuroepithelial stem cells and rapidly amplifying progenitors with shared genetic signatures to generate large numbers and different types of neurons in a temporally ordered way. This peculiar ‘conveyor belt neurogenesis’ could play an essential role in generating the topographically ordered circuitry of the visual system. PMID:27780043
Visualization-based decision support for value-driven system design
NASA Astrophysics Data System (ADS)
Tibor, Elliott
In the past 50 years, the military, communication, and transportation systems that permeate our world, have grown exponentially in size and complexity. The development and production of these systems has seen ballooning costs and increased risk. This is particularly critical for the aerospace industry. The inability to deal with growing system complexity is a crippling force in the advancement of engineered systems. Value-Driven Design represents a paradigm shift in the field of design engineering that has potential to help counteract this trend. The philosophy of Value-Driven Design places the desires of the stakeholder at the forefront of the design process to capture true preferences and reveal system alternatives that were never previously thought possible. Modern aerospace engineering design problems are large, complex, and involve multiple levels of decision-making. To find the best design, the decision-maker is often required to analyze hundreds or thousands of combinations of design variables and attributes. Visualization can be used to support these decisions, by communicating large amounts of data in a meaningful way. Understanding the design space, the subsystem relationships, and the design uncertainties is vital to the advancement of Value-Driven Design as an accepted process for the development of more effective, efficient, robust, and elegant aerospace systems. This research investigates the use of multi-dimensional data visualization tools to support decision-making under uncertainty during the Value-Driven Design process. A satellite design system comprising a satellite, ground station, and launch vehicle is used to demonstrate effectiveness of new visualization methods to aid in decision support during complex aerospace system design. These methods are used to facilitate the exploration of the feasible design space by representing the value impact of system attribute changes and comparing the results of multi-objective optimization formulations with a Value-Driven Design formulation. The visualization methods are also used to assist in the decomposition of a value function, by representing attribute sensitivities to aid with trade-off studies. Lastly, visualization is used to enable greater understanding of the subsystem relationships, by displaying derivative-based couplings, and the design uncertainties, through implementation of utility theory. The use of these visualization methods is shown to enhance the decision-making capabilities of the designer by granting them a more holistic view of the complex design space.
Development of a Kinect-based exergaming system for motor rehabilitation in neurological disorders
NASA Astrophysics Data System (ADS)
Estepa, A.; Sponton Piriz, S.; Albornoz, E.; Martínez, C.
2016-04-01
The development of videogames for physical therapy, known as exergames, has gained much interest in the last years. In this work, a sytem for rehabilitation and clinical evaluation of neurological patients is presented. The Microsoft Kinect device is used to track the full body of patients, and three games were developed to exercise and assess different aspects of balance and gait rehabilitation. The system provides visual feedback by means of an avatar that follows the movements of the patients, and sound and visual stimuli for giving orders during the experience. Also, the system includes a database and management tools for further analysis and monitoring of therapies. The results obtained show, on the one side, a great reception and interest of patients to use the system. On the other side, the specialists considered very useful the data collected and the quantitative analysis provided by the system, which was then adopted for the clinical routine.
Scientific Visualization and Computational Science: Natural Partners
NASA Technical Reports Server (NTRS)
Uselton, Samuel P.; Lasinski, T. A. (Technical Monitor)
1995-01-01
Scientific visualization is developing rapidly, stimulated by computational science, which is gaining acceptance as a third alternative to theory and experiment. Computational science is based on numerical simulations of mathematical models derived from theory. But each individual simulation is like a hypothetical experiment; initial conditions are specified, and the result is a record of the observed conditions. Experiments can be simulated for situations that can not really be created or controlled. Results impossible to measure can be computed.. Even for observable values, computed samples are typically much denser. Numerical simulations also extend scientific exploration where the mathematics is analytically intractable. Numerical simulations are used to study phenomena from subatomic to intergalactic scales and from abstract mathematical structures to pragmatic engineering of everyday objects. But computational science methods would be almost useless without visualization. The obvious reason is that the huge amounts of data produced require the high bandwidth of the human visual system, and interactivity adds to the power. Visualization systems also provide a single context for all the activities involved from debugging the simulations, to exploring the data, to communicating the results. Most of the presentations today have their roots in image processing, where the fundamental task is: Given an image, extract information about the scene. Visualization has developed from computer graphics, and the inverse task: Given a scene description, make an image. Visualization extends the graphics paradigm by expanding the possible input. The goal is still to produce images; the difficulty is that the input is not a scene description displayable by standard graphics methods. Visualization techniques must either transform the data into a scene description or extend graphics techniques to display this odd input. Computational science is a fertile field for visualization research because the results vary so widely and include things that have no known appearance. The amount of data creates additional challenges for both hardware and software systems. Evaluations of visualization should ultimately reflect the insight gained into the scientific phenomena. So making good visualizations requires consideration of characteristics of the user and the purpose of the visualization. Knowledge about human perception and graphic design is also relevant. It is this breadth of knowledge that stimulates proposals for multidisciplinary visualization teams and intelligent visualization assistant software. Visualization is an immature field, but computational science is stimulating research on a broad front.
Experimental study of visual accommodation
NASA Technical Reports Server (NTRS)
Cornsweet, T. N.; Crane, H. D.
1972-01-01
A summary report of a research effort related to the human visual accommodation system is presented. A theoretical study of the accommodation system was made. Subsequent effort was aimed at the development of specialized instrumentation for experiments designed to lead to understanding the nature of the control system in human accommodation. The necessary instrumentation consisted primarily of: (1) an automatic optometer to measure the state of eye focus, (2) a focus stimulator device to control the apparent optical distance to any target, and (3) a two-dimensional eye tracker. The concepts and designs of the first two instruments have been published in the open literature, but this report contains the first detailed treatment of the Purkinje eye tracker developed under this program. The report also discusses an accommodation lag model to explain the ability of the eye to apparently know the polarity of focus error even though the blur on the retina is to a first-approximation an even function. The interaction of the accommodation and eye movement systems is also discussed, as is the ability to train the visual accommodation system to a surprisingly responsive condition in only a few hours of training.
2010-01-01
Background Imbalances in the regulation of pro-inflammatory cytokines have been increasingly correlated with a number of severe and prevalent neurodevelopmental disorders, including autism spectrum disorder, schizophrenia and Down syndrome. Although several studies have shown that cytokines have potent effects on neural function, their role in neural development is still poorly understood. In this study, we investigated the link between abnormal cytokine levels and neural development using the Xenopus laevis tadpole visual system, a model frequently used to examine the anatomical and functional development of neural circuits. Results Using a test for a visually guided behavior that requires normal visual system development, we examined the long-term effects of prolonged developmental exposure to three pro-inflammatory cytokines with known neural functions: interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α. We found that all cytokines affected the development of normal visually guided behavior. Neuroanatomical imaging of the visual projection showed that none of the cytokines caused any gross abnormalities in the anatomical organization of this projection, suggesting that they may be acting at the level of neuronal microcircuits. We further tested the effects of TNF-α on the electrophysiological properties of the retinotectal circuit and found that long-term developmental exposure to TNF-α resulted in enhanced spontaneous excitatory synaptic transmission in tectal neurons, increased AMPA/NMDA ratios of retinotectal synapses, and a decrease in the number of immature synapses containing only NMDA receptors, consistent with premature maturation and stabilization of these synapses. Local interconnectivity within the tectum also appeared to remain widespread, as shown by increased recurrent polysynaptic activity, and was similar to what is seen in more immature, less refined tectal circuits. TNF-α treatment also enhanced the overall growth of tectal cell dendrites. Finally, we found that TNF-α-reared tadpoles had increased susceptibility to pentylenetetrazol-induced seizures. Conclusions Taken together our data are consistent with a model in which TNF-α causes premature stabilization of developing synapses within the tectum, therefore preventing normal refinement and synapse elimination that occurs during development, leading to increased local connectivity and epilepsy. This experimental model also provides an integrative approach to understanding the effects of cytokines on the development of neural circuits and may provide novel insights into the etiology underlying some neurodevelopmental disorders. PMID:20067608
Lee, Ryan H; Mills, Elizabeth A; Schwartz, Neil; Bell, Mark R; Deeg, Katherine E; Ruthazer, Edward S; Marsh-Armstrong, Nicholas; Aizenman, Carlos D
2010-01-12
Imbalances in the regulation of pro-inflammatory cytokines have been increasingly correlated with a number of severe and prevalent neurodevelopmental disorders, including autism spectrum disorder, schizophrenia and Down syndrome. Although several studies have shown that cytokines have potent effects on neural function, their role in neural development is still poorly understood. In this study, we investigated the link between abnormal cytokine levels and neural development using the Xenopus laevis tadpole visual system, a model frequently used to examine the anatomical and functional development of neural circuits. Using a test for a visually guided behavior that requires normal visual system development, we examined the long-term effects of prolonged developmental exposure to three pro-inflammatory cytokines with known neural functions: interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha. We found that all cytokines affected the development of normal visually guided behavior. Neuroanatomical imaging of the visual projection showed that none of the cytokines caused any gross abnormalities in the anatomical organization of this projection, suggesting that they may be acting at the level of neuronal microcircuits. We further tested the effects of TNF-alpha on the electrophysiological properties of the retinotectal circuit and found that long-term developmental exposure to TNF-alpha resulted in enhanced spontaneous excitatory synaptic transmission in tectal neurons, increased AMPA/NMDA ratios of retinotectal synapses, and a decrease in the number of immature synapses containing only NMDA receptors, consistent with premature maturation and stabilization of these synapses. Local interconnectivity within the tectum also appeared to remain widespread, as shown by increased recurrent polysynaptic activity, and was similar to what is seen in more immature, less refined tectal circuits. TNF-alpha treatment also enhanced the overall growth of tectal cell dendrites. Finally, we found that TNF-alpha-reared tadpoles had increased susceptibility to pentylenetetrazol-induced seizures. Taken together our data are consistent with a model in which TNF-alpha causes premature stabilization of developing synapses within the tectum, therefore preventing normal refinement and synapse elimination that occurs during development, leading to increased local connectivity and epilepsy. This experimental model also provides an integrative approach to understanding the effects of cytokines on the development of neural circuits and may provide novel insights into the etiology underlying some neurodevelopmental disorders.
Mitchell, Donald E
2008-01-01
To review work on animal models of deprivation amblyopia that points to a special role for binocular visual input in the development of spatial vision and as a component of occlusion (patching) therapy for amblyopia. The studies reviewed employ behavioural methods to measure the effects of various early experiential manipulations on the development of the visual acuity of the two eyes. Short periods of concordant binocular input, if continuous, can offset much longer daily periods of monocular deprivation to allow the development of normal visual acuity in both eyes. It appears that the visual system does not weigh all visual input equally in terms of its ability to impact on the development of vision but instead places greater weight on concordant binocular exposure. Experimental models of patching therapy for amblyopia imposed on animals in which amblyopia had been induced by a prior period of early monocular deprivation, indicate that the benefits of patching therapy may be only temporary and decline rapidly after patching is discontinued. However, when combined with critical amounts of binocular visual input each day, the benefits of patching can be both heightened and made permanent. Taken together with demonstrations of retained binocular connections in the visual cortex of monocularly deprived animals, a strong argument is made for inclusion of specific training of stereoscopic vision for part of the daily periods of binocular exposure that should be incorporated as part of any patching protocol for amblyopia.
A visually guided collision warning system with a neuromorphic architecture.
Okuno, Hirotsugu; Yagi, Tetsuya
2008-12-01
We have designed a visually guided collision warning system with a neuromorphic architecture, employing an algorithm inspired by the visual nervous system of locusts. The system was implemented with mixed analog-digital integrated circuits consisting of an analog resistive network and field-programmable gate array (FPGA) circuits. The resistive network processes the interaction between the laterally spreading excitatory and inhibitory signals instantaneously, which is essential for real-time computation of collision avoidance with a low power consumption and a compact hardware. The system responded selectively to approaching objects of simulated movie images at close range. The system was, however, confronted with serious noise problems due to the vibratory ego-motion, when it was installed in a mobile miniature car. To overcome this problem, we developed the algorithm, which is also installable in FPGA circuits, in order for the system to respond robustly during the ego-motion.
Regional information guidance system based on hypermedia concept
NASA Astrophysics Data System (ADS)
Matoba, Hiroshi; Hara, Yoshinori; Kasahara, Yutako
1990-08-01
A regional information guidance system has been developed on an image workstation. Two main features of this system are hypermedia data structure and friendly visual interface realized by the full-color frame memory system. As the hypermedia data structure manages regional information such as maps, pictures and explanations of points of interest, users can retrieve those information one by one, next to next according to their interest change. For example, users can retrieve explanation of a picture through the link between pictures and text explanations. Users can also traverse from one document to another by using keywords as cross reference indices. The second feature is to utilize a full-color, high resolution and wide space frame memory for visual interface design. This frame memory system enables real-time operation of image data and natural scene representation. The system also provides half tone representing function which enables fade-in/out presentations. This fade-in/out functions used in displaying and erasing menu and image data, makes visual interface soft for human eyes. The system we have developed is a typical example of multimedia applications. We expect the image workstation will play an important role as a platform for multimedia applications.
Chan, Kevin C.; Fan, Shu-Juan; Chan, Russell W.; Cheng, Joe S.; Zhou, Iris Y.; Wu, Ed X.
2014-01-01
The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn2+ administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn2+ injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport after Mn2+ injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies. PMID:24394694
An Interior Signage System for the USAF Academy Hospital
1979-08-01
manner. Graphic Design - Graphic design is a design for visual communication . Graphic Design Tools - There are four basic graphic design tools available...specializes in the design of two dimensional visual communication components. The graphic designer utilizes the four graphic design tools in developing
Five-dimensional ultrasound system for soft tissue visualization.
Deshmukh, Nishikant P; Caban, Jesus J; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M
2015-12-01
A five-dimensional ultrasound (US) system is proposed as a real-time pipeline involving fusion of 3D B-mode data with the 3D ultrasound elastography (USE) data as well as visualization of these fused data and a real-time update capability over time for each consecutive scan. 3D B-mode data assist in visualizing the anatomy of the target organ, and 3D elastography data adds strain information. We investigate the feasibility of such a system and show that an end-to-end real-time system, from acquisition to visualization, can be developed. We present a system that consists of (a) a real-time 3D elastography algorithm based on a normalized cross-correlation (NCC) computation on a GPU; (b) real-time 3D B-mode acquisition and network transfer; (c) scan conversion of 3D elastography and B-mode volumes (if acquired by 4D wobbler probe); and (d) visualization software that fuses, visualizes, and updates 3D B-mode and 3D elastography data in real time. We achieved a speed improvement of 4.45-fold for the threaded version of the NCC-based 3D USE versus the non-threaded version. The maximum speed was 79 volumes/s for 3D scan conversion. In a phantom, we validated the dimensions of a 2.2-cm-diameter sphere scan-converted to B-mode volume. Also, we validated the 5D US system visualization transfer function and detected 1- and 2-cm spherical objects (phantom lesion). Finally, we applied the system to a phantom consisting of three lesions to delineate the lesions from the surrounding background regions of the phantom. A 5D US system is achievable with real-time performance. We can distinguish between hard and soft areas in a phantom using the transfer functions.
Günther, P; Tröger, J; Holland-Cunz, S; Waag, K L; Schenk, J P
2006-08-01
Exact surgical planning is necessary for complex operations of pathological changes in anatomical structures of the pediatric abdomen. 3D visualization and computer-assisted operational planning based on CT data are being increasingly used for difficult operations in adults. To minimize radiation exposure and for better soft tissue contrast, sonography and MRI are the preferred diagnostic methods in pediatric patients. Because of manifold difficulties 3D visualization of these MRI data has not been realized so far, even though the field of embryonal malformations and tumors could benefit from this.A newly developed and modified raycasting-based powerful 3D volume rendering software (VG Studio Max 1.2) for the planning of pediatric abdominal surgery is presented. With the help of specifically developed algorithms, a useful surgical planning system is demonstrated. Thanks to the easy handling and high-quality visualization with enormous gain of information, the presented system is now an established part of routine surgical planning.
Development of the navigation system for the visually impaired by using white cane.
Hirahara, Yoshiaki; Sakurai, Yusuke; Shiidu, Yuriko; Yanashima, Kenji; Magatani, Kazushige
2006-01-01
A white cane is a typical support instrument for the visually impaired. They use a white cane for the detection of obstacles while walking. So, the area where they have a mental map, they can walk using white cane without help of others. However, they cannot walk independently in the unknown area, even if they use a white cane. Because, a white cane is a detecting device for obstacles and not a navigation device for there correcting route. Now, we are developing the navigation system for the visually impaired which uses indoor space. In Japan, sometimes colored guide lines to the destination are used for a normal person. These lines are attached on the floor, we can reach the destination, if we walk along one of these line. In our system, a developed new white cane senses one colored guide line, and makes notice to a user by vibration. This system recognizes the color of the line stuck on the floor by the optical sensor attached in the white cane. And in order to guide still more smoothly, infrared beacons (optical beacon), which can perform voice guidance, are also used.
Krisch, I; Hosticka, B J
2007-01-01
Microsystem technologies offer significant advantages in the development of neural prostheses. In the last two decades, it has become feasible to develop intelligent prostheses that are fully implantable into the human body with respect to functionality, complexity, size, weight, and compactness. Design and development enforce collaboration of various disciplines including physicians, engineers, and scientists. The retina implant system can be taken as one sophisticated example of a prosthesis which bypasses neural defects and enables direct electrical stimulation of nerve cells. This micro implantable visual prosthesis assists blind patients to return to the normal course of life. The retina implant is intended for patients suffering from retinitis pigmentosa or macular degeneration. In this contribution, we focus on the epiretinal prosthesis and discuss topics like system design, data and power transfer, fabrication, packaging and testing. In detail, the system is based upon an implantable micro electro stimulator which is powered and controlled via a wireless inductive link. Microelectronic circuits for data encoding and stimulation are assembled on flexible substrates with an integrated electrode array. The implant system is encapsulated using parylene C and silicone rubber. Results extracted from experiments in vivo demonstrate the retinotopic activation of the visual cortex.
Space Vision: Making Astronomy Accessible to Visually Impaired Students
NASA Astrophysics Data System (ADS)
Ries, J. G.; Baguio, M. R.; Jurgens, T. D.; Pruett, K. M.
2004-05-01
Astronomy, with good reason, is thought of as a visual science. Spectacular images of deep space objects or other worlds of our solar system inspire public interest in Astronomy. People encounter news about the universe during their daily life. Developing concepts about celestial objects presents an extra challenge of abstraction for people with visual impairments. The Texas Space Grant Consortium with educators at the Texas School for the Blind and Visually Impaired have developed a 2 day workshop to be held in April 2004 to help students with visual impairments understand these concepts. Hands-on activities and experiments will emphasize non-visual senses. For example, students will learn about: - Constellations as historical ways of finding one's way across the sky. - The size and structure of the Solar System by building a scale model on a running track. They will also: - Plan a planetary exploration mission. - Explore wave phenomenon using heat and sound waves. In preparation for the workshop we worked with teens involved in the countywide 4-H Teens Leading with Character (TLC) program to create the tactile materials necessary for the activities. The teens attended solar system education training so they would have the skills necessary to make the tactile displays to be used during the workshop. The results and evaluation of the workshop will be presented at the meeting. Touch the Universe: A NASA Braille Book of Astronomy inspired this workshop, and it is supported by HST Grant HST-ED-90255.01-A.
Optical Histology: High-Resolution Visualization of Tissue Microvasculature
NASA Astrophysics Data System (ADS)
Moy, Austin Jing-Ming
Mammalian tissue requires the delivery of nutrients, growth factors, and the exchange of oxygen and carbon dioxide gases to maintain normal function. These elements are delivered by the blood, which travels through the connected network of blood vessels, known as the vascular system. The vascular system consists of large feeder blood vessels (arteries and veins) that are connected to the small blood vessels (arterioles and venules), which in turn are connected to the capillaries that are directly connected to the tissue and facilitate gas exchange and nutrient delivery. These small blood vessels and capillaries make up an intricate but organized network of blood vessels that exist in all mammalian tissues known as the microvasculature and are very important in maintaining the health and proper function of mammalian tissue. Due to the importance of the microvasculature in tissue survival, disruption of the microvasculature typically leads to tissue dysfunction and tissue death. The most prevalent method to study the microvasculature is visualization. Immunohistochemistry (IHC) is the gold-standard method to visualize tissue microvasculature. IHC is very well-suited for highly detailed interrogation of the tissue microvasculature at the cellular level but is unwieldy and impractical for wide-field visualization of the tissue microvasculature. The objective my dissertation research was to develop a method to enable wide-field visualization of the microvasculature, while still retaining the high-resolution afforded by optical microscopy. My efforts led to the development of a technique dubbed "optical histology" that combines chemical and optical methods to enable high-resolution visualization of the microvasculature. The development of the technique first involved preliminary studies to quantify optical property changes in optically cleared tissues, followed by development and demonstration of the methodology. Using optical histology, I successfully obtained high resolution, depth sectioned images of the microvasculature in mouse brain and the coronary microvasculature in mouse heart. Future directions of optical histology include the potential to facilitate visualization of the entire microvascular structure of an organ as well as visualization of other tissue molecular markers of interest.
Distributed visualization of gridded geophysical data: the Carbon Data Explorer, version 0.2.3
NASA Astrophysics Data System (ADS)
Endsley, K. A.; Billmire, M. G.
2016-01-01
Due to the proliferation of geophysical models, particularly climate models, the increasing resolution of their spatiotemporal estimates of Earth system processes, and the desire to easily share results with collaborators, there is a genuine need for tools to manage, aggregate, visualize, and share data sets. We present a new, web-based software tool - the Carbon Data Explorer - that provides these capabilities for gridded geophysical data sets. While originally developed for visualizing carbon flux, this tool can accommodate any time-varying, spatially explicit scientific data set, particularly NASA Earth system science level III products. In addition, the tool's open-source licensing and web presence facilitate distributed scientific visualization, comparison with other data sets and uncertainty estimates, and data publishing and distribution.
Experiments in teleoperator and autonomous control of space robotic vehicles
NASA Technical Reports Server (NTRS)
Alexander, Harold L.
1990-01-01
A research program and strategy are described which include fundamental teleoperation issues and autonomous-control issues of sensing and navigation for satellite robots. The program consists of developing interfaces for visual operation and studying the consequences of interface designs as well as developing navigation and control technologies based on visual interaction. A space-robot-vehicle simulator is under development for use in virtual-environment teleoperation experiments and neutral-buoyancy investigations. These technologies can be utilized in a study of visual interfaces to address tradeoffs between head-tracking and manual remote cameras, panel-mounted and helmet-mounted displays, and stereoscopic and monoscopic display systems. The present program can provide significant data for the development of control experiments for autonomously controlled satellite robots.
Large-Scale Astrophysical Visualization on Smartphones
NASA Astrophysics Data System (ADS)
Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.
2011-07-01
Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.
An Avatar-Based Italian Sign Language Visualization System
NASA Astrophysics Data System (ADS)
Falletto, Andrea; Prinetto, Paolo; Tiotto, Gabriele
In this paper, we present an experimental system that supports the translation from Italian to Italian Sign Language (ISL) of the deaf and its visualization through a virtual character. Our objective is to develop a complete platform useful for any application and reusable on several platforms including Web, Digital Television and offline text translation. The system relies on a database that stores both a corpus of Italian words and words coded in the ISL notation system. An interface for the insertion of data is implemented, that allows future extensions and integrations.
NASA Astrophysics Data System (ADS)
Cheng, D. L. C.; Quinn, J. D.; Larour, E. Y.; Halkides, D. J.
2017-12-01
The Virtual Earth System Laboratory (VESL) is a Web application, under continued development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. As with any project of its size, we have encountered both successes and challenges during the course of development. Our principal point of success is the fact that VESL users can interact seamlessly with our earth science simulations within their own Web browser. Some of the challenges we have faced include retrofitting the VESL Web application to respond to touch gestures, reducing page load time (especially as the application has grown), and accounting for the differences between the various Web browsers and computing platforms.
A system verification platform for high-density epiretinal prostheses.
Chen, Kuanfu; Lo, Yi-Kai; Yang, Zhi; Weiland, James D; Humayun, Mark S; Liu, Wentai
2013-06-01
Retinal prostheses have restored light perception to people worldwide who have poor or no vision as a consequence of retinal degeneration. To advance the quality of visual stimulation for retinal implant recipients, a higher number of stimulation channels is expected in the next generation retinal prostheses, which poses a great challenge to system design and verification. This paper presents a system verification platform dedicated to the development of retinal prostheses. The system includes primary processing, dual-band power and data telemetry, a high-density stimulator array, and two methods for output verification. End-to-end system validation and individual functional block characterization can be achieved with this platform through visual inspection and software analysis. Custom-built software running on the computers also provides a good way for testing new features before they are realized by the ICs. Real-time visual feedbacks through the video displays make it easy to monitor and debug the system. The characterization of the wireless telemetry and the demonstration of the visual display are reported in this paper using a 256-channel retinal prosthetic IC as an example.
Computer-based visual communication in aphasia.
Steele, R D; Weinrich, M; Wertz, R T; Kleczewska, M K; Carlson, G S
1989-01-01
The authors describe their recently developed Computer-aided VIsual Communication (C-VIC) system, and report results of single-subject experimental designs probing its use with five chronic, severely impaired aphasic individuals. Studies replicate earlier results obtained with a non-computerized system, demonstrate patient competence with the computer implementation, extend the system's utility, and identify promising areas of application. Results of the single-subject experimental designs clarify patients' learning, generalization, and retention patterns, and highlight areas of performance difficulties. Future directions for the project are indicated.
Axons guided by insulin receptor in Drosophila visual system.
Song, Jianbo; Wu, Lingling; Chen, Zun; Kohanski, Ronald A; Pick, Leslie
2003-04-18
Insulin receptors are abundant in the central nervous system, but their roles remain elusive. Here we show that the insulin receptor functions in axon guidance. The Drosophila insulin receptor (DInR) is required for photoreceptor-cell (R-cell) axons to find their way from the retina to the brain during development of the visual system. DInR functions as a guidance receptor for the adapter protein Dock/Nck. This function is independent of Chico, the Drosophila insulin receptor substrate (IRS) homolog.
Mehler, Bruce; Kidd, David; Reimer, Bryan; Reagan, Ian; Dobres, Jonathan; McCartt, Anne
2016-03-01
One purpose of integrating voice interfaces into embedded vehicle systems is to reduce drivers' visual and manual distractions with 'infotainment' technologies. However, there is scant research on actual benefits in production vehicles or how different interface designs affect attentional demands. Driving performance, visual engagement, and indices of workload (heart rate, skin conductance, subjective ratings) were assessed in 80 drivers randomly assigned to drive a 2013 Chevrolet Equinox or Volvo XC60. The Chevrolet MyLink system allowed completing tasks with one voice command, while the Volvo Sensus required multiple commands to navigate the menu structure. When calling a phone contact, both voice systems reduced visual demand relative to the visual-manual interfaces, with reductions for drivers in the Equinox being greater. The Equinox 'one-shot' voice command showed advantages during contact calling but had significantly higher error rates than Sensus during destination address entry. For both secondary tasks, neither voice interface entirely eliminated visual demand. Practitioner Summary: The findings reinforce the observation that most, if not all, automotive auditory-vocal interfaces are multi-modal interfaces in which the full range of potential demands (auditory, vocal, visual, manipulative, cognitive, tactile, etc.) need to be considered in developing optimal implementations and evaluating drivers' interaction with the systems. Social Media: In-vehicle voice-interfaces can reduce visual demand but do not eliminate it and all types of demand need to be taken into account in a comprehensive evaluation.
Crossmodal association of auditory and visual material properties in infants.
Ujiie, Yuta; Yamashita, Wakayo; Fujisaki, Waka; Kanazawa, So; Yamaguchi, Masami K
2018-06-18
The human perceptual system enables us to extract visual properties of an object's material from auditory information. In monkeys, the neural basis underlying such multisensory association develops through experience of exposure to a material; material information could be processed in the posterior inferior temporal cortex, progressively from the high-order visual areas. In humans, however, the development of this neural representation remains poorly understood. Here, we demonstrated for the first time the presence of a mapping of the auditory material property with visual material ("Metal" and "Wood") in the right temporal region in preverbal 4- to 8-month-old infants, using near-infrared spectroscopy (NIRS). Furthermore, we found that infants acquired the audio-visual mapping for a property of the "Metal" material later than for the "Wood" material, since infants form the visual property of "Metal" material after approximately 6 months of age. These findings indicate that multisensory processing of material information induces the activation of brain areas related to sound symbolism. Our findings also indicate that the material's familiarity might facilitate the development of multisensory processing during the first year of life.
Dale, Naomi; Sakkalou, Elena; O'Reilly, Michelle; Springall, Clare; De Haan, Michelle; Salt, Alison
2017-07-01
To investigate how vision relates to early development by studying vision and cognition in a national cohort of 1-year-old infants with congenital disorders of the peripheral visual system and visual impairment. This was a cross-sectional observational investigation of a nationally recruited cohort of infants with 'simple' and 'complex' congenital disorders of the peripheral visual system. Entry age was 8 to 16 months. Vision level (Near Detection Scale) and non-verbal cognition (sensorimotor understanding, Reynell Zinkin Scales) were assessed. Parents completed demographic questionnaires. Of 90 infants (49 males, 41 females; mean 13mo, standard deviation [SD] 2.5mo; range 7-17mo); 25 (28%) had profound visual impairment (light perception at best) and 65 (72%) had severe visual impairment (basic 'form' vision). The Near Detection Scale correlated significantly with sensorimotor understanding developmental quotients in the 'total', 'simple', and 'complex' groups (all p<0.001). Age and vision accounted for 48% of sensorimotor understanding variance. Infants with profound visual impairment, especially in the 'complex' group with congenital disorders of the peripheral visual system with known brain involvement, showed the greatest cognitive delay. Lack of vision is associated with delayed early-object manipulative abilities and concepts; 'form' vision appeared to support early developmental advance. This paper provides baseline characteristics for cross-sectional and longitudinal follow-up investigations in progress. A methodological strength of the study was the representativeness of the cohort according to national epidemiological and population census data. © 2017 Mac Keith Press.
Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F
2007-01-01
Background Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. Results We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: . Conclusion MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine. PMID:17937818
Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F
2007-10-15
Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: http://sig.biostr.washington.edu/projects/MindSeer. MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine.
NASA Astrophysics Data System (ADS)
Titov, A. G.; Okladnikov, I. G.; Gordov, E. P.
2017-11-01
The use of large geospatial datasets in climate change studies requires the development of a set of Spatial Data Infrastructure (SDI) elements, including geoprocessing and cartographical visualization web services. This paper presents the architecture of a geospatial OGC web service system as an integral part of a virtual research environment (VRE) general architecture for statistical processing and visualization of meteorological and climatic data. The architecture is a set of interconnected standalone SDI nodes with corresponding data storage systems. Each node runs a specialized software, such as a geoportal, cartographical web services (WMS/WFS), a metadata catalog, and a MySQL database of technical metadata describing geospatial datasets available for the node. It also contains geospatial data processing services (WPS) based on a modular computing backend realizing statistical processing functionality and, thus, providing analysis of large datasets with the results of visualization and export into files of standard formats (XML, binary, etc.). Some cartographical web services have been developed in a system’s prototype to provide capabilities to work with raster and vector geospatial data based on OGC web services. The distributed architecture presented allows easy addition of new nodes, computing and data storage systems, and provides a solid computational infrastructure for regional climate change studies based on modern Web and GIS technologies.
NASA Technical Reports Server (NTRS)
Baisley, R. L.
1973-01-01
The results of an evaluation of police helicopter effectiveness revealed a need for improved visual capability. A JPL program developed a method that would enhance visual observation capability for both day and night usage and demonstrated the feasibility of the adopted approach. This approach made use of remote pointable optics, a display screen, a slaved covert searchlight, and a coupled camera. The approach was proved feasible through field testing and by judgement against evaluation criteria.
Applications of CFD and visualization techniques
NASA Technical Reports Server (NTRS)
Saunders, James H.; Brown, Susan T.; Crisafulli, Jeffrey J.; Southern, Leslie A.
1992-01-01
In this paper, three applications are presented to illustrate current techniques for flow calculation and visualization. The first two applications use a commercial computational fluid dynamics (CFD) code, FLUENT, performed on a Cray Y-MP. The results are animated with the aid of data visualization software, apE. The third application simulates a particulate deposition pattern using techniques inspired by developments in nonlinear dynamical systems. These computations were performed on personal computers.
Airport Surface Traffic Control Visual Ground Aids Engineering and Development Plan
DOT National Transportation Integrated Search
1977-01-01
The plan described in this document supports the overall program at the Transportation Systems Center to define, design, develop, and evaluate systems that meet the requirements of airport surface traffic control. This plan is part of documentation s...
OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.
Zhou, Guangyan; Xia, Jianguo
2018-06-07
Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.
A generalized 3D framework for visualization of planetary data.
NASA Astrophysics Data System (ADS)
Larsen, K. W.; De Wolfe, A. W.; Putnam, B.; Lindholm, D. M.; Nguyen, D.
2016-12-01
As the volume and variety of data returned from planetary exploration missions continues to expand, new tools and technologies are needed to explore the data and answer questions about the formation and evolution of the solar system. We have developed a 3D visualization framework that enables the exploration of planetary data from multiple instruments on the MAVEN mission to Mars. This framework not only provides the opportunity for cross-instrument visualization, but is extended to include model data as well, helping to bridge the gap between theory and observation. This is made possible through the use of new web technologies, namely LATIS, a data server that can stream data and spacecraft ephemerides to a web browser, and Cesium, a Javascript library for 3D globes. The common visualization framework we have developed is flexible and modular so that it can easily be adapted for additional missions. In addition to demonstrating the combined data and modeling capabilities of the system for the MAVEN mission, we will display the first ever near real-time `QuickLook', interactive, 4D data visualization for the Magnetospheric Multiscale Mission (MMS). In this application, data from all four spacecraft can be manipulated and visualized as soon as the data is ingested into the MMS Science Data Center, less than one day after collection.
ACORNS: A Tool for the Visualisation and Modelling of Atypical Development
ERIC Educational Resources Information Center
Moore, D. G.; George, R.
2011-01-01
Across many academic disciplines visualisation and notation systems are used for modelling data and developing theory, but in child development visual models are not widely used; yet researchers and students of developmental difficulties may benefit from a visualisation and notation system which can clearly map developmental outcomes and…
Insect cyborgs: a new frontier in flight control systems
NASA Astrophysics Data System (ADS)
Reissman, Timothy; Crawford, Jackie H.; Garcia, Ephrahim
2007-04-01
The development of a micro-UAV via a cybernetic organism, primarily the Manduca sexta moth, is presented. An observer to gather output data of the system response of the moth is given by means of an image following system. The visual tracking was implemented to gather the required information about the time history of the moth's six degrees of freedom. This was performed with three cameras tracking a white line as a marker on the moth's thorax to maximize contrast between the moth and the marker. Evaluation of the implemented six degree of freedom visual tracking system finds precision greater than 0.1 mm within three standard deviations and accuracy on the order of 1 mm. Acoustic and visual response systems are presented to lay the groundwork for creating a stochastic response catalog of the organisms to varied stimuli.
A Hyperbolic Ontology Visualization Tool for Model Application Programming Interface Documentation
NASA Technical Reports Server (NTRS)
Hyman, Cody
2011-01-01
Spacecraft modeling, a critically important portion in validating planned spacecraft activities, is currently carried out using a time consuming method of mission to mission model implementations and integration. A current project in early development, Integrated Spacecraft Analysis (ISCA), aims to remedy this hindrance by providing reusable architectures and reducing time spent integrating models with planning and sequencing tools. The principle objective of this internship was to develop a user interface for an experimental ontology-based structure visualization of navigation and attitude control system modeling software. To satisfy this, a number of tree and graph visualization tools were researched and a Java based hyperbolic graph viewer was selected for experimental adaptation. Early results show promise in the ability to organize and display large amounts of spacecraft model documentation efficiently and effectively through a web browser. This viewer serves as a conceptual implementation for future development but trials with both ISCA developers and end users should be performed to truly evaluate the effectiveness of continued development of such visualizations.
Hoffmann, M B; Kaule, F; Grzeschik, R; Behrens-Baumann, W; Wolynski, B
2011-07-01
Since its initial introduction in the mid-1990 s, retinotopic mapping of the human visual cortex, based on functional magnetic resonance imaging (fMRI), has contributed greatly to our understanding of the human visual system. Multiple cortical visual field representations have been demonstrated and thus numerous visual areas identified. The organisation of specific areas has been detailed and the impact of pathophysiologies of the visual system on the cortical organisation uncovered. These results are based on investigations at a magnetic field strength of 3 Tesla or less. In a field-strength comparison between 3 and 7 Tesla, it was demonstrated that retinotopic mapping benefits from a magnetic field strength of 7 Tesla. Specifically, the visual areas can be mapped with high spatial resolution for a detailed analysis of the visual field maps. Applications of fMRI-based retinotopic mapping in ophthalmological research hold promise to further our understanding of plasticity in the human visual cortex. This is highlighted by pioneering studies in patients with macular dysfunction or misrouted optic nerves. © Georg Thieme Verlag KG Stuttgart · New York.
A high-quality high-fidelity visualization of the September 11 attack on the World Trade Center.
Rosen, Paul; Popescu, Voicu; Hoffmann, Christoph; Irfanoglu, Ayhan
2008-01-01
In this application paper, we describe the efforts of a multidisciplinary team towards producing a visualization of the September 11 Attack on the North Tower of New York's World Trade Center. The visualization was designed to meet two requirements. First, the visualization had to depict the impact with high fidelity, by closely following the laws of physics. Second, the visualization had to be eloquent to a nonexpert user. This was achieved by first designing and computing a finite-element analysis (FEA) simulation of the impact between the aircraft and the top 20 stories of the building, and then by visualizing the FEA results with a state-of-the-art commercial animation system. The visualization was enabled by an automatic translator that converts the simulation data into an animation system 3D scene. We built upon a previously developed translator. The translator was substantially extended to enable and control visualization of fire and of disintegrating elements, to better scale with the number of nodes and number of states, to handle beam elements with complex profiles, and to handle smoothed particle hydrodynamics liquid representation. The resulting translator is a powerful automatic and scalable tool for high-quality visualization of FEA results.
Visual tracking for multi-modality computer-assisted image guidance
NASA Astrophysics Data System (ADS)
Basafa, Ehsan; Foroughi, Pezhman; Hossbach, Martin; Bhanushali, Jasmine; Stolka, Philipp
2017-03-01
With optical cameras, many interventional navigation tasks previously relying on EM, optical, or mechanical guidance can be performed robustly, quickly, and conveniently. We developed a family of novel guidance systems based on wide-spectrum cameras and vision algorithms for real-time tracking of interventional instruments and multi-modality markers. These navigation systems support the localization of anatomical targets, support placement of imaging probe and instruments, and provide fusion imaging. The unique architecture - low-cost, miniature, in-hand stereo vision cameras fitted directly to imaging probes - allows for an intuitive workflow that fits a wide variety of specialties such as anesthesiology, interventional radiology, interventional oncology, emergency medicine, urology, and others, many of which see increasing pressure to utilize medical imaging and especially ultrasound, but have yet to develop the requisite skills for reliable success. We developed a modular system, consisting of hardware (the Optical Head containing the mini cameras) and software (components for visual instrument tracking with or without specialized visual features, fully automated marker segmentation from a variety of 3D imaging modalities, visual observation of meshes of widely separated markers, instant automatic registration, and target tracking and guidance on real-time multi-modality fusion views). From these components, we implemented a family of distinct clinical and pre-clinical systems (for combinations of ultrasound, CT, CBCT, and MRI), most of which have international regulatory clearance for clinical use. We present technical and clinical results on phantoms, ex- and in-vivo animals, and patients.
Toward the development of a cortically based visual neuroprosthesis.
Normann, Richard A; Greger, Bradley; Greger, Bradley A; House, Paul; Romero, Samuel F; Pelayo, Francisco; Fernandez, Eduardo
2009-06-01
Motivated by the success of cochlear implants for deaf patients, we are now facing the goal of creating a visual neuroprosthesis designed to interface with the occipital cortex as a means through which a limited but useful sense of vision could be restored in profoundly blind patients. We review the most important challenges regarding this neuroprosthetic approach and emphasize the need for basic human psychophysical research on the best way of presenting complex stimulating patterns through multiple microelectrodes. Continued research will hopefully lead to the development of and design specifications for the first generation of a cortically based visual prosthesis system.
SocialMood: an information visualization tool to measure the mood of the people in social networks
NASA Astrophysics Data System (ADS)
Amorim, Guilherme; Franco, Roberto; Moraes, Rodolfo; Figueiredo, Bruno; Miranda, João.; Dobrões, José; Afonso, Ricardo; Meiguins, Bianchi
2013-12-01
Based on the arena of social networks, the tool developed in this study aims to identify trends mood among undergraduate students. Combining the methodology Self-Assessment Manikin (SAM), which originated in the field of Psychology, the system filters the content provided on the Web and isolates certain words, establishing a range of values as perceived positive, negative or neutral. A Big Data summarizing the results, assisting in the construction and visualization of behavioral profiles generic, so we have a guideline for the development of information visualization tools for social networks.
PERSPECTIVE: Toward the development of a cortically based visual neuroprosthesis
NASA Astrophysics Data System (ADS)
Normann, Richard A.; Greger, Bradley A.; House, Paul; Romero, Samuel F.; Pelayo, Francisco; Fernandez, Eduardo
2009-06-01
Motivated by the success of cochlear implants for deaf patients, we are now facing the goal of creating a visual neuroprosthesis designed to interface with the occipital cortex as a means through which a limited but useful sense of vision could be restored in profoundly blind patients. We review the most important challenges regarding this neuroprosthetic approach and emphasize the need for basic human psychophysical research on the best way of presenting complex stimulating patterns through multiple microelectrodes. Continued research will hopefully lead to the development of and design specifications for the first generation of a cortically based visual prosthesis system.
Visualization for Molecular Dynamics Simulation of Gas and Metal Surface Interaction
NASA Astrophysics Data System (ADS)
Puzyrkov, D.; Polyakov, S.; Podryga, V.
2016-02-01
The development of methods, algorithms and applications for visualization of molecular dynamics simulation outputs is discussed. The visual analysis of the results of such calculations is a complex and actual problem especially in case of the large scale simulations. To solve this challenging task it is necessary to decide on: 1) what data parameters to render, 2) what type of visualization to choose, 3) what development tools to use. In the present work an attempt to answer these questions was made. For visualization it was offered to draw particles in the corresponding 3D coordinates and also their velocity vectors, trajectories and volume density in the form of isosurfaces or fog. We tested the way of post-processing and visualization based on the Python language with use of additional libraries. Also parallel software was developed that allows processing large volumes of data in the 3D regions of the examined system. This software gives the opportunity to achieve desired results that are obtained in parallel with the calculations, and at the end to collect discrete received frames into a video file. The software package "Enthought Mayavi2" was used as the tool for visualization. This visualization application gave us the opportunity to study the interaction of a gas with a metal surface and to closely observe the adsorption effect.
What can fish brains tell us about visual perception?
Rosa Salva, Orsola; Sovrano, Valeria Anna; Vallortigara, Giorgio
2014-01-01
Fish are a complex taxonomic group, whose diversity and distance from other vertebrates well suits the comparative investigation of brain and behavior: in fish species we observe substantial differences with respect to the telencephalic organization of other vertebrates and an astonishing variety in the development and complexity of pallial structures. We will concentrate on the contribution of research on fish behavioral biology for the understanding of the evolution of the visual system. We shall review evidence concerning perceptual effects that reflect fundamental principles of the visual system functioning, highlighting the similarities and differences between distant fish groups and with other vertebrates. We will focus on perceptual effects reflecting some of the main tasks that the visual system must attain. In particular, we will deal with subjective contours and optical illusions, invariance effects, second order motion and biological motion and, finally, perceptual binding of object properties in a unified higher level representation. PMID:25324728
Nie, Min; Ren, Jie; Li, Zhengjun; Niu, Jinhai; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao
2009-01-01
Without visual information, the blind people live in various hardships with shopping, reading, finding objects and etc. Therefore, we developed a portable auditory guide system, called SoundView, for visually impaired people. This prototype system consists of a mini-CCD camera, a digital signal processing unit and an earphone, working with built-in customizable auditory coding algorithms. Employing environment understanding techniques, SoundView processes the images from a camera and detects objects tagged with barcodes. The recognized objects in the environment are then encoded into stereo speech signals for the blind though an earphone. The user would be able to recognize the type, motion state and location of the interested objects with the help of SoundView. Compared with other visual assistant techniques, SoundView is object-oriented and has the advantages of cheap cost, smaller size, light weight, low power consumption and easy customization.
The SCEC Community Modeling Environment(SCEC/CME): A Collaboratory for Seismic Hazard Analysis
NASA Astrophysics Data System (ADS)
Maechling, P. J.; Jordan, T. H.; Minster, J. B.; Moore, R.; Kesselman, C.
2005-12-01
The SCEC Community Modeling Environment (SCEC/CME) Project is an NSF-supported Geosciences/IT partnership that is actively developing an advanced information infrastructure for system-level earthquake science in Southern California. This partnership includes SCEC, USC's Information Sciences Institute (ISI), the San Diego Supercomputer Center (SDSC), the Incorporated Institutions for Research in Seismology (IRIS), and the U.S. Geological Survey. The goal of the SCEC/CME is to develop seismological applications and information technology (IT) infrastructure to support the development of Seismic Hazard Analysis (SHA) programs and other geophysical simulations. The SHA application programs developed on the Project include a Probabilistic Seismic Hazard Analysis system called OpenSHA. OpenSHA computational elements that are currently available include a collection of attenuation relationships, and several Earthquake Rupture Forecasts (ERFs). Geophysicists in the collaboration have also developed Anelastic Wave Models (AWMs) using both finite-difference and finite-element approaches. Earthquake simulations using these codes have been run for a variety of earthquake sources. Rupture Dynamic Model (RDM) codes have also been developed that simulate friction-based fault slip. The SCEC/CME collaboration has also developed IT software and hardware infrastructure to support the development, execution, and analysis of these SHA programs. To support computationally expensive simulations, we have constructed a grid-based scientific workflow system. Using the SCEC grid, project collaborators can submit computations from the SCEC/CME servers to High Performance Computers at USC and TeraGrid High Performance Computing Centers. Data generated and archived by the SCEC/CME is stored in a digital library system, the Storage Resource Broker (SRB). This system provides a robust and secure system for maintaining the association between the data seta and their metadata. To provide an easy-to-use system for constructing SHA computations, a browser-based workflow assembly web portal has been developed. Users can compose complex SHA calculations, specifying SCEC/CME data sets as inputs to calculations, and calling SCEC/CME computational programs to process the data and the output. Knowledge-based software tools have been implemented that utilize ontological descriptions of SHA software and data can validate workflows created with this pathway assembly tool. Data visualization software developed by the collaboration supports analysis and validation of data sets. Several programs have been developed to visualize SCEC/CME data including GMT-based map making software for PSHA codes, 4D wavefield propagation visualization software based on OpenGL, and 3D Geowall-based visualization of earthquakes, faults, and seismic wave propagation. The SCEC/CME Project also helps to sponsor the SCEC UseIT Intern program. The UseIT Intern Program provides research opportunities in both Geosciences and Information Technology to undergraduate students in a variety of fields. The UseIT group has developed a 3D data visualization tool, called SCEC-VDO, as a part of this undergraduate research program.
Ngo, Kathy T.; Andrade, Ingrid; Hartenstein, Volker
2018-01-01
Visual information processing in animals with large image forming eyes is carried out in highly structured retinotopically ordered neuropils. Visual neuropils in Drosophila form the optic lobe, which consists of four serially arranged major subdivisions; the lamina, medulla, lobula and lobula plate; the latter three of these are further subdivided into multiple layers. The visual neuropils are formed by more than 100 different cell types, distributed and interconnected in an invariant highly regular pattern. This pattern relies on a protracted sequence of developmental steps, whereby different cell types are born at specific time points and nerve connections are formed in a tightly controlled sequence that has to be coordinated among the different visual neuropils. The developing fly visual system has become a highly regarded and widely studied paradigm to investigate the genetic mechanisms that control the formation of neural circuits. However, these studies are often made difficult by the complex and shifting patterns in which different types of neurons and their connections are distributed throughout development. In the present paper we have reconstructed the three-dimensional architecture of the Drosophila optic lobe from the early larva to the adult. Based on specific markers, we were able to distinguish the populations of progenitors of the four optic neuropils and map the neurons and their connections. Our paper presents sets of annotated confocal z-projections and animated 3D digital models of these structures for representative stages. The data reveal the temporally coordinated growth of the optic neuropils, and clarify how the position and orientation of the neuropils and interconnecting tracts (inner and outer optic chiasm) changes over time. Finally, we have analyzed the emergence of the discrete layers of the medulla and lobula complex using the same markers (DN-cadherin, Brp) employed to systematically explore the structure and development of the central brain neuropil. Our work will facilitate experimental studies of the molecular mechanisms regulating neuronal fate and connectivity in the fly visual system, which bears many fundamental similarities with the retina of vertebrates. PMID:28533086
Applying the metro map to software development management
NASA Astrophysics Data System (ADS)
Aguirregoitia, Amaia; Dolado, J. Javier; Presedo, Concepción
2010-01-01
This paper presents MetroMap, a new graphical representation model for controlling and managing the software development process. Metromap uses metaphors and visual representation techniques to explore several key indicators in order to support problem detection and resolution. The resulting visualization addresses diverse management tasks, such as tracking of deviations from the plan, analysis of patterns of failure detection and correction, overall assessment of change management policies, and estimation of product quality. The proposed visualization uses a metaphor with a metro map along with various interactive techniques to represent information concerning the software development process and to deal efficiently with multivariate visual queries. Finally, the paper shows the implementation of the tool in JavaFX with data of a real project and the results of testing the tool with the aforementioned data and users attempting several information retrieval tasks. The conclusion shows the results of analyzing user response time and efficiency using the MetroMap visualization system. The utility of the tool was positively evaluated.
Circadian perinatal photoperiod has enduring effects on retinal dopamine and visual function.
Jackson, Chad R; Capozzi, Megan; Dai, Heng; McMahon, Douglas G
2014-03-26
Visual system development depends on neural activity, driven by intrinsic and light-sensitive mechanisms. Here, we examined the effects on retinal function due to exposure to summer- and winter-like circadian light cycles during development and adulthood. Retinal light responses, visual behaviors, dopamine content, retinal morphology, and gene expression were assessed in mice reared in seasonal photoperiods consisting of light/dark cycles of 8:16, 16:8, and 12:12 h, respectively. Mice exposed to short, winter-like, light cycles showed enduring deficits in photopic retinal light responses and visual contrast sensitivity, but only transient changes were observed for scotopic measures. Dopamine levels were significantly lower in short photoperiod mice, and dopaminergic agonist treatment rescued the photopic light response deficits. Tyrosine hydroxylase and Early Growth Response factor-1 mRNA expression were reduced in short photoperiod retinas. Therefore, seasonal light cycles experienced during retinal development and maturation have lasting influence on retinal and visual function, likely through developmental programming of retinal dopamine.
SU-F-T-91: Development of Real Time Abdominal Compression Force (ACF) Monitoring System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T; Kim, D; Kang, S
Purpose: Hard-plate based abdominal compression is known to be effective, but no explicit method exists to quantify abdominal compression force (ACF) and maintain the proper ACF through the whole procedure. In addition, even with compression, it is necessary to do 4D CT to manage residual motion but, 4D CT is often not possible due to reduced surrogating sensitivity. In this study, we developed and evaluated a system that both monitors ACF in real time and provides surrogating signal even under compression. The system can also provide visual-biofeedback. Methods: The system developed consists of a compression plate, an ACF monitoring unitmore » and a visual-biofeedback device. The ACF monitoring unit contains a thin air balloon in the size of compression plate and a gas pressure sensor. The unit is attached to the bottom of the plate thus, placed between the plate and the patient when compression is applied, and detects compression pressure. For reliability test, 3 volunteers were directed to take several different breathing patterns and the ACF variation was compared with the respiratory flow and external respiratory signal to assure that the system provides corresponding behavior. In addition, guiding waveform were generated based on free breathing, and then applied for evaluating the effectiveness of visual-biofeedback. Results: We could monitor ACF variation in real time and confirmed that the data was correlated with both respiratory flow data and external respiratory signal. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed real time ACF monitoring system was found to be functional as intended and consistent. With the capability of both providing real time surrogating signal under compression and enabling visual-biofeedback, it is considered that the system would improve the quality of respiratory motion management in radiation therapy. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less
Visual signature reduction of unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Zhong, Z. W.; Ma, Z. X.; Jayawijayaningtiyas; Ngoh, J. H. H.
2016-10-01
With the emergence of unmanned aerial vehicles (UAVs) in multiple tactical defence missions, there was a need for an efficient visual signature suppression system for a more efficient stealth operation. One of our studies experimentally investigated the visual signature reduction of UAVs achieved through an active camouflage system. A prototype was constructed with newly developed operating software, Cloak, to provide active camouflage to the UAV model. The reduction of visual signature was analysed. Tests of the devices mounted on UAVs were conducted in another study. A series of experiments involved testing of the concept as well as the prototype. The experiments were conducted both in the laboratory and under normal environmental conditions. Results showed certain degrees of blending with the sky to create a camouflage effect. A mini-UAV made mostly out of transparent plastic was also designed and fabricated. Because of the transparency of the plastic material, the visibility of this UAV in the air is very small, and therefore the UAV is difficult to be detected. After re-designs and tests, eventually a practical system to reduce the visibility of UAVs viewed by human observers from the ground was developed. The system was evaluated during various outdoor tests. The scene target-to-background lightness contrast and the scene target-to-background colour contrast of the adaptive control system prototype were smaller than 10% at a stand-off viewing distance of 20-50 m.
From science to technology: Orientation and mobility in blind children and adults.
Cuturi, Luigi F; Aggius-Vella, Elena; Campus, Claudio; Parmiggiani, Alberto; Gori, Monica
2016-12-01
The last quarter of a century has seen a dramatic rise of interest in the development of technological solutions for visually impaired people. However, despite the presence of many devices, user acceptance is low. Not only are visually impaired adults not using these devices but they are also too complex for children. The majority of these devices have been developed without considering either the brain mechanisms underlying the deficit or the natural ability of the brain to process information. Most of them use complex feedback systems and overwhelm sensory, attentional and memory capacities. Here we review the neuroscientific studies on orientation and mobility in visually impaired adults and children and present the technological devices developed so far to improve locomotion skills. We also discuss how we think these solutions could be improved. We hope that this paper may be of interest to neuroscientists and technologists and it will provide a common background to develop new science-driven technology, more accepted by visually impaired adults and suitable for children with visual disabilities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Kilb, D.; Reif, C.; Peach, C.; Keen, C. S.; Smith, B.; Mellors, R. J.
2003-12-01
Within the last year scientists and educators at the Scripps Institution of Oceanography (SIO), the Birch Aquarium at Scripps and San Diego State University have collaborated with education specialists to develop 3D interactive graphic teaching modules for use in the classroom and in teacher workshops at the SIO Visualization center (http://siovizcenter.ucsd.edu). The unique aspect of the SIO Visualization center is that the center is designed around a 120 degree curved Panoram floor-to-ceiling screen (8'6" by 28'4") that immerses viewers in a virtual environment. The center is powered by an SGI 3400 Onyx computer that is more powerful, by an order of magnitude in both speed and memory, than typical base systems currently used for education and outreach presentations. This technology allows us to display multiple 3D data layers (e.g., seismicity, high resolution topography, seismic reflectivity, draped interferometric synthetic aperture radar (InSAR) images, etc.) simultaneously, render them in 3D stereo, and take a virtual flight through the data as dictated on the spot by the user. This system can also render snapshots, images and movies that are too big for other systems, and then export smaller size end-products to more commonly used computer systems. Since early 2002, we have explored various ways to provide informal education and outreach focusing on current research presented directly by the researchers doing the work. The Center currently provides a centerpiece for instruction on southern California seismology for K-12 students and teachers for various Scripps education endeavors. Future plans are in place to use the Visualization Center at Scripps for extended K-12 and college educational programs. In particular, we will be identifying K-12 curriculum needs, assisting with teacher education, developing assessments of our programs and products, producing web-accessible teaching modules and facilitating the development of appropriate teaching tools to be used directly by classroom teachers.
Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Warren
2004-06-01
There is significant motivation to provide robotic systems with improved autonomy as a means to significantly accelerate deactivation and decommissioning (D&D) operations while also reducing the associated costs, removing human operators from hazardous environments, and reducing the required burden and skill of human operators. To achieve improved autonomy, this project focused on the basic science challenges leading to the development of visual servo controllers. The challenge in developing these controllers is that a camera provides 2-dimensional image information about the 3-dimensional Euclidean-space through a perspective (range dependent) projection that can be corrupted by uncertainty in the camera calibration matrix andmore » by disturbances such as nonlinear radial distortion. Disturbances in this relationship (i.e., corruption in the sensor information) propagate erroneous information to the feedback controller of the robot, leading to potentially unpredictable task execution. This research project focused on the development of a visual servo control methodology that targets compensating for disturbances in the camera model (i.e., camera calibration and the recovery of range information) as a means to achieve predictable response by the robotic system operating in unstructured environments. The fundamental idea is to use nonlinear Lyapunov-based techniques along with photogrammetry methods to overcome the complex control issues and alleviate many of the restrictive assumptions that impact current robotic applications. The outcome of this control methodology is a plug-and-play visual servoing control module that can be utilized in conjunction with current technology such as feature recognition and extraction to enable robotic systems with the capabilities of increased accuracy, autonomy, and robustness, with a larger field of view (and hence a larger workspace). The developed methodology has been reported in numerous peer-reviewed publications and the performance and enabling capabilities of the resulting visual servo control modules have been demonstrated on mobile robot and robot manipulator platforms.« less
Low Cost Embedded Stereo System for Underwater Surveys
NASA Astrophysics Data System (ADS)
Nawaf, M. M.; Boï, J.-M.; Merad, D.; Royer, J.-P.; Drap, P.
2017-11-01
This paper provides details of both hardware and software conception and realization of a hand-held stereo embedded system for underwater imaging. The designed system can run most image processing techniques smoothly in real-time. The developed functions provide direct visual feedback on the quality of the taken images which helps taking appropriate actions accordingly in terms of movement speed and lighting conditions. The proposed functionalities can be easily customized or upgraded whereas new functions can be easily added thanks to the available supported libraries. Furthermore, by connecting the designed system to a more powerful computer, a real-time visual odometry can run on the captured images to have live navigation and site coverage map. We use a visual odometry method adapted to low computational resources systems and long autonomy. The system is tested in a real context and showed its robustness and promising further perspectives.
Visual force feedback in laparoscopic training.
Horeman, Tim; Rodrigues, Sharon P; van den Dobbelsteen, John J; Jansen, Frank-Willem; Dankelman, Jenny
2012-01-01
To improve endoscopic surgical skills, an increasing number of surgical residents practice on box or virtual reality (VR) trainers. Current training is focused mainly on hand-eye coordination. Training methods that focus on applying the right amount of force are not yet available. The aim of this project is to develop a low-cost training system that measures the interaction force between tissue and instruments and displays a visual representation of the applied forces inside the camera image. This visual representation continuously informs the subject about the magnitude and the direction of applied forces. To show the potential of the developed training system, a pilot study was conducted in which six novices performed a needle-driving task in a box trainer with visual feedback of the force, and six novices performed the same task without visual feedback of the force. All subjects performed the training task five times and were subsequently tested in a post-test without visual feedback. The subjects who received visual feedback during training exerted on average 1.3 N (STD 0.6 N) to drive the needle through the tissue during the post-test. This value was considerably higher for the group that received no feedback (2.6 N, STD 0.9 N). The maximum interaction force during the post-test was noticeably lower for the feedback group (4.1 N, STD 1.1 N) compared with that of the control group (8.0 N, STD 3.3 N). The force-sensing training system provides us with the unique possibility to objectively assess tissue-handling skills in a laboratory setting. The real-time visualization of applied forces during training may facilitate acquisition of tissue-handling skills in complex laparoscopic tasks and could stimulate proficiency gain curves of trainees. However, larger randomized trials that also include other tasks are necessary to determine whether training with visual feedback about forces reduces the interaction force during laparoscopic surgery.
Researchermap: a tool for visualizing author locations using Google maps.
Rastegar-Mojarad, Majid; Bales, Michael E; Yu, Hong
2013-01-01
We hereby present ResearcherMap, a tool to visualize locations of authors of scholarly papers. In response to a query, the system returns a map of author locations. To develop the system we first populated a database of author locations, geocoding institution locations for all available institutional affiliation data in our database. The database includes all authors of Medline papers from 1990 to 2012. We conducted a formative heuristic usability evaluation of the system and measured the system's accuracy and performance. The accuracy of finding the accurate address is 97.5% in our system.
Sensitive periods in affective development: nonlinear maturation of fear learning.
Hartley, Catherine A; Lee, Francis S
2015-01-01
At specific maturational stages, neural circuits enter sensitive periods of heightened plasticity, during which the development of both brain and behavior are highly receptive to particular experiential information. A relatively advanced understanding of the regulatory mechanisms governing the initiation, closure, and reinstatement of sensitive period plasticity has emerged from extensive research examining the development of the visual system. In this article, we discuss a large body of work characterizing the pronounced nonlinear changes in fear learning and extinction that occur from childhood through adulthood, and their underlying neural substrates. We draw upon the model of sensitive period regulation within the visual system, and present burgeoning evidence suggesting that parallel mechanisms may regulate the qualitative changes in fear learning across development.
Sensitive Periods in Affective Development: Nonlinear Maturation of Fear Learning
Hartley, Catherine A; Lee, Francis S
2015-01-01
At specific maturational stages, neural circuits enter sensitive periods of heightened plasticity, during which the development of both brain and behavior are highly receptive to particular experiential information. A relatively advanced understanding of the regulatory mechanisms governing the initiation, closure, and reinstatement of sensitive period plasticity has emerged from extensive research examining the development of the visual system. In this article, we discuss a large body of work characterizing the pronounced nonlinear changes in fear learning and extinction that occur from childhood through adulthood, and their underlying neural substrates. We draw upon the model of sensitive period regulation within the visual system, and present burgeoning evidence suggesting that parallel mechanisms may regulate the qualitative changes in fear learning across development. PMID:25035083
A Space and Atmospheric Visualization Science System
NASA Technical Reports Server (NTRS)
Szuszczewicz, E. P.; Blanchard, P.; Mankofsky, A.; Goodrich, C.; Kamins, D.; Kulkarni, R.; Mcnabb, D.; Moroh, M.
1994-01-01
SAVS (a Space and Atmospheric Visualization Science system) is an integrated system with user-friendly functionality that employs a 'push-button' software environment that mimics the logical scientific processes in data acquisition, reduction, analysis, and visualization. All of this is accomplished without requiring a detailed understanding of the methods, networks, and modules that link the tools and effectively execute the functions. This report describes SAVS and its components, followed by several applications based on generic research interests in interplanetary and magnetospheric physics (IMP/ISTP), active experiments in space (CRRES), and mission planning focused on the earth's thermospheric, ionospheric, and mesospheric domains (TIMED). The final chapters provide a user-oriented description of interface functionalities, hands-on operations, and customized modules, with details of the primary modules presented in the appendices. The overall intent of the report is to reflect the accomplishments of the three-year development effort and to introduce potential users to the power and utility of the integrated data acquisition, analysis, and visualization system.
Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo
2016-06-01
Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. © 2016 American Society of Plant Biologists. All rights reserved.
How does Learning Impact Development in Infancy? The Case of Perceptual Organization
Bhatt, Ramesh S.; Quinn, Paul C.
2011-01-01
Pattern perception and organization are critical functions of the visual cognition system. Many organizational processes are available early in life, such that infants as young 3 months of age are able to readily utilize a variety of cues to organize visual patterns. However, other processes are not readily evident in young infants, and their development involves perceptual learning. We describe a theoretical framework that addresses perceptual learning in infancy and the manner in which it affects visual organization and development. It identifies five kinds of experiences that induce learning, and suggests that they work via attentional and unitization mechanisms to modify visual organization. In addition, the framework proposes that this kind of learning is abstract, domain general, functional at different ages in a qualitatively similar manner, and has a long-term impact on development through a memory reactivation process. Although most models of development assume that experience is fundamental to development, very little is actually known about the process by which experience affects development. The proposed framework is an attempt to account for this process in the domain of perception. PMID:21572570
Altered white matter in early visual pathways of humans with amblyopia.
Allen, Brian; Spiegel, Daniel P; Thompson, Benjamin; Pestilli, Franco; Rokers, Bas
2015-09-01
Amblyopia is a visual disorder caused by poorly coordinated binocular input during development. Little is known about the impact of amblyopia on the white matter within the visual system. We studied the properties of six major visual white-matter pathways in a group of adults with amblyopia (n=10) and matched controls (n=10) using diffusion weighted imaging (DWI) and fiber tractography. While we did not find significant differences in diffusion properties in cortico-cortical pathways, patients with amblyopia exhibited increased mean diffusivity in thalamo-cortical visual pathways. These findings suggest that amblyopia may systematically alter the white matter properties of early visual pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nebhydro: Sharing Geospatial Data to Supportwater Management in Nebraska
NASA Astrophysics Data System (ADS)
Kamble, B.; Irmak, A.; Hubbard, K.; Deogun, J.; Dvorak, B.
2012-12-01
Recent advances in web-enabled geographical technologies have the potential to make a dramatic impact on development of highly interactive spatial applications on the web for visualization of large-scale geospatial data by water resources and irrigation scientists. Spatial and point scale water resources data visualization are an emerging and challenging application domain. Query based visual explorations of geospatial hydrological data can play an important role in stimulating scientific hypotheses and seeking causal relationships among hydro variables. The Nebraska Hydrological Information System (NebHydro) utilizes ESRI's ArcGIS server technology to increase technological awareness among farmers, irrigation managers and policy makers. Web-based geospatial applications are an effective way to expose scientific hydrological datasets to the research community and the public. NebHydro uses Adobe Flex technology to offer an online visualization and data analysis system for presentation of social and economic data. Internet mapping services is an integrated product of GIS and Internet technologies; it is a favored solution to achieve the interoperability of GIS. The development of Internet based GIS services in the state of Nebraska showcases the benefits of sharing geospatial hydrological data among agencies, resource managers and policy makers. Geospatial hydrological Information (Evapotranspiration from Remote Sensing, vegetation indices (NDVI), USGS Stream gauge data, Climatic data etc.) is generally generated through model simulation (METRIC, SWAP, Linux, Python based scripting etc). Information is compiled into and stored within object oriented relational spatial databases using a geodatabase information model that supports the key data types needed by applications including features, relationships, networks, imagery, terrains, maps and layers. The system provides online access, querying, visualization, and analysis of the hydrological data from several sources at one place. The study indicates that internet GIS, developed using advanced technologies, provides valuable education potential to users in hydrology and irrigation engineering and suggests that such a system can support advanced hydrological data access and analysis tools to improve utility of data in operations. Keywords: Hydrological Information System, NebHydro, Water Management, data sharing, data visualization, ArcGIS server.
NASA Technical Reports Server (NTRS)
Plesniak, Michael W.; Johnston, J. P.
1989-01-01
The construction and development of the multi-component traversing system and associated control hardware and software are presented. A hydrogen bubble/laser sheet flow visualization technique was developed to visually study the characteristics of the mixing layers. With this technique large-scale rollers arising from the Taylor-Gortler instability and its interaction with the primary Kelvin-Helmholtz structures can be studied.
ERIC Educational Resources Information Center
Hadidi, Muna S.; Al Khateeb, Jamal M.
2014-01-01
Introduction: Research to date on social support for adolescents with visual impairments (that is, blindness or low vision) has been primarily carried out in developed countries, and very little is known about the social support systems that are available for such adolescents in developing countries such as those in the Arab world. In the present…
Computational and fMRI Studies of Visualization
2009-03-31
spatial thinking in high level cognition, such as in problem-solving and reasoning. In conjunction with the experimental work, the project developed a...computational modeling system (4CAPS) as well as the development of 4CAPS models for particular tasks. The cognitive level of 4CAPS accounts for...neuroarchitecture to interpret and predict the brain activation in a network of cortical areas that underpin the performance of a visual thinking task. The
Advanced Collaborative Environments Supporting Systems Integration and Design
2003-03-01
concurrently view a virtual system or product model while maintaining natural, human communication . These virtual systems operate within a computer-generated...These environments allow multiple individuals to concurrently view a virtual system or product model while simultaneously maintaining natural, human ... communication . As a result, TARDEC researchers and system developers are using this advanced high-end visualization technology to develop future
Bioelectronic nose and its application to smell visualization.
Ko, Hwi Jin; Park, Tai Hyun
2016-01-01
There have been many trials to visualize smell using various techniques in order to objectively express the smell because information obtained from the sense of smell in human is very subjective. So far, well-trained experts such as a perfumer, complex and large-scale equipment such as GC-MS, and an electronic nose have played major roles in objectively detecting and recognizing odors. Recently, an optoelectronic nose was developed to achieve this purpose, but some limitations regarding the sensitivity and the number of smells that can be visualized still persist. Since the elucidation of the olfactory mechanism, numerous researches have been accomplished for the development of a sensing device by mimicking human olfactory system. Engineered olfactory cells were constructed to mimic the human olfactory system, and the use of engineered olfactory cells for smell visualization has been attempted with the use of various methods such as calcium imaging, CRE reporter assay, BRET, and membrane potential assay; however, it is not easy to consistently control the condition of cells and it is impossible to detect low odorant concentration. Recently, the bioelectronic nose was developed, and much improved along with the improvement of nano-biotechnology. The bioelectronic nose consists of the following two parts: primary transducer and secondary transducer. Biological materials as a primary transducer improved the selectivity of the sensor, and nanomaterials as a secondary transducer increased the sensitivity. Especially, the bioelectronic noses using various nanomaterials combined with human olfactory receptors or nanovesicles derived from engineered olfactory cells have a potential which can detect almost all of the smells recognized by human because an engineered olfactory cell might be able to express any human olfactory receptor as well as can mimic human olfactory system. Therefore, bioelectronic nose will be a potent tool for smell visualization, but only if two technologies are completed. First, a multi-channel array-sensing system has to be applied for the integration of all of the olfactory receptors into a single chip for mimicking the performance of human nose. Second, the processing technique of the multi-channel system signals should be simultaneously established with the conversion of the signals to visual images. With the use of this latest sensing technology, the realization of a proper smell-visualization technology is expected in the near future.
Improving the performance of the amblyopic visual system
Levi, Dennis M.; Li, Roger W.
2008-01-01
Experience-dependent plasticity is closely linked with the development of sensory function; however, there is also growing evidence for plasticity in the adult visual system. This review re-examines the notion of a sensitive period for the treatment of amblyopia in the light of recent experimental and clinical evidence for neural plasticity. One recently proposed method for improving the effectiveness and efficiency of treatment that has received considerable attention is ‘perceptual learning’. Specifically, both children and adults with amblyopia can improve their perceptual performance through extensive practice on a challenging visual task. The results suggest that perceptual learning may be effective in improving a range of visual performance and, importantly, the improvements may transfer to visual acuity. Recent studies have sought to explore the limits and time course of perceptual learning as an adjunct to occlusion and to investigate the neural mechanisms underlying the visual improvement. These findings, along with the results of new clinical trials, suggest that it might be time to reconsider our notions about neural plasticity in amblyopia. PMID:19008199
Music and words in the visual cortex: The impact of musical expertise.
Mongelli, Valeria; Dehaene, Stanislas; Vinckier, Fabien; Peretz, Isabelle; Bartolomeo, Paolo; Cohen, Laurent
2017-01-01
How does the human visual system accommodate expertise for two simultaneously acquired symbolic systems? We used fMRI to compare activations induced in the visual cortex by musical notation, written words and other classes of objects, in professional musicians and in musically naïve controls. First, irrespective of expertise, selective activations for music were posterior and lateral to activations for words in the left occipitotemporal cortex. This indicates that symbols characterized by different visual features engage distinct cortical areas. Second, musical expertise increased the volume of activations for music and led to an anterolateral displacement of word-related activations. In musicians, there was also a dramatic increase of the brain-scale networks connected to the music-selective visual areas. Those findings reveal that acquiring a double visual expertise involves an expansion of category-selective areas, the development of novel long-distance functional connectivity, and possibly some competition between categories for the colonization of cortical space. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dysfunctional visual word form processing in progressive alexia
Rising, Kindle; Stib, Matthew T.; Rapcsak, Steven Z.; Beeson, Pélagie M.
2013-01-01
Progressive alexia is an acquired reading deficit caused by degeneration of brain regions that are essential for written word processing. Functional imaging studies have shown that early processing of the visual word form depends on a hierarchical posterior-to-anterior processing stream in occipito-temporal cortex, whereby successive areas code increasingly larger and more complex perceptual attributes of the letter string. A region located in the left lateral occipito-temporal sulcus and adjacent fusiform gyrus shows maximal selectivity for words and has been dubbed the ‘visual word form area’. We studied two patients with progressive alexia in order to determine whether their reading deficits were associated with structural and/or functional abnormalities in this visual word form system. Voxel-based morphometry showed left-lateralized occipito-temporal atrophy in both patients, very mild in one, but moderate to severe in the other. The two patients, along with 10 control subjects, were scanned with functional magnetic resonance imaging as they viewed rapidly presented words, false font strings, or a fixation crosshair. This paradigm was optimized to reliably map brain regions involved in orthographic processing in individual subjects. All 10 control subjects showed a posterior-to-anterior gradient of selectivity for words, and all 10 showed a functionally defined visual word form area in the left hemisphere that was activated for words relative to false font strings. In contrast, neither of the two patients with progressive alexia showed any evidence for a selectivity gradient or for word-specific activation of the visual word form area. The patient with mild atrophy showed normal responses to both words and false font strings in the posterior part of the visual word form system, but a failure to develop selectivity for words in the more anterior part of the system. In contrast, the patient with moderate to severe atrophy showed minimal activation of any part of the visual word form system for either words or false font strings. Our results suggest that progressive alexia is associated with a dysfunctional visual word form system, with or without substantial cortical atrophy. Furthermore, these findings demonstrate that functional MRI has the potential to reveal the neural bases of cognitive deficits in neurodegenerative patients at very early stages, in some cases before the development of extensive atrophy. PMID:23471694
Dysfunctional visual word form processing in progressive alexia.
Wilson, Stephen M; Rising, Kindle; Stib, Matthew T; Rapcsak, Steven Z; Beeson, Pélagie M
2013-04-01
Progressive alexia is an acquired reading deficit caused by degeneration of brain regions that are essential for written word processing. Functional imaging studies have shown that early processing of the visual word form depends on a hierarchical posterior-to-anterior processing stream in occipito-temporal cortex, whereby successive areas code increasingly larger and more complex perceptual attributes of the letter string. A region located in the left lateral occipito-temporal sulcus and adjacent fusiform gyrus shows maximal selectivity for words and has been dubbed the 'visual word form area'. We studied two patients with progressive alexia in order to determine whether their reading deficits were associated with structural and/or functional abnormalities in this visual word form system. Voxel-based morphometry showed left-lateralized occipito-temporal atrophy in both patients, very mild in one, but moderate to severe in the other. The two patients, along with 10 control subjects, were scanned with functional magnetic resonance imaging as they viewed rapidly presented words, false font strings, or a fixation crosshair. This paradigm was optimized to reliably map brain regions involved in orthographic processing in individual subjects. All 10 control subjects showed a posterior-to-anterior gradient of selectivity for words, and all 10 showed a functionally defined visual word form area in the left hemisphere that was activated for words relative to false font strings. In contrast, neither of the two patients with progressive alexia showed any evidence for a selectivity gradient or for word-specific activation of the visual word form area. The patient with mild atrophy showed normal responses to both words and false font strings in the posterior part of the visual word form system, but a failure to develop selectivity for words in the more anterior part of the system. In contrast, the patient with moderate to severe atrophy showed minimal activation of any part of the visual word form system for either words or false font strings. Our results suggest that progressive alexia is associated with a dysfunctional visual word form system, with or without substantial cortical atrophy. Furthermore, these findings demonstrate that functional MRI has the potential to reveal the neural bases of cognitive deficits in neurodegenerative patients at very early stages, in some cases before the development of extensive atrophy.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Bailey, Randall E.; Shelton, Kevin J.; Jones, Denise R.; Kramer, Lynda J.; Arthur, Jarvis J., III; Williams, Steve P.; Barmore, Bryan E.; Ellis, Kyle E.; Rehfeld, Sherri A.
2011-01-01
A consortium of industry, academia and government agencies are devising new concepts for future U.S. aviation operations under the Next Generation Air Transportation System (NextGen). Many key capabilities are being identified to enable NextGen, including the concept of Equivalent Visual Operations (EVO) replicating the capacity and safety of today's visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual (BTV) operational concept. The BTV operational concept uses an electronic means to provide sufficient visual references of the external world and other required flight references on flight deck displays that enable VFR-like operational tempos and maintain and improve the safety of VFR while using VFR-like procedures in all-weather conditions. NASA Langley Research Center (LaRC) research on technologies to enable the concept of BTV is described.
Development of image processing techniques for applications in flow visualization and analysis
NASA Technical Reports Server (NTRS)
Disimile, Peter J.; Shoe, Bridget; Toy, Norman; Savory, Eric; Tahouri, Bahman
1991-01-01
A comparison between two flow visualization studies of an axi-symmetric circular jet issuing into still fluid, using two different experimental techniques, is described. In the first case laser induced fluorescence is used to visualize the flow structure, whilst smoke is utilized in the second. Quantitative information was obtained from these visualized flow regimes using two different digital imaging systems. Results are presented of the rate at which the jet expands in the downstream direction and these compare favorably with the more established data.
Developmental outcome, including setback, in young children with severe visual impairment.
Dale, Naomi; Sonksen, Patricia
2002-09-01
This study retrospectively investigated the developmental perspective of 69 children (40 males, 29 females) with 'potentially simple' congenital disorders of the peripheral visual system: development was examined in the context of degree of visual impairment. Developmental and visual assessments were carried out at 10 to 16 months (Time 1) and 27 to 54 months of age (Time 2). Participants were grouped according to (1) visual status: profound visual impairment (PVI), severe visual impairment (SVI); (2) developmental status on the Reynell-Zinkin scales. A majority of the sample showed normal development on all subscales (62% Time 1, 57% Time 2). Those with PVI were more developmentally vulnerable than SVI with a greater incidence of (1) uneven developmental profile at Time 1 (48% PVI, 16% SVI); (2) global learning difficulties at Time 2 (37% PVI, 0% SVI); (3) delay on individual subscales at Time 2 (p<0.02 PVI versus SVI); (4) deceleration (verbal comprehension 74% PVI, 24% SVI, sensorimotor understanding 70% PVI, 27% SVI); and (5) severe developmental setback (33% PVI, 7% SVI). Risk factors of visual level, age, and sex for poor developmental outcome in infants with visual impairment were established.
Are visual peripheries forever young?
Burnat, Kalina
2015-01-01
The paper presents a concept of lifelong plasticity of peripheral vision. Central vision processing is accepted as critical and irreplaceable for normal perception in humans. While peripheral processing chiefly carries information about motion stimuli features and redirects foveal attention to new objects, it can also take over functions typical for central vision. Here I review the data showing the plasticity of peripheral vision found in functional, developmental, and comparative studies. Even though it is well established that afferent projections from central and peripheral retinal regions are not established simultaneously during early postnatal life, central vision is commonly used as a general model of development of the visual system. Based on clinical studies and visually deprived animal models, I describe how central and peripheral visual field representations separately rely on early visual experience. Peripheral visual processing (motion) is more affected by binocular visual deprivation than central visual processing (spatial resolution). In addition, our own experimental findings show the possible recruitment of coarse peripheral vision for fine spatial analysis. Accordingly, I hypothesize that the balance between central and peripheral visual processing, established in the course of development, is susceptible to plastic adaptations during the entire life span, with peripheral vision capable of taking over central processing.
Duggan, Brendan M; Rae, Anne M; Clements, Dylan N; Hocking, Paul M
2017-05-02
Genetic progress in selection for greater body mass and meat yield in poultry has been associated with an increase in gait problems which are detrimental to productivity and welfare. The incidence of suboptimal gait in breeding flocks is controlled through the use of a visual gait score, which is a subjective assessment of walking ability of each bird. The subjective nature of the visual gait score has led to concerns over its effectiveness in reducing the incidence of suboptimal gait in poultry through breeding. The aims of this study were to assess the reliability of the current visual gait scoring system in ducks and to develop a more objective method to select for better gait. Experienced gait scorers assessed short video clips of walking ducks to estimate the reliability of the current visual gait scoring system. Kendall's coefficients of concordance between and within observers were estimated at 0.49 and 0.75, respectively. In order to develop a more objective scoring system, gait components were visually scored on more than 4000 pedigreed Pekin ducks and genetic parameters were estimated for these components. Gait components, which are a more objective measure, had heritabilities that were as good as, or better than, those of the overall visual gait score. Measurement of gait components is simpler and therefore more objective than the standard visual gait score. The recording of gait components can potentially be automated, which may increase accuracy further and may improve heritability estimates. Genetic correlations were generally low, which suggests that it is possible to use gait components to select for an overall improvement in both economic traits and gait as part of a balanced breeding programme.
A 2D virtual reality system for visual goal-driven navigation in zebrafish larvae
Jouary, Adrien; Haudrechy, Mathieu; Candelier, Raphaël; Sumbre, German
2016-01-01
Animals continuously rely on sensory feedback to adjust motor commands. In order to study the role of visual feedback in goal-driven navigation, we developed a 2D visual virtual reality system for zebrafish larvae. The visual feedback can be set to be similar to what the animal experiences in natural conditions. Alternatively, modification of the visual feedback can be used to study how the brain adapts to perturbations. For this purpose, we first generated a library of free-swimming behaviors from which we learned the relationship between the trajectory of the larva and the shape of its tail. Then, we used this technique to infer the intended displacements of head-fixed larvae, and updated the visual environment accordingly. Under these conditions, larvae were capable of aligning and swimming in the direction of a whole-field moving stimulus and produced the fine changes in orientation and position required to capture virtual prey. We demonstrate the sensitivity of larvae to visual feedback by updating the visual world in real-time or only at the end of the discrete swimming episodes. This visual feedback perturbation caused impaired performance of prey-capture behavior, suggesting that larvae rely on continuous visual feedback during swimming. PMID:27659496
ERIC Educational Resources Information Center
Marill, Thomas; And Others
The aim of the CYCLOPS Project research is the development of techniques for allowing computers to perform visual scene analysis, pre-processing of visual imagery, and perceptual learning. Work on scene analysis and learning has previously been described. The present report deals with research on pre-processing and with further work on scene…
Setting technical standards for visual assessment procedures
Kenneth H. Craik; Nickolaus R. Feimer
1979-01-01
Under the impetus of recent legislative and administrative mandates concerning analysis and management of the landscape, governmental agencies are being called upon to adopt or develop visual resource and impact assessment (VRIA) systems. A variety of techniques that combine methods of psychological assessment and landscape analysis to serve these purposes is being...
Vitamin and mineral deficiencies in the developed world and their effect on the eye and vision.
Whatham, Andrew; Bartlett, Hannah; Eperjesi, Frank; Blumenthal, Caron; Allen, Jane; Suttle, Catherine; Gaskin, Kevin
2008-01-01
Vitamin and mineral deficiencies are common in developing countries, but also occur in developed countries. We review micronutrient deficiencies for the major vitamins A, cobalamin (B(12)), biotin (vitamin H), vitamins C and E, as well as the minerals iron, and zinc, in the developed world, in terms of their relationship to systemic health and any resulting ocular disease and/or visual dysfunction. A knowledge of these effects is important as individuals with consequent poor ocular health and reduced visual function may present for ophthalmic care.
Matsuoka, Yukiko; Ghosh, Samik; Kitano, Hiroaki
2009-01-01
The discovery by design paradigm driving research in synthetic biology entails the engineering of de novo biological constructs with well-characterized input–output behaviours and interfaces. The construction of biological circuits requires iterative phases of design, simulation and assembly, leading to the fabrication of a biological device. In order to represent engineered models in a consistent visual format and further simulating them in silico, standardization of representation and model formalism is imperative. In this article, we review different efforts for standardization, particularly standards for graphical visualization and simulation/annotation schemata adopted in systems biology. We identify the importance of integrating the different standardization efforts and provide insights into potential avenues for developing a common framework for model visualization, simulation and sharing across various tools. We envision that such a synergistic approach would lead to the development of global, standardized schemata in biology, empowering deeper understanding of molecular mechanisms as well as engineering of novel biological systems. PMID:19493898
Li, Lei; Sahi, Sunil K; Peng, Mingying; Lee, Eric B; Ma, Lun; Wojtowicz, Jennifer L; Malin, John H; Chen, Wei
2016-02-10
We developed new optic devices - singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light - for improvement of visual system functions. Tb(3+) or Eu(3+) singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542 nm or 613 nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals, retinal degeneration mutants, and light-induced photoreceptor cell degeneration models), the use of Tb(3+) or Eu(3+) doped luminescence glass or CdS-QD coated glass lenses provide additional visible light to the rod and cone photoreceptor cells, and thereby improve the visual system functions. The data provide proof-of-concept for the future development of optic devices for improvement of visual system functions in patients who suffer from photoreceptor cell degeneration or related retinal diseases.
CasCADe: A Novel 4D Visualization System for Virtual Construction Planning.
Ivson, Paulo; Nascimento, Daniel; Celes, Waldemar; Barbosa, Simone Dj
2018-01-01
Building Information Modeling (BIM) provides an integrated 3D environment to manage large-scale engineering projects. The Architecture, Engineering and Construction (AEC) industry explores 4D visualizations over these datasets for virtual construction planning. However, existing solutions lack adequate visual mechanisms to inspect the underlying schedule and make inconsistencies readily apparent. The goal of this paper is to apply best practices of information visualization to improve 4D analysis of construction plans. We first present a review of previous work that identifies common use cases and limitations. We then consulted with AEC professionals to specify the main design requirements for such applications. These guided the development of CasCADe, a novel 4D visualization system where task sequencing and spatio-temporal simultaneity are immediately apparent. This unique framework enables the combination of diverse analytical features to create an information-rich analysis environment. We also describe how engineering collaborators used CasCADe to review the real-world construction plans of an Oil & Gas process plant. The system made evident schedule uncertainties, identified work-space conflicts and helped analyze other constructability issues. The results and contributions of this paper suggest new avenues for future research in information visualization for the AEC industry.
Baroncelli, Laura; Cenni, Maria Cristina; Melani, Riccardo; Deidda, Gabriele; Landi, Silvia; Narducci, Roberta; Cancedda, Laura; Maffei, Lamberto; Berardi, Nicoletta
2017-02-01
Environmental enrichment (EE) has a remarkable impact on brain development. Continuous exposure to EE from birth determines a significant acceleration of visual system maturation both at retinal and cortical levels. A pre-weaning enriched experience is sufficient to trigger the accelerated maturation of the visual system, suggesting that factors affected by EE during the first days of life might prime visual circuits towards a faster development. The search for such factors is crucial not only to gain a better understanding of the molecular hierarchy of brain development but also to identify molecular pathways amenable to be targeted to correct atypical brain developmental trajectories. Here, we showed that IGF-1 levels are increased in the visual cortex of EE rats as early as P6 and this is a crucial event for setting in motion the developmental program induced by EE. Early intracerebroventricular (i.c.v.) infusion of IGF-1 in standard rats was sufficient to mimic the action of EE on visual acuity development, whereas blocking IGF-1 signaling by i.c.v. injections of the IGF-1 receptor antagonist JB1 prevented the deployment of EE effects. Early IGF-1 decreased the ratio between the expression of NKCC1 and KCC2 cation/chloride transporters, and the reversal potential for GABA A R-driven Cl - currents (E Cl ) was shifted toward more negative potentials, indicating that IGF-1 is a crucial factor in accelerating the maturation of GABAergic neurotransmission and promoting the developmental switch of GABA polarity from excitation to inhibition. In addition, early IGF-1 promoted a later occurring increase in its own expression, suggesting a priming effect of early IGF-1 in driving post-weaning cortical maturation. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Westmoreland, Sally; Stow, Douglas A.
1992-01-01
A framework is proposed for analyzing ancillary data and developing procedures for incorporating ancillary data to aid interactive identification of land-use categories in land-use updates. The procedures were developed for use within an integrated image processsing/geographic information systems (GIS) that permits simultaneous display of digital image data with the vector land-use data to be updated. With such systems and procedures, automated techniques are integrated with visual-based manual interpretation to exploit the capabilities of both. The procedural framework developed was applied as part of a case study to update a portion of the land-use layer in a regional scale GIS. About 75 percent of the area in the study site that experienced a change in land use was correctly labeled into 19 categories using the combination of automated and visual interpretation procedures developed in the study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, Kristin C; Brunhart-Lupo, Nicholas J; Bush, Brian W
We have developed a framework for the exploration, design, and planning of energy systems that combines interactive visualization with machine-learning based approximations of simulations through a general purpose dataflow API. Our system provides a visual inter- face allowing users to explore an ensemble of energy simulations representing a subset of the complex input parameter space, and spawn new simulations to 'fill in' input regions corresponding to new enegery system scenarios. Unfortunately, many energy simula- tions are far too slow to provide interactive responses. To support interactive feedback, we are developing reduced-form models via machine learning techniques, which provide statistically soundmore » esti- mates of the full simulations at a fraction of the computational cost and which are used as proxies for the full-form models. Fast com- putation and an agile dataflow enhance the engagement with energy simulations, and allow researchers to better allocate computational resources to capture informative relationships within the system and provide a low-cost method for validating and quality-checking large-scale modeling efforts.« less
Murai, Akihiko; Kurosaki, Kosuke; Yamane, Katsu; Nakamura, Yoshihiko
2010-12-01
In this paper, we present a system that estimates and visualizes muscle tensions in real time using optical motion capture and electromyography (EMG). The system overlays rendered musculoskeletal human model on top of a live video image of the subject. The subject therefore has an impression that he/she sees the muscles with tension information through the cloth and skin. The main technical challenge lies in real-time estimation of muscle tension. Since existing algorithms using mathematical optimization to distribute joint torques to muscle tensions are too slow for our purpose, we develop a new algorithm that computes a reasonable approximation of muscle tensions based on the internal connections between muscles known as neuronal binding. The algorithm can estimate the tensions of 274 muscles in only 16 ms, and the whole visualization system runs at about 15 fps. The developed system is applied to assisting sport training, and the user case studies show its usefulness. Possible applications include interfaces for assisting rehabilitation. Copyright © 2010 Elsevier Ltd. All rights reserved.
Simulation and animation of sensor-driven robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.; Trivedi, M.M.; Bidlack, C.R.
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aide the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the usersmore » visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.« less
NASA Astrophysics Data System (ADS)
Wang, Chengbin; Ma, Xiaogang; Chen, Jianguo
2018-06-01
Initiatives of open data promote the online publication and sharing of large amounts of geologic data. How to retrieve information and discover knowledge from the big data is an ongoing challenge. In this paper, we developed an ontology-driven data integration and visualization pilot system for exploring information of regional geologic time, paleontology, and fundamental geology. The pilot system (http://www2.cs.uidaho.edu/%7Emax/gts/)
NASA Technical Reports Server (NTRS)
Kopardekar, Parimal Hemchandra
2016-01-01
Just a year ago we laid out the UTM challenges and NASA's proposed solutions. During the past year NASA's goal continues to be to conduct research, development and testing to identify airspace operations requirements to enable large-scale visual and beyond visual line-of-sight UAS operations in the low-altitude airspace. Significant progress has been made, and NASA is continuing to move forward.
Utilizing Robot Operating System (ROS) in Robot Vision and Control
2015-09-01
actually feel more comfortable with the black screen and white letters now. I would also like to thank James Calusdian for his tireless efforts in...originally designed by Willow Garage and currently maintained by the Open Source Robotics Foundation, is a powerful tool because it utilizes object...Visualization The Rviz package, developed by Willow Garage, comes standard with ROS and is a powerful visualization tool that allows users to visualize
NASA Astrophysics Data System (ADS)
Fukuzawa, M.; Kawata, K.; Nakamori, N.; Kitsunezuka, Y.
2011-03-01
By real-time visual feedback of 3D scatter diagram of pulsatile tissue-motion, freehand ultrasonic diagnosis of neonatal ischemic diseases has been assisted at the bedside. The 2D ultrasonic movie was taken with a conventional ultrasonic apparatus (ATL HDI5000) and ultrasonic probes of 5-7 MHz with the compact tilt-sensor to measure the probe orientation. The real-time 3D visualization was realized by developing an extended version of the PC-based visualization system. The software was originally developed on the DirectX platform and optimized with the streaming SIMD extensions. The 3D scatter diagram of the latest pulsatile tissues has been continuously generated and visualized as projection image with the ultrasonic movie in the current section more than 15 fps. It revealed the 3D structure of pulsatile tissues such as middle and posterior cerebral arteries, Willis ring and cerebellar arteries, in which pediatricians have great interests in the blood flow because asphyxiated and/or low-birth-weight neonates have a high risk of ischemic diseases such as hypoxic-ischemic encephalopathy and periventricular leukomalacia. Since the pulsatile tissue-motion is due to local blood flow, it can be concluded that the system developed in this work is very useful to assist freehand ultrasonic diagnosis of ischemic diseases in the neonatal cranium.
Visualizations and Mental Models - The Educational Implications of GEOWALL
NASA Astrophysics Data System (ADS)
Rapp, D.; Kendeou, P.
2003-12-01
Work in the earth sciences has outlined many of the faulty beliefs that students possess concerning particular geological systems and processes. Evidence from educational and cognitive psychology has demonstrated that students often have difficulty overcoming their na‹ve beliefs about science. Prior knowledge is often remarkably resistant to change, particularly when students' existing mental models for geological principles may be faulty or inaccurate. Figuring out how to help students revise their mental models to include appropriate information is a major challenge. Up until this point, research has tended to focus on whether 2-dimensional computer visualizations are useful tools for helping students develop scientifically correct models. Research suggests that when students are given the opportunity to use dynamic computer-based visualizations, they are more likely to recall the learned information, and are more likely to transfer that knowledge to novel settings. Unfortunately, 2-dimensional visualization systems are often inadequate representations of the material that educators would like students to learn. For example, a 2-dimensional image of the Earth's surface does not adequately convey particular features that are critical for visualizing the geological environment. This may limit the models that students can construct following these visualizations. GEOWALL is a stereo projection system that has attempted to address this issue. It can display multidimensional static geologic images and dynamic geologic animations in a 3-dimensional format. Our current research examines whether multidimensional visualization systems such as GEOWALL may facilitate learning by helping students to develop more complex mental models. This talk will address some of the cognitive issues that influence the construction of mental models, and the difficulty of updating existing mental models. We will also discuss our current work that seeks to examine whether GEOWALL is an effective tool for helping students to learn geological information (and potentially restructure their na‹ve conceptions of geologic principles).
An exploratory study of temporal integration in the peripheral retina of myopes
NASA Astrophysics Data System (ADS)
Macedo, Antonio F.; Encarnação, Tito J.; Vilarinho, Daniel; Baptista, António M. G.
2017-08-01
The visual system takes time to respond to visual stimuli, neurons need to accumulate information over a time span in order to fire. Visual information perceived by the peripheral retina might be impaired by imperfect peripheral optics leading to myopia development. This study explored the effect of eccentricity, moderate myopia and peripheral refraction in temporal visual integration. Myopes and emmetropes showed similar performance at detecting briefly flashed stimuli in different retinal locations. Our results show evidence that moderate myopes have normal visual integration when refractive errors are corrected with contact lens; however, the tendency to increased temporal integration thresholds observed in myopes deserves further investigation.
[Visual perception and its disorders].
Ruf-Bächtiger, L
1989-11-21
It's the brain and not the eye that decides what is perceived. In spite of this fact, quite a lot is known about the functioning of the eye and the first sections of the optic tract, but little about the actual process of perception. Examination of visual perception and its malfunctions relies therefore on certain hypotheses. Proceeding from the model of functional brain systems, variant functional domains of visual perception can be distinguished. Among the more important of these domains are: digit span, visual discrimination and figure-ground discrimination. Evaluation of these functional domains allows us to understand those children with disorders of visual perception better and to develop more effective treatment methods.
To develop behavioral tests of vestibular functioning in the Wistar rat
NASA Technical Reports Server (NTRS)
Nielson, H. C.
1980-01-01
Two tests of vestibular functioning in the rat were developed. The first test was the water maze. In the water maze the rat does not have the normal proprioceptive feedback from its limbs to help it maintain its orientation, and must rely primarily on the sensory input from its visual and vestibular systems. By altering lighting conditions and visual cues the vestibular functioning without visual cues was assessed. Whether there was visual compensation for some vestibular dysfunction was determined. The second test measured vestibular functioning of the rat's behavior on a parallel swing. In this test the rat's postural adjustments while swinging on the swing with the otoliths being stimulated were assessed. Less success was achieved in developing the parallel swing as a test of vestibular functioning than with the water maze. The major problem was incorrect initial assumptions of what the rat's probable behavior on the parallel swing would be.
Wired Widgets: Agile Visualization for Space Situational Awareness
NASA Astrophysics Data System (ADS)
Gerschefske, K.; Witmer, J.
2012-09-01
Continued advancement in sensors and analysis techniques have resulted in a wealth of Space Situational Awareness (SSA) data, made available via tools and Service Oriented Architectures (SOA) such as those in the Joint Space Operations Center Mission Systems (JMS) environment. Current visualization software cannot quickly adapt to rapidly changing missions and data, preventing operators and analysts from performing their jobs effectively. The value of this wealth of SSA data is not fully realized, as the operators' existing software is not built with the flexibility to consume new or changing sources of data or to rapidly customize their visualization as the mission evolves. While tools like the JMS user-defined operational picture (UDOP) have begun to fill this gap, this paper presents a further evolution, leveraging Web 2.0 technologies for maximum agility. We demonstrate a flexible Web widget framework with inter-widget data sharing, publish-subscribe eventing, and an API providing the basis for consumption of new data sources and adaptable visualization. Wired Widgets offers cross-portal widgets along with a widget communication framework and development toolkit for rapid new widget development, giving operators the ability to answer relevant questions as the mission evolves. Wired Widgets has been applied in a number of dynamic mission domains including disaster response, combat operations, and noncombatant evacuation scenarios. The variety of applications demonstrate that Wired Widgets provides a flexible, data driven solution for visualization in changing environments. In this paper, we show how, deployed in the Ozone Widget Framework portal environment, Wired Widgets can provide an agile, web-based visualization to support the SSA mission. Furthermore, we discuss how the tenets of agile visualization can generally be applied to the SSA problem space to provide operators flexibility, potentially informing future acquisition and system development.
Effects of Spatio-Temporal Aliasing on Out-the-Window Visual Systems
NASA Technical Reports Server (NTRS)
Sweet, Barbara T.; Stone, Leland S.; Liston, Dorion B.; Hebert, Tim M.
2014-01-01
Designers of out-the-window visual systems face a challenge when attempting to simulate the outside world as viewed from a cockpit. Many methodologies have been developed and adopted to aid in the depiction of particular scene features, or levels of static image detail. However, because aircraft move, it is necessary to also consider the quality of the motion in the simulated visual scene. When motion is introduced in the simulated visual scene, perceptual artifacts can become apparent. A particular artifact related to image motion, spatiotemporal aliasing, will be addressed. The causes of spatio-temporal aliasing will be discussed, and current knowledge regarding the impact of these artifacts on both motion perception and simulator task performance will be reviewed. Methods of reducing the impact of this artifact are also addressed
A 3D particle visualization system for temperature management
NASA Astrophysics Data System (ADS)
Lange, B.; Rodriguez, N.; Puech, W.; Rey, H.; Vasques, X.
2011-01-01
This paper deals with a 3D visualization technique proposed to analyze and manage energy efficiency from a data center. Data are extracted from sensors located in the IBM Green Data Center in Montpellier France. These sensors measure different information such as hygrometry, pressure and temperature. We want to visualize in real-time the large among of data produced by these sensors. A visualization engine has been designed, based on particles system and a client server paradigm. In order to solve performance problems, a Level Of Detail solution has been developed. These methods are based on the earlier work introduced by J. Clark in 1976. In this paper we introduce a particle method used for this work and subsequently we explain different simplification methods applied to improve our solution.
Cognitive approaches for patterns analysis and security applications
NASA Astrophysics Data System (ADS)
Ogiela, Marek R.; Ogiela, Lidia
2017-08-01
In this paper will be presented new opportunities for developing innovative solutions for semantic pattern classification and visual cryptography, which will base on cognitive and bio-inspired approaches. Such techniques can be used for evaluation of the meaning of analyzed patterns or encrypted information, and allow to involve such meaning into the classification task or encryption process. It also allows using some crypto-biometric solutions to extend personalized cryptography methodologies based on visual pattern analysis. In particular application of cognitive information systems for semantic analysis of different patterns will be presented, and also a novel application of such systems for visual secret sharing will be described. Visual shares for divided information can be created based on threshold procedure, which may be dependent on personal abilities to recognize some image details visible on divided images.
NASA Technical Reports Server (NTRS)
Chase, W. D.
1975-01-01
The calligraphic chromatic projector described was developed to improve the perceived realism of visual scene simulation ('out-the-window visuals'). The optical arrangement of the projector is illustrated and discussed. The device permits drawing 2000 vectors in as many as 500 colors, all above critical flicker frequencies, and use of high scene resolution and brightness at an acceptable level to the pilot, with the maximum system capabilities of 1000 lines and 1000 fL. The device for generating the colors is discussed, along with an experiment conducted to demonstrate potential improvements in performance and pilot opinion. Current research work and future research plans are noted.
Dissection and lateral mounting of zebrafish embryos: analysis of spinal cord development.
Beck, Aaron P; Watt, Roland M; Bonner, Jennifer
2014-02-28
The zebrafish spinal cord is an effective investigative model for nervous system research for several reasons. First, genetic, transgenic and gene knockdown approaches can be utilized to examine the molecular mechanisms underlying nervous system development. Second, large clutches of developmentally synchronized embryos provide large experimental sample sizes. Third, the optical clarity of the zebrafish embryo permits researchers to visualize progenitor, glial, and neuronal populations. Although zebrafish embryos are transparent, specimen thickness can impede effective microscopic visualization. One reason for this is the tandem development of the spinal cord and overlying somite tissue. Another reason is the large yolk ball, which is still present during periods of early neurogenesis. In this article, we demonstrate microdissection and removal of the yolk in fixed embryos, which allows microscopic visualization while preserving surrounding somite tissue. We also demonstrate semipermanent mounting of zebrafish embryos. This permits observation of neurodevelopment in the dorso-ventral and anterior-posterior axes, as it preserves the three-dimensionality of the tissue.
Dissection and Lateral Mounting of Zebrafish Embryos: Analysis of Spinal Cord Development
Beck, Aaron P.; Watt, Roland M.; Bonner, Jennifer
2014-01-01
The zebrafish spinal cord is an effective investigative model for nervous system research for several reasons. First, genetic, transgenic and gene knockdown approaches can be utilized to examine the molecular mechanisms underlying nervous system development. Second, large clutches of developmentally synchronized embryos provide large experimental sample sizes. Third, the optical clarity of the zebrafish embryo permits researchers to visualize progenitor, glial, and neuronal populations. Although zebrafish embryos are transparent, specimen thickness can impede effective microscopic visualization. One reason for this is the tandem development of the spinal cord and overlying somite tissue. Another reason is the large yolk ball, which is still present during periods of early neurogenesis. In this article, we demonstrate microdissection and removal of the yolk in fixed embryos, which allows microscopic visualization while preserving surrounding somite tissue. We also demonstrate semipermanent mounting of zebrafish embryos. This permits observation of neurodevelopment in the dorso-ventral and anterior-posterior axes, as it preserves the three-dimensionality of the tissue. PMID:24637734
Fornwall, M.; Gisiner, R.; Simmons, S. E.; Moustahfid, Hassan; Canonico, G.; Halpin, P.; Goldstein, P.; Fitch, R.; Weise, M.; Cyr, N.; Palka, D.; Price, J.; Collins, D.
2012-01-01
The US Integrated Ocean Observing System (IOOS) has recently adopted standards for biological core variables in collaboration with the US Geological Survey/Ocean Biogeographic Information System (USGS/OBIS-USA) and other federal and non-federal partners. In this Community White Paper (CWP) we provide a process to bring into IOOS a rich new source of biological observing data, visual line transect surveys, and to establish quality data standards for visual line transect observations, an important source of at-sea bird, turtle and marine mammal observation data. The processes developed through this exercise will be useful for other similar biogeographic observing efforts, such as passive acoustic point and line transect observations, tagged animal data, and mark-recapture (photo-identification) methods. Furthermore, we suggest that the processes developed through this exercise will serve as a catalyst for broadening involvement by the larger marine biological data community within the goals and processes of IOOS.
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Putt, Charles W.
1997-01-01
The Visual Computing Environment (VCE) is a NASA Lewis Research Center project to develop a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis. The objectives of VCE are to (1) develop a visual computing environment for controlling the execution of individual simulation codes that are running in parallel and are distributed on heterogeneous host machines in a networked environment, (2) develop numerical coupling algorithms for interchanging boundary conditions between codes with arbitrary grid matching and different levels of dimensionality, (3) provide a graphical interface for simulation setup and control, and (4) provide tools for online visualization and plotting. VCE was designed to provide a distributed, object-oriented environment. Mechanisms are provided for creating and manipulating objects, such as grids, boundary conditions, and solution data. This environment includes parallel virtual machine (PVM) for distributed processing. Users can interactively select and couple any set of codes that have been modified to run in a parallel distributed fashion on a cluster of heterogeneous workstations. A scripting facility allows users to dictate the sequence of events that make up the particular simulation.
NASA Technical Reports Server (NTRS)
Phillips, Rachel; Madhavan, Poornima
2010-01-01
The purpose of this research was to examine the impact of environmental distractions on human trust and utilization of automation during the process of visual search. Participants performed a computer-simulated airline luggage screening task with the assistance of a 70% reliable automated decision aid (called DETECTOR) both with and without environmental distractions. The distraction was implemented as a secondary task in either a competing modality (visual) or non-competing modality (auditory). The secondary task processing code either competed with the luggage screening task (spatial code) or with the automation's textual directives (verbal code). We measured participants' system trust, perceived reliability of the system (when a target weapon was present and absent), compliance, reliance, and confidence when agreeing and disagreeing with the system under both distracted and undistracted conditions. Results revealed that system trust was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Perceived reliability of the system (when the target was present) was significantly higher when the secondary task was visual rather than auditory. Compliance with the aid increased in all conditions except for the auditory-verbal condition, where it decreased. Similar to the pattern for trust, reliance on the automation was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Confidence when agreeing with the system decreased with the addition of any kind of distraction; however, confidence when disagreeing increased with the addition of an auditory secondary task but decreased with the addition of a visual task. A model was developed to represent the research findings and demonstrate the relationship between secondary task modality, processing code, and automation use. Results suggest that the nature of environmental distractions influence interaction with automation via significant effects on trust and system utilization. These findings have implications for both automation design and operator training.
Ugajin, Atsushi; Watanabe, Takayuki; Uchiyama, Hironobu; Sasaki, Tetsuhiko; Yajima, Shunsuke; Ono, Masato
2016-09-16
Specific genes quickly transcribed after extracellular stimuli without de novo protein synthesis are known as immediate early genes (IEGs) and are thought to contribute to learning and memory processes in the mature nervous system of vertebrates. A recent study revealed that the homolog of Early growth response protein-1 (Egr-1), which is one of the best-characterized vertebrate IEGs, shared similar properties as a neural activity-dependent gene in the adult brain of insects. With regard to the roles of vertebrate Egr-1 in neural development, the contribution to the development and growth of visual systems has been reported. However, in insects, the expression dynamics of the Egr-1 homologous gene during neural development remains poorly understood. Our expression analysis demonstrated that AmEgr, a honeybee homolog of Egr-1, was transiently upregulated in the developing brain during the early to mid pupal stages. In situ hybridization and 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry revealed that AmEgr was mainly expressed in post-mitotic cells in optic lobes, the primary visual center of the insect brain. These findings suggest the evolutionarily conserved role of Egr homologs in the development of visual systems in vertebrates and insects. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric A. Wernert; William R. Sherman; Chris Eller
2012-03-01
We present a pair of open-recipe, affordably-priced, easy-to-integrate, and easy-to-use visualization systems. The IQ-wall is an ultra-resolution tiled display wall that scales up to 24 screens with a single PC. The IQ-station is a semi-immersive display system that utilizes commodity stereoscopic displays, lower cost tracking systems, and touch overlays. These systems have been designed to support a wide range of research, education, creative activities, and information presentations. They were designed to work equally well as stand-alone installations or as part of a larger distributed visualization ecosystem. We detail the hardware and software components of these systems, describe our deployments andmore » experiences in a variety of research lab and university environments, and share our insights for effective support and community development.« less
Fleishman, Leo J.; Loew, Ellis R.; Whiting, Martin J.
2011-01-01
Progress in developing animal communication theory is frequently constrained by a poor understanding of sensory systems. For example, while lizards have been the focus of numerous studies in visual signalling, we only have data on the spectral sensitivities of a few species clustered in two major clades (Iguania and Gekkota). Using electroretinography and microspectrophotometry, we studied the visual system of the cordylid lizard Platysaurus broadleyi because it represents an unstudied clade (Scinciformata) with respect to visual systems and because UV signals feature prominently in its social behaviour. The retina possessed four classes of single and one class of double cones. Sensitivity in the ultraviolet region (UV) was approximately three times higher than previously reported for other lizards. We found more colourless oil droplets (associated with UV-sensitive (UVS) and short wavelength-sensitive (SWS) photoreceptors), suggesting that the increased sensitivity was owing to the presence of more UVS photoreceptors. Using the Vorobyev–Osorio colour discrimination model, we demonstrated that an increase in the number of UVS photoreceptors significantly enhances a lizard's ability to discriminate conspecific male throat colours. Visual systems in diurnal lizards appear to be broadly conserved, but data from additional clades are needed to confirm this. PMID:21389031
STAR: an integrated solution to management and visualization of sequencing data.
Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W; Ecker, Joseph R; Millar, A Harvey; Ren, Bing; Wang, Wei
2013-12-15
Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser.
Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss
Nys, Julie; Scheyltjens, Isabelle; Arckens, Lutgarde
2015-01-01
The groundbreaking work of Hubel and Wiesel in the 1960’s on ocular dominance plasticity instigated many studies of the visual system of mammals, enriching our understanding of how the development of its structure and function depends on high quality visual input through both eyes. These studies have mainly employed lid suturing, dark rearing and eye patching applied to different species to reduce or impair visual input, and have created extensive knowledge on binocular vision. However, not all aspects and types of plasticity in the visual cortex have been covered in full detail. In that regard, a more drastic deprivation method like enucleation, leading to complete vision loss appears useful as it has more widespread effects on the afferent visual pathway and even on non-visual brain regions. One-eyed vision due to monocular enucleation (ME) profoundly affects the contralateral retinorecipient subcortical and cortical structures thereby creating a powerful means to investigate cortical plasticity phenomena in which binocular competition has no vote.In this review, we will present current knowledge about the specific application of ME as an experimental tool to study visual and cross-modal brain plasticity and compare early postnatal stages up into adulthood. The structural and physiological consequences of this type of extensive sensory loss as documented and studied in several animal species and human patients will be discussed. We will summarize how ME studies have been instrumental to our current understanding of the differentiation of sensory systems and how the structure and function of cortical circuits in mammals are shaped in response to such an extensive alteration in experience. In conclusion, we will highlight future perspectives and the clinical relevance of adding ME to the list of more longstanding deprivation models in visual system research. PMID:25972788
Rethinking Visual Analytics for Streaming Data Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crouser, R. Jordan; Franklin, Lyndsey; Cook, Kris
In the age of data science, the use of interactive information visualization techniques has become increasingly ubiquitous. From online scientific journals to the New York Times graphics desk, the utility of interactive visualization for both storytelling and analysis has become ever more apparent. As these techniques have become more readily accessible, the appeal of combining interactive visualization with computational analysis continues to grow. Arising out of a need for scalable, human-driven analysis, primary objective of visual analytics systems is to capitalize on the complementary strengths of human and machine analysis, using interactive visualization as a medium for communication between themore » two. These systems leverage developments from the fields of information visualization, computer graphics, machine learning, and human-computer interaction to support insight generation in areas where purely computational analyses fall short. Over the past decade, visual analytics systems have generated remarkable advances in many historically challenging analytical contexts. These include areas such as modeling political systems [Crouser et al. 2012], detecting financial fraud [Chang et al. 2008], and cybersecurity [Harrison et al. 2012]. In each of these contexts, domain expertise and human intuition is a necessary component of the analysis. This intuition is essential to building trust in the analytical products, as well as supporting the translation of evidence into actionable insight. In addition, each of these examples also highlights the need for scalable analysis. In each case, it is infeasible for a human analyst to manually assess the raw information unaided, and the communication overhead to divide the task between a large number of analysts makes simple parallelism intractable. Regardless of the domain, visual analytics tools strive to optimize the allocation of human analytical resources, and to streamline the sensemaking process on data that is massive, complex, incomplete, and uncertain in scenarios requiring human judgment.« less
Natural Inspired Intelligent Visual Computing and Its Application to Viticulture.
Ang, Li Minn; Seng, Kah Phooi; Ge, Feng Lu
2017-05-23
This paper presents an investigation of natural inspired intelligent computing and its corresponding application towards visual information processing systems for viticulture. The paper has three contributions: (1) a review of visual information processing applications for viticulture; (2) the development of natural inspired computing algorithms based on artificial immune system (AIS) techniques for grape berry detection; and (3) the application of the developed algorithms towards real-world grape berry images captured in natural conditions from vineyards in Australia. The AIS algorithms in (2) were developed based on a nature-inspired clonal selection algorithm (CSA) which is able to detect the arcs in the berry images with precision, based on a fitness model. The arcs detected are then extended to perform the multiple arcs and ring detectors information processing for the berry detection application. The performance of the developed algorithms were compared with traditional image processing algorithms like the circular Hough transform (CHT) and other well-known circle detection methods. The proposed AIS approach gave a Fscore of 0.71 compared with Fscores of 0.28 and 0.30 for the CHT and a parameter-free circle detection technique (RPCD) respectively.
Development of a new software for analyzing 3-D fracture network
NASA Astrophysics Data System (ADS)
Um, Jeong-Gi; Noh, Young-Hwan; Choi, Yosoon
2014-05-01
A new software is presented to analyze fracture network in 3-D. Recently, we completed the software package based on information given in EGU2013. The software consists of several modules that play roles in management of borehole data, stochastic modelling of fracture network, construction of analysis domain, visualization of fracture geometry in 3-D, calculation of equivalent pipes and production of cross-section diagrams. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. A case study was performed to analyze 3-D fracture network system at the Upper Devonian Grosmont Formation in Alberta, Canada. The results have suggested that the developed software is effective in modelling and visualizing 3-D fracture network system, and can provide useful information to tackle the geomechanical problems related to strength, deformability and hydraulic behaviours of the fractured rock masses. This presentation describes the concept and details of the development and implementation of the software.
A web platform for integrated surface water - groundwater modeling and data management
NASA Astrophysics Data System (ADS)
Fatkhutdinov, Aybulat; Stefan, Catalin; Junghanns, Ralf
2016-04-01
Model-based decision support systems are considered to be reliable and time-efficient tools for resources management in various hydrology related fields. However, searching and acquisition of the required data, preparation of the data sets for simulations as well as post-processing, visualization and publishing of the simulations results often requires significantly more work and time than performing the modeling itself. The purpose of the developed software is to combine data storage facilities, data processing instruments and modeling tools in a single platform which potentially can reduce time required for performing simulations, hence decision making. The system is developed within the INOWAS (Innovative Web Based Decision Support System for Water Sustainability under a Changing Climate) project. The platform integrates spatially distributed catchment scale rainfall - runoff, infiltration and groundwater flow models with data storage, processing and visualization tools. The concept is implemented in a form of a web-GIS application and is build based on free and open source components, including the PostgreSQL database management system, Python programming language for modeling purposes, Mapserver for visualization and publishing the data, Openlayers for building the user interface and others. Configuration of the system allows performing data input, storage, pre- and post-processing and visualization in a single not disturbed workflow. In addition, realization of the decision support system in the form of a web service provides an opportunity to easily retrieve and share data sets as well as results of simulations over the internet, which gives significant advantages for collaborative work on the projects and is able to significantly increase usability of the decision support system.
NASA Technical Reports Server (NTRS)
Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Stephens, Philip; Wilson, Brian D.; Akopian, Vardan; Komjathy, Attila; Lijima, Byron A.
2013-01-01
ISOGAME is designed and developed to assess quantitatively the impact of new observation systems on the capability of imaging and modeling the ionosphere. With ISOGAME, one can perform observation system simulation experiments (OSSEs). A typical OSSE using ISOGAME would involve: (1) simulating various ionospheric conditions on global scales; (2) simulating ionospheric measurements made from a constellation of low-Earth-orbiters (LEOs), particularly Global Navigation Satellite System (GNSS) radio occultation data, and from ground-based global GNSS networks; (3) conducting ionospheric data assimilation experiments with the Global Assimilative Ionospheric Model (GAIM); and (4) analyzing modeling results with visualization tools. ISOGAME can provide quantitative assessment of the accuracy of assimilative modeling with the interested observation system. Other observation systems besides those based on GNSS are also possible to analyze. The system is composed of a suite of software that combines the GAIM, including a 4D first-principles ionospheric model and data assimilation modules, an Internal Reference Ionosphere (IRI) model that has been developed by international ionospheric research communities, observation simulator, visualization software, and orbit design, simulation, and optimization software. The core GAIM model used in ISOGAME is based on the GAIM++ code (written in C++) that includes a new high-fidelity geomagnetic field representation (multi-dipole). New visualization tools and analysis algorithms for the OSSEs are now part of ISOGAME.
Shiri, Shimon; Feintuch, Uri; Lorber-Haddad, Adi; Moreh, Elior; Twito, Dvora; Tuchner-Arieli, Maya; Meiner, Zeev
2012-01-01
To introduce the rationale of a novel virtual reality system based on self-face viewing and mirror visual feedback, and to examine its feasibility as a rehabilitation tool for poststroke patients. A novel motion capture virtual reality system integrating online self-face viewing and mirror visual feedback has been developed for stroke rehabilitation.The system allows the replacement of the impaired arm by a virtual arm. Upon making small movements of the paretic arm, patients view themselves virtually performing healthy full-range movements. A sample of 6 patients in the acute poststroke phase received the virtual reality treatment concomitantly with conservative rehabilitation treatment. Feasibility was assessed during 10 sessions for each participant. All participants succeeded in operating the system, demonstrating its feasibility in terms of adherence and improvement in task performance. Patients' performance within the virtual environment and a set of clinical-functional measures recorded before the virtual reality treatment, at 1 week, and after 3 months indicated neurological status and general functioning improvement. These preliminary results indicate that this newly developed virtual reality system is safe and feasible. Future randomized controlled studies are required to assess whether this system has beneficial effects in terms of enhancing upper limb function and quality of life in poststroke patients.
A lightweight, inexpensive robotic system for insect vision.
Sabo, Chelsea; Chisholm, Robert; Petterson, Adam; Cope, Alex
2017-09-01
Designing hardware for miniaturized robotics which mimics the capabilities of flying insects is of interest, because they share similar constraints (i.e. small size, low weight, and low energy consumption). Research in this area aims to enable robots with similarly efficient flight and cognitive abilities. Visual processing is important to flying insects' impressive flight capabilities, but currently, embodiment of insect-like visual systems is limited by the hardware systems available. Suitable hardware is either prohibitively expensive, difficult to reproduce, cannot accurately simulate insect vision characteristics, and/or is too heavy for small robotic platforms. These limitations hamper the development of platforms for embodiment which in turn hampers the progress on understanding of how biological systems fundamentally work. To address this gap, this paper proposes an inexpensive, lightweight robotic system for modelling insect vision. The system is mounted and tested on a robotic platform for mobile applications, and then the camera and insect vision models are evaluated. We analyse the potential of the system for use in embodiment of higher-level visual processes (i.e. motion detection) and also for development of navigation based on vision for robotics in general. Optic flow from sample camera data is calculated and compared to a perfect, simulated bee world showing an excellent resemblance. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
3D visualization of solar wind ion data from the Chang'E-1 exploration
NASA Astrophysics Data System (ADS)
Zhang, Tian; Sun, Yankui; Tang, Zesheng
2011-10-01
Chang'E-1 (abbreviation CE-1), China's first Moon-orbiting spacecraft launched in 2007, carried equipment called the Solar Wind Ion Detector (abbreviation SWID), which sent back tens of gigabytes of solar wind ion differential number flux data. These data are essential for furthering our understanding of the cislunar space environment. However, to fully comprehend and analyze these data presents considerable difficulties, not only because of their huge size (57 GB), but also because of their complexity. Therefore, a new 3D visualization method is developed to give a more intuitive representation than traditional 1D and 2D visualizations, and in particular to offer a better indication of the direction of the incident ion differential number flux and the relative spatial position of CE-1 with respect to the Sun, the Earth, and the Moon. First, a coordinate system named Selenocentric Solar Ecliptic (SSE) which is more suitable for our goal is chosen, and solar wind ion differential number flux vectors in SSE are calculated from Geocentric Solar Ecliptic System (GSE) and Moon Center Coordinate (MCC) coordinates of the spacecraft, and then the ion differential number flux distribution in SSE is visualized in 3D space. This visualization method is integrated into an interactive visualization analysis software tool named vtSWIDs, developed in MATLAB, which enables researchers to browse through numerous records and manipulate the visualization results in real time. The tool also provides some useful statistical analysis functions, and can be easily expanded.
Lee, Wei-Chung Allen; Nedivi, Elly
2011-01-01
cpg15 is an activity-regulated gene that encodes a membrane-bound ligand that coordinately regulates growth of apposing dendritic and axonal arbors and the maturation of their synapses. These properties make it an attractive candidate for participating in plasticity of the mammalian visual system. Here we compare cpg15 expression during normal development of the rat visual system with that seen in response to dark rearing, monocular blockade of retinal action potentials, or monocular deprivation. Our results show that the onset of cpg15 expression in the visual cortex is coincident with eye opening, and it increases until the peak of the critical period at postnatal day 28 (P28). This early expression is independent of both retinal activity and visual experience. After P28, a component of cpg15 expression in the visual cortex, lateral geniculate nucleus (LGN), and superior colliculus (SC) develops a progressively stronger dependence on retinally driven action potentials. Dark rearing does not affect cpg15 mRNA expression in the LGN and SC at any age, but it does significantly affect its expression in the visual cortex from the peak of the critical period and into adulthood. In dark-reared rats, the peak level of cpg15 expression in the visual cortex at P28 is lower than in controls. Rather than showing the normal decline with maturation, these levels are maintained in dark-reared animals. We suggest that the prolonged plasticity in the visual cortex that is seen in dark-reared animals may result from failure to downregulate genes such as cpg15 that could promote structural remodeling and synaptic maturation. PMID:11880509
Murphy, SN; Barnett, GO; Chueh, HC
2000-01-01
The patient base of the Partners HealthCare System in Boston exceeds 1.8 million. Many of these patients are desirable for participation in research studies. To facilitate their discovery, we developed a data warehouse to contain clinical characteristics of these patients. The data warehouse contains diagnosis and procedures from administrative databases. The patients are indexed across institutions and their demographics provided by an Enterprise Master Patient Indexing service. Characteristics of the diagnoses and procedures such as associated providers, dates of service, inpatient/outpatient status, and other visit-related characteristics are also fed from the administrative systems. The targeted users of this system are research clinician s interested in finding patient cohorts for research studies. Their data requirements were analyzed and have been reported elsewhere. We did not expect the clinicians to become expert users of the system. Tools for querying healthcare data have traditionally been text based, although graphical interfaces have been pursued. In order to support the simple drag and drop visual model, as well as the identification and distribution of the patient data, a three-tier software architecture was developed. The user interface was developed in Visual Basic and distributed as an ActiveX object embedded in an HTML page. The middle layer was developed in Java and Microsoft COM. The queries are represented throughout their lifetime as XML objects, and the Microsoft SQL7 database is queried and managed in standard SQL. PMID:11080028
Murphy; Barnett; Chueh
2000-01-01
The patient base of the Partners HealthCare System in Boston exceeds 1.8 million. Many of these patients are desirable for participation in research studies. To facilitate their discovery, we developed a data warehouse to contain clinical characteristics of these patients. The data warehouse contains diagnosis and procedures from administrative databases. The patients are indexed across institutions and their demographics provided by an Enterprise Master Patient Indexing service. Characteristics of the diagnoses and procedures such as associated providers, dates of service, inpatient/outpatient status, and other visit-related characteristics are also fed from the administrative systems. The targeted users of this system are research clinician s interested in finding patient cohorts for research studies. Their data requirements were analyzed and have been reported elsewhere. We did not expect the clinicians to become expert users of the system. Tools for querying healthcare data have traditionally been text based, although graphical interfaces have been pursued. In order to support the simple drag and drop visual model, as well as the identification and distribution of the patient data, a three-tier software architecture was developed. The user interface was developed in Visual Basic and distributed as an ActiveX object embedded in an HTML page. The middle layer was developed in Java and Microsoft COM. The queries are represented throughout their lifetime as XML objects, and the Microsoft SQL7 database is queried and managed in standard SQL.
NASA Technical Reports Server (NTRS)
Hasell, P. G., Jr.
1974-01-01
The development and characteristics of a multispectral band scanner for an airborne mapping system are discussed. The sensor operates in the ultraviolet, visual, and infrared frequencies. Any twelve of the bands may be selected for simultaneous, optically registered recording on a 14-track analog tape recorder. Multispectral imagery recorded on magnetic tape in the aircraft can be laboratory reproduced on film strips for visual analysis or optionally machine processed in analog and/or digital computers before display. The airborne system performance is analyzed.
FY 2002 Report on Software Visualization Techniques for IV and V
NASA Technical Reports Server (NTRS)
Fotta, Michael E.
2002-01-01
One of the major challenges software engineers often face in performing IV&V is developing an understanding of a system created by a development team they have not been part of. As budgets shrink and software increases in complexity, this challenge will become even greater as these software engineers face increased time and resource constraints. This research will determine which current aspects of providing this understanding (e.g., code inspections, use of control graphs, use of adjacency matrices, requirements traceability) are critical to the performing IV&V and amenable to visualization techniques. We will then develop state-of-the-art software visualization techniques to facilitate the use of these aspects to understand software and perform IV&V.
Experiments in teleoperator and autonomous control of space robotic vehicles
NASA Technical Reports Server (NTRS)
Alexander, Harold L.
1991-01-01
A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.
Visualization and interaction tools for aerial photograph mosaics
NASA Astrophysics Data System (ADS)
Fernandes, João Pedro; Fonseca, Alexandra; Pereira, Luís; Faria, Adriano; Figueira, Helder; Henriques, Inês; Garção, Rita; Câmara, António
1997-05-01
This paper describes the development of a digital spatial library based on mosaics of digital orthophotos, called Interactive Portugal, that will enable users both to retrieve geospatial information existing in the Portuguese National System for Geographic Information World Wide Web server, and to develop local databases connected to the main system. A set of navigation, interaction, and visualization tools are proposed and discussed. They include sketching, dynamic sketching, and navigation capabilities over the digital orthophotos mosaics. Main applications of this digital spatial library are pointed out and discussed, namely for education, professional, and tourism markets. Future developments are considered. These developments are related to user reactions, technological advancements, and projects that also aim at delivering and exploring digital imagery on the World Wide Web. Future capabilities for site selection and change detection are also considered.
Black Sea GIS developed in MHI
NASA Astrophysics Data System (ADS)
Zhuk, E.; Khaliulin, A.; Zodiatis, G.; Nikolaidis, A.; Isaeva, E.
2016-08-01
The work aims at creating the Black Sea geoinformation system (GIS) and complementing it with a model bank. The software for data access and visualization was developed using client server architecture. A map service based on MapServer and MySQL data management system were chosen for the Black Sea GIS. Php-modules and python-scripts are used to provide data access, processing, and exchange between the client application and the server. According to the basic data types, the module structure of GIS was developed. Each type of data is matched to a module which allows selection and visualization of the data. At present, a GIS complement with a model bank (the models build in to the GIS) and users' models (programs launched on users' PCs but receiving and displaying data via GIS) is developed.
Vision for perception and vision for action: normal and unusual development.
Dilks, Daniel D; Hoffman, James E; Landau, Barbara
2008-07-01
Evidence suggests that visual processing is divided into the dorsal ('how') and ventral ('what') streams. We examined the normal development of these streams and their breakdown under neurological deficit by comparing performance of normally developing children and Williams syndrome individuals on two tasks: a visually guided action ('how') task, in which participants posted a card into an oriented slot, and a perception ('what') task, in which they matched a card to the slot's orientation. Results showed that all groups performed worse on the action task than the perception task, but the disparity was more pronounced in WS individuals and in normal 3-4-year-olds than in older children. These findings suggest that the 'how' system may be relatively slow to develop and more vulnerable to breakdown than the 'what' system.
NASA Astrophysics Data System (ADS)
Iqbal, Asim; Farooq, Umar; Mahmood, Hassan; Asad, Muhammad Usman; Khan, Akrama; Atiq, Hafiz Muhammad
2010-02-01
A self teaching image processing and voice recognition based system is developed to educate visually impaired children, chiefly in their primary education. System comprises of a computer, a vision camera, an ear speaker and a microphone. Camera, attached with the computer system is mounted on the ceiling opposite (on the required angle) to the desk on which the book is placed. Sample images and voices in the form of instructions and commands of English, Urdu alphabets, Numeric Digits, Operators and Shapes are already stored in the database. A blind child first reads the embossed character (object) with the help of fingers than he speaks the answer, name of the character, shape etc into the microphone. With the voice command of a blind child received by the microphone, image is taken by the camera which is processed by MATLAB® program developed with the help of Image Acquisition and Image processing toolbox and generates a response or required set of instructions to child via ear speaker, resulting in self education of a visually impaired child. Speech recognition program is also developed in MATLAB® with the help of Data Acquisition and Signal Processing toolbox which records and process the command of the blind child.
Mao, Yuan-Hua; Li, Dong; Ning, An; Qiu, Ling; Xiong, Ji-Jie
2011-04-01
To develop the information management system for advanced schistosomiasis chemotherapy and assistance in Jiangxi Province. Based on Access 2003, the system was programmed by Visual Basic 6.0 and packaged by Setup Factory 8.0. In the system, advanced schistosomiasis data were able to be input, printed, indexed, and statistically analyzed. The system could be operated and maintained easily and timely. The information management system for advanced schistosomiasis chemotherapy and assistance in Jiangxi Province is successfully developed.
Developing Visualization Techniques for Semantics-based Information Networks
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Hall, David R.
2003-01-01
Information systems incorporating complex network structured information spaces with a semantic underpinning - such as hypermedia networks, semantic networks, topic maps, and concept maps - are being deployed to solve some of NASA s critical information management problems. This paper describes some of the human interaction and navigation problems associated with complex semantic information spaces and describes a set of new visual interface approaches to address these problems. A key strategy is to leverage semantic knowledge represented within these information spaces to construct abstractions and views that will be meaningful to the human user. Human-computer interaction methodologies will guide the development and evaluation of these approaches, which will benefit deployed NASA systems and also apply to information systems based on the emerging Semantic Web.
Virtual environment display for a 3D audio room simulation
NASA Technical Reports Server (NTRS)
Chapin, William L.; Foster, Scott H.
1992-01-01
The development of a virtual environment simulation system integrating a 3D acoustic audio model with an immersive 3D visual scene is discussed. The system complements the acoustic model and is specified to: allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; reinforce the listener's feeling of telepresence in the acoustical environment with visual and proprioceptive sensations; enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations.
Hu, Jian; Xu, Xiang-yang; Song, En-min; Tan, Hong-bao; Wang, Yi-ning
2009-09-01
To establish a new visual educational system of virtual reality for clinical dentistry based on world wide web (WWW) webpage in order to provide more three-dimensional multimedia resources to dental students and an online three-dimensional consulting system for patients. Based on computer graphics and three-dimensional webpage technologies, the software of 3Dsmax and Webmax were adopted in the system development. In the Windows environment, the architecture of whole system was established step by step, including three-dimensional model construction, three-dimensional scene setup, transplanting three-dimensional scene into webpage, reediting the virtual scene, realization of interactions within the webpage, initial test, and necessary adjustment. Five cases of three-dimensional interactive webpage for clinical dentistry were completed. The three-dimensional interactive webpage could be accessible through web browser on personal computer, and users could interact with the webpage through rotating, panning and zooming the virtual scene. It is technically feasible to implement the visual educational system of virtual reality for clinical dentistry based on WWW webpage. Information related to clinical dentistry can be transmitted properly, visually and interactively through three-dimensional webpage.
Visualization in aerospace research with a large wall display system
NASA Astrophysics Data System (ADS)
Matsuo, Yuichi
2002-05-01
National Aerospace Laboratory of Japan has built a large- scale visualization system with a large wall-type display. The system has been operational since April 2001 and comprises a 4.6x1.5-meter (15x5-foot) rear projection screen with 3 BARCO 812 high-resolution CRT projectors. The reason we adopted the 3-gun CRT projectors is support for stereoscopic viewing, ease with color/luminosity matching and accuracy of edge-blending. The system is driven by a new SGI Onyx 3400 server of distributed shared-memory architecture with 32 CPUs, 64Gbytes memory, 1.5TBytes FC RAID disk and 6 IR3 graphics pipelines. Software is another important issue for us to make full use of the system. We have introduced some applications available in a multi- projector environment such as AVS/MPE, EnSight Gold and COVISE, and been developing some software tools that create volumetric images with using SGI graphics libraries. The system is mainly used for visualization fo computational fluid dynamics (CFD) simulation sin aerospace research. Visualized CFD results are of our help for designing an improved configuration of aerospace vehicles and analyzing their aerodynamic performances. These days we also use it for various collaborations among researchers.
Novel 3D/VR interactive environment for MD simulations, visualization and analysis.
Doblack, Benjamin N; Allis, Tim; Dávila, Lilian P
2014-12-18
The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.
Novel 3D/VR Interactive Environment for MD Simulations, Visualization and Analysis
Doblack, Benjamin N.; Allis, Tim; Dávila, Lilian P.
2014-01-01
The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced. PMID:25549300
Animation of multi-flexible body systems and its use in control system design
NASA Technical Reports Server (NTRS)
Juengst, Carl; Stahlberg, Ron
1993-01-01
Animation can greatly assist the structural dynamicist and control system analyst with better understanding of how multi-flexible body systems behave. For multi-flexible body systems, the structural characteristics (mode frequencies, mode shapes, and damping) change, sometimes dramatically with large angles of rotation between bodies. With computer animation, the analyst can visualize these changes and how the system responds to active control forces and torques. A characterization of the type of system we wish to animate is presented. The lack of clear understanding of the above effects was a key element leading to the development of a multi-flexible body animation software package. The resulting animation software is described in some detail here, followed by its application to the control system analyst. Other applications of this software can be determined on an individual need basis. A number of software products are currently available that make the high-speed rendering of rigid body mechanical system simulation possible. However, such options are not available for use in rendering flexible body mechanical system simulations. The desire for a high-speed flexible body visualization tool led to the development of the Flexible Or Rigid Mechanical System (FORMS) software. This software was developed at the Center for Simulation and Design Optimization of Mechanical Systems at the University of Iowa. FORMS provides interactive high-speed rendering of flexible and/or rigid body mechanical system simulations, and combines geometry and motion information to produce animated output. FORMS is designed to be both portable and flexible, and supports a number of different user interfaces and graphical display devices. Additional features have been added to FORMS that allow special visualization results related to the nature of the flexible body geometric representations.
3D Visualization of Cooperative Trajectories
NASA Technical Reports Server (NTRS)
Schaefer, John A.
2014-01-01
Aerodynamicists and biologists have long recognized the benefits of formation flight. When birds or aircraft fly in the upwash region of the vortex generated by leaders in a formation, induced drag is reduced for the trail bird or aircraft, and efficiency improves. The major consequence of this is that fuel consumption can be greatly reduced. When two aircraft are separated by a large enough longitudinal distance, the aircraft are said to be flying in a cooperative trajectory. A simulation has been developed to model autonomous cooperative trajectories of aircraft; however it does not provide any 3D representation of the multi-body system dynamics. The topic of this research is the development of an accurate visualization of the multi-body system observable in a 3D environment. This visualization includes two aircraft (lead and trail), a landscape for a static reference, and simplified models of the vortex dynamics and trajectories at several locations between the aircraft.
NASA Astrophysics Data System (ADS)
Khan, Shadab; Mahara, Aditya; Hyams, Elias S.; Schned, Alan; Halter, Ryan
2015-03-01
Prostate cancer (PCa) has a high 10-year recurrence rate, making PCa the second leading cause of cancer-specific mortality among men in the USA. PCa recurrences are often predicted by assessing the status of surgical margins (SM) with positive surgical margins (PSM) increasing the chances of biochemical recurrence by 2-4 times. To this end, an SM assessment system using Electrical Impedance Spectroscopy (EIS) was developed with a microendoscopic probe. This system measures the tissue bioimpedance over a range of frequencies (1 kHz to 1MHz), and computes a Composite Impedance Metric (CIM). CIM can be used to classify tissue as benign or cancerous. The system was used to collect the impedance spectra from excised prostates, which were obtained from men undergoing radical prostatectomy. The data revealed statistically significant (p<0.05) differences in the impedance properties of the benign and tumorous tissues, and between different tissue morphologies. To visualize the results of SM-assessment, a visualization tool using da Vinci stereo laparoscope is being developed. Together with the visualization tool, the EIS-based SM assessment system can be potentially used to intraoperatively classify tissues and display the results on the surgical console with a video feed of the surgical site, thereby augmenting a surgeon's view of the site and providing a potential solution to the intraoperative SM assessment needs.
Use of Closed-Circuit Television with a Severely Visually Impaired Young Child.
ERIC Educational Resources Information Center
Miller-Wood, D. J.; And Others
1990-01-01
A closed-circuit television system was used with a five-year-old girl with severely limited vision to develop visual skills, especially skills related to concept formation. At the end of training, the girl could recognize lines, forms, shapes, letters, numbers, and words and could read short sentences. (Author/JDD)
Pictorial Visual Rotation Ability of Engineering Design Graphics Students
ERIC Educational Resources Information Center
Ernst, Jeremy Vaughn; Lane, Diarmaid; Clark, Aaron C.
2015-01-01
The ability to rotate visual mental images is a complex cognitive skill. It requires the building of graphical libraries of information through short or long term memory systems and the subsequent retrieval and manipulation of these towards a specified goal. The development of mental rotation skill is of critical importance within engineering…
An Ideal Observer Analysis of Visual Working Memory
ERIC Educational Resources Information Center
Sims, Chris R.; Jacobs, Robert A.; Knill, David C.
2012-01-01
Limits in visual working memory (VWM) strongly constrain human performance across many tasks. However, the nature of these limits is not well understood. In this article we develop an ideal observer analysis of human VWM by deriving the expected behavior of an optimally performing but limited-capacity memory system. This analysis is framed around…
Visualization and Interactivity in the Teaching of Chemistry to Science and Non-Science Students
ERIC Educational Resources Information Center
Venkataraman, Bhawani
2009-01-01
A series of interactive, instructional units have been developed that integrate computational molecular modelling and visualization to teach fundamental chemistry concepts and the relationship between the molecular and macro-scales. The units span the scale from atoms, small molecules to macromolecular systems, and introduce many of the concepts…
Ink and Wash Painting for Children with Visual Impairment
ERIC Educational Resources Information Center
Shih, Chih-Ming; Chao, Hsin-Yi
2010-01-01
Five children with visual impairments received instruction in drawing, using ink and wash painting and calligraphy techniques. A special system developed by a blind Taiwanese Chinese calligrapher, Tsann-Cherng Liaw, was used to help the children orient and refine their work. Children's performance on simple drawing tasks was compared before and…
Students' Reflections Using Visualized Learning Outcomes and E-Portfolios
ERIC Educational Resources Information Center
Narumi, Takatsune; Gotoh, Yasushi
2014-01-01
How to guarantee graduate attributes has become an urgent challenge amid the increasing progress in scientific and technological development and the globalization of economic activity. In order to solve these problems, a system is required which can visualize learning outcomes in relation to attainment targets, and store and sample records of the…
Inventory of Electronic Mobility Aids for Persons with Visual Impairments: A Literature Review
ERIC Educational Resources Information Center
Roentgen, Uta R.; Gelderblom, Gert Jan; Soede, Mathijs; de Witte, Luc P.
2008-01-01
This literature review of existing electronic mobility aids for persons who are visually impaired and recent developments in this field identified and classified 146 products, systems, and devices. The 21 that are currently available that can be used without environmental adaptation are described in functional terms. (Contains 2 tables.)
Multichannel optical mapping: investigation of depth information
NASA Astrophysics Data System (ADS)
Sase, Ichiro; Eda, Hideo; Seiyama, Akitoshi; Tanabe, Hiroki C.; Takatsuki, Akira; Yanagida, Toshio
2001-06-01
Near infrared (NIR) light has become a powerful tool for non-invasive imaging of human brain activity. Many systems have been developed to capture the changes in regional brain blood flow and hemoglobin oxygenation, which occur in the human cortex in response to neural activity. We have developed a multi-channel reflectance imaging system, which can be used as a `mapping device' and also as a `multi-channel spectrophotometer'. In the present study, we visualized changes in the hemodynamics of the human occipital region in multiple ways. (1) Stimulating left and right primary visual cortex independently by showing sector shaped checkerboards sequentially over the contralateral visual field, resulted in corresponding changes in the hemodynamics observed by `mapping' measurement. (2) Simultaneous measurement of functional-MRI and NIR (changes in total hemoglobin) during visual stimulation showed good spatial and temporal correlation with each other. (3) Placing multiple channels densely over the occipital region demonstrated spatial patterns more precisely, and depth information was also acquired by placing each pair of illumination and detection fibers at various distances. These results indicate that optical method can provide data for 3D analysis of human brain functions.
Development of a 3-D X-ray system
NASA Astrophysics Data System (ADS)
Evans, James Paul Owain
The interpretation of standard two-dimensional x-ray images by humans is often very difficult. This is due to the lack of visual cues to depth in an image which has been produced by transmitted radiation. The solution put forward in this research is to introduce binocular parallax, a powerful physiological depth cue, into the resultant shadowgraph x-ray image. This has been achieved by developing a binocular stereoscopic x-ray imaging technique, which can be used for both visual inspection by human observers and also for the extraction of three-dimensional co-ordinate information. The technique is implemented in the design and development of two experimental x-ray systems and also the development of measurement algorithms. The first experimental machine is based on standard linear x-ray detector arrays and was designed as an optimum configuration for visual inspection by human observers. However, it was felt that a combination of the 3-D visual inspection capability together with a measurement facility would enhance the usefulness of the technique. Therefore, both a theoretical and an empirical analysis of the co-ordinate measurement capability of the machine has been carried out. The measurement is based on close-range photogrammetric techniques. The accuracy of the measurement has been found to be of the order of 4mm in x, 3mm in y and 6mm in z. A second experimental machine was developed and based on the same technique as that used for the first machine. However, a major departure has been the introduction of a dual energy linear x-ray detector array which will allow, in general, the discrimination between organic and inorganic substances. The second design is a compromise between ease of visual inspection for human observers and optimum three-dimensional co-ordinate measurement capability. The system is part of an on going research programme into the possibility of introducing psychological depth cues into the resultant x-ray images. The research presented in this thesis was initiated to enhance the visual interpretation of complex x-ray images, specifically in response to problems encountered in the routine screening of freight by HM. Customs and Excise. This phase of the work culminated in the development of the first experimental machine. During this work the security industry was starting to adopt a new type of x-ray detector, namely the dual energy x-ray sensor. The Department of Transport made available funding to the Police Scientific Development Branch (P.S.D.B.), part of The Home Office Science and Technology Group, to investigate the possibility of utilising the dual energy sensor in a 3-D x-ray screening system. This phase of the work culminated in the development of the second experimental machine.
Advanced biologically plausible algorithms for low-level image processing
NASA Astrophysics Data System (ADS)
Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan
1999-08-01
At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.
Mehler, Bruce; Kidd, David; Reimer, Bryan; Reagan, Ian; Dobres, Jonathan; McCartt, Anne
2016-01-01
Abstract One purpose of integrating voice interfaces into embedded vehicle systems is to reduce drivers’ visual and manual distractions with ‘infotainment’ technologies. However, there is scant research on actual benefits in production vehicles or how different interface designs affect attentional demands. Driving performance, visual engagement, and indices of workload (heart rate, skin conductance, subjective ratings) were assessed in 80 drivers randomly assigned to drive a 2013 Chevrolet Equinox or Volvo XC60. The Chevrolet MyLink system allowed completing tasks with one voice command, while the Volvo Sensus required multiple commands to navigate the menu structure. When calling a phone contact, both voice systems reduced visual demand relative to the visual–manual interfaces, with reductions for drivers in the Equinox being greater. The Equinox ‘one-shot’ voice command showed advantages during contact calling but had significantly higher error rates than Sensus during destination address entry. For both secondary tasks, neither voice interface entirely eliminated visual demand. Practitioner Summary: The findings reinforce the observation that most, if not all, automotive auditory–vocal interfaces are multi-modal interfaces in which the full range of potential demands (auditory, vocal, visual, manipulative, cognitive, tactile, etc.) need to be considered in developing optimal implementations and evaluating drivers’ interaction with the systems. Social Media: In-vehicle voice-interfaces can reduce visual demand but do not eliminate it and all types of demand need to be taken into account in a comprehensive evaluation. PMID:26269281
iTTVis: Interactive Visualization of Table Tennis Data.
Wu, Yingcai; Lan, Ji; Shu, Xinhuan; Ji, Chenyang; Zhao, Kejian; Wang, Jiachen; Zhang, Hui
2018-01-01
The rapid development of information technology paved the way for the recording of fine-grained data, such as stroke techniques and stroke placements, during a table tennis match. This data recording creates opportunities to analyze and evaluate matches from new perspectives. Nevertheless, the increasingly complex data poses a significant challenge to make sense of and gain insights into. Analysts usually employ tedious and cumbersome methods which are limited to watching videos and reading statistical tables. However, existing sports visualization methods cannot be applied to visualizing table tennis competitions due to different competition rules and particular data attributes. In this work, we collaborate with data analysts to understand and characterize the sophisticated domain problem of analysis of table tennis data. We propose iTTVis, a novel interactive table tennis visualization system, which to our knowledge, is the first visual analysis system for analyzing and exploring table tennis data. iTTVis provides a holistic visualization of an entire match from three main perspectives, namely, time-oriented, statistical, and tactical analyses. The proposed system with several well-coordinated views not only supports correlation identification through statistics and pattern detection of tactics with a score timeline but also allows cross analysis to gain insights. Data analysts have obtained several new insights by using iTTVis. The effectiveness and usability of the proposed system are demonstrated with four case studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keefer, Donald A.; Shaffer, Eric G.; Storsved, Brynne
A free software application, RVA, has been developed as a plugin to the US DOE-funded ParaView visualization package, to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed as an open-source plugin to the 64 bit Windows version of ParaView 3.14. RVA was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing jointmore » visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed on enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including: sophisticated connectivity analysis, cross sections through simulation results between selected wells, simplified volumetric calculations, global vertical exaggeration adjustments, ingestion of UTChem simulation results, ingestion of Isatis geostatistical framework models, interrogation of joint geologic and reservoir modeling results, joint visualization and analysis of well history files, location-targeted visualization, advanced correlation analysis, visualization of flow paths, and creation of static images and animations highlighting targeted reservoir features.« less
Baron, S; Kaufmann Alves, I; Schmitt, T G; Schöffel, S; Schwank, J
2015-01-01
Predicted demographic, climatic and socio-economic changes will require adaptations of existing water supply and wastewater disposal systems. Especially in rural areas, these new challenges will affect the functionality of the present systems. This paper presents a joint interdisciplinary research project with the objective of developing an innovative software-based optimization and decision support system for the implementation of long-term transformations of existing infrastructures of water supply, wastewater and energy. The concept of the decision support and optimization tool is described and visualization methods for the presentation of results are illustrated. The model is tested in a rural case study region in the Southwest of Germany. A transformation strategy for a decentralized wastewater treatment concept and its visualization are presented for a model village.
The development of contour processing: evidence from physiology and psychophysics
Taylor, Gemma; Hipp, Daniel; Moser, Alecia; Dickerson, Kelly; Gerhardstein, Peter
2014-01-01
Object perception and pattern vision depend fundamentally upon the extraction of contours from the visual environment. In adulthood, contour or edge-level processing is supported by the Gestalt heuristics of proximity, collinearity, and closure. Less is known, however, about the developmental trajectory of contour detection and contour integration. Within the physiology of the visual system, long-range horizontal connections in V1 and V2 are the likely candidates for implementing these heuristics. While post-mortem anatomical studies of human infants suggest that horizontal interconnections reach maturity by the second year of life, psychophysical research with infants and children suggests a considerably more protracted development. In the present review, data from infancy to adulthood will be discussed in order to track the development of contour detection and integration. The goal of this review is thus to integrate the development of contour detection and integration with research regarding the development of underlying neural circuitry. We conclude that the ontogeny of this system is best characterized as a developmentally extended period of associative acquisition whereby horizontal connectivity becomes functional over longer and longer distances, thus becoming able to effectively integrate over greater spans of visual space. PMID:25071681
Visual Aid Tool to Improve Decision Making in Anticoagulation for Stroke Prevention.
Saposnik, Gustavo; Joundi, Raed A
2016-10-01
The management of stroke prevention among patients with atrial fibrillation (AF) has changed in the last few years. Despite the benefits of new oral anticoagulants (NOACs), decisions about the optimal agent remain a challenge. We provide a visual aid tool to guide clinicians and patients in the decision process of selecting oral anticoagulants for stroke prevention. We created visual plots representing benefits of warfarin versus NOACs from a meta-analysis comprising 58,541 participants. Visual plots (Cates plots) were created using software available at nntonline.net. The primary outcome was stroke or systemic embolism during the study period. In the chosen meta-analysis, 29,312 participants received a NOAC and 29,229 participants received warfarin. For every 1000 patients with AF, 38 would have a stroke or systemic embolic event in the warfarin group compared to 31 in the NOAC group (RR .81; 95% CI .73-.91). Fifteen patients would develop an intracranial hemorrhage in the warfarin group compared to 7 in the NOAC group (RR .48; 95% CI .39-.59). Conversely, 25 patients would develop gastrointestinal bleeding in the NOAC group compared to 20 in the warfarin group (RR 1.25; 95% CI 1.01-1.55). For every 1000 treated individuals with AF, NOACs would prevent stroke or systemic embolism in 7 additional patients and cerebral hemorrhage in 8 additional patients compared to warfarin. On the other hand, 5 more patients would develop gastrointestinal bleeding with NOACs compared to warfarin. These data are visually shown in Cates plots, facilitating conversations with patients regarding anticoagulation decisions. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Analysis, Mining and Visualization Service at NCSA
NASA Astrophysics Data System (ADS)
Wilhelmson, R.; Cox, D.; Welge, M.
2004-12-01
NCSA's goal is to create a balanced system that fully supports high-end computing as well as: 1) high-end data management and analysis; 2) visualization of massive, highly complex data collections; 3) large databases; 4) geographically distributed Grid computing; and 5) collaboratories, all based on a secure computational environment and driven with workflow-based services. To this end NCSA has defined a new technology path that includes the integration and provision of cyberservices in support of data analysis, mining, and visualization. NCSA has begun to develop and apply a data mining system-NCSA Data-to-Knowledge (D2K)-in conjunction with both the application and research communities. NCSA D2K will enable the formation of model-based application workflows and visual programming interfaces for rapid data analysis. The Java-based D2K framework, which integrates analytical data mining methods with data management, data transformation, and information visualization tools, will be configurable from the cyberservices (web and grid services, tools, ..) viewpoint to solve a wide range of important data mining problems. This effort will use modules, such as a new classification methods for the detection of high-risk geoscience events, and existing D2K data management, machine learning, and information visualization modules. A D2K cyberservices interface will be developed to seamlessly connect client applications with remote back-end D2K servers, providing computational resources for data mining and integration with local or remote data stores. This work is being coordinated with SDSC's data and services efforts. The new NCSA Visualization embedded workflow environment (NVIEW) will be integrated with D2K functionality to tightly couple informatics and scientific visualization with the data analysis and management services. Visualization services will access and filter disparate data sources, simplifying tasks such as fusing related data from distinct sources into a coherent visual representation. This approach enables collaboration among geographically dispersed researchers via portals and front-end clients, and the coupling with data management services enables recording associations among datasets and building annotation systems into visualization tools and portals, giving scientists a persistent, shareable, virtual lab notebook. To facilitate provision of these cyberservices to the national community, NCSA will be providing a computational environment for large-scale data assimilation, analysis, mining, and visualization. This will be initially implemented on the new 512 processor shared memory SGI's recently purchased by NCSA. In addition to standard batch capabilities, NCSA will provide on-demand capabilities for those projects requiring rapid response (e.g., development of severe weather, earthquake events) for decision makers. It will also be used for non-sequential interactive analysis of data sets where it is important have access to large data volumes over space and time.
Mixed Initiative Visual Analytics Using Task-Driven Recommendations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kristin A.; Cramer, Nicholas O.; Israel, David
2015-12-07
Visual data analysis is composed of a collection of cognitive actions and tasks to decompose, internalize, and recombine data to produce knowledge and insight. Visual analytic tools provide interactive visual interfaces to data to support tasks involved in discovery and sensemaking, including forming hypotheses, asking questions, and evaluating and organizing evidence. Myriad analytic models can be incorporated into visual analytic systems, at the cost of increasing complexity in the analytic discourse between user and system. Techniques exist to increase the usability of interacting with such analytic models, such as inferring data models from user interactions to steer the underlying modelsmore » of the system via semantic interaction, shielding users from having to do so explicitly. Such approaches are often also referred to as mixed-initiative systems. Researchers studying the sensemaking process have called for development of tools that facilitate analytic sensemaking through a combination of human and automated activities. However, design guidelines do not exist for mixed-initiative visual analytic systems to support iterative sensemaking. In this paper, we present a candidate set of design guidelines and introduce the Active Data Environment (ADE) prototype, a spatial workspace supporting the analytic process via task recommendations invoked by inferences on user interactions within the workspace. ADE recommends data and relationships based on a task model, enabling users to co-reason with the system about their data in a single, spatial workspace. This paper provides an illustrative use case, a technical description of ADE, and a discussion of the strengths and limitations of the approach.« less
A Model-Driven Visualization Tool for Use with Model-Based Systems Engineering Projects
NASA Technical Reports Server (NTRS)
Trase, Kathryn; Fink, Eric
2014-01-01
Model-Based Systems Engineering (MBSE) promotes increased consistency between a system's design and its design documentation through the use of an object-oriented system model. The creation of this system model facilitates data presentation by providing a mechanism from which information can be extracted by automated manipulation of model content. Existing MBSE tools enable model creation, but are often too complex for the unfamiliar model viewer to easily use. These tools do not yet provide many opportunities for easing into the development and use of a system model when system design documentation already exists. This study creates a Systems Modeling Language (SysML) Document Traceability Framework (SDTF) for integrating design documentation with a system model, and develops an Interactive Visualization Engine for SysML Tools (InVEST), that exports consistent, clear, and concise views of SysML model data. These exported views are each meaningful to a variety of project stakeholders with differing subjects of concern and depth of technical involvement. InVEST allows a model user to generate multiple views and reports from a MBSE model, including wiki pages and interactive visualizations of data. System data can also be filtered to present only the information relevant to the particular stakeholder, resulting in a view that is both consistent with the larger system model and other model views. Viewing the relationships between system artifacts and documentation, and filtering through data to see specialized views improves the value of the system as a whole, as data becomes information
Fan, Zhencheng; Weng, Yitong; Chen, Guowen; Liao, Hongen
2017-07-01
Three-dimensional (3D) visualization of preoperative and intraoperative medical information becomes more and more important in minimally invasive surgery. We develop a 3D interactive surgical visualization system using mobile spatial information acquisition and autostereoscopic display for surgeons to observe surgical target intuitively. The spatial information of regions of interest (ROIs) is captured by the mobile device and transferred to a server for further image processing. Triangular patches of intraoperative data with texture are calculated with a dimension-reduced triangulation algorithm and a projection-weighted mapping algorithm. A point cloud selection-based warm-start iterative closest point (ICP) algorithm is also developed for fusion of the reconstructed 3D intraoperative image and the preoperative image. The fusion images are rendered for 3D autostereoscopic display using integral videography (IV) technology. Moreover, 3D visualization of medical image corresponding to observer's viewing direction is updated automatically using mutual information registration method. Experimental results show that the spatial position error between the IV-based 3D autostereoscopic fusion image and the actual object was 0.38±0.92mm (n=5). The system can be utilized in telemedicine, operating education, surgical planning, navigation, etc. to acquire spatial information conveniently and display surgical information intuitively. Copyright © 2017 Elsevier Inc. All rights reserved.
Visualization of protein interaction networks: problems and solutions
2013-01-01
Background Visualization concerns the representation of data visually and is an important task in scientific research. Protein-protein interactions (PPI) are discovered using either wet lab techniques, such mass spectrometry, or in silico predictions tools, resulting in large collections of interactions stored in specialized databases. The set of all interactions of an organism forms a protein-protein interaction network (PIN) and is an important tool for studying the behaviour of the cell machinery. Since graphic representation of PINs may highlight important substructures, e.g. protein complexes, visualization is more and more used to study the underlying graph structure of PINs. Although graphs are well known data structures, there are different open problems regarding PINs visualization: the high number of nodes and connections, the heterogeneity of nodes (proteins) and edges (interactions), the possibility to annotate proteins and interactions with biological information extracted by ontologies (e.g. Gene Ontology) that enriches the PINs with semantic information, but complicates their visualization. Methods In these last years many software tools for the visualization of PINs have been developed. Initially thought for visualization only, some of them have been successively enriched with new functions for PPI data management and PIN analysis. The paper analyzes the main software tools for PINs visualization considering four main criteria: (i) technology, i.e. availability/license of the software and supported OS (Operating System) platforms; (ii) interoperability, i.e. ability to import/export networks in various formats, ability to export data in a graphic format, extensibility of the system, e.g. through plug-ins; (iii) visualization, i.e. supported layout and rendering algorithms and availability of parallel implementation; (iv) analysis, i.e. availability of network analysis functions, such as clustering or mining of the graph, and the possibility to interact with external databases. Results Currently, many tools are available and it is not easy for the users choosing one of them. Some tools offer sophisticated 2D and 3D network visualization making available many layout algorithms, others tools are more data-oriented and support integration of interaction data coming from different sources and data annotation. Finally, some specialistic tools are dedicated to the analysis of pathways and cellular processes and are oriented toward systems biology studies, where the dynamic aspects of the processes being studied are central. Conclusion A current trend is the deployment of open, extensible visualization tools (e.g. Cytoscape), that may be incrementally enriched by the interactomics community with novel and more powerful functions for PIN analysis, through the development of plug-ins. On the other hand, another emerging trend regards the efficient and parallel implementation of the visualization engine that may provide high interactivity and near real-time response time, as in NAViGaTOR. From a technological point of view, open-source, free and extensible tools, like Cytoscape, guarantee a long term sustainability due to the largeness of the developers and users communities, and provide a great flexibility since new functions are continuously added by the developer community through new plug-ins, but the emerging parallel, often closed-source tools like NAViGaTOR, can offer near real-time response time also in the analysis of very huge PINs. PMID:23368786
A Visual Language for World Marketing.
ERIC Educational Resources Information Center
Vanden Bergh, Bruce G.; Sentell, Gerald D.
A practical solution to many of the communication obstacles found in international markets can be found in the development and widespread adoption of a standardized system of international graphic symbols. Any plan to develop and implement a truly acceptable and universal system of graphic symbols will have to overcome many obstacles that past…
A novel visual-inertial monocular SLAM
NASA Astrophysics Data System (ADS)
Yue, Xiaofeng; Zhang, Wenjuan; Xu, Li; Liu, JiangGuo
2018-02-01
With the development of sensors and computer vision research community, cameras, which are accurate, compact, wellunderstood and most importantly cheap and ubiquitous today, have gradually been at the center of robot location. Simultaneous localization and mapping (SLAM) using visual features, which is a system getting motion information from image acquisition equipment and rebuild the structure in unknown environment. We provide an analysis of bioinspired flights in insects, employing a novel technique based on SLAM. Then combining visual and inertial measurements to get high accuracy and robustness. we present a novel tightly-coupled Visual-Inertial Simultaneous Localization and Mapping system which get a new attempt to address two challenges which are the initialization problem and the calibration problem. experimental results and analysis show the proposed approach has a more accurate quantitative simulation of insect navigation, which can reach the positioning accuracy of centimeter level.
Two-out-of-two color matching based visual cryptography schemes.
Machizaud, Jacques; Fournel, Thierry
2012-09-24
Visual cryptography which consists in sharing a secret message between transparencies has been extended to color prints. In this paper, we propose a new visual cryptography scheme based on color matching. The stacked printed media reveal a uniformly colored message decoded by the human visual system. In contrast with the previous color visual cryptography schemes, the proposed one enables to share images without pixel expansion and to detect a forgery as the color of the message is kept secret. In order to correctly print the colors on the media and to increase the security of the scheme, we use spectral models developed for color reproduction describing printed colors from an optical point of view.
Enhancing online timeline visualizations with events and images
NASA Astrophysics Data System (ADS)
Pandya, Abhishek; Mulye, Aniket; Teoh, Soon Tee
2011-01-01
The use of timeline to visualize time-series data is one of the most intuitive and commonly used methods, and is used for widely-used applications such as stock market data visualization, and tracking of poll data of election candidates over time. While useful, these timeline visualizations are lacking in contextual information of events which are related or cause changes in the data. We have developed a system that enhances timeline visualization with display of relevant news events and their corresponding images, so that users can not only see the changes in the data, but also understand the reasons behind the changes. We have also conducted a user study to test the effectiveness of our ideas.
Multimission image processing and science data visualization
NASA Technical Reports Server (NTRS)
Green, William B.
1993-01-01
The Operational Science Analysis (OSA) Functional area supports science instrument data display, analysis, visualization and photo processing in support of flight operations of planetary spacecraft managed by the Jet Propulsion Laboratory (JPL). This paper describes the data products generated by the OSA functional area, and the current computer system used to generate these data products. The objectives on a system upgrade now in process are described. The design approach to development of the new system are reviewed, including use of the Unix operating system and X-Window display standards to provide platform independence, portability, and modularity within the new system, is reviewed. The new system should provide a modular and scaleable capability supporting a variety of future missions at JPL.
VirtualPlant: A Software Platform to Support Systems Biology Research1[W][OA
Katari, Manpreet S.; Nowicki, Steve D.; Aceituno, Felipe F.; Nero, Damion; Kelfer, Jonathan; Thompson, Lee Parnell; Cabello, Juan M.; Davidson, Rebecca S.; Goldberg, Arthur P.; Shasha, Dennis E.; Coruzzi, Gloria M.; Gutiérrez, Rodrigo A.
2010-01-01
Data generation is no longer the limiting factor in advancing biological research. In addition, data integration, analysis, and interpretation have become key bottlenecks and challenges that biologists conducting genomic research face daily. To enable biologists to derive testable hypotheses from the increasing amount of genomic data, we have developed the VirtualPlant software platform. VirtualPlant enables scientists to visualize, integrate, and analyze genomic data from a systems biology perspective. VirtualPlant integrates genome-wide data concerning the known and predicted relationships among genes, proteins, and molecules, as well as genome-scale experimental measurements. VirtualPlant also provides visualization techniques that render multivariate information in visual formats that facilitate the extraction of biological concepts. Importantly, VirtualPlant helps biologists who are not trained in computer science to mine lists of genes, microarray experiments, and gene networks to address questions in plant biology, such as: What are the molecular mechanisms by which internal or external perturbations affect processes controlling growth and development? We illustrate the use of VirtualPlant with three case studies, ranging from querying a gene of interest to the identification of gene networks and regulatory hubs that control seed development. Whereas the VirtualPlant software was developed to mine Arabidopsis (Arabidopsis thaliana) genomic data, its data structures, algorithms, and visualization tools are designed in a species-independent way. VirtualPlant is freely available at www.virtualplant.org. PMID:20007449
New Hypervelocity Terminal Intercept Guidance Systems for Deflecting/Disrupting Hazardous Asteroids
NASA Astrophysics Data System (ADS)
Lyzhoft, Joshua Richard
Computational modeling and simulations of visual and infrared (IR) sensors are investigated for a new hypervelocity terminal guidance system of intercepting small asteroids (50 to 150 meters in diameter). Computational software tools for signal-to-noise ratio estimation of visual and IR sensors, estimation of minimum and maximum ranges of target detection, and GPU (Graphics Processing Units)-accelerated simulations of the IR-based terminal intercept guidance systems are developed. Scaled polyhedron models of known objects, such as the Rosetta mission's Comet 67P/C-G, NASA's OSIRIS-REx Bennu, and asteroid 433 Eros, are utilized in developing a GPU-based simulation tool for the IR-based terminal intercept guidance systems. A parallelized-ray tracing algorithm for simulating realistic surface-to-surface shadowing of irregular-shaped asteroids or comets is developed. Polyhedron solid-angle approximation is also considered. Using these computational models, digital image processing is investigated to determine single or multiple impact locations to assess the technical feasibility of new planetary defense mission concepts of utilizing a Hypervelocity Asteroid Intercept Vehicle (HAIV) or a Multiple Kinetic-energy Interceptor Vehicle (MKIV). Study results indicate that the IR-based guidance system outperforms the visual-based system in asteroid detection and tracking. When using an IR sensor, predicting impact locations from filtered images resulted in less jittery spacecraft control accelerations than conducting missions with a visual sensor. Infrared sensors have also the possibility to detect asteroids at greater distances, and if properly used, can aid in terminal phase guidance for proper impact location determination for the MKIV system. Emerging new topics of the Minimum Orbit Intersection Distance (MOID) estimation and the Full-Two-Body Problem (F2BP) formulation are also investigated to assess a potential near-Earth object collision risk and the proximity gravity effects of an irregular-shaped binary-asteroid target on a standoff nuclear explosion mission.
Measurement of electromagnetic tracking error in a navigated breast surgery setup
NASA Astrophysics Data System (ADS)
Harish, Vinyas; Baksh, Aidan; Ungi, Tamas; Lasso, Andras; Baum, Zachary; Gauvin, Gabrielle; Engel, Jay; Rudan, John; Fichtinger, Gabor
2016-03-01
PURPOSE: The measurement of tracking error is crucial to ensure the safety and feasibility of electromagnetically tracked, image-guided procedures. Measurement should occur in a clinical environment because electromagnetic field distortion depends on positioning relative to the field generator and metal objects. However, we could not find an accessible and open-source system for calibration, error measurement, and visualization. We developed such a system and tested it in a navigated breast surgery setup. METHODS: A pointer tool was designed for concurrent electromagnetic and optical tracking. Software modules were developed for automatic calibration of the measurement system, real-time error visualization, and analysis. The system was taken to an operating room to test for field distortion in a navigated breast surgery setup. Positional and rotational electromagnetic tracking errors were then calculated using optical tracking as a ground truth. RESULTS: Our system is quick to set up and can be rapidly deployed. The process from calibration to visualization also only takes a few minutes. Field distortion was measured in the presence of various surgical equipment. Positional and rotational error in a clean field was approximately 0.90 mm and 0.31°. The presence of a surgical table, an electrosurgical cautery, and anesthesia machine increased the error by up to a few tenths of a millimeter and tenth of a degree. CONCLUSION: In a navigated breast surgery setup, measurement and visualization of tracking error defines a safe working area in the presence of surgical equipment. Our system is available as an extension for the open-source 3D Slicer platform.
The Glenn A. Fry Award Lecture 2012: Plasticity of the visual system following central vision loss.
Chung, Susana T L
2013-06-01
Following the onset of central vision loss, most patients develop an eccentric retinal location outside the affected macular region, the preferred retinal locus (PRL), as their new reference for visual tasks. The first goal of this article is to present behavioral evidence showing the presence of experience-dependent plasticity in people with central vision loss. The evidence includes the presence of oculomotor re-referencing of fixational saccades to the PRL; the characteristics of the shape of the crowding zone (spatial region within which the presence of other objects affects the recognition of a target) at the PRL are more "foveal-like" instead of resembling those of the normal periphery; and the change in the shape of the crowding zone at a para-PRL location that includes a component referenced to the PRL. These findings suggest that there is a shift in the referencing locus of the oculomotor and the sensory visual system from the fovea to the PRL for people with central vision loss, implying that the visual system for these individuals is still plastic and can be modified through experiences. The second goal of the article is to demonstrate the feasibility of applying perceptual learning, which capitalizes on the presence of plasticity, as a tool to improve functional vision for people with central vision loss. Our finding that visual function could improve with perceptual learning presents an exciting possibility for the development of an alternative rehabilitative strategy for people with central vision loss.
Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells
Dähne, Sven; Wilbert, Niko; Wiskott, Laurenz
2014-01-01
The developing visual system of many mammalian species is partially structured and organized even before the onset of vision. Spontaneous neural activity, which spreads in waves across the retina, has been suggested to play a major role in these prenatal structuring processes. Recently, it has been shown that when employing an efficient coding strategy, such as sparse coding, these retinal activity patterns lead to basis functions that resemble optimal stimuli of simple cells in primary visual cortex (V1). Here we present the results of applying a coding strategy that optimizes for temporal slowness, namely Slow Feature Analysis (SFA), to a biologically plausible model of retinal waves. Previously, SFA has been successfully applied to model parts of the visual system, most notably in reproducing a rich set of complex-cell features by training SFA with quasi-natural image sequences. In the present work, we obtain SFA units that share a number of properties with cortical complex-cells by training on simulated retinal waves. The emergence of two distinct properties of the SFA units (phase invariance and orientation tuning) is thoroughly investigated via control experiments and mathematical analysis of the input-output functions found by SFA. The results support the idea that retinal waves share relevant temporal and spatial properties with natural visual input. Hence, retinal waves seem suitable training stimuli to learn invariances and thereby shape the developing early visual system such that it is best prepared for coding input from the natural world. PMID:24810948
On the use of Augmented Reality techniques in learning and interpretation of cardiologic data.
Lamounier, Edgard; Bucioli, Arthur; Cardoso, Alexandre; Andrade, Adriano; Soares, Alcimar
2010-01-01
Augmented Reality is a technology which provides people with more intuitive ways of interaction and visualization, close to those in real world. The amount of applications using Augmented Reality is growing every day, and results can be already seen in several fields such as Education, Training, Entertainment and Medicine. The system proposed in this article intends to provide a friendly and intuitive interface based on Augmented Reality for heart beating evaluation and visualization. Cardiologic data is loaded from several distinct sources: simple standards of heart beating frequencies (for example situations like running or sleeping), files of heart beating signals, scanned electrocardiographs and real time data acquisition of patient's heart beating. All this data is processed to produce visualization within Augmented Reality environments. The results obtained in this research have shown that the developed system is able to simplify the understanding of concepts about heart beating and its functioning. Furthermore, the system can help health professionals in the task of retrieving, processing and converting data from all the sources handled by the system, with the support of an edition and visualization mode.
Comparative case study between D3 and highcharts on lustre data visualization
NASA Astrophysics Data System (ADS)
ElTayeby, Omar; John, Dwayne; Patel, Pragnesh; Simmerman, Scott
2013-12-01
One of the challenging tasks in visual analytics is to target clustered time-series data sets, since it is important for data analysts to discover patterns changing over time while keeping their focus on particular subsets. In order to leverage the humans ability to quickly visually perceive these patterns, multivariate features should be implemented according to the attributes available. However, a comparative case study has been done using JavaScript libraries to demonstrate the differences in capabilities of using them. A web-based application to monitor the Lustre file system for the systems administrators and the operation teams has been developed using D3 and Highcharts. Lustre file systems are responsible of managing Remote Procedure Calls (RPCs) which include input output (I/O) requests between clients and Object Storage Targets (OSTs). The objective of this application is to provide time-series visuals of these calls and storage patterns of users on Kraken, a University of Tennessee High Performance Computing (HPC) resource in Oak Ridge National Laboratory (ORNL).
Indoor Navigation by People with Visual Impairment Using a Digital Sign System
Legge, Gordon E.; Beckmann, Paul J.; Tjan, Bosco S.; Havey, Gary; Kramer, Kevin; Rolkosky, David; Gage, Rachel; Chen, Muzi; Puchakayala, Sravan; Rangarajan, Aravindhan
2013-01-01
There is a need for adaptive technology to enhance indoor wayfinding by visually-impaired people. To address this need, we have developed and tested a Digital Sign System. The hardware and software consist of digitally-encoded signs widely distributed throughout a building, a handheld sign-reader based on an infrared camera, image-processing software, and a talking digital map running on a mobile device. Four groups of subjects—blind, low vision, blindfolded sighted, and normally sighted controls—were evaluated on three navigation tasks. The results demonstrate that the technology can be used reliably in retrieving information from the signs during active mobility, in finding nearby points of interest, and following routes in a building from a starting location to a destination. The visually impaired subjects accurately and independently completed the navigation tasks, but took substantially longer than normally sighted controls. This fully functional prototype system demonstrates the feasibility of technology enabling independent indoor navigation by people with visual impairment. PMID:24116156
Interactive access and management for four-dimensional environmental data sets using McIDAS
NASA Technical Reports Server (NTRS)
Hibbard, William L.; Tripoli, Gregory J.
1995-01-01
This grant has fundamentally changed the way that meteorologists look at the output of their atmospheric models, through the development and wide distribution of the Vis5D system. The Vis5D system is also gaining acceptance among oceanographers and atmospheric chemists. Vis5D gives these scientists an interactive three-dimensional movie of their very large data sets that they can use to understand physical mechanisms and to trace problems to their sources. This grant has also helped to define the future direction of scientific visualization through the development of the VisAD system and its lattice data model. The VisAD system can be used to interactively steer and visualize scientific computations. A key element of this capability is the flexibility of the system's data model to adapt to a wide variety of scientific data, including the integration of several forms of scientific metadata.
NASA Astrophysics Data System (ADS)
Edwards, Warren S.; Ritchie, Cameron J.; Kim, Yongmin; Mack, Laurence A.
1995-04-01
We have developed a three-dimensional (3D) imaging system using power Doppler (PD) ultrasound (US). This system can be used for visualizing and analyzing the vascular anatomy of parenchymal organs. To create the 3D PD images, we acquired a series of two-dimensional PD images from a commercial US scanner and recorded the position and orientation of each image using a 3D magnetic position sensor. Three-dimensional volumes were reconstructed using specially designed software and then volume rendered for display. We assessed the feasibility and geometric accuracy of our system with various flow phantoms. The system was then tested on a volunteer by scanning a transplanted kidney. The reconstructed volumes of the flow phantom contained less than 1 mm of geometric distortion and the 3D images of the transplanted kidney depicted the segmental, arcuate, and interlobar vessels.
Visualization techniques to aid in the analysis of multi-spectral astrophysical data sets
NASA Technical Reports Server (NTRS)
Brugel, Edward W.; Domik, Gitta O.; Ayres, Thomas R.
1993-01-01
The goal of this project was to support the scientific analysis of multi-spectral astrophysical data by means of scientific visualization. Scientific visualization offers its greatest value if it is not used as a method separate or alternative to other data analysis methods but rather in addition to these methods. Together with quantitative analysis of data, such as offered by statistical analysis, image or signal processing, visualization attempts to explore all information inherent in astrophysical data in the most effective way. Data visualization is one aspect of data analysis. Our taxonomy as developed in Section 2 includes identification and access to existing information, preprocessing and quantitative analysis of data, visual representation and the user interface as major components to the software environment of astrophysical data analysis. In pursuing our goal to provide methods and tools for scientific visualization of multi-spectral astrophysical data, we therefore looked at scientific data analysis as one whole process, adding visualization tools to an already existing environment and integrating the various components that define a scientific data analysis environment. As long as the software development process of each component is separate from all other components, users of data analysis software are constantly interrupted in their scientific work in order to convert from one data format to another, or to move from one storage medium to another, or to switch from one user interface to another. We also took an in-depth look at scientific visualization and its underlying concepts, current visualization systems, their contributions, and their shortcomings. The role of data visualization is to stimulate mental processes different from quantitative data analysis, such as the perception of spatial relationships or the discovery of patterns or anomalies while browsing through large data sets. Visualization often leads to an intuitive understanding of the meaning of data values and their relationships by sacrificing accuracy in interpreting the data values. In order to be accurate in the interpretation, data values need to be measured, computed on, and compared to theoretical or empirical models (quantitative analysis). If visualization software hampers quantitative analysis (which happens with some commercial visualization products), its use is greatly diminished for astrophysical data analysis. The software system STAR (Scientific Toolkit for Astrophysical Research) was developed as a prototype during the course of the project to better understand the pragmatic concerns raised in the project. STAR led to a better understanding on the importance of collaboration between astrophysicists and computer scientists.
Psyplot: Visualizing rectangular and triangular Climate Model Data with Python
NASA Astrophysics Data System (ADS)
Sommer, Philipp
2016-04-01
The development and use of climate models often requires the visualization of geo-referenced data. Creating visualizations should be fast, attractive, flexible, easily applicable and easily reproducible. There is a wide range of software tools available for visualizing raster data, but they often are inaccessible to many users (e.g. because they are difficult to use in a script or have low flexibility). In order to facilitate easy visualization of geo-referenced data, we developed a new framework called "psyplot," which can aid earth system scientists with their daily work. It is purely written in the programming language Python and primarily built upon the python packages matplotlib, cartopy and xray. The package can visualize data stored on the hard disk (e.g. NetCDF, GeoTIFF, any other file format supported by the xray package), or directly from the memory or Climate Data Operators (CDOs). Furthermore, data can be visualized on a rectangular grid (following or not following the CF Conventions) and on a triangular grid (following the CF or UGRID Conventions). Psyplot visualizes 2D scalar and vector fields, enabling the user to easily manage and format multiple plots at the same time, and to export the plots into all common picture formats and movies covered by the matplotlib package. The package can currently be used in an interactive python session or in python scripts, and will soon be developed for use with a graphical user interface (GUI). Finally, the psyplot framework enables flexible configuration, allows easy integration into other scripts that uses matplotlib, and provides a flexible foundation for further development.
Flex Robotic System in transoral robotic surgery: The first 40 patients.
Mattheis, Stefan; Hasskamp, Pia; Holtmann, Laura; Schäfer, Christina; Geisthoff, Urban; Dominas, Nina; Lang, Stephan
2017-03-01
The Flex Robotic System is a new robotic device specifically developed for transoral robotic surgery (TORS). We performed a prospective clinical study, assessing the safety and efficacy of the Medrobotics Flex Robotic System. A total of 40 patients required a surgical procedure for benign lesions (n = 30) or T1 and T2 carcinomas (n = 10). Access and visualization of different anatomic subsites were individually graded by the surgeon. Setup times, access and visualization times, surgical results, as well as adverse events were documented intraoperatively. The lesions could be exposed and visualized properly in 38 patients (95%) who went on to have a surgical procedure performed with the Flex Robotic System, which were intraoperatively evaluated as successful. No serious adverse events occurred. Lesions in the oropharynx, hypopharynx, or supraglottic larynx could be successfully resected using the Flex Robotic System, thus making the system a safe and effective tool in transoral robotic surgery. © 2016 Wiley Periodicals, Inc. Head Neck 39: 471-475, 2017. © 2016 Wiley Periodicals, Inc.
Assessment of a visually guided autonomous exploration robot
NASA Astrophysics Data System (ADS)
Harris, C.; Evans, R.; Tidey, E.
2008-10-01
A system has been developed to enable a robot vehicle to autonomously explore and map an indoor environment using only visual sensors. The vehicle is equipped with a single camera, whose output is wirelessly transmitted to an off-board standard PC for processing. Visual features within the camera imagery are extracted and tracked, and their 3D positions are calculated using a Structure from Motion algorithm. As the vehicle travels, obstacles in its surroundings are identified and a map of the explored region is generated. This paper discusses suitable criteria for assessing the performance of the system by computer-based simulation and practical experiments with a real vehicle. Performance measures identified include the positional accuracy of the 3D map and the vehicle's location, the efficiency and completeness of the exploration and the system reliability. Selected results are presented and the effect of key system parameters and algorithms on performance is assessed. This work was funded by the Systems Engineering for Autonomous Systems (SEAS) Defence Technology Centre established by the UK Ministry of Defence.
Robotic system for the servicing of the orbiter thermal protection system
NASA Technical Reports Server (NTRS)
Graham, Todd; Bennett, Richard; Dowling, Kevin; Manouchehri, Davoud; Cooper, Eric; Cowan, Cregg
1994-01-01
This paper describes the design and development of a mobile robotic system to process orbiter thermal protection system (TPS) tiles. This work was justified by a TPS automation study which identified tile rewaterproofing and visual inspection as excellent applications for robotic automation.
NASA Technical Reports Server (NTRS)
Tonkay, Gregory
1990-01-01
The following separate topics are addressed: (1) improving a robotic tracking system; and (2) providing insights into orbiter position calibration for radiator inspection. The objective of the tracking system project was to provide the capability to track moving targets more accurately by adjusting parameters in the control system and implementing a predictive algorithm. A computer model was developed to emulate the tracking system. Using this model as a test bed, a self-tuning algorithm was developed to tune the system gains. The model yielded important findings concerning factors that affect the gains. The self-tuning algorithms will provide the concepts to write a program to automatically tune the gains in the real system. The section concerning orbiter position calibration provides a comparison to previous work that had been performed for plant growth. It provided the conceptualized routines required to visually determine the orbiter position and orientation. Furthermore, it identified the types of information which are required to flow between the robot controller and the vision system.
Design and implementation of visualization methods for the CHANGES Spatial Decision Support System
NASA Astrophysics Data System (ADS)
Cristal, Irina; van Westen, Cees; Bakker, Wim; Greiving, Stefan
2014-05-01
The CHANGES Spatial Decision Support System (SDSS) is a web-based system aimed for risk assessment and the evaluation of optimal risk reduction alternatives at local level as a decision support tool in long-term natural risk management. The SDSS use multidimensional information, integrating thematic, spatial, temporal and documentary data. The role of visualization in this context becomes of vital importance for efficiently representing each dimension. This multidimensional aspect of the required for the system risk information, combined with the diversity of the end-users imposes the use of sophisticated visualization methods and tools. The key goal of the present work is to exploit efficiently the large amount of data in relation to the needs of the end-user, utilizing proper visualization techniques. Three main tasks have been accomplished for this purpose: categorization of the end-users, the definition of system's modules and the data definition. The graphical representation of the data and the visualization tools were designed to be relevant to the data type and the purpose of the analysis. Depending on the end-users category, each user should have access to different modules of the system and thus, to the proper visualization environment. The technologies used for the development of the visualization component combine the latest and most innovative open source JavaScript frameworks, such as OpenLayers 2.13.1, ExtJS 4 and GeoExt 2. Moreover, the model-view-controller (MVC) pattern is used in order to ensure flexibility of the system at the implementation level. Using the above technologies, the visualization techniques implemented so far offer interactive map navigation, querying and comparison tools. The map comparison tools are of great importance within the SDSS and include the following: swiping tool for comparison of different data of the same location; raster subtraction for comparison of the same phenomena varying in time; linked views for comparison of data from different locations and a time slider tool for monitoring changes in spatio-temporal data. All these techniques are part of the interactive interface of the system and make use of spatial and spatio-temporal data. Further significant aspects of the visualization component include conventional cartographic techniques and visualization of non-spatial data. The main expectation from the present work is to offer efficient visualization of risk-related data in order to facilitate the decision making process, which is the final purpose of the CHANGES SDSS. This work is part of the "CHANGES" project, funded by the European Community's 7th Framework Programme.
A Lean Approach to Improving SE Visibility in Large Operational Systems Evolution
2013-06-01
large health care system of systems. To enhance both visibility and flow, the approach utilizes visualization techniques, pull-scheduling processes...development processes. This paper describes an example implementation of the concept in a large health care system of systems. To enhance both visibility...and then provides the results to the requestor as soon as available. Hospital System Information Support Development The health care SoS is a set
Low-Visibility Visual Simulation with Real Fog
NASA Technical Reports Server (NTRS)
Chase, Wendell D.
1982-01-01
An environmental fog simulation (EFS) attachment was developed to aid in the study of natural low-visibility visual cues and subsequently used to examine the realism effect upon the aircraft simulator visual scene. A review of the basic fog equations indicated that the two major factors must be accounted for in the simulation of low visibility-one due to atmospheric attenuation and one due to veiling luminance. These factors are compared systematically by: comparing actual measurements lo those computed from the Fog equations, and comparing runway-visual-range-related visual-scene contrast values with the calculated values. These values are also compared with the simulated equivalent equations and with contrast measurements obtained from a current electronic fog synthesizer to help identify areas in which improvements are needed. These differences in technique, the measured values, the Features of both systems, a pilot opinion survey of the EFS fog, and improvements (by combining features of both systems) that are expected to significantly increase the potential as well as flexibility for producing a very high-fidelity, low-visibility visual simulation are discussed.
Summarizing Audiovisual Contents of a Video Program
NASA Astrophysics Data System (ADS)
Gong, Yihong
2003-12-01
In this paper, we focus on video programs that are intended to disseminate information and knowledge such as news, documentaries, seminars, etc, and present an audiovisual summarization system that summarizes the audio and visual contents of the given video separately, and then integrating the two summaries with a partial alignment. The audio summary is created by selecting spoken sentences that best present the main content of the audio speech while the visual summary is created by eliminating duplicates/redundancies and preserving visually rich contents in the image stream. The alignment operation aims to synchronize each spoken sentence in the audio summary with its corresponding speaker's face and to preserve the rich content in the visual summary. A Bipartite Graph-based audiovisual alignment algorithm is developed to efficiently find the best alignment solution that satisfies these alignment requirements. With the proposed system, we strive to produce a video summary that: (1) provides a natural visual and audio content overview, and (2) maximizes the coverage for both audio and visual contents of the original video without having to sacrifice either of them.
Low-visibility visual simulation with real fog
NASA Technical Reports Server (NTRS)
Chase, W. D.
1981-01-01
An environmental fog simulation (EFS) attachment was developed to aid in the study of natural low-visibility visual cues and subsequently used to examine the realism effect upon the aircraft simulator visual scene. A review of the basic fog equations indicated that two major factors must be accounted for in the simulation of low visibility - one due to atmospheric attenuation and one due to veiling luminance. These factors are compared systematically by (1) comparing actual measurements to those computed from the fog equations, and (2) comparing runway-visual-range-related visual-scene contrast values with the calculated values. These values are also compared with the simulated equivalent equations and with contrast measurements obtained from a current electronic fog synthesizer to help identify areas in which improvements are needed. These differences in technique, the measured values, the features of both systems, a pilot opinion survey of the EFS fog, and improvements (by combining features of both systems) that are expected to significantly increase the potential as well as flexibility for producing a very high-fidelity low-visibility visual simulation are discussed.
NASA Astrophysics Data System (ADS)
Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia
2014-04-01
The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems.
McBride, Sebastian D; Perentos, Nicholas; Morton, A Jennifer
2016-05-30
For reasons of cost and ethical concerns, models of neurodegenerative disorders such as Huntington disease (HD) are currently being developed in farm animals, as an alternative to non-human primates. Developing reliable methods of testing cognitive function is essential to determining the usefulness of such models. Nevertheless, cognitive testing of farm animal species presents a unique set of challenges. The primary aims of this study were to develop and validate a mobile operant system suitable for high throughput cognitive testing of sheep. We designed a semi-automated testing system with the capability of presenting stimuli (visual, auditory) and reward at six spatial locations. Fourteen normal sheep were used to validate the system using a two-choice visual discrimination task. Four stages of training devised to acclimatise animals to the system are also presented. All sheep progressed rapidly through the training stages, over eight sessions. All sheep learned the 2CVDT and performed at least one reversal stage. The mean number of trials the sheep took to reach criterion in the first acquisition learning was 13.9±1.5 and for the reversal learning was 19.1±1.8. This is the first mobile semi-automated operant system developed for testing cognitive function in sheep. We have designed and validated an automated operant behavioural testing system suitable for high throughput cognitive testing in sheep and other medium-sized quadrupeds, such as pigs and dogs. Sheep performance in the two-choice visual discrimination task was very similar to that reported for non-human primates and strongly supports the use of farm animals as pre-clinical models for the study of neurodegenerative diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
1987-09-01
Visual Communication . Although this task is performed several times, the task is performed at different points during the mission. In addition, the...Perform visual communication Give thumbs-up signal when ready for takeoff; check lights on pri-fly B. Perform takeoff and Aircraft operating clear ship...FM c. Operate ICS 2. Perform visual communication 3. Operate IFF transponder B. Maintain mission and fuel logs C. Perform checklists 1. Perform AMCM
Dagnino-Subiabre, A; Terreros, G; Carmona-Fontaine, C; Zepeda, R; Orellana, J A; Díaz-Véliz, G; Mora, S; Aboitiz, F
2005-01-01
Chronic stress affects brain areas involved in learning and emotional responses. These alterations have been related with the development of cognitive deficits in major depression. The aim of this study was to determine the effect of chronic immobilization stress on the auditory and visual mesencephalic regions in the rat brain. We analyzed in Golgi preparations whether stress impairs the neuronal morphology of the inferior (auditory processing) and superior colliculi (visual processing). Afterward, we examined the effect of stress on acoustic and visual conditioning using an avoidance conditioning test. We found that stress induced dendritic atrophy in inferior colliculus neurons and did not affect neuronal morphology in the superior colliculus. Furthermore, stressed rats showed a stronger impairment in acoustic conditioning than in visual conditioning. Fifteen days post-stress the inferior colliculus neurons completely restored their dendritic structure, showing a high level of neural plasticity that is correlated with an improvement in acoustic learning. These results suggest that chronic stress has more deleterious effects in the subcortical auditory system than in the visual system and may affect the aversive system and fear-like behaviors. Our study opens a new approach to understand the pathophysiology of stress and stress-related disorders such as major depression.
An Investigation of Laser Lighting Systems to Assist Aircraft
DOT National Transportation Integrated Search
1979-01-01
A model for the visual detectability of narrow light beams was developed and used to evaluate the system performance of two laser lighting system configurations: (1) a laser VASI and (2) a crossed beam glide path indicator. Laboratory experiments con...
A vapor generator for transonic flow visualization
NASA Technical Reports Server (NTRS)
Bruce, Robert A.; Hess, Robert W.; Rivera, Jose A., Jr.
1989-01-01
A vapor generator was developed for use in the NASA Langley Transonic Dynamics Tunnel (TDT). Propylene glycol was used as the vapor material. The vapor generator system was evaluated in a laboratory setting and then used in the TDT as part of a laser light sheet flow visualization system. The vapor generator provided satisfactory seeding of the air flow with visible condensate particles, smoke, for tests ranging from low subsonic through transonic speeds for tunnel total pressures from atmospheric pressure down to less than 0.1 atmospheric pressure.
New apparatus of single particle trap system for aerosol visualization
NASA Astrophysics Data System (ADS)
Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio
2014-08-01
Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.
Early screening of an infant's visual system
NASA Astrophysics Data System (ADS)
Costa, Manuel F. M.; Jorge, Jorge M.
1999-06-01
It is of utmost importance to the development of the child's visual system that she perceives clear focused retinal images. Furthermore if the refractive problems are not corrected in due time amblyopia may occur--myopia and hyperopia can only cause important problems in the future when they are significantly large, however for the astigmatism (rather frequent in infants) and anisometropia the problems tend to be more stringent. The early evaluation of the visual status of human infants is thus of critical importance. Photorefraction is a convenient technique for this kind of subjects. Essentially a light beam is delivered into the eyes. It is refracted by the ocular media, strikes the retina, focusing or not, reflects off and is collected by a camera. The photorefraction setup we established using new technological breakthroughs on the fields of imaging devices, digital image processing and fiber optics, allows a fast noninvasive evaluation of children visual status (refractive errors, accommodation, strabismus, ...). Results of the visual screening of a group of risk' child descents of blinds or amblyopes will be presented.
Epicenters of dynamic connectivity in the adaptation of the ventral visual system.
Prčkovska, Vesna; Huijbers, Willem; Schultz, Aaron; Ortiz-Teran, Laura; Peña-Gomez, Cleofe; Villoslada, Pablo; Johnson, Keith; Sperling, Reisa; Sepulcre, Jorge
2017-04-01
Neuronal responses adapt to familiar and repeated sensory stimuli. Enhanced synchrony across wide brain systems has been postulated as a potential mechanism for this adaptation phenomenon. Here, we used recently developed graph theory methods to investigate hidden connectivity features of dynamic synchrony changes during a visual repetition paradigm. Particularly, we focused on strength connectivity changes occurring at local and distant brain neighborhoods. We found that connectivity reorganization in visual modal cortex-such as local suppressed connectivity in primary visual areas and distant suppressed connectivity in fusiform areas-is accompanied by enhanced local and distant connectivity in higher cognitive processing areas in multimodal and association cortex. Moreover, we found a shift of the dynamic functional connections from primary-visual-fusiform to primary-multimodal/association cortex. These findings suggest that repetition-suppression is made possible by reorganization of functional connectivity that enables communication between low- and high-order areas. Hum Brain Mapp 38:1965-1976, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Innovative Patient Room Lighting System with Integrated Spectrally Adaptive Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maniccia, Dorene A.; Rizzo, Patricia; Kim, James
In December of 2013, the U.S. Department of Energy’s SSL R&D Program released a Funding Opportunity Announcement (FOA), that for the first time, contained opportunities for comprehensive application-specific system development. The FOA included opportunities for two applications, one of which was a Patient Room. Philips Lighting Research North America, submitted a proposal for the Patient Room application, and was selected for the complete project award. The award amount was for $497,127, with a Philips Research co-funding commitment 165,709 dollars. The total project value was 662,836 dollars. This project sought to redefine lighting for the patient room application. The goal wasmore » to deliver an innovative LED patient suite (patient room and bathroom) lighting system solution that was 40% more energy-efficient than traditional fluorescent incumbent technologies, and would meet all the visual and non-visual needs of patients, caregivers and visitors, and improve the patient experience. State-of-the-art multichannel LED platforms and control technologies that would provide spectral tuning and become part of an intelligent, connected lighting system drove the solution. The project was scoped into four main task areas that included a) System Concept Creation, b) Identification of the Luminaire Portfolio, c) Development of the Connected Lighting Infrastructure, and d) System Performance Validation. Each of the four main tasks were completed and validated extensively over the course the 2 ½ year project. The system concept was created by first developing a lighting design that demonstrated best practices for patient room lighting – illuminance and uniformity for task performance, reduced glare, and convenient controls, in addition to giving patients control over the lighting in their environment. A framework was defined to deliver circadian support via software behaviors. Through that process luminaires were identified from the Philips portfolio that were adaptable – by their form, dimensions, and optical materials – to mix multicolor LED platforms uniformly and deliver target design lumen levels. The Blue Sky luminaire was selected for the patient bed area to give the illusion of skylight while providing white light on the patient bed. Luminaires used existing 2-channel tunable white LED boards, and newly developed 4-channel LED boards. Red-Orange, Blue, Green, and Blue-shifted Yellow LED chips were selected based on spectral characteristics and their ability to produce high quality white light. 4-channel Power over Ethernet (PoE) drivers were developed and firmware written so they would communicate with both 2- and 4-channel boards. These components formed the backbone of the connected lighting infrastructure. Software, flexible and nuanced in its complexity, was written to set behaviors for myriad lighting scenes in the room throughout the 24 hour day – and all could be overridden by manual controls. This included a dynamic tunable white program, three color changing automatic programs that simulated degrees of sunrise to sunset palettes, and an amber night lighting system that offered visual cues for postural stability to minimize the risk of falls. All programs were carefully designed to provide visual comfort for all occupants, support critical task performance for staff, and to support the patient’s 24hr rhythms. A full scale mockup room was constructed in the Philips Cambridge Lab. The lighting system was installed, tested and functionality demonstrated to ensure smooth operation of system components – luminaires, drivers, PoE switches, wall controls, patient remote, and daylight and occupancy sensors. How did the system perform? It met visual criteria, confirmed by calculations, simulations and measurements in the field. It met non-visual criteria, confirmed by setting circadian stimulus (CS) targets and performing calculations using the calculator developed by the Lighting Research Center. Finally, human factors validation studies were conducted to gain insight from real end users in the healthcare profession; surveys were administered, data analyzed, and audio comments captured. The general consensus was positive, with requests to pilot the system in their hospitals. The importance of the research completed under this grant is that it allowed the exploration and development of a unique lighting system, one that would deliver a blend of visual and non-visual criteria in patient room design for today’s healthcare environment. The research investigated the area of multichannel LED technology, multichannel Power over Ethernet (PoE) drivers and their integration with automatic and manual controls as a system – uncovering and meeting challenges along the way. It married visual needs of patients and staff with support for 24 hour rhythms, placing value on the wellbeing of the patient – while successfully saving energy over incumbent technologies. Indications are that the market is ready and willing to invest – multiple healthcare facilities are in line to pilot this system, recognizing its value beyond energy to patient and staff well-being. Its value to the public can best be expressed by a patient support coordinator who, after spending several hours in the room being immersed in the lighting, analyzing all its features, commented: “This re-writes lighting for healthcare”.« less
Functional and structural comparison of visual lateralization in birds – similar but still different
Ströckens, Felix
2014-01-01
Vertebrate brains display physiological and anatomical left-right differences, which are related to hemispheric dominances for specific functions. Functional lateralizations likely rely on structural left-right differences in intra- and interhemispheric connectivity patterns that develop in tight gene-environment interactions. The visual systems of chickens and pigeons show that asymmetrical light stimulation during ontogeny induces a dominance of the left hemisphere for visuomotor control that is paralleled by projection asymmetries within the ascending visual pathways. But structural asymmetries vary essentially between both species concerning the affected pathway (thalamo- vs. tectofugal system), constancy of effects (transient vs. permanent), and the hemisphere receiving stronger bilateral input (right vs. left). These discrepancies suggest that at least two aspects of visual processes are influenced by asymmetric light stimulation: (1) visuomotor dominance develops within the ontogenetically stronger stimulated hemisphere but not necessarily in the one receiving stronger bottom-up input. As a secondary consequence of asymmetrical light experience, lateralized top-down mechanisms play a critical role in the emergence of hemispheric dominance. (2) Ontogenetic light experiences may affect the dominant use of left- and right-hemispheric strategies. Evidences from social and spatial cognition tasks indicate that chickens rely more on a right-hemispheric global strategy whereas pigeons display a dominance of the left hemisphere. Thus, behavioral asymmetries are linked to a stronger bilateral input to the right hemisphere in chickens but to the left one in pigeons. The degree of bilateral visual input may determine the dominant visual processing strategy when redundant encoding is possible. This analysis supports that environmental stimulation affects the balance between hemispheric-specific processing by lateralized interactions of bottom-up and top-down systems. PMID:24723898
NASA Technical Reports Server (NTRS)
Klumpar, D. M.; Lapolla, M. V.; Horblit, B.
1995-01-01
A prototype system has been developed to aid the experimental space scientist in the display and analysis of spaceborne data acquired from direct measurement sensors in orbit. We explored the implementation of a rule-based environment for semi-automatic generation of visualizations that assist the domain scientist in exploring one's data. The goal has been to enable rapid generation of visualizations which enhance the scientist's ability to thoroughly mine his data. Transferring the task of visualization generation from the human programmer to the computer produced a rapid prototyping environment for visualizations. The visualization and analysis environment has been tested against a set of data obtained from the Hot Plasma Composition Experiment on the AMPTE/CCE satellite creating new visualizations which provided new insight into the data.
How Does Learning Impact Development in Infancy? The Case of Perceptual Organization
ERIC Educational Resources Information Center
Bhatt, Ramesh S.; Quinn, Paul C.
2011-01-01
Pattern perception and organization are critical functions of the visual cognition system. Many organizational processes are available early in life, such that infants as young 3 months of age are able to readily utilize a variety of cues to organize visual patterns. However, other processes are not readily evident in young infants, and their…
Development of Independent Locomotion in Children with a Severe Visual Impairment
ERIC Educational Resources Information Center
Hallemans, Ann; Ortibus, Els; Truijen, Steven; Meire, Francoise
2011-01-01
Locomotion of children and adults with a visual impairment (ages 1-44, n = 28) was compared to that of age-related individuals with normal vision (n = 60). Participants walked barefoot at preferred speed while their gait was recorded by a Vicon[R] system. Walking speed, heading angle, step frequency, stride length, step width, stance phase…
VMI-VI and BG-II KOPPITZ-2 for Youth with HFASDs and Typical Youth
ERIC Educational Resources Information Center
McDonald, Christin A.; Volker, Martin A.; Lopata, Christopher; Toomey, Jennifer A.; Thomeer, Marcus L.; Lee, Gloria K.; Lipinski, Alanna M.; Dua, Elissa H.; Schiavo, Audrey M.; Bain, Fabienne; Nelson, Andrew T.
2014-01-01
The visual-motor skills of 90 youth with high-functioning autism spectrum disorders (HFASDs) and 51 typically developing (TD) youth were assessed using the Beery-Buktenica Developmental Test of Visual-Motor Integration, Sixth Edition (VMI-VI) and Koppitz Developmental Scoring System for the Bender-Gestalt Test-Second Edition (KOPPITZ-2).…
Conducting a Qualitative Return on Investment: Determining Whether to Migrate to Blackboard[TM
ERIC Educational Resources Information Center
Conn, Cynthia; Roberts, Stephanie
2004-01-01
In 1998, a state university received grant funding to convert their Special Education Blindness and Visual Impairment graduate degree program to an online format. At that time, commercial web course management systems were not accessible to blind and visually impaired users. As a result, grant designers developed a custom, accessible platform,…
The Impact of a Semiotic Analysis Theory-Based Writing Activity on Students' Writing Skills
ERIC Educational Resources Information Center
Sarar Kuzu, Tulay
2016-01-01
Problem Statement: In entering the world intellectually and affectively equipped, humans develop in a systemic way that encompasses both thought and art education and in which written, oral, and visual texts are important tools. In particular, visual literacy, which refers to the interpretation of elements other than written text, including…
ERIC Educational Resources Information Center
Choi-Lundberg, Derek L.; Cuellar, William A.; Williams, Anne-Marie M.
2016-01-01
In an attempt to improve undergraduate medical student preparation for and learning from dissection sessions, dissection audio-visual resources (DAVR) were developed. Data from e-learning management systems indicated DAVR were accessed by 28% ± 10 (mean ± SD for nine DAVR across three years) of students prior to the corresponding dissection…
ERIC Educational Resources Information Center
Aleman-Centeno, Josefina R.
1983-01-01
Discusses the development and evaluation of CAVIS, which consists of an Apple microcomputer used with audiovisual dialogs. Includes research on the effects of three conditions: (1) computer with audio and visual, (2) computer with audio alone and (3) audio alone in short-term and long-term recall. (EKN)
Liu, Xiaohan; Makino, Hideo; Kobayashi, Suguru; Maeda, Yoshinobu
2007-01-01
After a public experiment of the indoor guidance system using FLC (fluorescent light communication), we found that FLC provides a promising medium for the installation of a guidance system for the visually impaired. However, precise self-positioning was not satisfactorily achieved. In this article, we propose a new self-positioning method, one that uses a combination of RFID (Radio-frequency identification), Bluetooth and FLC. We analyzed the situation and developed a model that combined the three communication modes. Then we performed a series of experiments and get some results in the first step.
Spherical visual system for real-time virtual reality and surveillance
NASA Astrophysics Data System (ADS)
Chen, Su-Shing
1998-12-01
A spherical visual system has been developed for full field, web-based surveillance, virtual reality, and roundtable video conference. The hardware is a CycloVision parabolic lens mounted on a video camera. The software was developed at the University of Missouri-Columbia. The mathematical model is developed by Su-Shing Chen and Michael Penna in the 1980s. The parabolic image, capturing the full (360 degrees) hemispherical field (except the north pole) of view is transformed into the spherical model of Chen and Penna. In the spherical model, images are invariant under the rotation group and are easily mapped to the image plane tangent to any point on the sphere. The projected image is exactly what the usual camera produces at that angle. Thus a real-time full spherical field video camera is developed by using two pieces of parabolic lenses.
Crosswatch: a System for Providing Guidance to Visually Impaired Travelers at Traffic Intersections
Coughlan, James M.; Shen, Huiying
2013-01-01
Purpose This paper describes recent progress on the “Crosswatch” project, a smartphone-based system developed for providing guidance to blind and visually impaired travelers at traffic intersections. Building on past work on Crosswatch functionality to help the user achieve proper alignment with the crosswalk and read the status of walk lights to know when it is time to cross, we outline the directions Crosswatch is now taking to help realize its potential for becoming a practical system: namely, augmenting computer vision with other information sources, including geographic information systems (GIS) and sensor data, and inferring the user's location much more precisely than is possible through GPS alone, to provide a much larger range of information about traffic intersections to the pedestrian. Design/methodology/approach The paper summarizes past progress on Crosswatch and describes details about the development of new Crosswatch functionalities. One such functionality, which is required for determination of the user's precise location, is studied in detail, including the design of a suitable user interface to support this functionality and preliminary tests of this interface with visually impaired volunteer subjects. Findings The results of the tests of the new Crosswatch functionality demonstrate that the functionality is feasible in that it is usable by visually impaired persons. Research limitations/implications While the tests that were conducted of the new Crosswatch functionality are preliminary, the results of the tests have suggested several possible improvements, to be explored in the future. Practical implications The results described in this paper suggest that the necessary technologies used by the Crosswatch system are rapidly maturing, implying that the system has an excellent chance of becoming practical in the near future. Originality/value The paper addresses an innovative solution to a key problem faced by blind and visually impaired travelers, which has the potential to greatly improve independent travel for these individuals. PMID:24353745