Science.gov

Sample records for development architectural design

  1. Software architecture design domain

    SciTech Connect

    White, S.A.

    1996-12-31

    Software architectures can provide a basis for the capture and subsequent reuse of design knowledge. The goal of software architecture is to allow the design of a system to take place at a higher level of abstraction; a level concerned with components, connections, constraints, rationale. This architectural view of software adds a new layer of abstraction to the traditional design phase of software development. It has resulted in a flurry of activity towards techniques, tools, and architectural design languages developed specifically to assist with this activity. An analysis of architectural descriptions, even though they differ in notation, shows a common set of key constructs that are present across widely varying domains. These common aspects form a core set of constructs that should belong to any ADL in order to for the language to offer the ability to specify software systems at the architectural level. This analysis also revealed a second set of constructs which served to expand the first set thereby improving the syntax and semantics. These constructs are classified according to whether they provide representation and analysis support for architectures belonging to many varying application domains (domain-independent construct class) or to a particular application domain (domain-dependent constructs). This paper presents the constructs of these two classes, their placement in the architecture design domain and shows how they may be used to classify, select, and analyze proclaimed architectural design languages (ADLs).

  2. An Interactive Design Space Supporting Development of Vehicle Architecture Concept Models

    DTIC Science & Technology

    2011-01-01

    Denver, Colorado, USA IMECE2011-64510 AN INTERACTIVE DESIGN SPACE SUPPORTING DEVELOPMENT OF VEHICLE ARCHITECTURE CONCEPT MODELS Gary Osborne...early in the development cycle. Optimization taking place later in the cycle usually occurs at the detail design level, and tends to result in...architecture changes may be imposed, but such modifications are equivalent to a huge optimization cycle covering almost the entire design process, and

  3. Design and Development of a CIM Architecture for Food Manufacturing

    DTIC Science & Technology

    1994-07-01

    to support the IDEFIX Model Pro Software of D. Appleton, Inc., which requires a VGA monitor. This task, completed in the quarter ending April, 1990...architecture that covered both civilian and military product manufacture. This architecture, defined in IDEFIX modeling language, became the basis for...its extension, IDEFIX , is a methodology for modeling data entities and their relation- i ships. An entity is represented by a box labeled by a noun

  4. Terrestrial Planet Finder Interferometer: Architecture, Mission Design, and Technology Development

    NASA Technical Reports Server (NTRS)

    Henry, Curt

    2004-01-01

    This slide presentation represents an overview progress report about the system design and technology development of two interferometer concepts studied for the Terrestrial Planet Finder (TPF) project. The two concepts are a structurally-connected interferometer (SCI) intended to fulfill minimum TPF science goals and a formation-flying interferometer (FFI) intended to fulfill full science goals. Described are major trades, analyses, and technology experiments completed. Near term plans are also described. This paper covers progress since August 2003

  5. Terrestrial Planet Finder Interferometer: Architecture, Mission Design and Technology Development

    NASA Technical Reports Server (NTRS)

    Henry, Curt; Lay, Oliver; Aung, MiMi; Gunter, Steven M.; Dubovitsky, Serge; Blackwood, Gary

    2004-01-01

    This overview paper is a progress report about the system design and technology development of two interferometer concepts studied for the Terrestrial Planet Finder (TPF) project. The two concepts are a structurally-connected interferometer (SCI) intended to fulfill minimum TPF science goals and a formation-flying interferometer (FFI) intended to fulfill full science goals. Described are major trades, analyses, and technology experiments completed. Near term plans are also described. This paper covers progress since August 2003 and serves as an update to a paper presented at that month's SPIE conference, 'Techniques and Instrumentation for Detection of Exoplanets.

  6. Architecture as Design Study.

    ERIC Educational Resources Information Center

    Kauppinen, Heta

    1989-01-01

    Explores the use of analogies in architectural design, the importance of Gestalt theory and aesthetic cannons in understanding and being sensitive to architecture. Emphasizes the variation between public and professional appreciation of architecture. Notes that an understanding of architectural process enables students to improve the aesthetic…

  7. An Interactive Design Space Supporting Development of Vehicle Architecture Concept Models

    DTIC Science & Technology

    2011-06-17

    ponents that are not designed to carry structural loads in the assembly, such as seats and other trim items. However, these inertial items have an...Denver, Colorado, USA IMECE2011-64510 AN INTERACTIVE DESIGN SPACE SUPPORTING DEVELOPMENT OF VEHICLE ARCHITECTURE CONCEPT MODELS Gary Osborne...early in the development cycle. Optimization taking place later in the cycle usually occurs at the detail design level, and tends to result in

  8. Architecture, Design, and Development of an HTML/JavaScript Web-Based Group Support System.

    ERIC Educational Resources Information Center

    Romano, Nicholas C., Jr.; Nunamaker, Jay F., Jr.; Briggs, Robert O.; Vogel, Douglas R.

    1998-01-01

    Examines the need for virtual workspaces and describes the architecture, design, and development of GroupSystems for the World Wide Web (GSWeb), an HTML/JavaScript Web-based Group Support System (GSS). GSWeb, an application interface similar to a Graphical User Interface (GUI), is currently used by teams around the world and relies on user…

  9. Development and Application of the Collaborative Optimization Architecture in a Multidisciplinary Design Environment

    NASA Technical Reports Server (NTRS)

    Braun, R. D.; Kroo, I. M.

    1995-01-01

    Collaborative optimization is a design architecture applicable in any multidisciplinary analysis environment but specifically intended for large-scale distributed analysis applications. In this approach, a complex problem is hierarchically de- composed along disciplinary boundaries into a number of subproblems which are brought into multidisciplinary agreement by a system-level coordination process. When applied to problems in a multidisciplinary design environment, this scheme has several advantages over traditional solution strategies. These advantageous features include reducing the amount of information transferred between disciplines, the removal of large iteration-loops, allowing the use of different subspace optimizers among the various analysis groups, an analysis framework which is easily parallelized and can operate on heterogenous equipment, and a structural framework that is well-suited for conventional disciplinary organizations. In this article, the collaborative architecture is developed and its mathematical foundation is presented. An example application is also presented which highlights the potential of this method for use in large-scale design applications.

  10. Conceptual architectural/acoustical design

    NASA Astrophysics Data System (ADS)

    Marshall, A. Harold

    2004-05-01

    The thinking which characterizes acoustics as a branch of physics and engineering has difficulty with the architectural design process-the process that generates a room concept in the imagination and experience of the architect. The architect has learned to ``sense'' the visual properties of a room as the design develops in the interaction between mind and media. Phrases such as ``wanting to be'' express the architectural intention but too often such intentions are dismissed as arbitrary; acoustics may then be about fixing the design with acoustical add-ons. Occasionally there is a true meeting of minds-a creative and receptive architect and an acoustician able to communicate at the level of the architectural intention. There is evidently an auditory dimension of wanting to be which is one with the visual. This paper explores the idea in several examples and concludes with suggestions for the training of acousticians.

  11. Design and development of a multi-architecture, fully implicit, charge and energy conserving particle-in-cell framework

    NASA Astrophysics Data System (ADS)

    Payne, Joshua; Knoll, Dana; McPherson, Allen; Taitano, William; Chacon, Luis; Chen, Guangye; Pakin, Scott

    2013-10-01

    As computer architectures become increasingly heterogeneous the need for algorithms and applications that can utilize these new architectures grows more pressing. CoCoPIC is a fully implicit charge and energy conserving particle-in-cell framework developed as part of the Computational Co-Design for Multi-Scale Applications in the Natural Sciences (CoCoMANS) project at Los Alamos National Laboratory. CoCoMANS is a multi-disciplinary computational co-design effort with the goal of developing new algorithms for emerging architectures using multi-scale applications. This poster will present the co-design process evolved within CoCoMANS, and details regarding the design and development of multi-architecture framework for a plasma application. This framework utilizes multiple abstraction layers in order to maximize code reuse between architectures, while providing low level abstractions to incorporate architecture specific operation optimizations such as vectorizations or hardware fused multiply-add. CoCoPIC's target problems include 1D3V slow shocks, and 2D3V magnetic island coalescence. Results of the multi-core development and optimization process will be presented.

  12. Evaluating architectural design review.

    PubMed

    Stamps, A E

    2000-02-01

    Architectural design review is a method of environmental management which is widely used by governmental agencies in both the United States and in Great Britain. Because design review is a governmental function, there is a major need to assess how well it works. Research covering over 29,000 respondents and 5,600 environmental scenes suggests that scientific protocols can be adapted to provide an accurate and efficient design review protocol. The protocol uses preference experiments to find the standardized mean difference [formula: see text] between a proposed project and a random sample of existing projects. Values of d will indicate whether the project will increase, maintain, or diminish the aesthetic merit of the sampled area. The protocol is illustrated by applying it to the case of design review for a single residence. Implications for further implementations are discussed.

  13. 1993 architectural design awards.

    PubMed

    1993-06-01

    The 10th annual architectural design awards sponsored by Contemporary Long Term Care salute nursing homes and retirement communities that combine a flair for innovative living environments with a sensitivity to the needs of aging residents. These facilities represent the very best in elderly housing that prolongs independence while enhancing efficient operation. The 1993 winners are: King Health Center, U.S. Soldiers' and Airmen's Home, Washington, DC; The Terrace of Los Gatos, Los Gatos, CA; Walker Elder Suites, Edina, MN; The Jefferson, Ballston, VA; The Forum at Rancho San Antonio, Cupertino, CA.

  14. Architecture, Design, Implementatio

    DTIC Science & Technology

    2003-05-01

    of data on its inputs and produces streams of data on its outputs.” Dean and Cordy [6] present a visual formalism defined as a context- free...cles represent tasks, arrows represent streams. The plus sign is the BNF symbol for “one or more.” 4 1 . . . . . . . . . . . .4 2 4 341 3 15 1 3...guages of Program Design. Reading, MA: Addison- Wesley. [6] T. R. Dean, J. R. Cordy . "A Syntactic Theory of Software Architecture." IEEE Trans. on

  15. Developing a New Framework for Integration and Teaching of Computer Aided Architectural Design (CAAD) in Nigerian Schools of Architecture

    ERIC Educational Resources Information Center

    Uwakonye, Obioha; Alagbe, Oluwole; Oluwatayo, Adedapo; Alagbe, Taiye; Alalade, Gbenga

    2015-01-01

    As a result of globalization of digital technology, intellectual discourse on what constitutes the basic body of architectural knowledge to be imparted to future professionals has been on the increase. This digital revolution has brought to the fore the need to review the already overloaded architectural education curriculum of Nigerian schools of…

  16. Interior Design in Architectural Education

    ERIC Educational Resources Information Center

    Gurel, Meltem O.; Potthoff, Joy K.

    2006-01-01

    The domain of interiors constitutes a point of tension between practicing architects and interior designers. Design of interior spaces is a significant part of architectural profession. Yet, to what extent does architectural education keep pace with changing demands in rendering topics that are identified as pertinent to the design of interiors?…

  17. Situating universal design architecture: designing with whom?

    PubMed Central

    Jones, Paul

    2014-01-01

    Abstract Purpose: To respond to growing calls for a theoretical unpacking of Universal Design (UD), a disparate movement cohering around attempts to design spaces and technologies that seek to allow use by all people (to the fullest extent possible). The on-going embedding of UD into architectural practice and pedagogy represents an opportune juncture at which to draw learning from other distinct-but-related transformatory architectural movements. Methods: Sociological-theoretical commentary. Results: UD has to date, and necessarily, been dominated by the practice contexts from which it emerged. Appealing as a short-hand for description of “designing-for-all”, in most cases UD has come to stand in as a term to signal a general intent in this direction and as an umbrella term for the range of technical design resources that have been developed under these auspices. There remains a fundamental ambivalence vis-à-vis the question of users’ power/capacity to influence decision-making in the design process in UD; technically-oriented typologies of bodies predominate in influential UD architectural accounts. Conclusions: UD represents rich technical and pedagogical resources for those architects committed to transforming the existing built environment so as to be less hostile to a wide range of users. However, within UD, unpacking the social role of the professional architect vis-à-vis a variety of publics is an important, but hitherto underdeveloped, challenge; issues concerning professional-citizen power relations continue to animate parallel architectural politics, and UD can both contribute and draw much from these on-going explorations. Implications for RehabilitationUniversal Design (UD) architecture shares a close affinity with rehabilitation practice, with the creation of built environments that allow use by individuals with a wide range of capacities a priority for both.While an effective communicative “bridge” between professions, UD’s deployment

  18. Review of architecture and interior designs in Italian kindergartens and their relationship with motor development.

    PubMed

    Scoditti, Silvia; Clavica, Fulgenzio; Caroli, Margherita

    2011-10-01

    The construction of a school is the first pedagogical act. Its form, the relationship with nature, light, materials and colours provides important educational inputs for children. Different social, philosophical, pedagogical and architectural theories on the spaces built for and around the child have led to the construction of different kindergartens based on fantasy, over-design, sobriety, philosophical theories, and so on. Kindergartens with a surplus of architecture and furniture may reduce the child's imagination, because they are perceived as a too elaborate toy that gets boring. Furniture should provide children with metamorphic forms which adapt to their needs and preferences. The planning and design of buildings and spaces dedicated to children should consider the child at the center of the space built. The aim that architects should have in planning a kindergarten is the well being of the child, because his/her childhood will be the basis of the maturity as adult of tomorrow.

  19. Design Novel 3D Nano Architectures for Developing Ultra Fast Thermal Energy Storage Materials

    DTIC Science & Technology

    2015-04-30

    used multi-scale modeling to design sp2 materials based on SiC and BN nanotubes , attempting to create junctions in such a way that all atoms will be of...characterization, and moved on to pillared nanotube structures. The report itself is lightweight but the bulk of the detailed findings are in two published...computational approach to design novel sp2 nano-architectures based in SiC and BN Nanotubes . We used first principle ab-initio methods for studying the

  20. A Systems Engineering Approach to Architecture Development

    NASA Technical Reports Server (NTRS)

    Di Pietro, David A.

    2015-01-01

    Architecture development is often conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this paper characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles.

  1. A Systems Engineering Approach to Architecture Development

    NASA Technical Reports Server (NTRS)

    Di Pietro, David A.

    2015-01-01

    Architecture development is often conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this paper characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles

  2. A Systems Engineering Approach to Architecture Development

    NASA Technical Reports Server (NTRS)

    Di Pietro, David A.

    2014-01-01

    Architecture development is conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this presentation characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles.

  3. Effective software design and development for the new graph architecture HPC machines.

    SciTech Connect

    Dechev, Damian

    2012-03-01

    Software applications need to change and adapt as modern architectures evolve. Nowadays advancement in chip design translates to increased parallelism. Exploiting such parallelism is a major challenge in modern software engineering. Multicore processors are about to introduce a significant change in the way we design and use fundamental data structures. In this work we describe the design and programming principles of a software library of highly concurrent scalable and nonblocking data containers. In this project we have created algorithms and data structures for handling fundamental computations in massively multithreaded contexts, and we have incorporated these into a usable library with familiar look and feel. In this work we demonstrate the first design and implementation of a wait-free hash table. Our multiprocessor data structure design allows a large number of threads to concurrently insert, remove, and retrieve information. Non-blocking designs alleviate the problems traditionally associated with the use of mutual exclusion, such as bottlenecks and thread-safety. Lock-freedom provides the ability to share data without some of the drawbacks associated with locks, however, these designs remain susceptible to starvation. Furthermore, wait-freedom provides all of the benefits of lock-free synchronization with the added assurance that every thread makes progress in a finite number of steps. This implies deadlock-freedom, livelock-freedom, starvation-freedom, freedom from priority inversion, and thread-safety. The challenges of providing the desirable progress and correctness guarantees of wait-free objects makes their design and implementation difficult. There are few wait-free data structures described in the literature. Using only standard atomic operations provided by the hardware, our design is portable; therefore, it is applicable to a variety of data-intensive applications including the domains of embedded systems and supercomputers.Our experimental

  4. Lighting in Architectural Design.

    ERIC Educational Resources Information Center

    Phillips, Derek

    The primary function of this book is to treat the topic of lighting design in such a manner as to bridge the gap between architects and illuminating engineers. The work is divided into three parts: Part I, Principles of Design, offers information and analysis of how natural and artificial lighting affects building design, how illumination levels…

  5. Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking.

  6. Parallel machine architecture and compiler design facilities

    NASA Technical Reports Server (NTRS)

    Kuck, David J.; Yew, Pen-Chung; Padua, David; Sameh, Ahmed; Veidenbaum, Alex

    1990-01-01

    The objective is to provide an integrated simulation environment for studying and evaluating various issues in designing parallel systems, including machine architectures, parallelizing compiler techniques, and parallel algorithms. The status of Delta project (which objective is to provide a facility to allow rapid prototyping of parallelized compilers that can target toward different machine architectures) is summarized. Included are the surveys of the program manipulation tools developed, the environmental software supporting Delta, and the compiler research projects in which Delta has played a role.

  7. Biomimetic design processes in architecture: morphogenetic and evolutionary computational design.

    PubMed

    Menges, Achim

    2012-03-01

    Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The paper first explains the fundamental difference between computer-aided and computational design in architecture, as the understanding of this distinction is of critical importance for the research presented. Thereafter, the conceptual relation and possible transfer of principles from natural morphogenesis to design computation are introduced and the related developments of generative, feature-based, constraint-based, process-based and feedback-based computational design methods are presented. This morphogenetic design research is then related to exploratory evolutionary computation, followed by the presentation of two case studies focusing on the exemplary development of spatial envelope morphologies and urban block morphologies.

  8. Lunar Navigation Architecture Design Considerations

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  9. Energy Conservation through Architectural Design

    ERIC Educational Resources Information Center

    Thomson, Robert C., Jr.

    1977-01-01

    Describes a teaching unit designed to create in students an awareness of and an appreciation for the possibilities for energy conservation as they relate to architecture. It is noted that the unit can be adapted for use in many industrial programs and with different teaching methods due to the variety of activities that can be used. (Editor/TA)

  10. Refinery burner simulation design architecture summary.

    SciTech Connect

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  11. Architecture for distributed design and fabrication

    NASA Astrophysics Data System (ADS)

    McIlrath, Michael B.; Boning, Duane S.; Troxel, Donald E.

    1997-01-01

    We describe a flexible, distributed system architecture capable of supporting collaborative design and fabrication of semi-conductor devices and integrated circuits. Such capabilities are of particular importance in the development of new technologies, where both equipment and expertise are limited. Distributed fabrication enables direct, remote, physical experimentation in the development of leading edge technology, where the necessary manufacturing resources are new, expensive, and scarce. Computational resources, software, processing equipment, and people may all be widely distributed; their effective integration is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages current vendor and consortia developments to define software interfaces and infrastructure based on existing and merging networking, CIM, and CAD standards. Process engineers and product designers access processing and simulation results through a common interface and collaborate across the distributed manufacturing environment.

  12. Network architecture functional description and design

    SciTech Connect

    Stans, L.; Bencoe, M.; Brown, D.; Kelly, S.; Pierson, L.; Schaldach, C.

    1989-05-25

    This report provides a top level functional description and design for the development and implementation of the central network to support the next generation of SNL, Albuquerque supercomputer in a UNIX{reg sign} environment. It describes the network functions and provides an architecture and topology.

  13. Healthy Eating Design Guidelines for School Architecture

    PubMed Central

    Huang, Terry T-K; Sorensen, Dina; Davis, Steven; Frerichs, Leah; Brittin, Jeri; Celentano, Joseph; Callahan, Kelly

    2013-01-01

    We developed a new tool, Healthy Eating Design Guidelines for School Architecture, to provide practitioners in architecture and public health with a practical set of spatially organized and theory-based strategies for making school environments more conducive to learning about and practicing healthy eating by optimizing physical resources and learning spaces. The design guidelines, developed through multidisciplinary collaboration, cover 10 domains of the school food environment (eg, cafeteria, kitchen, garden) and 5 core healthy eating design principles. A school redesign project in Dillwyn, Virginia, used the tool to improve the schools’ ability to adopt a healthy nutrition curriculum and promote healthy eating. The new tool, now in a pilot version, is expected to evolve as its components are tested and evaluated through public health and design research. PMID:23449281

  14. Design and Development of an Equipotential Voltage Reference (Grounding) System for a Low-Cost Rapid-Development Modular Spacecraft Architecture

    NASA Technical Reports Server (NTRS)

    Lukash, James A.; Daley, Earl

    2011-01-01

    This work describes the design and development effort to adapt rapid-development space hardware by creating a ground system using solutions of low complexity, mass, & cost. The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is based on the modular common spacecraft bus architecture developed at NASA Ames Research Center. The challenge was building upon the existing modular common bus design and development work and improving the LADEE spacecraft design by adding an Equipotential Voltage Reference (EVeR) system, commonly referred to as a ground system. This would aid LADEE in meeting Electromagnetic Environmental Effects (E3) requirements, thereby making the spacecraft more compatible with itself and its space environment. The methods used to adapt existing hardware are presented, including provisions which may be used on future spacecraft.

  15. Architecture and data processing alternatives for Tse computer. Volume 1: Tse logic design concepts and the development of image processing machine architectures

    NASA Technical Reports Server (NTRS)

    Rickard, D. A.; Bodenheimer, R. E.

    1976-01-01

    Digital computer components which perform two dimensional array logic operations (Tse logic) on binary data arrays are described. The properties of Golay transforms which make them useful in image processing are reviewed, and several architectures for Golay transform processors are presented with emphasis on the skeletonizing algorithm. Conventional logic control units developed for the Golay transform processors are described. One is a unique microprogrammable control unit that uses a microprocessor to control the Tse computer. The remaining control units are based on programmable logic arrays. Performance criteria are established and utilized to compare the various Golay transform machines developed. A critique of Tse logic is presented, and recommendations for additional research are included.

  16. Verifying Architectural Design Rules of the Flight Software Product Line

    NASA Technical Reports Server (NTRS)

    Ganesan, Dharmalingam; Lindvall, Mikael; Ackermann, Chris; McComas, David; Bartholomew, Maureen

    2009-01-01

    This paper presents experiences of verifying architectural design rules of the NASA Core Flight Software (CFS) product line implementation. The goal of the verification is to check whether the implementation is consistent with the CFS architectural rules derived from the developer's guide. The results indicate that consistency checking helps a) identifying architecturally significant deviations that were eluded during code reviews, b) clarifying the design rules to the team, and c) assessing the overall implementation quality. Furthermore, it helps connecting business goals to architectural principles, and to the implementation. This paper is the first step in the definition of a method for analyzing and evaluating product line implementations from an architecture-centric perspective.

  17. ArchE - An Architecture Design Assistant

    DTIC Science & Technology

    2016-06-30

    X, Module X 3 Author / Presenter, Date if Needed What is ArchE? ArchE is a software architecture design assistant, which: • Takes quality and...functional requirements as input • Elicits key quality attribute information to refine quality requirements • Elicits key architectural information...Derives candidate architectures • Evaluates whether quality requirements are satisfied • Identifies tradeoffs • Suggests alternative architectures ArchE is

  18. Design and Development of a Run-Time Monitor for Multi-Core Architectures in Cloud Computing

    PubMed Central

    Kang, Mikyung; Kang, Dong-In; Crago, Stephen P.; Park, Gyung-Leen; Lee, Junghoon

    2011-01-01

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data. PMID:22163811

  19. Design and development of a run-time monitor for multi-core architectures in cloud computing.

    PubMed

    Kang, Mikyung; Kang, Dong-In; Crago, Stephen P; Park, Gyung-Leen; Lee, Junghoon

    2011-01-01

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data.

  20. Reflective Subjects in Kant and Architectural Design Education

    ERIC Educational Resources Information Center

    Rawes, Peg

    2007-01-01

    In architectural design education, students develop drawing, conceptual, and critical skills which are informed by their ability to reflect upon the production of ideas in design processes and in the urban, environmental, social, historical, and cultural context that define architecture and the built environment. Reflective actions and thinking…

  1. [The architectural design of psychiatric care buildings].

    PubMed

    Dunet, Lionel

    2012-01-01

    The architectural design of psychiatric care buildings. In addition to certain "classic" creations, the Dunet architectural office has designed several units for difficult patients as well as a specially adapted hospitalisation unit. These creations which are demanding in terms of the organisation of care require close consultation with the nursing teams. Testimony of an architect who is particularly engaged in the universe of psychiatry.

  2. Teaching Creative Thinking through Architectural Design

    ERIC Educational Resources Information Center

    Jeon, Kijeong; Cotner, Teresa L.

    2010-01-01

    Art and art education are open to broader definitions in the twenty-first century. It is time that teachers seriously think about including built environment design in K-12 art education. The term "built environment" includes interior design, architecture, landscape architecture, and urban planning. Due to increased exposure to built environment…

  3. Role of System Architecture in Architecture in Developing New Drafting Tools

    NASA Astrophysics Data System (ADS)

    Sorguç, Arzu Gönenç

    In this study, the impact of information technologies in architectural design process is discussed. In this discussion, first the differences/nuances between the concept of software engineering and system architecture are clarified. Then, the design process in engineering, and design process in architecture has been compared by considering 3-D models as the center of design process over which the other disciplines involve the design. It is pointed out that in many high-end engineering applications, 3-D solid models and consequently digital mock-up concept has become a common practice. But, architecture as one of the important customers of CAD systems employing these tools has not started to use these 3-D models. It is shown that the reason of this time lag between architecture and engineering lies behind the tradition of design attitude. Therefore, it is proposed a new design scheme a meta-model to develop an integrated design model being centered on 3-D model. It is also proposed a system architecture to achieve the transformation of architectural design process by replacing 2-D thinking with 3-D thinking. It is stated that in the proposed system architecture, the CAD systems are included and adapted for 3-D architectural design in order to provide interfaces for integration of all possible disciplines to design process. It is also shown that such a change will allow to elaborate the intelligent or smart building concept in future.

  4. CisLunar Habitat Internal Architecture Design Criteria

    NASA Technical Reports Server (NTRS)

    Jones, R.; Kennedy, K.; Howard, R.; Whitmore, M.; Martin, C.; Garate, J.

    2017-01-01

    BACKGROUND: In preparation for human exploration to Mars, there is a need to define the development and test program that will validate deep space operations and systems. In that context, a Proving Grounds CisLunar habitat spacecraft is being defined as the next step towards this goal. This spacecraft will operate differently from the ISS or other spacecraft in human history. The performance envelope of this spacecraft (mass, volume, power, specifications, etc.) is being defined by the Future Capabilities Study Team. This team has recognized the need for a human-centered approach for the internal architecture of this spacecraft and has commissioned a CisLunar Phase-1 Habitat Internal Architecture Study Team to develop a NASA reference configuration, providing the Agency with a "smart buyer" approach for future acquisition. THE CISLUNAR HABITAT INTERNAL ARCHITECTURE STUDY: Overall, the CisLunar Habitat Internal Architecture study will address the most significant questions and risks in the current CisLunar architecture, habitation, and operations concept development. This effort is achieved through definition of design criteria, evaluation criteria and process, design of the CisLunar Habitat Phase-1 internal architecture, and the development and fabrication of internal architecture concepts combined with rigorous and methodical Human-in-the-Loop (HITL) evaluations and testing of the conceptual innovations in a controlled test environment. The vision of the CisLunar Habitat Internal Architecture Study is to design, build, and test a CisLunar Phase-1 Habitat Internal Architecture that will be used for habitation (e.g. habitability and human factors) evaluations. The evaluations will mature CisLunar habitat evaluation tools, guidelines, and standards, and will interface with other projects such as the Advanced Exploration Systems (AES) Program integrated Power, Avionics, Software (iPAS), and Logistics for integrated human-in-the-loop testing. The mission of the Cis

  5. Developing a Distributed Computing Architecture at Arizona State University.

    ERIC Educational Resources Information Center

    Armann, Neil; And Others

    1994-01-01

    Development of Arizona State University's computing architecture, designed to ensure that all new distributed computing pieces will work together, is described. Aspects discussed include the business rationale, the general architectural approach, characteristics and objectives of the architecture, specific services, and impact on the university…

  6. A "Language Lab" for Architectural Design.

    ERIC Educational Resources Information Center

    Mackenzie, Arch; And Others

    This paper discusses a "language lab" strategy in which traditional studio learning may be supplemented by language lessons using computer graphics techniques to teach architectural grammar, a body of elements and principles that govern the design of buildings belonging to a particular architectural theory or style. Two methods of…

  7. Physical Activity Design Guidelines for School Architecture

    PubMed Central

    Brittin, Jeri; Sorensen, Dina; Trowbridge, Matthew; Lee, Karen K.; Breithecker, Dieter; Frerichs, Leah; Huang, Terry

    2015-01-01

    Increasing children’s physical activity at school is a national focus in the U.S. to address childhood obesity. While research has demonstrated associations between aspects of school environments and students’ physical activity, the literature currently lacks a synthesis of evidence to serve as a practical, spatially-organized resource for school designers and decision-makers, as well as to point to pertinent research opportunities. This paper describes the development of a new practical tool: Physical Activity Design Guidelines for School Architecture. Its aims are to provide architects and designers, as well as school planners, educators, and public health professionals, with strategies for making K-12 school environments conducive to healthy physical activity, and to engage scientists in transdisciplinary perspectives toward improved knowledge of the school environment’s impact. We used a qualitative review process to develop evidence-based and theory-driven school design guidelines that promote increased physical activity among students. The design guidelines include specific strategies in 10 school design domains. Implementation of the guidelines is expected to enable students to adopt healthier physical activity behaviors. The tool bridges a translational gap between research and environmental design practice, and may contribute to setting new industry and education standards. PMID:26230850

  8. Physical Activity Design Guidelines for School Architecture.

    PubMed

    Brittin, Jeri; Sorensen, Dina; Trowbridge, Matthew; Lee, Karen K; Breithecker, Dieter; Frerichs, Leah; Huang, Terry

    2015-01-01

    Increasing children's physical activity at school is a national focus in the U.S. to address childhood obesity. While research has demonstrated associations between aspects of school environments and students' physical activity, the literature currently lacks a synthesis of evidence to serve as a practical, spatially-organized resource for school designers and decision-makers, as well as to point to pertinent research opportunities. This paper describes the development of a new practical tool: Physical Activity Design Guidelines for School Architecture. Its aims are to provide architects and designers, as well as school planners, educators, and public health professionals, with strategies for making K-12 school environments conducive to healthy physical activity, and to engage scientists in transdisciplinary perspectives toward improved knowledge of the school environment's impact. We used a qualitative review process to develop evidence-based and theory-driven school design guidelines that promote increased physical activity among students. The design guidelines include specific strategies in 10 school design domains. Implementation of the guidelines is expected to enable students to adopt healthier physical activity behaviors. The tool bridges a translational gap between research and environmental design practice, and may contribute to setting new industry and education standards.

  9. Expanding color design methods for architecture and allied disciplines

    NASA Astrophysics Data System (ADS)

    Linton, Harold E.

    2002-06-01

    The color design processes of visual artists, architects, designers, and theoreticians included in this presentation reflect the practical role of color in architecture. What the color design professional brings to the architectural design team is an expertise and rich sensibility made up of a broad awareness and a finely tuned visual perception. This includes a knowledge of design and its history, expertise with industrial color materials and their methods of application, an awareness of design context and cultural identity, a background in physiology and psychology as it relates to human welfare, and an ability to problem-solve and respond creatively to design concepts with innovative ideas. The broadening of the definition of the colorists's role in architectural design provides architects, artists and designers with significant opportunities for continued professional and educational development.

  10. C-Band Airport Surface Communications System Standards Development. Phase II Final Report. Volume 1: Concepts of Use, Initial System Requirements, Architecture, and AeroMACS Design Considerations

    NASA Technical Reports Server (NTRS)

    Hall, Edward; Isaacs, James; Henriksen, Steve; Zelkin, Natalie

    2011-01-01

    This report is provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-Band and L-Band Communications Standard Development and was based on direction provided by FAA project-level agreements for New ATM Requirements-Future Communications. Task 7 included two subtasks. Subtask 7-1 addressed C-band (5091- to 5150-MHz) airport surface data communications standards development, systems engineering, test bed and prototype development, and tests and demonstrations to establish operational capability for the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2 focused on systems engineering and development support of the L-band digital aeronautical communications system (L-DACS). Subtask 7-1 consisted of two phases. Phase I included development of AeroMACS concepts of use, requirements, architecture, and initial high-level safety risk assessment. Phase II builds on Phase I results and is presented in two volumes. Volume I (this document) is devoted to concepts of use, system requirements, and architecture, including AeroMACS design considerations. Volume II describes an AeroMACS prototype evaluation and presents final AeroMACS recommendations. This report also describes airport categorization and channelization methodologies. The purposes of the airport categorization task were (1) to facilitate initial AeroMACS architecture designs and enable budgetary projections by creating a set of airport categories based on common airport characteristics and design objectives, and (2) to offer high-level guidance to potential AeroMACS technology and policy development sponsors and service providers. A channelization plan methodology was developed because a common global methodology is needed to assure seamless interoperability among diverse AeroMACS services potentially supplied by multiple service providers.

  11. Three Program Architecture for Design Optimization

    NASA Technical Reports Server (NTRS)

    Miura, Hirokazu; Olson, Lawrence E. (Technical Monitor)

    1998-01-01

    In this presentation, I would like to review historical perspective on the program architecture used to build design optimization capabilities based on mathematical programming and other numerical search techniques. It is rather straightforward to classify the program architecture in three categories as shown above. However, the relative importance of each of the three approaches has not been static, instead dynamically changing as the capabilities of available computational resource increases. For example, we considered that the direct coupling architecture would never be used for practical problems, but availability of such computer systems as multi-processor. In this presentation, I would like to review the roles of three architecture from historical as well as current and future perspective. There may also be some possibility for emergence of hybrid architecture. I hope to provide some seeds for active discussion where we are heading to in the very dynamic environment for high speed computing and communication.

  12. Nanomagnet Logic: Architectures, design, and benchmarking

    NASA Astrophysics Data System (ADS)

    Kurtz, Steven J.

    Nanomagnet Logic (NML) is an emerging technology being studied as a possible replacement or supplementary device for Complimentary Metal-Oxide-Semiconductor (CMOS) Field-Effect Transistors (FET) by the year 2020. NML devices offer numerous potential advantages including: low energy operation, steady state non-volatility, radiation hardness and a clear path to fabrication and integration with CMOS. However, maintaining both low-energy operation and non-volatility while scaling from the device to the architectural level is non-trivial as (i) nearest neighbor interactions within NML circuits complicate the modeling of ensemble nanomagnet behavior and (ii) the energy intensive clock structures required for re-evaluation and NML's relatively high latency challenge its ability to offer system-level performance wins against other emerging nanotechnologies. Thus, further research efforts are required to model more complex circuits while also identifying circuit design techniques that balance low-energy operation with steady state non-volatility. In addition, further work is needed to design and model low-power on-chip clocks while simultaneously identifying application spaces where NML systems (including clock overhead) offer sufficient energy savings to merit their inclusion in future processors. This dissertation presents research advancing the understanding and modeling of NML at all levels including devices, circuits, and line clock structures while also benchmarking NML against both scaled CMOS and tunneling FETs (TFET) devices. This is accomplished through the development of design tools and methodologies for (i) quantifying both energy and stability in NML circuits and (ii) evaluating line-clocked NML system performance. The application of these newly developed tools improves the understanding of ideal design criteria (i.e., magnet size, clock wire geometry, etc.) for NML architectures. Finally, the system-level performance evaluation tool offers the ability to

  13. Exploring the Use of Model-Based Systems Engineering (MBSE) to Develop Systems Architectures in Naval Ship Design

    DTIC Science & Technology

    2010-06-01

    making it ever more challenging to meet the needs of the stakeholder in terms of capability, cost , and risk. Systems architecture provides a way to... cost , and risk. Systems architecture provides an effective way to understand and manage complexity and helps to overcome the challenges that...conducting accurate change assessments, and improving communication amongst all stakeholders, thus reducing risk and minimizing costs downstream

  14. The Influence of Study and Travel Abroad on the Personal and Professional Development of Students in Architecture Design Programs

    ERIC Educational Resources Information Center

    Culver, Lyle D.

    2011-01-01

    International travel has significant implications on the study of architecture. This study analyzed ways in which undergraduate and graduate students benefited from the experience of international travel and study abroad. Taken from the perspective of 15 individuals who were currently or had been architecture students at the University of Miami…

  15. Medical Data Architecture Project Capabilities and Design

    NASA Technical Reports Server (NTRS)

    Middour, C.; Krihak, M.; Lindsey, A.; Marker, N.; Wolfe, S.; Winther, S.; Ronzano, K.; Bolles, D.; Toscano, W.; Shaw, T.

    2017-01-01

    Mission constraints will challenge the delivery of medical care on a long-term, deep space exploration mission. This type of mission will be restricted in the availability of medical knowledge, skills, procedures and resources to prevent, diagnose, and treat in-flight medical events. Challenges to providing medical care are anticipated, including resource and resupply constraints, delayed communications and no ability for medical evacuation. The Medical Data Architecture (MDA) project will enable medical care capability in this constrained environment. The first version of the system, called "Test Bed 1," includes capabilities for automated data collection, data storage and data retrieval to provide information to the Crew Medical Officer (CMO). Test Bed 1 seeks to establish a data architecture foundation and develop a scalable data management system through modular design and standardized interfaces. In addition, it will demonstrate to stakeholders the potential for an improved, automated, flow of data to and from the medical system over the current methods employed on the International Space Station (ISS). It integrates a set of external devices, software and processes, and a Subjective, Objective, Assessment, and Plan (SOAP) note commonly used by clinicians. Medical data like electrocardiogram plots, heart rate, skin temperature, respiration rate, medications taken, and more are collected from devices and stored in the Electronic Medical Records (EMR) system, and reported to crew and clinician. Devices integrated include the Astroskin biosensor vest and IMED CARDIAX electrocardiogram (ECG) device with INEED MD ECG Glove, and the NASA-developed Medical Dose Tracker application. The system is designed to be operated as a standalone system, and can be deployed in a variety of environments, from a laptop to a data center. The system is primarily composed of open-source software tools, and is designed to be modular, so new capabilities can be added. The software

  16. Energy Conscious Design in Schools of Architecture

    ERIC Educational Resources Information Center

    Villecco, Marguerite

    1977-01-01

    Major findings are summarized of an investigation of energy design teaching in schools of architecture, which led to recommendations described in this article addressed to theoretical and inspirational models of design teaching, rather than to technical courses. Available from: ACSA, 1735 New York Ave., Washington, D.C. 20006. (Author/LBH)

  17. Thermal design trades for SAFIR architecture concepts

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.; Paine, Christopher; Bradford, Matt; Dragovan, Mark; Nash, Al; Dooley, Jennifer; Lawrence, Charles

    2004-01-01

    SAFIR is a IO-meter, 4 K space telescope optimized for wavelengths between 20 microns and 1 mm. The combination of aperture diameter and telescope temperature will provide a raw sensitivity improvement of more than a factor of 1000 over presently-planned missions. The sensitivity will be comparable to that of the JWST and ALMA, but at the critical far-IR wavelengths where much of the universe's radiative energy has emerged since the origin of stars and galaxies. We examine several of the critical technologies for SAFIR which enable the large cold aperture, and present results of studies examining the telescope optics and the spacecraft thermal architecture. Both the method by which the aperture is filled, and the overall optical design for the telescope can impact the potential scientific return of SAFIR. Thermal architecture that goes far beyond the sunshades developed for the James Webb Space Telescope will be necessary to achieve the desired sensitivity of SAFIR. By combining active and passive cooling at critical points within the observatory, a significant reduction of the required level of active cooling can be obtained.

  18. Architectural Drafting. Curriculum Development. Bulletin 1779.

    ERIC Educational Resources Information Center

    Eppler, Thomas

    This teaching guide is designed to aid high school vocational education teachers in teaching a course in architectural drafting for students who plan to become architects, interior designers and decorators, architectural draftspersons, landscape engineers, building contractors, building estimators, real estate persons or appraisers, and others.…

  19. Collaboration within Student Design Teams Participating in Architectural Design Competitions

    ERIC Educational Resources Information Center

    Erbil, Livanur; Dogan, Fehmi

    2012-01-01

    This paper investigates design collaboration with reference to convergent and divergent idea generation processes in architectural design teams entering a design competition. Study of design teams offer a unique opportunity to investigate how creativity is fostered through collaborative work. While views of creativity often relate creativity to…

  20. Design Considerations. An Interior Architectural Design Approach to Interiors

    ERIC Educational Resources Information Center

    Sawyer, William C.

    1971-01-01

    The State University Construction Fund, utilizing the nation's top professional talents, must design by contract, within fixed budgets and strict time schedules, quality architecture for 32 campuses in New York State. (Author)

  1. Development of energy efficient modular architectural textile structures. Final report

    SciTech Connect

    Ko, F.K.; Harris, J.A.; Messinger, A.

    1983-05-01

    This research program was aimed at the development of energy efficient architecture using textile structures. Design concepts for modular units were developed using cell structures. Roof and wall panels were constructed and evaluated to demonstrate the design concept. Test results indicated tubular fiberglass cell structures could provide thermal insulation R-value well above 2.4. Exploratory study was also carried out to demonstrate the possibility of forming complex shapes for structural architectural applications.

  2. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    ERIC Educational Resources Information Center

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  3. Design and Analysis of Architectures for Structural Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi; Sixto, S. L. (Technical Monitor)

    2002-01-01

    During the two-year project period, we have worked on several aspects of Health Usage and Monitoring Systems for structural health monitoring. In particular, we have made contributions in the following areas. 1. Reference HUMS architecture: We developed a high-level architecture for health monitoring and usage systems (HUMS). The proposed reference architecture is shown. It is compatible with the Generic Open Architecture (GOA) proposed as a standard for avionics systems. 2. HUMS kernel: One of the critical layers of HUMS reference architecture is the HUMS kernel. We developed a detailed design of a kernel to implement the high level architecture.3. Prototype implementation of HUMS kernel: We have implemented a preliminary version of the HUMS kernel on a Unix platform.We have implemented both a centralized system version and a distributed version. 4. SCRAMNet and HUMS: SCRAMNet (Shared Common Random Access Memory Network) is a system that is found to be suitable to implement HUMS. For this reason, we have conducted a simulation study to determine its stability in handling the input data rates in HUMS. 5. Architectural specification.

  4. COG Software Architecture Design Description Document

    SciTech Connect

    Buck, R M; Lent, E M

    2009-09-21

    This COG Software Architecture Design Description Document describes the organization and functionality of the COG Multiparticle Monte Carlo Transport Code for radiation shielding and criticality calculations, at a level of detail suitable for guiding a new code developer in the maintenance and enhancement of COG. The intended audience also includes managers and scientists and engineers who wish to have a general knowledge of how the code works. This Document is not intended for end-users. This document covers the software implemented in the standard COG Version 10, as released through RSICC and IAEA. Software resources provided by other institutions will not be covered. This document presents the routines grouped by modules and in the order of the three processing phases. Some routines are used in multiple phases. The routine description is presented once - the first time the routine is referenced. Since this is presented at the level of detail for guiding a new code developer, only the routines invoked by another routine that are significant for the processing phase that is being detailed are presented. An index to all routines detailed is included. Tables for the primary data structures are also presented.

  5. Specification, Design, and Analysis of Advanced HUMS Architectures

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi

    2004-01-01

    During the two-year project period, we have worked on several aspects of domain-specific architectures for HUMS. In particular, we looked at using scenario-based approach for the design and designed a language for describing such architectures. The language is now being used in all aspects of our HUMS design. In particular, we have made contributions in the following areas. 1) We have employed scenarios in the development of HUMS in three main areas. They are: (a) To improve reusability by using scenarios as a library indexing tool and as a domain analysis tool; (b) To improve maintainability by recording design rationales from two perspectives - problem domain and solution domain; (c) To evaluate the software architecture. 2) We have defined a new architectural language called HADL or HUMS Architectural Definition Language. It is a customized version of xArch/xADL. It is based on XML and, hence, is easily portable from domain to domain, application to application, and machine to machine. Specifications written in HADL can be easily read and parsed using the currently available XML parsers. Thus, there is no need to develop a plethora of software to support HADL. 3) We have developed an automated design process that involves two main techniques: (a) Selection of solutions from a large space of designs; (b) Synthesis of designs. However, the automation process is not an absolute Artificial Intelligence (AI) approach though it uses a knowledge-based system that epitomizes a specific HUMS domain. The process uses a database of solutions as an aid to solve the problems rather than creating a new design in the literal sense. Since searching is adopted as the main technique, the challenges involved are: (a) To minimize the effort in searching the database where a very large number of possibilities exist; (b) To develop representations that could conveniently allow us to depict design knowledge evolved over many years; (c) To capture the required information that aid the

  6. Architectural Design for European SST System

    NASA Astrophysics Data System (ADS)

    Utzmann, Jens; Wagner, Axel; Blanchet, Guillaume; Assemat, Francois; Vial, Sophie; Dehecq, Bernard; Fernandez Sanchez, Jaime; Garcia Espinosa, Jose Ramon; Agueda Mate, Alberto; Bartsch, Guido; Schildknecht, Thomas; Lindman, Niklas; Fletcher, Emmet; Martin, Luis; Moulin, Serge

    2013-08-01

    The paper presents the results of a detailed design, evaluation and trade-off of a potential European Space Surveillance and Tracking (SST) system architecture. The results have been produced in study phase 1 of the on-going "CO-II SSA Architectural Design" project performed by the Astrium consortium as part of ESA's Space Situational Awareness Programme and are the baseline for further detailing and consolidation in study phase 2. The sensor network is comprised of both ground- and space-based assets and aims at being fully compliant with the ESA SST System Requirements. The proposed ground sensors include a surveillance radar, an optical surveillance system and a tracking network (radar and optical). A space-based telescope system provides significant performance and robustness for the surveillance and tracking of beyond-LEO target objects.

  7. Biomorphic architectures for autonomous Nanosat designs

    NASA Technical Reports Server (NTRS)

    Hasslacher, Brosl; Tilden, Mark W.

    1995-01-01

    Modern space tool design is the science of making a machine both massively complex while at the same time extremely robust and dependable. We propose a novel nonlinear control technique that produces capable, self-organizing, micron-scale space machines at low cost and in large numbers by parallel silicon assembly. Experiments using biomorphic architectures (with ideal space attributes) have produced a wide spectrum of survival-oriented machines that are reliably domesticated for work applications in specific environments. In particular, several one-chip satellite prototypes show interesting control properties that can be turned into numerous application-specific machines for autonomous, disposable space tasks. We believe that the real power of these architectures lies in their potential to self-assemble into larger, robust, loosely coupled structures. Assembly takes place at hierarchical space scales, with different attendant properties, allowing for inexpensive solutions to many daunting work tasks. The nature of biomorphic control, design, engineering options, and applications are discussed.

  8. ELISA, a demonstrator environment for information systems architecture design

    NASA Technical Reports Server (NTRS)

    Panem, Chantal

    1994-01-01

    This paper describes an approach of reusability of software engineering technology in the area of ground space system design. System engineers have lots of needs similar to software developers: sharing of a common data base, capitalization of knowledge, definition of a common design process, communication between different technical domains. Moreover system designers need to simulate dynamically their system as early as possible. Software development environments, methods and tools now become operational and widely used. Their architecture is based on a unique object base, a set of common management services and they host a family of tools for each life cycle activity. In late '92, CNES decided to develop a demonstrative software environment supporting some system activities. The design of ground space data processing systems was chosen as the application domain. ELISA (Integrated Software Environment for Architectures Specification) was specified as a 'demonstrator', i.e. a sufficient basis for demonstrations, evaluation and future operational enhancements. A process with three phases was implemented: system requirements definition, design of system architectures models, and selection of physical architectures. Each phase is composed of several activities that can be performed in parallel, with the provision of Commercial Off the Shelves Tools. ELISA has been delivered to CNES in January 94, currently used for demonstrations and evaluations on real projects (e.g. SPOT4 Satellite Control Center). It is on the way of new evolutions.

  9. Designing an architectural style for Pervasive Healthcare systems.

    PubMed

    Rafe, Vahid; Hajvali, Masoumeh

    2013-04-01

    Nowadays, the Pervasive Healthcare (PH) systems are considered as an important research area. These systems have a dynamic structure and configuration. Therefore, an appropriate method for designing such systems is necessary. The Publish/Subscribe Architecture (pub/sub) is one of the convenient architectures to support such systems. PH systems are safety critical; hence, errors can bring disastrous results. To prevent such problems, a powerful analytical tool is required. So using a proper formal language like graph transformation systems for developing of these systems seems necessary. But even if software engineers use such high level methodologies, errors may occur in the system under design. Hence, it should be investigated automatically and formally that whether this model of system satisfies all their requirements or not. In this paper, a dynamic architectural style for developing PH systems is presented. Then, the behavior of these systems is modeled and evaluated using GROOVE toolset. The results of the analysis show its high reliability.

  10. "Building Dancing": Dance within the Context of Architectural Design Pedagogy

    ERIC Educational Resources Information Center

    Ersoy, Zehra

    2011-01-01

    Recent theoretical and technological developments redefine the discipline of architecture substantially. Current day approaches in design pedagogy focus on personal and bodily experiences of the "subject" and the need for investigating new ways and methods to enhance awareness of spatial experiences is inevitable. In order to establish a heuristic…

  11. FRACSAT: Automated design synthesis for future space architectures

    NASA Astrophysics Data System (ADS)

    Mackey, R.; Uckun, S.; Do, Minh; Shah, J.

    This paper describes the algorithmic basis and development of FRACSAT (FRACtionated Spacecraft Architecture Toolkit), a new approach to conceptual design, cost-benefit analysis, and detailed trade studies for space systems. It provides an automated capability for exploration of candidate spacecraft architectures, leading users to near-optimal solutions with respect to user-defined requirements, risks, and program uncertainties. FRACSAT utilizes a sophisticated planning algorithm (PlanVisioner) to perform a quasi-exhaustive search for candidate architectures, constructing candidates from an extensible model-based representation of space system components and functions. These candidates are then evaluated with emphasis on the business case, computing the expected design utility and system costs as well as risk, presenting the user with a greatly reduced selection of candidates. The user may further refine the search according to cost or benefit uncertainty, adaptability, or other performance metrics as needed.

  12. Architecture for space habitats. Role of architectural design in planning artificial environment for long time manned space missions

    NASA Astrophysics Data System (ADS)

    Martinez, Vera

    2007-02-01

    The paper discusses concepts about the role of architecture in the design of space habitats and the development of a general evaluation criteria of architectural design contribution. Besides the existing feasibility studies, the general requisites, the development studies, and the critical design review which are mainly based on the experience of human space missions and the standards of the NASA-STD-3000 manual and which analyze and evaluate the relation between man and environment and between man and machine mainly in its functionality, there is very few material about design of comfort and wellbeing of man in space habitat. Architecture for space habitat means the design of an artificial environment with much comfort in an "atmosphere" of wellbeing. These are mainly psychological effects of human factors which are very important in the case of a long time space mission. How can the degree of comfort and "wellbeing atmosphere" in an artificial environment be measured? How can the quality of the architectural contribution in space design be quantified? Definition of a criteria catalogue to reach a larger objectivity in architectural design evaluation. Definition of constant parameters as a result of project necessities to quantify the quality of the design. Architectural design analysis due the application and verification within the parameters and consequently overlapping and evaluating results. Interdisciplinary work between architects, astronautics, engineers, psychologists, etc. All the disciplines needed for planning a high quality habitat for humans in space. Analysis of the principles of well designed artificial environment. Good quality design for space architecture is the result of the interaction and interrelation between many different project necessities (technological, environmental, human factors, transportation, costs, etc.). Each of this necessities is interrelated in the design project and cannot be evaluated on its own. Therefore, the design

  13. Millimeterwave Space Power Grid architecture development 2012

    NASA Astrophysics Data System (ADS)

    Komerath, Narayanan; Dessanti, Brendan; Shah, Shaan

    This is an update of the Space Power Grid architecture for space-based solar power with an improved design of the collector/converter link, the primary heater and the radiator of the active thermal control system. The Space Power Grid offers an evolutionary approach towards TeraWatt-level Space-based solar power. The use of millimeter wave frequencies (around 220GHz) and Low-Mid Earth Orbits shrinks the size of the space and ground infrastructure to manageable levels. In prior work we showed that using Brayton cycle conversion of solar power allows large economies of scale compared to the linear mass-power relationship of photovoltaic conversion. With high-temperature materials permitting 3600 K temperature in the primary heater, over 80 percent cycle efficiency was shown with a closed helium cycle for the 1GW converter satellite which formed the core element of the architecture. Work done since the last IEEE conference has shown that the use of waveguides incorporated into lighter-than-air antenna platforms, can overcome the difficulties in transmitting millimeter wave power through the moist, dense lower atmosphere. A graphene-based radiator design conservatively meets the mass budget for the waste heat rejection system needed for the compressor inlet temperature. Placing the ultralight Mirasol collectors in lower orbits overcomes the solar beam spot size problem of high-orbit collection. The architecture begins by establishing a power exchange with terrestrial renewable energy plants, creating an early revenue generation approach with low investment. The approach allows for technology development and demonstration of high power millimeter wave technology. A multinational experiment using the International Space Station and another power exchange satellite is proposed to gather required data and experience, thus reducing the technical and policy risks. The full-scale architecture deploys pairs of Mirasol sunlight collectors and Girasol 1 GW converter satellites t

  14. Architectural Design of a LMS with LTSA-Conformance

    ERIC Educational Resources Information Center

    Sengupta, Souvik; Dasgupta, Ranjan

    2017-01-01

    This paper illustrates an approach for architectural design of a Learning Management System (LMS), which is verifiable against the Learning Technology System Architecture (LTSA) conformance rules. We introduce a new method for software architectural design that extends the Unified Modeling Language (UML) component diagram with the formal…

  15. Design of an integrated airframe/propulsion control system architecture

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Lee, C. William; Strickland, Michael J.; Torkelson, Thomas C.

    1990-01-01

    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that uses both reliability and performance. A detailed account is given for the testing associated with a subset of the architecture and concludes with general observations of applying the methodology to the architecture.

  16. Nonexpert Evaluations on Architectural Design Creativity across Cultures

    ERIC Educational Resources Information Center

    Hong, Seung Wan; Lee, Jae Seung

    2015-01-01

    This article examines the relationship between cultural differences and the nonexpert evaluations of architectural design creativity. In study I, Caucasian Americans (N = 126) and East Asians (N = 137), who did not major in architecture and urban design, evaluated the novelty and appropriateness of 5 unusual architectural shapes, selected by 5…

  17. Can Architecture Design Solve Social Problem?

    NASA Astrophysics Data System (ADS)

    Ginting, S. W.; TSB Darjosanjoto, E.; Sulistyarso, H.

    2017-03-01

    Most of architects and urban designers believe physical design gives impact on our social life. For example, a sign or landmark in the middle of a city makes people find orientation easier. In vice verse, most of social scientists believe it is social dynamic that plays role in shaping our space. How people spend their time moving from real space into cyber space is a proof that life style and IT give impact to space usage. This paper argues that interaction between physical design and social change is a two ways process. Both design aspect and social dynamic influence each other. This paper aims to examine how designing of gated community plays important role in increasing or decreasing segregation, both spatially and socially. The paper explores some architectural design principles applied in a gated community called CitraLand in west Surabaya, Indonesia, and addresses segregation between CitraLanders and outside kampung. We find CitraLand is designed openly and fully accessible for outsiders. It provides public spaces and several accessible gates and streets without walls and fences making all places inside and outside CitraLand spatially integrated. What’s interesting is it still reinforces social segregation due to its policy on prohibiting using the public park. We believe CitraLand’s planning and designing has successfully solved segregation problem spatially not socially.

  18. Molecularly designed architectures--the metalloligand way.

    PubMed

    Kumar, Girijesh; Gupta, Rajeev

    2013-12-21

    Designed materials offer noteworthy applications which are often architecture dependent. Despite knowing such a fact, one of the major challenges faced by the scientific community is to find ways to predict and, if possible, control the resultant architecture of a network. If such an exercise is fruitful, it creates enormous opportunities to synthesize exotic materials with tailor-made applications. Any network is composed of individual molecules and the transition from a single molecule to a network can be achieved through several routes taking advantage of synthetic chemistry. There exists a molecular building block at the heart of such a transition which mediates such a process from a single molecule to a network. Although a large number of building blocks have created assorted materials, utilization of a well-defined coordination complex as the building block (i.e., metalloligand) is unique for the construction of a designed architecture. A coordination complex as the building block offers structural rigidity that places the auxiliary functional groups to a pre-organized conformation. Such auxiliary functional groups could then coordinate a secondary metal ion or be involved in the self-assembly via weak interactions, such as hydrogen bonds. This review focuses on the recent progress achieved through assorted molecular building blocks towards generating ordered networks. Broadly, two classes of metalloligands will be discussed: those offering hydrogen bond sensitive functional groups and those tendering coordination bond responsive groups. Nevertheless, the result is the construction of networks of a highly-ordered nature in both cases. The present review is expected to provide new strategies for constructing functional materials through metalloligands for challenging and practical applications.

  19. Design and develop a video conferencing framework for real-time telemedicine applications using secure group-based communication architecture.

    PubMed

    Mat Kiah, M L; Al-Bakri, S H; Zaidan, A A; Zaidan, B B; Hussain, Muzammil

    2014-10-01

    One of the applications of modern technology in telemedicine is video conferencing. An alternative to traveling to attend a conference or meeting, video conferencing is becoming increasingly popular among hospitals. By using this technology, doctors can help patients who are unable to physically visit hospitals. Video conferencing particularly benefits patients from rural areas, where good doctors are not always available. Telemedicine has proven to be a blessing to patients who have no access to the best treatment. A telemedicine system consists of customized hardware and software at two locations, namely, at the patient's and the doctor's end. In such cases, the video streams of the conferencing parties may contain highly sensitive information. Thus, real-time data security is one of the most important requirements when designing video conferencing systems. This study proposes a secure framework for video conferencing systems and a complete management solution for secure video conferencing groups. Java Media Framework Application Programming Interface classes are used to design and test the proposed secure framework. Real-time Transport Protocol over User Datagram Protocol is used to transmit the encrypted audio and video streams, and RSA and AES algorithms are used to provide the required security services. Results show that the encryption algorithm insignificantly increases the video conferencing computation time.

  20. Understanding the Lunar System Architecture Design Space

    NASA Technical Reports Server (NTRS)

    Arney, Dale C.; Wilhite, Alan W.; Reeves, David M.

    2013-01-01

    Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles.

  1. The Architectural and Interior Design Planning Process.

    ERIC Educational Resources Information Center

    Cohen, Elaine

    1994-01-01

    Explains the planning process in designing effective library facilities and discusses library building requirements that result from electronic information technologies. Highlights include historical structures; Americans with Disabilities Act; resource allocation; electrical power; interior spaces; lighting; design development; the roles of…

  2. The Exploration of Green Architecture Design Integration Teaching Mode

    ERIC Educational Resources Information Center

    Shuang, Liang; Yibin, Han

    2016-01-01

    With the deepening of the concept of green building design, the course of university education gradually exposed many problems in the teaching of architectural design theory; based on the existing mode of teaching and combined with the needs of architectural design practice it proposed the "integrated" method of green building design. It…

  3. A Concept Transformation Learning Model for Architectural Design Learning Process

    ERIC Educational Resources Information Center

    Wu, Yun-Wu; Weng, Kuo-Hua; Young, Li-Ming

    2016-01-01

    Generally, in the foundation course of architectural design, much emphasis is placed on teaching of the basic design skills without focusing on teaching students to apply the basic design concepts in their architectural designs or promoting students' own creativity. Therefore, this study aims to propose a concept transformation learning model to…

  4. Use of the Collaborative Optimization Architecture for Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Braun, R. D.; Moore, A. A.; Kroo, I. M.

    1996-01-01

    Collaborative optimization is a new design architecture specifically created for large-scale distributed-analysis applications. In this approach, problem is decomposed into a user-defined number of subspace optimization problems that are driven towards interdisciplinary compatibility and the appropriate solution by a system-level coordination process. This decentralized design strategy allows domain-specific issues to be accommodated by disciplinary analysts, while requiring interdisciplinary decisions to be reached by consensus. The present investigation focuses on application of the collaborative optimization architecture to the multidisciplinary design of a single-stage-to-orbit launch vehicle. Vehicle design, trajectory, and cost issues are directly modeled. Posed to suit the collaborative architecture, the design problem is characterized by 5 design variables and 16 constraints. Numerous collaborative solutions are obtained. Comparison of these solutions demonstrates the influence which an priori ascent-abort criterion has on development cost. Similarly, objective-function selection is discussed, demonstrating the difference between minimum weight and minimum cost concepts. The operational advantages of the collaborative optimization

  5. An Information Technology Architecture for Pharmaceutical Research and Development

    PubMed Central

    Klingler, Daniel E.; Jaffe, Marvin E.

    1990-01-01

    Rationale for and development of an information technology architecture are presented. The architectural approach described produces a technology environment that is integrating, flexible, robust, productive, and future-oriented. Issues accompanying architecture development and potential impediments to success are discussed.

  6. Architecture Earth-Sheltered Buildings. Design Manual 1.4

    DTIC Science & Technology

    1984-03-01

    Bioclimat kpproach to Architectural Regionalismj Princeton, New Jersey, Princetk .niversity Press, 1963. " 7) 3. Givoni, B., Man, Climate and...AD-A 140 831 NAVFAC DM-1.4MARCH 1984 T OF ARCHITECTURE EARTH-SHELTERED BUILDINGS DESIGN MANUAL 1.4 Reproduced From Best Available Copy ~9J)O,3...design are included for the following disciplines: Planniing, Landscape Design, Life-Cycle Analysis, Architectural , Structural, Mechanical (criteria

  7. Developing a taxonomy for mission architecture definition

    NASA Technical Reports Server (NTRS)

    Neubek, Deborah J.

    1990-01-01

    The Lunar and Mars Exploration Program Office (LMEPO) was tasked to define candidate architectures for the Space Exploration Initiative to submit to NASA senior management and an externally constituted Outreach Synthesis Group. A systematic, structured process for developing, characterizing, and describing the alternate mission architectures, and applying this process to future studies was developed. The work was done in two phases: (1) national needs were identified and categorized into objectives achievable by the Space Exploration Initiative; and (2) a program development process was created which both hierarchically and iteratively describes the program planning process.

  8. SAFARI optical system architecture and design concept

    NASA Astrophysics Data System (ADS)

    Pastor, Carmen; Jellema, Willem; Zuluaga-Ramírez, Pablo; Arrazola, David; Fernández-Rodriguez, M.; Belenguer, Tomás.; González Fernández, Luis M.; Audley, Michael D.; Evers, Jaap; Eggens, Martin; Torres Redondo, Josefina; Najarro, Francisco; Roelfsema, Peter

    2016-07-01

    SpicA FAR infrared Instrument, SAFARI, is one of the instruments planned for the SPICA mission. The SPICA mission is the next great leap forward in space-based far-infrared astronomy and will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 2.5m-class telescope, provided by European industry, to realize zodiacal background limited performance, and high spatial resolution. The instrument SAFARI is a cryogenic grating-based point source spectrometer working in the wavelength domain 34 to 230 μm, providing spectral resolving power from 300 to at least 2000. The instrument shall provide low and high resolution spectroscopy in four spectral bands. Low Resolution mode is the native instrument mode, while the high Resolution mode is achieved by means of a Martin-Pupplet interferometer. The optical system is all-reflective and consists of three main modules; an input optics module, followed by the Band and Mode Distributing Optics and the grating Modules. The instrument utilizes Nyquist sampled filled linear arrays of very sensitive TES detectors. The work presented in this paper describes the optical design architecture and design concept compatible with the current instrument performance and volume design drivers.

  9. Building Structure Design as an Integral Part of Architecture: A Teaching Model for Students of Architecture

    ERIC Educational Resources Information Center

    Unay, Ali Ihsan; Ozmen, Cengiz

    2006-01-01

    This paper explores the place of structural design within undergraduate architectural education. The role and format of lecture-based structure courses within an education system, organized around the architectural design studio is discussed with its most prominent problems and proposed solutions. The fundamental concept of the current teaching…

  10. Virtual environment architecture for rapid application development

    NASA Technical Reports Server (NTRS)

    Grinstein, Georges G.; Southard, David A.; Lee, J. P.

    1993-01-01

    We describe the MITRE Virtual Environment Architecture (VEA), a product of nearly two years of investigations and prototypes of virtual environment technology. This paper discusses the requirements for rapid prototyping, and an architecture we are developing to support virtual environment construction. VEA supports rapid application development by providing a variety of pre-built modules that can be reconfigured for each application session. The modules supply interfaces for several types of interactive I/O devices, in addition to large-screen or head-mounted displays.

  11. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  12. INO340 telescope control system: software architecture and development

    NASA Astrophysics Data System (ADS)

    Ravanmehr, Reza; Jafarzadeh, Asghar

    2014-07-01

    The Iranian National Observatory telescope (INO340) is a 3.4m Alt-Az reflecting optical telescope under design and development. It is f/11 Ritchey-Chretien with a 0.3° field-of-view. INO340 telescope control system utilizes a distributed control system paradigm that includes four major systems: Telescope Control System (TCS), Observation System Supervisor (OSS), Interlock System (ILS) and Observatory Monitoring System (OMS). The control system software also employs 3-tiered hierarchical architecture. In this paper, after presenting the fundamental concepts and operations of the INO340 control system, we propose the distributed control system software architecture including technical and functional architecture, middleware and infrastructure design and finally the software development process.

  13. Fast underdetermined BSS architecture design methodology for real time applications.

    PubMed

    Mopuri, Suresh; Reddy, P Sreenivasa; Acharyya, Amit; Naik, Ganesh R

    2015-01-01

    In this paper, we propose a high speed architecture design methodology for the Under-determined Blind Source Separation (UBSS) algorithm using our recently proposed high speed Discrete Hilbert Transform (DHT) targeting real time applications. In UBSS algorithm, unlike the typical BSS, the number of sensors are less than the number of the sources, which is of more interest in the real time applications. The DHT architecture has been implemented based on sub matrix multiplication method to compute M point DHT, which uses N point architecture recursively and where M is an integer multiples of N. The DHT architecture and state of the art architecture are coded in VHDL for 16 bit word length and ASIC implementation is carried out using UMC 90 - nm technology @V DD = 1V and @ 1MHZ clock frequency. The proposed architecture implementation and experimental comparison results show that the DHT design is two times faster than state of the art architecture.

  14. Design of the ARES Mars Airplane and Mission Architecture

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Wright, Henry S.; Croom, Mark A.; Levine, Joel S.; Spencer, David A.

    2006-01-01

    Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project.

  15. The SKA1 LOW telescope: system architecture and design performance

    NASA Astrophysics Data System (ADS)

    Waterson, Mark F.; Labate, Maria Grazia; Schnetler, Hermine; Wagg, Jeff; Turner, Wallace; Dewdney, Peter

    2016-07-01

    The SKA1-LOW radio telescope will be a low-frequency (50-350 MHz) aperture array located in Western Australia. Its scientific objectives will prioritize studies of the Epoch of Reionization and pulsar physics. Development of the telescope has been allocated to consortia responsible for the aperture array front end, timing distribution, signal and data transport, correlation and beamforming signal processors, infrastructure, monitor and control systems, and science data processing. This paper will describe the system architectural design and key performance parameters of the telescope and summarize the high-level sub-system designs of the consortia.

  16. Evolution and development of inflorescence architectures.

    PubMed

    Prusinkiewicz, Przemyslaw; Erasmus, Yvette; Lane, Brendan; Harder, Lawrence D; Coen, Enrico

    2007-06-08

    To understand the constraints on biological diversity, we analyzed how selection and development interact to control the evolution of inflorescences, the branching structures that bear flowers. We show that a single developmental model accounts for the restricted range of inflorescence types observed in nature and that this model is supported by molecular genetic studies. The model predicts associations between inflorescence architecture, climate, and life history, which we validated empirically. Paths, or evolutionary wormholes, link different architectures in a multidimensional fitness space, but the rate of evolution along these paths is constrained by genetic and environmental factors, which explains why some evolutionary transitions are rare between closely related plant taxa.

  17. Architecture independent environment for developing engineering software on MIMD computers

    NASA Technical Reports Server (NTRS)

    Valimohamed, Karim A.; Lopez, L. A.

    1990-01-01

    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.

  18. Design and Architecture of Collaborative Online Communities: A Quantitative Analysis

    ERIC Educational Resources Information Center

    Aviv, Reuven; Erlich, Zippy; Ravid, Gilad

    2004-01-01

    This paper considers four aspects of online communities. Design, mechanisms, architecture, and the constructed knowledge. We hypothesize that different designs of communities drive different mechanisms, which give rise to different architectures, which in turn result in different levels of collaborative knowledge construction. To test this chain…

  19. An OER Architecture Framework: Needs and Design

    ERIC Educational Resources Information Center

    Khanna, Pankaj; Basak, P. C.

    2013-01-01

    This paper describes an open educational resources (OER) architecture framework that would bring significant improvements in a well-structured and systematic way to the educational practices of distance education institutions of India. The OER architecture framework is articulated with six dimensions: pedagogical, technological, managerial,…

  20. Applications of an architecture design and assessment system (ADAS)

    NASA Technical Reports Server (NTRS)

    Gray, F. Gail; Debrunner, Linda S.; White, Tennis S.

    1988-01-01

    A new Architecture Design and Assessment System (ADAS) tool package is introduced, and a range of possible applications is illustrated. ADAS was used to evaluate the performance of an advanced fault-tolerant computer architecture in a modern flight control application. Bottlenecks were identified and possible solutions suggested. The tool was also used to inject faults into the architecture and evaluate the synchronization algorithm, and improvements are suggested. Finally, ADAS was used as a front end research tool to aid in the design of reconfiguration algorithms in a distributed array architecture.

  1. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2010-01-01

    This paper provides a summary of the Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  2. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.; Hoffman, Stephen J.; Beaty, David W.

    2009-01-01

    This paper provides a summary of the 2007 Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration including how Constellation systems can be used. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  3. Designing Domain-Specific HUMS Architectures: An Automated Approach

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi; Agarwal, Neha; Kumar, Pramod; Sundaram, Parthiban

    2004-01-01

    The HUMS automation system automates the design of HUMS architectures. The automated design process involves selection of solutions from a large space of designs as well as pure synthesis of designs. Hence the whole objective is to efficiently search for or synthesize designs or parts of designs in the database and to integrate them to form the entire system design. The automation system adopts two approaches in order to produce the designs: (a) Bottom-up approach and (b) Top down approach. Both the approaches are endowed with a Suite of quantitative and quantitative techniques that enable a) the selection of matching component instances, b) the determination of design parameters, c) the evaluation of candidate designs at component-level and at system-level, d) the performance of cost-benefit analyses, e) the performance of trade-off analyses, etc. In short, the automation system attempts to capitalize on the knowledge developed from years of experience in engineering, system design and operation of the HUMS systems in order to economically produce the most optimal and domain-specific designs.

  4. Architectural Design and the Learning Environment: A Framework for School Design Research

    ERIC Educational Resources Information Center

    Gislason, Neil

    2010-01-01

    This article develops a theoretical framework for studying how instructional space, teaching and learning are related in practice. It is argued that a school's physical design can contribute to the quality of the learning environment, but several non-architectural factors also determine how well a given facility serves as a setting for teaching…

  5. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2009-01-01

    This document reviews the Design Reference Architecture (DRA) for human exploration of Mars. The DRA represents the current best strategy for human missions. The DRA is not a formal plan, but provides a vision and context to tie current systems and technology developments to potential missions to Mars, and it also serves as a benchmark against which alternative architectures can be measured. The document also reviews the objectives and products of the 2007 study that was to update NASA's human Mars mission reference architecture, assess strategic linkages between lunar and Mars strategies, develop an understanding of methods for reducing cost/risk of human missions through investment in research, technology development and synergy with other exploration plans. There is also a review of the process by which the DRA will continue to be refined. The unique capacities of human exploration is reviewed. The possible goals and objectives of the first three human missions are presented, along with the recommendation that the mission involve a long stay visiting multiple sites.The deployment strategy is outlined and diagrammed including the pre-deployment of the many of the material requirements, and a six crew travel to Mars on a six month trajectory. The predeployment and the Orion crew vehicle are shown. The ground operations requirements are also explained. Also the use of resources found on the surface of Mars is postulated. The Mars surface exploration strategy is reviewed, including the planetary protection processes that are planned. Finally a listing of the key decisions and tenets is posed.

  6. Undergraduate courses for enhancing design ability in naval architecture

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Yeul; Ku, Namkug; Cha, Ju-Hwan

    2013-09-01

    Contemporary lectures in undergraduate engineering courses typically focus on teaching major technical knowledge-based theories in a limited time. Therefore, most lectures do not allow the students to gain understanding of how the theories are applied, especially in Naval Architecture and Ocean Engineering departments. Shipyards require students to acquire practical ship design skills in undergraduate courses. To meet this requirement, two lectures are organized by the authors; namely, "Planning Procedure of Naval Architecture & Ocean Engineering" (PNAOE) and "Innovative Ship Design" (ISD). The concept of project-based and collaborative learning is applied in these two lectures. In the PNAOE lecture, sophomores receive instruction in the designing and building of model ships, and the students' work is evaluated in a model ship contest. This curriculum enables students to understand the concepts of ship design and production. In the ISD lecture, seniors learn how to develop their creative ideas about ship design and communicate with members of group. They are encouraged to cooperate with others and understand the ship design process. In the capstone design course, students receive guidance to facilitate understanding of how the knowledge from their sophomore or junior classes, such as fluid mechanics, statics, and dynamics, can be applied to practical ship design. Students are also encouraged to compete in the ship design contest organized by the Society of Naval Architects of Korea. Moreover, the effectiveness of project-based and collaborative learning for enhancing interest in the shipbuilding Industry and understanding the ship design process is demonstrated by citing the PNAOE and ISD lectures as examples.

  7. Satellite ATM Networks: Architectures and Guidelines Developed

    NASA Technical Reports Server (NTRS)

    vonDeak, Thomas C.; Yegendu, Ferit

    1999-01-01

    An important element of satellite-supported asynchronous transfer mode (ATM) networking will involve support for the routing and rerouting of active connections. Work published under the auspices of the Telecommunications Industry Association (http://www.tiaonline.org), describes basic architectures and routing protocol issues for satellite ATM (SATATM) networks. The architectures and issues identified will serve as a basis for further development of technical specifications for these SATATM networks. Three ATM network architectures for bent pipe satellites and three ATM network architectures for satellites with onboard ATM switches were developed. The architectures differ from one another in terms of required level of mobility, supported data rates, supported terrestrial interfaces, and onboard processing and switching requirements. The documentation addresses low-, middle-, and geosynchronous-Earth-orbit satellite configurations. The satellite environment may require real-time routing to support the mobility of end devices and nodes of the ATM network itself. This requires the network to be able to reroute active circuits in real time. In addition to supporting mobility, rerouting can also be used to (1) optimize network routing, (2) respond to changing quality-of-service requirements, and (3) provide a fault tolerance mechanism. Traffic management and control functions are necessary in ATM to ensure that the quality-of-service requirements associated with each connection are not violated and also to provide flow and congestion control functions. Functions related to traffic management were identified and described. Most of these traffic management functions will be supported by on-ground ATM switches, but in a hybrid terrestrial-satellite ATM network, some of the traffic management functions may have to be supported by the onboard satellite ATM switch. Future work is planned to examine the tradeoffs of placing traffic management functions onboard a satellite as

  8. Candida Biofilms: Development, Architecture, and Resistance.

    PubMed

    Chandra, Jyotsna; Mukherjee, Pranab K

    2015-08-01

    Intravascular device-related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis-associated infections and also are commonly isolated from contact lens-related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms.

  9. Candida Biofilms: Development, Architecture, and Resistance

    PubMed Central

    CHANDRA, JYOTSNA; MUKHERJEE, PRANAB K.

    2015-01-01

    Intravascular device–related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis–associated infections and also are commonly isolated from contact lens–related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms. PMID:26350306

  10. Writing as a Tool in Teaching Sketching: Implications for Architectural Design Education

    ERIC Educational Resources Information Center

    Soygenis, Sema; Soygenis, Murat; Erktin, Emine

    2010-01-01

    This article discusses the process of a study designed to develop university students' sketching skills in schools of architecture. Acknowledging the relationship between cognition and writing, it aims to investigate the role of writing in learning sketching among architecture students and to examine how students regulate their thoughts by writing…

  11. Using AOSD and MDD to Enhance the Architectural Design Phase

    NASA Astrophysics Data System (ADS)

    Pinto, Mónica; Fuentes, Lidia; Fernández, Luis; Valenzuela, Juan A.

    This paper describes an MDD process that enhances the architectural design phase by closing the gap between ADLs and the notations used at the detailed design phase. We have defined model-to-model transformation rules to automatically generate either aspect-oriented or object-oriented UML 2.0 models from high-level architectural specifications specified using AO-ADL. These rules have been integrated in the AO-ADL Tool Suite, providing support to automatically generate a skeleton of the detailed design that preserves the crosscutting and the non-crosscutting functionalities identified at the architecture level.

  12. A Design for Secure Discovery Services in the EPCglobal Architecture

    NASA Astrophysics Data System (ADS)

    Cantero, José J.; Guijarro, Miguel A.; Plaza, Antonio; Arrebola, Guillermo; Baños, Janie

    The EPCglobal Network architecture defines a functional component, named Discovery Service (DS), whose role is to enable the gathering of complete information from multiple information providers across an object's lifecycle. The DS has great potential for improving business processes and providing new services to customers. However, at present, despite the progress in ratification of EPCglobal standards for other interfaces such as the EPC Information Service (EPCIS) or Object Naming Service (ONS), a technical standard for DS interfaces is still under development. In this early stage of the standardisation process, this chapter presents an analysis of potential models for DS design. We present a detailed design based on a model providing greater security. We have both implemented and deployed Discovery Service modules based on our selected model. Finally, we present solutions implemented to provide secure communications between different entities and fine-grained access control to DS records in a design that is scalable.

  13. Combat Systems Vision 2030 Combat System Architecture: Design Principles and Methodology

    DTIC Science & Technology

    1991-12-01

    infrastructure to support it. Currently, industry activity in the area of information system development is high. In essence, corporations have automated their...lifecycle costs , etc., and distributes or allocates them to the subsystems of the functional architecture. At this point, the functional architecture... cost , etc., to the combat system elements. The third step in developing a feasibility design is that of tradeoff and optimization. The best design is

  14. SDOE 650: System Architecture and Design

    SciTech Connect

    George, Colin B

    2014-07-01

    The proposed system is a test system that verifies the cables functionality in the expected environments defined in the ES. Verification methods include test, inspect, demonstrate, and analyze. Since we are defining the architecture for a test system we will focus on the customer expectations and requirements that will be satisfied or verified via testing

  15. Science Hybrid Orbiter and Lunar Relay (SCHOLR) Architecture and Design

    NASA Technical Reports Server (NTRS)

    Trase, Kathryn K.; Barch, Rachel A.; Chaney, Ryan E.; Coulter, Rachel A.; Gao, Hui; Huynh, David P.; Iaconis, Nicholas A.; MacMillan, Todd S.; Pitner, Gregory M.; Schwab, Devin T.

    2011-01-01

    Considered both a stepping-stone to deep space and a key to unlocking the mysteries of planetary formation, the Moon offers a unique opportunity for scientific study. Robotic precursor missions are being developed to improve technology and enable new approaches to exploration. Robots, lunar landers, and satellites play significant roles in advancing science and technologies, offering close range and in-situ observations. Science and exploration data gathered from these nodes and a lunar science satellite is intended to support future human expeditions and facilitate future utilization of lunar resources. To attain a global view of lunar science, the nodes will be distributed over the lunar surface, including locations on the far side of the Moon. Given that nodes on the lunar far side do not have direct line-of-sight for Earth communications, the planned presence of such nodes creates the need for a lunar communications relay satellite. Since the communications relay capability would only be required for a small portion of the satellite s orbit, it may be possible to include communication relay components on a science spacecraft. Furthermore, an integrated satellite has the potential to reduce lunar surface mission costs. A SCience Hybrid Orbiter and Lunar Relay (SCHOLR) is proposed to accomplish scientific goals while also supporting the communications needs of landers on the far side of the Moon. User needs and design drivers for the system were derived from the anticipated needs of future robotic and lander missions. Based on these drivers and user requirements, accommodations for communications payload aboard a science spacecraft were developed. A team of interns identified and compared possible SCHOLR architectures. The final SCHOLR architecture was analyzed in terms of orbiter lifetime, lunar surface coverage, size, mass, power, and communications data rates. This paper presents the driving requirements, operational concept, and architecture views for SCHOLR

  16. Mars Design Reference Architecture 5.0 Study: Executive Summary

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2008-01-01

    The NASA Mars Design Reference Architecture 5.0 Study seeks to update its long term goals and objective for human exploration missions; flight and surface systems for human missions and supporting infrastructure; operational concept for human and robotic exploration of Mars; key challenges including risk and cost drivers; and, its development schedule options. It additionally seeks to assess strategic linkages between lunar and Mars strategies and develop and understanding of methods for reducing the cost/risk of human Mars missions through investment in research, technology development, and synergy with other exploration plans. Recommendations are made regarding conjunction class (long-stay) missions which are seen as providing the best balance of cost, risk, and performance. Additionally, this study reviews entry, descent, and landing challenges; in-space transportation systems; launch vehicle and Orion assessments; risk and risk mitigation; key driving requirements and challenges; and, lunar linkages.

  17. DNA Nanotechnology-- Architectures Designed with DNA

    NASA Astrophysics Data System (ADS)

    Han, Dongran

    As the genetic information storage vehicle, deoxyribonucleic acid (DNA) molecules are essential to all known living organisms and many viruses. It is amazing that such a large amount of information about how life develops can be stored in these tiny molecules. Countless scientists, especially some biologists, are trying to decipher the genetic information stored in these captivating molecules. Meanwhile, another group of researchers, nanotechnologists in particular, have discovered that the unique and concise structural features of DNA together with its information coding ability can be utilized for nano-construction efforts. This idea culminated in the birth of the field of DNA nanotechnology which is the main topic of this dissertation. The ability of rationally designed DNA strands to self-assemble into arbitrary nanostructures without external direction is the basis of this field. A series of novel design principles for DNA nanotechnology are presented here, from topological DNA nanostructures to complex and curved DNA nanostructures, from pure DNA nanostructures to hybrid RNA/DNA nanostructures. As one of the most important and pioneering fields in controlling the assembly of materials (both DNA and other materials) at the nanoscale, DNA nanotechnology is developing at a dramatic speed and as more and more construction approaches are invented, exciting advances will emerge in ways that we may or may not predict.

  18. Enabling Rapid Naval Architecture Design Space Exploration

    NASA Technical Reports Server (NTRS)

    Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri

    2011-01-01

    Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.

  19. Dismantling the Built Drawing: Working with Mood in Architectural Design

    ERIC Educational Resources Information Center

    Teal, Randall

    2010-01-01

    From the late Middle Ages onward an emphasis on the rational and the technical aspects of design and design drawing gained hold of architectural practice. In this transformation, the phenomenon of mood has been frequently overlooked or seen as something to be added on to a design; yet the fundamental grounding of mood, as described in Martin…

  20. Human friendly architectural design for a small Martian base

    NASA Astrophysics Data System (ADS)

    Kozicki, J.; Kozicka, J.

    2011-12-01

    The manned mission to Mars is expected to last almost three years. A human factor must be taken seriously into account in such a long-term mission. A big comfortable habitat can help to overcome sociopsychological problems, that occur in ICEs (Isolated and Confined Environments). Authors have come forward to this issue and have developed a Martian base design as a human friendly habitat. The project is based on researches of extreme conditions on Mars, architecture in ICEs and contemporary building technologies. The base consists of five modules: a Central Module (CM), an Agriculture Dome (AD), a Residential Dome (RD), a Laboratory Dome (LD) and a Garage (G). Each element has its own functional purpose. The CM is a metal capsule similar to the Reference Mission module (RM, NASA, 1997). Domes are inflatable multilayer structures, which interiors are "open planned". Interiors can be arranged and divided into rooms by using modular partition walls designed by authors.

  1. New Course Design: Classification Schemes and Information Architecture.

    ERIC Educational Resources Information Center

    Weinberg, Bella Hass

    2002-01-01

    Describes a course developed at St. John's University (New York) in the Division of Library and Information Science that relates traditional classification schemes to information architecture and Web sites. Highlights include functional aspects of information architecture, that is, the way content is structured; assignments; student reactions; and…

  2. Reducing Development and Operations Costs using NASA's "GMSEC" Systems Architecture

    NASA Technical Reports Server (NTRS)

    Smith, Dan; Bristow, John; Crouse, Patrick

    2007-01-01

    This viewgraph presentation reviews the role of Goddard Mission Services Evolution Center (GMSEC) in reducing development and operation costs in handling the massive data from NASA missions. The goals of GMSEC systems architecture development are to (1) Simplify integration and development, (2)Facilitate technology infusion over time, (3) Support evolving operational concepts, and (4) All for mix of heritage, COTS and new components. First 3 missions (i.e., Tropical Rainforest Measuring Mission (TRMM), Small Explorer (SMEX) missions - SWAS, TRACE, SAMPEX, and ST5 3-Satellite Constellation System) each selected a different telemetry and command system. These results show that GMSEC's message-bus component-based framework architecture is well proven and provides significant benefits over traditional flight and ground data system designs. The missions benefit through increased set of product options, enhanced automation, lower cost and new mission-enabling operations concept options .

  3. Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    NASA Technical Reports Server (NTRS)

    Harper, R. E.; Alger, L. S.; Babikyan, C. A.; Butler, B. P.; Friend, S. A.; Ganska, R. J.; Lala, J. H.; Masotto, T. K.; Meyer, A. J.; Morton, D. P.

    1992-01-01

    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions.

  4. 77 FR 3070 - Electric Engineering, Architectural Services, Design Policies and Construction Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... and 1726 RIN 0572-AC20 Electric Engineering, Architectural Services, Design Policies and Construction... construction, procurement, engineering services and architectural services for transactions above the...--ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES 0 1. The authority...

  5. An Update on Design Tools for Optimization of CMC 3D Fiber Architectures

    NASA Technical Reports Server (NTRS)

    Lang, J.; DiCarlo, J.

    2012-01-01

    Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.

  6. Design and evaluation of cellular power converter architectures

    NASA Astrophysics Data System (ADS)

    Perreault, David John

    Power electronic technology plays an important role in many energy conversion and storage applications, including machine drives, power supplies, frequency changers and UPS systems. Increases in performance and reductions in cost have been achieved through the development of higher performance power semiconductor devices and integrated control devices with increased functionality. Manufacturing techniques, however, have changed little. High power is typically achieved by paralleling multiple die in a sing!e package, producing the physical equivalent of a single large device. Consequently, both the device package and the converter in which the device is used continue to require large, complex mechanical structures, and relatively sophisticated heat transfer systems. An alternative to this approach is the use of a cellular power converter architecture, which is based upon the parallel connection of a large number of quasi-autonomous converters, called cells, each of which is designed for a fraction of the system rating. The cell rating is chosen such that single-die devices in inexpensive packages can be used, and the cell fabricated with an automated assembly process. The use of quasi-autonomous cells means that system performance is not compromised by the failure of a cell. This thesis explores the design of cellular converter architectures with the objective of achieving improvements in performance, reliability, and cost over conventional converter designs. New approaches are developed and experimentally verified for highly distributed control of cellular converters, including methods for ripple cancellation and current-sharing control. The performance of these techniques are quantified, and their dynamics are analyzed. Cell topologies suitable to the cellular architecture are investigated, and their use for systems in the 5-500 kVA range is explored. The design, construction, and experimental evaluation of a 6 kW cellular switched-mode rectifier is also addressed

  7. Motivation for Creativity in Architectural Design and Engineering Design Students: Implications for Design Education

    ERIC Educational Resources Information Center

    Casakin, Hernan; Kreitler, Shulamith

    2010-01-01

    The investigation reported here dealt with the study of motivation for creativity. The goals were to assess motivation for creativity in architectural design and engineering design students based on the Cognitive Orientation theory which defines motivation as a function of a set of belief types, themes, and groupings identified as relevant for the…

  8. Technical Reference Suite Addressing Challenges of Providing Assurance for Fault Management Architectural Design

    NASA Technical Reports Server (NTRS)

    Fitz, Rhonda; Whitman, Gerek

    2016-01-01

    Research into complexities of software systems Fault Management (FM) and how architectural design decisions affect safety, preservation of assets, and maintenance of desired system functionality has coalesced into a technical reference (TR) suite that advances the provision of safety and mission assurance. The NASA Independent Verification and Validation (IV&V) Program, with Software Assurance Research Program support, extracted FM architectures across the IV&V portfolio to evaluate robustness, assess visibility for validation and test, and define software assurance methods applied to the architectures and designs. This investigation spanned IV&V projects with seven different primary developers, a wide range of sizes and complexities, and encompassed Deep Space Robotic, Human Spaceflight, and Earth Orbiter mission FM architectures. The initiative continues with an expansion of the TR suite to include Launch Vehicles, adding the benefit of investigating differences intrinsic to model-based FM architectures and insight into complexities of FM within an Agile software development environment, in order to improve awareness of how nontraditional processes affect FM architectural design and system health management. The identification of particular FM architectures, visibility, and associated IV&V techniques provides a TR suite that enables greater assurance that critical software systems will adequately protect against faults and respond to adverse conditions. Additionally, the role FM has with regard to strengthened security requirements, with potential to advance overall asset protection of flight software systems, is being addressed with the development of an adverse conditions database encompassing flight software vulnerabilities. Capitalizing on the established framework, this TR suite provides assurance capability for a variety of FM architectures and varied development approaches. Research results are being disseminated across NASA, other agencies, and the

  9. All-Electric Concepts for Architecture. NECA Electrical Design Guidelines.

    ERIC Educational Resources Information Center

    National Electrical Contractors Association, Washington, DC.

    In this monograph dealing with the suitability of electrically powered systems to emerging architectural trends, emphasis is upon the relationship of mechanical systems to overall building design. Topics discussed are--(1) All Electric Systems are Right for the Times, (2) Electric Systems Enlarge Freedom of Design, (3) Approaching the Question:…

  10. Pipelined CPU Design with FPGA in Teaching Computer Architecture

    ERIC Educational Resources Information Center

    Lee, Jong Hyuk; Lee, Seung Eun; Yu, Heon Chang; Suh, Taeweon

    2012-01-01

    This paper presents a pipelined CPU design project with a field programmable gate array (FPGA) system in a computer architecture course. The class project is a five-stage pipelined 32-bit MIPS design with experiments on the Altera DE2 board. For proper scheduling, milestones were set every one or two weeks to help students complete the project on…

  11. Design of an integrated airframe/propulsion control system architecture

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Lee, C. William; Strickland, Michael J.

    1990-01-01

    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that used both reliability and performance tools. An account is given of the motivation for the final design and problems associated with both reliability and performance modeling. The appendices contain a listing of the code for both the reliability and performance model used in the design.

  12. The Case for Architectural-Design Competitions

    ERIC Educational Resources Information Center

    Lewis, Roger K.

    2009-01-01

    A well-publicized design competition is especially beneficial for universities. It allows them to enhance fund raising and stimulate design consciousness among students, the faculty, and even members of the surrounding community. Yet universities rarely conduct competitions, and instead select architects for major projects through a multistep,…

  13. An Architectural Experience for Interface Design

    ERIC Educational Resources Information Center

    Gong, Susan P.

    2016-01-01

    The problem of human-computer interface design was brought to the foreground with the emergence of the personal computer, the increasing complexity of electronic systems, and the need to accommodate the human operator in these systems. With each new technological generation discovering the interface design problems of its own technologies, initial…

  14. Architecture and development of olivocerebellar circuit topography

    PubMed Central

    Reeber, Stacey L.; White, Joshua J.; George-Jones, Nicholas A.; Sillitoe, Roy V.

    2013-01-01

    The cerebellum has a simple tri-laminar structure that is comprised of relatively few cell types. Yet, its internal micro-circuitry is anatomically, biochemically, and functionally complex. The most striking feature of cerebellar circuit complexity is its compartmentalized topography. Each cell type within the cerebellar cortex is organized into an exquisite map; molecular expression patterns, dendrite projections, and axon terminal fields divide the medial-lateral axis of the cerebellum into topographic sagittal zones. Here, we discuss the mechanisms that establish zones and highlight how gene expression and neural activity contribute to cerebellar pattern formation. We focus on the olivocerebellar system because its developmental mechanisms are becoming clear, its topographic termination patterns are very precise, and its contribution to zonal function is debated. This review deconstructs the architecture and development of the olivocerebellar pathway to provide an update on how brain circuit maps form and function. PMID:23293588

  15. SpaceWire model development technology for satellite architecture.

    SciTech Connect

    Eldridge, John M.; Leemaster, Jacob Edward; Van Leeuwen, Brian P.

    2011-09-01

    Packet switched data communications networks that use distributed processing architectures have the potential to simplify the design and development of new, increasingly more sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the amount of redundant hardware required in space-based applications without sacrificing reliability. These concepts were studied using software modeling and simulation, and the results are presented in this report. Models of the commercially available, packet switched data interconnect SpaceWire protocol were developed and used to create network simulations of data networks containing reconfigurable logic with traffic flows for timing system distribution.

  16. System design document U-AVLIS control system architecture

    SciTech Connect

    Viebeck, P.G.

    1994-02-16

    This document describes the architecture of the integrated control system for the U-AVLIS process. It includes an overview of the major control system components and their interfaces to one another. Separate documents are utilized to fully describe each component mentioned herein. The purpose of this document is to introduce the reader to the integrated U-AVLIS control system. It describes the philosophy of the control system architecture and how all of the control system components are integrated. While the other System Design Documents describe in detail the design of individual control system components, this document puts those components into their correct context within the entire integrated control system.

  17. Development of a modular integrated control architecture for flexible manipulators. Final report

    SciTech Connect

    Burks, B.L.; Battiston, G.

    1994-12-08

    In April 1994, ORNL and SPAR completed the joint development of a manipulator controls architecture for flexible structure controls under a CRADA between the two organizations. The CRADA project entailed design and development of a new architecture based upon the Modular Integrated Control Architecture (MICA) previously developed by ORNL. The new architecture, dubbed MICA-II, uses an object-oriented coding philosophy to provide a highly modular and expandable architecture for robotic manipulator control. This architecture can be readily ported to control of many different manipulator systems. The controller also provides a user friendly graphical operator interface and display of many forms of data including system diagnostics. The capabilities of MICA-II were demonstrated during oscillation damping experiments using the Flexible Beam Experimental Test Bed at Hanford.

  18. Mass growth in space vehicle and exploration architecture development

    NASA Astrophysics Data System (ADS)

    Thompson, Robert W.; Wilhite, Alan W.; Reeves, David; Stanley, Douglas O.; Wagner, John

    2010-04-01

    Inert or dry mass in aerospace systems has historically grown during aerospace vehicle development because of a number of factors: changing requirements, uncertainty in the performance of the initial technology selection, addition of redundancy, errors in the original design, as well as uncertain masses and loads. In the case of exploration architectures for lunar missions, compounding effects of a multi-staged mission design makes mass-efficient vehicles a necessity for achieving the total delta-V performance required to reach the lunar surface and return to Earth. Current standards and guidelines for mass growth risk mitigation are compared, including the industry and NASA standard methods for risk management and mitigation through the application of mass margin. Historical mass growth trends are analyzed, and average levels of growth are compared to the standard margin allocation levels. Analysis of the available historical data shows that the mean inert mass growth is 28%, and 30% of historical programs experience inert mass growth in excess of the allowable growth and margin recommended level of 32.5%. As an illustrative example of the mass growth of lunar exploration architectures the mass growth sensitivity of the Apollo architecture is calculated. Results show that a kilogram of mass growth on the lunar ascent stage is compounded over 800 times in gross mass.

  19. Design Methodology for Multiple Microcomputer Architectures.

    DTIC Science & Technology

    1982-07-01

    multimicro design knowledge is true both in industry and in university environments. In the industrial environment, it reduces productivity and increases...Real-Time Processor Problems," Proc. of ELECTRO-81 Tercer Seminario de Ingenieria Electronica, Nov. 9-13, 1981. 14 1981 "D Flip/Flop Substracts

  20. Neural architecture design based on extreme learning machine.

    PubMed

    Bueno-Crespo, Andrés; García-Laencina, Pedro J; Sancho-Gómez, José-Luis

    2013-12-01

    Selection of the optimal neural architecture to solve a pattern classification problem entails to choose the relevant input units, the number of hidden neurons and its corresponding interconnection weights. This problem has been widely studied in many research works but their solutions usually involve excessive computational cost in most of the problems and they do not provide a unique solution. This paper proposes a new technique to efficiently design the MultiLayer Perceptron (MLP) architecture for classification using the Extreme Learning Machine (ELM) algorithm. The proposed method provides a high generalization capability and a unique solution for the architecture design. Moreover, the selected final network only retains those input connections that are relevant for the classification task. Experimental results show these advantages.

  1. Demo III processing architecture trades and preliminary design

    NASA Astrophysics Data System (ADS)

    Gothard, Benny M.; Cory, Phil; Peterman, Pete

    1999-01-01

    This paper will provide a summary of the methodology, metrics, analysis, and trade study efforts for the preliminary design o the Vetronics Processing Architecture (PA) system based on the Demo III Experimental Unmanned Ground Vehicle (XUV) program requirements. We will document and describe both the provided and analytically derived system requirements expressed by the proposal. Our experience based on previous mobility and Reconnaissance, Surveillance, Targeting, Acquisition systems designed and implemented for Demo II Semi-Autonomous Surrogate Vehicle and Mobile Detection, Assessment and Response System will be used to describe lessons learned as applied to the XUV in PA architecture, Single Board Computers, Card Cage Buses, Real-Time and Non Real-Time processor and Card Cage to Card Cage Communications, and Imaging and Radar pre-processors selection and choices. We have selected an initial architecture methodology.

  2. How Juries Assess Universal Design in Norwegian Architectural School Competitions.

    PubMed

    Houck, Leif D

    2016-01-01

    This paper investigates how architectural school competition juries assess Universal Design. The method used is a case study of 18 recent architectural school competitions in Norway. The results show that most competition briefs ask for Universal Designed buildings. In 8 of the 18 cases, Universal Design is mentioned as an assessment criterion. In 11 of the 18 cases, Universal Design is commented on by the juries in the jury reports, but only in 3 of the cases, do the juries assess this aspect consistently on every competition project. The overall impression is that some amount of uncertainty looms concerning how Universal Design should be assessed in the competition stage. Based on the findings, future juries should concentrate on orientation and overview prior to technicalities and details.

  3. Design, Analysis and User Acceptance of Architectural Design Education in Learning System Based on Knowledge Management Theory

    ERIC Educational Resources Information Center

    Wu, Yun-Wu; Lin, Yu-An; Wen, Ming-Hui; Perng, Yeng-Hong; Hsu, I-Ting

    2016-01-01

    The major purpose of this study is to develop an architectural design knowledge management learning system with corresponding learning activities to help the students have meaningful learning and improve their design capability in their learning process. Firstly, the system can help the students to obtain and share useful knowledge. Secondly,…

  4. Computer-Aided Design of Organic Host Architectures for Selective Chemosensors

    SciTech Connect

    Hay, Benjamin; Bryantsev, Vyacheslav S.

    2009-01-01

    Selective organic hosts provide the foundation for the development of many types of sensors. The deliberate design of host molecules with predetermined selectivity, however, remains a challenge in supramolecular chemistry. To address this issue we have developed a de novo structure-based design approach for the unbiased construction of complementary host architectures. This chapter summarizes recent progress including improvements on a computer software program, HostDesigner, specifically tailored to discover host architectures for small guest molecules. HostDesigner is capable of generating and evaluating millions of candidate structures in minutes on a desktop personal computer, allowing a user to rapidly identify three-dimensional architectures that are structurally organized for binding a targeted guest species. The efficacy of this computational methodology is illustrated with a search for cation hosts containing aliphatic ether oxygen groups and anion hosts containing urea groups.

  5. Designing polyethylenes of complex chain architectures via Pd-diimine-catalyzed "living" ethylene polymerization.

    PubMed

    Ye, Zhibin; Xu, Lixin; Dong, Zhongmin; Xiang, Peng

    2013-07-18

    Polymer chain architecture is a critically important chain parameter governing intrinsically the properties and applications of polymers. The rapid developments in "living"/controlled polymerization techniques, particularly the controlled radical polymerization techniques, in the past two decades have enabled the precision synthesis of novel polymers having a great variety of complex yet well-defined chain architectures from various monomer stocks. For polyolefins synthesized via catalytic coordination polymerization, the design of complex chain architectures, however, has only started recently because of the relatively limited advancements in the catalytic "living" olefin polymerization technique. In this regard, the versatile Pd-diimine catalysts have provided some unprecedented opportunities, due to their outstanding features, in rendering successfully a novel class of polyethylenes of various new complex chain architectures through the "living" ethylene polymerization protocol. The complex chain architectures designed to date have included hyperbranched, hybrid hyperbranched-linear, block, gradient and block-gradient, star, telechelic, graft and comb, and surface-tethered polymer brushes. This Feature Article attempts to summarize the recent developments achieved in the area, with an emphasis on the synthetic strategies for the architectural design. These developments demonstrate the great potential for further advancements of this new exciting research area.

  6. Natural Genomic Design in Sinorhizobium meliloti: Novel Genomic Architectures

    PubMed Central

    Guo, Xianwu; Flores, Margarita; Mavingui, Patrick; Fuentes, Sara Isabel; Hernández, Georgina; Dávila, Guillermo; Palacios, Rafael

    2003-01-01

    The complete nucleotide sequence of the genome of Sinorhizobium meliloti, the symbiont of alfalfa, was reported in 2001 by an international consortium of laboratories. The genome comprises a chromosome of 3.65 megabases (Mb) and two megaplasmids, pSymA and pSymB, of 1.35 Mb and 1.68 Mb, respectively. Based on the nucleotide sequence of the whole genome, we designed a pathway of consecutive rearrangements leading to novel genomic architectures. In a first step we obtained derivative strains containing two replicons; in a second step we obtained a strain containing the genetic information in one single replicon of 6.68 MB. From this last architecture we isolated revertants containing two replicons, and from these we could return to the original architecture showing the three replicons. We found that the relative frequency of excision of cointegrated replicons is higher at the site used for the cointegration than at other sites. This might conciliate two apparently opposed facts: the highly dynamic state of genomic architecture in S. meliloti and the common observation that different isolates and derived cellular clones of S. meliloti usually present the architecture of one chromosome and two distinct megaplasmids. Different aspects that must be considered to obtain full advantage of the strategy of natural genomic design are discussed. PMID:12902376

  7. Development of an unmanned maritime system reference architecture

    NASA Astrophysics Data System (ADS)

    Duarte, Christiane N.; Cramer, Megan A.; Stack, Jason R.

    2014-06-01

    The concept of operations (CONOPS) for unmanned maritime systems (UMS) continues to envision systems that are multi-mission, re-configurable and capable of acceptable performance over a wide range of environmental and contextual variability. Key enablers for these concepts of operation are an autonomy module which can execute different mission directives and a mission payload consisting of re-configurable sensor or effector suites. This level of modularity in mission payloads enables affordability, flexibility (i.e., more capability with future platforms) and scalability (i.e., force multiplication). The modularity in autonomy facilitates rapid technology integration, prototyping, testing and leveraging of state-of-the-art advances in autonomy research. Capability drivers imply a requirement to maintain an open architecture design for both research and acquisition programs. As the maritime platforms become more stable in their design (e.g. unmanned surface vehicles, unmanned underwater vehicles) future developments are able to focus on more capable sensors and more robust autonomy algorithms. To respond to Fleet needs, given an evolving threat, programs will want to interchange the latest sensor or a new and improved algorithm in a cost effective and efficient manner. In order to make this possible, the programs need a reference architecture that will define for technology providers where their piece fits and how to successfully integrate. With these concerns in mind, the US Navy established the Unmanned Maritime Systems Reference Architecture (UMS-RA) Working Group in August 2011. This group consists of Department of Defense and industry participants working the problem of defining reference architecture for autonomous operations of maritime systems. This paper summarizes its efforts to date.

  8. The Integration of Interior Architecture Education with Digital Design Approaches

    ERIC Educational Resources Information Center

    Yazicioglu, Deniz Ayse

    2011-01-01

    It is inevitable that as a result of progress in technology and the changes in the ways with which design is conceived, interior architecture schools should be updated according to these requirements and that new educational processes should be tried out. It is for this reason that the scope and aim of this study have been determined as being the…

  9. 38 CFR 39.22 - Architectural design standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Architectural design standards. 39.22 Section 39.22 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) AID TO STATES FOR ESTABLISHMENT, EXPANSION, AND IMPROVEMENT OF VETERANS' CEMETERIES (Eff. until...

  10. SHELTER THROUGH ARCHITECTURAL DESIGN, THE SHIELDING REQUIREMENTS INFLUENCE ON FORM.

    ERIC Educational Resources Information Center

    Office of Civil Defense (DOD), Washington, DC.

    FALLOUT PROTECTION CAN BE PROVIDED BY CAREFUL ARRANGEMENT OF ARCHITECTURAL ELEMENTS WITHOUT SPECIFIC FACILITIES FOR THEIR PURPOSE AND WITHOUT INTERFERING WITH NORMAL SPACE USE. CHARACTERISTICS OF RADIATION ARE DISCUSSED AND ILLUSTRATED PRINCIPLES OF SHIELDING DESIGN WITH RESPECT TO DISTANCE, GEOMETRY, AND TIME ARE GIVEN. (JT)

  11. Using an Architectural Metaphor for Information Design in Hypertext.

    ERIC Educational Resources Information Center

    Deboard, Donn R.; Lee, Doris

    2001-01-01

    Uses Frank Lloyd Wright's (1867-1959) organic architecture as a metaphor to define the relationship between a part and a whole, whether the focus is on a building and its surroundings or information delivered via hypertext. Reviews effective strategies for designing text information via hypertext and incorporates three levels of information…

  12. The Space House TM : Space Technologies in Architectural Design

    NASA Astrophysics Data System (ADS)

    Gampe, F.; Raitt, D.

    2002-01-01

    The word "space" has always been associated with and had a profound impact upon architectural design. Until relatively recently, however, the term has been used in a different sense to that understood by the aerospace community - for them, space was less abstract, more concrete and used in the context of space flight and space exploration, rather than, say, an empty area or space requiring to be filled by furniture. However, the two senses of the word space have now converged to some extent. Interior designers and architects have been involved in designing the interior of Skylab, the structure of the International Space Station, and futuristic space hotels. Today, architects are designing, and builders are building, houses, offices and other structures which incorporate a plethora of new technologies, materials and production processes in an effort not only to introduce innovative and adventurous ideas but also in an attempt to address environmental and social issues. Foremost among these new technologies and materials being considered today are those that have been developed for and by the space industry. This paper examines some of these space technologies, such as energy efficient solar cells, durable plastics, air and water filtration techniques, which have been adapted to both provide power while reducing energy consumption, conserve resources and so on. Several of these technologies have now been employed by the European Space Agency to develop a Space House TM - the first of its kind, which will be deployed not so much on planets like Mars, but rather here on Earth. The Space House TM, which exhibits many innovative features such as high strength light-weight carbon composites, active noise-damped, (glass and plastic) windows, low-cost solar arrays and latent heat storage, air and water purification systems will be described.

  13. Research and design of circulation course resources architecture

    NASA Astrophysics Data System (ADS)

    Song, Jiangong; Feng, Wenquan; Zhang, Jizhong

    2012-04-01

    In this paper, a new concept that is Circulation Course Resources (CCR) is introduced, which means the course resources circulating from the students listening in classroom lecture, camera shooting, video coding, video storage, video server to the students learning from VOD. The creating course video system and network-teaching system as parts of CCR architecture are presented separately. To connect the two systems, a middle system defined as Bridge System is designed and modeled with UML. The core application design of the Bridge System is expressed by the classes design and main database design. The functions of Bridge System include making the course videos flowing from one system to another automatically and converting the important data of the two systems into uniform format. The CCR architecture has been put into action and achieved satisfied results.

  14. Evaluation of Computer-Aided System Design Tools for SDI (Strategic Defense Initiative) Battle Management/C3 (Command, Control and Communications) Architecture Development

    DTIC Science & Technology

    1987-10-01

    Ft. Meade, MD 20755-6000 Lee Cooper 1 copy Advanced Technology 2121 Crystal Drive, Suite 200 Arlington, VA 22202 Larry Cox I copy TRW 1950 Sunwest...Richmond Street Providence, RI 02903 " - Mr. Larry Christina, Jr. 1 copy Technology Branch, CSSD-H-SBY Battle Management Division U.S. Army Strategic...copy ’_ Advanced System Architectures Johnson House 73-79 Park Street GU 15 3PE, United Kingdom s. - .%° N. % S CSED Review Panel Dr. Dan Alpert

  15. System design in an evolving system-of-systems architecture and concept of operations

    NASA Astrophysics Data System (ADS)

    Rovekamp, Roger N., Jr.

    Proposals for space exploration architectures have increased in complexity and scope. Constituent systems (e.g., rovers, habitats, in-situ resource utilization facilities, transfer vehicles, etc) must meet the needs of these architectures by performing in multiple operational environments and across multiple phases of the architecture's evolution. This thesis proposes an approach for using system-of-systems engineering principles in conjunction with system design methods (e.g., Multi-objective optimization, genetic algorithms, etc) to create system design options that perform effectively at both the system and system-of-systems levels, across multiple concepts of operations, and over multiple architectural phases. The framework is presented by way of an application problem that investigates the design of power systems within a power sharing architecture for use in a human Lunar Surface Exploration Campaign. A computer model has been developed that uses candidate power grid distribution solutions for a notional lunar base. The agent-based model utilizes virtual control agents to manage the interactions of various exploration and infrastructure agents. The philosophy behind the model is based both on lunar power supply strategies proposed in literature, as well as on the author's own approaches for power distribution strategies of future lunar bases. In addition to proposing a framework for system design, further implications of system-of-systems engineering principles are briefly explored, specifically as they relate to producing more robust cross-cultural system-of-systems architecture solutions.

  16. Technical Reference Suite Addressing Challenges of Providing Assurance for Fault Management Architectural Design

    NASA Technical Reports Server (NTRS)

    Fitz, Rhonda; Whitman, Gerek

    2016-01-01

    Research into complexities of software systems Fault Management (FM) and how architectural design decisions affect safety, preservation of assets, and maintenance of desired system functionality has coalesced into a technical reference (TR) suite that advances the provision of safety and mission assurance. The NASA Independent Verification and Validation (IVV) Program, with Software Assurance Research Program support, extracted FM architectures across the IVV portfolio to evaluate robustness, assess visibility for validation and test, and define software assurance methods applied to the architectures and designs. This investigation spanned IVV projects with seven different primary developers, a wide range of sizes and complexities, and encompassed Deep Space Robotic, Human Spaceflight, and Earth Orbiter mission FM architectures. The initiative continues with an expansion of the TR suite to include Launch Vehicles, adding the benefit of investigating differences intrinsic to model-based FM architectures and insight into complexities of FM within an Agile software development environment, in order to improve awareness of how nontraditional processes affect FM architectural design and system health management.

  17. Tipster Text Phase 2 Architecture Design

    DTIC Science & Technology

    2016-06-21

    Ralph Weischedel, and Remi Zajac 1.0 GOALS The TIPSTER Program aims to push the technology for access to information in large (multi-GB) text...collections, in particular for the analysts in Government agencies. Technology is being developed for document detection (" information retrieval") and for...level security • enhance detection and extraction through the exchange of information , and through easier access to linguistic annotations 249

  18. Evolving concepts of lunar architecture: The potential of subselene development

    NASA Technical Reports Server (NTRS)

    Daga, Andrew W.; Daga, Meryl A.; Wendel, Wendel R.

    1992-01-01

    In view of the superior environmental and operational conditions that are thought to exist in lava tubes, popular visions of permanent settlements built upon the lunar surface may prove to be entirely romantic. The factors that will ultimately come together to determine the design of a lunar base are complex and interrelated, and they call for a radical architectural solution. Whether lunar surface-deployed superstructures can answer these issues is called into question. One particularly troublesome concern in any lunar base design is the need for vast amounts of space, and the ability of man-made structures to provide such volumes in a reliable pressurized habitat is doubtful. An examination of several key environmental design issues suggests that the alternative mode of subselene development may offer the best opportunity for an enduring and humane settlement.

  19. Architectural Design for a Mars Communications and Navigation Orbital Infrastructure

    NASA Technical Reports Server (NTRS)

    Ceasrone R. J.; Hastrup, R. C.; Bell, D. J.; Roncoli, R. B.; Nelson, K.

    1999-01-01

    The planet Mars has become the focus of an intensive series of missions that span decades of time, a wide array of international agencies and an evolution from robotics to humans. The number of missions to Mars at any one time, and over a period of time, is unprecedented in the annals of space exploration. To meet the operational needs of this exploratory fleet will require the implementation of new architectural concepts for communications and navigation. To this end, NASA's Jet Propulsion Laboratory has begun to define and develop a Mars communications and navigation orbital infrastructure. This architecture will make extensive use of assets at Mars, as well as use of traditional Earth-based assets, such as the Deep Space Network, DSN. Indeed, the total system can be thought of as an extension of DSN nodes and services to the Mars in-situ region. The concept has been likened to the beginnings of an interplanetary Internet that will bring the exploration of Mars right into our living rooms. The paper will begin with a high-level overview of the concept for the Mars communications and navigation infrastructure. Next, the mission requirements will be presented. These will include the relatively near-term needs of robotic landers, rovers, ascent vehicles, balloons, airplanes, and possibly orbiting, arriving and departing spacecraft. Requirements envisioned for the human exploration of Mars will also be described. The important Mars orbit design trades on telecommunications and navigation capabilities will be summarized, and the baseline infrastructure will be described. A roadmap of NASA's plan to evolve this infrastructure over time will be shown. Finally, launch considerations and delivery to Mars will be briefly treated.

  20. Plasmonic Fiber Optic Refractometric Sensors: From Conventional Architectures to Recent Design Trends

    PubMed Central

    Klantsataya, Elizaveta; Jia, Peipei; Ebendorff-Heidepriem, Heike; Monro, Tanya M.; François, Alexandre

    2016-01-01

    Surface Plasmon Resonance (SPR) fiber sensor research has grown since the first demonstration over 20 year ago into a rich and diverse field with a wide range of optical fiber architectures, plasmonic coatings, and excitation and interrogation methods. Yet, the large diversity of SPR fiber sensor designs has made it difficult to understand the advantages of each approach. Here, we review SPR fiber sensor architectures, covering the latest developments from optical fiber geometries to plasmonic coatings. By developing a systematic approach to fiber-based SPR designs, we identify and discuss future research opportunities based on a performance comparison of the different approaches for sensing applications. PMID:28025532

  1. Plasmonic Fiber Optic Refractometric Sensors: From Conventional Architectures to Recent Design Trends.

    PubMed

    Klantsataya, Elizaveta; Jia, Peipei; Ebendorff-Heidepriem, Heike; Monro, Tanya M; François, Alexandre

    2016-12-23

    Surface Plasmon Resonance (SPR) fiber sensor research has grown since the first demonstration over 20 year ago into a rich and diverse field with a wide range of optical fiber architectures, plasmonic coatings, and excitation and interrogation methods. Yet, the large diversity of SPR fiber sensor designs has made it difficult to understand the advantages of each approach. Here, we review SPR fiber sensor architectures, covering the latest developments from optical fiber geometries to plasmonic coatings. By developing a systematic approach to fiber-based SPR designs, we identify and discuss future research opportunities based on a performance comparison of the different approaches for sensing applications.

  2. Designing bioinspired composite reinforcement architectures via 3D magnetic printing

    NASA Astrophysics Data System (ADS)

    Martin, Joshua J.; Fiore, Brad E.; Erb, Randall M.

    2015-10-01

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as `3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries.

  3. Designing bioinspired composite reinforcement architectures via 3D magnetic printing

    PubMed Central

    Martin, Joshua J.; Fiore, Brad E.; Erb, Randall M.

    2015-01-01

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as ‘3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries. PMID:26494282

  4. Minimalist design of water-soluble cross-[beta] architecture

    SciTech Connect

    Biancalana, Matthew; Makabe, Koki; Koide, Shohei

    2010-08-13

    Demonstrated successes of protein design and engineering suggest significant potential to produce diverse protein architectures and assemblies beyond those found in nature. Here, we describe a new class of synthetic protein architecture through the successful design and atomic structures of water-soluble cross-{beta} proteins. The cross-{beta} motif is formed from the lamination of successive {beta}-sheet layers, and it is abundantly observed in the core of insoluble amyloid fibrils associated with protein-misfolding diseases. Despite its prominence, cross-{beta} has been designed only in the context of insoluble aggregates of peptides or proteins. Cross-{beta}'s recalcitrance to protein engineering and conspicuous absence among the known atomic structures of natural proteins thus makes it a challenging target for design in a water-soluble form. Through comparative analysis of the cross-{beta} structures of fibril-forming peptides, we identified rows of hydrophobic residues ('ladders') running across {beta}-strands of each {beta}-sheet layer as a minimal component of the cross-{beta} motif. Grafting a single ladder of hydrophobic residues designed from the Alzheimer's amyloid-{beta} peptide onto a large {beta}-sheet protein formed a dimeric protein with a cross-{beta} architecture that remained water-soluble, as revealed by solution analysis and x-ray crystal structures. These results demonstrate that the cross-{beta} motif is a stable architecture in water-soluble polypeptides and can be readily designed. Our results provide a new route for accessing the cross-{beta} structure and expanding the scope of protein design.

  5. Space Power Program, Instrumentation and Control System Architecture, Pre-conceptual Design, for Information

    SciTech Connect

    JM Ross

    2005-10-20

    The purpose of this letter is to forward the Prometheus preconceptual Instrumentation and Control (I&C) system architecture (Enclosure (1)) to NR for information as part of the Prometheus closeout work. The preconceptual 1&C system architecture was considered a key planning document for development of the I&C system for Project Prometheus. This architecture was intended to set the technical approach for the entire I&C system. It defines interfaces to other spacecraft systems, defines hardware blocks for future development, and provides a basis for accurate cost and schedule estimates. Since the system requirements are not known at this time, it was anticipated that the architecture would evolve as the design of the reactor module was matured.

  6. Designing Capital-Intensive Systems with Architectural and Operational Flexibility Using a Screening Model

    NASA Astrophysics Data System (ADS)

    Lin, Jijun; de Weck, Olivier; de Neufville, Richard; Robinson, Bob; MacGowan, David

    Development of capital intensive systems, such as offshore oil platforms or other industrial infrastructure, generally requires a significant amount of capital investment under various resource, technical, and market uncertainties. It is a very challenging task for development co-owners or joint ventures because important decisions, such as system architectures, have to be made while uncertainty remains high. This paper develops a screening model and a simulation framework to quickly explore the design space for complex engineering systems under uncertainty allowing promising strategies or architectures to be identified. Flexibility in systems’ design and operation is proposed as a proactive means to enable systems to adapt to future uncertainty. Architectural and operational flexibility can improve systems’ lifecycle value by mitigating downside risks and capturing upside opportunities. In order to effectively explore different flexible strategies addressing a view of uncertainty which changes with time, a computational framework based on Monte Carlo simulation is proposed in this paper. This framework is applied to study flexible development strategies for a representative offshore petroleum project. The complexity of this problem comes from multi-domain uncertainties, large architectural design space, and structure of flexibility decision rules. The results demonstrate that architectural and operational flexibility can significantly improve projects’ Expected Net Present Value (ENPV), reduce downside risks, and improve upside gains, compared to adopting an inflexible strategy appropriate to the view of uncertainty at the start of the project. In this particular case study, the most flexible strategy improves ENPV by 85% over an inflexible base case.

  7. IXV avionics architecture: Design, qualification and mission results

    NASA Astrophysics Data System (ADS)

    Succa, Massimo; Boscolo, Ilario; Drocco, Alessandro; Malucchi, Giovanni; Dussy, Stephane

    2016-07-01

    The paper details the IXV avionics presenting the architecture and the constituting subsystems and equipment. It focuses on the novelties introduced, such as the Ethernet-based protocol for the experiment data acquisition system, and on the synergy with Ariane 5 and Vega equipment, pursued in order to comply with the design-to-cost requirement for the avionics system development. Emphasis is given to the adopted model philosophy in relation to OTS/COTS items heritage and identified activities necessary to extend the qualification level to be compliant with the IXV environment. Associated lessons learned are identified. Then, the paper provides the first results and interpretation from the flight recorders telemetry, covering the behavior of the Data Handling System, the quality of telemetry recording and real-time/delayed transmission, the performance of the batteries and the Power Protection and Distribution Unit, the ground segment coverage during visibility windows and the performance of the GNC sensors (IMU and GPS) and actuators. Finally, some preliminary tracks of the IXV follow on are given, introducing the objectives of the Innovative Space Vehicle and the necessary improvements to be developed in the frame of PRIDE.

  8. The Virtual Environment for Reactor Applications (VERA): Design and architecture

    SciTech Connect

    Turner, John A.; Clarno, Kevin; Sieger, Matt; Bartlett, Roscoe; Collins, Benjamin; Pawlowski, Roger; Schmidt, Rodney; Summers, Randall

    2016-09-08

    VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL), the first DOE Hub, which was established in July 2010 for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both a software and a numerical perspective, along with the goals and constraints that drove the major design decisions and their implications. As a result, we explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the application of VERA tools for a variety of challenging problems within the nuclear industry.

  9. The Virtual Environment for Reactor Applications (VERA): Design and architecture

    DOE PAGES

    Turner, John A.; Clarno, Kevin; Sieger, Matt; ...

    2016-09-08

    VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL), the first DOE Hub, which was established in July 2010 for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both amore » software and a numerical perspective, along with the goals and constraints that drove the major design decisions and their implications. As a result, we explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the application of VERA tools for a variety of challenging problems within the nuclear industry.« less

  10. Assessing the Impact of CAAD Design Tool on Architectural Design Education

    ERIC Educational Resources Information Center

    Al-Matarneh, Rana; Fethi, Ihsan

    2017-01-01

    The current concept of architectural design education in most schools of architecture in Jordan is a blend between manual and digital approaches. However, the disconnection between these two methods has resulted in the students' failure to transfer skills learnt through traditional methods to the digital method of CAAD. The objective of this study…

  11. Architectural design of heterogeneous metallic nanocrystals--principles and processes.

    PubMed

    Yu, Yue; Zhang, Qingbo; Yao, Qiaofeng; Xie, Jianping; Lee, Jim Yang

    2014-12-16

    CONSPECTUS: Heterogeneous metal nanocrystals (HMNCs) are a natural extension of simple metal nanocrystals (NCs), but as a research topic, they have been much less explored until recently. HMNCs are formed by integrating metal NCs of different compositions into a common entity, similar to the way atoms are bonded to form molecules. HMNCs can be built to exhibit an unprecedented architectural diversity and complexity by programming the arrangement of the NC building blocks ("unit NCs"). The architectural engineering of HMNCs involves the design and fabrication of the architecture-determining elements (ADEs), i.e., unit NCs with precise control of shape and size, and their relative positions in the design. Similar to molecular engineering, where structural diversity is used to create more property variations for application explorations, the architectural engineering of HMNCs can similarly increase the utility of metal NCs by offering a suite of properties to support multifunctionality in applications. The architectural engineering of HMNCs calls for processes and operations that can execute the design. Some enabling technologies already exist in the form of classical micro- and macroscale fabrication techniques, such as masking and etching. These processes, when used singly or in combination, are fully capable of fabricating nanoscopic objects. What is needed is a detailed understanding of the engineering control of ADEs and the translation of these principles into actual processes. For simplicity of execution, these processes should be integrated into a common reaction system and yet retain independence of control. The key to architectural diversity is therefore the independent controllability of each ADE in the design blueprint. The right chemical tools must be applied under the right circumstances in order to achieve the desired outcome. In this Account, after a short illustration of the infinite possibility of combining different ADEs to create HMNC design

  12. Rule-based graph theory to enable exploration of the space system architecture design space

    NASA Astrophysics Data System (ADS)

    Arney, Dale Curtis

    The primary goal of this research is to improve upon system architecture modeling in order to enable the exploration of design space options. A system architecture is the description of the functional and physical allocation of elements and the relationships, interactions, and interfaces between those elements necessary to satisfy a set of constraints and requirements. The functional allocation defines the functions that each system (element) performs, and the physical allocation defines the systems required to meet those functions. Trading the functionality between systems leads to the architecture-level design space that is available to the system architect. The research presents a methodology that enables the modeling of complex space system architectures using a mathematical framework. To accomplish the goal of improved architecture modeling, the framework meets five goals: technical credibility, adaptability, flexibility, intuitiveness, and exhaustiveness. The framework is technically credible, in that it produces an accurate and complete representation of the system architecture under consideration. The framework is adaptable, in that it provides the ability to create user-specified locations, steady states, and functions. The framework is flexible, in that it allows the user to model system architectures to multiple destinations without changing the underlying framework. The framework is intuitive for user input while still creating a comprehensive mathematical representation that maintains the necessary information to completely model complex system architectures. Finally, the framework is exhaustive, in that it provides the ability to explore the entire system architecture design space. After an extensive search of the literature, graph theory presents a valuable mechanism for representing the flow of information or vehicles within a simple mathematical framework. Graph theory has been used in developing mathematical models of many transportation and

  13. Weaving time into system architecture: satellite cost per operational day and optimal design lifetime

    NASA Astrophysics Data System (ADS)

    Saleh, Joseph H.; Hastings, Daniel E.; Newman, Dava J.

    2004-03-01

    An augmented perspective on system architecture is proposed (diachronic) that complements the traditional views on system architecture (synchronic). This paper proposes to view in a system architecture the flow of service (or utility) that the system will provide over its design lifetime. It suggests that the design lifetime is a fundamental component of system architecture although one cannot see it or touch it. Consequently, cost, utility, and value per unit time metrics are introduced. A framework is then developed that identifies optimal design lifetimes for complex systems in general, and space systems in particular, based on this augmented perspective of system architecture and on these metrics. It is found that an optimal design lifetime for a satellite exists, even in the case of constant expected revenues per day over the system's lifetime, and that it changes substantially with the expected Time to Obsolescence of the system and the volatility of the market the system is serving in the case of a commercial venture. The analysis thus proves that it is essential for a system architect to match the design lifetime with the dynamical characteristics of the environment the system is/will be operating in. It is also shown that as the uncertainty in the dynamical characteristics of the environment the system is operating in increases, the value of having the option to upgrade, modify, or extend the lifetime of a system at a later point in time increases depending on how events unfold.

  14. Architectural design of the science complex at Elizabeth City State University

    NASA Technical Reports Server (NTRS)

    Jahromi, Soheila

    1993-01-01

    This paper gives an overall view of the architectural design process and elements in taking an idea from conception to execution. The project presented is an example for this process. Once the need for a new structure is established, an architect studies the requirements, opinions and limits in creating a structure that people will exist in, move through, and use. Elements in designing a building include factors such as volume and surface, light and form changes of scale and view, movement and stasis. Some of the other factors are functions and physical conditions of construction. Based on experience, intuition, and boundaries, an architect will utilize all elements in creating a new building. In general, the design process begins with studying the spatial needs which develop into an architectural program. A comprehensive and accurate architectural program is essential for having a successful building. The most attractive building which does not meet the functional needs of its users has failed at the primary reason for its existence. To have a good program an architect must have a full understanding of the daily functions that will take place in the building. The architectural program along with site characteristics are among a few of the important guidelines in studying the form, adjacencies, and circulation for the structure itself and also in relation to the adjacent structures. Conceptual studies are part of the schematic design, which is the first milestone in the design process. The other reference points are design development and construction documents. At each milestone, review and coordination with all the consultants is established, and the user is essential in refining the project. In design development phase, conceptual diagrams take shape, and architectural, structural, mechanical, and electrical systems are developed. The final phase construction documents convey all the information required to construct the building. The design process and elements

  15. Learning Design and Service-Oriented Architectures: A Mutual Dependency?

    ERIC Educational Resources Information Center

    McAndrew, Patrick; Weller, Martin; Barrett-Baxendale, Mark

    2006-01-01

    This paper looks at how the concept of reusability has gained currency in e-learning. Initial attention was focused on reuse of content, but recently attention has focused on reusable software tools and reusable activity structures. The former has led to the proposal of service-oriented architectures, and the latter has seen the development of the…

  16. Franz Kafka in the Design Studio: A Hermeneutic-Phenomenological Approach to Architectural Design Education

    ERIC Educational Resources Information Center

    Hisarligil, Beyhan Bolak

    2012-01-01

    This article demonstrates the outcomes of taking a hermeneutic phenomenological approach to architectural design and discusses the potentials for imaginative reasoning in design education. This study tests the use of literature as a verbal form of art and design and the contribution it can make to imaginative design processes--which are all too…

  17. Anatomy meets architecture: designing new laboratories for new anatomists.

    PubMed

    Trelease, Robert B

    2006-11-01

    General notions of architecture are familiar to anatomists, and they frequently use the word in describing the functional structures of cells, tissues, and whole organisms. Beyond concepts relating to orderly structure, anatomists infrequently encounter the profession of architecture and practicing architects. Significantly, anatomists can work with architects in the design and building of laboratories and classrooms, efforts that can have sustained effects on the practice of anatomy. In this paper, we consider cooperative interactions between anatomists and architects in designing new laboratories that accommodate educational innovations and increasingly valuable dissection resources. We begin by introducing architecture and architects in their roles in design and building. We next consider essential features and technologies for new laboratories that support a combination of classical dissection, prosection, models, and computer-based information. Different working conditions are reviewed for designing renovations of existing facilities, long-term planning for new, same-institution buildings, and extramural planning and construction for new medical schools. Whatever the project, anatomists work with architects in repeated interactive planning meetings that arrive at working laboratory designs by a process similar to successive approximation. In consulting on designs for extramural institutions, anatomists must balance client administration and faculty needs with objective oversight of practice-side design features, constraints, and capacity for innovative uses with new curricula. Architects are the key agents in producing laboratories designed for flexible and innovative anatomical education, although client-favored models for Internet-based technology can limit future use of cadavers in multiyear teaching of medical and health sciences students.

  18. GridOPTICS(TM): A Design for Plug-and-Play Smart Grid Software Architecture

    SciTech Connect

    Gorton, Ian; Liu, Yan; Yin, Jian

    2012-06-03

    As the smart grid becomes reality, software architectures for integrating legacy systems with new innovative approaches for grid management are needed. These architectures must exhibit flexibility, extensibility, interoperability and scalability. In this position paper, we describe our preliminary work to design such an architecture, known as GridOPTICS, that will enable the deployment and integration of new software tools in smart grid operations. Our preliminary design is based upon use cases from PNNL’s Future Power Grid Initiative, which is a developing a collection of advanced software technologies for smart grid management and control. We describe the motivations for GridOPTICS, and the preliminary design that we are currently prototyping for several distinct use cases.

  19. Using an Integrated Distributed Test Architecture to Develop an Architecture for Mars

    NASA Technical Reports Server (NTRS)

    Othon, William L.

    2016-01-01

    The creation of a crew-rated spacecraft architecture capable of sending humans to Mars requires the development and integration of multiple vehicle systems and subsystems. Important new technologies will be identified and matured within each technical discipline to support the mission. Architecture maturity also requires coordination with mission operations elements and ground infrastructure. During early architecture formulation, many of these assets will not be co-located and will required integrated, distributed test to show that the technologies and systems are being developed in a coordinated way. When complete, technologies must be shown to function together to achieve mission goals. In this presentation, an architecture will be described that promotes and advances integration of disparate systems within JSC and across NASA centers.

  20. Designing an artificial pancreas architecture: the AP@home experience.

    PubMed

    Lanzola, Giordano; Toffanin, Chiara; Di Palma, Federico; Del Favero, Simone; Magni, Lalo; Bellazzi, Riccardo

    2015-12-01

    The latest achievements in sensor technologies for blood glucose level monitoring, pump miniaturization for insulin delivery, and the availability of portable computing devices are paving the way toward the artificial pancreas as a treatment for diabetes patients. This device encompasses a controller unit that oversees the administration of insulin micro-boluses and continuously drives the pump based on blood glucose readings acquired in real time. In order to foster the research on the artificial pancreas and prepare for its adoption as a therapy, the European Union in 2010 funded the AP@home project, following a series of efforts already ongoing in the USA. This paper, authored by members of the AP@home consortium, reports on the technical issues concerning the design and implementation of an architecture supporting the exploitation of an artificial pancreas platform. First a PC-based platform was developed by the authors to prove the effectiveness and reliability of the algorithms responsible for insulin administration. A mobile-based one was then adopted to improve the comfort for the patients. Both platforms were tested on real patients, and a description of the goals, the achievements, and the major shortcomings that emerged during those trials is also reported in the paper.

  1. Embodiment and enculturation: the future of architectural design.

    PubMed

    Mallgrave, Harry F

    2015-01-01

    A half-century ago the Dutch architect Aldo van Eyck encouraged designers to think about "space and time" not as abstractions in themselves but rather as cultural events better approached through the medium of "place and occasion." Van Eyck made this point on the basis of his own travels and through his extensive readings in cultural anthropology, and his prescience is only now acquiring the credibility that it deserves through the work of a multitude of interdisciplinary researchers. Phenomenologists argue that we are embodied organisms-acting-within-environments, and these inhabiting abodes are constructed of both material and cultural dimensions. We are thus preeminently social in our range of self-consciousness, and intensely ceremonial in every facet of our being. Evolutionary psychologists and anthropologists are currently locating the origin and development of our most basic social behaviors far in our pre-human past; neuroscientists are today modeling our social circuits in the deepest reaches of our brains. Architecture would gain much from an updated cultural theory grounded in these new models of human existence.

  2. Embodiment and enculturation: the future of architectural design

    PubMed Central

    Mallgrave, Harry F.

    2015-01-01

    A half-century ago the Dutch architect Aldo van Eyck encouraged designers to think about “space and time” not as abstractions in themselves but rather as cultural events better approached through the medium of “place and occasion.” Van Eyck made this point on the basis of his own travels and through his extensive readings in cultural anthropology, and his prescience is only now acquiring the credibility that it deserves through the work of a multitude of interdisciplinary researchers. Phenomenologists argue that we are embodied organisms-acting-within-environments, and these inhabiting abodes are constructed of both material and cultural dimensions. We are thus preeminently social in our range of self-consciousness, and intensely ceremonial in every facet of our being. Evolutionary psychologists and anthropologists are currently locating the origin and development of our most basic social behaviors far in our pre-human past; neuroscientists are today modeling our social circuits in the deepest reaches of our brains. Architecture would gain much from an updated cultural theory grounded in these new models of human existence. PMID:26441773

  3. Developing an Agent Systems Reference Architecture

    DTIC Science & Technology

    2010-05-01

    The notion of a reference architecture has different meanings based on the view- points and concerns of the stakeholders. In this work, a reference...functional concept defined by the ASRM and further elaborating actors and invoca- tion points . The intended audience are high-level practitioners who need...execution. Figure 1(a) displays the temporal view of a scenario demonstrating the invocation points of the agent mobility functional con- cept. The

  4. The Field Trip as Part of Spatial (Architectural) Design Art Classes

    ERIC Educational Resources Information Center

    Batic, Janja

    2011-01-01

    Spatial (architectural) design is one of five fields introduced to pupils as part of art education. In planning architectural design tasks, one should take into consideration the particularities of the architectural design process and enable pupils to experience space and relationships within space through their own movement. Furthermore, pupils…

  5. Architectural design and simulation of a virtual memory

    NASA Technical Reports Server (NTRS)

    Kwok, G.; Chu, Y.

    1971-01-01

    Virtual memory is an imaginary main memory with a very large capacity which the programmer has at his disposal. It greatly contributes to the solution of the dynamic storage allocation problem. The architectural design of a virtual memory is presented which implements by hardware the idea of queuing and scheduling the page requests to a paging drum in such a way that the access of the paging drum is increased many times. With the design, an increase of up to 16 times in page transfer rate is achievable when the virtual memory is heavily loaded. This in turn makes feasible a great increase in the system throughput.

  6. Do Performance-Based Codes Support Universal Design in Architecture?

    PubMed

    Grangaard, Sidse; Frandsen, Anne Kathrine

    2016-01-01

    The research project 'An analysis of the accessibility requirements' studies how Danish architectural firms experience the accessibility requirements of the Danish Building Regulations and it examines their opinions on how future regulative models can support innovative and inclusive design - Universal Design (UD). The empirical material consists of input from six workshops to which all 700 Danish Architectural firms were invited, as well as eight group interviews. The analysis shows that the current prescriptive requirements are criticized for being too homogenous and possibilities for differentiation and zoning are required. Therefore, a majority of professionals are interested in a performance-based model because they think that such a model will support 'accessibility zoning', achieving flexibility because of different levels of accessibility in a building due to its performance. The common understanding of accessibility and UD is directly related to buildings like hospitals and care centers. When the objective is both innovative and inclusive architecture, the request of a performance-based model should be followed up by a knowledge enhancement effort in the building sector. Bloom's taxonomy of educational objectives is suggested as a tool for such a boost. The research project has been financed by the Danish Transport and Construction Agency.

  7. Specification and Design of Electrical Flight System Architectures with SysML

    NASA Technical Reports Server (NTRS)

    McKelvin, Mark L., Jr.; Jimenez, Alejandro

    2012-01-01

    Modern space flight systems are required to perform more complex functions than previous generations to support space missions. This demand is driving the trend to deploy more electronics to realize system functionality. The traditional approach for the specification, design, and deployment of electrical system architectures in space flight systems includes the use of informal definitions and descriptions that are often embedded within loosely coupled but highly interdependent design documents. Traditional methods become inefficient to cope with increasing system complexity, evolving requirements, and the ability to meet project budget and time constraints. Thus, there is a need for more rigorous methods to capture the relevant information about the electrical system architecture as the design evolves. In this work, we propose a model-centric approach to support the specification and design of electrical flight system architectures using the System Modeling Language (SysML). In our approach, we develop a domain specific language for specifying electrical system architectures, and we propose a design flow for the specification and design of electrical interfaces. Our approach is applied to a practical flight system.

  8. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds.

    PubMed

    Yoo, Dongjin

    2012-07-01

    Advanced additive manufacture (AM) techniques are now being developed to fabricate scaffolds with controlled internal pore architectures in the field of tissue engineering. In general, these techniques use a hybrid method which combines computer-aided design (CAD) with computer-aided manufacturing (CAM) tools to design and fabricate complicated three-dimensional (3D) scaffold models. The mathematical descriptions of micro-architectures along with the macro-structures of the 3D scaffold models are limited by current CAD technologies as well as by the difficulty of transferring the designed digital models to standard formats for fabrication. To overcome these difficulties, we have developed an efficient internal pore architecture design system based on triply periodic minimal surface (TPMS) unit cell libraries and associated computational methods to assemble TPMS unit cells into an entire scaffold model. In addition, we have developed a process planning technique based on TPMS internal architecture pattern of unit cells to generate tool paths for freeform fabrication of tissue engineering porous scaffolds.

  9. 36 CFR 910.31 - High architectural quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... architectural quality. Development must maintain a uniformly high standard of architecture, representative of... architectural treatment of new buildings, particularly in terms of massing, facade design (including...

  10. 36 CFR 910.31 - High architectural quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... architectural quality. Development must maintain a uniformly high standard of architecture, representative of... architectural treatment of new buildings, particularly in terms of massing, facade design (including...

  11. FPGA wavelet processor design using language for instruction-set architectures (LISA)

    NASA Astrophysics Data System (ADS)

    Meyer-Bäse, Uwe; Vera, Alonzo; Rao, Suhasini; Lenk, Karl; Pattichis, Marios

    2007-04-01

    The design of an microprocessor is a long, tedious, and error-prone task consisting of typically three design phases: architecture exploration, software design (assembler, linker, loader, profiler), architecture implementation (RTL generation for FPGA or cell-based ASIC) and verification. The Language for instruction-set architectures (LISA) allows to model a microprocessor not only from instruction-set but also from architecture description including pipelining behavior that allows a design and development tool consistency over all levels of the design. To explore the capability of the LISA processor design platform a.k.a. CoWare Processor Designer we present in this paper three microprocessor designs that implement a 8/8 wavelet transform processor that is typically used in today's FBI fingerprint compression scheme. We have designed a 3 stage pipelined 16 bit RISC processor (NanoBlaze). Although RISC μPs are usually considered "fast" processors due to design concept like constant instruction word size, deep pipelines and many general purpose registers, it turns out that DSP operations consume essential processing time in a RISC processor. In a second step we have used design principles from programmable digital signal processor (PDSP) to improve the throughput of the DWT processor. A multiply-accumulate operation along with indirect addressing operation were the key to achieve higher throughput. A further improvement is possible with today's FPGA technology. Today's FPGAs offer a large number of embedded array multipliers and it is now feasible to design a "true" vector processor (TVP). A multiplication of two vectors can be done in just one clock cycle with our TVP, a complete scalar product in two clock cycles. Code profiling and Xilinx FPGA ISE synthesis results are provided that demonstrate the essential improvement that a TVP has compared with traditional RISC or PDSP designs.

  12. Agile Development and Software Architecture: Understanding Scale and Risk

    DTIC Science & Technology

    2012-04-26

    In a Scrum project environment, the architectural runway may be established during Sprint 0. Sprint 0 might have a longer duration than the rest of...architecture In its simplest instantiation, a Scrum development environment consists of: • a single co-located, cross-functional team • with skills...cause analysis: Typical problem 1 Symptom • Scrum teams spend almost all of their time fixing defects, and new feature development is continuously

  13. Evaluation of computer-aided system design tools for SDI (Strategic Defense Initiative) Battle Management/C3 (command, control and communications) architecture development. Final report

    SciTech Connect

    Fife, D.W.; Campbell, K.; Chludzinski, J.; Corcoran, N.; Gonzalez, C.

    1987-10-01

    This IDA paper was prepared at the request of the Strategic Defense Initiative Organization. The paper documents findings of an evaluation on the capabilities of certain computer software/computer-aided software engineering (CASE) tools to provide computer-aided graphic design of Battle Management/C3 for the SDIO. Each tool (of the five selected on the basis of the best available at this time), was installed at IDA. After training by vendor tool staff, an IDA team, using a hands-on design experience determined the merits of the tools for SDI application. A comparative summary of the tools is given relative to envisaged SDI requirements and an extensive questionnaire is answered for each.

  14. Space Station Freedom vibroacoustic monitoring system design architecture

    NASA Astrophysics Data System (ADS)

    Lengel, Robert C., Jr.

    Requirements established by NASA's Man-Systems Division provide for a means to measure and verify vibroacoustic levels that are within specifications and do not exceed crewmember exposure limits in which an astronaut lives and works. Development has been initiated of a vibroacoustic monitoring system (VAMS) and a crew health care subsystem to serve this purpose. VAMS operational and performance requirements, space vehicle requirements, and signal processing requirements are described, as well as the present system concept architecture.

  15. Design Issues in Parallel Architectures for Artificial Intelligence.

    DTIC Science & Technology

    1983-11-01

    procedures for taking action. 5. The Apiary Approach We are developing an experimental machine architecture. called the Apiary . based on theory [Hewitt 801...To date, much o1 _,e implementation work on the Apiary has centered around simulating the Apiary on a network of current-generation sequential...Instead. we model the Apiary as a set of workers, each worker being analogous to a single computer executing instructions serially, together with its own

  16. Developing traveler information systems using the National ITS Architecture

    SciTech Connect

    1998-08-01

    The document focuses on traveler information systems, a component of ITS. It aims to provide practical help for the transportation community with deploying traveler information systems in an integrated, multimodal environment using the National ITS Architecture. ITS is the application of management strategies and technologies to increase the efficiency and safety of national, regional, and local surface transportation systems. This document covers the basics of traveler information ITS applications (including public-private partnerships), the role the National ITS Architecture can play in traveler information system project development, the development process for a regional architecture, some challenges faced by transportation management agencies, and some best practices and lessons learned for developing and deploying advanced traveler information systems. The regional architecture will indicate how current and future systems in the region may be integrated to obtain the added benefits available through integration of these systems.

  17. Designing Crop Simulation Web Service with Service Oriented Architecture Principle

    NASA Astrophysics Data System (ADS)

    Chinnachodteeranun, R.; Hung, N. D.; Honda, K.

    2015-12-01

    Crop simulation models are efficient tools for simulating crop growth processes and yield. Running crop models requires data from various sources as well as time-consuming data processing, such as data quality checking and data formatting, before those data can be inputted to the model. It makes the use of crop modeling limited only to crop modelers. We aim to make running crop models convenient for various users so that the utilization of crop models will be expanded, which will directly improve agricultural applications. As the first step, we had developed a prototype that runs DSSAT on Web called as Tomorrow's Rice (v. 1). It predicts rice yields based on a planting date, rice's variety and soil characteristics using DSSAT crop model. A user only needs to select a planting location on the Web GUI then the system queried historical weather data from available sources and expected yield is returned. Currently, we are working on weather data connection via Sensor Observation Service (SOS) interface defined by Open Geospatial Consortium (OGC). Weather data can be automatically connected to a weather generator for generating weather scenarios for running the crop model. In order to expand these services further, we are designing a web service framework consisting of layers of web services to support compositions and executions for running crop simulations. This framework allows a third party application to call and cascade each service as it needs for data preparation and running DSSAT model using a dynamic web service mechanism. The framework has a module to manage data format conversion, which means users do not need to spend their time curating the data inputs. Dynamic linking of data sources and services are implemented using the Service Component Architecture (SCA). This agriculture web service platform demonstrates interoperability of weather data using SOS interface, convenient connections between weather data sources and weather generator, and connecting

  18. Design, Development and Pre-Flight Testing of the Communications, Navigation, and Networking Reconfigurable Testbed (Connect) to Investigate Software Defined Radio Architecture on the International Space Station

    NASA Technical Reports Server (NTRS)

    Over, Ann P.; Barrett, Michael J.; Reinhart, Richard C.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    The Communication Navigation and Networking Reconfigurable Testbed (CoNNeCT) is a NASA-sponsored mission, which will investigate the usage of Software Defined Radios (SDRs) as a multi-function communication system for space missions. A softwaredefined radio system is a communication system in which typical components of the system (e.g., modulators) are incorporated into software. The software-defined capability allows flexibility and experimentation in different modulation, coding and other parameters to understand their effects on performance. This flexibility builds inherent redundancy and flexibility into the system for improved operational efficiency, real-time changes to space missions and enhanced reliability/redundancy. The CoNNeCT Project is a collaboration between industrial radio providers and NASA. The industrial radio providers are providing the SDRs and NASA is designing, building and testing the entire flight system. The flight system will be integrated on the Express Logistics Carrier (ELC) on the International Space Station (ISS) after launch on the H-IIB Transfer Vehicle in 2012. This paper provides an overview of the technology research objectives, payload description, design challenges and pre-flight testing results.

  19. On the Design of a Comprehensive Authorisation Framework for Service Oriented Architecture (SOA)

    DTIC Science & Technology

    2013-07-01

    20 4.1 Business Processes Authorisation Architecture (BPAA) ................................. 21 4.2 Design...of the Architecture .................................................................................... 21 4.2.1 System Components... 21 4.2.2 Business Process Definition and Administration ............................. 22

  20. Explorations in Teaching Sustainable Design: A Studio Experience in Interior Design/Architecture

    ERIC Educational Resources Information Center

    Gurel, Meltem O.

    2010-01-01

    This article argues that a design studio can be a dynamic medium to explore the creative potential of the complexity of sustainability from its technological to social ends. The study seeks to determine the impact of an interior design/architecture studio experience that was initiated to teach diverse meanings of sustainability and to engage the…

  1. A hybrid framework for design and analysis of fault-tolerant architectures for nanoscale molecular crossbar memories.

    SciTech Connect

    Graham, P. S.; Gokhale, M.; Bhaduri, D.; Shukla, S. K.; Coker, D.; Taylor, V.

    2005-01-01

    It is anticipated that self assembled ultra-dense nanomemories will be more susceptible to manufacturing defects and transient faults than conventional CMOS-based memories, thus the need exists for fault-tolerant memory architectures. The development of such architectures will require intense analysis in terms of achievable performance measures - power dissipation, area, delay and reliability. In this paper, we propose and develop a hybrid automation framework, called HMAN, that aids the design and analysis of fault-tolerant architectures for nanomemories. Our framework can analyze memory architectures at two different levels of the design abstraction, namely the system and circuit levels. To the best of our knowledge, this is the first such attempt at analyzing memory systems at different levels of abstraction and then correlating the different performance measures to provide the system designers guidelines for designing a robust nanomemory. We also illustrate the application of our framework to self-assembled crossbar architectures by analyzing a hierarchical fault-tolerant crossbar-based memory architecture that we have developed, and comparing this with existing crossbar architectures.

  2. A spatially augmented reality sketching interface for architectural daylighting design.

    PubMed

    Sheng, Yu; Yapo, Theodore C; Young, Christopher; Cutler, Barbara

    2011-01-01

    We present an application of interactive global illumination and spatially augmented reality to architectural daylight modeling that allows designers to explore alternative designs and new technologies for improving the sustainability of their buildings. Images of a model in the real world, captured by a camera above the scene, are processed to construct a virtual 3D model. To achieve interactive rendering rates, we use a hybrid rendering technique, leveraging radiosity to simulate the interreflectance between diffuse patches and shadow volumes to generate per-pixel direct illumination. The rendered images are then projected on the real model by four calibrated projectors to help users study the daylighting illumination. The virtual heliodon is a physical design environment in which multiple designers, a designer and a client, or a teacher and students can gather to experience animated visualizations of the natural illumination within a proposed design by controlling the time of day, season, and climate. Furthermore, participants may interactively redesign the geometry and materials of the space by manipulating physical design elements and see the updated lighting simulation.

  3. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  4. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars1 left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper addresses the space suit system architecture and technologies required based on human exploration (EVA) destinations, and describes how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important as humans venture farther from Earth. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  5. A new architecture for hyperspectral image processing and analysis system: design and implementation

    NASA Astrophysics Data System (ADS)

    Yu, Jianlin; Hu, Xingtang; Zhang, Bing; Ning, Shunian

    2003-09-01

    A new architecture for HIPAS (Hyperspectral Image Processing and Analysis System V2.0) was introduced in this paper which was modified and improved based on the first version of HIPAS V1.0. The comprehensive hyperspectral image analyzing system has been developed under VC++6.0 integrated development environment (IDE) and obtained perfect runtime efficiency and stability. The base architecture was specially designed and implemented to meet the requirements for the rapid preprocessing of imaging spectrometer data and easy prototyping of algorithms. Based on the modularized and object oriented software engineering construction, the architecture is compatible for other UNIX platforms with little modification. The most important components of HIPAS were presented in this paper including tools for input/output, preprocessing, data visualization, information extraction, conventional image analysis, advanced tools, and integrated interface to connect with general spectral databases. Some new methodologies for data analysis and processing were realized and applied to reach some valuable results based on the architecture including mineral identification, agriculture investigation, urban mapping etc. With an open storage architecture, HIPAS is entirely compatible with some advanced special commercial software such as ENVI and ERDAS and even the common image processing system Photoshop. At last, a strict and careful software test was carried out and the results were also analyzed and discussed.

  6. Teledesic Global Wireless Broadband Network: Space Infrastructure Architecture, Design Features and Technologies

    NASA Technical Reports Server (NTRS)

    Stuart, James R.

    1995-01-01

    The Teledesic satellites are a new class of small satellites which demonstrate the important commercial benefits of using technologies developed for other purposes by U.S. National Laboratories. The Teledesic satellite architecture, subsystem design features, and new technologies are described. The new Teledesic satellite manufacturing, integration, and test approaches which use modern high volume production techniques and result in surprisingly low space segment costs are discussed. The constellation control and management features and attendant software architecture features are addressed. After briefly discussing the economic and technological impact on the USA commercial space industries of the space communications revolution and such large constellation projects, the paper concludes with observations on the trend toward future system architectures using networked groups of much smaller satellites.

  7. Critical early mission design considerations for lunar data systems architecture

    NASA Technical Reports Server (NTRS)

    Hei, Donald J., Jr.; Stephens, Elaine

    1992-01-01

    This paper outlines recent early mission design activites for a lunar data systems architecture. Each major functional element is shown to be strikingly similar when viewed in a common reference system. While this similarity probably deviates with lower levels of decomposition, the sub-functions can always be arranged into similar and dissimilar categories. Similar functions can be implemented as objects - implemented once and reused several times like today's advanced integrated circuits. This approach to mission data systems, applied to other NASA programs, may result in substantial agency implementation and maintenance savings. In today's zero-sum-game budgetary environment, this approach could help to enable a lunar exploration program in the next decade. Several early mission studies leading to such an object-oriented data systems design are recommended.

  8. The Architecture of Professional Development: Materials, Messages and Meaning

    ERIC Educational Resources Information Center

    Bredeson, Paul V.

    2002-01-01

    As an aesthetic form, architecture deals with the creation and definition of space expressed in buildings and other physical structures. The Colosseum in Rome, Notre Dame in Paris, and the United States capital in Washington, through their designs define space, capture our imagination, and communicate important cultural and historical messages.…

  9. Architectural design of a secure forensic state psychiatric hospital.

    PubMed

    Dvoskin, Joel A; Radomski, Steven J; Bennett, Charles; Olin, Jonathan A; Hawkins, Robert L; Dotson, Linda A; Drewnicky, Irene N

    2002-01-01

    This article describes the architectural design of a secure forensic state psychiatric hospital. The project combined input from staff at all levels of the client organization, outside consultants, and a team of experienced architects. The design team was able to create a design that maximized patient dignity and privacy on one hand, and the ability of staff to observe all patient activity on the other. The design centers around 24-bed units, broken into smaller living wings of eight beds each. Each eight-bed living wing has its own private bathrooms (two) and showers (two), as well as a small living area solely reserved for these eight patients and their guests. An indoor-outdoor dayroom allows patients to go outside whenever they choose, while allowing staff to continue observing them. The heart of the facility is a large treatment mall, designed to foster the acquisition of social, emotional, cognitive, and behavioral skills that will help patients to safely return to their communities.

  10. Overview and Software Architecture of the Copernicus Trajectory Design and Optimization System

    NASA Technical Reports Server (NTRS)

    Williams, Jacob; Senent, Juan S.; Ocampo, Cesar; Mathur, Ravi; Davis, Elizabeth C.

    2010-01-01

    The Copernicus Trajectory Design and Optimization System represents an innovative and comprehensive approach to on-orbit mission design, trajectory analysis and optimization. Copernicus integrates state of the art algorithms in optimization, interactive visualization, spacecraft state propagation, and data input-output interfaces, allowing the analyst to design spacecraft missions to all possible Solar System destinations. All of these features are incorporated within a single architecture that can be used interactively via a comprehensive GUI interface, or passively via external interfaces that execute batch processes. This paper describes the Copernicus software architecture together with the challenges associated with its implementation. Additionally, future development and planned new capabilities are discussed. Key words: Copernicus, Spacecraft Trajectory Optimization Software.

  11. Architectural development of an advanced EVA Electronic System

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph

    1992-01-01

    An advanced electronic system for future EVA missions (including zero gravity, the lunar surface, and the surface of Mars) is under research and development within the Advanced Life Support Division at NASA Ames Research Center. As a first step in the development, an optimum system architecture has been derived from an analysis of the projected requirements for these missions. The open, modular architecture centers around a distributed multiprocessing concept where the major subsystems independently process their own I/O functions and communicate over a common bus. Supervision and coordination of the subsystems is handled by an embedded real-time operating system kernel employing multitasking software techniques. A discussion of how the architecture most efficiently meets the electronic system functional requirements, maximizes flexibility for future development and mission applications, and enhances the reliability and serviceability of the system in these remote, hostile environments is included.

  12. Demand Activated Manufacturing Architecture (DAMA) supply chain collaboration development methodology

    SciTech Connect

    PETERSEN,MARJORIE B.; CHAPMAN,LEON D.

    2000-03-15

    The Demand Activated Manufacturing Architecture (DAMA) project during the last five years of work with the U.S. Integrated Textile Complex (retail, apparel, textile, and fiber sectors) has developed an inter-enterprise supply chain collaboration development methodology. The goal of this methodology is to enable a supply chain to work more efficiently and competitively. The outcomes of this methodology include: (1) A definitive description and evaluation of the role of business cultures and supporting business organizational structures in either inhibiting or fostering change to a more competitive supply chain; (2) ``As-Is'' and proposed ``To-Be'' supply chain business process models focusing on information flows and decision-making; and (3) Software tools that enable and support a transition to a more competitive supply chain, which results form a business driven rather than technologically driven approach to software design. This methodology development will continue in FY00 as DAMA engages companies in the soft goods industry in supply chain research and implementation of supply chain collaboration.

  13. Functional architecture of the retina: development and disease.

    PubMed

    Hoon, Mrinalini; Okawa, Haruhisa; Della Santina, Luca; Wong, Rachel O L

    2014-09-01

    Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina.

  14. Bauhaus, Crown Hall, FAU: A Comparative Investigation of the Curriculum Design in Schools of Architecture

    ERIC Educational Resources Information Center

    Mulrooney, Sarah

    2009-01-01

    One of the central themes addressed by this paper is the design of the curriculum for architectural education using three schools of architecture: the Bauhaus in Dessau, Crown Hall in Chicago and the Faculty of Architecture and Urbanism (FAU) in Sao Paulo. It also reflects on the practices in other schools such as Frank Lloyd Wright's Taliesin…

  15. Geometric constraints for shape and topology optimization in architectural design

    NASA Astrophysics Data System (ADS)

    Dapogny, Charles; Faure, Alexis; Michailidis, Georgios; Allaire, Grégoire; Couvelas, Agnes; Estevez, Rafael

    2017-02-01

    This work proposes a shape and topology optimization framework oriented towards conceptual architectural design. A particular emphasis is put on the possibility for the user to interfere on the optimization process by supplying information about his personal taste. More precisely, we formulate three novel constraints on the geometry of shapes; while the first two are mainly related to aesthetics, the third one may also be used to handle several fabrication issues that are of special interest in the device of civil structures. The common mathematical ingredient to all three models is the signed distance function to a domain, and its sensitivity analysis with respect to perturbations of this domain; in the present work, this material is extended to the case where the ambient space is equipped with an anisotropic metric tensor. Numerical examples are discussed in two and three space dimensions.

  16. An architecture for designing fuzzy logic controllers using neural networks

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.

  17. Approach for Mitigating Pressure Garment Design Risks in a Mobile Lunar Surface Systems Architecture

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay

    2009-01-01

    The stated goals of the 2004 Vision for Space Exploration focus on establishing a human presence throughout the solar system beginning with the establishment of a permanent human presence on the Moon. However, the precise objectives to be accomplished on the lunar surface and the optimal system architecture to achieve those objectives have been a topic of much debate since the inception of the Constellation Program. There are two basic styles of system architectures being traded at the Programmatic level: a traditional large outpost that would focus on techniques for survival off our home planet and a greater depth of exploration within one area, or a mobile approach- akin to a series of nomadic camps- that would allow greater breadth of exploration opportunities. The traditional outpost philosophy is well within the understood pressure garment design space with respect to developing interfaces and operational life cycle models. The mobile outpost, however, combines many unknowns with respect to pressure garment performance and reliability that could dramatically affect the cost and schedule risks associated with the Constellation space suit system. This paper provides an overview of the concepts being traded for a mobile architecture from the operations and hardware implementation perspective, describes the primary risks to the Constellation pressure garment associated with each of the concepts, and summarizes the approach necessary to quantify the pressure garment design risks to enable the Constellation Program to make informed decisions when deciding on an overall lunar surface systems architecture.

  18. Design of silicon brains in the nano-CMOS era: spiking neurons, learning synapses and neural architecture optimization.

    PubMed

    Cassidy, Andrew S; Georgiou, Julius; Andreou, Andreas G

    2013-09-01

    We present a design framework for neuromorphic architectures in the nano-CMOS era. Our approach to the design of spiking neurons and STDP learning circuits relies on parallel computational structures where neurons are abstracted as digital arithmetic logic units and communication processors. Using this approach, we have developed arrays of silicon neurons that scale to millions of neurons in a single state-of-the-art Field Programmable Gate Array (FPGA). We demonstrate the validity of the design methodology through the implementation of cortical development in a circuit of spiking neurons, STDP synapses, and neural architecture optimization.

  19. Architectures for Developing Multiuser, Immersive Learning Scenarios

    ERIC Educational Resources Information Center

    Nadolski, Rob J.; Hummel, Hans G. K.; Slootmaker, Aad; van der Vegt, Wim

    2012-01-01

    Multiuser immersive learning scenarios hold strong potential for lifelong learning as they can support the acquisition of higher order skills in an effective, efficient, and attractive way. Existing virtual worlds, game development platforms, and game engines only partly cater for the proliferation of such learning scenarios as they are often…

  20. 36 CFR 910.15 - New development design.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false New development design. 910... PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.15 New development design. (a) All new development shall represent the best contemporary architectural and urban planning...

  1. 36 CFR 910.15 - New development design.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false New development design. 910... PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.15 New development design. (a) All new development shall represent the best contemporary architectural and urban planning...

  2. The development of brain network architecture.

    PubMed

    Wierenga, Lara M; van den Heuvel, Martijn P; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A; Durston, Sarah

    2016-02-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P < 0.0001), increase in node strength (P < 0.0001) as well as network clustering (P = 0.001), which may reflect fine-tuning of topological organization. These results suggest a sequential maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc.

  3. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; Korona, F. Adam; McFarland, Shane

    2012-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars [1] left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper will address the space suit system architecture and technologies required based upon human exploration extravehicular activity (EVA) destinations, and describe how they should evolve to meet the future exploration EVA needs of the US human space flight program.1, 2, 3 In looking forward to future US space exploration to a space suit architecture with maximum reuse of technology and functionality across a range of mission profiles and destinations, a series of exercises and analyses have provided a strong indication that the Constellation Program (CxP) space suit architecture is postured to provide a viable solution for future exploration missions4. The destination environmental analysis presented in this paper demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew given any human mission outside of low-Earth orbit (LEO). Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important the farther away from Earth humans venture. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, independent of any particular program, and provide architecture and design solutions for space suit systems in time or ahead of need dates for any particular crewed flight program in the future. The approach to space suit design and interface definition discussion will show how the architecture is very adaptable to programmatic and funding changes with

  4. Architecture and systems design of a reusable Martian twin rotor tailsitter

    NASA Astrophysics Data System (ADS)

    Forshaw, Jason L.; Lappas, Vaios J.

    2012-11-01

    A rapidly developing field is that of tailsitters, aircraft capable of transitioning between horizontal and vertical flight, a premise that supports a diverse range of applications. Tailsitters can effortlessly land and hover at will, yet can also move at high speed between destinations making them ideal in undertaking 'multiple missions to land at multiple destinations far apart'. This paper considers how the concept of twin helicopter rotor tailsitters, such as QinetiQ's Eye-OnTM, can be adapted for use in a Martian environment. The mission architecture and system requirements for both reusable and single-use tailsitters are considered and 12 disparate subsystems or fields (including propulsion, power and aerodynamics) are designed using a high-level systems approach. The resulting tailsitter is capable of covering 100km and 450km in reusable and single-use architectures respectively. A docking station is also designed utilising a four stage process for deployment of the tailsitter.

  5. Influence of School Architecture and Design on Healthy Eating: A Review of the Evidence

    PubMed Central

    Brittin, Jeri; Sorensen, Dina; Trowbridge, Matthew J.; Yaroch, Amy L.; Siahpush, Mohammad; Tibbits, Melissa; Huang, Terry T.-K.

    2015-01-01

    We examined evidence regarding the influence of school physical environment on healthy-eating outcomes. We applied a systems perspective to examine multiple disciplines’ theoretical frameworks and used a mixed-methods systematic narrative review method, considering both qualitative and quantitative sources (published through March 2014) for inclusion. We developed a causal loop diagram from 102 sources identified. We found evidence of the influence of many aspects of a school’s physical environment on healthy-eating outcomes. The causal loop diagram highlights multilevel and interrelated factors and elucidates the specific roles of design and architecture in encouraging healthy eating within schools. Our review highlighted the gaps in current evidence and identified areas of research needed to refine and expand school architecture and design strategies for addressing healthy eating. PMID:25713964

  6. GNC Architecture Design for ARES Simulation. Revision 3.0. Revision 3.0

    NASA Technical Reports Server (NTRS)

    Gay, Robert

    2006-01-01

    The purpose of this document is to describe the GNC architecture and associated interfaces for all ARES simulations. Establishing a common architecture facilitates development across the ARES simulations and provides an efficient mechanism for creating an end-to-end simulation capability. In general, the GNC architecture is the frame work in which all GNC development takes place, including sensor and effector models. All GNC software applications have a standard location within the architecture making integration easier and, thus more efficient.

  7. Development of a Conceptual Structure for Architectural Solar Energy Systems.

    ERIC Educational Resources Information Center

    Ringel, Robert F.

    Solar subsystems and components were identified and conceptual structure was developed for architectural solar energy heating and cooling systems. Recent literature related to solar energy systems was reviewed and analyzed. Solar heating and cooling system, subsystem, and component data were compared for agreement and completeness. Significant…

  8. Robotic control architecture development for automated nuclear material handling systems

    SciTech Connect

    Merrill, R.D.; Hurd, R.; Couture, S.; Wilhelmsen, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is engaged in developing automated systems for handling materials for mixed waste treatment, nuclear pyrochemical processing, and weapon components disassembly. In support of these application areas there is an extensive robotic development program. This paper will describe the portion of this effort at LLNL devoted to control system architecture development, and review two applications currently being implemented which incorporate these technologies.

  9. Development of economically viable, highly integrated, highly modular SEGIS architecture.

    SciTech Connect

    Enslin, Johan; Hamaoui, Ronald; Gonzalez, Sigifredo; Haddad, Ghaith; Rustom, Khalid; Stuby, Rick; Kuran, Mohammad; Mark, Evlyn; Amarin, Ruba; Alatrash, Hussam; Bower, Ward Isaac; Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01

    Initiated in 2008, the SEGIS initiative is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the initiative have focused on the complete-system development of solar technologies, with the dual goal of expanding renewable PV applications and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. Petra Solar, Inc., a New Jersey-based company, received SEGIS funds to develop solutions to two of these key challenges: integrating increasing quantities of solar resources into the grid without compromising (and likely improving) power quality and reliability, and moving the design from a concept of intelligent system controls to successful commercialization. The resulting state-of-the art technology now includes a distributed photovoltaic (PV) architecture comprising AC modules that not only feed directly into the electrical grid at distribution levels but are equipped with new functions that improve voltage stability and thus enhance overall grid stability. This integrated PV system technology, known as SunWave, has applications for 'Power on a Pole,' and comes with a suite of technical capabilities, including advanced inverter and system controls, micro-inverters (capable of operating at both the 120V and 240V levels), communication system, network management system, and semiconductor integration. Collectively, these components are poised to reduce total system cost, increase the system's overall value and help mitigate the challenges of solar intermittency. Designed to be strategically located near point of load, the new SunWave technology is suitable for integration directly into the electrical grid but is also suitable for emerging microgrid applications. SunWave was showcased as part of a SEGIS Demonstration Conference at Pepco Holdings, Inc., on September 29, 2011, and is presently undergoing

  10. Shape-morphing composites with designed micro-architectures

    PubMed Central

    Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; Wilson, Thomas S.; Spadaccini, Christopher M.; Lewicki, James P.

    2016-01-01

    Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices. PMID:27301435

  11. Shape-morphing composites with designed micro-architectures.

    PubMed

    Rodriguez, Jennifer N; Zhu, Cheng; Duoss, Eric B; Wilson, Thomas S; Spadaccini, Christopher M; Lewicki, James P

    2016-06-15

    Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.

  12. Shape-morphing composites with designed micro-architectures

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; Wilson, Thomas S.; Spadaccini, Christopher M.; Lewicki, James P.

    2016-06-01

    Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.

  13. Innovation in Deep Space Habitat Interior Design: Lessons Learned From Small Space Design in Terrestrial Architecture

    NASA Technical Reports Server (NTRS)

    Simon, Matthew A.; Toups, Larry

    2014-01-01

    Increased public awareness of carbon footprints, crowding in urban areas, and rising housing costs have spawned a 'small house movement' in the housing industry. Members of this movement desire small, yet highly functional residences which are both affordable and sensitive to consumer comfort standards. In order to create comfortable, minimum-volume interiors, recent advances have been made in furniture design and approaches to interior layout that improve both space utilization and encourage multi-functional design for small homes, apartments, naval, and recreational vehicles. Design efforts in this evolving niche of terrestrial architecture can provide useful insights leading to innovation and efficiency in the design of space habitats for future human space exploration missions. This paper highlights many of the cross-cutting architectural solutions used in small space design which are applicable to the spacecraft interior design problem. Specific solutions discussed include reconfigurable, multi-purpose spaces; collapsible or transformable furniture; multi-purpose accommodations; efficient, space saving appliances; stowable and mobile workstations; and the miniaturization of electronics and computing hardware. For each of these design features, descriptions of how they save interior volume or mitigate other small space issues such as confinement stress or crowding are discussed. Finally, recommendations are provided to provide guidance for future designs and identify potential collaborations with the small spaces design community.

  14. Development of the nuclear weapons complex EP architecture

    SciTech Connect

    Murray, C.; Halbleib, L.

    1996-07-01

    The Nuclear Weapons Guidance Team is an interagency committee led by Earl Whiteman, DOE that chartered the generation of EP40100, Concurrent Qualification and its successor EP401099, Concurrent Engineering and Qualification. As this new philosophy of concurrent operations has evolved and as implementation has been initiated, conflicts and insufficiencies in the remaining Engineering Procedures (EPs) have become more apparent. At the Guidance Team meeting in November 1995, this issue was explored and several approaches were considered. It was concluded at this meeting, that a smaller set of interagency EPs described in a hierarchical system could provide the necessary interagency direction to support complex-wide implementation. This set consolidates many existing EP processes where consistency and commonality are critical to success of the extended enterprise. The Guidance Team subsequently chartered an interagency team to initiate development activity associated with the envisioned new EP set. This team had participation from seven Nuclear Weapons Complex (NWC) sites as well as DOE/AL and DP-14 (team members are acknowledged later in this report). Per the Guidance Team, this team, referred to as the Architecture Subcommittee, was to map out and define an EP Architecture for the interagency EPs, make recommendations regarding a more agile process for EP approval and suggest an aggressive timeline to develop the combined EPs. The Architecture Subcommittee was asked to brief their output at the February Guidance Team meeting. This SAND report documents the results of the Architecture Subcommittee`s recommendations.

  15. Advanced information processing system: The Army Fault-Tolerant Architecture detailed design overview

    NASA Technical Reports Server (NTRS)

    Harper, Richard E.; Babikyan, Carol A.; Butler, Bryan P.; Clasen, Robert J.; Harris, Chris H.; Lala, Jaynarayan H.; Masotto, Thomas K.; Nagle, Gail A.; Prizant, Mark J.; Treadwell, Steven

    1994-01-01

    The Army Avionics Research and Development Activity (AVRADA) is pursuing programs that would enable effective and efficient management of large amounts of situational data that occurs during tactical rotorcraft missions. The Computer Aided Low Altitude Night Helicopter Flight Program has identified automated Terrain Following/Terrain Avoidance, Nap of the Earth (TF/TA, NOE) operation as key enabling technology for advanced tactical rotorcraft to enhance mission survivability and mission effectiveness. The processing of critical information at low altitudes with short reaction times is life-critical and mission-critical necessitating an ultra-reliable/high throughput computing platform for dependable service for flight control, fusion of sensor data, route planning, near-field/far-field navigation, and obstacle avoidance operations. To address these needs the Army Fault Tolerant Architecture (AFTA) is being designed and developed. This computer system is based upon the Fault Tolerant Parallel Processor (FTPP) developed by Charles Stark Draper Labs (CSDL). AFTA is hard real-time, Byzantine, fault-tolerant parallel processor which is programmed in the ADA language. This document describes the results of the Detailed Design (Phase 2 and 3 of a 3-year project) of the AFTA development. This document contains detailed descriptions of the program objectives, the TF/TA NOE application requirements, architecture, hardware design, operating systems design, systems performance measurements and analytical models.

  16. Agile Development and Software Architecture: Understanding Scale and Risk

    DTIC Science & Technology

    2011-10-24

    SEIVirtualForum Symptoms of failure  Teams (e.g., Scrum teams, product development teams, component teams, feature teams) spend almost all of...stability to support the next n iterations of development. In a Scrum project environment, the architectural runway may be established during...infrastructure Presentation Layer Common Service Common Service Common Service API APIData Access Layer Domain Layer Scrum Team A Scrum Team B Scrum Team C

  17. Quality evaluation of health information system's architectures developed using the HIS-DF methodology.

    PubMed

    López, Diego M; Blobel, Bernd; Gonzalez, Carolina

    2010-01-01

    Requirement analysis, design, implementation, evaluation, use, and maintenance of semantically interoperable Health Information Systems (HIS) have to be based on eHealth standards. HIS-DF is a comprehensive approach for HIS architectural development based on standard information models and vocabulary. The empirical validity of HIS-DF has not been demonstrated so far. Through an empirical experiment, the paper demonstrates that using HIS-DF and HL7 information models, semantic quality of HIS architecture can be improved, compared to architectures developed using traditional RUP process. Semantic quality of the architecture has been measured in terms of model's completeness and validity metrics. The experimental results demonstrated an increased completeness of 14.38% and an increased validity of 16.63% when using the HIS-DF and HL7 information models in a sample HIS development project. Quality assurance of the system architecture in earlier stages of HIS development presumes an increased quality of final HIS systems, which supposes an indirect impact on patient care.

  18. Assessment Focus in Studio: What Is Most Prominent in Architecture, Art and Design?

    ERIC Educational Resources Information Center

    de La Harpe, Barbara; Peterson, J. Fiona; Frankham, Noel; Zehner, Robert; Neale, Douglas; Musgrave, Elizabeth; McDermott, Ruth

    2009-01-01

    What can be learned about assessment from what educators in the creative practices focus their studio publications on? What should form the focus of assessment in architecture, art and design studios? In this article we draw on 118 journal articles on studio published over the last decade in three disciplines; architecture, art and design to…

  19. Implementing Change in Architectural Design in Elementary School Art Education in Slovenia

    ERIC Educational Resources Information Center

    Batic, Janja

    2014-01-01

    This article reports on a study of the effects of an action research project that aimed to improve the practice of teaching art in elementary schools in Slovenia. The specific focus was on the planning and execution of art tasks relating to architectural design. The planned improvements were based on the process of architectural design from…

  20. Architecture-Based Refinements for Secure Computer Systems Design

    DTIC Science & Technology

    2006-01-01

    Government. REFERENCES [1] N. S. Rosa, G. R. R. Justo , and P. R. F. Cunha, “A framework for building non-functional software architectures,” in Proc. 2001 ACM...IWSSD’98), 1998, p. 60. [7] N. S. Rosa, G. R. R. Justo , and P. R. F. Cunha, “Incorporating non- functional requirements into software architectures,” in

  1. Design and construction principles in nature and architecture.

    PubMed

    Knippers, Jan; Speck, Thomas

    2012-03-01

    This paper will focus on how the emerging scientific discipline of biomimetics can bring new insights into the field of architecture. An analysis of both architectural and biological methodologies will show important aspects connecting these two. The foundation of this paper is a case study of convertible structures based on elastic plant movements.

  2. EChO fine guidance sensor design and architecture

    NASA Astrophysics Data System (ADS)

    Ottensamer, Roland; Rataj, Miroslaw; Schrader, Jan-Rutger; Ferstl, Roman; Güdel, Manuel; Kerschbaum, Franz; Luntzer, Armin

    2014-08-01

    EChO, the Exoplanet Characterization Observatory, is an M-class candidate in the ESA Comic Vision programme. It will provide high resolution, multi-wavelength spectroscopic observations of exoplanets, measure their atmospheric composition, temperature and albedo. The scientific payload is a spectrometer covering the 0.4-11 micron waveband. High photometric stability over a time scale of about 10 hours is one of the most stringent requirements of the EChO mission. As a result, fine pointing stability relative to the host star is mandatory. This will be achieved through a Fine Guidance Sensor (FGS), a separate photometric channel that uses a fraction of the target star signal from the optical channel. The main task of the FGS is to ensure the centering, focusing and guiding of the satellite, but it will also provide supplemental high-precision astrometry and photometry of the target to ground for de-trending the spectra and complementary science. In this paper we give an overview of the current architectural design of the FGS subsystem and discuss related requirements as well as the expected performance.

  3. The Design of a Fault-Tolerant COTS-Based Bus Architecture

    NASA Technical Reports Server (NTRS)

    Chau, Savio N.; Alkalai, Leon; Burt, John B.; Tai, Ann T.

    1999-01-01

    In this paper, we report our experiences and findings on the design of a fault-tolerant bus architecture comprised of two COTS buses, the IEEE 1394 and the 12C. This fault-tolerant bus is the backbone system bus for the avionics architecture of the X2000 program at the Jet Propulsion Laboratory. COTS buses are attractive because of the availability of low cost commercial products. However, they are not specifically designed for highly reliable applications such as long-life deep-space missions. The X2000 design team has devised a multi-level fault tolerance approach to compensate for this shortcoming of COTS buses. First, the approach enhances the fault tolerance capabilities of the IEEE 1394 and 12 C buses by adding a layer of fault handling hardware and software. Second, algorithms are developed to enable the IEEE 1394 and the 12 C buses assist each other to isolate and recovery from faults. Third, the set of IEEE 1394 and 12 C buses is duplicated to further enhance system reliability. The X2000 design team has paid special attention to guarantee that all fault tolerance provisions will not cause the bus design to deviate from the commercial standard specifications. Otherwise, the economic attractiveness of using COTS will be diminished. The hardware and software design of the X2000 fault-tolerant bus are being implemented and flight hardware will be delivered to the ST4 and Europa Orbiter missions.

  4. A Federated Design for a Neurobiological Simulation Engine: The CBI Federated Software Architecture

    PubMed Central

    Cornelis, Hugo; Coop, Allan D.; Bower, James M.

    2012-01-01

    Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or

  5. A federated design for a neurobiological simulation engine: the CBI federated software architecture.

    PubMed

    Cornelis, Hugo; Coop, Allan D; Bower, James M

    2012-01-01

    Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or

  6. Architectural design proposal for a Martian base to continue NASA Mars Design Reference Mission

    NASA Astrophysics Data System (ADS)

    Kozicki, Janek

    The issue of extraterrestrial bases has recently been a very vivid one. There are orbital stations currently existing and humans will travel to Mars around 2030. They will need stations established there, which will provide them the proper living conditions. Firstly, it might be a small module brought from Earth (e.g. NASA Mars Design Reference Mission module (DRM)), in later stages equivalents of Earth houses may be built from local resources. The goal of this paper is to propose an architectural design for an intermediate stage — for a larger habitable unit transported from Earth. It is inspired by terrestrial portable architecture ideas. A pneumatic structure requires small volume during transportation. However, it provides large habitable space after deployment. It is designed for transport by DRM transportation module and its deployment is considerable easy and brief. An architectural solution analogous to a terrestrial house with a studio and a workshop was assumed. Its form was a result of technical and environmental limitations, and the need for an ergonomic interior. The spatial placement of following zones was carefully considered: residential, agricultural and science, as well as a garage with a workshop, transportation routes, and a control and communication center. The issues of Life Support System, energy, food, water and waste recycling were also discussed. This Martian base was designed to be crewed by a team of eight people to stay on Mars for at least 1.5 year. An Open Plan architectural solution was assumed in pneumatic modules, with a high level of modularity. Walls of standardized sizes with zip-fasteners allow free rearrangement of the interior to adapt to a new situation (e.g. damage of one of the pneumatic modules or a psychological ,,need of a change"). The architectural design focuses on ergonomic and psychological aspects of longer stay in hostile Martian environment. This solution provides Martian crew with a comfortable habitable

  7. Case Studies of Software Development Tools for Parallel Architectures

    DTIC Science & Technology

    1993-06-01

    RL-TR-93-114 Final Technical Report AD-A269 193I M N11 Nal I U l iE rr ll Hllll CASE STUDIES OF SOFTWARE DEVELOPMENT TOOLS FOR PARALLEL ARCHITECTURES...65 Om ega/ PegaSys ..................................................................................... 66 PARET...Pisces Rn BALSA II TANGO PARET VMMP Omega/ PegaSys PSG POKER ISSOS Unity -4- PADWB Schedule Tool Degn Graph= Alg I/gr- Sol Pormbil- Ptform Pan/don Debug

  8. The design of a CORBA-based PACS in three-tier architecture

    NASA Astrophysics Data System (ADS)

    Li, Zhuo; Wu, Lingda; Wei, Yingmei; Xie, Hongwei

    2005-04-01

    In the past the most of the traditional PACS adopt two-tier Client/Server architecture based on DICOM network in china. However, with the developments of PACS that becomes more large-scale and distributed, the traditional PACS architecture has a lot of weaknesses. To overcome these shortcomings, this paper presents a CORBA-based PACS in three-tier architecture which consists of the application-tier, the middle-tier and the DICOM data-tier. In application-tier, the upper applications can use the service offered from the middle-tier through the application interface. In middle-tier, the characteristic service of PACS, which are extracted from the traditional PACS, are wrapped in service components plug in the ORB software bus. For the data exchange in CORBA-based implementation, the middleware uses IIOP to call service components through the ORB then to return the results to the application-tier. The CORBA object services are responsible for the object location, creation, implementation and destruction, etc. In DICOM data-tier, DICOM image modalities and DICOM databases provide DICOM data for the middle-tier through DICOM image access service. Furthermore, a design of DICOM image access service, which accesses DICOM data and shields the middle-tier from the complexities of DICOM data structure and DIMSE protocol, is presented in this paper. After referred to the CIAS (Clinical Image Access Service) specification defined by OMG, a simplified IDL interface of DICOM image access service is also described. The CORBA-based PACS architecture is an open architecture allowing for the scalability and the interconnectivity & interoperability.

  9. Baseband-processed SS-TDMA communication system architecture and design concepts

    NASA Technical Reports Server (NTRS)

    Attwood, S.; Sabourin, D.

    1982-01-01

    The architecture and system design for a commercial satellite communications system planned for the 1990's was developed by Motorola for NASA's Lewis Research Center. The system provides data communications between individual users via trunking and customer premises service terminals utilizing a central switching satellite operating in a time-division multiple-access (TDMA) mode. The major elements of the design incorporating baseband processing include: demand-assigned multiple access reservation protocol, spectral utilization, system synchronization, modulation technique and forward error control implementation. Motorola's baseband processor design, which is being proven in a proof-of-concept advanced technology development, will perform data regeneration and message routing for individual users on-board the spacecraft.

  10. Rational design of alpha-helical tandem repeat proteins with closed architectures

    PubMed Central

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L.; Bradley, Philip

    2015-01-01

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials1,2. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks3,4. The overall architecture of tandem repeat protein structures – which is dictated by the internal geometry and local packing of the repeat building blocks – is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners5–9, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis10. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed alpha-solenoid11 repeat structures (alpha-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the N- and C-termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering12–20, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed alpha-solenoid repeats with a left-handed helical architecture that – to our knowledge – is not yet present in the protein structure database21. PMID:26675735

  11. Enabling Co-Design of Multi-Layer Exascale Storage Architectures

    SciTech Connect

    Carothers, Christopher

    2015-08-31

    Growing demands for computing power in applications such as energy production, climate analysis, computational chemistry, and bioinformatics have propelled computing systems toward the exascale: systems with 1018 floating-point operations per second. These systems, to be designed and constructed over the next decade, will create unprecedented challenges in component counts, power consumption, resource limitations, and system complexity. Data storage and access are an increasingly important and complex component in extreme-scale computing systems, and significant design work is needed to develop successful storage hardware and software architectures at exascale. Co-design of these systems will be necessary to find the best possible design points for exascale systems. The goal of this work has been to enable the exploration and co-design of exascale storage systems by providing a detailed, accurate, and highly parallel simulation of exascale storage and the surrounding environment. Specifically, this simulation has (1) portrayed realistic application checkpointing and analysis workloads, (2) captured the complexity, scale, and multilayer nature of exascale storage hardware and software, and (3) executed in a timeframe that enables “what if'” exploration of design concepts. We developed models of the major hardware and software components in an exascale storage system, as well as the application I/O workloads that drive them. We used our simulation system to investigate critical questions in reliability and concurrency at exascale, helping guide the design of future exascale hardware and software architectures. Additionally, we provided this system to interested vendors and researchers so that others can explore the design space. We validated the capabilities of our simulation environment by configuring the simulation to represent the Argonne Leadership Computing Facility Blue Gene/Q system and comparing simulation results for application I/O patterns

  12. Design leadership for a distribution management system architecture

    SciTech Connect

    Green, T.A.

    1994-12-31

    Distribution Automation (DA) as a concept has existed for more than a decade. However, it has only been recently through technological advancements and pilot projects by pioneering utilities that it has become an economic practicality. A number of leading utilities have contributed to the evolution of this technology. The performance goals to be achieved in implementing DA technology have been evolved through previous DA projects and have been established for ongoing projects. These goals establish a clear focus for defining implementation plans for DA technology and include the following: (1) Reduced Customer Outages; (2) Commercial Customer Retention Constant Voltage Regulation; (3) Capital Expenditure Reductions; and (4) Personnel Productivity. In the past decade, many Utilities have initiated a number of pilot projects, each designed to improve some aspect of the company`s service to its customers. Each of these projects will impact the way the distribution system is operated and introduce new technology that must be mastered. Without a coordinated effort, these systems will be implemented in scattered locations using equipment, software, communication interfaces, and user interfaces that differ for each application. The distribution dispatchers would be required to interact with each of these {open_quotes}islands of automation{close_quotes} separately, resulting in an increased level of complexity and an increase in the burden of their duties. A Distribution Management System (DMS) architecture is needed to provide the infrastructure for coordinated implementation of DA technology. Using this broad company-wide model for automation, each pilot project can be viewed as part of a broader set of functions that will be supported by the DMS.

  13. An Architectural Design System Based on Computer Graphics.

    ERIC Educational Resources Information Center

    MacDonald, Stephen L.; Wehrli, Robert

    The recent developments in computer hardware and software are presented to inform architects of this design tool. Technical advancements in equipment include--(1) cathode ray tube displays, (2) light pens, (3) print-out and photo copying attachments, (4) controls for comparison and selection of images, (5) chording keyboards, (6) plotters, and (7)…

  14. Development of the network architecture of the Canadian MSAT system

    NASA Technical Reports Server (NTRS)

    Davies, N. George; Shoamanesh, Alireza; Leung, Victor C. M.

    1988-01-01

    A description is given of the present concept for the Canadian Mobile Satellite (MSAT) System and the development of the network architecture which will accommodate the planned family of three categories of service: a mobile radio service (MRS), a mobile telephone service (MTS), and a mobile data service (MDS). The MSAT satellite will have cross-strapped L-band and Ku-band transponders to provide communications services between L-band mobile terminals and fixed base stations supporting dispatcher-type MRS, gateway stations supporting MTS interconnections to the public telephone network, data hub stations supporting the MDS, and the network control center. The currently perceived centralized architecture with demand assignment multiple access for the circuit switched MRS, MTS and permanently assigned channels for the packet switched MDS is discussed.

  15. Design and reliability analysis of DP-3 dynamic positioning control architecture

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Wan, Lei; Jiang, Da-Peng; Xu, Yu-Ru

    2011-12-01

    As the exploration and exploitation of oil and gas proliferate throughout deepwater area, the requirements on the reliability of dynamic positioning system become increasingly stringent. The control objective ensuring safety operation at deep water will not be met by a single controller for dynamic positioning. In order to increase the availability and reliability of dynamic positioning control system, the triple redundancy hardware and software control architectures were designed and developed according to the safe specifications of DP-3 classification notation for dynamically positioned ships and rigs. The hardware redundant configuration takes the form of triple-redundant hot standby configuration including three identical operator stations and three real-time control computers which connect each other through dual networks. The function of motion control and redundancy management of control computers were implemented by software on the real-time operating system VxWorks. The software realization of task loose synchronization, majority voting and fault detection were presented in details. A hierarchical software architecture was planed during the development of software, consisting of application layer, real-time layer and physical layer. The behavior of the DP-3 dynamic positioning control system was modeled by a Markov model to analyze its reliability. The effects of variation in parameters on the reliability measures were investigated. The time domain dynamic simulation was carried out on a deepwater drilling rig to prove the feasibility of the proposed control architecture.

  16. Does the architectural design of burn centers comply with the Americans with Disabilities Act?

    PubMed

    Kirby, D L; O'Keefe, J S; Neal, J G; Bentrem, D J; Edlich, R F

    1996-01-01

    Title III of the Americans with Disabilities Act (ADA) requires that hospitals and burn centers be designed and constructed so that all public and common-use areas are accessible. At least 10% of patient bedrooms and toilets must be accessible to persons with mobility disorders. The purpose of this study was to determine whether four hospitals with burn centers complied with Title III of the ADA. The burn centers agreed to participate in this study only if they were first assured anonymity, because of the Health Care Financing Administration of the U.S. Department of Health and Human Services requires that each hospital comply. With use of the ADA accessibility guidelines, we developed a survey instrument that was validated by a state government building inspector. This tool was used to inspect the burn center facility and common use areas in four hospitals with burn centers. In the four hospitals, numerous architectural barriers to persons with disabilities were noted. No burn center had a designated accessible room for persons with disabilities. The bedrooms, bathrooms, sinks, bathtubs, and toilets were not accessible to persons with disabilities. The common-use areas in the hospitals, in contrast, had few architectural barriers to persons with disabilities. Only one burn center had plans to eliminate architectural barriers in its hospital. Because the four hospitals with burn centers had numerous architectural barriers for persons with disabilities, it can be concluded they do not comply with Title III of the ADA and are subject to severe penalty from the Health Care Financing Administration and the U.S. Department of Justice.

  17. Translating Vision into Design: A Method for Conceptual Design Development

    NASA Technical Reports Server (NTRS)

    Carpenter, Joyce E.

    2003-01-01

    One of the most challenging tasks for engineers is the definition of design solutions that will satisfy high-level strategic visions and objectives. Even more challenging is the need to demonstrate how a particular design solution supports the high-level vision. This paper describes a process and set of system engineering tools that have been used at the Johnson Space Center to analyze and decompose high-level objectives for future human missions into design requirements that can be used to develop alternative concepts for vehicles, habitats, and other systems. Analysis and design studies of alternative concepts and approaches are used to develop recommendations for strategic investments in research and technology that support the NASA Integrated Space Plan. In addition to a description of system engineering tools, this paper includes a discussion of collaborative design practices for human exploration mission architecture studies used at the Johnson Space Center.

  18. Design and Parametric Sizing of Deep Space Habitats Supporting NASA'S Human Space Flight Architecture Team

    NASA Technical Reports Server (NTRS)

    Toups, Larry; Simon, Matthew; Smitherman, David; Spexarth, Gary

    2012-01-01

    NASA's Human Space Flight Architecture Team (HAT) is a multi-disciplinary, cross-agency study team that conducts strategic analysis of integrated development approaches for human and robotic space exploration architectures. During each analysis cycle, HAT iterates and refines the definition of design reference missions (DRMs), which inform the definition of a set of integrated capabilities required to explore multiple destinations. An important capability identified in this capability-driven approach is habitation, which is necessary for crewmembers to live and work effectively during long duration transits to and operations at exploration destinations beyond Low Earth Orbit (LEO). This capability is captured by an element referred to as the Deep Space Habitat (DSH), which provides all equipment and resources for the functions required to support crew safety, health, and work including: life support, food preparation, waste management, sleep quarters, and housekeeping.The purpose of this paper is to describe the design of the DSH capable of supporting crew during exploration missions. First, the paper describes the functionality required in a DSH to support the HAT defined exploration missions, the parameters affecting its design, and the assumptions used in the sizing of the habitat. Then, the process used for arriving at parametric sizing estimates to support additional HAT analyses is detailed. Finally, results from the HAT Cycle C DSH sizing are presented followed by a brief description of the remaining design trades and technological advancements necessary to enable the exploration habitation capability.

  19. Career Development by Design.

    ERIC Educational Resources Information Center

    Hanna, Sharon L.

    This book is intended to guide the reader in the process of designing his or her career and achieving it. Chapter 1 begins with a look at self: developing areas of self, personality type, self-concept, and self-efficacy, making positive personality changes, sharpening basic skills, and evaluating career potential. Chapter 2 explores developing…

  20. Sense of Place: Understanding Architectural and Landscape Design through a Layering of Visual Representations

    ERIC Educational Resources Information Center

    Baker, Kate

    2014-01-01

    The context-free "object building," the sculptural form, reigned in schools of architecture for decades. As we are finally moving on from 20th century modernism, there is an urgency to re-place buildings within their contexts. All too often, students with a background in the discipline of architecture, struggle to design buildings that…

  1. Mobile Technology and CAD Technology Integration in Teaching Architectural Design Process for Producing Creative Product

    ERIC Educational Resources Information Center

    Bin Hassan, Isham Shah; Ismail, Mohd Arif; Mustafa, Ramlee

    2011-01-01

    The purpose of this research is to examine the effect of integrating the mobile and CAD technology on teaching architectural design process for Malaysian polytechnic architectural students in producing a creative product. The website is set up based on Caroll's minimal theory, while mobile and CAD technology integration is based on Brown and…

  2. Design of a Holonic Control Architecture for Distributed Sensor Management

    DTIC Science & Technology

    2009-09-01

    architecture holonique pour la gestion des capteurs . Il s’inscrit dans le prolongement de deux documents précédents, détaillant respectivement, la...problématique de la gestion des capteurs militaires et les propriétés du contrôle holo- nique. L’architecture holonique proposée ici constitue une approche...novatrice au problème de la gestion des capteurs , en cela qu’elle supporte l’établissement de liens dynamiques, permettant ainsi au système

  3. A Tool for Managing Software Architecture Knowledge

    SciTech Connect

    Babar, Muhammad A.; Gorton, Ian

    2007-08-01

    This paper describes a tool for managing architectural knowledge and rationale. The tool has been developed to support a framework for capturing and using architectural knowledge to improve the architecture process. This paper describes the main architectural components and features of the tool. The paper also provides examples of using the tool for supporting wellknown architecture design and analysis methods.

  4. Application-specific coarse-grained reconfigurable array: architecture and design methodology

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Liu, Dongpei; Zhang, Jianfeng; Liu, Hengzhu

    2015-06-01

    Coarse-grained reconfigurable arrays (CGRAs) have shown potential for application in embedded systems in recent years. Numerous reconfigurable processing elements (PEs) in CGRAs provide flexibility while maintaining high performance by exploring different levels of parallelism. However, a difference remains between the CGRA and the application-specific integrated circuit (ASIC). Some application domains, such as software-defined radios (SDRs), require flexibility with performance demand increases. More effective CGRA architectures are expected to be developed. Customisation of a CGRA according to its application can improve performance and efficiency. This study proposes an application-specific CGRA architecture template composed of generic PEs (GPEs) and special PEs (SPEs). The hardware of the SPE can be customised to accelerate specific computational patterns. An automatic design methodology that includes pattern identification and application-specific function unit generation is also presented. A mapping algorithm based on ant colony optimisation is provided. Experimental results on the SDR target domain show that compared with other ordinary and application-specific reconfigurable architectures, the CGRA generated by the proposed method performs more efficiently for given applications.

  5. Electro-Optic Computing Architectures: Volume II. Components and System Design and Analysis

    DTIC Science & Technology

    1998-02-01

    The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit

  6. Developing Architectures and Technologies for an Evolvable NASA Space Communication Infrastructure

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Hayden, Jeffrey

    2004-01-01

    Space communications architecture concepts play a key role in the development and deployment of NASA's future exploration and science missions. Once a mission is deployed, the communication link to the user needs to provide maximum information delivery and flexibility to handle the expected large and complex data sets and to enable direct interaction with the spacecraft and experiments. In human and robotic missions, communication systems need to offer maximum reliability with robust two-way links for software uploads and virtual interactions. Identifying the capabilities to cost effectively meet the demanding space communication needs of 21st century missions, proper formulation of the requirements for these missions, and identifying the early technology developments that will be needed can only be resolved with architecture design. This paper will describe the development of evolvable space communication architecture models and the technologies needed to support Earth sensor web and collaborative observation formation missions; robotic scientific missions for detailed investigation of planets, moons, and small bodies in the solar system; human missions for exploration of the Moon, Mars, Ganymede, Callisto, and asteroids; human settlements in space, on the Moon, and on Mars; and great in-space observatories for observing other star systems and the universe. The resulting architectures will enable the reliable, multipoint, high data rate capabilities needed on demand to provide continuous, maximum coverage of areas of concentrated activities, such as in the vicinity of outposts in-space, on the Moon or on Mars.

  7. Lifelong Learning in Architectural Design Studio: The Learning Contract Approach

    ERIC Educational Resources Information Center

    Hassanpour, B.; Che-Ani, A. I.; Usman, I. M. S.; Johar, S.; Tawil, N. M.

    2015-01-01

    Avant-garde educational systems are striving to find lifelong learning methods. Different fields and majors have tested a variety of proposed models and found varying difficulties and strengths. Architecture is one of the most critical areas of education because of its special characteristics, such as learning by doing and complicated evaluation…

  8. Design of a polymer thermoelectric generator using radial architecture

    NASA Astrophysics Data System (ADS)

    Menon, Akanksha K.; Yee, Shannon K.

    2016-02-01

    Thermoelectric generators (TEGs) are solid-state heat engines consisting of p-type and n-type semiconductors that convert heat into electricity via the Seebeck effect. Conducting polymers are a viable alternative with intrinsic advantages over their inorganic counterparts, since they are abundant, flexible as thick-films, and have reduced manufacturing costs due to solution processing. Furthermore, polymers have an inherently low thermal conductivity, thus affording them the option of forgoing some heat exchanger costs. Current examples of polymer TE devices have been limited to traditional flat-plate geometries with power densities on the μW/cm2 scale, where their potential is not fully realized. Herein, we report a novel radial device architecture and model the improved performance of polymer-based TEG based on this architecture. Our radial architecture accommodates a fluid as the heat source and can operate under natural convection alone due to heat spreading. Analytical heat transfer and electrical models are presented that optimize the device for maximum power density, and for the first time we obtain the geometry matching condition that maximizes the efficiency. We predict high power densities of ˜1 mW/cm2 using state-of-the-art polymer TEs subjected to a temperature difference of 100 K, which is nearly 1000× higher than polymer flat-plate architectures reported in literature.

  9. Development of a space universal modular architecture (SUMO)

    NASA Astrophysics Data System (ADS)

    Collins, Bernie F.

    This concept paper proposes that the space community should develop and implement a universal standard for spacecraft modularity - to improve interoperability of spacecraft components. Pursuing a global industry consensus standard for open and modular spacecraft architecture will encourage trade, remove standards-related market barriers, and in the long run increase both value provided to customers and profitability of the space industrial sector. This concept paper sets out: (1) the goals for a SUMO standard and how it will benefit the space community; (2) background on spacecraft modularity and existing related standards; (3) the proposed technical scope of the current standardization effort; and (4) an approach for creating a SUMO standard.

  10. 76 FR 28333 - Electric Engineering, Architectural Services, Design Policies and Construction Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... Engineering, Architectural Services, Design Policies and Construction Standards AGENCY: Rural Utilities... forms of contracts promulgated by RUS for construction, procurement, engineering services and... XVII of title 7 of the Code of Federal Regulations as follows: PART 1724--ELECTRIC...

  11. Information architecture considerations in designing a comprehensive tuberculosis enterprise system in Western Kenya.

    PubMed

    Gichoya, Judy; Pearce, Chris; Wickramasinghe, Nilmini

    2013-01-01

    Kenya ranks among the twenty-two countries that collectively contribute about 80% of the world's Tuberculosis cases; with a 50-200 fold increased risk of tuberculosis in HIV infected persons versus non-HIV hosts. Contemporaneously, there is an increase in mobile penetration and its use to support healthcare throughout Africa. Many are skeptical that such m-health solutions are unsustainable and not scalable. We seek to design a scalable, pervasive m-health solution for Tuberculosis care to become a use case for sustainable and scalable health IT in limited resource settings. We combine agile design principles and user-centered design to develop the architecture needed for this initiative. Furthermore, the architecture runs on multiple devices integrated to deliver functionality critical for successful Health IT implementation in limited resource settings. It is anticipated that once fully implemented, the proposed m-health solution will facilitate superior monitoring and management of Tuberculosis and thereby reduce the alarming statistic regarding this disease in this region.

  12. Heterogeneous Concurrent Modeling and Design in Java (Volume 2: Ptolemy II Software Architecture)

    DTIC Science & Technology

    2008-04-01

    Heterogeneous Concurrent Modeling and Design in Java (Volume 2: Ptolemy II Software Architecture) Christopher Brooks Edward A. Lee Xiaojun Liu...00-2008 4. TITLE AND SUBTITLE Heterogeneous Concurrent Modeling and Design in Java (Volume 2: Ptolemy II Software Architecture) 5a. CONTRACT...the State of California Micro Program, and the following companies: Agilent, Bosch, HSBC, Lockheed-Martin, National Instruments, and Toyota. PTOLEMY II

  13. Architectural design criteria for f-block metal ion sequestering agents. 1998 annual progress report

    SciTech Connect

    Hay, B.P.; Dixon, D.A.; Roundhill, D.M.; Rogers, R.D.; Paine, R.T.; Raymond, K.N.

    1998-12-31

    'The objective of this project is to provide a means to optimize ligand architecture for f-block metal recognition. The authors strategy builds on an innovative and successful molecular modeling approach in developing polyether ligand design criteria for the alkali and alkaline earth cations. The hypothesis underlying this proposal is that differences in metal ion binding with multidentate ligands bearing the same number and type of donor groups are primarily attributable to intramolecular steric factors. They propose quantifying these steric factors through the application of molecular mechanics models. The research involves close integration of theoretical and experimental chemistry. The experimental work entails synthesizing novel ligands and experimentally determining structures and binding constants for metal ion complexation by series of ligands in which architecture is systematically varied. The theoretical work entails using electronic structure calculations to parameterize a molecular mechanics force field for a range of metal ions and ligand types. The resulting molecular mechanics force field will be used to predict low energy structures for unidentate, bidentate, and multidentate ligands and their metal complexes through conformational searches. Results will be analyzed to assess the relative importance of several steric factors including optimal M-L length, optimal geometry at the metal center, optimal geometry at the donor atoms (complementarity), and conformation prior to binding (preorganization). An accurate set of criteria for the design of ligand architecture will be obtained from these results. These criteria will enable researchers to target ligand structures for synthesis and thereby dramatically reduce the time and cost associated with metal-specific ligand development.'

  14. Developing an integrated photonic system with a simple beamforming architecture for phased-array antennas.

    PubMed

    Zhou, Weimin; Stead, Michael; Weiss, Steven; Okusaga, Olukayode; Jiang, Lingjun; Anderson, Stephen; Rena Huang, Z

    2017-01-20

    We have designed a simplified true-time-delay beamforming architecture using integrated photonics for phased-array antennas. This architecture can independently control multiple RF beams simultaneously with only a single tuning parameter to steer the beam in each direction for each beam. We have made a proof-of-the-principle demonstration of an X-band, 30×4-elements, fiber-optics-based beamformer for one-dimensional steering in transmission mode. The goal is to develop a semiconductor-based integrated photonic circuit so that a 2D beamforming array for both transmit and receive operations can be made on a single chip. For that, we have designed a Si-based integrated waveguide circuit using two types of "slow-light" waveguide for tunable time delays for two-dimensional steering.

  15. SensoTube: A Scalable Hardware Design Architecture for Wireless Sensors and Actuators Networks Nodes in the Agricultural Domain.

    PubMed

    Piromalis, Dimitrios; Arvanitis, Konstantinos

    2016-08-04

    Wireless Sensor and Actuators Networks (WSANs) constitute one of the most challenging technologies with tremendous socio-economic impact for the next decade. Functionally and energy optimized hardware systems and development tools maybe is the most critical facet of this technology for the achievement of such prospects. Especially, in the area of agriculture, where the hostile operating environment comes to add to the general technological and technical issues, reliable and robust WSAN systems are mandatory. This paper focuses on the hardware design architectures of the WSANs for real-world agricultural applications. It presents the available alternatives in hardware design and identifies their difficulties and problems for real-life implementations. The paper introduces SensoTube, a new WSAN hardware architecture, which is proposed as a solution to the various existing design constraints of WSANs. The establishment of the proposed architecture is based, firstly on an abstraction approach in the functional requirements context, and secondly, on the standardization of the subsystems connectivity, in order to allow for an open, expandable, flexible, reconfigurable, energy optimized, reliable and robust hardware system. The SensoTube implementation reference model together with its encapsulation design and installation are analyzed and presented in details. Furthermore, as a proof of concept, certain use cases have been studied in order to demonstrate the benefits of migrating existing designs based on the available open-source hardware platforms to SensoTube architecture.

  16. SensoTube: A Scalable Hardware Design Architecture for Wireless Sensors and Actuators Networks Nodes in the Agricultural Domain

    PubMed Central

    Piromalis, Dimitrios; Arvanitis, Konstantinos

    2016-01-01

    Wireless Sensor and Actuators Networks (WSANs) constitute one of the most challenging technologies with tremendous socio-economic impact for the next decade. Functionally and energy optimized hardware systems and development tools maybe is the most critical facet of this technology for the achievement of such prospects. Especially, in the area of agriculture, where the hostile operating environment comes to add to the general technological and technical issues, reliable and robust WSAN systems are mandatory. This paper focuses on the hardware design architectures of the WSANs for real-world agricultural applications. It presents the available alternatives in hardware design and identifies their difficulties and problems for real-life implementations. The paper introduces SensoTube, a new WSAN hardware architecture, which is proposed as a solution to the various existing design constraints of WSANs. The establishment of the proposed architecture is based, firstly on an abstraction approach in the functional requirements context, and secondly, on the standardization of the subsystems connectivity, in order to allow for an open, expandable, flexible, reconfigurable, energy optimized, reliable and robust hardware system. The SensoTube implementation reference model together with its encapsulation design and installation are analyzed and presented in details. Furthermore, as a proof of concept, certain use cases have been studied in order to demonstrate the benefits of migrating existing designs based on the available open-source hardware platforms to SensoTube architecture. PMID:27527180

  17. RT 24 - Architecture, Modeling & Simulation, and Software Design

    DTIC Science & Technology

    2010-11-01

    focus on tool extensions (UPDM, SysML, SoaML, BPMN ) Leverage “best of breed” architecture methodologies Provide tooling to support the methodology DoDAF...Capability 10 Example: BPMN 11 DoDAF 2.0 MetaModel BPMN MetaModel Mapping SysML to DoDAF 2.0 12 DoDAF V2.0 Models OV-2 SysML Diagrams Requirement

  18. Data Warehouse Design from HL7 Clinical Document Architecture Schema.

    PubMed

    Pecoraro, Fabrizio; Luzi, Daniela; Ricci, Fabrizio L

    2015-01-01

    This paper proposes a semi-automatic approach to extract clinical information structured in a HL7 Clinical Document Architecture (CDA) and transform it in a data warehouse dimensional model schema. It is based on a conceptual framework published in a previous work that maps the dimensional model primitives with CDA elements. Its feasibility is demonstrated providing a case study based on the analysis of vital signs gathered during laboratory tests.

  19. An Empirical Assessment of Metaphor Use in the Design Studio: Analysis, Reflection and Restructuring of Architectural Design

    ERIC Educational Resources Information Center

    Casakin, Hernan

    2012-01-01

    This investigation was concerned with the use of metaphors in architectural design education. Reasoning by means of metaphors helps to understand a design situation in terms of a remote concept normally not associated with it. By juxtaposing the known with the unknown in an unusual way, metaphors can enhance design problem solving. The goal of…

  20. Methods that May Stimulate Creativity and Their Use in Architectural Design Education

    ERIC Educational Resources Information Center

    Kowaltowski, Doris C. C. K.; Bianchi, Giovana; Teixeira de Paiva, Valeria

    2010-01-01

    The architectural design process is based on a creative phase where creativity is highly valued. Although the literature on creativity is rich in ways to stimulate the decision-making process, these tools are rarely formally present in the building design process. To further the discussion on creativity and design education this paper presents a…

  1. Designing a Utopia: An Architectural Studio Experience on David Harvey's "Edilia"

    ERIC Educational Resources Information Center

    Yesilkaya, Nese Gurallar

    2008-01-01

    The design of a utopia was devised as a studio project in order to bring critical thinking into the design studio and to stimulate creativity. By suggesting a utopia, the pedagogical aim was to improve progressive thinking and critical thought in the design education of architectural students -- and also future architects. From this perspective,…

  2. Residential Solar Design Review: A Manual on Community Architectural Controls and Solar Energy Use.

    ERIC Educational Resources Information Center

    Jaffe, Martin; Erley, Duncan

    Presented are architectural design issues associated with solar energy use, and procedures for design review committees to consider in examining residential solar installation in light of existing aesthetic goals for their communities. Recommended design review criteria include the type of solar system being used and the ways in which the system…

  3. A Project-Based Learning Approach to Programmable Logic Design and Computer Architecture

    ERIC Educational Resources Information Center

    Kellett, C. M.

    2012-01-01

    This paper describes a course in programmable logic design and computer architecture as it is taught at the University of Newcastle, Australia. The course is designed around a major design project and has two supplemental assessment tasks that are also described. The context of the Computer Engineering degree program within which the course is…

  4. On-board B-ISDN fast packet switching architectures. Phase 2: Development. Proof-of-concept architecture definition report

    NASA Technical Reports Server (NTRS)

    Shyy, Dong-Jye; Redman, Wayne

    1993-01-01

    For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices.

  5. A conceptual framework to design a dimensional model based on the HL7 Clinical Document Architecture.

    PubMed

    Pecoraro, Fabrizio; Luzi, Daniela; Ricci, Fabrizio L

    2014-01-01

    This paper proposes a conceptual framework to design a dimensional model based on the HL7 Clinical Document Architecture (CDA) standard. The adoption of this framework can represent a possible solution to facilitate the integration of heterogeneous information systems in a clinical data warehouse. This can simplify the Extract, Transform and Load (ETL) procedures that are considered the most time-consuming and expensive part of the data warehouse development process. The paper describes the main activities to be carried out to design the dimensional model outlining the main advantages in the application of the proposed framework. The feasibility of our approach is also demonstrated providing a case study to define clinical indicators for quality assessment.

  6. Effects of designed PLLA and 50:50PLGA scaffold architectures on bone formation in vivo

    PubMed Central

    Saito, Eiji; Liao, Elly E.; Hu, Wei-Wen; Krebsbach, Paul H.; Hollister, Scott J.

    2015-01-01

    Biodegradable porous scaffolds have been investigated as an alternative approach to current metal, ceramic, and polymer bone graft substitutes for lost or damaged bone tissues. Although there have been many studies investigating the effects of scaffold architecture on bone formation, many of these scaffolds were fabricated using conventional methods, such as salt leaching and phase separation, and were constructed without designed architecture. To study the effects of both designed architecture and material on bone formation, we designed and fabricated three types of porous scaffold architecture from two biodegradable materials, poly (L-lactic acid) (PLLA) and 50:50Poly (lactic-co-glycolic acid) (PLGA) using image based design and indirect solid freeform fabrication techniques, seeded them with bone morphogenic protein-7 transduced human gingival fibroblasts and implanted them subcutaneously into mice for 4 and 8 weeks. Micro-computed tomography data confirmed that the fabricated porous scaffolds replicated the designed architectures. Histological analysis revealed that the 50:50PLGA scaffolds degraded and did not maintain their architecture after 4 weeks. The PLLA scaffolds maintained their architecture at both time points and showed improved bone ingrowth which followed the internal architecture of the scaffolds. Mechanical properties of both PLLA and 50:50PLGA scaffolds decreased, but PLLA scaffolds maintained greater mechanical properties than 50:50PLGA after implantation. The increase of mineralized tissue helped to support mechanical properties of bone tissue and scaffold constructs from 4 to 8 weeks. The results indicated the importance of choice of scaffold materials and computationally designed scaffolds to control tissue formation and mechanical properties for desired bone tissue regeneration. PMID:22162220

  7. Design of a real-time wind turbine simulator using a custom parallel architecture

    NASA Technical Reports Server (NTRS)

    Hoffman, John A.; Gluck, R.; Sridhar, S.

    1995-01-01

    The design of a new parallel-processing digital simulator is described. The new simulator has been developed specifically for analysis of wind energy systems in real time. The new processor has been named: the Wind Energy System Time-domain simulator, version 3 (WEST-3). Like previous WEST versions, WEST-3 performs many computations in parallel. The modules in WEST-3 are pure digital processors, however. These digital processors can be programmed individually and operated in concert to achieve real-time simulation of wind turbine systems. Because of this programmability, WEST-3 is very much more flexible and general than its two predecessors. The design features of WEST-3 are described to show how the system produces high-speed solutions of nonlinear time-domain equations. WEST-3 has two very fast Computational Units (CU's) that use minicomputer technology plus special architectural features that make them many times faster than a microcomputer. These CU's are needed to perform the complex computations associated with the wind turbine rotor system in real time. The parallel architecture of the CU causes several tasks to be done in each cycle, including an IO operation and the combination of a multiply, add, and store. The WEST-3 simulator can be expanded at any time for additional computational power. This is possible because the CU's interfaced to each other and to other portions of the simulation using special serial buses. These buses can be 'patched' together in essentially any configuration (in a manner very similar to the programming methods used in analog computation) to balance the input/ output requirements. CU's can be added in any number to share a given computational load. This flexible bus feature is very different from many other parallel processors which usually have a throughput limit because of rigid bus architecture.

  8. Developing Integrated Taxonomies for a Tiered Information Architecture

    NASA Technical Reports Server (NTRS)

    Dutra, Jayne E.

    2006-01-01

    This viewgraph presentation reviews the concept of developing taxonomies for an information architecture. In order to assist people in accessing information required to access information and retrieval, including cross repository searching, a system of nested taxonomies is being developed. Another facet of this developmental project is collecting and documenting attributes about people, to allow for several uses: access management, i.e., who are you and what can you see?; targeted content delivery i.e., what content helps you get your work done?; w ork force planning i.e., what skill sets do you have that we can appl y to work?; and IT Services i.e., How can we provision you with the proper IT services?

  9. Applied Nuclear Accountability Systems: A Case Study in the System Architecture and Development of NuMAC

    SciTech Connect

    Campbell, Andrea Beth

    2004-07-01

    This is a case study of the NuMAC nuclear accountability system developed at a private fuel fabrication facility. This paper investigates nuclear material accountability and safeguards by researching expert knowledge applied in the system design and development. Presented is a system developed to detect and deter the theft of weapons grade nuclear material. Examined is the system architecture that includes: issues for the design and development of the system; stakeholder issues; how the system was built and evolved; software design, database design, and development tool considerations; security and computing ethics. (author)

  10. A reliable architectural style for designing pervasive healthcare systems.

    PubMed

    Rafe, Vahid; Hajvali, Masoumeh

    2014-09-01

    The evolution of wireless communication technologies opened the way to the definition of innovative e-Health systems aimed at providing a continuous and remote support to patients and new instruments to improve the workflow of the medical personnel. Nowadays, pervasive healthcare systems are a major step in this regard. The safety-critical systems on one hand and their failure in communication (i.e. sending and receiving messages) in other hand may lead to disaster results in the systems. Moreover, the need for high quality services in such systems, and the access to various types of Quality of Services such as reliability in software development has been increasing in the past years. In this paper, firstly we extend the core meta-model of the previously designed style for designing the structures of such systems in order to reach a high level of reliability in messaging. Secondly, their configuration mechanisms in controlling the communicative errors will be modeled using graph transformation rules. Finally, the correctness of the model is analyzed by model checking techniques. The results of the analysis show its high reliability.

  11. Development of a power protection system using an agent based architecture

    SciTech Connect

    Wong, S.K.; Kalam, A.

    1995-12-31

    This paper presents an approach to the development of a system for the design, analysis and assessment of power protection schemes. The system aims to assist the protection experts in automating their work and aids them in diagnosing, planning and remembering. The system could also be used as a teaching or training tool for the inexperienced fresh graduates in the field. Protection for power system can be viewed as a sum of coordinated protective devices located in the various parts of a power system. The design of protection schemes depends on the configuration of the system, the specifications the system must meet and the constraints that must be satisfied. Selecting and setting the appropriate relays and protective devices are no easy tasks and require skill, experience, heuristics and common sense knowledge. This paper presents a generic architecture based on multi agent paradigm and introduces a novel approach in the development of an intelligent system. It uses distributed problem solving technique and integrates different reasoning methodologies such as case based, rule based and explanation based. The architecture of the system is based on an object oriented paradigm and utilizes a multi knowledge representation scheme in a case based framework. Part of the system which has been implemented in an object oriented environment shows a promising and convincing demonstration of the system`s architecture and approach.

  12. The Visible Nulling Coronagraph--Architecture Definition and Technology Development

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Levine, B. Martin; Wallace, J. Kent; Liu, Duncan T.; Schmidtlin, Edouard; Serabyn, Eugene; Mennesson, Bertrand; Green, Joseph J.; Aguayo, Francisco; Fregoso, S. Felipe; Lane, Benjamin F.; Samuele, Rocco; Tuttle, Carl

    2005-01-01

    This paper describes the advantages of visible direct detection and spectroscopy of Earth-like extrasolar planets using a nulling coronagraph instrument behind a moderately sized single aperture space telescope. Our concept synthesizes a nulling interferometer by shearing the telescope pupil, with the resultant producing a deep null. We describe nulling configurations that also include methods to mitigate stellar leakage, such as spatial filtering by a coherent array of single mode fibers, and post-starlight suppression wavefront sensing and control. With diffraction limited telescope optics and similar quality components in the optical train (lambda/20), suppression of the starlight to 1e-10 is readily achievable. We describe key features of the architecture and analysis, present latest results of laboratory measurements demonstrating achievable null depth and component development, and discuss future key technical milestones.

  13. Program Design Language Architecture Specification for the AN/UYK-7 Central Processor

    DTIC Science & Technology

    1980-02-01

    description of the central processor architecture of the Navy Standard AN/UYK-7 computer.-i... architecture was described using a Program Design Language...Information Center Cameron Station Alexandria, VA 22314 (12) Defense Printing Service Washinqton Navy Yard Washinqton, DC 20374 Library of Conqress Washington...GCfIu G Sall Ditqo, r ’’ I 𔃼.17 NAVSEC Code 6122 Department of the Navy Washington, DC 20362 ATTN: Joe Mallonee NUSC Code 313 New London, CONN 06320

  14. A Methodology For Developing an Agent Systems Reference Architecture

    DTIC Science & Technology

    2010-05-01

    are the start- ing point for the analysis process. 2.3 The Agent Systems Reference Architecture The Agent Systems Reference Architecture (ASRA) is an...process diagram from the common features across the agent framework implementations while documenting differences as points of variation. This abstract...architecture for the functional concept and the points for variation comprise the Process View. 3. Construct the Implementation View using the static

  15. Hidden Realities inside PBL Design Processes: Is Consensus Design an Impossible Clash of Interest between the Individual and the Collective, and Is Architecture Its First Victim?

    ERIC Educational Resources Information Center

    Pihl, Ole

    2015-01-01

    How do architecture students experience the contradictions between the individual and the group at the Department of Architecture and Design of Aalborg University? The Problem-Based Learning model has been extensively applied to the department's degree programs in coherence with the Integrated Design Process, but is a group-based architecture and…

  16. Designing a meta-level architecture in Java for adaptive parallelism by mobile software agents

    NASA Astrophysics Data System (ADS)

    Dominic, Stephen Victor

    Adaptive parallelism refers to a parallel computation that runs on a pool of processors that may join or withdraw from a running computation. In this dissertation, a functional system of agents and agent behaviors for adaptive parallelism is developed. Software agents have the properties of robustness and have capacity for fault-tolerance. Adaptation and fault-tolerance emerge from the interaction of self-directed autonomous software agents for a parallel computation application. The multi-agent system can be considered an object-oriented system with a higher-level architectural component, i.e., a meta level for agent behavior. The meta-level object architecture is based on patterns of behavior and communication for mobile agents, which are developed to support cooperative problem solving in a distributed-heterogeneous computing environment. Although parallel processing is a suggested application domain for mobile agents implemented in the Java language, the development of robust agent behaviors implemented in an efficient manner is an active research area. Performance characteristics for three versions of a pattern recognition problem are used to demonstrate a linear speed-up with efficiency that is compared to research using a traditional client-server protocol in the C language. The best ideas from existing approaches to adaptive parallelism are used to create a single general-purpose paradigm that overcomes problems associated with nodefailure, the use of a single-centralized or shared resource, requirements for clients to actively join a computation, and a variety of other limitations that are associated with existing systems. The multi-agent system, and experiments, show how adaptation and parallelism can be exploited by a meta-architecture for a distributed-scientific application that is of particular interest to design of signal-processing ground stations. To a large extent the framework separates concern for algorithmic design from concern for where and

  17. Computerizing the Classroom: Issues in Architectural Design and Renovation.

    ERIC Educational Resources Information Center

    Chase, William M., Jr.; Biancavilla, Dean

    1991-01-01

    The process of computerizing the classroom includes the following: (1) selection of the architect and engineer; (2) survey of existing premises; (3) solidifying program of usage and design; (4) school board approval and bond vote; and (5) final design and construction. Also discusses electrical system engineering, spatial design, illumination,…

  18. Architectures and design techniques for real-time image processing ICs

    SciTech Connect

    Ruetz, P.A.

    1986-01-01

    A set of 8 chips, which perform real-time image processing tasks, was designed and fabricated with a 4..mu.. MNOS technology. The chips include: a 3 x 3 linear convolver, a 3 x 3 sorting filter, a 7 x 7 logical convolver, a contour tracer, a feature extractor, a look-up table ROM, and two post processors for the linear convolver. All chips were designed using architectures dedicated to the particular image processing tasks to be performed. The image processing circuits operate on 10-MHz video data (512 x 512 pixel images). The design time for the chips was kept to 1.5 man years by re-using hardware and, in addition, utilizing and developing some appropriate CAD tools. ROM generators and a data-path generator were developed to reduce the circuit design time. An image-recognition system was built with these custom chips that can recognize two dimensional objects that are characterized by their closed outer contours. The complete system is controlled by a SUN work station and operates at rates up to 15 frame/Sec. The recognition system achieved a 97% recognition rate for 8 objects over a wide range of orientation and size variations and a 100% recognition rate without size variations.

  19. Exploring Gigabyte Datasets in Real Time: Architectures, Interfaces and Time-Critical Design

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Gerald-Yamasaki, Michael (Technical Monitor)

    1998-01-01

    Architectures and Interfaces: The implications of real-time interaction on software architecture design: decoupling of interaction/graphics and computation into asynchronous processes. The performance requirements of graphics and computation for interaction. Time management in such an architecture. Examples of how visualization algorithms must be modified for high performance. Brief survey of interaction techniques and design, including direct manipulation and manipulation via widgets. talk discusses how human factors considerations drove the design and implementation of the virtual wind tunnel. Time-Critical Design: A survey of time-critical techniques for both computation and rendering. Emphasis on the assignment of a time budget to both the overall visualization environment and to each individual visualization technique in the environment. The estimation of the benefit and cost of an individual technique. Examples of the modification of visualization algorithms to allow time-critical control.

  20. Multi-Mission System Architecture Platform: Design and Verification of the Remote Engineering Unit

    NASA Technical Reports Server (NTRS)

    Sartori, John

    2005-01-01

    The Multi-Mission System Architecture Platform (MSAP) represents an effort to bolster efficiency in the spacecraft design process. By incorporating essential spacecraft functionality into a modular, expandable system, the MSAP provides a foundation on which future spacecraft missions can be developed. Once completed, the MSAP will provide support for missions with varying objectives, while maintaining a level of standardization that will minimize redesign of general system components. One subsystem of the MSAP, the Remote Engineering Unit (REU), functions by gathering engineering telemetry from strategic points on the spacecraft and providing these measurements to the spacecraft's Command and Data Handling (C&DH) subsystem. Before the MSAP Project reaches completion, all hardware, including the REU, must be verified. However, the speed and complexity of the REU circuitry rules out the possibility of physical prototyping. Instead, the MSAP hardware is designed and verified using the Verilog Hardware Definition Language (HDL). An increasingly popular means of digital design, HDL programming provides a level of abstraction, which allows the designer to focus on functionality while logic synthesis tools take care of gate-level design and optimization. As verification of the REU proceeds, errors are quickly remedied, preventing costly changes during hardware validation. After undergoing the careful, iterative processes of verification and validation, the REU and MSAP will prove their readiness for use in a multitude of spacecraft missions.

  1. DAsHER CD: Developing a Data-Oriented Human-Centric Enterprise Architecture for EarthCube

    NASA Astrophysics Data System (ADS)

    Yang, C. P.; Yu, M.; Sun, M.; Qin, H.; Robinson, E.

    2015-12-01

    One of the biggest challenges that face Earth scientists is the resource discovery, access, and sharing in a desired fashion. EarthCube is targeted to enable geoscientists to address the challenges by fostering community-governed efforts that develop a common cyberinfrastructure for the purpose of collecting, accessing, analyzing, sharing and visualizing all forms of data and related resources, through the use of advanced technological and computational capabilities. Here we design an Enterprise Architecture (EA) for EarthCube to facilitate the knowledge management, communication and human collaboration in pursuit of the unprecedented data sharing across the geosciences. The design results will provide EarthCube a reference framework for developing geoscience cyberinfrastructure collaborated by different stakeholders, and identifying topics which should invoke high interest in the community. The development of this EarthCube EA framework leverages popular frameworks, such as Zachman, Gartner, DoDAF, and FEAF. The science driver of this design is the needs from EarthCube community, including the analyzed user requirements from EarthCube End User Workshop reports and EarthCube working group roadmaps, and feedbacks or comments from scientists obtained by organizing workshops. The final product of this Enterprise Architecture is a four-volume reference document: 1) Volume one is this document and comprises an executive summary of the EarthCube architecture, serving as an overview in the initial phases of architecture development; 2) Volume two is the major body of the design product. It outlines all the architectural design components or viewpoints; 3) Volume three provides taxonomy of the EarthCube enterprise augmented with semantics relations; 4) Volume four describes an example of utilizing this architecture for a geoscience project.

  2. Design of phosphorylated dendritic architectures to promote human monocyte activation.

    PubMed

    Poupot, Mary; Griffe, Laurent; Marchand, Patrice; Maraval, Alexandrine; Rolland, Olivier; Martinet, Ludovic; L'Faqihi-Olive, Fatima-Ezzahra; Turrin, Cédric-Olivier; Caminade, Anne-Marie; Fournié, Jean-Jacques; Majoral, Jean-Pierre; Poupot, Rémy

    2006-11-01

    As first defensive line, monocytes are a pivotal cell population of innate immunity. Monocyte activation can be relevant to a range of immune conditions and responses. Here we present new insights into the activation of monocytes by a series of phosphonic acid-terminated, phosphorus-containing dendrimers. Various dendritic or subdendritic structures were synthesized and tested, revealing the basic structural requirements for monocyte activation. We showed that multivalent character and phosphonic acid capping of dendrimers are crucial for monocyte targeting and activation. Confocal videomicroscopy showed that a fluorescein-tagged dendrimer binds to isolated monocytes and gets internalized within a few seconds. We also found that dendrimers follow the phagolysosomial route during internalization by monocytes. Finally, we performed fluorescence resonance energy transfer (FRET) experiments between a specifically designed fluorescent dendrimer and phycoerythrin-coupled antibodies. We showed that the typical innate Toll-like receptor (TLR)-2 is clearly involved, but not alone, in the sensing of dendrimers by monocytes. In conclusion, phosphorus-containing dendrimers appear as precisely tunable nanobiotools able to target and activate human innate immunity and thus prove to be good candidates to develop new drugs for immunotherapies.

  3. Cultural Symbolism behind the Architectural Design of Mounds Park All-Nations Magnet School.

    ERIC Educational Resources Information Center

    Pewewardy, Cornell; May, Paul G.

    1992-01-01

    The architectural design of Mounds Park All-Nations Magnet School (St. Paul, Minnesota) incorporates cultural symbols representing the Native American worldview and Medicine Wheel Circle beliefs, as well as design elements from aboriginal housing styles, and colors and sculptured elements that reinforce the relationship of nature to building. (SV)

  4. One Approach to Senior Level Design in Naval Architecture and Marine Engineering. Report 09-92.

    ERIC Educational Resources Information Center

    Colella, Kurt J.

    The United States Coast Guard Academy has integrated a successful senior-level ship design course sequence into an undergraduate engineering curriculum in order to achieve specifically desired academic and professional outcomes. The Naval Architecture and Marine Engineering (NAME) curriculum discussed is designed to allow for efficient use of…

  5. 36 CFR 1281.4 - What are the architectural and design standards for Presidential libraries?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and design standards for Presidential libraries? 1281.4 Section 1281.4 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES PRESIDENTIAL LIBRARY FACILITIES § 1281.4 What are the architectural and design standards for Presidential libraries? The Archivist...

  6. 36 CFR 1281.4 - What are the architectural and design standards for Presidential libraries?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and design standards for Presidential libraries? 1281.4 Section 1281.4 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES PRESIDENTIAL LIBRARY FACILITIES § 1281.4 What are the architectural and design standards for Presidential libraries? The Archivist...

  7. 36 CFR 1281.4 - What are the architectural and design standards for Presidential libraries?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... design standards for Presidential libraries? 1281.4 Section 1281.4 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES PRESIDENTIAL LIBRARY FACILITIES § 1281.4 What are the architectural and design standards for Presidential libraries? The Archivist is required by...

  8. 36 CFR 1281.4 - What are the architectural and design standards for Presidential libraries?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and design standards for Presidential libraries? 1281.4 Section 1281.4 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES PRESIDENTIAL LIBRARY FACILITIES § 1281.4 What are the architectural and design standards for Presidential libraries? The Archivist...

  9. 36 CFR 1281.4 - What are the architectural and design standards for Presidential libraries?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and design standards for Presidential libraries? 1281.4 Section 1281.4 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES PRESIDENTIAL LIBRARY FACILITIES § 1281.4 What are the architectural and design standards for Presidential libraries? The Archivist...

  10. Designing using Lego and Uno-Stacko: A Playful Architecture for an Integrated Kindergarten and Elementary School

    NASA Astrophysics Data System (ADS)

    Muthmainnah, K.; Aryanti, T.; Ardiansyah, A.

    2017-03-01

    The integrated kindergarten and elementary school is a public educational facility used for early age and elementary education. Designated for children at 4-12 years of age, the design should meet the standards and requirements, while considering children’s needs in their development phase. This paper discusses the design of an integrated kindergarten and elementary school using the playful theme. Design was explored using LEGO and UNO-STACKO to create spaces that accommodate material exploration for children. The design takes the play concept as a medium of child’s learning in order to improve their ability and awareness of the surrounding environment. The design translates the playful theme into imaginary dimension, constructive-deconstructive shapes, and glide circulations concept. The spatial pattern is applied by considering children’s behavior in the designated ages to trigger their creativity improvement. The design is expected to serve as a model of an integrated kindergarten and elementary school architecture.

  11. RELAP5-3D Architectural Developments in 2004

    SciTech Connect

    Dr. George L. Mesina

    2004-08-01

    Currently, RELAP5 is undergoing a transformation that will replace much of its coding with equivalent structured Fortran 90 coding. Four efforts are underway to modernize the code architecture of RELAP5-3D. These are parallelization, vectorization, code restructuring, and conversion to Fortran 90. The first two improve code run speed via on computer platforms of certain architectures. These code modifications have little effect on normal code performance on non-vector and non-parallel computers because they are mostly done with compiler directives. The third and fourth efforts involve considerable rewriting of the source code. The third code improvement effort addresses code readability and maintainability. These are being greatly enhanced by application of a Fortran code-restructuring tool. The fourth effort is conversion to Fortran 90. The bulk of the coding is being rewritten in Fortran 90. This is a ground up reworking of the coding that begins with completely reorganizing the underlying database and continues with the source code. It will reach every part of RELAP5-3D. Each of these efforts is discussed in detail in a different section. Section 1 relates background information. Section 2 covers the parallelization effort. Section 3 covers the efforts to vectorize the code. Section 4 covers the code restructuring. Section 5 covers the Fortran 90 effort. Outline Background: longevity, maintenance & development, reliability, speed Parallelization: KAI to OpenMP, previous work & current, domain decomposition, done. Vectorization: Speed - Fed init, vectors in PCs, INL Cray SV1, R5 Phant, EXV, results. Code Restructuring: Reason to restructure, study of restruct, For Study: what it does, Fortran 90: Modernization -

  12. Development of a Novel Hybrid Multi-Junction Architecture for Silicon Solar Cells

    DTIC Science & Technology

    2015-03-26

    DEVELOPMENT OF A NOVEL HYBRID MULTI-JUNCTION ARCHITECTURE FOR SILICON SOLAR CELLS THESIS...the United States. AFIT-ENG-MS-15-M-026 DEVELOPMENT OF A NOVEL HYBRID MULTI-JUNCTION ARCHITECTURE FOR SILICON SOLAR CELLS THESIS...AFIT-ENG-MS-15-M-026 DEVELOPMENT OF A NOVEL HYBRID MULTI-JUNCTION ARCHITECTURE FOR SILICON SOLAR CELLS Robert S. LaFleur 1st

  13. Application developer's tutorial for the CSM testbed architecture

    NASA Technical Reports Server (NTRS)

    Underwood, Phillip; Felippa, Carlos A.

    1988-01-01

    This tutorial serves as an illustration of the use of the programmer interface on the CSM Testbed Architecture (NICE). It presents a complete, but simple, introduction to using both the GAL-DBM (Global Access Library-Database Manager) and CLIP (Command Language Interface Program) to write a NICE processor. Familiarity with the CSM Testbed architecture is required.

  14. Architectural Tops

    ERIC Educational Resources Information Center

    Mahoney, Ellen

    2010-01-01

    The development of the skyscraper is an American story that combines architectural history, economic power, and technological achievement. Each city in the United States can be identified by the profile of its buildings. The design of the tops of skyscrapers was the inspiration for the students in the author's high-school ceramic class to develop…

  15. NDARC-NASA Design and Analysis of Rotorcraft Theoretical Basis and Architecture

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2010-01-01

    The theoretical basis and architecture of the conceptual design tool NDARC (NASA Design and Analysis of Rotorcraft) are described. The principal tasks of NDARC are to design (or size) a rotorcraft to satisfy specified design conditions and missions, and then analyze the performance of the aircraft for a set of off-design missions and point operating conditions. The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated. The aircraft attributes are obtained from the sum of the component attributes. NDARC provides a capability to model general rotorcraft configurations, and estimate the performance and attributes of advanced rotor concepts. The software has been implemented with low-fidelity models, typical of the conceptual design environment. Incorporation of higher-fidelity models will be possible, as the architecture of the code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis and optimization.

  16. Resilient Monitoring Systems: Architecture, Design, and Application to Boiler/Turbine Plant

    SciTech Connect

    Garcia, Humberto E.; Lin, Wen-Chiao; Meerkov, Semyon M.; Ravichandran, Maruthi T.

    2014-11-01

    Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this work is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliency is quantified using Kullback-Leibler divergence, and is shown to be sufficiently high in all scenarios considered.

  17. Architecture and Design of IP Broadcasting System Using Passive Optical Network

    NASA Astrophysics Data System (ADS)

    Ikeda, Hiroki; Sugawa, Jun; Ashi, Yoshihiro; Sakamoto, Kenichi

    We propose an IP broadcasting system architecture using passive optical networks (PON) utilizing the optical broadcast links of a PON with a downstream bandwidth allocation algorithm to provide a multi-channel IP broadcasting service to home subscribers on single broadband IP network infrastructures. We introduce the design and adaptation of the optical broadcast links to effectively broadcast video contents to home subscribers. We present a performance analysis that includes the downstream bandwidth utilization efficiency of the broadcast link and the bandwidth control of the IP broadcasting and Internet data. Our analysis and simulation results show that the proposed system can provide 100 HDTV channels to every user over fiber lines. We also propose an IPTV channel selection mechanism in an ONT by selecting a broadcast stream. We developed and evaluated a prototype that can achieve a 15-msec IPTV channel selection speed.

  18. Resilient monitoring systems: architecture, design, and application to boiler/turbine plant.

    PubMed

    Garcia, Humberto E; Lin, Wen-Chiao; Meerkov, Semyon M; Ravichandran, Maruthi T

    2014-11-01

    Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this paper is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliency is quantified based on the Kullback-Leibler divergence and shown to be sufficiently high in all scenarios considered.

  19. GTAG: architecture and design of miniature transmitter with position logging for radio telemetry

    NASA Astrophysics Data System (ADS)

    Řeřucha, Šimon; Bartonička, Tomáš; Jedlička, Petr

    2011-10-01

    The radio telemetry is a well-known technique used within zoological research to exploit the behaviour of animal species. A usage of GPS for a frequent and precise position recording gives interesting possibility for a further enhancement of this method. We present our proposal of an architecture and design concepts of telemetry transmitter with GPS module, called GTAG, that is suited for study of the Egyptian fruit bat (Rousettus aegyptiacus). The model group we study set particular constrains, especially the weight limit (9 g) and prevention of any power resources recharging technique. We discuss the aspect of physical realization and the energyconsumption issues. We have developed a reference implementation that has been already deployed during telemetry sessions and we evaluate the experience and compare the estimated performance of our device to a real data.

  20. Resilient Monitoring Systems: Architecture, Design, and Application to Boiler/Turbine Plant

    DOE PAGES

    Garcia, Humberto E.; Lin, Wen-Chiao; Meerkov, Semyon M.; ...

    2014-11-01

    Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this work is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliencymore » is quantified using Kullback-Leibler divergence, and is shown to be sufficiently high in all scenarios considered.« less

  1. Architecture and Children: Learning Environments and Design Education.

    ERIC Educational Resources Information Center

    Taylor, Anne, Ed.; Muhlberger, Joe, Ed.

    1998-01-01

    This issue addresses (1) growing international interest in learning environments and their effects on behavior, and (2) design education, an integrated model for visual-spatial lifelong learning. It focuses on this new and emerging integrated field which integrates elements in education, new learning environment design, and the use of more two-…

  2. Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 2 Challenge Problem Design and Test Specification

    DTIC Science & Technology

    2014-11-01

    Integrated Cognitive- neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 2 Challenge Problem Design and Test...SUBTITLE Integrated Cognitive- neuroscience Architectures for Understanding Sensemaking (ICArUS): A Computational Basis for ICArUS: Phase 2 Challenge...IARPA program ICArUS (Integrated Cognitive- neuroscience Architectures for Understanding Sensemaking) requires a research problem that poses cognitive

  3. Developing the architecture for the Climate Information Portal for Copernicus

    NASA Astrophysics Data System (ADS)

    Som de Cerff, Wim; Thijsse, Peter; Plieger, Maarten; Pascoe, Stephen; Jukes, Martin; Leadbetter, Adam; Goosen, Hasse; de Vreede, Ernst

    2015-04-01

    environment and society, but will develop an end to end processing chain (indicator toolkit), from comprehensive information on the climate state through to highly aggregated decision relevant products. This processing chain will be demonstrated within three thematic areas: water, rural and urban. Indicators of climate change and climate change impact will be provided, and a toolkit to update and post process the collection of indicators will be integrated into the portal. For the indicators three levels (Tiers) have been loosely defined: Tier 1: field summarising properties of the climate system; e.g. temperature change; Tier 2: expressed in terms of environmental properties outside the climate system; e.g. flooding change; Tier 3: expressed in social and economic impact. For the architecture, CLIPC has two interlocked themes: 1. Harmonised access to climate datasets derived from models, observations and re-analyses 2. A climate impact toolkit to evaluate, rank and aggregate indicators For development of the CLIPC architecture an Agile 'storyline' approach is taken. The storyline is a real world use case and consists of producing a Tier 3 indicator (Urban Heat Vulnerability) and making it available through the CLIPC infrastructure for a user group. In this way architecture concepts can be directly tested and improved. Also, the produced indicator can be shown to users to refine requirements. Main components of the CLIPC architecture are 1) Data discovery and access, 2) Data processing, 3) Data visualization, 4) Knowledge base and 5) User Management. The Data discovery and access component main challenge is to provide harmonized access to various sources of climate data (ngEO, EMODNET/SeaDataNet, ESGF, MyOcean). The discovery service concept will be provided using a CLIPC data and data product catalogue and via a structured data search on selected infrastructures, using NERC vocabulary services and mappings. Data processing will be provided using OGC WPS services, linking

  4. Judicious use of custom development in an open source component architecture

    NASA Astrophysics Data System (ADS)

    Bristol, S.; Latysh, N.; Long, D.; Tekell, S.; Allen, J.

    2014-12-01

    Modern software engineering is not as much programming from scratch as innovative assembly of existing components. Seamlessly integrating disparate components into scalable, performant architecture requires sound engineering craftsmanship and can often result in increased cost efficiency and accelerated capabilities if software teams focus their creativity on the edges of the problem space. ScienceBase is part of the U.S. Geological Survey scientific cyberinfrastructure, providing data and information management, distribution services, and analysis capabilities in a way that strives to follow this pattern. ScienceBase leverages open source NoSQL and relational databases, search indexing technology, spatial service engines, numerous libraries, and one proprietary but necessary software component in its architecture. The primary engineering focus is cohesive component interaction, including construction of a seamless Application Programming Interface (API) across all elements. The API allows researchers and software developers alike to leverage the infrastructure in unique, creative ways. Scaling the ScienceBase architecture and core API with increasing data volume (more databases) and complexity (integrated science problems) is a primary challenge addressed by judicious use of custom development in the component architecture. Other data management and informatics activities in the earth sciences have independently resolved to a similar design of reusing and building upon established technology and are working through similar issues for managing and developing information (e.g., U.S. Geoscience Information Network; NASA's Earth Observing System Clearing House; GSToRE at the University of New Mexico). Recent discussions facilitated through the Earth Science Information Partners are exploring potential avenues to exploit the implicit relationships between similar projects for explicit gains in our ability to more rapidly advance global scientific cyberinfrastructure.

  5. Architectural Design for the Global Legal Information Network

    NASA Technical Reports Server (NTRS)

    Kalpakis, Konstantinos

    1999-01-01

    In this report, we provide a summary of our activities regarding the goals, requirements analysis, design, and prototype implementation for the Global Legal Information Network, a joint effort between the Law Library of Congress and NASA.

  6. Adaptation of pancreatic islet cyto-architecture during development

    NASA Astrophysics Data System (ADS)

    Striegel, Deborah A.; Hara, Manami; Periwal, Vipul

    2016-04-01

    Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, β, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of β cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of β cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for β cells between 1-35 weeks and 12-24 months.

  7. Developing a scalable modeling architecture for studying survivability technologies

    NASA Astrophysics Data System (ADS)

    Mohammad, Syed; Bounker, Paul; Mason, James; Brister, Jason; Shady, Dan; Tucker, David

    2006-05-01

    To facilitate interoperability of models in a scalable environment, and provide a relevant virtual environment in which Survivability technologies can be evaluated, the US Army Research Development and Engineering Command (RDECOM) Modeling Architecture for Technology Research and Experimentation (MATREX) Science and Technology Objective (STO) program has initiated the Survivability Thread which will seek to address some of the many technical and programmatic challenges associated with the effort. In coordination with different Thread customers, such as the Survivability branches of various Army labs, a collaborative group has been formed to define the requirements for the simulation environment that would in turn provide them a value-added tool for assessing models and gauge system-level performance relevant to Future Combat Systems (FCS) and the Survivability requirements of other burgeoning programs. An initial set of customer requirements has been generated in coordination with the RDECOM Survivability IPT lead, through the Survivability Technology Area at RDECOM Tank-automotive Research Development and Engineering Center (TARDEC, Warren, MI). The results of this project are aimed at a culminating experiment and demonstration scheduled for September, 2006, which will include a multitude of components from within RDECOM and provide the framework for future experiments to support Survivability research. This paper details the components with which the MATREX Survivability Thread was created and executed, and provides insight into the capabilities currently demanded by the Survivability faculty within RDECOM.

  8. Advanced Design and Implementation of a Control Architecture for Long Range Autonomous Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Martin-Alvarez, A.; Hayati, S.; Volpe, R.; Petras, R.

    1999-01-01

    An advanced design and implementation of a Control Architecture for Long Range Autonomous Planetary Rovers is presented using a hierarchical top-down task decomposition, and the common structure of each design is presented based on feedback control theory. Graphical programming is presented as a common intuitive language for the design when a large design team is composed of managers, architecture designers, engineers, programmers, and maintenance personnel. The whole design of the control architecture consists in the classic control concepts of cyclic data processing and event-driven reaction to achieve all the reasoning and behaviors needed. For this purpose, a commercial graphical tool is presented that includes the mentioned control capabilities. Messages queues are used for inter-communication among control functions, allowing Artificial Intelligence (AI) reasoning techniques based on queue manipulation. Experimental results show a highly autonomous control system running in real time on top the JPL micro-rover Rocky 7 controlling simultaneously several robotic devices. This paper validates the sinergy between Artificial Intelligence and classic control concepts in having in advanced Control Architecture for Long Range Autonomous Planetary Rovers.

  9. An Experimental Study in an Architectural Design Studio: The Search for Three-Dimensional Form and Aesthetics through Clay

    ERIC Educational Resources Information Center

    Yamacli, Rusen; Ozen, Aysegul; Tokman, Leyla Yekdane

    2005-01-01

    In architectural design education, the main objective is to help students, especially first-year students, improve their design ideas, creativity, perception of three dimensions and ways of expressing them. Thus, as an embedded concept in architecture, art has been emphasized here as a design method. In other words, the necessary help to enable…

  10. Using an Analogical Thinking Model as an Instructional Tool to Improve Student Cognitive Ability in Architecture Design Learning Process

    ERIC Educational Resources Information Center

    Wu, Yun-Wu; Weng, Kuo-Hua

    2013-01-01

    Lack of creativity is a problem often plaguing students from design-related departments. Therefore, this study is intended to incorporate analogical thinking in the education of architecture design to enhance students' learning and their future career performance. First, this study explores the three aspects of architecture design curricula,…

  11. Architecture and design of a 500-MHz gallium-arsenide processing element for a parallel supercomputer

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.; Butner, Steven E.

    1991-01-01

    The design of the processing element of GASP, a GaAs supercomputer with a 500-MHz instruction issue rate and 1-GHz subsystem clocks, is presented. The novel, functionally modular, block data flow architecture of GASP is described. The architecture and design of a GASP processing element is then presented. The processing element (PE) is implemented in a hybrid semiconductor module with 152 custom GaAs ICs of eight different types. The effects of the implementation technology on both the system-level architecture and the PE design are discussed. SPICE simulations indicate that parts of the PE are capable of being clocked at 1 GHz, while the rest of the PE uses a 500-MHz clock. The architecture utilizes data flow techniques at a program block level, which allows efficient execution of parallel programs while maintaining reasonably good performance on sequential programs. A simulation study of the architecture indicates that an instruction execution rate of over 30,000 MIPS can be attained with 65 PEs.

  12. Designing a Component-Based Architecture for the Modeling and Simulation of Nuclear Fuels and Reactors

    SciTech Connect

    Billings, Jay Jay; Elwasif, Wael R; Hively, Lee M; Bernholdt, David E; Hetrick III, John M; Bohn, Tim T

    2009-01-01

    Concerns over the environment and energy security have recently prompted renewed interest in the U.S. in nuclear energy. Recognizing this, the U.S. Dept. of Energy has launched an initiative to revamp and modernize the role that modeling and simulation plays in the development and operation of nuclear facilities. This Nuclear Energy Advanced Modeling and Simulation (NEAMS) program represents a major investment in the development of new software, with one or more large multi-scale multi-physics capabilities in each of four technical areas associated with the nuclear fuel cycle, as well as additional supporting developments. In conjunction with this, we are designing a software architecture, computational environment, and component framework to integrate the NEAMS technical capabilities and make them more accessible to users. In this report of work very much in progress, we lay out the 'problem' we are addressing, describe the model-driven system design approach we are using, and compare them with several large-scale technical software initiatives from the past. We discuss how component technology may be uniquely positioned to address the software integration challenges of the NEAMS program, outline the capabilities planned for the NEAMS computational environment and framework, and describe some initial prototyping activities.

  13. The Co Design Architecture for Exascale Systems, a Novel Approach for Scalable Designs

    SciTech Connect

    Kagan, Michael; Shainer, Gilad; Poole, Stephen W; Shamis, Pavel; Wilde, Todd; Pak, Lui; Liu, Tong; Dubman, Mike; Shahar, Yiftah; Graham, Richard L

    2012-01-01

    High performance computing (HPC) has begun scaling beyond the Petaflop range towards the Exaflop (1000 Petaflops) mark. One of the major concerns throughout the development toward such performance capability is scalability both at the system level and the application layer. In this paper we present a novel approach for a new design concept the Co Design approach with enables a tighter development of both the application communication libraries and the underlying hardware interconnect solution in order to overcome scalability issues and to enable a more efficient design approach towards Exascale computing. We have suggested a new application programing interface and have demonstrated a 50x improvement of performance and scalability increases.

  14. Agile Development & Software Architecture - Crossing the Great Divide

    DTIC Science & Technology

    2016-06-07

    context. Previously, Nanette worked at Pitney Bowes Inc., most recently as Director of Architecture and Quality Management , where she was responsible...scenario-based approach to specify quality attributes. 3 TWITTER Hashtag #seiwebinar Crossing the Great Divide Brown , 4/22/2010 © 2010 Carnegie...University What is Architecture? Structure A Thematic Analysis System Qualities Decisions / Governance Multi-Dimensional SEI IEEE TOGAF Rozanski & Woods 12

  15. Peeling the Onion: Okapi System Architecture and Software Design Issues.

    ERIC Educational Resources Information Center

    Jones, S.; And Others

    1997-01-01

    Discusses software design issues for Okapi, an information retrieval system that incorporates both search engine and user interface and supports weighted searching, relevance feedback, and query expansion. The basic search system, adjacency searching, and moving toward a distributed system are discussed. (Author/LRW)

  16. Hybrid Architectures and Their Impact on Intelligent Design

    NASA Technical Reports Server (NTRS)

    Kandel, Abe

    1996-01-01

    In this presentation we investigate a novel framework for the design of autonomous fuzzy intelligent systems. The system integrates the following modules into a single autonomous entity: (1) a fuzzy expert system; (2) artificial neural network; (3) genetic algorithm; and (4) case-base reasoning. We describe the integration of these units into one intelligent structure and discuss potential applications.

  17. Dependability Modeling with the Architecture Analysis & Design Language (AADL)

    DTIC Science & Technology

    2007-07-01

    louse, France, August 27, 2004. http://www.laas.fr/ FERIA /SVF/WADL04/slides/CONCORDE2- 27-1100-VESTAL/BinnsVestalADLWorkshop.ppt [Feiler 2004] Feiler...Design Languages at the 18th IFIP World Computer Congress. Toulouse, France, August 27, 2004. http://www.laas.fr/ FERIA /SVF/WADL04/slides/CONCORDE2-27

  18. Architecture for Education: New School Designs from the Chicago Competition.

    ERIC Educational Resources Information Center

    Robbins, Mark; Moelis, Cindy S.; Clarke, Pamela H.; Hendrickson, Jamie; Nowaczewski, Jeanne L.; Haar, Sharon

    This volume documents the work that resulted from the Chicago Public Schools Design Competition, explaining research and policies underlying the competition's criteria. The volume has three parts. Book 1, "The Chicago Experience," written by the competition's organizers, describes the competition's process and explains how it allowed community…

  19. Systems budgets architecture and development for the Maunakea Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Mignot, Shan; Flagey, Nicolas; Szeto, Kei; Murowinski, Rick; McConnachie, Alan

    2016-08-01

    The Maunakea Spectroscopic Explorer (MSE) project is an enterprise to upgrade the existing Canada-France- Hawaii observatory into a spectroscopic facility based on a 10 meter-class telescope. As such, the project relies on engineering requirements not limited only to its instruments (the low, medium and high resolution spectrographs) but for the whole observatory. The science requirements, the operations concept, the project management and the applicable regulations are the basis from which these requirements are initially derived, yet they do not form hierarchies as each may serve several purposes, that is, pertain to several budgets. Completeness and consistency are hence the main systems engineering challenges for such a large project as MSE. Special attention is devoted to ensuring the traceability of requirements via parametric models, derivation documents, simulations, and finally maintaining KAOS diagrams and a database under IBM Rational DOORS linking them together. This paper will present the architecture of the main budgets under development and the associated processes, expand to highlight those that are interrelated and how the system, as a whole, is then optimized by modelling and analysis of the pertinent system parameters.

  20. Development of the Neurochemical Architecture of the Central Complex

    PubMed Central

    Boyan, George S.; Liu, Yu

    2016-01-01

    The central complex represents one of the most conspicuous neuroarchitectures to be found in the insect brain and regulates a wide repertoire of behaviors including locomotion, stridulation, spatial orientation and spatial memory. In this review article, we show that in the grasshopper, a model insect system, the intricate wiring of the fan-shaped body (FB) begins early in embryogenesis when axons from the first progeny of four protocerebral stem cells (called W, X, Y, Z, respectively) in each brain hemisphere establish a set of tracts to the primary commissural system. Decussation of subsets of commissural neurons at stereotypic locations across the brain midline then establishes a columnar neuroarchitecture in the FB which is completed during embryogenesis. Examination of the expression patterns of various neurochemicals in the central complex including neuropeptides, a neurotransmitter and the gas nitric oxide (NO), show that these appear progressively and in a substance-specific manner during embryogenesis. Each neuroactive substance is expressed by neurons located at stereotypic locations in a given central complex lineage, confirming that the stem cells are biochemically multipotent. The organization of axons expressing the various neurochemicals within the central complex is topologically related to the location, and hence birthdate, of the neurons within the lineages. The neurochemical expression patterns within the FB are layered, and so reflect the temporal topology present in the lineages. This principle relates the neuroanatomical to the neurochemical architecture of the central complex and so may provide insights into the development of adaptive behaviors. PMID:27630548

  1. Integrating Computer Architectures into the Design of High-Performance Controllers

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.; Leyland, Jane A.; Warmbrodt, William

    1986-01-01

    Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, on-line graphics, and file management. This paper discusses five global design considerations that are useful to integrate array processor, multimicroprocessor, and host computer system architecture into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the non-real-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration will be briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind-tunnel environment, the control architecture can generally be applied to a wide range of automatic control applications.

  2. The Design of a Fault-Tolerant COTS-Based Bus Architecture for Space Applications

    NASA Technical Reports Server (NTRS)

    Chau, Savio N.; Alkalai, Leon; Tai, Ann T.

    2000-01-01

    The high-performance, scalability and miniaturization requirements together with the power, mass and cost constraints mandate the use of commercial-off-the-shelf (COTS) components and standards in the X2000 avionics system architecture for deep-space missions. In this paper, we report our experiences and findings on the design of an IEEE 1394 compliant fault-tolerant COTS-based bus architecture. While the COTS standard IEEE 1394 adequately supports power management, high performance and scalability, its topological criteria impose restrictions on fault tolerance realization. To circumvent the difficulties, we derive a "stack-tree" topology that not only complies with the IEEE 1394 standard but also facilitates fault tolerance realization in a spaceborne system with limited dedicated resource redundancies. Moreover, by exploiting pertinent standard features of the 1394 interface which are not purposely designed for fault tolerance, we devise a comprehensive set of fault detection mechanisms to support the fault-tolerant bus architecture.

  3. Building a prototype of a Martian base in Poland, an architectural design overview and progress report

    NASA Astrophysics Data System (ADS)

    Kozicki, Janek

    This talk focuses on recent advances in the construction of a prototype 1000 m2 Martian out-post for 8 inhabitants. The architectural design for such a Martian base has been presented previously on COSPAR 2008, the presentation being entitled ,,Architectural design proposal for a Martian base to continue NASA Mars Design Reference Mission". The presentation was welcomed with warm interest by various institutions, some of which offered help in building a prototype such as providing the building site or funding. This year's oral presentation will focus on a progress report and will briefly describe the architectural design. The architectural design is inspired by terrestrial pneumatic architecture. It has small volume, can be easily transported and provides a large habitable space. An architectural solution analo-gous to a terrestrial house with a studio and a workshop was assumed. The spatial placement of the following zones was carefully considered: residential, agricultural and science, as well as garage and workshop. Further attention was paid to transportation routes and a control and communications center. The issues of a life support system, energy, food, water and waste recycling were also discussed. This Martian base was designed to be crewed by a team of eight people to stay on Mars for at least one and a half year. An Open Plan architectural solution was assumed, with a high level of modularity. Walls of standardized sizes with zip-fasteners allow free rearrangement of the interior to adapt to a new situation. The prototype of such a Polish-origin Martian outpost will be used in a manner similar to MDRS or FMARS but to a larger extent. The prototype's design itself will be tested and corrected to achieve a design which can be used on Mars. The procedure of unfolding the pneumatic modules and floor leveling will be tested. The 1000 m2 interior will be used for various simulation exercises: socio-psychological testing, interior arrangement experiments

  4. Interaction of epithelium with mesenchyme affects global features of lung architecture: a computer model of development.

    PubMed

    Tebockhorst, Seth; Lee, Dongyoub; Wexler, Anthony S; Oldham, Michael J

    2007-01-01

    Lung airway morphogenesis is simulated in a simplified diffusing environment that simulates the mesenchyme to explore the role of morphogens in airway architecture development. Simple rules govern local branching morphogenesis. Morphogen gradients are modeled by four pairs of sources and their diffusion through the mesenchyme. Sensitivity to lobar architecture and mesenchymal morphogen are explored. Even if the model accurately represents observed patterns of local development, it could not produce realistic global patterns of lung architecture if interaction with its environment was not taken into account, implying that reciprocal interaction between airway growth and morphogens in the mesenchyme plays a critical role in producing realistic global features of lung architecture.

  5. Space station needs, attributes, and architectural options: Technology development

    NASA Technical Reports Server (NTRS)

    Robert, A. C.

    1983-01-01

    The technology development of the space station is examined as it relates to space station growth and equipment requirements for future missions. Future mission topics are refined and used to establish a systems data base. Technology for human factors engineering, space maintenance, satellite design, and laser communications and tracking is discussed.

  6. A Web Centric Architecture for Deploying Multi-Disciplinary Engineering Design Processes

    NASA Technical Reports Server (NTRS)

    Woyak, Scott; Kim, Hongman; Mullins, James; Sobieszczanski-Sobieski, Jaroslaw

    2004-01-01

    There are continuous needs for engineering organizations to improve their design process. Current state of the art techniques use computational simulations to predict design performance, and optimize it through advanced design methods. These tools have been used mostly by individual engineers. This paper presents an architecture for achieving results at an organization level beyond individual level. The next set of gains in process improvement will come from improving the effective use of computers and software within a whole organization, not just for an individual. The architecture takes advantage of state of the art capabilities to produce a Web based system to carry engineering design into the future. To illustrate deployment of the architecture, a case study for implementing advanced multidisciplinary design optimization processes such as Bi-Level Integrated System Synthesis is discussed. Another example for rolling-out a design process for Design for Six Sigma is also described. Each example explains how an organization can effectively infuse engineering practice with new design methods and retain the knowledge over time.

  7. Memristor-Based Computing Architecture: Design Methodologies and Circuit Techniques

    DTIC Science & Technology

    2013-03-01

    simply consists of an NMOS transistor (Q) and a memristor. When the input Vin is low, the transistor Q is turned off. Thus, the output Vout is...connected to ground through the memristor. Conversely, when Vin is high, turning Q on, the memristance M and the equivalent transistor resistance (RQ...synapse design was dependent on the equivalent resistance (effectively, the size) of the Q transistor (RQ). A larger Q would offer a wider range of Vout

  8. Internet-Protocol-Based Satellite Bus Architecture Designed

    NASA Technical Reports Server (NTRS)

    Slywczak, Richard A.

    2004-01-01

    NASA is designing future complex satellite missions ranging from single satellites and constellations to space networks and sensor webs. These missions require more interoperability, autonomy, and coordination than previous missions; in addition, a desire exists to have scientists retrieve data directly from the satellite rather than a central distribution source. To meet these goals, NASA has been studying the possibility of extending the Transmission Control Protocol/Internet Protocol (TCP/IP) suite for spacebased applications.

  9. A Parallel Trade Study Architecture for Design Optimization of Complex Systems

    NASA Technical Reports Server (NTRS)

    Kim, Hongman; Mullins, James; Ragon, Scott; Soremekun, Grant; Sobieszczanski-Sobieski, Jaroslaw

    2005-01-01

    Design of a successful product requires evaluating many design alternatives in a limited design cycle time. This can be achieved through leveraging design space exploration tools and available computing resources on the network. This paper presents a parallel trade study architecture to integrate trade study clients and computing resources on a network using Web services. The parallel trade study solution is demonstrated to accelerate design of experiments, genetic algorithm optimization, and a cost as an independent variable (CAIV) study for a space system application.

  10. The Architecture of Peer Assessment: Do Academically Successful Students Make Good Teammates in Design Assignments?

    ERIC Educational Resources Information Center

    Tucker, Richard

    2013-01-01

    This paper considers the relationship between architecture and construction management students' overall academic abilities (as measured by Weighted Average Marks [WAMs]), their peer ratings for contributions to team design assignments (as measured by an online Self-and-Peer-Assessment [SAPA] tool), and their specific abilities as building…

  11. Towards Designing an Integrated Architecture for NEO Characterization, Mitigation, Scientific Evaluation, and Resource Utilization

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; LaPointe, Michael; Wilks, Rod; Allen, Brian

    2009-01-01

    This poster reviews the planning and design for an integrated architecture for characterization, mitigation, scientific evaluation and resource utilization of near earth objects. This includes tracks to observe and characterize the nature of the threat posed by a NEO, and deflect if a significant threat is posed. The observation stack can also be used for a more complete scientific analysis of the NEO.

  12. Information Architecture for the Web: The IA Matrix Approach to Designing Children's Portals.

    ERIC Educational Resources Information Center

    Large, Andrew; Beheshti, Jamshid; Cole, Charles

    2002-01-01

    Presents a matrix that can serve as a tool for designing the information architecture of a Web portal in a logical and systematic manner. Highlights include interfaces; metaphors; navigation; interaction; information retrieval; and an example of a children's Web portal to provide access to museum information. (Author/LRW)

  13. Shifting Engagements in Figured Worlds: Middle School Mathematics Students' Participation in an Architectural Design Project

    ERIC Educational Resources Information Center

    Jurow, A. Susan

    2005-01-01

    Project-based curricula have the potential to engage students' interests. But how do students become interested in the goals of a project? This article documents how a group of 8th-grade students participated in an architectural design project called the Antarctica Project. The project is based on the imaginary premise that students need to design…

  14. Power and area-optimised Carry-Select Adder architecture for standard cell-based design

    NASA Astrophysics Data System (ADS)

    Shanmugam, Muthukumar; Choi, GoangSeog

    2015-08-01

    A Carry-Select Adder (CSA) is one of the most suitable adders for high-speed applications, but the power and area penalties are greater, because it requires a double Ripple-Carry Adder (RCA) structure corresponding to carry inputs 0 and 1. Current low-power and low-area techniques are not suitable for a standard cell-based design which is one of the widely adopted design methodologies. Our work proposes two simple optimised architectures suitable for standard cell-based designs. A simple decision logic that replaces the RCA for Carry input 1 in a conventional CSA is proposed. One of the proposed architectures reduces power and area significantly with a small delay penalty compared to the existing techniques. Another proposed architecture improves the speed of operation and reduces the power and area considerably. The first one is more suitable for high-speed arithmetic in battery-operated applications where there is a trade-off between speed and power, while the other one is suitable for high-performance applications which also require area and power optimisation. The proposed architectures were implemented in TSMC 0.18um CMOS technology, and compared with conventional Square Root Carry-Select Adders and an existing standard cell-based design.

  15. Energy Conservation and Solar Retrofitting for Existing Buildings in Oregon: An Architectural Design Class Project.

    ERIC Educational Resources Information Center

    Oregon Univ., Eugene. School of Architecture and Allied Arts.

    Five privately owned homes and two university owned homes were examined by architecture students in order to formulate design alternatives to fit the houses with solar collection, storage, and control devices for supplementing domestic space and/or water heating. General principles advanced include why energy conservation and solar retrofitting…

  16. The Design of Geo-Spatial Metadata Architecture for Digital Boundary

    NASA Astrophysics Data System (ADS)

    Zhao, J.-X.; Zhang, J.; Cao, Y.-B.

    2013-11-01

    This paper analyzes the significance of geospatial metadata technology in the "Digital Boundary" project. In the study of boundary data types and characteristics, the architecture framework of geospatial metadata is designed. It lays foundation for establishing detailed content of all kinds of metadata as the next step.

  17. Computer Aided Design of Ka-Band Waveguide Power Combining Architectures for Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Vaden, Karl R.

    2006-01-01

    Communication systems for future NASA interplanetary spacecraft require transmitter power ranging from several hundred watts to kilowatts. Several hybrid junctions are considered as elements within a corporate combining architecture for high power Ka-band space traveling-wave tube amplifiers (TWTAs). This report presents the simulated transmission characteristics of several hybrid junctions designed for a low loss, high power waveguide based power combiner.

  18. Architecture for VLSI design of Reed-Solomon encoders

    NASA Technical Reports Server (NTRS)

    Liu, K. Y.

    1981-01-01

    The logic structure of a universal VLSI chip called the symbol-slice Reed-Solomon (RS) encoder chip is discussed. An RS encoder can be constructed by cascading and properly interconnecting a group of such VLSI chips. As a design example, it is shown that a (255,223) RD encoder requiring around 40 discrete CMOS ICs may be replaced by an RS encoder consisting of four identical interconnected VLSI RS encoder chips. Besides the size advantage, the VLSI RS encoder also has the potential advantages of requiring less power and having a higher reliability.

  19. Information architecture. Volume 3: Guidance

    SciTech Connect

    1997-04-01

    The purpose of this document, as presented in Volume 1, The Foundations, is to assist the Department of Energy (DOE) in developing and promulgating information architecture guidance. This guidance is aimed at increasing the development of information architecture as a Departmentwide management best practice. This document describes departmental information architecture principles and minimum design characteristics for systems and infrastructures within the DOE Information Architecture Conceptual Model, and establishes a Departmentwide standards-based architecture program. The publication of this document fulfills the commitment to address guiding principles, promote standard architectural practices, and provide technical guidance. This document guides the transition from the baseline or defacto Departmental architecture through approved information management program plans and budgets to the future vision architecture. This document also represents another major step toward establishing a well-organized, logical foundation for the DOE information architecture.

  20. Developing a Conceptual Architecture for a Generalized Agent-based Modeling Environment (GAME)

    DTIC Science & Technology

    2008-03-01

    possible. A conceptual architecture for a generalized agent- based modeling environment (GAME) based upon design principles from OR/MS systems was created...conceptual architecture for a generalized agent-based modeling environment (GAME) based upon design principles from OR/MS systems was created that...handle the event, and subsequently form the relevant plans. One of these plans will be selected, and either pushed to the top of the current

  1. Designer schools: the role of school space and architecture in obesity prevention.

    PubMed

    Gorman, Nicholas; Lackney, Jeffery A; Rollings, Kimberly; Huang, Terry T-K

    2007-11-01

    Spatial features of obesogenic environments studied on a broad community level have been associated with childhood overweight and obesity, but little research has focused on the effects of the design of micro spaces, such as schools, on individual health behaviors. This article aims to generate thinking and research on the link between school space and architecture and obesity prevention by reviewing and synthesizing available literature in architecture, environmental psychology, and obesity research, in an effort to propose promising ideas for school space design and redesign. The school environment is defined through 5 dimensions: physical, legal, policy, social, and cultural domains. Theories underlying environmental interventions and documented associations between the environment and health behaviors and outcomes are reviewed to illustrate how existing environmental research could translate to obesity prevention. Design strategies aimed at promoting physical activity and healthful eating are proposed, with particular emphasis on the design of cafeterias, activity spaces, connectivity with the larger community, and student health centers.

  2. Design of a Scalable Event Notification Service: Interface and Architecture

    DTIC Science & Technology

    1998-08-01

    betta Di Nitto , Alfonso Fuggetta, Richard Hall, Den- nis Heimbigner, and André van der Hoek for their considerable contributions in discussing and...Engineering Task Force, June 1994. [2] G. Cugola, E. Di Nitto , and A. Fuggetta. The JEDI event-based infrastructure and its appli- cation to the development

  3. Fabrication of magneto-controlled moveable architecture to develop reusable electrochemical biosensors

    PubMed Central

    Zhu, Xiaoli; Feng, Chang; Ye, Zonghuang; Chen, Yangyang; Li, Genxi

    2014-01-01

    Electrochemical biosensors have been studied intensively for several decades. Numerous sensing concepts and related interface architectures have been developed. However, all such architectures suffer a trade-off: simple architectures favour usability, whereas complex architectures favour better performance. To overcome this problem, we propose a novel concept by introducing a magneto-controlled moveable architecture (MCMA) instead of the conventional surface-fixed architecture. As a model, human breast cancer cells were used in this study. The results showed that a detection range from 100 to 1 × 106 cells could be achieved. Moreover, the whole detection cycle, including the measurement and the regeneration, could be completed in only 2 min. Thus, usability and excellent performance can be achieved in a single biosensor. PMID:24566810

  4. Fabrication of magneto-controlled moveable architecture to develop reusable electrochemical biosensors.

    PubMed

    Zhu, Xiaoli; Feng, Chang; Ye, Zonghuang; Chen, Yangyang; Li, Genxi

    2014-02-25

    Electrochemical biosensors have been studied intensively for several decades. Numerous sensing concepts and related interface architectures have been developed. However, all such architectures suffer a trade-off: simple architectures favour usability, whereas complex architectures favour better performance. To overcome this problem, we propose a novel concept by introducing a magneto-controlled moveable architecture (MCMA) instead of the conventional surface-fixed architecture. As a model, human breast cancer cells were used in this study. The results showed that a detection range from 100 to 1 × 10(6) cells could be achieved. Moreover, the whole detection cycle, including the measurement and the regeneration, could be completed in only 2 min. Thus, usability and excellent performance can be achieved in a single biosensor.

  5. Software Architecture: Managing Design for Achieving Warfighter Capability

    DTIC Science & Technology

    2007-10-12

    development. - 13 - Level 1 of the WBS describes the entire project . If the program is a systems- of-systems (SoS) or net-centric project , Level...and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 12 October 2007...Vehicle Replacement (MTVR) from 1994 to 1996 and served as the Deputy Project Manager for Light Tactical Vehicles from 1996 to 1997. He was the 7th

  6. Software Architecture: Managing Design for Achieving Warfighter Capability

    DTIC Science & Technology

    2007-04-30

    net-centric systems development. Level 1 of the WBS describes the entire project . If the program is a Systems of Systems (SOS) project , Level I...6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate...the proceedings of the annual Acquisition Research Program. This annual event showcases the research projects funded through the Acquisition Research

  7. NUDGING FOR HEALTH: ON PUBLIC POLICY AND DESIGNING CHOICE ARCHITECTURE

    PubMed Central

    Quigley, Muireann

    2013-01-01

    There have been recent policy moves aimed at encouraging individuals to lead healthier lives. The Cabinet Office has set up a ‘nudge unit’ with health as one of its priorities and behavioural approaches have started to be integrated into health-related domestic policy in a number of areas. Behavioural research has shown that that the way the environment is constructed can shape a person's choices within it. Thus, it is hoped that, by using insights from such research, people can be nudged towards making decisions which are better for their health. This article outlines how nudges can be conceived of as part of an expanding arsenal of health-affecting regulatory tools being used by the Government and addresses some concerns which have been expressed regarding behavioural research-driven regulation and policy. In particular, it makes the case that, regardless of new regulatory and policy strategies, we cannot escape the myriad of influences which surround us. As such, we can view our health-affecting decisions as already being in some sense shaped and constructed. Further, it argues we may in fact have reason to prefer sets of health-affecting options which have been intentionally designed by the state, rather than those that stem from other sources or result from random processes. Even so, in closing, this article draws attention to the largely unanswered questions about how behavioural research translates into policy and regulatory initiatives. PMID:24081425

  8. End-to-end interoperability and workflows from building architecture design to one or more simulations

    DOEpatents

    Chao, Tian-Jy; Kim, Younghun

    2015-02-10

    An end-to-end interoperability and workflows from building architecture design to one or more simulations, in one aspect, may comprise establishing a BIM enablement platform architecture. A data model defines data entities and entity relationships for enabling the interoperability and workflows. A data definition language may be implemented that defines and creates a table schema of a database associated with the data model. Data management services and/or application programming interfaces may be implemented for interacting with the data model. Web services may also be provided for interacting with the data model via the Web. A user interface may be implemented that communicates with users and uses the BIM enablement platform architecture, the data model, the data definition language, data management services and application programming interfaces to provide functions to the users to perform work related to building information management.

  9. The ATLAS EventIndex: architecture, design choices, deployment and first operation experience

    NASA Astrophysics Data System (ADS)

    Barberis, D.; Cárdenas Zárate, S. E.; Cranshaw, J.; Favareto, A.; Fernández Casaní, Á.; Gallas, E. J.; Glasman, C.; González de la Hoz, S.; Hřivnáč, J.; Malon, D.; Prokoshin, F.; Salt Cairols, J.; Sánchez, J.; Többicke, R.; Yuan, R.

    2015-12-01

    The EventIndex is the complete catalogue of all ATLAS events, keeping the references to all files that contain a given event in any processing stage. It replaces the TAG database, which had been in use during LHC Run 1. For each event it contains its identifiers, the trigger pattern and the GUIDs of the files containing it. Major use cases are event picking, feeding the Event Service used on some production sites, and technical checks of the completion and consistency of processing campaigns. The system design is highly modular so that its components (data collection system, storage system based on Hadoop, query web service and interfaces to other ATLAS systems) could be developed separately and in parallel during LSI. The EventIndex is in operation for the start of LHC Run 2. This paper describes the high-level system architecture, the technical design choices and the deployment process and issues. The performance of the data collection and storage systems, as well as the query services, are also reported.

  10. The Design of the Internet's Architecture by the Internet Engineering Task Force (IETF) and Human Rights.

    PubMed

    Cath, Corinne; Floridi, Luciano

    2017-04-01

    The debate on whether and how the Internet can protect and foster human rights has become a defining issue of our time. This debate often focuses on Internet governance from a regulatory perspective, underestimating the influence and power of the governance of the Internet's architecture. The technical decisions made by Internet Standard Developing Organisations (SDOs) that build and maintain the technical infrastructure of the Internet influences how information flows. They rearrange the shape of the technically mediated public sphere, including which rights it protects and which practices it enables. In this article, we contribute to the debate on SDOs' ethical responsibility to bring their work in line with human rights. We defend three theses. First, SDOs' work is inherently political. Second, the Internet Engineering Task Force (IETF), one of the most influential SDOs, has a moral obligation to ensure its work is coherent with, and fosters, human rights. Third, the IETF should enable the actualisation of human rights through the protocols and standards it designs by implementing a responsibility-by-design approach to engineering. We conclude by presenting some initial recommendations on how to ensure that work carried out by the IETF may enable human rights.

  11. Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization.

    PubMed

    Gupta, Rajiv; Grasruck, Michael; Suess, Christoph; Bartling, Soenke H; Schmidt, Bernhard; Stierstorfer, Karl; Popescu, Stefan; Brady, Tom; Flohr, Thomas

    2006-06-01

    Digital flat-panel-based volume CT (VCT) represents a unique design capable of ultra-high spatial resolution, direct volumetric imaging, and dynamic CT scanning. This innovation, when fully developed, has the promise of opening a unique window on human anatomy and physiology. For example, the volumetric coverage offered by this technology enables us to observe the perfusion of an entire organ, such as the brain, liver, or kidney, tomographically (e.g., after a transplant or ischemic event). By virtue of its higher resolution, one can directly visualize the trabecular structure of bone. This paper describes the basic design architecture of VCT. Three key technical challenges, viz., scatter correction, dynamic range extension, and temporal resolution improvement, must be addressed for successful implementation of a VCT scanner. How these issues are solved in a VCT prototype and the modifications necessary to enable ultra-high resolution volumetric scanning are described. The fundamental principles of scatter correction and dose reduction are illustrated with the help of an actual prototype. The image quality metrics of this prototype are characterized and compared with a multi-detector CT (MDCT).

  12. Development to integrate conceptual design tools and a CAD system

    NASA Astrophysics Data System (ADS)

    Torres, V. H.; Ríos, J.; Vizán, A.; Pérez, J. M.

    2012-04-01

    The information supported by PLM/CAD systems is mainly related to Embodiment and Detail Design Phases. Information related to the Conceptual Design Phase is mainly limited to requirement specification documents and system architecture diagram documents. This work aims helping in the integration of the Conceptual Design process and its associated information flow into a commercial software system. It proposes a development framework to integrate Quality Function Deployment, Axiomatic Design, and Failure Mode and Effects Analysis into a PLM/CAD system. This communication presents the methodology used in the development, the software development environment, the modeling of the proposed application and the first results of a pilot implementation.

  13. 36 CFR 1193.23 - Product design, development, and evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and evaluation. 1193.23 Section 1193.23 Parks, Forests, and Public Property ARCHITECTURAL AND... § 1193.23 Product design, development, and evaluation. (a) Manufacturers shall evaluate the accessibility, usability, and compatibility of telecommunications equipment and customer premises equipment and...

  14. 36 CFR 1193.23 - Product design, development, and evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and evaluation. 1193.23 Section 1193.23 Parks, Forests, and Public Property ARCHITECTURAL AND... § 1193.23 Product design, development, and evaluation. (a) Manufacturers shall evaluate the accessibility, usability, and compatibility of telecommunications equipment and customer premises equipment and...

  15. 36 CFR 1193.23 - Product design, development, and evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., and evaluation. 1193.23 Section 1193.23 Parks, Forests, and Public Property ARCHITECTURAL AND... § 1193.23 Product design, development, and evaluation. (a) Manufacturers shall evaluate the accessibility, usability, and compatibility of telecommunications equipment and customer premises equipment and...

  16. The Role of Falsification in the Development of Cognitive Architectures: Insights from a Lakatosian Analysis

    ERIC Educational Resources Information Center

    Cooper, Richard P.

    2007-01-01

    It has been suggested that the enterprise of developing mechanistic theories of the human cognitive architecture is flawed because the theories produced are not directly falsifiable. Newell attempted to sidestep this criticism by arguing for a Lakatosian model of scientific progress in which cognitive architectures should be understood as theories…

  17. Development of an ease-of-use remote healthcare system architecture using RFID and networking technologies.

    PubMed

    Lin, Shih-Sung; Hung, Min-Hsiung; Tsai, Chang-Lung; Chou, Li-Ping

    2012-12-01

    The study aims to provide an ease-of-use approach for senior patients to utilize remote healthcare systems. An ease-of-use remote healthcare system (RHS) architecture using RFID (Radio Frequency Identification) and networking technologies is developed. Specifically, the codes in RFID tags are used for authenticating the patients' ID to secure and ease the login process. The patient needs only to take one action, i.e. placing a RFID tag onto the reader, to automatically login and start the RHS and then acquire automatic medical services. An ease-of-use emergency monitoring and reporting mechanism is developed as well to monitor and protect the safety of the senior patients who have to be left alone at home. By just pressing a single button, the RHS can automatically report the patient's emergency information to the clinic side so that the responsible medical personnel can take proper urgent actions for the patient. Besides, Web services technology is used to build the Internet communication scheme of the RHS so that the interoperability and data transmission security between the home server and the clinical server can be enhanced. A prototype RHS is constructed to validate the effectiveness of our designs. Testing results show that the proposed RHS architecture possesses the characteristics of ease to use, simplicity to operate, promptness in login, and no need to preserve identity information. The proposed RHS architecture can effectively increase the willingness of senior patients who act slowly or are unfamiliar with computer operations to use the RHS. The research results can be used as an add-on for developing future remote healthcare systems.

  18. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures.

    PubMed

    Yu, Yanhao; Li, Jianye; Geng, Dalong; Wang, Jialiang; Zhang, Lushuai; Andrew, Trisha L; Arnold, Michael S; Wang, Xudong

    2015-01-27

    Three-dimensional (3D) nanowire (NW) architectures are considered as superior electrode design for photovoltaic devices compared to NWs or nanoparticle systems in terms of improved large surface area and charge transport properties. In this paper, we report development of lead iodide perovskite solar cells based on a novel 3D TiO2 NW architectures. The 3D TiO2 nanostructure was synthesized via surface-reaction-limited pulsed chemical vapor deposition (SPCVD) technique that also implemented the Kirkendall effect for complete ZnO NW template conversion. It was found that the film thickness of 3D TiO2 can significantly influence the photovoltaic performance. Short-circuit current increased with the TiO2 length, while open-circuit voltage and fill factor decreased with the length. The highest power conversion efficiency (PCE) of 9.0% was achieved with ∼ 600 nm long 3D TiO2 NW structures. Compared to other 1D nanostructure arrays (TiO2 nanotubes, TiO2-coated ZnO NWs and ZnO NWs), 3D TiO2 NW architecture was able to achieve larger amounts of perovskite loading, enhanced light harvesting efficiency, and increased electron-transport property. Therefore, its PCE is 1.5, 2.3, and 2.8 times higher than those of TiO2 nanotubes, TiO2-coated ZnO NWs, and ZnO NWs, respectively. The unique morphological advantages, together with the largely suppressed hysteresis effect, make 3D hierarchical TiO2 a promising electrode selection in designing high-performance perovskite solar cells.

  19. Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich

    2013-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.

  20. Historical development of administration architecture in Malaysia (15th-21st century)

    NASA Astrophysics Data System (ADS)

    Mohidin, H. H. B.; Ismail, A. S.

    2014-02-01

    The main purpose of this paper is to document the development of the state administration building in Malaysia before and after the independence era, in relation to the evolutionary period of Malaysia's political, social and economic history. Multiple case study approach [19] is applied by referring to six prominent case studies to represent state administrative buildings from various phases of Malaysian history beginning from 14th century to 21st century as exemplar. Since this paper formulates new ways to approach and describes state administrative building design and factors that influence them, it uses interpretivism paradigm and (semiotics) as methodological approach to study the relationship between the building design and contextual elements. This paper, therefore, offers new insights, which not only add to knowledge in this field by widening and strengthening the understanding of state administrative architecture in Malaysia, but also are valuable for range of associated fields including architectural semiotics and non verbal communication. This is because this paper reveals deep understandings of the built form and material environment operating as a sign in a cultural and social context.

  1. Architectural Kansei of ‘Wall’ in The Façade Design by Le Corbusier

    NASA Astrophysics Data System (ADS)

    Sendai, Shoichiro

    The purpose of this paper is to discuss the modern architect Le Corbusier's architectural Kansei (sensibility) on wall in site environment through the analysis of his façade design, using Œuvres complètes (1910-1965, 8 vols., Les éditions d'architecture, Artemis, Zurich) and Le Corbusier Archives (1982-1984, 32 vols., Garland Publishing, Inc. and Fondation Le Corbusier, New York, London, Paris). At first, I arrange five façade types, according to the explanation by Le Corbusier ; ‘fenêtre en longueur (strip window)’, ‘pan de verre (glass wall)’, ‘brise-soleil (sun-breaker)’, ‘loggia’ and ‘claustra’. Through the analysis of the relationship between these types and the design process of each building, we find that Le Corbusier's façade design includes the affirmation and the negation of the ‘wall’ at the same time. In fact, the nature of façade modification during design process is divers: increase in transparency, decrease in transparency and spatialization of façade. That means, Le Corbusier studied the environmental condition by these façade types, and tried to realize the phenomenal openness. This trial bases on the function of architectural Kansei as correspondence between body and environment beyond the physical design.

  2. Integrating Design Disciplines: Understanding the Potential for and Factors Affecting the Success of Interdisciplinary Design Education for Architecture and Landscape Architecture

    ERIC Educational Resources Information Center

    Koo, Tae Seo

    2012-01-01

    Interdisciplinary design education is becoming more important as design disciplines need various perspectives and solutions. However, only a limited amount of research has been done in regard to interdisciplinary design education. The goal of this study is to begin to answer the question about how designers and researchers develop and improve…

  3. Development of Innovative Design Processor

    SciTech Connect

    Park, Y.S.; Park, C.O.

    2004-07-01

    The nuclear design analysis requires time-consuming and erroneous model-input preparation, code run, output analysis and quality assurance process. To reduce human effort and improve design quality and productivity, Innovative Design Processor (IDP) is being developed. Two basic principles of IDP are the document-oriented design and the web-based design. The document-oriented design is that, if the designer writes a design document called active document and feeds it to a special program, the final document with complete analysis, table and plots is made automatically. The active documents can be written with ordinary HTML editors or created automatically on the web, which is another framework of IDP. Using the proper mix-up of server side and client side programming under the LAMP (Linux/Apache/MySQL/PHP) environment, the design process on the web is modeled as a design wizard style so that even a novice designer makes the design document easily. This automation using the IDP is now being implemented for all the reload design of Korea Standard Nuclear Power Plant (KSNP) type PWRs. The introduction of this process will allow large reduction in all reload design efforts of KSNP and provide a platform for design and R and D tasks of KNFC. (authors)

  4. Mechanical Design Support System Based on Thinking Process Development Diagram

    NASA Astrophysics Data System (ADS)

    Mase, Hisao; Kinukawa, Hiroshi; Morii, Hiroshi; Nakao, Masayuki; Hatamura, Yotaro

    This paper describes a system that directly supports a design process in a mechanical domain. This system is based on a thinking process development diagram that draws distinctions between requirement, tasks, solutions, and implementation, which enables designers to expand and deepen their thoughts of design. The system provides five main functions that designers require in each phase of the proposed design process: (1) thinking process description support which enables designers to describe their thoughts, (2) creativity support by term association with thesauri, (3) timely display of design knowledge including know-how obtained through earlier failures, general design theories, standard-parts data, and past designs, (4) design problem solving support using 46 kinds of thinking operations, and (5) proper technology transfer support which accumulates not only design conclusions but also the design process. Though this system is applied to mechanical engineering as the first target domain, it can be easily expanded to many other domains such as architecture and electricity.

  5. Development and Flight Testing of an Adaptive Vehicle Health-Monitoring Architecture

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Taylor, B. Douglas; Brett, Rube R.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.

    2002-01-01

    On going development and testing of an adaptable vehicle health-monitoring architecture is presented. The architecture is being developed for a fleet of vehicles. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle, and, a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained expert system. The expert system is parameterized, which makes it adaptable to be trained to both a user's subject reasoning and existing quantitative analytic tools. Communication between all levels is done with wireless radio frequency interfaces. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear. The flight tests were performed to validate the following: the wireless radio frequency communication capabilities of the system, the hardware design, command and control; software operation and, data acquisition, storage and retrieval.

  6. Architectural design for a low cost FPGA-based traffic signal detection system in vehicles

    NASA Astrophysics Data System (ADS)

    López, Ignacio; Salvador, Rubén; Alarcón, Jaime; Moreno, Félix

    2007-05-01

    In this paper we propose an architecture for an embedded traffic signal detection system. Development of Advanced Driver Assistance Systems (ADAS) is one of the major trends of research in automotion nowadays. Examples of past and ongoing projects in the field are CHAMELEON ("Pre-Crash Application all around the vehicle" IST 1999-10108), PREVENT (Preventive and Active Safety Applications, FP6-507075, http://www.prevent-ip.org/) and AVRT in the US (Advanced Vision-Radar Threat Detection (AVRT): A Pre-Crash Detection and Active Safety System). It can be observed a major interest in systems for real-time analysis of complex driving scenarios, evaluating risk and anticipating collisions. The system will use a low cost CCD camera on the dashboard facing the road. The images will be processed by an Altera Cyclone family FPGA. The board does median and Sobel filtering of the incoming frames at PAL rate, and analyzes them for several categories of signals. The result is conveyed to the driver. The scarce resources provided by the hardware require an architecture developed for optimal use. The system will use a combination of neural networks and an adapted blackboard architecture. Several neural networks will be used in sequence for image analysis, by reconfiguring a single, generic hardware neural network in the FPGA. This generic network is optimized for speed, in order to admit several executions within the frame rate. The sequence will follow the execution cycle of the blackboard architecture. The global, blackboard architecture being developed and the hardware architecture for the generic, reconfigurable FPGA perceptron will be explained in this paper. The project is still at an early stage. However, some hardware implementation results are already available and will be offered in the paper.

  7. Distributed design tools: Mapping targeted design tools onto a Web-based distributed architecture for high-performance computing

    SciTech Connect

    Holmes, V.P.; Linebarger, J.M.; Miller, D.J.; Poore, C.A.

    1999-11-30

    Design Tools use a Web-based Java interface to guide a product designer through the design-to-analysis cycle for a specific, well-constrained design problem. When these Design Tools are mapped onto a Web-based distributed architecture for high-performance computing, the result is a family of Distributed Design Tools (DDTs). The software components that enable this mapping consist of a Task Sequencer, a generic Script Execution Service, and the storage of both data and metadata in an active, object-oriented database called the Product Database Operator (PDO). The benefits of DDTs include improved security, reliability, scalability (in both problem size and computing hardware), robustness, and reusability. In addition, access to the PDO unlocks its wide range of services for distributed components, such as lookup and launch capability, persistent shared memory for communication between cooperating services, state management, event notification, and archival of design-to-analysis session data.

  8. Sustainability in the Architectural Design Studio: A Case Study of Designing On-Campus Academic Staff Housing in Konya and Izmir, Turkey

    ERIC Educational Resources Information Center

    Bala, Havva Alkan

    2010-01-01

    It is important to engender a "sustainable" architectural consciousness in the students who will be the next generation architects. In architectural education, design decisions taken during the early phases of the design process play an important role in ensuring concern for the sustainability issue. But, in general, all discussions…

  9. Design, fabrication and properties of novel architectures made from carbon nanotubes and nano-porous materials

    NASA Astrophysics Data System (ADS)

    Kaur, Sumanjeet

    Nanomaterials like carbon nanotubes (CNT) have numerous potential applications due to their unique electrical, thermal and mechanical properties. Building macroscopic architectures using these nanocomponents requires new approaches for organization or assembly of these components. This can be achieved by using various techniques like capillary-induced compaction, template-assisted growth and other synthesis techniques. The vertically aligned multiwalled carbon nanotube arrays were grown using chemical vapor deposition (CVD). Evaporation of liquid from such vertically aligned nanotube arrays induces the assembly of nanotubes into cellular patterns. The role of substrate and orientation of the carbon nanotube array was investigated and analyzed to gain more control over the pattern formation that could help in designing new structures. Electrical measurements on the CNT patterns before and after capillary-induced compaction revealed that compaction results in four-fold increase in electrical conductivity, making them a potential candidate for vertical interconnects. A new method to fabricate a syringe with nanopores by using anodization technique was demonstrated. Experimental parameters were investigated to control the dimension and morphology of the nanopores in the syringe. Capillary force was used to infiltrate and replicate the complete 3D architecture into polymers. The usefulness of syringe as a biological sampler (DNA-RNA separation) was demonstrated. Layered structure of exfoliated mica was used as a substrate for growth of CNTs. This resulted in novel layered hybrid architecture of mica and carbon nanotube arrays. Mechanical properties of such architectures were investigated. Such architectures could be very useful as foams. These simple techniques can be used to assemble nanoscale components into well-defined macroscopic architectures and thus broaden the range of applications where their unique properties can be put into use.

  10. Guidance and Control Architecture Design and Demonstration for Low Ballistic Coefficient Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Swei, Sean

    2014-01-01

    We propose to develop a robust guidance and control system for the ADEPT (Adaptable Deployable Entry and Placement Technology) entry vehicle. A control-centric model of ADEPT will be developed to quantify the performance of candidate guidance and control architectures for both aerocapture and precision landing missions. The evaluation will be based on recent breakthroughs in constrained controllability/reachability analysis of control systems and constrained-based energy-minimum trajectory optimization for guidance development operating in complex environments.

  11. Preliminary design and implementation of the baseline digital baseband architecture for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Yeh, H.-G.

    1993-01-01

    The baseline design and implementation of the digital baseband architecture for advanced deep space transponders is investigated and identified. Trade studies on the selection of the number of bits for the analog-to-digital converter (ADC) and optimum sampling schemes are presented. In addition, the proposed optimum sampling scheme is analyzed in detail. Descriptions of possible implementations for the digital baseband (or digital front end) and digital phase-locked loop (DPLL) for carrier tracking are also described.

  12. Architectural and engineering design work for the Nevada Cancer Institute facility

    SciTech Connect

    Heather Murren, President

    2004-12-31

    The purpose of this project was to complete the architectural and engineering design, program planning, and other preliminary work necessary to construct the new Nevada Cancer Institute facility. These goals were accomplished with the construction of a new building of approximately 119,000 gross square feet. The facility houses the diagnostic and radio therapeutic treatment laboratories, radiation oncology treatment facility, physician offices, and clinical research areas.

  13. Universal Design and Continuing Professional Development for Architects: An Irish Case Study.

    PubMed

    Shea, Eoghan C O; Basnak, Megan; Bucholz, Merritt; Steinfeld, Edward

    2016-01-01

    The Tomar Resolution urged that all occupations working in the built environment be educated in the principles and measures of Universal Design in order to facilitate all people playing a full role in society. For Architects and Architectural Technologists, under-graduate education will continue to have a major role to play. At the same time in the Republic of Ireland, and in an ever-growing number of other jurisdictions, Continuous Professional Development (CPD) is a requirement for all Architects and Architectural Technologists and can significantly affect knowledge, skill and competence in a number of subjects including Universal Design. This paper looks at the results of a recent survey of Architects and Architectural Technologists practising in Ireland, architectural educators, and client bodies that sought to assess the following: 1. How inherent is Universal Design knowledge to current building design practice? 2. What are the current Universal Design education and training needs of Architects and Architectural Technologists practising in Ireland? 3. Which Universal Design themes and topics are of most interest to Architects and Architectural Technologists practising in Ireland? 4. To what extent does existing CPD for Architects and Architectural Technologists practising in Ireland address Universal Design topics? 5. What can motivate Architects and Architectural Technologists practising in Ireland to access Universal Design CPD? 6. What are the most effective means by which to deliver Universal Design CPD to Architects and Architectural Technologists practising in Ireland? The survey discussed in this paper is one phase of a longer study aimed at providing a research base for developing CPD in Universal Design for Architects and Architectural Technologists practising in Ireland.

  14. The constraints satisfaction problem approach in the design of an architectural functional layout

    NASA Astrophysics Data System (ADS)

    Zawidzki, Machi; Tateyama, Kazuyoshi; Nishikawa, Ikuko

    2011-09-01

    A design support system with a new strategy for finding the optimal functional configurations of rooms for architectural layouts is presented. A set of configurations satisfying given constraints is generated and ranked according to multiple objectives. The method can be applied to problems in architectural practice, urban or graphic design-wherever allocation of related geometrical elements of known shape is optimized. Although the methodology is shown using simplified examples-a single story residential building with two apartments each having two rooms-the results resemble realistic functional layouts. One example of a practical size problem of a layout of three apartments with a total of 20 rooms is demonstrated, where the generated solution can be used as a base for a realistic architectural blueprint. The discretization of design space is discussed, followed by application of a backtrack search algorithm used for generating a set of potentially 'good' room configurations. Next the solutions are classified by a machine learning method (FFN) as 'proper' or 'improper' according to the internal communication criteria. Examples of interactive ranking of the 'proper' configurations according to multiple criteria and choosing 'the best' ones are presented. The proposed framework is general and universal-the criteria, parameters and weights can be individually defined by a user and the search algorithm can be adjusted to a specific problem.

  15. Design and evaluation of a trilateral shared-control architecture for teleoperated training robots.

    PubMed

    Shamaei, Kamran; Kim, Lawrence H; Okamura, Allison M

    2015-08-01

    Multilateral teleoperated robots can be used to train humans to perform complex tasks that require collaborative interaction and expert supervision, such as laparoscopic surgical procedures. In this paper, we explain the design and performance evaluation of a shared-control architecture that can be used in trilateral teleoperated training robots. The architecture includes dominance and observation factors inspired by the determinants of motor learning in humans, including observational practice, focus of attention, feedback and augmented feedback, and self-controlled practice. Toward the validation of such an architecture, we (1) verify the stability of a trilateral system by applying Llewellyn's criterion on a two-port equivalent architecture, and (2) demonstrate that system transparency remains generally invariant across relevant observation factors and movement frequencies. In a preliminary experimental study, a dyad of two human users (one novice, one expert) collaborated on the control of a robot to follow a trajectory. The experiment showed that the framework can be used to modulate the efforts of the users and adjust the source and level of haptic feedback to the novice user.

  16. Design and Field Experimentation of a Cooperative ITS Architecture Based on Distributed RSUs.

    PubMed

    Moreno, Asier; Osaba, Eneko; Onieva, Enrique; Perallos, Asier; Iovino, Giovanni; Fernández, Pablo

    2016-07-22

    This paper describes a new cooperative Intelligent Transportation System architecture that aims to enable collaborative sensing services. The main goal of this architecture is to improve transportation efficiency and performance. The system, which has been proven within the participation in the ICSI (Intelligent Cooperative Sensing for Improved traffic efficiency) European project, encompasses the entire process of capture and management of available road data. For this purpose, it applies a combination of cooperative services and methods for data sensing, acquisition, processing and communication amongst road users, vehicles, infrastructures and related stakeholders. Additionally, the advantages of using the proposed system are exposed. The most important of these advantages is the use of a distributed architecture, moving the system intelligence from the control centre to the peripheral devices. The global architecture of the system is presented, as well as the software design and the interaction between its main components. Finally, functional and operational results observed through the experimentation are described. This experimentation has been carried out in two real scenarios, in Lisbon (Portugal) and Pisa (Italy).

  17. Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing

    PubMed Central

    Kudithipudi, Dhireesha; Saleh, Qutaiba; Merkel, Cory; Thesing, James; Wysocki, Bryant

    2016-01-01

    Reservoir computing (RC) is gaining traction in several signal processing domains, owing to its non-linear stateful computation, spatiotemporal encoding, and reduced training complexity over recurrent neural networks (RNNs). Previous studies have shown the effectiveness of software-based RCs for a wide spectrum of applications. A parallel body of work indicates that realizing RNN architectures using custom integrated circuits and reconfigurable hardware platforms yields significant improvements in power and latency. In this research, we propose a neuromemristive RC architecture, with doubly twisted toroidal structure, that is validated for biosignal processing applications. We exploit the device mismatch to implement the random weight distributions within the reservoir and propose mixed-signal subthreshold circuits for energy efficiency. A comprehensive analysis is performed to compare the efficiency of the neuromemristive RC architecture in both digital(reconfigurable) and subthreshold mixed-signal realizations. Both Electroencephalogram (EEG) and Electromyogram (EMG) biosignal benchmarks are used for validating the RC designs. The proposed RC architecture demonstrated an accuracy of 90 and 84% for epileptic seizure detection and EMG prosthetic finger control, respectively. PMID:26869876

  18. H2, fixed architecture, control design for large scale systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1990-01-01

    The H2, fixed architecture, control problem is a classic linear quadratic Gaussian (LQG) problem whose solution is constrained to be a linear time invariant compensator with a decentralized processing structure. The compensator can be made of p independent subcontrollers, each of which has a fixed order and connects selected sensors to selected actuators. The H2, fixed architecture, control problem allows the design of simplified feedback systems needed to control large scale systems. Its solution becomes more complicated, however, as more constraints are introduced. This work derives the necessary conditions for optimality for the problem and studies their properties. It is found that the filter and control problems couple when the architecture constraints are introduced, and that the different subcontrollers must be coordinated in order to achieve global system performance. The problem requires the simultaneous solution of highly coupled matrix equations. The use of homotopy is investigated as a numerical tool, and its convergence properties studied. It is found that the general constrained problem may have multiple stabilizing solutions, and that these solutions may be local minima or saddle points for the quadratic cost. The nature of the solution is not invariant when the parameters of the system are changed. Bifurcations occur, and a solution may continuously transform into a nonstabilizing compensator. Using a modified homotopy procedure, fixed architecture compensators are derived for models of large flexible structures to help understand the properties of the constrained solutions and compare them to the corresponding unconstrained ones.

  19. Design and Field Experimentation of a Cooperative ITS Architecture Based on Distributed RSUs †

    PubMed Central

    Moreno, Asier; Osaba, Eneko; Onieva, Enrique; Perallos, Asier; Iovino, Giovanni; Fernández, Pablo

    2016-01-01

    This paper describes a new cooperative Intelligent Transportation System architecture that aims to enable collaborative sensing services. The main goal of this architecture is to improve transportation efficiency and performance. The system, which has been proven within the participation in the ICSI (Intelligent Cooperative Sensing for Improved traffic efficiency) European project, encompasses the entire process of capture and management of available road data. For this purpose, it applies a combination of cooperative services and methods for data sensing, acquisition, processing and communication amongst road users, vehicles, infrastructures and related stakeholders. Additionally, the advantages of using the proposed system are exposed. The most important of these advantages is the use of a distributed architecture, moving the system intelligence from the control centre to the peripheral devices. The global architecture of the system is presented, as well as the software design and the interaction between its main components. Finally, functional and operational results observed through the experimentation are described. This experimentation has been carried out in two real scenarios, in Lisbon (Portugal) and Pisa (Italy). PMID:27455277

  20. UTBB FDSOI suitability for IoT applications: Investigations at device, design and architectural levels

    NASA Astrophysics Data System (ADS)

    Berthier, Florent; Beigne, Edith; Heitzmann, Frédéric; Debicki, Olivier; Christmann, Jean-Frédéric; Valentian, Alexandre; Billoint, Olivier; Amat, Esteve; Morche, Dominique; Chairat, Soundous; Sentieys, Olivier

    2016-11-01

    In this paper, we propose to analyze Ultra Thin Body and Box FDSOI technology suitability and architectural solutions for IoT applications and more specifically for autonomous Wireless Sensor Nodes (WSNs). As IoT applications are extremely diversified there is a strong need for flexible solutions at design, architectural level but also at technological level. Moreover, as most of those systems are recovering their energy from the environment, they are challenged by low voltage supplies and low leakage functionalities. We detail in this paper some Ultra Thin Body and Box FDSOI 28 nm characteristics and results demonstrating that this technology could be a perfect option for multidisciplinary IoT devices. Back biasing capabilities and low voltage features are investigated demonstrating efficient high speed/low leakage flexibility. In addition, architectural solutions for WSNs microcontroller are also proposed taking advantage of Ultra Thin Body and Box FDSOI characteristics for full user applicative flexibility. A partitioned architecture between an Always Responsive part with an asynchronous Wake Up Controller (WUC) managing WSN current tasks and an On Demand part with a main processor for application maintenance is presented. First results of the Always Responsive part implemented in Ultra Thin Body and Box FDSOI 28 nm are also exposed.

  1. Rice Morphogenesis and Plant Architecture: Measurement, Specification and the Reconstruction of Structural Development by 3D Architectural Modelling

    PubMed Central

    WATANABE, TOMONARI; HANAN, JIM S.; ROOM, PETER M.; HASEGAWA, TOSHIHIRO; NAKAGAWA, HIROSHI; TAKAHASHI, WATARU

    2005-01-01

    • Background and Aims The morphogenesis and architecture of a rice plant, Oryza sativa, are critical factors in the yield equation, but they are not well studied because of the lack of appropriate tools for 3D measurement. The architecture of rice plants is characterized by a large number of tillers and leaves. The aims of this study were to specify rice plant architecture and to find appropriate functions to represent the 3D growth across all growth stages. • Methods A japonica type rice, ‘Namaga’, was grown in pots under outdoor conditions. A 3D digitizer was used to measure the rice plant structure at intervals from the young seedling stage to maturity. The L-system formalism was applied to create ‘3D virtual rice’ plants, incorporating models of phenological development and leaf emergence period as a function of temperature and photoperiod, which were used to determine the timing of tiller emergence. • Key Results The relationships between the nodal positions and leaf lengths, leaf angles and tiller angles were analysed and used to determine growth functions for the models. The ‘3D virtual rice’ reproduces the structural development of isolated plants and provides a good estimation of the tillering process, and of the accumulation of leaves. • Conclusions The results indicated that the ‘3D virtual rice’ has a possibility to demonstrate the differences in the structure and development between cultivars and under different environmental conditions. Future work, necessary to reflect both cultivar and environmental effects on the model performance, and to link with physiological models, is proposed in the discussion. PMID:15820987

  2. The Effects of Integrating Mobile and CAD Technology in Teaching Design Process for Malaysian Polytechnic Architecture Student in Producing Creative Product

    ERIC Educational Resources Information Center

    Hassan, Isham Shah; Ismail, Mohd Arif; Mustapha, Ramlee

    2010-01-01

    The purpose of this research is to examine the effect of integrating the digital media such as mobile and CAD technology on designing process of Malaysian polytechnic architecture students in producing a creative product. A website is developed based on Caroll's minimal theory, while mobile and CAD technology integration is based on Brown and…

  3. Error Propagation Analysis in the SAE Architecture Analysis and Design Language (AADL) and the EDICT Tool Framework

    NASA Technical Reports Server (NTRS)

    LaValley, Brian W.; Little, Phillip D.; Walter, Chris J.

    2011-01-01

    This report documents the capabilities of the EDICT tools for error modeling and error propagation analysis when operating with models defined in the Architecture Analysis & Design Language (AADL). We discuss our experience using the EDICT error analysis capabilities on a model of the Scalable Processor-Independent Design for Enhanced Reliability (SPIDER) architecture that uses the Reliable Optical Bus (ROBUS). Based on these experiences we draw some initial conclusions about model based design techniques for error modeling and analysis of highly reliable computing architectures.

  4. A domain-specific design architecture for composite material design and aircraft part redesign

    NASA Technical Reports Server (NTRS)

    Punch, W. F., III; Keller, K. J.; Bond, W.; Sticklen, J.

    1992-01-01

    Advanced composites have been targeted as a 'leapfrog' technology that would provide a unique global competitive position for U.S. industry. Composites are unique in the requirements for an integrated approach to designing, manufacturing, and marketing of products developed utilizing the new materials of construction. Numerous studies extending across the entire economic spectrum of the United States from aerospace to military to durable goods have identified composites as a 'key' technology. In general there have been two approaches to composite construction: build models of a given composite materials, then determine characteristics of the material via numerical simulation and empirical testing; and experience-directed construction of fabrication plans for building composites with given properties. The first route sets a goal to capture basic understanding of a device (the composite) by use of a rigorous mathematical model; the second attempts to capture the expertise about the process of fabricating a composite (to date) at a surface level typically expressed in a rule based system. From an AI perspective, these two research lines are attacking distinctly different problems, and both tracks have current limitations. The mathematical modeling approach has yielded a wealth of data but a large number of simplifying assumptions are needed to make numerical simulation tractable. Likewise, although surface level expertise about how to build a particular composite may yield important results, recent trends in the KBS area are towards augmenting surface level problem solving with deeper level knowledge. Many of the relative advantages of composites, e.g., the strength:weight ratio, is most prominent when the entire component is designed as a unitary piece. The bottleneck in undertaking such unitary design lies in the difficulty of the re-design task. Designing the fabrication protocols for a complex-shaped, thick section composite are currently very difficult. It is in

  5. Learning to listen: designing architectural education through university-community partnerships.

    PubMed

    Wilson, Barbara Brown

    2008-01-01

    Our world is shaped by a patchwork of perspectives, of stories told to construct or even recreate our realities. Practitioners engaging with the built environment have a responsibility to assist in the proper translation of these stories into something that physically enriches the user's sense of place. However, academia separates itself from the "real world" in order to teach theory, history, and so forth as purely as possible. Critics argue that this separation is problematic when preparing students for a practical field in which they will become heavily entrenched in this world from which they have been sheltered. In response, community-based design initiatives are forming that conjoin students, faculty, community members, and activists to address urgent needs in neighborhoods around the globe. While empowering the communities through the opportunity to change their own surroundings, the researchers benefit from a culturally significant palette with which to search for innovative ways to make the built environment truly relevant to positive transformation at the local level. Nonetheless, this pedagogical method is, in turn, criticized for blurring the line between education and activism. The purpose of this investigation is to evaluate both the intentions of such projects and the criticism of it through the analysis of a case study at the University of Texas: The Sustainable Design and Development Workshop (SDDW). Through this inquiry, the importance of community engagement to a student's professional development became clear. However, the experience also highlighted the university's inherent responsibility to the citizens with which it is engaging--which requires consideration of issues of funding, timing, accountability, and compromise that is vital to any such project's success. University-community partnerships provide young designers and their educators with important life skills that are not often emphasized within the realms of academia. But how can

  6. Architecture Studio Archive: A Case Study in the Comprehensive Digital Capture and Repository of Student Design Work as an Aid to Teaching, Research, and Accreditation

    ERIC Educational Resources Information Center

    Anderson, Ross; Arndell, Michael; Christensen, Sten

    2009-01-01

    The "Architecture Studio Archive" pilot sought to form a comprehensive digital archive of the diverse student work conducted in the first year of the Bachelor of Design in Architecture Degree at the University of Sydney. The design studio is the primary vehicle for teaching architectural design. It is a locus for creative activity, with…

  7. The Joyful Aging Club: An Example of Universal Design Practice on Architectural and Urban Settings.

    PubMed

    Guimarães, Marcelo Pinto; Picceli, Angelica Baldin; Pereira, Carolina Furtado

    2016-01-01

    Universal Design is a very simple idea that is based on complex decisions and it involves user satisfaction during performance of activities and socially inclusive interaction. Generally, the design guidelines for application in architecture requires that both students and professionals explore their imagination about the situations in which the design of a certain building becomes more pleasant and inviting than simply accessible to the needs of people with permanent and temporary disabilities. In this paper, the aim is to discuss peculiar aspects in the design of a three storey building that make it special. The result of technical solutions create environments that are not restricted to the boundaries of a site. It also encompasses the street, the crossing, the corner square and traffic signals and marks beside some accessible parking areas. The building design is an academic exploration of potential usage to an actual site. It belongs to an institution for social network of people aging above sixty-five year old.

  8. Residential hospice environments: evidence-based architectural and landscape design considerations.

    PubMed

    Verderber, Stephen

    2014-01-01

    The residential hospice care movement is increasingly accepted and supported globally, and yet, unfortunately, the amount of literature on best practices in the planning and design of residential hospice facilities and adjacent outdoor spaces remains relatively small. This paper reports on a compendium of architectural and landscape design considerations that reflect the fundamental dimensions of the residential hospice experience: site and context, arrival spaces, communal and private spaces of the residential milieu, transitional spaces, and nature connectivity. Additionally, key staffing and administrative ramifications of this built-environment compendium are addressed, as are prognostications and challenges for the future.

  9. Developing Materials Processing to Performance Modeling Capabilities and the Need for Exascale Computing Architectures (and Beyond)

    SciTech Connect

    Schraad, Mark William; Luscher, Darby Jon

    2016-09-06

    Additive Manufacturing techniques are presenting the Department of Energy and the NNSA Laboratories with new opportunities to consider novel component production and repair processes, and to manufacture materials with tailored response and optimized performance characteristics. Additive Manufacturing technologies already are being applied to primary NNSA mission areas, including Nuclear Weapons. These mission areas are adapting to these new manufacturing methods, because of potential advantages, such as smaller manufacturing footprints, reduced needs for specialized tooling, an ability to embed sensing, novel part repair options, an ability to accommodate complex geometries, and lighter weight materials. To realize the full potential of Additive Manufacturing as a game-changing technology for the NNSA’s national security missions; however, significant progress must be made in several key technical areas. In addition to advances in engineering design, process optimization and automation, and accelerated feedstock design and manufacture, significant progress must be made in modeling and simulation. First and foremost, a more mature understanding of the process-structure-property-performance relationships must be developed. Because Additive Manufacturing processes change the nature of a material’s structure below the engineering scale, new models are required to predict materials response across the spectrum of relevant length scales, from the atomistic to the continuum. New diagnostics will be required to characterize materials response across these scales. And not just models, but advanced algorithms, next-generation codes, and advanced computer architectures will be required to complement the associated modeling activities. Based on preliminary work in each of these areas, a strong argument for the need for Exascale computing architectures can be made, if a legitimate predictive capability is to be developed.

  10. Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 3: Programmatic options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Task 2 in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make design/programmatic decisions. This volume identifies the preferred options in the programmatic category and characterizes these options with respect to performance attributes, constraints, costs, and risks. The programmatic category includes methods used to administrate/manage the development, operation and maintenance of the SSDS. The specific areas discussed include standardization/commonality; systems management; and systems development, including hardware procurement, software development and system integration, test and verification.

  11. Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar

    PubMed Central

    Lomp, Oliver; Richter, Mathis; Zibner, Stephan K. U.; Schöner, Gregor

    2016-01-01

    Embodied artificial cognitive systems, such as autonomous robots or intelligent observers, connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar, which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs. PMID:27853431

  12. Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar.

    PubMed

    Lomp, Oliver; Richter, Mathis; Zibner, Stephan K U; Schöner, Gregor

    2016-01-01

    Embodied artificial cognitive systems, such as autonomous robots or intelligent observers, connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar, which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs.

  13. Software Architecture for Simultaneous Process Control and Software Development/Modification

    SciTech Connect

    Lenarduzzi, Roberto; Hileman, Michael S; McMillan, David E; Holmes Jr, William; Blankenship, Mark; Wilder, Terry

    2011-01-01

    A software architecture is described that allows modification of some application code sections while the remainder of the application continues executing. This architecture facilitates long term testing and process control because the overall process need not be stopped and restarted to allow modifications or additions to the software. A working implementation using National Instruments LabVIEW{trademark} sub-panel and shared variable features is described as an example. This architecture provides several benefits in both the program development and execution environments. The software is easier to maintain and it is not necessary to recompile the entire program after a modification.

  14. Space station data system analysis/architecture study. Task 2: Options development DR-5. Volume 1: Technology options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The second task in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This volume identifies the preferred options in the technology category and characterizes these options with respect to performance attributes, constraints, cost, and risk. The technology category includes advanced materials, processes, and techniques that can be used to enhance the implementation of SSDS design structures. The specific areas discussed are mass storage, including space and round on-line storage and off-line storage; man/machine interface; data processing hardware, including flight computers and advanced/fault tolerant computer architectures; and software, including data compression algorithms, on-board high level languages, and software tools. Also discussed are artificial intelligence applications and hard-wire communications.

  15. Bio-signal analysis system design with support vector machines based on cloud computing service architecture.

    PubMed

    Shen, Chia-Ping; Chen, Wei-Hsin; Chen, Jia-Ming; Hsu, Kai-Ping; Lin, Jeng-Wei; Chiu, Ming-Jang; Chen, Chi-Huang; Lai, Feipei

    2010-01-01

    Today, many bio-signals such as Electroencephalography (EEG) are recorded in digital format. It is an emerging research area of analyzing these digital bio-signals to extract useful health information in biomedical engineering. In this paper, a bio-signal analyzing cloud computing architecture, called BACCA, is proposed. The system has been designed with the purpose of seamless integration into the National Taiwan University Health Information System. Based on the concept of. NET Service Oriented Architecture, the system integrates heterogeneous platforms, protocols, as well as applications. In this system, we add modern analytic functions such as approximated entropy and adaptive support vector machine (SVM). It is shown that the overall accuracy of EEG bio-signal analysis has increased to nearly 98% for different data sets, including open-source and clinical data sets.

  16. Design and architecture of the Mars relay network planning and analysis framework

    NASA Technical Reports Server (NTRS)

    Cheung, K. M.; Lee, C. H.

    2002-01-01

    In this paper we describe the design and architecture of the Mars Network planning and analysis framework that supports generation and validation of efficient planning and scheduling strategy. The goals are to minimize the transmitting time, minimize the delaying time, and/or maximize the network throughputs. The proposed framework would require (1) a client-server architecture to support interactive, batch, WEB, and distributed analysis and planning applications for the relay network analysis scheme, (2) a high-fidelity modeling and simulation environment that expresses link capabilities between spacecraft to spacecraft and spacecraft to Earth stations as time-varying resources, and spacecraft activities, link priority, Solar System dynamic events, the laws of orbital mechanics, and other limiting factors as spacecraft power and thermal constraints, (3) an optimization methodology that casts the resource and constraint models into a standard linear and nonlinear constrained optimization problem that lends itself to commercial off-the-shelf (COTS)planning and scheduling algorithms.

  17. Architecture and design to support rapid prototyping and multiple dynamic models for the Virtual SpacePlane project

    NASA Astrophysics Data System (ADS)

    Banks, Sheila B.; Stytz, Martin R.; Rothermel, Scott A.; Johnson, Troy D.

    1998-08-01

    The advent of requirements for rapid and economical deployment of national space assets in support of Air Force operational missions has resulted in the need for a Manned SpacePlane (MSP) that can perform military missions with minimal preflight preparation and little if any in-orbit support from a mission control center. In this new approach to space operations, successful mission accomplishment will depend almost completely upon the MSP crew and upon the on- board capabilities of the spaceplane. In recognition of the challenges that will be faced by the MSP crew and to begin to address these challenges, the USAF Air Force Research Laboratory (Phillips Laboratory) initiated the Virtual SpacePlane (VSP) project. To support the MSP, the VSP must demonstrate a broad, functional subset of the anticipated missions and capabilities of the MSP throughout its entire flight regime, from takeoff through space operations and on through landing. Additionally, the VSP must execute the anticipated MSP missions in a realistic and tactically sound manner within a distributed virtual environment. Furthermore, the VSP project must also uncover, refine and validate MSP user interface requirements, design and demonstrate an intelligent user interface for the VSP, and design and implement a prototype VSP that can be used to demonstrate Manned SpacePlane missions. To enable us to make rapid progress on the project, we employed portions of the Virtual Cockpit and Solar System Modeler distributed virtual environment applications, and the Common Object Database (CODB) architecture tools developed in our labs. The Virtual Cockpit and Solar System Modeler supplied baseline interface components and tools, 3D graphical models, vehicle motion dynamics models, and VE communication capabilities. We use the CODB architecture to facilitate our use of Rapid Evolutionary and Exploratory Prototyping to uncover application requirements and evaluate solutions. The Information Pod provides the paradigm

  18. Developing an Evaluation Method for Middleware-Based Software Architectures of Airborne Mission Systems

    DTIC Science & Technology

    2007-07-01

    documented using an architecture knowledge management tool also developed at NICTA. 31 DSTO-TR-2204 9. References [Ali- Babar & Gorton 2004] [Ali... Babar et al. 2005] [Allen et al. 2002] [Bachmann et al. 2003] [Barbacci et al. 1995] [Bass et al. 2003] [Basse/al. 2001] [Bengstsson et al. 2004...Boehm&In 1996] [CORBA 2006] [Clements et al. 2001] Ali- Babar , M. & Gorton, I. (2004) Comparison of Scenario-Based Software Architecture

  19. Robust Software Architecture for Robots

    NASA Technical Reports Server (NTRS)

    Aghazanian, Hrand; Baumgartner, Eric; Garrett, Michael

    2009-01-01

    Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) is the name of both a software architecture and software that embodies the architecture. The architecture was conceived in the spirit of current practice in designing modular, hard, realtime aerospace systems. The architecture facilitates the integration of new sensory, motor, and control software modules into the software of a given robotic system. R4SA was developed for initial application aboard exploratory mobile robots on Mars, but is adaptable to terrestrial robotic systems, real-time embedded computing systems in general, and robotic toys.

  20. Architectural Design Education: Designing a Library, Public Communication and Information Center in the Manufacturing Zone of Central Eskis, Ehir Turkey, a Case Study

    ERIC Educational Resources Information Center

    Caglar, Nur; Uludag, Zeynep

    2006-01-01

    It is a fact that architectural design education has become the focus of an extremely complicated set of issues and conscientious debates. Therefore, to extend and challenge educational understanding in architecture it becomes crucial to exchange pedagogical practices. In this article, a specific theoretical approach and teaching methodology,…

  1. Progress on the design of a data push architecture for an array of optimized time tagging pixels

    NASA Astrophysics Data System (ADS)

    Shapiro, S.; Cords, D.; Mani, S.; Holbrook, B.; Atlas, E.

    1993-06-01

    A pixel array has been proposed which features a completely data driven architecture. A pixel cell has been designed that has been optimized for this readout. It retains the features of preceding designs which allow low noise operation, time stamping, analog signal processing, XY address recording, ghost elimination and sparse data transmission. The pixel design eliminates a number of problems inherent in previous designs, by the use of sampled data techniques, destructive readout, and current mode output drivers. This architecture and pixel design is directed at applications such as a forward spectrometer at the SSC, an e(sup +)e(sup -) B factory at SLAC, and fixed target experiments at FNAL.

  2. Architecture & Environment

    ERIC Educational Resources Information Center

    Erickson, Mary; Delahunt, Michael

    2010-01-01

    Most art teachers would agree that architecture is an important form of visual art, but they do not always include it in their curriculums. In this article, the authors share core ideas from "Architecture and Environment," a teaching resource that they developed out of a long-term interest in teaching architecture and their fascination with the…

  3. Design and implementation of a novel sliding mode sensing architecture for capacitive MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Sarraf, E. H.; Cousins, B.; Cretu, E.; Mirabbasi, S.

    2011-11-01

    We propose novel feedback control and sensing schemes based on sliding mode control (SMC) for closed-loop micro-accelerometers as alternative digital control architectures to sigma-delta (ΣΔ) approaches. The under-damped micro-device has been designed in Coventorware, fabricated in SOIMUMPs (25 µm thick structural layer) technology and experimentally characterized using a Polytec MSA-500 (micro-system analyzer) equipment. To verify the system architecture robustness, the application of SMC is extended to an over-damped accelerometer model. In either case, the SMC demonstrates the repositioning of the proof mass to null position; however, the over-damped model exhibits shorter transition time (15 ms for 1g acceleration) due to the increased damping. In addition to that, we extend the usage of SMC beyond the classical actuation problem to a novel sensing problem where we demonstrate the extraction of the external acceleration measurement from the switching behavior along the sliding surface. An optimized fixed-point implementation is targeted on a field-programmable gate array (FPGA) using rapid prototyping methodology, where the new proposed method has been compared for reference with a control scheme that employs a ΣΔ modulator. The SMC-based architecture is advantageous in terms of hardware complexity, and the control of the number of degrees of freedom required by an inertial measurement unit can be accommodated on a low-cost FPGA device. SMC offers a sound theoretical framework for the nonlinear control of inertial sensors.

  4. Design mobile satellite system architecture as an integral part of the cellular access digital network

    NASA Technical Reports Server (NTRS)

    Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.

    1988-01-01

    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.

  5. Design of a fault tolerant airborne digital computer. Volume 1: Architecture

    NASA Technical Reports Server (NTRS)

    Wensley, J. H.; Levitt, K. N.; Green, M. W.; Goldberg, J.; Neumann, P. G.

    1973-01-01

    This volume is concerned with the architecture of a fault tolerant digital computer for an advanced commercial aircraft. All of the computations of the aircraft, including those presently carried out by analogue techniques, are to be carried out in this digital computer. Among the important qualities of the computer are the following: (1) The capacity is to be matched to the aircraft environment. (2) The reliability is to be selectively matched to the criticality and deadline requirements of each of the computations. (3) The system is to be readily expandable. contractible, and (4) The design is to appropriate to post 1975 technology. Three candidate architectures are discussed and assessed in terms of the above qualities. Of the three candidates, a newly conceived architecture, Software Implemented Fault Tolerance (SIFT), provides the best match to the above qualities. In addition SIFT is particularly simple and believable. The other candidates, Bus Checker System (BUCS), also newly conceived in this project, and the Hopkins multiprocessor are potentially more efficient than SIFT in the use of redundancy, but otherwise are not as attractive.

  6. The Automated Instrumentation and Monitoring System (AIMS): Design and Architecture. 3.2

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Schmidt, Melisa; Schulbach, Cathy; Bailey, David (Technical Monitor)

    1997-01-01

    Whether a researcher is designing the 'next parallel programming paradigm', another 'scalable multiprocessor' or investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be captured and displayed is invaluable. Careful analysis of such information can help computer and software architects to capture, and therefore, exploit behavioral variations among/within various parallel programs to take advantage of specific hardware characteristics. A software tool-set that facilitates performance evaluation of parallel applications on multiprocessors has been put together at NASA Ames Research Center under the sponsorship of NASA's High Performance Computing and Communications Program over the past five years. The Automated Instrumentation and Monitoring Systematic has three major software components: a source code instrumentor which automatically inserts active event recorders into program source code before compilation; a run-time performance monitoring library which collects performance data; and a visualization tool-set which reconstructs program execution based on the data collected. Besides being used as a prototype for developing new techniques for instrumenting, monitoring and presenting parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Currently, the execution of FORTRAN and C programs on the Intel Paragon and PALM workstations can be automatically instrumented and monitored. Performance data thus collected can be displayed graphically on various workstations. The process of performance tuning with AIMS will be illustrated using various NAB Parallel Benchmarks. This report includes a description of the internal architecture of AIMS and a listing of the source code.

  7. Developing a European grid infrastructure for cancer research: vision, architecture and services

    PubMed Central

    Tsiknakis, M; Rueping, S; Martin, L; Sfakianakis, S; Bucur, A; Sengstag, T; Brochhausen, M; Pucaski, J; Graf, N

    2007-01-01

    Life sciences are currently at the centre of an information revolution. The nature and amount of information now available opens up areas of research that were once in the realm of science fiction. During this information revolution, the data-gathering capabilities have greatly surpassed the data-analysis techniques. Data integration across heterogeneous data sources and data aggregation across different aspects of the biomedical spectrum, therefore, is at the centre of current biomedical and pharmaceutical R&D. This paper reports on original results from the ACGT integrated project, focusing on the design and development of a European Biomedical Grid infrastructure in support of multi-centric, post-genomic clinical trials (CTs) on cancer. Post-genomic CTs use multi-level clinical and genomic data and advanced computational analysis and visualization tools to test hypotheses in trying to identify the molecular reasons for a disease and the stratification of patients in terms of treatment. The paper provides a presentation of the needs of users involved in post-genomic CTs and presents indicative scenarios, which drive the requirements of the engineering phase of the project. Subsequently, the initial architecture specified by the project is presented, and its services are classified and discussed. A range of such key services, including the Master Ontology on sCancer, which lie at the heart of the integration architecture of the project, is presented. Special efforts have been taken to describe the methodological and technological framework of the project, enabling the creation of a legally compliant and trustworthy infrastructure. Finally, a short discussion of the forthcoming work is included, and the potential involvement of the cancer research community in further development or utilization of the infrastructure is described. PMID:22275955

  8. Dynamics and Design Principles of a Basic Regulatory Architecture Controlling Metabolic Pathways

    PubMed Central

    Jolly, Emmitt R; DeRisi, Joe; Li, Hao

    2008-01-01

    The dynamic features of a genetic network's response to environmental fluctuations represent essential functional specifications and thus may constrain the possible choices of network architecture and kinetic parameters. To explore the connection between dynamics and network design, we have analyzed a general regulatory architecture that is commonly found in many metabolic pathways. Such architecture is characterized by a dual control mechanism, with end product feedback inhibition and transcriptional regulation mediated by an intermediate metabolite. As a case study, we measured with high temporal resolution the induction profiles of the enzymes in the leucine biosynthetic pathway in response to leucine depletion, using an automated system for monitoring protein expression levels in single cells. All the genes in the pathway are known to be coregulated by the same transcription factors, but we observed drastically different dynamic responses for enzymes upstream and immediately downstream of the key control point—the intermediate metabolite α-isopropylmalate (αIPM), which couples metabolic activity to transcriptional regulation. Analysis based on genetic perturbations suggests that the observed dynamics are due to differential regulation by the leucine branch-specific transcription factor Leu3, and that the downstream enzymes are strictly controlled and highly expressed only when αIPM is available. These observations allow us to build a simplified mathematical model that accounts for the observed dynamics and can correctly predict the pathway's response to new perturbations. Our model also suggests that transient dynamics and steady state can be separately tuned and that the high induction levels of the downstream enzymes are necessary for fast leucine recovery. It is likely that principles emerging from this work can reveal how gene regulation has evolved to optimize performance in other metabolic pathways with similar architecture. PMID:18563967

  9. Architectural design of a data warehouse to support operational and analytical queries across disparate clinical databases.

    PubMed

    Chelico, John D; Wilcox, Adam; Wajngurt, David

    2007-10-11

    As the clinical data warehouse of the New York Presbyterian Hospital has evolved innovative methods of integrating new data sources and providing more effective and efficient data reporting and analysis need to be explored. We designed and implemented a new clinical data warehouse architecture to handle the integration of disparate clinical databases in the institution. By examining the way downstream systems are populated and streamlining the way data is stored we create a virtual clinical data warehouse that is adaptable to future needs of the organization.

  10. Human Exploration of Mars Design Reference Architecture 5.0, Addendum #2

    NASA Technical Reports Server (NTRS)

    Drake, Bret G. (Editor); Watts Kevin D. (Editor)

    2014-01-01

    This report serves as the second Addendum to NASA-SP-2009-566, "Human Exploration of Mars Design Reference Architecture 5.0." The data and descriptions contained within this Addendum capture some of the key assessments and studies produced since publication of the original document, predominately covering those conducted from 2009 through 2012. The assessments and studies described herein are for the most part independent stand-alone contributions. Effort has not been made to assimilate the findings to provide an updated integrated strategy. That is a recognized future effort. This report should not be viewed as constituting a formal plan for the human exploration of Mars.

  11. Destination Deimos: A Design Reference Architecture for Initial Human Exploration of the Mars System

    NASA Technical Reports Server (NTRS)

    Logan, James S.; Adamo, D. R.

    2011-01-01

    The two biggest challenges to successful human operations in interplanetary space are flight dynamics, constrained by the cold hard physics of the rocket equation, and bioastronautics, the psychophysiological realities of human adaptation, or lack thereof, to the deep space environment. Without substantial innovation in project/mission architecture and vehicle design, human exploration of the Mars system could be problematic for decades. Although a human landing on Mars is inevitable, humans-in-the-loop telerobotic exploration from the outer Martian moon Deimos is the best way to begin. Precursor robotic missions for reconnaissance and local site preparation will be required.

  12. A Preliminary Architectural Design for the Functional Hierarchy of the INFOPLEX Database Computer.

    DTIC Science & Technology

    1980-11-01

    r , Iie Functional Hierarchy if)Zhe L...F.TEC Database Caciur m t Meich’u!lsu . {## (’ Te,-cnica-l Report # 5 / ’ WP’ 1197-81 - // :bveirber 1980 .1...and bus architectures can be used, with today’s technology, to linearly connect r View Auth.1 Level p. 17 V iew Tra Level View En- fnrepment ! -Lev...out dimensions for further research in the design of the functional hierarchy. r / .. | i " - p. 27 II. The General Structure of the Functional Hierarchy

  13. An Experiment in the Use of Computer-Based Education to Teach Energy Considerations in Architectural Design.

    ERIC Educational Resources Information Center

    Arumi, Francisco N.

    Computer programs capable of describing the thermal behavior of buildings are used to help architectural students understand environmental systems. The Numerical Simulation Laboratory at the Architectural School of the University of Texas at Austin was developed to provide the necessary software capable of simulating the energy transactions…

  14. Experimental Architecture.

    ERIC Educational Resources Information Center

    Alter, Kevin

    2003-01-01

    Describes the design of the Centre for Architectural Structures and Technology at the University of Manitoba, including the educational context and design goals. Includes building plans and photographs. (EV)

  15. Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures.

    PubMed

    Afshar, M; Anaraki, A Pourkamali; Montazerian, H; Kadkhodapour, J

    2016-09-01

    Since the advent of additive manufacturing techniques, triply periodic minimal surfaces have emerged as a novel tool for designing porous scaffolds. Whereas scaffolds are expected to provide multifunctional performance, spatially changing pore patterns have been a promising approach to integrate mechanical characteristics of different architectures into a unique scaffold. Smooth morphological variations are also frequently seen in nature particularly in bone and cartilage structures and can be inspiring for designing of artificial tissues. In this study, we carried out experimental and numerical procedures to uncover the mechanical properties and deformation mechanisms of linearly graded porosity scaffolds for two different mathematically defined pore structures. Among TPMS-based scaffolds, P and D surfaces were subjected to gradient modeling to explore the mechanical responses for stretching and bending dominated deformations, respectively. Moreover, the results were compared to their corresponding uniform porosity structures. Mechanical properties were found to be by far greater for the stretching dominated structure (P-Surface). For bending dominated architecture (D-Surface), although there was no global fracture for uniform structures, graded structure showed a brittle fracture at 0.08 strain. A layer by layer deformation mechanism for stretching dominated structure was observed. For bending dominated scaffolds, deformation was accompanied by development of 45° shearing bands. Finite element simulations were also performed and the results showed a good agreement with the experimental observations.

  16. Development and Industrialization of InGaN/GaN LEDs on Patterned Sapphire Substrates for Low Cost Emitter Architecture

    SciTech Connect

    Flemish, Joseph; Soer, Wouter

    2015-11-30

    Patterned sapphire substrate (PSS) technology has proven to be an effective approach to improve efficacy and reduce cost of light-emitting diodes (LEDs). The volume emission from the transparent substrate leads to high package efficiency, while the simple and robust architecture of PSS-based LEDs enables low cost. PSS substrates have gained wide use in mid-power LEDs over the past years. In this project, Lumileds has developed and industrialized PSS and epitaxy technology for high- power flip-chip LEDs to bring these benefits to a broader range of applications and accelerate the adoption of energy-efficient solid-state lighting (SSL). PSS geometries were designed for highly efficient light extraction in a flip-chip architecture and high-volume manufacturability, and corresponding sapphire patterning and epitaxy manufacturing processes were integrally developed. Concurrently, device and package architectures were developed to take advantage of the PSS flip-chip die in different types of products that meet application needs. The developed PSS and epitaxy technology has been fully implemented in manufacturing at Lumileds’ San Jose, CA location, and incorporated in illumination-grade LED products that have been successfully introduced to the market, including LUXEON Q and LUXEON FlipChip White.

  17. Generic architecture for real-time multisensor fusion tracking algorithm development and evaluation

    NASA Astrophysics Data System (ADS)

    Queeney, Tom; Woods, Edward

    1994-10-01

    Westinghouse has developed and demonstrated a system for the rapid prototyping of Sensor Fusion Tracking (SFT) algorithms. The system provides an object-oriented envelope with three sets of generic software objects to aid in the development and evaluation of SFT algorithms. The first is a generic tracker model that encapsulates the idea of a tracker being a series of SFT algorithms along with the data manipulated by those algorithms and is capable of simultaneously supporting multiple, independent trackers. The second is a set of flexible, easily extensible sensor and target models which allows many types of sensors and targets to be used. Live, recorded and simulated sensors and combinations thereof can be utilized as sources for the trackers. The sensor models also provide an easily extensible interface to the generic tracker model so that all sensors provide input to the SFT algorithms in the same fashion. The third is a highly versatile display and user interface that allows easy access to many of the performance measures for sensors and trackers for easy evaluation and debugging of the SFT algorithms. The system is an object-oriented design programmed in C++. This system with several of the SFT algorithms developed for it has been used with live sensors as a real-time tracking system. This paper outlines the salient features of the sensor fusion architecture and programming environment.

  18. The development of microbatteries based on three-dimensional architectures for autonomous micro devices

    NASA Astrophysics Data System (ADS)

    Min, Hong-Seok

    2007-12-01

    The goal of fabricating three-dimensional (3D) microbatteries is to improve upon the performance of 2D microbatteries or thin-film batteries by reconfiguring existing materials in a more advanced architecture. 3D battery architectures offer a new approach for miniaturized power sources. These batteries are designed to have a small areal foot print and yet provide sufficient power and energy density to operate autonomous MEMS devices. The more convenient approaches for fabricating such batteries are based on micromachining techniques such as electrodeposition of high aspect ratio metal rods in an array configuration. Three types of three-dimensional microbatteries were fabricated and characterized: Ni-Zn, zinc-air, and Ag-Zn. These different types of microbatteries use different chemistries but all have the common feature of an out-of-plane array of micro-post electrodes. A 3D Ni-Zn microbattery was fabricated and demonstrated proper charge-discharge behavior for the first few cycles. The development of 3D zinc-air microbattery showed high discharge capability under various discharge conditions. Furthermore, performance of 3D zinc-air microbattery was demonstrated by successfully powering an electronic device. During discharge, the 3D zinc-air microbattery exhibited an electrode reaction which formed hollow ZnO electrodes by the Kirkendall effect. This electrode reaction strongly supports the functionality of the 3D microbattery. The fabrication of the Ag-Zn microbattery was accomplished by Ag electrode formation, separator coating, and Zn sedimentation. Due to imperfections in the separator coating, the 3D Ag-Zn microbattery had electrical shorts.

  19. Architectural Considerations for an Educational Research Center for Child Development (ERCCD).

    ERIC Educational Resources Information Center

    Linder, Ronald

    Architectural considerations and recommendations to facilitate the work of an Educational Research Center for Child Development are presented. The purposes of the center are to demonstrate model programs for children, train student and child development professionals, and facilitate and disseminate research on young children. Program…

  20. Visual Art Education: Between Spatial Sustainable Development and the Image of Architecture

    ERIC Educational Resources Information Center

    Tomšic Cerkez, Beatriz Gabriela

    2013-01-01

    If we consider the role of education and its implications in the formation of a critical and conscious user of architecture, it is obvious that the development of educational strategies related to the sustainable development of our common space and environment becomes fundamental. Among the objectives of art education, we should consider our…

  1. Constellation Program Design Challenges as Opportunities for Educational Outreach and Workforce Development for Senior Design Classes

    NASA Technical Reports Server (NTRS)

    Trevino, Robert C.

    2009-01-01

    The Texas Space Grant Consortium (TSGC) and the Exploration Systems Mission Directorate (ESMD) both have programs that present design challenges for university senior design classes that offer great opportunities for educational outreach and workforce development. These design challenges have been identified by NASA engineers and researchers as real design problems faced by the Constellation Program in its exploration missions and architecture. Student teams formed in their senior design class select and then work on a design challenge for one or two semesters. The senior design class follows the requirements set by their university, but it must also comply with the Accreditation Board for Engineering and Technology (ABET) in order to meet the class academic requirements. Based on a one year fellowship at a TSGC university under the NASA Administrator's Fellowship Program (NAFP) and several years of experience, results and metrics are presented on the NASA Design Challenge Program.

  2. The planning coordinator: A design architecture for autonomous error recovery and on-line planning of intelligent tasks

    NASA Technical Reports Server (NTRS)

    Farah, Jeffrey J.

    1992-01-01

    Developing a robust, task level, error recovery and on-line planning architecture is an open research area. There is previously published work on both error recovery and on-line planning; however, none incorporates error recovery and on-line planning into one integrated platform. The integration of these two functionalities requires an architecture that possesses the following characteristics. The architecture must provide for the inclusion of new information without the destruction of existing information. The architecture must provide for the relating of pieces of information, old and new, to one another in a non-trivial rather than trivial manner (e.g., object one is related to object two under the following constraints, versus, yes, they are related; no, they are not related). Finally, the architecture must be not only a stand alone architecture, but also one that can be easily integrated as a supplement to some existing architecture. This thesis proposal addresses architectural development. Its intent is to integrate error recovery and on-line planning onto a single, integrated, multi-processor platform. This intelligent x-autonomous platform, called the Planning Coordinator, will be used initially to supplement existing x-autonomous systems and eventually replace them.

  3. Massive MIMO-OFDM indoor visible light communication system downlink architecture design

    NASA Astrophysics Data System (ADS)

    Lang, Tian; Li, Zening; Chen, Gang

    2014-10-01

    Multiple-input multiple-output (MIMO) technique is now used in most new broadband communication system, and orthogonal frequency division multiplexing (OFDM) is also utilized within current 4th generation (4G) of mobile telecommunication technology. With MIMO and OFDM combined, visible light communication (VLC) system's diversity gain is increase, yet system capacity for dispersive channels is also enhanced. Moreover, with the emerging massive MIMO-OFDM VLC system, there are significant advantages than smaller systems' such as channel hardening, further increasing of energy efficiency (EE) and spectral efficiency (SE) based on law of large number. This paper addresses one of the major technological challenges, system architecture design, which was solved by semispherical beehive structure (SBS) receiver and so that diversity gain can be identified and applied in Massive MIMO VLC system. Simulation results shows that the proposed design clearly presents a spatial diversity over conventional VLC systems.

  4. Electrical Grounding Architecture for Unmanned Spacecraft

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This handbook is approved for use by NASA Headquarters and all NASA Centers and is intended to provide a common framework for consistent practices across NASA programs. This handbook was developed to describe electrical grounding design architecture options for unmanned spacecraft. This handbook is written for spacecraft system engineers, power engineers, and electromagnetic compatibility (EMC) engineers. Spacecraft grounding architecture is a system-level decision which must be established at the earliest point in spacecraft design. All other grounding design must be coordinated with and be consistent with the system-level architecture. This handbook assumes that there is no one single 'correct' design for spacecraft grounding architecture. There have been many successful satellite and spacecraft programs from NASA, using a variety of grounding architectures with different levels of complexity. However, some design principles learned over the years apply to all types of spacecraft development. This handbook summarizes those principles to help guide spacecraft grounding architecture design for NASA and others.

  5. Development of Network-based Communications Architectures for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Slywczak, Richard A.

    2007-01-01

    Since the Vision for Space Exploration (VSE) announcement, NASA has been developing a communications infrastructure that combines existing terrestrial techniques with newer concepts and capabilities. The overall goal is to develop a flexible, modular, and extensible architecture that leverages and enhances terrestrial networking technologies that can either be directly applied or modified for the space regime. In addition, where existing technologies leaves gaps, new technologies must be developed. An example includes dynamic routing that accounts for constrained power and bandwidth environments. Using these enhanced technologies, NASA can develop nodes that provide characteristics, such as routing, store and forward, and access-on-demand capabilities. But with the development of the new infrastructure, challenges and obstacles will arise. The current communications infrastructure has been developed on a mission-by-mission basis rather than an end-to-end approach; this has led to a greater ground infrastructure, but has not encouraged communications between space-based assets. This alone provides one of the key challenges that NASA must encounter. With the development of the new Crew Exploration Vehicle (CEV), NASA has the opportunity to provide an integration path for the new vehicles and provide standards for their development. Some of the newer capabilities these vehicles could include are routing, security, and Software Defined Radios (SDRs). To meet these needs, the NASA/Glenn Research Center s (GRC) Network Emulation Laboratory (NEL) has been using both simulation and emulation to study and evaluate these architectures. These techniques provide options to NASA that directly impact architecture development. This paper identifies components of the infrastructure that play a pivotal role in the new NASA architecture, develops a scheme using simulation and emulation for testing these architectures and demonstrates how NASA can strengthen the new infrastructure by

  6. Development of the Design Laboratory.

    ERIC Educational Resources Information Center

    Silla, Harry

    1986-01-01

    Describes the design laboratory at the Stevens Institute of Technology (SIT). Considers course objectives, design projects, project structure, mechanical design, project management, and laboratory operation. This laboratory complements SIT's course in process design, giving students a complete design experience. (JN)

  7. Architectures and Design for Next-Generation Hybrid Circuit/Packet Networks

    NASA Astrophysics Data System (ADS)

    Vadrevu, Sree Krishna Chaitanya

    Internet traffic is increasing rapidly at an annual growth rate of 35% with aggregate traffic exceeding several Exabyte's per month. The traffic is also becoming heterogeneous in bandwidth and quality-of-service (QoS) requirements with growing popularity of cloud computing, video-on-demand (VoD), e-science, etc. Hybrid circuit/packet networks which can jointly support circuit and packet services along with the adoption of high-bit-rate transmission systems form an attractive solution to address the traffic growth. 10 Gbps and 40 Gbps transmission systems are widely deployed in telecom backbone networks such as Comcast, AT&T, etc., and network operators are considering migration to 100 Gbps and beyond. This dissertation proposes robust architectures, capacity migration strategies, and novel service frameworks for next-generation hybrid circuit/packet architectures. In this dissertation, we study two types of hybrid circuit/packet networks: a) IP-over-WDM networks, in which the packet (IP) network is overlaid on top of the circuit (optical WDM) network and b) Hybrid networks in which the circuit and packet networks are deployed side by side such as US DoE's ESnet. We investigate techniques to dynamically migrate capacity between the circuit and packet sections by exploiting traffic variations over a day, and our methods show that significant bandwidth savings can be obtained with improved reliability of services. Specifically, we investigate how idle backup circuit capacity can be used to support packet services in IP-over-WDM networks, and similarly, excess capacity in packet network to support circuit services in ESnet. Control schemes that enable our mechanisms are also discussed. In IP-over-WDM networks, with upcoming 100 Gbps and beyond, dedicated protection will induce significant under-utilization of backup resources. We investigate design strategies to loan idle circuit backup capacity to support IP/packet services. However, failure of backup circuits will

  8. Architecture Design for the Space Situational Awareness System in the Preparedness Plan for Space Hazards of Republic of Korea

    NASA Astrophysics Data System (ADS)

    Choi, E.; Cho, S.; Shin, S.; Park, J.; Kim, J.; Kim, D.

    The threat posed by asteroids and comets has become one of the important issues. Jinju meteorite discovered in March 2014 has expanded the interest of the people of the fall of the natural space objects. Furthermore, the growing quantity of space debris is a serious threat to satellites and other spacecraft, which risk being damaged or even destroyed. In May of 2014, Korea established the preparedness plan for space hazards according to the space development promotion act which is amended to take action with respect to hazards from space. This plan is largely composed of 3 items such as system, technology and infrastructure. System is included the establishment and management of national space hazards headquarters at risk situation. Korea Astronomy and Space Science Institute (KASI) was designated as a space environment monitoring agency under the ministry of science, ICT and future planning (MSIP). Technology is supposed to develop the space situational awareness system that can monitor and detect space objects. For infrastructure, research and development of core technology will be promoted for capabilities improvement of space hazards preparedness such as software tools, application and data systems. This paper presents the architectural design for building space situational awareness system. The trade-off study of space situational awareness system for the Korea situation was performed. The results have shown the proposed architectural design. The baseline architecture is composed of Integrated Analysis System and Space Objects Monitoring System. Integrated Analysis System collects the status data from Space Objects Monitoring System and analyzes the space risk information through a data processing. For Space Objects Monitoring System, the all-sky surveillance camera, array radar and meteoroid surveillance sensor networks were considered. This system focuses on not only the threat of a large artificial satellite and natural space objects such as asteroids that

  9. Effects of Spatial Experiences & Cognitive Styles in the Solution Process of Space-Based Design Problems in the First Year of Architectural Design Education

    ERIC Educational Resources Information Center

    Erkan Yazici, Yasemin

    2013-01-01

    There are many factors that influence designers in the architectural design process. Cognitive style, which varies according to the cognitive structure of persons, and spatial experience, which is created with spatial data acquired during life are two of these factors. Designers usually refer to their spatial experiences in order to find solutions…

  10. Bioactivity and architecture of Candida albicans biofilms developed on poly(methyl methacrylate) resin surface.

    PubMed

    da Silva, Wander José; Seneviratne, Jayampath; Samaranayake, Lakshman Perera; Del Bel Cury, Altair Antoninha

    2010-07-01

    The aim of this study was to evaluate the bioactivity and architecture of Candida albicans biofilms developed on the surface of poly(methyl methacrylate) (PMMA) resin. To do this, surface roughness (SR) and surface free energy of PMMA specimens were measured. Next, the biofilms of two different C. albicans strains (ATCC 90028 and SC5314) were allowed to develop on the PMMA surface and evaluated at 24, 48, and 72 h after adhesion. The bioactivity of the biofilms was measured by the XTT reduction assay. Biofilm topography was evaluated by scanning electron microscopy. Confocal microscopy was used to evaluate the architectural properties of bio-volume, average thickness, biofilm roughness, surface area/volume ratio and the proportion of live/dead cells in the different biofilm development stages. SR and SFE had no influence on biofilm development. Each strain exhibited a different biofilm activity (P < 0.001). Confocal images showed different architectures for the different biofilm development stages. We conclude that the main differences detected in biofilm bioactivity and architecture were related to the characteristics of each C. albicans strain and to biofilm development time.

  11. A Phobos-Deimos Mission as an Element of the NASA Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2011-01-01

    NASA has conducted a series of mission studies over the past 25 years examining the eventual exploration of the surface of Mars by humans. The latest version of this evolutionary series of design reference missions/architectures - Design Reference Architecture 5 or DRA-5 - was completed in 2007. This paper examines the implications of including a human mission to explore the moons of Mars and teleoperate robots in various locations, but not to land the human crews on Mars, as an element of this reference architecture. Such a mission has been proposed several times during this same 25 year evolution leading up to the completion of DRA-5 primarily as a mission of testing the in-space vehicles and operations while surface vehicles and landers are under development. But such a precursor or test mission has never been explicitly included as an element of this Architecture. This paper will first summarize the key features of the DRA-5 to provide context for the remainder of the assessment. This will include a description of the in-space vehicles that would be the subject of a shakedown test during the Mars orbital mission. A decision tree will be used to illustrate the factors that will be analyzed, and the sequence in which they will be addressed, for this assessment. The factors that will be analyzed include the type of interplanetary transfer orbit (opposition class versus conjunction class), the type of parking orbit (circular versus elliptical), and the type of propulsion technology (high thrust chemical versus nuclear thermal rocket). The manner in which each of these factors impacts an individual mission will be described. In addition to the direct impact of these factors, additional considerations impacting crew health and overall programmatic outcomes will be discussed. Numerical results for each of the factors in the decision tree will be grouped with derived qualitative impacts from crew health and programmatic consideration. These quantitative and qualitative

  12. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing.

    PubMed

    Reed, Stephanie; Lau, Grace; Delattre, Benjamin; Lopez, David Don; Tomsia, Antoni P; Wu, Benjamin M

    2016-01-07

    While many tissue-engineered constructs aim to treat cartilage defects, most involve chondrocyte or stem cell seeding on scaffolds. The clinical application of cell-based techniques is limited due to the cost of maintaining cellular constructs on the shelf, potential immune response to allogeneic cell lines, and autologous chondrocyte sources requiring biopsy from already diseased or injured, scarce tissue. An acellular scaffold that can induce endogenous influx and homogeneous distribution of native stem cells from bone marrow holds great promise for cartilage regeneration. This study aims to develop such an acellular scaffold using designed, channeled architecture that simultaneously models the native zones of articular cartilage and subchondral bone. Highly porous, hydrophilic chitosan-alginate (Ch-Al) scaffolds were fabricated in three-dimensionally printed (3DP) molds designed to create millimeter scale macro-channels. Different polymer preform casting techniques were employed to produce scaffolds from both negative and positive 3DP molds. Macro-channeled scaffolds improved cell suspension distribution and uptake overly randomly porous scaffolds, with a wicking volumetric flow rate of 445.6 ± 30.3 mm(3) s(-1) for aqueous solutions and 177 ± 16 mm(3) s(-1) for blood. Additionally, directional freezing was applied to Ch-Al scaffolds, resulting in lamellar pores measuring 300 μm and 50 μm on the long and short axes, thus creating micrometer scale micro-channels. After directionally freezing Ch-Al solution cast in 3DP molds, the combined macro- and micro-channeled scaffold architecture enhanced cell suspension uptake beyond either macro- or micro-channels alone, reaching a volumetric flow rate of 1782.1 ± 48 mm(3) s(-1) for aqueous solutions and 440.9 ± 0.5 mm(3) s(-1) for blood. By combining 3DP and directional freezing, we can control the micro- and macro-architecture of Ch-Al to drastically improve cell influx into and distribution within the scaffold

  13. Design and evaluation of a Stochastic Optimal Feed-forward and Feedback Technology (SOFFT) flight control architecture

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Proffitt, Melissa S.

    1994-01-01

    This paper describes the design and evaluation of a stochastic optimal feed-forward and feedback technology (SOFFT) control architecture with emphasis on the feed-forward controller design. The SOFFT approach allows the designer to independently design the feed-forward and feedback controllers to meet separate objectives and then integrate the two controllers. The feed-forward controller has been integrated with an existing high-angle-of-attack (high-alpha) feedback controller. The feed-forward controller includes a variable command model with parameters selected to satisfy level 1 flying qualities with a high-alpha adjustment to achieve desired agility guidelines, a nonlinear interpolation approach that scales entire matrices for approximation of the plant model, and equations for calculating feed-forward gains developed for perfect plant-model tracking. The SOFFT design was applied to a nonlinear batch simulation model of an F/A-18 aircraft modified for thrust vectoring. Simulation results show that agility guidelines are met and that the SOFFT controller filters undesired pilot-induced frequencies more effectively during a tracking task than a flight controller that has the same feedback control law but does not have the SOFFT feed-forward control.

  14. New system for the real-time infrared scene simulator: system architecture and software design

    NASA Astrophysics Data System (ADS)

    Li, Haimin; Shen, Peiyi; Wu, Chengke

    1999-07-01

    This paper represents a new real-time infrared scene simulator. Hardware architecture of the simulator contains two PENTIUM 300 MHz CPUs, a hardware Z-BUFFER controller developed by EPLD, and a data transmission controller based on PCI bus, which is presented on basis of the timing analysis of scene simulator process. The software finishes the geometry transform, clipping, and infrared simulator of 3D model of a target to create data for hardware Z-BUFFER controller. The experimental results indicate that software can successfully cooperate with hardware to meet the great demand of application in practice.

  15. Simulations of Stagewise Development with a Symbolic Architecture

    NASA Astrophysics Data System (ADS)

    Gobet, Fernand

    This chapter compares Piaget's theory of development with Feigenbaum & Simon's (1962; 1984) EPAM theory. An attempt is made to map the concepts of assimilation and accommodation in Piaget's theory onto the concepts of familiarisation and accommodation in EPAM. An EPAM-like model of the balance scale task is then presented, with a discussion of preliminary results showing how it accounts for children's discontinuous, stage-like development. The analysis focuses on the transition between rules, using catastrophe flags (Gilmore, 1981) as criteria. It is argued that some symbolic models may be described as dynamical systems, in the same way as some non-symbolic models.

  16. Design Development Plans for the College of Education and the Behavioral Science Facility. Eugene, Oregon. Phase I.

    ERIC Educational Resources Information Center

    Lutes and Amundson, Architects and Community Planners, Springfield, OR.

    The development concept adopted by the University of Oregon is described, and its continuation into the design development phase of the architectural study is presented. Detailed architectural plans illustrate the anticipated utilization of space and the character of the building complex. Outline specifications for building construction and…

  17. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage

    PubMed Central

    Xue, Yuhua; Ding, Yong; Niu, Jianbing; Xia, Zhenhai; Roy, Ajit; Chen, Hao; Qu, Jia; Wang, Zhong Lin; Dai, Liming

    2015-01-01

    One-dimensional (1D) carbon nanotubes (CNTs) and 2D single-atomic layer graphene have superior thermal, electrical, and mechanical properties. However, these nanomaterials exhibit poor out-of-plane properties due to the weak van der Waals interaction in the transverse direction between graphitic layers. Recent theoretical studies indicate that rationally designed 3D architectures could have desirable out-of-plane properties while maintaining in-plane properties by growing CNTs and graphene into 3D architectures with a seamless nodal junction. However, the experimental realization of seamlessly-bonded architectures remains a challenge. We developed a strategy of creating 3D graphene-CNT hollow fibers with radially aligned CNTs (RACNTs) seamlessly sheathed by a cylindrical graphene layer through a one-step chemical vapor deposition using an anodized aluminum wire template. By controlling the aluminum wire diameter and anodization time, the length of the RACNTs and diameter of the graphene hollow fiber can be tuned, enabling efficient energy conversion and storage. These fibers, with a controllable surface area, meso-/micropores, and superior electrical properties, are excellent electrode materials for all-solid-state wire-shaped supercapacitors with poly(vinyl alcohol)/H2SO4 as the electrolyte and binder, exhibiting a surface-specific capacitance of 89.4 mF/cm2 and length-specific capacitance up to 23.9 mF/cm, — one to four times the corresponding record-high capacities reported for other fiber-like supercapacitors. Dye-sensitized solar cells, fabricated using the fiber as a counter electrode, showed a power conversion efficiency of 6.8% and outperformed their counterparts with an expensive Pt wire counter electrode by a factor of 2.5. These novel fiber-shaped graphene-RACNT energy conversion and storage devices are so flexible they can be woven into fabrics as power sources. PMID:26601246

  18. New design concepts for energy-conserving buildings. Results of a national competition among students in schools of architecture

    SciTech Connect

    1982-01-01

    The National Student Competition in Energy Conscious Design held among professional schools of architecture in 1976 is documented. Fifty-five schools participated, submitting 115 entries; twelve were chosen as finalists. Details are presented on the twelve winning designs and excerpts from the remaining 103 entries are published. (MCW)

  19. The Impact of School Design and Arrangement on Learning Experiences: A Case Study of an Architecturally Significant Elementary School

    ERIC Educational Resources Information Center

    Churchill, Deirdre Lyne

    2014-01-01

    This qualitative study examined the impact of architectural design and arrangement on the learning experiences of students. Specifically, it examined how school design and arrangement foster interactions and relationships among students and adults relevant to integral learning experiences. This case study was limited to the breadth of knowledge…

  20. Collection Development "Universal Design": Design for Everyone

    ERIC Educational Resources Information Center

    Felix, Lisa

    2008-01-01

    As the first wave of baby boomers hit their "golden years," there is a growing demand for housing that meets their changing physical needs. The older and disabled population face a lot of physical challenges in a traditional home. Before homeowners can modify their houses, they must first understand the key design terminology involved.…

  1. Development of Parallel Architectures for Sensor Array Processing. Volume 1

    DTIC Science & Technology

    1993-08-01

    required for the DOA estimation [ 1-7]. The Multiple Signal Classification ( MUSIC ) [ 1] and the Estimation of Signal Parameters by Rotational...manifold and the estimated subspace. Although MUSIC is a high resolution algorithm, it has several drawbacks including the fact that complete knowledge of...thoroughly, MUSIC algorithm was selected to develop special purpose hardware for real time computation. Summary of the MUSIC algorithm is as follows

  2. Application of Visible Light-based Projection Stereolithography for Live Cell-Scaffold Fabrication with Designed Architecture

    PubMed Central

    Lin, Hang; Zhang, Dongning; Alexander, Peter G.; Yang, Guang; Tan, Jian; Cheng, Anthony Wai-Ming; Tuan, Rocky S.

    2013-01-01

    One-step scaffold fabrication with live cell incorporation is a highly desirable technology for tissue engineering and regeneration. Projection stereolithography (PSL) represents a promising method owing to its fine resolution, high fabrication speed and computer-aided design (CAD) capabilities. However, the majority of current protocols utilize water-insoluble photoinitiators that are incompatible with live cell-fabrication, and ultraviolet (UV) light that is damaging to the cellular DNA. We report here the development of a visible light-based PSL system (VL-PSL), using lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) as the initiator and polyethylene glycol diacrylate (PEGDA) as the monomer, to produce hydrogel scaffolds with specific shapes and internal architectures. Furthermore, live human adipose-derived stem cells (hADSCs) were suspended in PEGDA/LAP solution during the PSL process, and were successfully incorporated within the fabricated hydrogel scaffolds. hADSCs in PEG scaffolds showed high viability (>90%) for up to 7 days after fabrication as revealed by Live/Dead staining. Scaffolds with porous internal architecture retained higher cell viability and activity than solid scaffolds, likely due to increased oxygen and nutrients exchange into the interior of the scaffolds. The VL-PSL should be applicable as an efficient and effective tissue engineering technology for point-of-care tissue repair in clinic. PMID:23092861

  3. Power Requirements for The NASA Mars Design Reference Architecture (DRA) 5.0

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    2009-01-01

    This paper summarizes the power systems analysis results from NASA s recent Mars DRA 5.0 study which examined three architecture options and resulting mission requirements for a human Mars landing mission in the post-2030 timeframe. DRA 5.0 features a long approximately 500 day surface stay split mission using separate cargo and crewed Mars transfer vehicles. Two cargo flights, utilizing minimum energy trajectories, pre-deploy a cargo lander to the surface and a habitat lander into a 24-hour elliptical Mars parking orbit where it remains until the arrival of the crew during the next mission opportunity approximately 26 months later. The pre-deployment of cargo poses unique challenges for set-up and emplacement of surface assets that results in the need for self or robotically deployed designs. Three surface architecture options were evaluated for breadth of science content, extent of exploration range/capability and variations in system concepts and technology. This paper describes the power requirements for the surface operations of the three mission options, power system analyses including discussion of the nuclear fission, solar photovoltaic and radioisotope concepts for main base power and long range mobility.

  4. Techniques for developing reliability-oriented optimal microgrid architectures

    NASA Astrophysics Data System (ADS)

    Patra, Shashi B.

    2007-12-01

    Alternative generation technologies such as fuel cells, micro-turbines, solar etc. have been the focus of active research in the past decade. These energy sources are small and modular. Because of these advantages, these sources can be deployed effectively at or near locations where they are actually needed, i.e. in the distribution network. This is in contrast to the traditional electricity generation which has been "centralized" in nature. The new technologies can be deployed in a "distributed" manner. Therefore, they are also known as Distributed Energy Resources (DER). It is expected that the use of DER, will grow significantly in the future. Hence, it is prudent to interconnect the energy resources in a meshed or grid-like structure, so as to exploit the reliability and economic benefits of distributed deployment. These grids, which are smaller in scale but similar to the electric transmission grid, are known as "microgrids". This dissertation presents rational methods of building microgrids optimized for cost and subject to system-wide and locational reliability guarantees. The first method is based on dynamic programming and consists of determining the optimal interconnection between microsources and load points, given their locations and the rights of way for possible interconnections. The second method is based on particle swarm optimization. This dissertation describes the formulation of the optimization problem and the solution methods. The applicability of the techniques is demonstrated in two possible situations---design of a microgrid from scratch and expansion of an existing distribution system.

  5. The signs of life in architecture.

    PubMed

    Gruber, Petra

    2008-06-01

    Engineers, designers and architects often look to nature for inspiration. The research on 'natural constructions' is aiming at innovation and the improvement of architectural quality. The introduction of life sciences terminology in the context of architecture delivers new perspectives towards innovation in architecture and design. The investigation is focused on the analogies between nature and architecture. Apart from other principles that are found in living nature, an interpretation of the so-called 'signs of life', which characterize living systems, in architecture is presented. Selected architectural projects that have applied specific characteristics of life, whether on purpose or not, will show the state of development in this field and open up future challenges. The survey will include famous built architecture as well as students' design programs, which were carried out under supervision of the author at the Department of Design and Building Construction at the Vienna University of Technology.

  6. Development of a structured observational method for the systematic assessment of school food-choice architecture.

    PubMed

    Ozturk, Orgul D; McInnes, Melayne M; Blake, Christine E; Frongillo, Edward A; Jones, Sonya J

    2016-01-01

    The objective of this study is to develop a structured observational method for the systematic assessment of the food-choice architecture that can be used to identify key points for behavioral economic intervention intended to improve the health quality of children's diets. We use an ethnographic approach with observations at twelve elementary schools to construct our survey instrument. Elements of the structured observational method include decision environment, salience, accessibility/convenience, defaults/verbal prompts, number of choices, serving ware/method/packaging, and social/physical eating environment. Our survey reveals important "nudgeable" components of the elementary school food-choice architecture, including precommitment and default options on the lunch line.

  7. Architecture for a Web-based clinical information system that keeps the design open and the access closed.

    PubMed

    Cimino, J J; Sengupta, S; Clayton, P D; Patel, V L; Kushniruk, A; Huang, X

    1998-01-01

    We are developing the Patient Clinical Information System (PatCIS) project at Columbia-Presbyterian Medical Center to provide patients with access to health information, including their own medical records (permitting them to contribute selected aspects to the record), educational materials and automated decision support. The architecture of the system allows for multiple, independent components which make use of central services for managing security and usage logging functions. The design accommodates a variety of data entry, data display and decision support tools and provides facilities for tracking system usage and questionnaires. The user interface minimizes hypertext-related disorientation and cognitive overload; our success in this regard is the subject of on-going evaluation.

  8. The Intranet as a Cognitive Architecture for Training and Education: Basic Assumptions and Development Issues.

    ERIC Educational Resources Information Center

    Seffah, Ahmed; Bouchard, Robert Maurice

    This paper makes basic assumptions regarding the development of an intranet architecture that will actively promote the cognitive apprenticeship of a new community of learners. The authors consider the intranet as a dynamic and virtual environment in which individuals may communicate, share resources, and reciprocally generate and organize…

  9. How the Timing and Quality of Early Experiences Influence the Development of Brain Architecture

    ERIC Educational Resources Information Center

    Fox, Sharon E.; Levitt, Pat; Nelson, Charles A., III.

    2010-01-01

    Early life events can exert a powerful influence on both the pattern of brain architecture and behavioral development. In this study a conceptual framework is provided for considering how the structure of early experience gets "under the skin." The study begins with a description of the genetic framework that lays the foundation for brain…

  10. Developing Designer Identity through Reflection

    ERIC Educational Resources Information Center

    Tracey, Monica W.; Hutchinson, Alisa

    2013-01-01

    As designers utilize design thinking while moving through a design space between problem and solution, they must rely on design intelligence, precedents, and intuition in order to arrive at meaningful and inventive outcomes. Thus, instructional designers must constantly re-conceptualize their own identities and what it means to be a designer.…

  11. CAPTAN: A hardware architecture for integrated data acquisition, control, and analysis for detector development

    SciTech Connect

    Turqueti, Marcos; Rivera, Ryan A.; Prosser, Alan; Andresen, Jeffry; Chramowicz, John; /Fermilab

    2008-11-01

    The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory has developed a data acquisition system flexible and powerful enough to meet the needs of a variety of high energy physics applications. The system described in this paper is called CAPTAN (Compact And Programmable daTa Acquisition Node) and its architecture and capabilities are presented in detail here. The three most important characteristics of this system are flexibility, versatility and scalability. These three main features are supported by key architectural features; a vertical bus that permits the user to stack multiple boards, a gigabit Ethernet link that permits high speed communications to the system and the core group of boards that provide specific capabilities for the system. In this paper, we describe the system architecture, give an overview of its capabilities and point out possible applications.

  12. Business Architecture Development at Public Administration - Insights from Government EA Method Engineering Project in Finland

    NASA Astrophysics Data System (ADS)

    Valtonen, Katariina; Leppänen, Mauri

    Governments worldwide are concerned for efficient production of services to customers. To improve quality of services and to make service production more efficient, information and communication technology (ICT) is largely exploited in public administration (PA). Succeeding in this exploitation calls for large-scale planning which embraces issues from strategic to technological level. In this planning the notion of enterprise architecture (EA) is commonly applied. One of the sub-architectures of EA is business architecture (BA). BA planning is challenging in PA due to a large number of stakeholders, a wide set of customers, and solid and hierarchical structures of organizations. To support EA planning in Finland, a project to engineer a government EA (GEA) method was launched. In this chapter, we analyze the discussions and outputs of the project workshops and reflect emerged issues on current e-government literature. We bring forth insights into and suggestions for government BA and its development.

  13. Grass meristems II: inflorescence architecture, flower development and meristem fate.

    PubMed

    Tanaka, Wakana; Pautler, Michael; Jackson, David; Hirano, Hiro-Yuki

    2013-03-01

    Plant development depends on the activity of various types of meristems that generate organs such as leaves and floral organs throughout the life cycle. Grass species produce complex inflorescences and unique flowers. The grass inflorescence is composed of different types of branches, including a specialized branch called a spikelet. The spikelet is a special unit of the inflorescence and forms one to several florets, depending on the species. In the floret, floral organs such as perianth organs, carpels and stamens are formed. In Arabidopsis, because the inflorescence meristem (IM) forms the floral meristems (FMs) directly on its flanks, the change of meristem fate is relatively simple. In contrast, in grasses, different types of meristem, such as the IM, the branch meristem (BM), the spikelet pair meristem (SPM) in some grasses, the spikelet meristem (SM) and the FM, are responsible for the elaboration of their complex inflorescences and flowers. Therefore, sequential changes of meristem fate are required, and a number of genes involved in the specification of the fate of each meristem have been identified. In this review, we focus on the following issues concerning the fate of the reproductive meristems in two grass species, maize (Zea mays) and rice (Oryza sativa): (i) meristem regulation during inflorescence development; (ii) specification and fate change of the BM and the SM; (iii) determinacy of the FM; and (iv) communication between the meristem and lateral organs.

  14. ''Beauty of Wholeness and Beauty of Partiality.'' New Terms Defining the Concept of Beauty in Architecture in Terms of Sustainability and Computer Aided Design

    ERIC Educational Resources Information Center

    Farid, Ayman A.; Zaghloul, Weaam M.; Dewidar, Khaled M.

    2014-01-01

    The great shift in sustainability and computer aided design in the field of architecture caused a remarkable change in the architecture philosophy, new aspects of beauty and aesthetic values are being introduced, and traditional definitions for beauty cannot fully cover this aspects, which causes a gap between; new architecture works criticism and…

  15. Network architecture design of an agile sensing system with sandwich wireless sensor nodes

    NASA Astrophysics Data System (ADS)

    Dorvash, S.; Li, X.; Pakzad, S.; Cheng, L.

    2012-04-01

    Wireless sensor network (WSN) is recently emerged as a powerful tool in the structural health monitoring (SHM). Due to the limitations of wireless channel capacity and the heavy data traffic, the control on the network is usually not real time. On the other hand, many SHM applications require quick response when unexpected events, such as earthquake, happen. Realizing the need to have an agile monitoring system, an approach, called sandwich node, was proposed. Sandwich is a design of complex sensor node where two Imote2 nodes are connected with each other to enhance the capabilities of the sensing units. The extra channel and processing power, added into the nodes, enable agile responses of the sensing network, particularly in interrupting the network and altering the undergoing tasks for burst events. This paper presents the design of a testbed for examination of the performance of wireless sandwich nodes in a network. The designed elements of the network are the software architecture of remote and local nodes, and the triggering strategies for coordinating the sensing units. The performance of the designed network is evaluated through its implementation in a monitoring test in the laboratory. For both original Imote2 and the sandwich node, the response time is estimated. The results show that the sandwich node is an efficient solution to the collision issue in existing interrupt approaches and the latency in dense wireless sensor networks.

  16. Approach to design neural cryptography: a generalized architecture and a heuristic rule.

    PubMed

    Mu, Nankun; Liao, Xiaofeng; Huang, Tingwen

    2013-06-01

    Neural cryptography, a type of public key exchange protocol, is widely considered as an effective method for sharing a common secret key between two neural networks on public channels. How to design neural cryptography remains a great challenge. In this paper, in order to provide an approach to solve this challenge, a generalized network architecture and a significant heuristic rule are designed. The proposed generic framework is named as tree state classification machine (TSCM), which extends and unifies the existing structures, i.e., tree parity machine (TPM) and tree committee machine (TCM). Furthermore, we carefully study and find that the heuristic rule can improve the security of TSCM-based neural cryptography. Therefore, TSCM and the heuristic rule can guide us to designing a great deal of effective neural cryptography candidates, in which it is possible to achieve the more secure instances. Significantly, in the light of TSCM and the heuristic rule, we further expound that our designed neural cryptography outperforms TPM (the most secure model at present) on security. Finally, a series of numerical simulation experiments are provided to verify validity and applicability of our results.

  17. Development of a Simulation Tool for 3D Braiding Architectures

    NASA Astrophysics Data System (ADS)

    Tolosana, N.; Lomov, S.; Stüve, J.; Miravete, A.

    2007-04-01

    The usage of textile technologies for composites is widely extended in aeronautic applications. They provide an improvement on mechanical properties in the thickness direction, and offer some other advantages in comparison with prepreg technology regarding production. Nowadays 3D-braiding machines do not only enable the production of solid profiles but enable also the production of complex near-net-shape reinforcement structures with changing cross section geometry. In order to attain a full understanding on structure of 3d braids to be able to predict mechanical properties, simulation tools including machine operation are needed. A simulation tool is being developed as a part of the EU project "Integrated Tool for Simulation of Textile Composites", starting from 3d braiding machinery description and operation. This information is required to reproduce yarn paths in the produced unit cell, based on the interlacing pattern of the braid.

  18. Learning Environment: An Architectural Interpretation of a New Designs Archetype High School.

    ERIC Educational Resources Information Center

    Jilk, Bruce A.; And Others

    The New Designs for the Comprehensive High School project used the break-the-mold design-down process to develop a prototype high school. The basic building block of this design is the personal workstation, not the classroom. Combining the personal workstation with the desire for teaming leads to the idea of a small, flexible group space that…

  19. GNC architecture for autonomous robotic capture of a non-cooperative target: Preliminary concept design

    NASA Astrophysics Data System (ADS)

    Jankovic, Marko; Paul, Jan; Kirchner, Frank

    2016-04-01

    Recent studies of the space debris population in low Earth orbit (LEO) have concluded that certain regions have already reached a critical density of objects. This will eventually lead to a cascading process called the Kessler syndrome. The time may have come to seriously consider active debris removal (ADR) missions as the only viable way of preserving the space environment for future generations. Among all objects in the current environment, the SL-8 (Kosmos 3M second stages) rocket bodies (R/Bs) are some of the most suitable targets for future robotic ADR missions. However, to date, an autonomous relative navigation to and capture of an non-cooperative target has never been performed. Therefore, there is a need for more advanced, autonomous and modular systems that can cope with uncontrolled, tumbling objects. The guidance, navigation and control (GNC) system is one of the most critical ones. The main objective of this paper is to present a preliminary concept of a modular GNC architecture that should enable a safe and fuel-efficient capture of a known but uncooperative target, such as Kosmos 3M R/B. In particular, the concept was developed having in mind the most critical part of an ADR mission, i.e. close range proximity operations, and state of the art algorithms in the field of autonomous rendezvous and docking. In the end, a brief description of the hardware in the loop (HIL) testing facility is made, foreseen for the practical evaluation of the developed architecture.

  20. Designing Unmanned Systems with Greater Autonomy: Using a Federated, Partially Open Systems Architecture Approach

    DTIC Science & Technology

    2014-01-01

    Johns Hopkins University Applied Physics Laboratory Swarming UAS Architecture...control that has been used by a number of different research teams (the Johns Hopkins University Applied Physics Laboratory UAV architecture, the...JAUS joint autonomous unmanned system JCUA joint common UAS architecture JHU APL Johns Hopkins University Applied Physics Laboratory Abbreviations

  1. Learning Methods for Efficient Adoption of Contemporary Technologies in Architectural Design

    ERIC Educational Resources Information Center

    Mahdavinejad, Mohammadjavad; Dehghani, Sohaib; Shahsavari, Fatemeh

    2013-01-01

    The interaction between technology and history is one of the most significant issues in achieving an efficient and progressive architecture in any era. This is a concept which stems from lesson of traditional architecture of Iran. Architecture as a part of art, has permanently been transforming just like a living organism. In fact, it has been…

  2. Review of Programs: Architecture; Architectural Technology; Landscape Architecture; Interior Design; Construction and Construction Technology; Building Construction; Urban and Regional Planning. Report to the Board of Regents, State University System of Florida.

    ERIC Educational Resources Information Center

    McMinn, William G.

    This report is an update of a report on the development and status of various programs in architecture and related fields in the State University System of Florida, a report that was submitted to the Board of Regents in May 1983. The objectives of this updated report, like those of the earlier one, are to review the anticipated needs of the…

  3. Systematic design of transmitter and receiver architectures for flexible filter bank multi-carrier signals

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Esteban; López-Salcedo, José A.; Seco-Granados, Gonzalo

    2014-12-01

    Multi-carrier (MC) signaling is currently in the forefront of a myriad of systems, either wired or wireless, due to its high spectral efficiency, simple equalization, and robustness in front of multipath and narrowband interference sources. Despite its widespread deployment, the design of efficient architectures for MC systems becomes a challenging task when adopting filter bank multi-carrier (FBMC) modulation due to the inclusion of band-limited shaping pulses into the signal model. The reason to employ these pulses is the numerous improvements they offer in terms of performance, such as providing higher spectral confinement and no frequency overlap between adjacent subcarriers. These attributes lead to a reduced out-of-band power emission and a higher effective throughput. The latter is indeed possible by removing the need of cyclic prefix, which is in charge of preserving orthogonality among subcarriers in conventional MC systems. Nevertheless, the potential benefits of FBMC modulations are often obscured when it comes to an implementation point of view. In order to circumvent this limitation, the present paper provides a unified framework to describe all FBMC signals in which both signal design and implementation criteria are explicitly combined. In addition to this, we introduce the concept of flexible FBMC signals that, unlike their traditional MC counterparts, do not impose restrictions on the signal parameters (i.e., symbol rate, carrier spacing, or sampling frequency). Moreover, our framework also proposes a methodology that overcomes the implementation issues that characterize FBMC systems and allows us to derive simple, efficient, and time-invariant transmitter and receiver architectures.

  4. Model-based system-of-systems engineering for space-based command, control, communication, and information architecture design

    NASA Astrophysics Data System (ADS)

    Sindiy, Oleg V.

    This dissertation presents a model-based system-of-systems engineering (SoSE) approach as a design philosophy for architecting in system-of-systems (SoS) problems. SoS refers to a special class of systems in which numerous systems with operational and managerial independence interact to generate new capabilities that satisfy societal needs. Design decisions are more complicated in a SoS setting. A revised Process Model for SoSE is presented to support three phases in SoS architecting: defining the scope of the design problem, abstracting key descriptors and their interrelations in a conceptual model, and implementing computer-based simulations for architectural analyses. The Process Model enables improved decision support considering multiple SoS features and develops computational models capable of highlighting configurations of organizational, policy, financial, operational, and/or technical features. Further, processes for verification and validation of SoS models and simulations are also important due to potential impact on critical decision-making and, thus, are addressed. Two research questions frame the research efforts described in this dissertation. The first concerns how the four key sources of SoS complexity---heterogeneity of systems, connectivity structure, multi-layer interactions, and the evolutionary nature---influence the formulation of SoS models and simulations, trade space, and solution performance and structure evaluation metrics. The second question pertains to the implementation of SoSE architecting processes to inform decision-making for a subset of SoS problems concerning the design of information exchange services in space-based operations domain. These questions motivate and guide the dissertation's contributions. A formal methodology for drawing relationships within a multi-dimensional trade space, forming simulation case studies from applications of candidate architecture solutions to a campaign of notional mission use cases, and

  5. Robot Electronics Architecture

    NASA Technical Reports Server (NTRS)

    Garrett, Michael; Magnone, Lee; Aghazarian, Hrand; Baumgartner, Eric; Kennedy, Brett

    2008-01-01

    An electronics architecture has been developed to enable the rapid construction and testing of prototypes of robotic systems. This architecture is designed to be a research vehicle of great stability, reliability, and versatility. A system according to this architecture can easily be reconfigured (including expanded or contracted) to satisfy a variety of needs with respect to input, output, processing of data, sensing, actuation, and power. The architecture affords a variety of expandable input/output options that enable ready integration of instruments, actuators, sensors, and other devices as independent modular units. The separation of different electrical functions onto independent circuit boards facilitates the development of corresponding simple and modular software interfaces. As a result, both hardware and software can be made to expand or contract in modular fashion while expending a minimum of time and effort.

  6. Using Multimedia for Teaching Analysis in History of Modern Architecture.

    ERIC Educational Resources Information Center

    Perryman, Garry

    This paper presents a case for the development and support of a computer-based interactive multimedia program for teaching analysis in community college architecture design programs. Analysis in architecture design is an extremely important strategy for the teaching of higher-order thinking skills, which senior schools of architecture look for in…

  7. VLSI design of an RSA encryption/decryption chip using systolic array based architecture

    NASA Astrophysics Data System (ADS)

    Sun, Chi-Chia; Lin, Bor-Shing; Jan, Gene Eu; Lin, Jheng-Yi

    2016-09-01

    This article presents the VLSI design of a configurable RSA public key cryptosystem supporting the 512-bit, 1024-bit and 2048-bit based on Montgomery algorithm achieving comparable clock cycles of current relevant works but with smaller die size. We use binary method for the modular exponentiation and adopt Montgomery algorithm for the modular multiplication to simplify computational complexity, which, together with the systolic array concept for electric circuit designs effectively, lower the die size. The main architecture of the chip consists of four functional blocks, namely input/output modules, registers module, arithmetic module and control module. We applied the concept of systolic array to design the RSA encryption/decryption chip by using VHDL hardware language and verified using the TSMC/CIC 0.35 m 1P4 M technology. The die area of the 2048-bit RSA chip without the DFT is 3.9 × 3.9 mm2 (4.58 × 4.58 mm2 with DFT). Its average baud rate can reach 10.84 kbps under a 100 MHz clock.

  8. Design concept and preliminary experimental demonstration of MEMS gyroscopes with 4-DOF master-slave architecture

    NASA Astrophysics Data System (ADS)

    Acar, Cenk; Shkel, Andrei M.

    2002-07-01

    This paper reports a design concept for MEMS gyroscopes that shifts the complexity of the design from control architecture to system dynamics, utilizing the passive disturbance rejection capability of the 4-DOF dynamical system. Specifically, a novel wide-bandwidth micromachined gyroscope design approach based on increasing the degrees-of-freedom of the oscillatory system by the use of two independently oscillating interconnected proof masses is presented along with preliminary experimental demonstration of implementation feasibility. With the concept of using a 4-DOF system, inherent disturbance rejection is achieved due to the wide operation frequency range of the dynamic system, providing reduced sensitivity to structural and thermal parameter fluctuations. Thus, less demanding active control strategies are required for operation under presence of perturbations. The fabricated prototype dual-mass gyroscopes successfully demonstrated a dramatically wide driving frequency range within where the drive direction oscillation amplitude varies insignificantly without any active control, in contrast to the conventional gyroscopes where the mass has to be sustained in constant amplitude oscillation in a very narrow frequency band. Mechanical amplification of driven mass oscillation by the sensing element was also experimentally demonstrated, providing large oscillation amplitudes, which is crucial for sensor performance.

  9. Finite element study of scaffold architecture design and culture conditions for tissue engineering.

    PubMed

    Olivares, Andy L; Marsal, Elia; Planell, Josep A; Lacroix, Damien

    2009-10-01

    Tissue engineering scaffolds provide temporary mechanical support for tissue regeneration and transfer global mechanical load to mechanical stimuli to cells through its architecture. In this study the interactions between scaffold pore morphology, mechanical stimuli developed at the cell microscopic level, and culture conditions applied at the macroscopic scale are studied on two regular scaffold structures. Gyroid and hexagonal scaffolds of 55% and 70% porosity were modeled in a finite element analysis and were submitted to an inlet fluid flow or compressive strain. A mechanoregulation theory based on scaffold shear strain and fluid shear stress was applied for determining the influence of each structures on the mechanical stimuli on initial conditions. Results indicate that the distribution of shear stress induced by fluid perfusion is very dependent on pore distribution within the scaffold. Gyroid architectures provide a better accessibility of the fluid than hexagonal structures. Based on the mechanoregulation theory, the differentiation process in these structures was more sensitive to inlet fluid flow than axial strain of the scaffold. This study provides a computational approach to determine the mechanical stimuli at the cellular level when cells are cultured in a bioreactor and to relate mechanical stimuli with cell differentiation.

  10. High-speed, automatic controller design considerations for integrating array processor, multi-microprocessor, and host computer system architectures

    NASA Technical Reports Server (NTRS)

    Jacklin, S. A.; Leyland, J. A.; Warmbrodt, W.

    1985-01-01

    Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, online graphics, and file management. This paper discusses five global design considerations which are useful to integrate array processor, multimicroprocessor, and host computer system architectures into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the nonreal-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration is briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind tunnel environment, the controller architecture can generally be applied to a wide range of automatic control applications.

  11. The development of hub architecture in the human functional brain network.

    PubMed

    Hwang, Kai; Hallquist, Michael N; Luna, Beatriz

    2013-10-01

    Functional hubs are brain regions that play a crucial role in facilitating communication among parallel, distributed brain networks. The developmental emergence and stability of hubs, however, is not well understood. The current study used measures of network topology drawn from graph theory to investigate the development of functional hubs in 99 participants, 10-20 years of age. We found that hub architecture was evident in late childhood and was stable from adolescence to early adulthood. Connectivity between hub and non-hub ("spoke") regions, however, changed with development. From childhood to adolescence, the strength of connections between frontal hubs and cortical and subcortical spoke regions increased. From adolescence to adulthood, hub-spoke connections with frontal hubs were stable, whereas connectivity between cerebellar hubs and cortical spoke regions increased. Our findings suggest that a developmentally stable functional hub architecture provides the foundation of information flow in the brain, whereas connections between hubs and spokes continue to develop, possibly supporting mature cognitive function.

  12. Hyper-interspersed NANO/MEMS - Architecture design for new concepts in miniature robotics for space exploration

    NASA Astrophysics Data System (ADS)

    Santoli, Salvatore

    1999-05-01

    Launch weight and volume requirements are substantially decreased by reduction of probe size in exploration mission systems, as mass and volume both scale as the third power of system size. Accordingly, the already quite developed MEMS (Micro Electro Mechanical System) technology, that offers low cost, small, light weight, and increasingly reliable devices through durability and redundancy, is strongly attractive as a near-term technology for significantly reducing the cost to launch and operate space systems. It is shown that the final goal of MEMS technology, i.e. the merging through solid state microdcvices of the functions of sensing, computation, communication and actuation, can lead to a new, biomimetic kind of miniature robotics, particularly suitable for planetary exploration, through molecular mono- electronics/MEMS integration jointly with a hyper-interspersed architecture made up of autonomous units embodying sensors, information processors and actuators. The problem tackled here concerns the basic design of such miniature robots, from some μm to insect size, featuring finely structured intelligent autonomous parts as smart skins, sensory and manipulating members working on the analogue external reality and communicating with their inner molecular level nondiscrete pseudo-analogue information processing networks. The (mesoscopic network)/MEMS units are shown to embody a quantum mechanical/macroscopic world connection, in which the nondiscrete molecular devices allow the automaton parts to perform very complex, fast information processing operations as metaphores of bionic functions like learning, attention, and decision making under uncertain conditions, this last due to the stochasticity inherent in the quantum network. Flexible architectures instead of von Neumann type rigid architectures in addition to hyper-interspersion of autonomous units can be realized through such nano/MEMS devices, and the μm — cm size of the whole robots and their organs

  13. Development of cascade reactions for the concise construction of diverse heterocyclic architectures.

    PubMed

    Lu, Liang-Qiu; Chen, Jia-Rong; Xiao, Wen-Jing

    2012-08-21

    Heterocyclic structural architectures occur in many bioactive natural products and synthetic drugs, and these structural units serve as important intermediates in organic synthesis. This Account documents our recent progress in the development of cascade reactions to construct complex carbocycles and heterocycles. We describe the rational design of cascade reactions and in-depth investigations of their mechanism as well as their applications in the synthesis of drugs, natural products, and related molecular analogs. Relying on knowledge about the dipole-type reactivity of sulfur ylides, we have developed three different types of cascade reactions: a [4 + 1] annulation/rearrangement cascade, a [4 + 1]/[3 + 2] cycloaddition cascade, and a Michael addition/N-alkylation cascade. Using these processes, we can generate oxazolidinones, fused heterocycles, and pyrrolines starting with simple and readily available substances such as nitroolefins and unsaturated imines. We have also developed corresponding enantioselective reactions, which are guided by axial chirality and asymmetric H-bonding control. In addition, by relying on the reactivity characteristics of newly designed acrylate-linked nitroolefins, we have disclosed an asymmetric Michael/Michael/retro-Michael addition cascade using the combination of a protected hydroxylamine and a bifunctional organocatalyst. Using this methodology, we prepared chiral chromenes in good yields and with high enantioselectivities. Moreover, a series of double Michael addition cascade reactions with anilines, thiophenols, and benzotriazoles generated highly functionalized chromanes. Via mechanistically distinct cascade processes that start with vinyl-linked indoles, we have synthesized polycyclic indoles. Intermolecular cross-metathesis/intramolecular Friedel-Crafts alkylation cascades, promoted by either a single ruthenium alkylidene catalyst or a sequence involving Grubbs' ruthenium catalyst and MacMillan's imidazolidinone catalyst

  14. A web-services architecture designed for intermittent connectivity to support medical response to disasters.

    PubMed

    Brown, Steve; Griswold, William; Lenert, Leslie A

    2005-01-01

    To support mobile computing systems for first responders at mass casualty sites, as part of the WIISARD (Wireless Internet Information System for Medical Response in Disasters) project, we have developed a data architecture to gracefully handle an environment with frequent network failure and, multiple writers that also supports rapid dissemination of updates that could be critical to the safety of responders. This is accomplished by allowing for a subset of the overall information available in a disaster scene to be cached locally on a responder's device and locally modified with or without network access. When the network is available, the local subset of the model is automatically synchronized with a server that contains the full model, and conflicts are resolved. When changes from a device are committed, the changes are instantly sent to any connected devices where the local subset would be modified by the changes.

  15. Designing and Operating Through Compromise: Architectural Analysis of CKMS for the Advanced Metering Infrastructure

    SciTech Connect

    Duren, Mike; Aldridge, Hal; Abercrombie, Robert K; Sheldon, Frederick T

    2013-01-01

    Compromises attributable to the Advanced Persistent Threat (APT) highlight the necessity for constant vigilance. The APT provides a new perspective on security metrics (e.g., statistics based cyber security) and quantitative risk assessments. We consider design principals and models/tools that provide high assurance for energy delivery systems (EDS) operations regardless of the state of compromise. Cryptographic keys must be securely exchanged, then held and protected on either end of a communications link. This is challenging for a utility with numerous substations that must secure the intelligent electronic devices (IEDs) that may comprise complex control system of systems. For example, distribution and management of keys among the millions of intelligent meters within the Advanced Metering Infrastructure (AMI) is being implemented as part of the National Smart Grid initiative. Without a means for a secure cryptographic key management system (CKMS) no cryptographic solution can be widely deployed to protect the EDS infrastructure from cyber-attack. We consider 1) how security modeling is applied to key management and cyber security concerns on a continuous basis from design through operation, 2) how trusted models and key management architectures greatly impact failure scenarios, and 3) how hardware-enabled trust is a critical element to detecting, surviving, and recovering from attack.

  16. Architectural design of a ground-based deep-space optical reception antenna

    NASA Technical Reports Server (NTRS)

    Kerr, E. L.

    1989-01-01

    An architectural design of a ground-based antenna (telescope) for receiving optical communications from deep space is presented. Physical and optical parameters, and their effect on the performance and cost considerations, are described. The channel capacity of the antenna is 100 kbits/s from Saturn and 5 Mbits/s from Mars. A novel sunshade is designed to permit optical communication even when the deep-space laser source is as close to the sun as 12 deg. Inserts in the tubes of the sunshade permit operations at solar elongations as small as 6 or 3 deg. The Nd:YAG source laser and the Fraunhofer filter (a narrow-band predetection optical filter) are tuned to match the Doppler shifts of the source and background. A typical Saturn-to-earth data link can reduce its source power requirement from 8.2 W to 2 W of laser output by employing a Fraunhofer filter instead of a conventional multilayer dielectric filter.

  17. 48 CFR 227.7107-1 - Architectural designs and data clauses for architect-engineer or construction contracts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Architectural designs and data clauses for architect-engineer or construction contracts. 227.7107-1 Section 227.7107-1 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE...

  18. 48 CFR 227.7107-1 - Architectural designs and data clauses for architect-engineer or construction contracts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Architectural designs and data clauses for architect-engineer or construction contracts. 227.7107-1 Section 227.7107-1 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE...

  19. 48 CFR 227.7107-1 - Architectural designs and data clauses for architect-engineer or construction contracts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Architectural designs and data clauses for architect-engineer or construction contracts. 227.7107-1 Section 227.7107-1 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE...

  20. 48 CFR 227.7107-1 - Architectural designs and data clauses for architect-engineer or construction contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Architectural designs and data clauses for architect-engineer or construction contracts. 227.7107-1 Section 227.7107-1 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE...