ERIC Educational Resources Information Center
Anderson, Calvin E.; Bottinelli, Charles A.
The Schoolhouse Energy Efficiency Demonstration (SEED) program was developed to assist schools in reducing the impact of rising energy costs. Developed as part of the SEED program, this publication was designed to provide background information on the energy issue and to briefly describe what future energy sources may be. It includes: (1)…
Electroactive polymers for gaining sea power
NASA Astrophysics Data System (ADS)
Scherber, Benedikt; Grauer, Matthias; Köllnberger, Andreas
2013-04-01
Target of this article will be the energy harvesting with dielectric elastomers for wave energy conversion. The main goal of this article is to introduce a new developed material profile enabling a specific amount of energy, making the harvesting process competitive against other existing offshore generation technologies. Electroactive polymers offer the chance to start with small wave energy converters to gain experiences and carry out a similar development as wind energy. Meanwhile there is a consortium being formed in Germany to develop such materials and processes for future products in this new business area. In order to demonstrate the applicability of the technological advancements, a scale demonstrator of a wave energy generator will be developed as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgins, Andrew P.
Advanced Energy Industries, Inc., will partner with DOE's National Renewable Energy Laboratory (NREL) to conduct research and development to demonstrate technologies that will increase the penetration of photovoltaic (PV) technologies for commercial and utility applications. Standard PV power control systems use simple control techniques that only provide real power to the grid. A focus of this partnership is to demonstrate how state of the art control and power electronic technologies can be combined to create a utility interactive control platform.
Laboratory-Directed Research and Development 2016 Summary Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pillai, Rekha Sukamar; Jacobson, Julie Ann
The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclearmore » Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy, enable clean energy deployment, and secure and modernize critical infrastructure. INL’s research, development, and demonstration capabilities, its resources, and its unique geography enable integration of scientific discovery, innovation, engineering, operations, and controls into complex large-scale testbeds for discovery, innovation, and demonstration of transformational clean energy and security concepts. These attributes strengthen INL’s leadership as a demonstration laboratory. As a national resource, INL also applies its capabilities and skills to the specific needs of other federal agencies and customers through DOE’s Strategic Partnership Program.« less
Code of Federal Regulations, 2011 CFR
2011-04-01
... INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT... through the application process. The Secretary will consider: (a) The specific energy resource development...) The history of the tribe's role in energy resource development, including negotiating and approval or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trost, Alan L.
The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) has developed a research and development (R&D) roadmap for its research, development, and demonstration (RD&D) activities to ensure nuclear energy remains a compelling and viable energy option for the U.S. The roadmap defines NE RD&D activities and objectives that address the challenges to research, develop and demonstrate options to the current U.S commercial fuel cycle to enable the safe, secure, economic, and sustainable expansion of nuclear energy, while minimizing proliferation and terrorism risks expanding the use of nuclear power. The roadmap enables the development of technologies and other solutionsmore » that can improve the reliability, sustain the safety, and extend the life of current reactors. In addition, it will help to develop improvements in the affordability of the new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals.« less
Intelligent Controls for Net-Zero Energy Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Haorong; Cho, Yong; Peng, Dongming
2011-10-30
The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision supportmore » tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.« less
Neighborhood Energy/Economic Development project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-31
Energy costs impact low income communities more than anyone else. Low income residents pay a larger percentage of their incomes for energy costs. In addition, they generally have far less discretionary energy use to eliminate in response to increasing energy prices. Furthermore, with less discretionary income, home energy efficiency improvements are often too expensive. Small neighborhood businesses are in the same situation. Improved efficiency in the use of energy can improve this situation by reducing energy costs for residents and local businesses. More importantly, energy management programs can increase the demand for local goods and services and lead to themore » creation of new job training and employment opportunities. In this way, neighborhood based energy efficiency programs can support community economic development. The present project, undertaken with the support of the Urban Consortium Energy Task Force, was intended to serve as a demonstration of energy/economic programming at the neighborhood level. The San Francisco Neighborhood Energy/Economic Development (NEED) project was designed to be a visible demonstration of bringing the economic development benefits of energy management home to low-income community members who need it most. To begin, a Community Advisory Committee was established to guide the design of the programs to best meet needs of the community. Subsequently three neighborhood energy/economic development programs were developed: The small business energy assistance program; The youth training and weatherization program; and, The energy review of proposed housing development projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allentuck, J; Appleman, J; Carroll, T O
1977-11-01
In compliance with its mandate to accelerate the development and use of energy technologies in furtherance of the state's economic growth and the best interests of its population, the New York State Energy Research and Development Authority (NYSERDA) initiated, in March 1977, an assessment of energy research and development priorities. This report presents a view of the energy supply-demand future of the state, and the ways in which this future can be affected by external contingencies and concerted policies. That view takes into consideration energy supplies that may be available to the state as well as energy demands as theymore » are affected by demographic and economic changes within the state. Also included are the effects of national energy policies and technological developments as they modify both supplies and demands in New York State. Finally, this report proceeds to identify those general technological areas in which the Authority's program can be of greatest potential benefit to the state's social and economic well being. This effort aims at a cost/benefit analysis determination of RD and D priorities. The preliminary analysis thus far indicates these areas as being of highest priority: energy conservation in buildings (promotion and execution of RD and D) and industry; district heating; fuel cell demonstration;solar heating and cooling (analysis, demonstration, and information dissemination); energy-environment interaction (analysis); energy information services; and, in general, the attraction of Federal RD and D programs to the state.« less
Fishermen's Energy Atlantic City Wind Farm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wissemann, Chris
Fishermen's Energy Atlantic City Wind Farm final report under US DOE Advanced Technology Demonstration project documents achievements developing a demonstration scale offshore wind project off the coast of New Jersey.
Off-farm applications of solar energy in agriculture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, R.E.
1980-01-01
Food processing applications make up almost all present off-farm studies of solar energy in agriculture. Research, development and demonstration projects on solar food processing have shown significant progress over the past 3 years. Projects have included computer simulation and mathematical models, hardware and process development for removing moisture from horticultural or animal products, integration of energy conservation with solar energy augmentation in conventional processes, and commercial scale demonstrations. The demonstration projects include solar heated air for drying prunes and raisins, soy beans and onions/garlic; and solar generated steam for orange juice pasteurization. Several new and planned projects hold considerable promisemore » for commerical exploitation in future food processes.« less
Seasonal thermal energy storage
NASA Astrophysics Data System (ADS)
Minor, J. E.
1980-03-01
The Seasonal Thermal Energy Storage (STES) Program demonstrates the economic storage and retrieval of thermal energy on a seasonal basis, using heat or cold available from waste or other sources during a surplus period to reduce peak period demand, reduce electric utilities peaking problems, and contribute to the establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The STES Program utilizes ground water systems (aquifers) for thermal energy storage. The STES Program is divided into an Aquifer Thermal Energy Storage (ATES) Demonstration Task for demonstrating the commercialization potential of aquifer thermal energy storage technology using an integrated system approach to multiple demonstration projects and a parallel Technical Support Task designed to provide support to the overall STES Program, and to reduce technological and institutional barriers to the development of energy storage systems prior to significant investment in demonstration or commercial facilities.
The Development and Demonstration of a 360m/10 kA HTS DC Power Cable
NASA Astrophysics Data System (ADS)
Xiao, Liye
With the quick development of renewable energy, it is expected that the electric power from renewable energy would be the dominant one for the future power grid. Due to the specialty of the renewable energy, the HVDC power transmission would be very useful for the transmission of electric power from renewable energy. DC power cable made of High Tc Superconductor (HTS) would be a possible alternative for the construction of HVDC power transmission system. In this chapter, we report the development and demonstration of a 360 m/10 kA HTS DC power cable and the test results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brigantic, Robert T.; Papatyi, Anthony F.; Perkins, Casey J.
This report summarizes a study and corresponding model development conducted in support of the United States Pacific Command (USPACOM) as part of the Federal Energy Management Program (FEMP) American Reinvestment and Recovery Act (ARRA). This research was aimed at developing a mathematical programming framework and accompanying optimization methodology in order to simultaneously evaluate energy efficiency (EE) and renewable energy (RE) opportunities. Once developed, this research then demonstrated this methodology at a USPACOM installation - Camp H.M. Smith, Hawaii. We believe this is the first time such an integrated, joint EE and RE optimization methodology has been constructed and demonstrated.
Demonstration of reduced-order urban scale building energy models
Heidarinejad, Mohammad; Mattise, Nicholas; Dahlhausen, Matthew; ...
2017-09-08
The aim of this study is to demonstrate a developed framework to rapidly create urban scale reduced-order building energy models using a systematic summary of the simplifications required for the representation of building exterior and thermal zones. These urban scale reduced-order models rely on the contribution of influential variables to the internal, external, and system thermal loads. OpenStudio Application Programming Interface (API) serves as a tool to automate the process of model creation and demonstrate the developed framework. The results of this study show that the accuracy of the developed reduced-order building energy models varies only up to 10% withmore » the selection of different thermal zones. In addition, to assess complexity of the developed reduced-order building energy models, this study develops a novel framework to quantify complexity of the building energy models. Consequently, this study empowers the building energy modelers to quantify their building energy model systematically in order to report the model complexity alongside the building energy model accuracy. An exhaustive analysis on four university campuses suggests that the urban neighborhood buildings lend themselves to simplified typical shapes. Specifically, building energy modelers can utilize the developed typical shapes to represent more than 80% of the U.S. buildings documented in the CBECS database. One main benefits of this developed framework is the opportunity for different models including airflow and solar radiation models to share the same exterior representation, allowing a unifying exchange data. Altogether, the results of this study have implications for a large-scale modeling of buildings in support of urban energy consumption analyses or assessment of a large number of alternative solutions in support of retrofit decision-making in the building industry.« less
Demonstration of reduced-order urban scale building energy models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidarinejad, Mohammad; Mattise, Nicholas; Dahlhausen, Matthew
The aim of this study is to demonstrate a developed framework to rapidly create urban scale reduced-order building energy models using a systematic summary of the simplifications required for the representation of building exterior and thermal zones. These urban scale reduced-order models rely on the contribution of influential variables to the internal, external, and system thermal loads. OpenStudio Application Programming Interface (API) serves as a tool to automate the process of model creation and demonstrate the developed framework. The results of this study show that the accuracy of the developed reduced-order building energy models varies only up to 10% withmore » the selection of different thermal zones. In addition, to assess complexity of the developed reduced-order building energy models, this study develops a novel framework to quantify complexity of the building energy models. Consequently, this study empowers the building energy modelers to quantify their building energy model systematically in order to report the model complexity alongside the building energy model accuracy. An exhaustive analysis on four university campuses suggests that the urban neighborhood buildings lend themselves to simplified typical shapes. Specifically, building energy modelers can utilize the developed typical shapes to represent more than 80% of the U.S. buildings documented in the CBECS database. One main benefits of this developed framework is the opportunity for different models including airflow and solar radiation models to share the same exterior representation, allowing a unifying exchange data. Altogether, the results of this study have implications for a large-scale modeling of buildings in support of urban energy consumption analyses or assessment of a large number of alternative solutions in support of retrofit decision-making in the building industry.« less
SPIDERS Bi-Directional Charging Station Interconnection Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, M.
2013-09-01
The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) program is a multi-year Department of Defense-Department of Energy (DOE) collaborative effort that will demonstrate integration of renewables into island-able microgrids using on-site generation control, demand response, and energy storage with robust security features at multiple installations. Fort Carson, Colorado, will be the initial development and demonstration site for use of plug-in electric vehicles as energy storage (also known as vehicle-to-grid or V2G).
Demonstration and Validation of a Waste-to-Energy Conversion System for Fixed DoD Installations
2013-08-01
Corporation (IST Energy) was incorporated as a majority-owned subsidiary of IST to develop, market, manufacture and sell mobile , compact, and fully...provided the necessary infrastructure to support the Demonstration. The GEM WEC system was placed on a concrete pad provided by Edwards AFB near the...the Army Research Office [12, 13]. This program was part of a more inclusive program to develop a mobile waste-to-energy system to convert bulk
EPA RE-Powering Mapper: Alternative Energy Potential at Cleanup Sites
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management??s (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2011-09-01
This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.
The role of business incentives in the development of renewable energy technologies
NASA Astrophysics Data System (ADS)
A 15% business energy tax credit for renewable energy systems is examined. Witnesses from photovoltaics, solar thermal, wind, and OTEC industries testified about the importance of the credits to their ability to develop and demonstrate new technologies.
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.
2010-01-01
Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.
EPA RE-Powering Mapper Region 10
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.
EPA RE-Powering Mapper Region 4
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.
EPA RE-Powering Mapper Large Scale
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.
EPA RE-Powering Mapper Region 2
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.
EPA RE-Powering Mapper Region 6
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.
EPA RE-Powering Mapper Region 8
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.
EPA RE-Powering Mapper Region 7
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.
EPA RE-Powering Mapper Region 5
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.
EPA RE-Powering Mapper Region 3
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.
EPA RE-Powering Mapper Solar on Landfills
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.
EPA RE-Powering Mapper Region 9
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.
EPA RE-Powering Mapper Utility Scale
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.
EPA RE-Powering Screening Shapefile
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Center for Program Analysis (CPA) initiated the RE-Powering America??s Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.
EPA RE-Powering Mapper Region 1
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.
10 CFR 1021.212 - Research, development, demonstration, and testing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... testing. (a) This section applies to the adoption and application of programs that involve research, development, demonstration, and testing for new technologies (40 CFR 1502.4(c)(3)). Adoption of such programs... 10 Energy 4 2014-01-01 2014-01-01 false Research, development, demonstration, and testing. 1021...
10 CFR 1021.212 - Research, development, demonstration, and testing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... testing. (a) This section applies to the adoption and application of programs that involve research, development, demonstration, and testing for new technologies (40 CFR 1502.4(c)(3)). Adoption of such programs... 10 Energy 4 2012-01-01 2012-01-01 false Research, development, demonstration, and testing. 1021...
10 CFR 1021.212 - Research, development, demonstration, and testing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... testing. (a) This section applies to the adoption and application of programs that involve research, development, demonstration, and testing for new technologies (40 CFR 1502.4(c)(3)). Adoption of such programs... 10 Energy 4 2013-01-01 2013-01-01 false Research, development, demonstration, and testing. 1021...
10 CFR 1021.212 - Research, development, demonstration, and testing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... testing. (a) This section applies to the adoption and application of programs that involve research, development, demonstration, and testing for new technologies (40 CFR 1502.4(c)(3)). Adoption of such programs... 10 Energy 4 2011-01-01 2011-01-01 false Research, development, demonstration, and testing. 1021...
10 CFR 1021.212 - Research, development, demonstration, and testing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... testing. (a) This section applies to the adoption and application of programs that involve research, development, demonstration, and testing for new technologies (40 CFR 1502.4(c)(3)). Adoption of such programs... 10 Energy 4 2010-01-01 2010-01-01 false Research, development, demonstration, and testing. 1021...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mohit; Grape, Ulrik
2014-07-29
The purpose of this project was for Seeo to deliver the first ever large-scale or grid-scale prototype of a new class of advanced lithium-ion rechargeable batteries. The technology combines unprecedented energy density, lifetime, safety, and cost. The goal was to demonstrate Seeo’s entirely new class of lithium-based batteries based on Seeo’s proprietary nanostructured polymer electrolyte. This technology can enable the widespread deployment in Smart Grid applications and was demonstrated through the development and testing of a 10 kilowatt-hour (kWh) prototype battery system. This development effort, supported by the United States Department of Energy (DOE) enabled Seeo to pursue and validatemore » the transformational performance advantages of its technology for use in grid-tied energy storage applications. The focus of this project and Seeo’s goal as demonstrated through the efforts made under this project is to address the utility market needs for energy storage systems applications, especially for residential and commercial customers tied to solar photovoltaic installations. In addition to grid energy storage opportunities Seeo’s technology has been tested with automotive drive cycles and is seen as equally applicable for battery packs for electric vehicles. The goals of the project were outlined and achieved through a series of specific tasks, which encompassed materials development, scaling up of cells, demonstrating the performance of the cells, designing, building and demonstrating a pack prototype, and providing an economic and environmental assessment. Nearly all of the tasks were achieved over the duration of the program, with only the full demonstration of the battery system and a complete economic and environmental analysis not able to be fully completed. A timeline over the duration of the program is shown in figure 1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gastelum, Zoe N.; Henry, Michael J.
2013-11-13
In FY2013, the PIE International Safeguards team demonstrated our development progress to U.S. Department of Energy (DOE) staff from the Office of Nonproliferation and International Security (NA-24, our client) and the Office of Defense Nuclear Nonproliferation Research and Development (NA-22). Following the demonstration, the team was asked by our client to complete additional development prior to a planned demonstration at the International Atomic Energy Agency (IAEA), scheduled tentatively for January or spring of 2014. The team discussed four potential areas for development (in priority order), and will develop them as time and funding permit prior to an IAEA demonstration. Themore » four capability areas are: 1. Addition of equipment manuals to PIE-accessible files 2. Optical character recognition (OCR) of photographed text 3. Barcode reader with information look-up from a database 4. Add Facilities to Data Model 5. Geospatial capabilities with information integration Each area will be described below in a use case.« less
10 CFR 474.4 - Test procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.4 Test procedures. (a) The electric vehicle energy... required for testing the energy consumption of electric vehicles. ...
10 CFR 474.4 - Test procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.4 Test procedures. (a) The electric vehicle energy... required for testing the energy consumption of electric vehicles. ...
10 CFR 474.4 - Test procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.4 Test procedures. (a) The electric vehicle energy... required for testing the energy consumption of electric vehicles. ...
10 CFR 474.4 - Test procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.4 Test procedures. (a) The electric vehicle energy... required for testing the energy consumption of electric vehicles. ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM... storage batteries or other portable electrical energy storage devices, provided that: (1) Recharge energy... electrical energy required for an electric vehicle to travel one mile of the Highway Fuel Economy Driving...
A History of the Energy Research and Development Administration [ERDA
DOE R&D Accomplishments Database
Buck, Alice L.
1982-03-01
Congress created the Energy Research and Development Administration on October 11, 1974 in response to the Nation's growing need for additional sources of energy. The new agency would coordinate energy programs formerly scattered among many federal agencies, and serve as the focus point for a major effort by the Federal Government to expand energy research and development efforts. New ways to conserve existing supplies as well as the commercial demonstration of new technologies would hopefully be the fruit of the Government's first significant effort to amalgamate energy resource development programs. This history briefly summarizes the accomplishments of the agency.
A citizens' plan for energy self-reliance. The process report: How it happened
NASA Astrophysics Data System (ADS)
Cohn, J.; Stayton, R.
Results are presented of a project undertaken to demonstrate that local action could meet the energy crisis in Santa Cruz, California, and to demonstrate that a community could cooperatively develop an energy plan for greater energy self reliance. Community participation took several forms: neighborhood outreach; community education and involvement, and media and press coverage of the project. An advisory board was formed and research was undertaken to determine the feasibility of energy ideas generated in the neighborhoods and to answer questions posed by the advisory board. Selection criteria were developed for use in screening individual actions. Thirty programs with more than 120 actions were approved and a list of 16 priorities was established. Actions implemented by the Advisory Board are noted.
Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vesely, Charles John-Paul; Fuchs, Benjamin S.; Booten, Chuck W.
2010-03-31
The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APUmore » system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.« less
Space and energy conservation housing prototype unit development
NASA Technical Reports Server (NTRS)
Sunshine, D. R.
1975-01-01
Construction plans are discussed for a house which will demonstrate the application of advanced technology to minimize energy requirements and to help direct further development in home construction by defining the interaction of integrated energy and water systems with building configuration and construction materials. Housing unit designs are provided and procedures for the analysis of a variety of housing strategies are developed.
ERIC Educational Resources Information Center
Goldstein, Harold; And Others
This publication is the result of a study commissioned by the Energy Research and Development Administration (ERDA) to design a manpower information system as indicated by the title. This study is designed to help ERDA (now the Department of Energy) meet its responsibility of helping to assure an adequate supply of manpower for the accomplishment…
Comparison study of noise reduction algorithms in dual energy chest digital tomosynthesis
NASA Astrophysics Data System (ADS)
Lee, D.; Kim, Y.-S.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.
2018-04-01
Dual energy chest digital tomosynthesis (CDT) is a recently developed medical technique that takes advantage of both tomosynthesis and dual energy X-ray images. However, quantum noise, which occurs in dual energy X-ray images, strongly interferes with diagnosis in various clinical situations. Therefore, noise reduction is necessary in dual energy CDT. In this study, noise-compensating algorithms, including a simple smoothing of high-energy images (SSH) and anti-correlated noise reduction (ACNR), were evaluated in a CDT system. We used a newly developed prototype CDT system and anthropomorphic chest phantom for experimental studies. The resulting images demonstrated that dual energy CDT can selectively image anatomical structures, such as bone and soft tissue. Among the resulting images, those acquired with ACNR showed the best image quality. Both coefficient of variation and contrast to noise ratio (CNR) were the highest in ACNR among the three different dual energy techniques, and the CNR of bone was significantly improved compared to the reconstructed images acquired at a single energy. This study demonstrated the clinical value of dual energy CDT and quantitatively showed that ACNR is the most suitable among the three developed dual energy techniques, including standard log subtraction, SSH, and ACNR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correll, D
The continuing objective of Lawrence Livermore National Laboratory's (LLNL's) Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory and to support the nuclear weapons program in its use of ICF facilities. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship Program (SSP). The mission of the US Inertial Fusion Program is twofold: (1) to address high-energy-density physics issues for the SSP and (2) to develop a laboratory microfusion capability for defense and energy applications.more » In pursuit of this mission, the ICF Program has developed a state-of-the-art capability to investigate high-energy-density physics in the laboratory. The near-term goals pursued by the ICF Program in support of its mission are demonstrating fusion ignition in the laboratory and expanding the Program's capabilities in high-energy-density science. The National Ignition Facility (NIF) project is a cornerstone of this effort.« less
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-01-01
Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.
Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, J.; Gelman, R.; Tomberlin, G.
2014-03-01
The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandummore » of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.« less
New High Gain Target Design for a Laser Fusion Power Plant
2000-06-07
target with a minimum energy gain, about 100. Demonstration of ignition or low gain is only important for fusion energy if it leads into a target concept...nonlinear saturation of these instabilities. Our approach is to try to avoid them. 4. A Development Path to Fusion Energy The laser and target concept...on the exact date required to develop fusion energy , it would be worthwhile for a power plant development program to provide enough time and funds
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.
Revised congressional budget request, FY 1982. Conservation and renewable energy program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-03-01
Programs dealing with conservation and renewable energy are reprinted from the Revised Congressional Budget Request FY 1982. From Volume 7, Energy Conservation, information is presented on: buildings and community systems; industrial programs; transportation programs; state and local programs; inventor's program energy conversion technology; energy impact assistance; and residential/commercial retrofit. From Volume 2, Energy Supply Research and Development, information and data are presented on: solar building applications; solar industrial applications; solar power applications; solar information systems; SERI facility; solar international activities; alcohol fuels; geothermal; and hydropower. From Volume 6, Energy Production, Demonstration, and Distribution, information and data on solar energy production,more » demonstration, and distribution are presented. From Volume 3, Energy Supply and R and D Appropriation, information and data on electric energy systems and energy storage systems are included. From Volume 4, information and data are included on geothermal resources development fund. In Volume 5, Power Marketing Administrations, information and data are presented on estimates by appropriations, positions and staff years by appropriation, staffing distribution, and power marketing administrations. Recissions and deferrals for FY 1981 are given. (MCW)« less
Final Technical Report: Renewable Energy Feasibility Study and Resources Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivero, Mariah
In March 2011, the U.S. Department of Energy (DOE) awarded White Pine County, Nevada, a grant to assess the feasibility of renewable resource-related economic development activities in the area. The grant project included a public outreach and training component and was to include a demonstration project; however, the demonstration project was not completed due to lack of identification of an entity willing to locate a project in White Pine County. White Pine County completed the assessment of renewable resources and a feasibility study on the potential for a renewable energy-focused economic sector within the County. The feasibility study concluded "allmore » resources studied were present and in sufficient quantity and quality to warrant consideration for development" and there were varying degrees of potential economic impact based on the resource type and project size. The feasibility study and its components were to be used as tools to attract potential developers and other business ventures to the local market. White Pine County also marketed the County’s resources to the renewable energy business community in an effort to develop contracts for demonstration projects. The County also worked to develop partnerships with local educational institutions, including the White Pine County School District, conducted outreach and training for the local community.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-12
...'s energy conservation standards, as well as in test procedures used to demonstrate compliance with...'' appliances in the development of DOE's energy conservation standards, as well as in test procedures used to... Conservation Program: Treatment of ``Smart'' Appliances in Energy Conservation Standards and Test Procedures...
NASA Astrophysics Data System (ADS)
Anadon, Laura Diaz; Gallagher, Kelly Sims; Holdren, John P.
2017-10-01
President Trump has proposed severe cuts to US government spending on energy research, development and demonstration, but Congress has the `power of the purse' and can rescue US energy innovation. If serious cuts are enacted, the pace of innovation will slow, harming the economy, energy security and global environmental quality.
NASA Astrophysics Data System (ADS)
Chang, Hee Jung; Lu, Xiaochuan; Bonnett, Jeff F.; Canfield, Nathan L.; Son, Sori; Park, Yoon-Cheol; Jung, Keeyoung; Sprenkle, Vincent L.; Li, Guosheng
2017-04-01
Developing advanced and reliable electrical energy storage systems is critical to fulfill global energy demands and stimulate the growth of renewable energy resources. Sodium metal halide batteries have been under serious consideration as a low cost alternative energy storage device for stationary energy storage systems. Yet, there are number of challenges to overcome for the successful market penetration, such as high operating temperature and hermetic sealing of batteries that trigger an expensive manufacturing process. Here we demonstrate simple, economical and practical sealing technologies for Na-NiCl2 batteries operated at an intermediate temperature of 190 °C. Conventional polymers are implemented in planar Na-NiCl2 batteries after a prescreening test, and their excellent compatibilities and durability are demonstrated by a stable performance of Na-NiCl2 battery for more than 300 cycles. The sealing methods developed in this work will be highly beneficial and feasible for prolonging battery cycle life and reducing manufacturing cost for Na-based batteries at elevated temperatures (<200 °C).
Tunisia Renewable Energy Project systems description report
NASA Technical Reports Server (NTRS)
Scudder, L. R.; Martz, J. E.; Ratajczak, A. F.
1986-01-01
In 1979, the Agency for International Development (AID) initiated a renewable energy project with the Government of Tunisia to develop an institutional capability to plan and institute renewable energy technologies in a rural area. The specific objective of the district energy applications subproject was to demonstrate solar and wind energy systems in a rural village setting. The NASA Lewis Research Center was asked by the AID Near East Bureau to manage and implement this subproject. This report describes the project and gives detailed desciptions of the various systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, Sara; Rothgeb, Stacey; Polly, Ben
The U.S. Department of Energy (DOE) Building America Program enables the transformation of the U.S. housing industry to achieve energy savings through energy-efficient, high-performance homes with improved durability, comfort, and health for occupants. Building America bridges the gap between the development of emerging technologies and the adoption of codes and standards by engaging industry partners in applied research, development, and demonstration of high-performance solutions.
A Review on Development Practice of Smart Grid Technology in China
NASA Astrophysics Data System (ADS)
Han, Liu; Chen, Wei; Zhuang, Bo; Shen, Hongming
2017-05-01
Smart grid has become an inexorable trend of energy and economy development worldwide. Since the development of smart grid was put forward in China in 2009, we have obtained abundant research results and practical experiences as well as extensive attention from international community in this field. This paper reviews the key technologies and demonstration projects on new energy connection forecasts; energy storage; smart substations; disaster prevention and reduction for power transmission lines; flexible DC transmission; distribution automation; distributed generation access and micro grid; smart power consumption; the comprehensive demonstration of power distribution and utilization; smart power dispatching and control systems; and the communication networks and information platforms of China, systematically, on the basis of 5 fields, i.e., renewable energy integration, smart power transmission and transformation, smart power distribution and consumption, smart power dispatching and control systems and information and communication platforms. Meanwhile, it also analyzes and compares with the developmental level of similar technologies abroad, providing an outlook on the future development trends of various technologies.
10 CFR 474.3 - Petroleum-equivalent fuel economy calculation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Petroleum-equivalent fuel economy calculation. 474.3 Section 474.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.3 Petroleum-equivalent fuel economy calculation. (a) The...
10 CFR 474.5 - Review and Update
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Review and Update 474.5 Section 474.5 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.5 Review and Update The Department will review part 474...
10 CFR 474.5 - Review and Update
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Review and Update 474.5 Section 474.5 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.5 Review and Update The Department will review part 474...
10 CFR 474.5 - Review and Update
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Review and Update 474.5 Section 474.5 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.5 Review and Update The Department will review part 474...
10 CFR 474.5 - Review and Update
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Review and Update 474.5 Section 474.5 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.5 Review and Update The Department will review Part 474...
10 CFR 474.5 - Review and Update
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Review and Update 474.5 Section 474.5 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.5 Review and Update The Department will review Part 474...
High Energy, Single-Mode, All-Solid-State and Tunable UV Laser Transmitter
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Hovis, FLoyd
2007-01-01
A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed. Greater than 1 J/pulse at 50 HZ PRF and pulse widths around 22 ns have been demonstrated. Higher energy, greater efficiency may be possible. Refinements are known and practical to implement. Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved. Greater than 90% pump depletion is observed. 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed). 160 mJ intra-cavity SFG; IR to UV efficiency up to 24% Fluence < 1 J/sq cm for most beams. The pump beam quality of the Nd:YAG pump laser is being refined to match or exceed the above UV converter results. Currently the Nd:YAG pump laser development is a technology demonstration. System can be engineered for compact packaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leach, Richard; LoGrasso, Joseph; Monterosso, Sandra
The objective of this project was to develop Extended Range Electric Vehicle (EREV) advanced propulsion technology and demonstrate a fleet of 146 Volt EREVs to gather data on vehicle performance and infrastructure to understand the impacts on commercialization while also creating or retaining a significant number of jobs in the United States. This objective was achieved by developing and demonstrating EREVs in real world conditions with customers in several diverse locations across the United States and installing, demonstration and testing charging infrastructure while also continuing development on second generation EREV technology. The project completed the development of the Chevrolet Voltmore » and placed the vehicle in the hands of consumers in diverse locations across the United States. This demonstration leveraged the unique telematics platform of OnStar, standard on all Chevrolet Volts, to capture the operating experience that lead to better understanding of customer usage. The project team included utility partners that installed, demonstrated and tested charging infrastructure located in home, workplace and public locations to understand installation issues, customer usage and interaction with the electric grid. Development and demonstration of advanced technologies such as smart charging, fast charging and battery to grid interface were completed. The recipient collected, analyzed and reported the data generated by the demonstration. The recipient also continued to advance the technology of the Chevrolet Volt technology by developing energy storage system enhancements for the next-generation vehicle. Information gathered from the first generation vehicle will be utilized to refine the technology to reduce cost and mass while also increasing energy storage capacity to enhance adoption of the second generation technology into the marketplace. The launch of the first generation Chevrolet Volt will provide additional opportunities to further enhance the RESS (Rechargeable Energy Storage System) with each additional generation. Lessons learned from the launch of the first generation RESS will be demonstrated in the second generation to enhance adoption into the marketplace.« less
Albuquerque Operations Office, Albuquerque, New Mexico: Technology summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-08-01
This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Albuquerque Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents that highlight technology development activities within each of the OTD program elements. These integrated program summaries include: Volatile Organic Compounds in Non-Arid Soils, Volatile Organic Compounds inmore » Arid Soils, Mixed Waste Landfill Integrated Demonstration, Uranium in Soils Integrated Demonstration, Characterization, Monitoring, and Sensor Technology, In Situ Remediation, Buried Waste Integrated Demonstration, Underground Storage Tank, Efficient Separations and Processing, Mixed Waste Integrated Program, Rocky Flats Compliance Program, Pollution Prevention Program, Innovation Investment Area, and Robotics Technology.« less
Sage Simulation Model for Technology Demonstration Convertor by a Step-by-Step Approach
NASA Technical Reports Server (NTRS)
Demko, Rikako; Penswick, L. Barry
2006-01-01
The development of a Stirling model using the 1-D Saga design code was completed using a step-by-step approach. This is a method of gradually increasing the complexity of the Saga model while observing the energy balance and energy losses at each step of the development. This step-by-step model development and energy-flow analysis can clarify where the losses occur, their impact, and suggest possible opportunities for design improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, Brian; Huque, Aminul; Rogers, Lindsey
In 2011, EPRI began a four-year effort under the Department of Energy (DOE) SunShot Initiative Solar Energy Grid Integration Systems - Advanced Concepts (SEGIS-AC) to demonstrate smart grid ready inverters with utility communication. The objective of the project was to successfully implement and demonstrate effective utilization of inverters with grid support functionality to capture the full value of distributed photovoltaic (PV). The project leveraged ongoing investments and expanded PV inverter capabilities, to enable grid operators to better utilize these grid assets. Developing and implementing key elements of PV inverter grid support capabilities will increase the distribution system’s capacity for highermore » penetration levels of PV, while reducing the cost. The project team included EPRI, Yaskawa-Solectria Solar, Spirae, BPL Global, DTE Energy, National Grid, Pepco, EDD, NPPT and NREL. The project was divided into three phases: development, deployment, and demonstration. Within each phase, the key areas included: head-end communications for Distributed Energy Resources (DER) at the utility operations center; methods for coordinating DER with existing distribution equipment; back-end PV plant master controller; and inverters with smart-grid functionality. Four demonstration sites were chosen in three regions of the United States with different types of utility operating systems and implementations of utility-scale PV inverters. This report summarizes the project and findings from field demonstration at three utility sites.« less
Miniature Internal Combustion Engine-Generator for High Energy Density Portable Power
2008-12-01
Operation on JP-8 from cold startup to steady operation has been demonstrated at the 300 W scale. Miniature engine/generators can be acoustically silenced...design that uses a spring for energy storage . MICE is a high Q system, operating at the resonant frequency of the spring-mass system with very low...development • Demonstrated 94% efficiency of 300 W linear alternator • Demonstrated full operation of MICE generator from cold startup to net power output
Integrated Micro-Power System (IMPS) Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Wilt, David; Hepp, Aloysius; Moran, Matt; Jenkins, Phillip; Scheiman, David; Raffaelle, Ryne
2003-01-01
Glenn Research Center (GRC) has a long history of energy related technology developments for large space related power systems, including photovoltaics, thermo-mechanical energy conversion, electrochemical energy storage. mechanical energy storage, power management and distribution and power system design. Recently, many of these technologies have begun to be adapted for small, distributed power system applications or Integrated Micro-Power Systems (IMPS). This paper will describe the IMPS component and system demonstration efforts to date.
10 CFR 470.10 - Establishment of program.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Solar Energy of DOE, an appropriate technology small grants program for the purpose of encouraging development and demonstration of, and the dissemination of information with respect to, energy-related systems...
10 CFR 470.10 - Establishment of program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Solar Energy of DOE, an appropriate technology small grants program for the purpose of encouraging development and demonstration of, and the dissemination of information with respect to, energy-related systems...
Wind energy: A renewable energy option
NASA Technical Reports Server (NTRS)
Zimmerman, J. S.
1977-01-01
Wind turbine generator research programs administered by the Energy Research and Development Administration are examined. The design and operation of turbine demonstration models are described. Wind assessments were made to determine the feasibility of using wind generated power for various parts of the country.
Offshore Wind Energy Research, Development, Demonstration, and Commercial Application Act of 2009
Sen. Collins, Susan M. [R-ME
2009-11-16
Senate - 12/08/2009 Committee on Energy and Natural Resources Subcommittee on Energy. Hearings held. With printed Hearing: S.Hrg. 111-330. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
The Effects of Domestic Energy Consumption on Urban Development Using System Dynamics
NASA Astrophysics Data System (ADS)
Saryazdi, M. D.; Homaei, N.; Arjmand, A.
2018-05-01
In developed countries, people have learned to follow efficient consumption patterns, while in developing countries, such as Iran, these patterns are not well executed. A large amount of energy is almost consumed in buildings and houses and though the consumption patterns varies in different societies, various energy policies are required to meet the consumption challenges. So far, several papers and more than ten case studies have worked on the relationship between domestic energy consumption and urban development, however these researches did not analyzed the impact of energy consumption on urban development. Therefore, this paper attempts to examine the interactions between the energy consumption and urban development by using system dynamics as the most widely used methods for complex problems. The proposed approach demonstrates the interactions using causal loop and flow diagrams and finally, suitable strategies will be proposed for urban development through simulations of different scenarios.
10 CFR Appendix to Part 474 - Sample Petroleum-Equivalent Fuel Economy Calculations
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Sample Petroleum-Equivalent Fuel Economy Calculations Appendix to Part 474 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION Pt. 474, App. Appendix to Part 474—Sample...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... Conservation Program: Treatment of ``Smart'' Appliances in Energy Conservation Standards and Test Procedures... well as in test procedures used to demonstrate compliance with DOE's standards and qualification as an... development of energy conservation standards and test procedures for DOE's Appliance Standards Program and the...
Task Order 20: Supercritical Carbon Dioxide Brayton Cycle Energy Conversion Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Paul; Lindsay, Edward; McDowell, Michael
2015-04-23
AREVA Inc. developed this study for the US Department of Energy (DOE) office of Nuclear Energy (NE) in accordance with Task Order 20 Statement of Work (SOW) covering research and development activities for the Supercritical Carbon Dioxide (sCO2) Brayton Cycle energy conversion. The study addresses the conversion of sCO2 heat energy to electrical output by use of a Brayton Cycle system and focuses on the potential of a net efficiency increase via cycle recuperation and recompression stages. The study also addresses issues and study needed to advance development and implementation of a 10 MWe sCO2 demonstration project.
Industrial storage applications overview
NASA Technical Reports Server (NTRS)
Duscha, R. A.
1980-01-01
The implementation of a technology demonstration for the food processing industry, development and technology demonstrations for selected near-term, in-plant applications and advanced industrial applications of thermal energy storage are overviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, John; Fanselow, Dan; Abbas, Charles
2014-08-06
3M and Archer Daniels Midland (ADM) collaborated with the U.S. Department of Energy (DOE) to develop and demonstrate a novel membrane solvent extraction (MSE) process that can substantially reduce energy and water consumption in ethanol production, and accelerate the fermentation process. A cross-flow membrane module was developed, using porous membrane manufactured by 3M. A pilot process was developed that integrates fermentation, MSE and vacuum distillation. Extended experiments of 48-72 hours each were conducted to develop the process, verify its performance and begin establishing commercial viability.
The development of a solar-powered residential heating and cooling system
NASA Technical Reports Server (NTRS)
1974-01-01
Efforts to demonstrate the engineering feasibility of utilizing solar power for residential heating and cooling are described. These efforts were concentrated on the analysis, design, and test of a full-scale demonstration system which is currently under construction at the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama. The basic solar heating and cooling system under development utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating and water heating, and an absorption cycle air conditioner for space cooling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, Sara; Rothgeb, Stacey; Polly, Ben
The U.S. Department of Energy (DOE) Building America Program enables the transformation of the U.S. housing industry to achieve energy savings through energy-efficient, high-performance homes with improved durability, comfort, and health for occupants. Building America bridges the gap between the development of emerging technologies and the adoption of codes and standards by engaging industry partners in applied research, development, and demonstration of high-performance solutions.
European development experience on energy storage wheels for space
NASA Technical Reports Server (NTRS)
Robinson, A. A.
1984-01-01
High speed fiber composite rotors suspended by contactless magnetic bearings were produced. European industry has acquired expertise in the study and fabrication of energy storage wheels and magnetic suspension systems for space. Sufficient energy density performance for space viability is being achieved on fully representative hardware. Stress cycle testing to demonstrate life capability and the development of burst containment structures remains to be done and is the next logical step.
Energy Efficient Legged Robotics at Sandia Labs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buerger, Steve
Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.
Energy Efficient Legged Robotics at Sandia Labs
Buerger, Steve
2018-05-07
Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.
Collection, processing and dissemination of data for the national solar demonstration program
NASA Technical Reports Server (NTRS)
Day, R. E.; Murphy, L. J.; Smok, J. T.
1978-01-01
A national solar data system developed for the DOE by IBM provides for automatic gathering, conversion, transfer, and analysis of demonstration site data. NASA requirements for this system include providing solar site hardware, engineering, data collection, and analysis. The specific tasks include: (1) solar energy system design/integration; (2) developing a site data acquisition subsystem; (3) developing a central data processing system; (4) operating the test facility at Marshall Space Flight Center; (5) collecting and analyzing data. The systematic analysis and evaluation of the data from the National Solar Data System is reflected in a monthly performance report and a solar energy system performance evaluation report.
Ignition and Inertial Confinement Fusion at The National Ignition Facility
NASA Astrophysics Data System (ADS)
Moses, Edward I.
2016-10-01
The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear bum in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm3-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIP's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY20l0 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhinefrank, Kenneth; Lamb, Bradford; Prudell, Joseph
This Project aims to satisfy objectives of the DOE’s Water Power Program by completing a system detailed design (SDD) and other important activities in the first phase of a utility-scale grid-connected ocean wave energy demonstration. In early 2012, Columbia Power (CPwr) had determined that further cost and performance optimization was necessary in order to commercialize its StingRAY wave energy converter (WEC). CPwr’s progress toward commercialization, and the requisite technology development path, were focused on transitioning toward a commercial-scale demonstration. This path required significant investment to be successful, and the justification for this investment required improved annual energy production (AEP) andmore » lower capital costs. Engineering solutions were developed to address these technical and cost challenges, incorporated into a proposal to the US Department of Energy (DOE), and then adapted to form the technical content and statement of project objectives of the resulting Project (DE-EE0005930). Through Project cost-sharing and technical collaboration between DOE and CPwr, and technical collaboration with Oregon State University (OSU), National Renewable Energy Lab (NREL) and other Project partners, we have demonstrated experimentally that these conceptual improvements have merit and made significant progress towards a certified WEC system design at a selected and contracted deployment site at the Wave Energy Test Site (WETS) at the Marine Corps Base in Oahu, HI (MCBH).« less
Experimental demonstration of photon upconversion via cooperative energy pooling
Weingarten, Daniel H.; LaCount, Michael D.; van de Lagemaat, Jao; ...
2017-03-15
Photon upconversion is a fundamental interaction of light and matter that has applications in fields ranging from bioimaging to microfabrication. However, all photon upconversion methods demonstrated thus far involve challenging aspects, including requirements of high excitation intensities, degradation in ambient air, requirements of exotic materials or phases, or involvement of inherent energy loss processes. Here we experimentally demonstrate a mechanism of photon upconversion in a thin film, binary mixture of organic chromophores that provides a pathway to overcoming the aforementioned disadvantages. This singlet-based process, called Cooperative Energy Pooling (CEP), utilizes a sensitizer-acceptor design in which multiple photoexcited sensitizers resonantly andmore » simultaneously transfer their energies to a higher-energy state on a single acceptor. Data from this proof-of-concept implementation is fit by a proposed model of the CEP process. As a result, design guidelines are presented to facilitate further research and development of more optimized CEP systems.« less
Experimental demonstration of photon upconversion via cooperative energy pooling
Weingarten, Daniel H.; LaCount, Michael D.; van de Lagemaat, Jao; Rumbles, Garry; Lusk, Mark T.; Shaheen, Sean E.
2017-01-01
Photon upconversion is a fundamental interaction of light and matter that has applications in fields ranging from bioimaging to microfabrication. However, all photon upconversion methods demonstrated thus far involve challenging aspects, including requirements of high excitation intensities, degradation in ambient air, requirements of exotic materials or phases, or involvement of inherent energy loss processes. Here we experimentally demonstrate a mechanism of photon upconversion in a thin film, binary mixture of organic chromophores that provides a pathway to overcoming the aforementioned disadvantages. This singlet-based process, called Cooperative Energy Pooling (CEP), utilizes a sensitizer-acceptor design in which multiple photoexcited sensitizers resonantly and simultaneously transfer their energies to a higher-energy state on a single acceptor. Data from this proof-of-concept implementation is fit by a proposed model of the CEP process. Design guidelines are presented to facilitate further research and development of more optimized CEP systems. PMID:28294129
A Microelectromechanical High-Density Energy Storage/Rapid Release System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, M. Steven; Allen, Jim J.; Meeks, Kent D.
1999-07-21
One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed,more » fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.« less
Experimental demonstration of photon upconversion via cooperative energy pooling
NASA Astrophysics Data System (ADS)
Weingarten, Daniel H.; Lacount, Michael D.; van de Lagemaat, Jao; Rumbles, Garry; Lusk, Mark T.; Shaheen, Sean E.
2017-03-01
Photon upconversion is a fundamental interaction of light and matter that has applications in fields ranging from bioimaging to microfabrication. However, all photon upconversion methods demonstrated thus far involve challenging aspects, including requirements of high excitation intensities, degradation in ambient air, requirements of exotic materials or phases, or involvement of inherent energy loss processes. Here we experimentally demonstrate a mechanism of photon upconversion in a thin film, binary mixture of organic chromophores that provides a pathway to overcoming the aforementioned disadvantages. This singlet-based process, called Cooperative Energy Pooling (CEP), utilizes a sensitizer-acceptor design in which multiple photoexcited sensitizers resonantly and simultaneously transfer their energies to a higher-energy state on a single acceptor. Data from this proof-of-concept implementation is fit by a proposed model of the CEP process. Design guidelines are presented to facilitate further research and development of more optimized CEP systems.
Microelectromechanical high-density energy storage/rapid release system
NASA Astrophysics Data System (ADS)
Rodgers, M. Steven; Allen, James J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Samuel L.
1999-08-01
One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.
ERIC Educational Resources Information Center
Energy Research and Development Administration, Washington, DC.
This booklet, which highlights and explains the 1975 National Energy Plan, is intended to improve the general public's understanding of U.S. energy policy. Sections in the publication include: (1) The Energy Problem and the Need for Planning; (2) Basic Principles of the Plan and How They Apply; (3) Overcoming the Oil and Gas Shortage; (4) The…
Mechanics of wafer bonding: Effect of clamping
NASA Astrophysics Data System (ADS)
Turner, K. T.; Thouless, M. D.; Spearing, S. M.
2004-01-01
A mechanics-based model is developed to examine the effects of clamping during wafer bonding processes. The model provides closed-form expressions that relate the initial geometry and elastic properties of the wafers to the final shape of the bonded pair and the strain energy release rate at the interface for two different clamping configurations. The results demonstrate that the curvature of bonded pairs may be controlled through the use of specific clamping arrangements during the bonding process. Furthermore, it is demonstrated that the strain energy release rate depends on the clamping configuration and that using applied loads usually leads to an undesirable increase in the strain energy release rate. The results are discussed in detail and implications for process development and bonding tool design are highlighted.
ESIF: Bring Us Your Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-08-01
This brochure highlights the Energy Systems Integration Facility (ESIF) -- the United States' premier lab focused on energy systems research, development, and demonstration (RD&D). Topics covered include an overview of Energy Systems Integration, research focus areas, RD&D tools unique to the ESIF, and information on how to partner with NREL at the ESIF.
Energy Efficient Legged Robotics at Sandia Labs, Part 2
Buerger, Steve; Mazumdar, Ani; Spencer, Steve
2018-01-16
Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the second in a series, describes the continued development and integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.
Energy Efficient Legged Robotics at Sandia Labs, Part 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buerger, Steve; Mazumdar, Ani; Spencer, Steve
Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the second in a series, describes the continued development and integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.
Development of Low Cost, High Energy-Per-Unit-Area Solar Cell Modules
NASA Technical Reports Server (NTRS)
Jones, G. T.; Chitre, S.
1977-01-01
Work on the development of low cost, high energy per unit area solar cell modules was conducted. Hexagonal solar cell and module efficiencies, module packing ratio, and solar cell design calculations were made. The cell grid structure and interconnection pattern was designed and the module substrates were fabricated for the three modules to be used. It was demonstrated that surface macrostructures significantly improve cell power output and photovoltaic energy conversion efficiency.
Hethcoat, Matthew G.; Chalfoun, Anna D.
2015-01-01
Synthesis and applications. We demonstrate one mechanism, that is the local augmentation of predators, by which human-induced rapid environmental change can influence the demography of local populations. Given the accelerating trajectory of global energy demands, an important next step will be to understand why the activity and/or abundance of rodent predators increased with surrounding habitat loss from energy development activities.
A study of pricing and trading model of Blockchain & Big data-based Energy-Internet electricity
NASA Astrophysics Data System (ADS)
Fan, Tao; He, Qingsu; Nie, Erbao; Chen, Shaozhen
2018-01-01
The development of Energy-Internet is currently suffering from a series of issues, such as the conflicts among high capital requirement, low-cost, high efficiency, the spreading gap between capital demand and supply, as well as the lagged trading & valuation mechanism, any of which would hinder Energy-Internet's evolution. However, with the development of Blockchain and big-data technology, it is possible to work out solutions for these issues. Based on current situation of Energy-Internet and its requirements for future progress, this paper demonstrates the validity of employing blockchain technology to solve the problems encountered by Energy-Internet during its development. It proposes applying the blockchain and big-data technologies to pricing and trading energy products through Energy-Internet and to accomplish cyber-based energy or power's transformation from physic products to financial assets.
Energy Savings Potential and RD&D Opportunities for Commercial Building HVAC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Shandross, Richard; Young, Jim
The Building Technologies Office (BTO) commissioned this characterization and technology assessment of heating, ventilation, and air-conditioning (HVAC) systems for commercial buildings. The main objectives of this study: Identify a wide range of technology options in varying stages of development that could reduce commercial HVAC energy consumption; Characterize these technology options based on their technical energy-savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and the ability to compete with conventional HVAC technologies; Make specific recommendations to DOE and other stakeholders on potential research, development, and demonstration (RD&D) activities that would support further development of the most promisingmore » technology options.« less
Viability of using energy storage for frequency regulation on power grid
NASA Astrophysics Data System (ADS)
Lim, Y. S.; Hau, L. C.; Loh, K. Y.; Lim, K. Y.; Lyons, P. F.; Taylor, P. C.
2018-05-01
This project is about the development and integration of a real-time network simulator in the laboratory using hardware in the loop (HIL) for the purpose of frequency regulation. Frequency regulation is done using the energy storage system (ESS) and a real-time network test bed developed in the smart energy laboratory in Newcastle University. An IEEE Test System was built in the OPAL-RT network simulator to mimic the power grid with renewable energy sources. The study demonstrates the viability of using an ESS to regulate the frequency under an increased penetration of renewable energy sources.
EPA RE-Powering Mapper Feasibility Studies
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. As part of the RE-Powering America's Land Initiative, the EPA and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) evaluated the feasibility of developing renewable energy production on Superfund, brownfields, and former landfill or mining sites. These reports pair EPA's expertise on contaminated sites with the renewable energy expertise of NREL.
Research on biomass energy and environment from the past to the future: A bibliometric analysis.
Mao, Guozhu; Huang, Ning; Chen, Lu; Wang, Hongmei
2018-09-01
The development and utilization of biomass energy can help to change the ways of energy production and consumption and establish a sustainable energy system that can effectively promote the development of the national economy and strengthen the protection of the environment. Here,we perform a bibliometric analysis of 9514 literature reports in the Web of Science Core Collection searched with the key words "Biomass energy" and "Environment*" date from 1998 to 2017; hot topics in the research and development of biomass energy utilization, as well as the status and development trends of biomass energy utilization and the environment, were analyzed based on content analysis and bibliometrics. The interaction between biomass energy and the environment began to become a major concern as the research progressively deepened. This work is of great significance for the development and utilization of biomass energy to put forward specific suggestions and strategies based on the analysis and demonstration of relationships and interactions between biomass energy utilization and environment. It is also useful to researchers for selecting the future research topics. Copyright © 2018 Elsevier B.V. All rights reserved.
Subcontracted activities related to TES for building heating and cooling
NASA Technical Reports Server (NTRS)
Martin, J.
1980-01-01
The subcontract program elements related to thermal energy storage for building heating and cooling systems are outlined. The following factors are included: subcontracts in the utility load management application area; life and stability testing of packaged low cost energy storage materials; and development of thermal energy storage systems for residential space cooling. Resistance storage heater component development, demonstration of storage heater systems for residential applications, and simulation and evaluation of latent heat thermal energy storage (heat pump systems) are also discussed. Application of thermal energy storage for solar application and twin cities district heating are covered including an application analysis and technology assessment of thermal energy storage.
Biomass power for rural development: Phase 2. Technical progress report, April 1--June 30, 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuhauser, E.
1998-11-01
The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase-1 focused on initial development and testing of the technology and agreements necessary to demonstrate commercial willow production in Phase-2. The Phase-1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boilers, developing fuel supply plans for the project, obtaining power production commitments from the power companies for Phase-2, obtaining construction and environmental permits, and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introductionmore » of the willow energy system. Beyond those Phase-1 requirements the Consortium has already successfully demonstrated cofiring at Greenidge Station and developed the required nursery capacity for acreage scale-up. This past summer 105 acres were prepared in advance for the spring planting in 1998. Having completed the above tasks, the Consortium is well positioned to begin Phase-2. In phase-2 every aspect of willow production and power generation from willow will be demonstrated. The ultimate objective of Phase-2 is to transition the work performed under the Rural Energy for the Future project into a thriving, self-supported energy crop enterprise.« less
Cranmer, Alexana; Smetzer, Jennifer R; Welch, Linda; Baker, Erin
2017-05-15
Quantifying and managing the potential adverse wildlife impacts of offshore wind energy is critical for developing offshore wind energy in a sustainable and timely manner, but poses a significant challenge, particularly for small marine birds that are difficult to monitor. We developed a discrete-time Markov model of seabird movement around a colony site parameterized by automated radio telemetry data from common terns (Sterna hirundo) and Arctic terns (S. paradisaea), and derived impact functions that estimate the probability of collision fatality as a function of the distance and bearing of wind turbines from a colony. Our purpose was to develop and demonstrate a new, flexible tool that can be used for specific management and wind-energy planning applications when adequate data are available, rather than inform wind-energy development at this site. We demonstrate how the tool can be used 1) in marine spatial planning exercises to quantitatively identify setback distances under development scenarios given a risk threshold, 2) to examine the ecological and technical trade-offs of development alternatives to facilitate negotiation between objectives, and 3) in the U.S. National Environmental Policy Act (NEPA) process to estimate collision fatality under alternative scenarios. We discuss model limitations and data needs, and highlight opportunities for future model extension and development. We present a highly flexible tool for wind energy planning that can be easily extended to other central place foragers and data sources, and can be updated and improved as new monitoring data arises. Copyright © 2017 Elsevier Ltd. All rights reserved.
Specification of Energy Assessment Methodologies to Satisfy ISO 50001 Energy Management Standard
NASA Astrophysics Data System (ADS)
Kanneganti, Harish
Energy management has become more crucial for industrial sector as a way to lower their cost of production and in reducing their carbon footprint. Environmental regulations also force the industrial sector to increase the efficiency of their energy usage. Hence industrial sector started relying on energy management consultancies for improvements in energy efficiency. With the development of ISO 50001 standard, the entire energy management took a new dimension involving top level management and getting their commitment on energy efficiency. One of the key requirements of ISO 50001 is to demonstrate continual improvement in their (industry) energy efficiency. The major aim of this work is to develop an energy assessment methodology and reporting format to tailor the needs of ISO 50001. The developed methodology integrates the energy reduction aspect of an energy assessment with the requirements of sections 4.4.3 (Energy Review) to 4.4.6 (Objectives, Targets and Action Plans) in ISO 50001 and thus helping the facilities in easy implementation of ISO 50001.
Social impact of the tangaye (upper volta) photovoltaic demostrtion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, A.F.
1983-06-01
The Tangaye (Upper Volta) Solar Energy Demonstration was implemented in early 1979 by the US Agency for International Development and the NASA Lewis Research Center. It is the only longitudinal field study of a developing country's renewable energy project, and continues to provide its services of water-pumping and grain-grinding to Tangaye villagers. The demonstration has two research foci: the reliability of a photovoltaic (PV) power system in harsh environmental conditions, and the appropriateness of PV technology from a social perspective as villagers mobilize to manage the system and integrate its services into their lives.
Wind and Wildlife in the Northern Great Plains: Identifying Low-Impact Areas for Wind Development
Fargione, Joseph; Kiesecker, Joseph; Slaats, M. Jan; Olimb, Sarah
2012-01-01
Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production and has known and predicted adverse effects on wildlife. The Northern Great Plains (NGP) is home both to some of the world’s best wind resources and to remaining temperate grasslands, the most converted and least protected ecological system on the planet. Thus, appropriate siting and mitigation of wind development is particularly important in this region. Steering energy development to disturbed lands with low wildlife value rather than placing new developments within large and intact habitats would reduce impacts to wildlife. Goals for wind energy development in the NGP are roughly 30 GW of nameplate capacity by 2030. Our analyses demonstrate that there are large areas where wind development would likely have few additional impacts on wildlife. We estimate there are ∼1,056 GW of potential wind energy available across the NGP on areas likely to have low-impact for biodiversity, over 35 times development goals. New policies and approaches will be required to guide wind energy development to low-impact areas. PMID:22848505
Wind and wildlife in the Northern Great Plains: identifying low-impact areas for wind development.
Fargione, Joseph; Kiesecker, Joseph; Slaats, M Jan; Olimb, Sarah
2012-01-01
Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production and has known and predicted adverse effects on wildlife. The Northern Great Plains (NGP) is home both to some of the world's best wind resources and to remaining temperate grasslands, the most converted and least protected ecological system on the planet. Thus, appropriate siting and mitigation of wind development is particularly important in this region. Steering energy development to disturbed lands with low wildlife value rather than placing new developments within large and intact habitats would reduce impacts to wildlife. Goals for wind energy development in the NGP are roughly 30 GW of nameplate capacity by 2030. Our analyses demonstrate that there are large areas where wind development would likely have few additional impacts on wildlife. We estimate there are ∼1,056 GW of potential wind energy available across the NGP on areas likely to have low-impact for biodiversity, over 35 times development goals. New policies and approaches will be required to guide wind energy development to low-impact areas.
Introducing sampling entropy in repository based adaptive umbrella sampling
NASA Astrophysics Data System (ADS)
Zheng, Han; Zhang, Yingkai
2009-12-01
Determining free energy surfaces along chosen reaction coordinates is a common and important task in simulating complex systems. Due to the complexity of energy landscapes and the existence of high barriers, one widely pursued objective to develop efficient simulation methods is to achieve uniform sampling among thermodynamic states of interest. In this work, we have demonstrated sampling entropy (SE) as an excellent indicator for uniform sampling as well as for the convergence of free energy simulations. By introducing SE and the concentration theorem into the biasing-potential-updating scheme, we have further improved the adaptivity, robustness, and applicability of our recently developed repository based adaptive umbrella sampling (RBAUS) approach [H. Zheng and Y. Zhang, J. Chem. Phys. 128, 204106 (2008)]. Besides simulations of one dimensional free energy profiles for various systems, the generality and efficiency of this new RBAUS-SE approach have been further demonstrated by determining two dimensional free energy surfaces for the alanine dipeptide in gas phase as well as in water.
Wind Energy Finance in the United States: Current Practice and Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwabe, Paul D.; Feldman, David J.; Settle, Donald E.
In the United States, investment in wind energy has averaged nearly $13.6 billion annually since 2006 with more than $140 billion invested cumulatively over that period (BNEF 2017). This sizable investment activity demonstrates the persistent appeal of wind energy and its increasing role in the U.S electricity generation portfolio. Despite its steady investment levels over the last decade, some investors still consider wind energy as a specialized asset class. Limited familiarity with the asset class both limit the pool of potential investors and drive up costs for investors. This publication provides an overview of the wind project development process, capitalmore » sources and financing structures commonly used, and traditional and emerging procurement methods. It also provides a high-level demonstration of how financing rates impact a project's all-in cost of energy. The goal of the publication is to provide a representative and wide-ranging resource for the wind development and financing processes.« less
Demonstration of EnergyNest thermal energy storage (TES) technology
NASA Astrophysics Data System (ADS)
Hoivik, Nils; Greiner, Christopher; Tirado, Eva Bellido; Barragan, Juan; Bergan, Pâl; Skeie, Geir; Blanco, Pablo; Calvet, Nicolas
2017-06-01
This paper presents the experimental results from the EnergyNest 2 × 500 kWhth thermal energy storage (TES) pilot system installed at Masdar Institute of Science & Technology Solar Platform. Measured data are shown and compared to simulations using a specially developed computer program to verify the stability and performance of the TES. The TES is based on a solid-state concrete storage medium (HEATCRETE®) with integrated steel tube heat exchangers cast into the concrete. The unique concrete recipe used in the TES has been developed in collaboration with Heidelberg Cement; this material has significantly higher thermal conductivity compared to regular concrete implying very effective heat transfer, at the same time being chemically stable up to 450 °C. The demonstrated and measured performance of the TES matches the predictions based on simulations, and proves the operational feasibility of the EnergyNest concrete-based TES. A further case study is analyzed where a large-scale TES system presented in this article is compared to two-tank indirect molten salt technology.
Fusion energy for space: Feasibility demonstration. A proposal to NASA
NASA Technical Reports Server (NTRS)
Schulze, Norman R.
1992-01-01
This proposed program is to initiate a space flight research and development program to develop fusion energy for the space applications of direct space propulsion and direct space power, that is, a Space Fusion Energy (SFE) program. 'Direct propulsion' refers to the use of plasma energy directly for thrust without requiring other energy conversion systems. Further, to provide space missions with large electrical power, 'direct space power' is proposed whereby the direct conversion of charged particles into electricity is used, thereby avoiding thermal conversion system losses. The energy release from nuclear fusion reactions makes these highly efficient, high power space systems possible. The program as presented conducts in an orderly, hierarchical manner the necessary planning, analyses, and testing to demonstrate the practical use of fusion energy for space. There is nothing discussed that is known to be theoretically impossible. Validation of the engineering principles is sought in this program which uses a cost-benefit approach. Upon successful program completion, space will become more accessible and space missions more safely conducted. The country will have taken a giant step toward the commercialization of space. The mission enabling capability provided by fusion energy is well beyond mission planners' current dreams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayle, Phillip A., Jr.
The goal of the project was to demonstrate the commercial feasibility of geopressured-geothermal power development by exploiting the extraordinarily high pressured hot brines know to exist at depth near the Sweet Lake oil and gas field in Cameron Parish, Louisiana. The existence of a geopressured-geothermal system at Sweet Lake was confirmed in the 1970's and 1980's as part of DOE's Geopressured-Geothermal Program. That program showed that the energy prices at the time could not support commercial production of the resource. Increased electricity prices and technological advancements over the last two decades, combined with the current national support for developing clean,more » renewable energy and the job creation it would entail, provided the justification necessary to reevaluate the commercial feasibility of power generation from this vast resource.« less
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1980-01-01
Presented is a Corridor Demonstration which can be set up in readily accessible areas such as hallways or lobbies. Equipment is listed for a display of three cells (solar cells, fuel cells, and storage cells) which develop electrical energy. (CS)
Defense-Wide Research and Development Near Term Energy-Efficient Technologies Projects
2011-02-18
Continuous Building Commissioning USACE 6.80 5. Energy Enterprise Management USACE 1.94 6. Solid Waste Gasification USACE 2.92 7. Anaerobic...Building Commissioning – USACE, four contracts; • Energy Enterprise Management – USACE, one contract; • Solid Waste Gasification – USACE, four...Energy Supply and Distribution These include waste-to-energy and waste-to-fuel technology research and demonstrations, landfill gas use, biomass and
Development of a PMAD System for Flywheel Based Energy Storage System
NASA Technical Reports Server (NTRS)
Wolff, Fred
2001-01-01
We will discuss the following: (1) the Flywheel Energy Storage System (FESS) program objective; (2) benefits of flywheels for the International Space Station; (3) the FESS development team; (4) FESS electrical requirements; (5) FESS electrical architecture; and (6) electrical subsystem functionality. The objective of the FESS program is to demonstrate flywheel technologies operating together as a system and having improved performance characteristics over batteries in a low earth orbit energy storage application (such as the ISS).
Calcium intercalation into layered fluorinated sodium iron phosphate
NASA Astrophysics Data System (ADS)
Lipson, Albert L.; Kim, Soojeong; Pan, Baofei; Liao, Chen; Fister, Timothy T.; Ingram, Brian J.
2017-11-01
The energy density and cost of battery systems, relative to the current state-of-the art, can be improved by developing alternative chemistries utilizing multivalent working ions such as calcium. Many challenges must be overcome, such as the identification of cathode materials with high energy density and an electrolyte with a wide electrochemical stability window that can plate and strip calcium metal, before market implementation. Herein, the feasibility and cycling performance of Ca2+ intercalation into a desodiated layered Na2FePO4F host is described. This is the first demonstration of Ca2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca2+ intercalation. Although substantial effort is expected in order to develop a high energy density cathode material, this study demonstrates the feasibility of Ca2+ intercalation into multiple host structures types, thereby extending opportunities for development of Ca insertion host structures, suggesting such a cathode material can be identified and developed.
Energy Systems Integration News | Energy Systems Integration Facility |
share and use information. NREL received the award for work it conducted with EPRI to demonstrate the data for residents, appraisers, and investors. Recognizing this, Denver developer iUnit is working with the use of distributed energy resources such as PV rooftop systems. Such advancements in
ERIC Educational Resources Information Center
Close, Hunter G.; Scherr, Rachel E.
2015-01-01
We demonstrate that a particular blended learning space is especially productive in developing understanding of energy transfers and transformations. In this blended space, naturally occurring learner interactions like body movement, gesture, and metaphorical speech are blended with a conceptual metaphor of energy as a substance in a class of…
Low-power microwave-mediated heating for microchip-based PCR.
Marchiarullo, Daniel J; Sklavounos, Angelique H; Oh, Kyudam; Poe, Brian L; Barker, N Scott; Landers, James P
2013-09-07
Microwave energy has been used to rapidly heat food and drinks for decades, in addition to assisting other chemical reactions. However, only recently has microwave energy been applied in microfluidic systems to heat solution in reaction chambers, in particular, the polymerase chain reaction (PCR). One of the difficulties in developing microwave-mediated heating on a microchip is the construction of the appropriate architecture for delivery of the energy to specific micro-areas on the microchip. This work employs commercially-available microwave components commonly used in the wireless communications industry to generate a microwave signal, and a microstrip transmission line to deliver the energy to a 1 μL reaction chamber fabricated in plastic microdevices. A model was developed to create transmission lines that would optimally transmit energy to the reaction chamber at a given frequency, minimizing energy usage while focusing microwave delivery to the target chamber. Two different temperature control methods were demonstrated, varying microwave power or frequency. This system was used to amplify a fragment of the lambda-phage genome, thereby demonstrating its potential for integration into a portable PCR system.
10 CFR 474.1 - Purpose and Scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION... procedures for calculating a value for the petroleum-equivalent fuel economy of electric vehicles, as... regulations at 40 CFR Part 600—Fuel Economy of Motor Vehicles. ...
10 CFR 474.1 - Purpose and Scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION... procedures for calculating a value for the petroleum-equivalent fuel economy of electric vehicles, as... regulations at 40 CFR Part 600—Fuel Economy of Motor Vehicles. ...
10 CFR 474.1 - Purpose and Scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION... procedures for calculating a value for the petroleum-equivalent fuel economy of electric vehicles, as... regulations at 40 CFR Part 600—Fuel Economy of Motor Vehicles. ...
10 CFR 474.1 - Purpose and Scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION... procedures for calculating a value for the petroleum-equivalent fuel economy of electric vehicles, as... regulations at 40 CFR Part 600—Fuel Economy of Motor Vehicles. ...
10 CFR 474.1 - Purpose and Scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION... procedures for calculating a value for the petroleum-equivalent fuel economy of electric vehicles, as... regulations at 40 CFR Part 600—Fuel Economy of Motor Vehicles. ...
Advanced Demonstration and Test Reactor Options Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petti, David Andrew; Hill, R.; Gehin, J.
Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power’s share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercializationmore » of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy’s (DOE’s) broader commitment to pursuing an “all of the above” clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate “advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy”. Advanced reactors are defined in this study as reactors that use coolants other than water. Advanced reactor technologies have the potential to expand the energy applications, enhance the competitiveness, and improve the sustainability of nuclear energy.« less
NASA Technical Reports Server (NTRS)
Carrington, Connie; Day, Greg
2004-01-01
The sun provides an abundant source of energy in space, which can be used to power exploration vehicles and infrastructures that support exploration. A first step in developing and demonstrating the necessary technologies to support solar-powered exploration could be a 100-kWe-class solar-powered platform in Earth orbit. This platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, and electric propulsion. It would also provide a power-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper presents a preliminary design concept for a 100-kWe solar-powered satellite with the capability to use high-powered electric propulsion, and to flight-demonstrate a variety of payload experiments.
Improving energy audit process and report outcomes through planning initiatives
NASA Astrophysics Data System (ADS)
Sprau Coulter, Tabitha L.
Energy audits and energy models are an important aspect of the retrofit design process, as they provide project teams with an opportunity to evaluate a facilities current building systems' and energy performance. The information collected during an energy audit is typically used to develop an energy model and an energy audit report that are both used to assist in making decisions about the design and implementation of energy conservation measures in a facility. The current lack of energy auditing standards results in a high degree of variability in energy audit outcomes depending on the individual performing the audit. The research presented is based on the conviction that performing an energy audit and producing a value adding energy model for retrofit buildings can benefit from a revised approach. The research was divided into four phases, with the initial three phases consisting of: 1.) process mapping activity - aimed at reducing variability in the energy auditing and energy modeling process. 2.) survey analysis -- To examine the misalignment between how industry members use the top energy modeling tools compared to their intended use as defined by software representatives. 3.) sensitivity analysis -- analysis of the affect key energy modeling inputs are having on energy modeling analysis results. The initial three phases helped define the need for an improved energy audit approach that better aligns data collection with facility owners' needs and priorities. The initial three phases also assisted in the development of a multi-criteria decision support tool that incorporates a House of Quality approach to guide a pre-audit planning activity. For the fourth and final research phase explored the impacts and evaluation methods of a pre-audit planning activity using two comparative energy audits as case studies. In each case, an energy audit professionals was asked to complete an audit using their traditional methods along with an audit which involved them first participating in a pre-audit planning activity that aligned the owner's priorities with the data collection. A comparative analysis was then used to evaluate the effects of the pre-audit planning activity in developing a more strategic method for collecting data and representing findings in an energy audit report to a facility owner. The case studies demonstrated that pre-audit planning has the potential to improve the efficiency of an energy audit process through reductions in transition time waste. The cases also demonstrated the value of audit report designs that are perceived by owners to be project specific vs. generic. The research demonstrated the ability to influence and alter an auditors' behavior through participating in a pre-audit planning activity. It also shows the potential benefits of using the House of Quality as a method of aligning data collection with owner's goals and priorities to develop reports that have increased value.
Iceland as a demonstrator for a transition to low carbon economy?
NASA Astrophysics Data System (ADS)
Asbjornsson, Einar Jon; Stefansson, Hlynur; Finger, David Christian
2017-04-01
The energy supply in Iceland is quite unique, about 85% of the total primary energy is coming from renewable resources. Nevertheless, the ecological footprint of an average Icelander is with 6.5 worlds, one of the highest worldwide and the energy consumption per capita is about 7 times higher than the European average. Recent developments have shown that there is a great potential to reduce the footprint and develop towards low carbon economy. With its small population, well educated and governed society and clear system boundaries to the outside world, Iceland is a good research laboratory and an ideal demonstrator for a transition towards a low carbon economy. This presentation will outline how several innovative research projects at Reykjavik University could lead Iceland towards a sustainable and low carbon economy. The presentations will conclude with a visionary outlook how Iceland can become a demonstration nation towards a prosperous, low carbon and sustainable economy, helping stabilize global warming at an acceptable level.
Analysis to develop a program for energy-integrated farm systems
NASA Astrophysics Data System (ADS)
Eakin, D. E.; Clark, M. A.; Inaba, L. K.; Johnson, K. I.
1981-09-01
A program to use renewable energy resources and possibly develop decentralization of energy systems for agriculture is discussed. The program's objective is determined by: (1) an analysis of the technologies that could be utilized to transform renewable farm resources to energy by the year 2000, (2) the quantity of renewable farm resources that are available, and (3) current energy-use patterns. Individual research, development, and demonstration projects are fit into a national program of energy-integrated farm systems on the basis of market need, conversion potential, technological opportunities, and acceptability. Quantification of these factors for the purpose of establishing program guidelines is conducted using the following four precepts: (1) market need is identified by current use of energy for agricultural production; (2) conversion potential is determined by the availability of renewable resources; and (3) technological opportunities are determined by the state-of-the-art methods, techniques, and processes that can convert renewable resources into farm energy.
Development of a Suite of Analytical Tools for Energy and Water Infrastructure Knowledge Discovery
NASA Astrophysics Data System (ADS)
Morton, A.; Piburn, J.; Stewart, R.; Chandola, V.
2017-12-01
Energy and water generation and delivery systems are inherently interconnected. With demand for energy growing, the energy sector is experiencing increasing competition for water. With increasing population and changing environmental, socioeconomic, and demographic scenarios, new technology and investment decisions must be made for optimized and sustainable energy-water resource management. This also requires novel scientific insights into the complex interdependencies of energy-water infrastructures across multiple space and time scales. To address this need, we've developed a suite of analytical tools to support an integrated data driven modeling, analysis, and visualization capability for understanding, designing, and developing efficient local and regional practices related to the energy-water nexus. This work reviews the analytical capabilities available along with a series of case studies designed to demonstrate the potential of these tools for illuminating energy-water nexus solutions and supporting strategic (federal) policy decisions.
Development of an integrated heat pipe-thermal storage system for a solar receiver
NASA Technical Reports Server (NTRS)
Keddy, E.; Sena, J. Tom; Merrigan, M.; Heidenreich, Gary; Johnson, Steve
1988-01-01
An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgins, Andrew P.; Carrillo, Ismael M.; Jin, Xin
This document is the final report of a two-year development, test, and demonstration project, 'Cohesive Application of Standards- Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL's) Integrated Network Testbed for Energy Grid Research and Technology (INTEGRATE) initiative hosted at Energy Systems Integration Facility (ESIF). This project demonstrated techniques to control distribution grid events using the coordination of traditional distribution grid devices and high-penetration renewable resources and demand response. Using standard communication protocols and semantic standards, the project examined the use cases of high/low distribution voltage, requests for volt-ampere-reactive (VAR)more » power support, and transactive energy strategies using Volttron. Open source software, written by EPRI to control distributed energy resources (DER) and demand response (DR), was used by an advanced distribution management system (ADMS) to abstract the resources reporting to a collection of capabilities rather than needing to know specific resource types. This architecture allows for scaling both horizontally and vertically. Several new technologies were developed and tested. Messages from the ADMS based on the common information model (CIM) were developed to control the DER and DR management systems. The OpenADR standard was used to help manage grid events by turning loads off and on. Volttron technology was used to simulate a homeowner choosing the price at which to enter the demand response market. Finally, the ADMS used newly developed algorithms to coordinate these resources with a capacitor bank and voltage regulator to respond to grid events.« less
Energy landscape paving simulations of the trp-cage protein.
Schug, Alexander; Wenzel, Wolfgang; Hansmann, Ulrich H E
2005-05-15
We evaluate the efficiency of multiple variants of energy landscape paving in all-atom simulations of the trp-cage protein using a recently developed new force field. Especially, we introduce a temperature-free variant of the method and demonstrate that it allows a fast scanning of the energy landscape. Nativelike structures are found in less time than by other techniques. The sampled low-energy configurations indicate a funnel-like energy landscape.
Advanced Materials and Component Development for Lithium-Ion Cells for NASA Missions
NASA Technical Reports Server (NTRS)
Reid, Concha M.
2012-01-01
Human missions to Near Earth Objects, such as asteroids, planets, moons, liberation points, and orbiting structures, will require safe, high specific energy, high energy density batteries to provide new or extended capabilities than are possible with today s state-of-the-art aerospace batteries. The Enabling Technology Development and Demonstration Program, High Efficiency Space Power Systems Project battery development effort at the National Aeronautics and Space Administration (NASA) is continuing advanced lithium-ion cell development efforts begun under the Exploration Technology Development Program Energy Storage Project. Advanced, high-performing materials are required to provide improved performance at the component-level that contributes to performance at the integrated cell level in order to meet the performance goals for NASA s High Energy and Ultra High Energy cells. NASA s overall approach to advanced cell development and interim progress on materials performance for the High Energy and Ultra High Energy cells after approximately 1 year of development has been summarized in a previous paper. This paper will provide an update on these materials through the completion of 2 years of development. The progress of materials development, remaining challenges, and an outlook for the future of these materials in near term cell products will be discussed.
Reproducibility, Controllability, and Optimization of Lenr Experiments
NASA Astrophysics Data System (ADS)
Nagel, David J.
2006-02-01
Low-energy nuclear reaction (LENR) measurements are significantly and increasingly reproducible. Practical control of the production of energy or materials by LENR has yet to be demonstrated. Minimization of costly inputs and maximization of desired outputs of LENR remain for future developments.
Building heating and cooling applications thermal energy storage program overview
NASA Technical Reports Server (NTRS)
Eissenberg, D. M.
1980-01-01
Thermal energy storage technology and development of building heating and cooling applications in the residential and commercial sectors is outlined. Three elements are identified to undergo an applications assessment, technology development, and demonstration. Emphasis is given to utility load management thermal energy system application where the stress is on the 'customer side of the meter'. Thermal storage subsystems for space conditioning and conservation means of increased thermal mass within the building envelope and by means of low-grade waste heat recovery are covered.
None
2017-12-09
Through research, the National Renewable Energy Laboratory (NREL) has developed many strategies and design techniques to ensure both commercial and residential buildings use as little energy as possible and also work well with the surroundings. Here you will find a video that introduces the work of NREL Buildings Research, highlights some of the facilities on the NREL campus, and demonstrates these efficient building strategies. Watch this video to see design highlights of the Science and Technology Facility on the NREL campusâthe first Federal building to be LEED® Platinum certified. Additionally, the video demonstrates the energy-saving features of NRELs Thermal Test Facility.
Advanced Power Technology Development Activities for Small Satellite Applications
NASA Technical Reports Server (NTRS)
Piszczor, Michael F.; Landis, Geoffrey A.; Miller, Thomas B.; Taylor, Linda M.; Hernandez-Lugo, Dionne; Raffaelle, Ryne; Landi, Brian; Hubbard, Seth; Schauerman, Christopher; Ganter, Mathew;
2017-01-01
NASA Glenn Research Center (GRC) has a long history related to the development of advanced power technology for space applications. This expertise covers the breadth of energy generation (photovoltaics, thermal energy conversion, etc.), energy storage (batteries, fuel cell technology, etc.), power management and distribution, and power systems architecture and analysis. Such advanced technology is now being developed for small satellite and cubesat applications and could have a significant impact on the longevity and capabilities of these missions. A presentation during the Pre-Conference Workshop will focus on various advanced power technologies being developed and demonstrated by NASA, and their possible application within the small satellite community.
Renewable energy production is expected to increase significantly in the next 25 years. The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response (OSWER) Center for Program Analysis (OCPA) has initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated land and mining sites provide for developing renewable energy in the U.S.
A Solar Energy Curriculum for Elementary Schools, Kindergarten Through Grade Six. Field Test Copy.
ERIC Educational Resources Information Center
Lampert, Seymour; And Others
Presented is the field test version of an elementary school solar energy curriculum consisting of nearly 50 activities and demonstration experiments. Developed by a team of teachers and subject matter specialists, these materials are grouped under seven content area headings: (1) Scientific Method; (2) Energy and Life; (3) Sun and Light; (4)…
Department of Energy Recovery Act Investment in Biomass Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-11-01
The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.
High-Order Energy Stable WENO Schemes
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2009-01-01
A third-order Energy Stable Weighted Essentially Non-Oscillatory (ESWENO) finite difference scheme developed by Yamaleev and Carpenter was proven to be stable in the energy norm for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, a systematic approach is presented that enables 'energy stable' modifications for existing WENO schemes of any order. The technique is demonstrated by developing a one-parameter family of fifth-order upwind-biased ESWENO schemes; ESWENO schemes up to eighth order are presented in the appendix. New weight functions are also developed that provide (1) formal consistency, (2) much faster convergence for smooth solutions with an arbitrary number of vanishing derivatives, and (3) improved resolution near strong discontinuities.
High energy laser demonstrators for defense applications
NASA Astrophysics Data System (ADS)
Jung, M.; Riesbeck, Th.; Schmitz, J.; Baumgärtel, Th.; Ludewigt, K.; Graf, A.
2017-01-01
Rheinmetall Waffe Munition has worked since 30 years in the area of High Energy Laser (HEL) for defence applications, starting from pulsed CO2 to pulsed glass rods lasers. In the last decade Rheinmetall Waffe Munition changed to diode pumped solid state laser (DPSSL) technology and has successfully developed, realised and tested a variety of versatile HEL weapon demonstrators for air- and ground defence scenarios like countering rocket, artillery, mortar, missile (RAMM), unmanned aerial systems (UAS) and unexploded ordnances clearing. By employing beam superimposing technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms, military vehicles and naval platforms have been equipped with high energy laser effectors. The contribution gives a summary of the most recent development stages of Rheinmetalls HEL weapon program. In addition to the stationary 30 kW laser weapon demonstrator, we present vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V, the 20 kW class Mobile HEL Effector Wheel XX and the 50 kW class Mobile HEL Effector Container L and the latest 10 kW HEL effector integrated in the naval weapon platform MLG 27. We describe the capabilities of these demonstrators against different potential targets. Furthermore, we will show the capability of the 30 kW stationary Laser Weapon Demonstrator integrated into an existing ground based air defence system to defeat saturated attacks of RAMM and UAS targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gluesenkamp, Kyle R.; Abdelaziz, Omar; Patel, Viral K.
2017-05-01
The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO 2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.
An Asset-Based Approach to Tribal Community Energy Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, Rachael A.; Martino, Anthony; Begay, Sandra K.
Community energy planning is a vital component of successful energy resource development and project implementation. Planning can help tribes develop a shared vision and strategies to accomplish their energy goals. This paper explores the benefits of an asset-based approach to tribal community energy planning. While a framework for community energy planning and federal funding already exists, some areas of difficulty in the planning cycle have been identified. This paper focuses on developing a planning framework that offsets those challenges. The asset-based framework described here takes inventory of a tribe’s capital assets, such as: land capital, human capital, financial capital, andmore » political capital. Such an analysis evaluates how being rich in a specific type of capital can offer a tribe unique advantages in implementing their energy vision. Finally, a tribal case study demonstrates the practical application of an asset-based framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winiarski, D.W.
1995-01-01
The federal government is the largest single energy consumer in the United States cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studiedmore » under that program. This interim report provides the results of a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology-a hot water heater conversion system to convert electrically heated hot water tanks to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.« less
Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration
NASA Astrophysics Data System (ADS)
Grasso, K.; Cladouhos, T. T.; Garrison, G.
2013-12-01
Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater monitoring program is currently on-going.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabo, David G.
The demonstration nature of the Baca Geothermal Project and the contractual arrangements between Public Service Company of New Me (PNM) and Union Geothermal Company of New Mexico (Union) with the Department of Energy mandate on environmental monitoring effort previously not seen for an energy development of this size. One of the most often stated goals of the Baca Project is to demonstrate the acceptability and viability of geothermal energy in an environmentally responsible manner. If this statement is to be followed, then a program would have to be developed which would (1) identify all the environmental baseline parameters, (2) monitormore » them during construction and operation, and (3) alleviate any possible negative impacts. The situation of the Baca project in the Jemez Mountains of north-central New Mexico offers a challenging vehicle with which to demonstrate the acceptability of geothermal energy. A few of the reasons for this are: these mountains are one of the most heavily used recreational resource areas in the state, numerous prehistoric people utilized the canyons and have left considerable archeological resources, the mountains are home for a number of individuals who prefer their serenity to the hustle and bustle of urban dwelling, and finally, the mountains are considered sacred by a number of local Indian tribes, a few of which use the mountaintop as religious sites.« less
Low-cost flywheel demonstration program
NASA Astrophysics Data System (ADS)
Rabenhorst, D. W.; Small, T. R.; Wilkinson, W. O.
1980-04-01
All primary objectives were successfully achieved as follows: demonstration of a full-size, 1 kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; development of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30 kWh home-type flywheel energy-storage system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM.... Electric vehicle means a vehicle that is powered by an electric motor drawing current from rechargeable... must be drawn from a source off the vehicle, such as residential electric service; and (2) The vehicle...
Omnetric Group Demonstrates Distributed Grid-Edge Control Hierarchy at NREL
| Energy Systems Integration Facility | NREL Omnetric Group Omnetric Group Demonstrates Group demonstrated a distributed control hierarchy-based on an open field message bus (OpenFMB resources. OMNETRIC Group first developed and validated the system in the ESIF with a combination of
Mobile and stationary laser weapon demonstrators of Rheinmetall Waffe Munition
NASA Astrophysics Data System (ADS)
Ludewigt, K.; Riesbeck, Th.; Baumgärtel, Th.; Schmitz, J.; Graf, A.; Jung, M.
2014-10-01
For some years Rheinmetall Waffe Munition has successfully developed, realised and tested a variety of versatile high energy laser (HEL) weapon systems for air- and ground-defence scenarios like C-RAM, UXO clearing. By employing beam superimposition technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms and now military mobile vehicles were equipped with high energy laser effectors. Our contribution summarises the most recent development stages of Rheinmetalls high energy laser weapon program. We present three different vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V integrated in an M113 tank, the 20 kW class Mobile HEL Effector Wheel XX integrated in a multirole armoured vehicle GTK Boxer 8x8 and the 50 kW class Mobile HEL Effector Container L integrated in a reinforced container carried by an 8x8 truck. As a highlight, a stationary 30 kW Laser Weapon Demonstrator shows the capability to defeat saturated attacks of RAM targets and unmanned aerial vehicles. 2013 all HEL demonstrators were tested in a firing campaign at the Rheinmetall testing centre in Switzerland. Major results of these tests are presented.
Park, Hea Jung; So, Monica C.; Gosztola, David J.
2016-09-28
We demonstrate that thin films of metal organic framework (MOF)-like materials, containing two perylenedlimides (PDICl4, PDIOPh2) and a squaraine dye (S1); can be fabricated by, layer-by-layer assembly (LbL). Interestingly, these LbL films absorb across the visible light region (400-750 nm) and facilitate directional energy transfer. Due to the high spectral overlap and oriented transition dipole moments of the donor (PDICl4 and PDIOPh2) and acceptor (S1) components, directional long-range energy transfer from the bluest to reddest absorber was successfully demonstrated in the multicomponent MOF-like films. These findings have significant implications for the development of solar energy conversion devices based on MOFs.
Fabrication and Characterization of Bi2Te3-Based Chip-Scale Thermoelectric Energy Harvesting Devices
NASA Astrophysics Data System (ADS)
Cornett, Jane; Chen, Baoxing; Haidar, Samer; Berney, Helen; McGuinness, Pat; Lane, Bill; Gao, Yuan; He, Yifan; Sun, Nian; Dunham, Marc; Asheghi, Mehdi; Goodson, Ken; Yuan, Yi; Najafi, Khalil
2017-05-01
Thermoelectric energy harvesters convert otherwise wasted heat into electrical energy. As a result, they have the potential to play a critical role in the autonomous wireless sensor network signal chain. In this paper, we present work carried out on the development of Bi2Te3-based thermoelectric chip-scale energy harvesting devices. Process flow, device demonstration and characterization are highlighted.
Sen. Collins, Susan M. [R-ME
2009-03-30
Senate - 12/08/2009 Committee on Energy and Natural Resources Subcommittee on Energy. Hearings held. With printed Hearing: S.Hrg. 111-330. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
NASA Astrophysics Data System (ADS)
Chadha, Tandeep S.
Renewable energy sources offer a viable solution to the growing energy demand while mitigating concerns for greenhouse gas emissions and climate change. This has led to a tremendous momentum towards solar and wind-based energy harvesting technologies driving efficiencies higher and costs lower. However, the intermittent nature of these energy sources necessitates energy storage technologies, which remain the Achilles heel in meeting the renewable energy goals. This dissertation focusses on two approaches for addressing the needs of energy storage: first, targeting direct solar to fuel conversion via photoelectrochemical water-splitting and second, improving the performance of current rechargeable batteries by developing new electrode architectures and synthesis processes. The aerosol chemical vapor deposition (ACVD) process has emerged as a promising single-step approach for nanostructured thin film synthesis directly on substrates. The relationship between the morphology and the operating parameters in the process is complex. In this work, a simulation based approach has been developed to understand the relationship and acquire the ability of predicting the morphology. These controlled nanostructured morphologies of TiO2 , compounded with gold nanoparticles of various shapes, are used for solar water-splitting applications. Tuning of light absorption in the visible-light range along with reduced electron-hole recombination in the composite structures has been demonstrated. The ACVD process is further extended to a novel single-step synthesis of nanostructured TiO2 electrodes directly on the current collector for applications as anodes in lithium-ion batteries, mainly for electric vehicles and hybrid electric vehicles. The effect of morphology of the nanostructures has been investigated via experimental studies and electrochemical transport modelling. Results demonstrate the exceptional performance of the single crystal one-dimensional nanostructures over granular structures, due to a combination of high surface area, improved lithium diffusivity and electronic conductivity. The model developed allows for the prediction of optimized nanostructure geometry depending on the end-use application. Increasing demand for lithium-ion batteries, posing concerns for lithium supply and costs in future, have motivated research in sodium-ion batteries as alternatives. In this work, the nanostructured TiO2 electrodes have been studied as anodes for sodium ion batteries. To improve the performance, a new multi-component ACVD process has been developed to achieve single-step synthesis of doped nanostructured thin films. One-dimensional niobium doped TiO2 thin films have been synthesized and characterized as a novel anode material for sodium-ion batteries. The doped nanostructured thin films deliver significant improvements on capacity over their undoped counterparts and demonstrate feasibility of sodium-ion batteries. In summary, the studies conducted in this dissertation develop a detailed understanding of the ACVD process and demonstrate its ability to synthesize superior nanostructured thin films for energy storage applications, thereby motivating process scalability for commercial applications.
SUBTASK 6.1 – STRATEGIC STUDIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Thomas; Harju, John; Steadman, Edward
The Energy & Environmental Research Center (EERC) has recently completed 7 years of research through the Cooperative Agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) focused on fossil energy technology development and demonstration. To support a significant number of the different activities being considered within all of our research contracts with NETL, a subtask (6.1 – Strategic Studies) was created to focus on small research efforts that came up throughout the year that would support an existing EERC–NETL project or would help to develop a new concept for inclusion in future efforts. This subtask wasmore » funded through the EERC–DOE Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26- 08NT43291« less
Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.; Scullin, Vincent J.; Chang, B. J.; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.
2006-01-01
The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at NASA Glenn Research Center has demonstrated multiple back to back contiguous cycles at rated power, and round trip efficiencies up to 52 percent. It is the first fully closed cycle regenerative fuel cell ever demonstrated (entire system is sealed: nothing enters or escapes the system other than electrical power and heat). During FY2006 the system has undergone numerous modifications and internal improvements aimed at reducing parasitic power, heat loss and noise signature, increasing its functionality as an unattended automated energy storage device, and in-service reliability. It also serves as testbed towards development of a 600 W-hr/kg flight configuration, through the successful demonstration of lightweight fuel cell and electrolyser stacks and supporting components. The RFC has demonstrated its potential as an energy storage device for aerospace solar power systems such as solar electric aircraft, lunar and planetary surface installations; any airless environment where minimum system weight is critical. Its development process continues on a path of risk reduction for the flight system NASA will eventually need for the manned lunar outpost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winiarski, D.W.
1995-12-01
The Federal government is the largest single energy consumer in the United States with consumption of nearly 1.5 quads/year of energy (10{sup 15} quad = 1015 Btu) and cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP) seeks to evaluate new energy -- saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate inmore » the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This report provides the results of a field evaluation that PNL conducted for DOE/FEMP with funding support from the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of 4 candidate energy-saving technology-a water heater conversion system to convert electrically powered water heaters to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.« less
Final report for Assembling Microorganisms into Energy Converting Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahin, Ozgur
The goal of this project was to integrate microorganisms capable of reversible energy transduction in response to changing relative humidity with non-biological materials to create hybrid energy conversion systems. While plants and many other biological organisms have developed structures that are extraordinarily effective in converting changes in relative humidity into mechanical energy, engineered energy transduction systems rarely take advantage of this powerful phenomenon. Rather than developing synthetic materials that can convert changes in relative humidity in to mechanical energy, we developed approaches to assemble bacterial spores into larger materials. These materials can convert energy from evaporation of water in drymore » atmospheric conditions, which we demonstrated by building energy harvesters from these materials. We have also developed experiments to investigate the interaction of water with the spore material, and to determine how this interaction imposes limits on energy conversion. In addition, we carried out theoretical calculations to investigate the limits imposed by the environmental conditions to the power available in the energy harvesting process. These calculations took into account heat and water vapor transfer in the atmosphere surrounding the spore based materials. Overall, our results suggest that biomolecular materials are promising candidates to convert energy from evaporation.« less
Dual Arm Work Platform teleoperated robotics system. Innovative technology summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The US Department of Energy (DOE) and the Federal Energy Technology Center (FETC) has developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial Deactivation and Decommissioning (D and D) technologies in comparison with current baseline technologies. The Dual Arm Work Platform (DAWP) demonstration focused on the use of the DAWP to segment and dismantle the CP-5 reactor tank and surrounding bio-shield components (including the graphite block reflector, lead and boral sheeting) and performing some minor tasks best suited for themore » use of teleoperated robotics that were not evaluated in this demonstration. The DAWP system is not a commercially available product at this time. The CP-5 implementation was its first D and D application. The demonstration of the DAWP was to determine the areas on which improvements must be made to make this technology commercially viable. The results of the demonstration are included in this greenbook. It is the intention of the developers to incorporate lessons learned at this demonstration and current technological advancements in robotics into the next generation of the DAWP.« less
Building Technologies Office FY 2017 Budget At-A-Glance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-03-01
Buildings and homes use more than 73% of the electrical energy consumed in the United States. They also consume 40% of the nation’s total energy, with an annual energy bill of $430 billion. These energy bills can be cost effectively reduced by 20%–50% or more through various energy-efficient technologies and techniques. The Building Technologies Office (BTO) will continue to develop and demonstrate advanced building efficiency technologies and practices to make buildings in the United States more efficient, affordable, and comfortable.
Toward Low-Frequency Mechanical Energy Harvesting Using Energy-Dense Piezoelectrochemical Materials.
Cannarella, John; Arnold, Craig B
2015-12-02
The piezoelectrochemical coupling between mechanical stress and electrochemical potential is explored in the context of mechanical energy harvesting and shown to have promise in developing high-energy-density harvesters for low-frequency applications (e.g., human locomotion). This novel concept is demonstrated experimentally by cyclically compressing an off-the-shelf lithium-ion battery and measuring the generated electric power output. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electric train energy consumption modeling
Wang, Jinghui; Rakha, Hesham A.
2017-05-01
For this paper we develop an electric train energy consumption modeling framework considering instantaneous regenerative braking efficiency in support of a rail simulation system. The model is calibrated with data from Portland, Oregon using an unconstrained non-linear optimization procedure, and validated using data from Chicago, Illinois by comparing model predictions against the National Transit Database (NTD) estimates. The results demonstrate that regenerative braking efficiency varies as an exponential function of the deceleration level, rather than an average constant as assumed in previous studies. The model predictions are demonstrated to be consistent with the NTD estimates, producing a predicted error ofmore » 1.87% and -2.31%. The paper demonstrates that energy recovery reduces the overall power consumption by 20% for the tested Chicago route. Furthermore, the paper demonstrates that the proposed modeling approach is able to capture energy consumption differences associated with train, route and operational parameters, and thus is applicable for project-level analysis. The model can be easily implemented in traffic simulation software, used in smartphone applications and eco-transit programs given its fast execution time and easy integration in complex frameworks.« less
Electric train energy consumption modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jinghui; Rakha, Hesham A.
For this paper we develop an electric train energy consumption modeling framework considering instantaneous regenerative braking efficiency in support of a rail simulation system. The model is calibrated with data from Portland, Oregon using an unconstrained non-linear optimization procedure, and validated using data from Chicago, Illinois by comparing model predictions against the National Transit Database (NTD) estimates. The results demonstrate that regenerative braking efficiency varies as an exponential function of the deceleration level, rather than an average constant as assumed in previous studies. The model predictions are demonstrated to be consistent with the NTD estimates, producing a predicted error ofmore » 1.87% and -2.31%. The paper demonstrates that energy recovery reduces the overall power consumption by 20% for the tested Chicago route. Furthermore, the paper demonstrates that the proposed modeling approach is able to capture energy consumption differences associated with train, route and operational parameters, and thus is applicable for project-level analysis. The model can be easily implemented in traffic simulation software, used in smartphone applications and eco-transit programs given its fast execution time and easy integration in complex frameworks.« less
Development of an energy storage tank model
NASA Astrophysics Data System (ADS)
Buckley, Robert Christopher
A linearized, one-dimensional finite difference model employing an implicit finite difference method for energy storage tanks is developed, programmed with MATLAB, and demonstrated for different applications. A set of nodal energy equations is developed by considering the energy interactions on a small control volume. The general method of solving these equations is described as are other features of the simulation program. Two modeling applications are presented: the first using a hot water storage tank with a solar collector and an absorption chiller to cool a building in the summer, the second using a molten salt storage system with a solar collector and steam power plant to generate electricity. Recommendations for further study as well as all of the source code generated in the project are also provided.
A Systematic Methodology for Constructing High-Order Energy-Stable WENO Schemes
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2008-01-01
A third-order Energy Stable Weighted Essentially Non-Oscillatory (ESWENO) finite difference scheme developed by Yamaleev and Carpenter (AIAA 2008-2876, 2008) was proven to be stable in the energy norm for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, a systematic approach is presented that enables \\energy stable" modifications for existing WENO schemes of any order. The technique is demonstrated by developing a one-parameter family of fifth-order upwind-biased ESWENO schemes; ESWENO schemes up to eighth order are presented in the appendix. New weight functions are also developed that provide (1) formal consistency, (2) much faster convergence for smooth solutions with an arbitrary number of vanishing derivatives, and (3) improved resolution near strong discontinuities.
A Systematic Methodology for Constructing High-Order Energy Stable WENO Schemes
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2009-01-01
A third-order Energy Stable Weighted Essentially Non{Oscillatory (ESWENO) finite difference scheme developed by Yamaleev and Carpenter [1] was proven to be stable in the energy norm for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, a systematic approach is presented that enables "energy stable" modifications for existing WENO schemes of any order. The technique is demonstrated by developing a one-parameter family of fifth-order upwind-biased ESWENO schemes; ESWENO schemes up to eighth order are presented in the appendix. New weight functions are also developed that provide (1) formal consistency, (2) much faster convergence for smooth solutions with an arbitrary number of vanishing derivatives, and (3) improved resolution near strong discontinuities.
Radio-frequency energy quantification in magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Alon, Leeor
Mapping of radio frequency (RF) energy deposition has been challenging for 50+ years, especially, when scanning patients in the magnetic resonance imaging (MRI) environment. As result, electromagnetic simulation software is often used for estimating the specific absorption rate (SAR), the rate of RF energy deposition in tissue. The thesis work presents challenges associated with aligning information provided by electromagnetic simulation and MRI experiments. As result of the limitations of simulations, experimental methods for the quantification of SAR were established. A system for quantification of the total RF energy deposition was developed for parallel transmit MRI (a system that uses multiple antennas to excite and image the body). The system is capable of monitoring and predicting channel-by-channel RF energy deposition, whole body SAR and capable of tracking potential hardware failures that occur in the transmit chain and may cause the deposition of excessive energy into patients. Similarly, we demonstrated that local RF power deposition can be mapped and predicted for parallel transmit systems based on a series of MRI temperature mapping acquisitions. Resulting from the work, we developed tools for optimal reconstruction temperature maps from MRI acquisitions. The tools developed for temperature mapping paved the way for utilizing MRI as a diagnostic tool for evaluation of RF/microwave emitting device safety. Quantification of the RF energy was demonstrated for both MRI compatible and non-MRI-compatible devices (such as cell phones), while having the advantage of being noninvasive, of providing millimeter resolution and high accuracy.
Recovery Act. Advanced Load Identification and Management for Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Casey, Patrick; Du, Liang
2014-02-12
In response to the U.S. Department of Energy (DoE)’s goal of achieving market ready, net-zero energy residential and commercial buildings by 2020 and 2025, Eaton partnered with the Department of Energy’s National Renewable Energy Laboratory (NREL) and Georgia Institute of Technology to develop an intelligent load identification and management technology enabled by a novel “smart power strip” to provide critical intelligence and information to improve the capability and functionality of building load analysis and building power management systems. Buildings account for 41% of the energy consumption in the United States, significantly more than either transportation or industrial. Within the buildingmore » sector, plug loads account for a significant portion of energy consumption. Plug load consumes 15-20% of building energy on average. As building managers implement aggressive energy conservation measures, the proportion of plug load energy can increase to as much as 50% of building energy leaving plug loads as the largest remaining single source of energy consumption. This project focused on addressing plug-in load control and management to further improve building energy efficiency accomplished through effective load identification. The execution of the project falls into the following three major aspects; An intelligent load modeling, identification and prediction technology was developed to automatically determine the type, energy consumption, power quality, operation status and performance status of plug-in loads, using electric waveforms at a power outlet level. This project demonstrated the effectiveness of the developed technology through a large set of plug-in loads measurements and testing; A novel “Smart Power Strip (SPS) / Receptacle” prototype was developed to act as a vehicle to demonstrate the feasibility of load identification technology as a low-cost, embedded solution; and Market environment for plug-in load control and management solutions, in particular, advanced power strips (APSs) was studied. The project evaluated the market potential for Smart Power Strips (SPSs) with load identification and the likely impact of a load identification feature on APS adoption and effectiveness. The project also identified other success factors required for widespread APS adoption and market acceptance. Even though the developed technology is applicable for both residential and commercial buildings, this project is focused on effective plug-in load control and management for commercial buildings, accomplished through effective load identification. The project has completed Smart Receptacle (SR) prototype development with integration of Load ID, Control/Management, WiFi communication, and Web Service. Twenty SR units were built, tested, and demonstrated in the Eaton lab; eight SR units were tested in the National Renewable Energy Lab (NREL) for one-month of field testing. Load ID algorithm testing for extended load sets was conducted within the Eaton facility and at local university campuses. This report is to summarize the major achievements, activities, and outcomes under the execution of the project.« less
Development of magnesium diboride (MgB 2) wires and magnets using in situ strand fabrication method
NASA Astrophysics Data System (ADS)
Tomsic, Michael; Rindfleisch, Matthew; Yue, Jinji; McFadden, Kevin; Doll, David; Phillips, John; Sumption, Mike D.; Bhatia, Mohit; Bohnenstiehl, Scot; Collings, E. W.
2007-06-01
Since 2001 when magnesium diboride (MgB 2) was first reported to have a transition temperature of 39 K, conductor development has progressed to where MgB 2 superconductor wire in kilometer-long piece-lengths has been demonstrated in magnets and coils. Work has started on demonstrating MgB 2 wire in superconducting devices now that the wire is available commercially. MgB 2 superconductors and coils have the potential to be integrated in a variety of commercial applications such as magnetic resonance imaging, fault current limiters, transformers, motors, generators, adiabatic demagnetization refrigerators, magnetic separation, magnetic levitation, energy storage, and high energy physics applications. This paper discusses the progress on MgB 2 conductor and coil development in the last several years at Hyper Tech Research, Inc.
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Ethridge, E. C.; Hudson, S. B.; Miller, T. Y.; Grugel, R. N.; Sen, S.; Sadoway, D. R.
2006-01-01
The purpose of this Focus Area Independent Research and Development project was to conduct, at Marshall Space Flight Center, an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis process to produce oxygen and metal. In essence, the vision was to develop two key technologies, the first to produce materials (oxygen, metals, and silicon) from lunar resources and the second to produce energy by photocell production on the Moon using these materials. Together, these two technologies have the potential to greatly reduce the costs and risks of NASA s human exploration program. Further, it is believed that these technologies are the key first step toward harvesting abundant materials and energy independent of Earth s resources.
Electromechanical flight control actuator. [for space shuttles
NASA Technical Reports Server (NTRS)
1976-01-01
An electromechanical actuator that will follow a proportional control command with minimum wasted energy is developed. The feasibility of meeting space vehicle actuator requirements using advanced electromechanical concepts is demonstrated. Recommendations for further development are given.
Concentrating Solar Power Projects - ASE Demo Plant | Concentrating Solar
: Parabolic trough Turbine Capacity: Gross: 0.35 MW Status: Operational Start Year: 2013 Do you have more Start Production: 2013 Project Type: Demonstration Participants Developer(s): Archimede Solar Energy
Advanced Communication and Control Solutions of Distributed Energy Resources (DER)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asgeirsson, Haukur; Seguin, Richard; Sherding, Cameron
2007-01-10
This report covers work performed in Phase II of a two phase project whose objective was to demonstrate the aggregation of multiple Distributed Energy Resources (DERs) and to offer them into the energy market. The Phase I work (DE-FC36-03CH11161) created an integrated, but distributed, system and procedures to monitor and control multiple DERs from numerous manufacturers connected to the electric distribution system. Procedures were created which protect the distribution network and personnel that may be working on the network. Using the web as the communication medium for control and monitoring of the DERs, the integration of information and security wasmore » accomplished through the use of industry standard protocols such as secure SSL,VPN and ICCP. The primary objective of Phase II was to develop the procedures for marketing the power of the Phase I aggregated DERs in the energy market, increase the number of DER units, and implement the marketing procedures (interface with ISOs) for the DER generated power. The team partnered with the Midwest Independent System Operator (MISO), the local ISO, to address the energy market and demonstrate the economic dispatch of DERs in response to market signals. The selection of standards-based communication technologies offers the ability of the system to be deployed and integrated with other utilities’ resources. With the use of a data historian technology to facilitate the aggregation, the developed algorithms and procedures can be verified, audited, and modified. The team has demonstrated monitoring and control of multiple DERs as outlined in phase I report including procedures to perform these operations in a secure and safe manner. In Phase II, additional DER units were added. We also expanded on our phase I work to enhance communication security and to develop the market model of having DERs, both customer and utility owned, participate in the energy market. We are proposing a two-part DER energy market model--a utility need business model and an independent energy aggregator-business model. The approach of developing two group models of DER energy participation in the market is unique. The Detroit Edison (DECo, Utility)-led team includes: DTE Energy Technologies (Dtech, DER provider), Electrical Distribution Design (EDD, Virginia Tech company supporting EPRI’s Distribution Engineering Workstation, DEW), Systems Integration Specialists Company (SISCO, economic scheduling and real-time protocol integrator), and OSIsoft (PI software system for managing real-time information). This team is focused on developing the application engineering, including software systems necessary for DER’s integration, control and sale into the market place. Phase II Highlights Installed and tested an ICCP link with SSL (security) between DECo, the utility, and DTE Energy Technologies (DTECH), the aggregator, making DER data available to the utility for both monitoring and control. Installed and tested PI process book with circuit & DER operational models for DECo SOC/ROC operator’s use for monitoring of both utility circuit and customer DER parameters. The PI Process Book models also included DER control for the DECo SOC/ROC operators, which was tested and demonstrated control. The DER Tagging and Operating Procedures were developed, which allowed that control to be done in a safe manner, were modified for required MOC/MISO notification procedures. The Distribution Engineering Workstation (DEW) was modified to include temperature normalized load research statistics, using a 30 hour day-ahead weather feed. This allowed day-ahead forecasting of the customer load profile and the entire circuit to determine overload and low voltage problems. This forecast at the point of common coupling was passed to DTech DR SOC for use in their economic dispatch algorithm. Standard Work Instructions were developed for DER notification, sale, and operation into the MISO market. A software mechanism consisting of a suite of new and revised functionality was developed that integrated with the local ISO such that offers can be made electronically without human intervention. A suite of software was developed by DR SOC enabling DER usage in real time and day-ahead: Generation information file exchange with PI and the utility power flow A utility day-ahead information file Energy Offer Web Service Market Result Web Service Real-Time Meter Data Web Service Real-Time Notification Web Service Registered over 20 DER with MISO in Demand Response Market and demonstrated electronic sale to MISO.« less
Ocean Thermal Energy Conversion (OTEC) program. FY 1977 program summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1978-01-01
An overview is given of the ongoing research, development, and demonstration efforts. Each of the DOE's Ocean Thermal Energy Conversion projects funded during fiscal year 1977 (October 1, 1976 through September 30, 1977) is described and each project's status as of December 31, 1977 is reflected. These projects are grouped as follows: program support, definition planning, engineering development, engineering test and evaluation, and advanced research and technology. (MHR)
Wavefront sensing and control aspects in a high energy laser optical train
NASA Astrophysics Data System (ADS)
Bartosewcz, M.; Bareket, N.
1981-01-01
In this paper we review the major elements of a HEL (high energy laser) wavefront sensing and control system with particular emphasis on experimental demonstrations and hardware components developed at Lockheed Missiles & Space Company, Inc. The review concentrates on three important elements of wavefront control: wavefront sampling, wavefront sensing and active mirrors. Methods of wavefront sampling by diffraction gratings are described. Some new developments in wavefront sensing are explored. Hardware development efforts of fast steering mirrors and edge controlled deformable mirrors are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Hai; Tsai, Hai-Lung; Dong, Junhang
2014-09-30
This is the final report for the program “Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments”, funded by NETL, and performed by Missouri University of Science and Technology, Clemson University and University of Cincinnati from October 1, 2009 to September 30, 2014. Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is a central element to the mission of The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensor technologiesmore » that can function under the extreme operating conditions often found in advanced power systems. The main objective of this research program is to conduct fundamental and applied research that will lead to successful development and demonstration of robust, multiplexed, microstructured silica and single-crystal sapphire fiber sensors to be deployed into the hot zones of advanced power and fuel systems for simultaneous measurements of high temperature and gas pressure. The specific objectives of this research program include: 1) Design, fabrication and demonstration of multiplexed, robust silica and sapphire fiber temperature and dynamic gas pressure sensors that can survive and maintain fully operational in high-temperature harsh environments. 2) Development and demonstration of a novel method to demodulate the multiplexed interferograms for simultaneous measurements of temperature and gas pressure in harsh environments. 3) Development and demonstration of novel sapphire fiber cladding and low numerical aperture (NA) excitation techniques to assure high signal integrity and sensor robustness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liss, W.; Dybel, M.; West, R.
This report covers the first year's work performed by the Gas Technology Institute and Encorp Inc. under subcontract to the National Renewable Energy Laboratory. The objective of this three-year contract is to develop innovative grid interconnection and control systems. This supports the advancement of distributed generation in the marketplace by making installations more cost-effective and compatible across the electric power and energy management systems. Specifically, the goals are: (1) To develop and demonstrate cost-effective distributed power grid interconnection products and software and communication solutions applicable to improving the economics of a broad range of distributed power systems, including existing, emerging,more » and other power generation technologies. (2) To enhance the features and capabilities of distributed power products to integrate, interact, and provide operational benefits to the electric power and advanced energy management systems. This includes features and capabilities for participating in resource planning, the provision of ancillary services, and energy management. Specific topics of this report include the development of an advanced controller, a power sensing board, expanded communication capabilities, a revenue-grade meter interface, and a case study of an interconnection distributed power system application that is a model for demonstrating the functionalities of the design of the advanced controller.« less
Ultralow-frequency PiezoMEMS energy harvester using thin-film silicon and parylene substrates
NASA Astrophysics Data System (ADS)
Jackson, Nathan; Olszewski, Oskar Z.; O'Murchu, Cian; Mathewson, Alan
2018-01-01
Developing a self-sustained leadless pacemaker requires the development of an ultralow-frequency energy harvesting system that can fit within the required dimensions. This paper reports on the design and development of two types of PiezoMEMS energy harvesters that fit within the capsule dimensions and have a low resonant frequency between 20 to 30 Hz, which is required for the application. A bullet-shaped mass was designed to maximize the displacement and enhance power density of the devices. In addition, two types of devices were fabricated and compared (i) a silicon-based cantilever and (ii) a parylene-C-based cantilever with a thin aluminum nitride layer. The silicon device demonstrated higher peak power of 29.8 μW compared with the 6.4 μW for the parylene device. However, due to the low duty cycle of the heart rate and the damping factors of the two materials the average power was significantly higher for the parylene device (2.71 μW) compared with the silicon device (1.22 μW) per cantilever. The results demonstrate that a polymer-based energy harvester can increase the average power due to low damping for an impulse-based vibration application.
Temperature-gated thermal rectifier for active heat flow control.
Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang
2014-08-13
Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (<1%). To the best of our knowledge, this is the first demonstration of solid-state active-thermal devices with a large rectification in the Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage.
Power-grade butanol recovery and utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noon, R.
1982-02-12
As an alternative to the traditional recovery systems, it was proposed in a previous publication that the n-butanol/acetone/ethanol fermentation products could be recovered as a power grade fuel blend and used directly as a fuel. This would affect a savings in process energy requirements because each chemical component would not have to be processed individually to technical grade purity. Further, some residual water could be tolerated in the fuel blend. To develop such a power grade fuel recovery scheme beyond the conceptual stage, the Energy Research and Resource Division of the Kansas Energy Office undertook a two-fold program to demonstratemore » and test a power grade butanol/acetone/ethanol fuel recovery system, and further to demonstrate the feasibility of using the fuel blend in a standard type engine. A development program was initiated to accomplish the following objectives: design and test an operational power grade butanol recovery plant that would operate at one liter per hour output; and test and assess the performance of power grade butanol in a spark ignition automotive engine. This project has demonstrated that recovery of a power grade butanol fuel blend is simple and can be accomplished at a considered energy advantage over ethanol. It was further demonstrated that such a power grade blend works well in a typical spark ignition engine.« less
Experimental Demonstration of Technologies for Autonomous On-Orbit Robotic Assembly
NASA Technical Reports Server (NTRS)
LeMaster, Edward A.; Schaechter, David B.; Carrington, Connie K.
2006-01-01
The Modular Reconfigurable High Energy (MRHE) program aimed to develop technologies for the automated assembly and deployment of large-scale space structures and aggregate spacecraft. Part of the project involved creation of a terrestrial robotic testbed for validation and demonstration of these technologies and for the support of future development activities. This testbed was completed in 2005, and was thereafter used to demonstrate automated rendezvous, docking, and self-assembly tasks between a group of three modular robotic spacecraft emulators. This paper discusses the rationale for the MRHE project, describes the testbed capabilities, and presents the MRHE assembly demonstration sequence.
Pecan Street Grid Demonstration Program. Final technology performance report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This document represents the final Regional Demonstration Project Technical Performance Report (TPR) for Pecan Street Inc.’s (Pecan Street) Smart Grid Demonstration Program, DE-OE-0000219. Pecan Street is a 501(c)(3) smart grid/clean energy research and development organization headquartered at The University of Texas at Austin (UT). Pecan Street worked in collaboration with Austin Energy, UT, Environmental Defense Fund (EDF), the City of Austin, the Austin Chamber of Commerce and selected consultants, contractors, and vendors to take a more detailed look at the energy load of residential and small commercial properties while the power industry is undergoing modernization. The Pecan Street Smart Gridmore » Demonstration Program signed-up over 1,000 participants who are sharing their home or businesses’s electricity consumption data with the project via green button protocols, smart meters, and/or a home energy monitoring system (HEMS). Pecan Street completed the installation of HEMS in 750 homes and 25 commercial properties. The program provided incentives to increase the installed base of roof-top solar photovoltaic (PV) systems, plug-in electric vehicles with Level 2 charging, and smart appliances. Over 200 participants within a one square mile area took advantage of Austin Energy and Pecan Street’s joint PV incentive program and installed roof-top PV as part of this project. Of these homes, 69 purchased or leased an electric vehicle through Pecan Street’s PV rebate program and received a Level 2 charger from Pecan Street. Pecan Street studied the impacts of these technologies along with a variety of consumer behavior interventions, including pricing models, real-time feedback on energy use, incentive programs, and messaging, as well as the corresponding impacts on Austin Energy’s distribution assets.The primary demonstration site was the Mueller community in Austin, Texas. The Mueller development, located less than three miles from the Texas State Capitol, is a 711-acre LEED Neighborhood Development mixed-use, urban infill redevelopment on the site of Austin’s former airport, currently under development through a public-private project between the City of Austin, and Catellus Austin LLC. Currently, Mueller is less than 50% complete and more than 3,500 people live or work at Mueller. At full build-out, the project will include more than 3 million square feet of commercial and institutional space, more than 13,000 residents from approximately 5,700 single-family and multi-family dwelling units. Figure 1 shows a Google Map image of the Mueller community, zoomed in on the residential streets participating in the project.« less
Hazardous Waste Cleanup: Western New York Nuclear Service Center in West Valley, New York
This 3,300-acre site is located at 10282 Rock Springs Road in Ashford, New York and owned by New York State Energy Research & Development Authority (NYSERDA). A 167-acre portion is operated by the U.S. Department of Energy (See “West Valley Demonstration
Energy poverty: Electrification and well-being
NASA Astrophysics Data System (ADS)
Rahul Sharma, Karnamadakala; Chan, Gabriel
2016-11-01
Energy access entails a range of metrics that need to be monitored to guide planning and implementation of electricity provision in developing nations. A study based on an extensive household survey carried out in rural India demonstrates that electricity supply duration is the best predictor for satisfaction with electricity service.
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) has been identified for development into an efficient and environment friendly biomass energy crop. A recent five-year study demonstrated that switchgrass grown for biofuel production produced 540 percent more energy than what is needed to grow, harvest and process...
Code of Federal Regulations, 2010 CFR
2010-04-01
...) The history of the tribe's role in energy resource development, including negotiating and approval or disapproval of pre-existing energy-related leases, business agreements, and rights-of-way; (e) The... past performance monitoring activities undertaken by third parties under approved leases, business...
High Energy 2-Micron Laser Developments
NASA Technical Reports Server (NTRS)
Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.
2007-01-01
A master oscillator power amplifier, high energy Q-switched 2-micron laser system has been recently demonstrated. The laser and amplifiers are all designed in side-pumped rod configuration, pumped by back-cooled conductive packaged GaAlAs diode laser arrays. This 2-micron laser system provides nearly transform limited beam quality.
Laser safety research and modeling for high-energy laser systems
NASA Astrophysics Data System (ADS)
Smith, Peter A.; Montes de Oca, Cecilia I.; Kennedy, Paul K.; Keppler, Kenneth S.
2002-06-01
The Department of Defense has an increasing number of high-energy laser weapons programs with the potential to mature in the not too distant future. However, as laser systems with increasingly higher energies are developed, the difficulty of the laser safety problem increases proportionally, and presents unique safety challenges. The hazard distance for the direct beam can be in the order of thousands of miles, and radiation reflected from the target may also be hazardous over long distances. This paper details the Air Force Research Laboratory/Optical Radiation Branch (AFRL/HEDO) High-Energy Laser (HEL) safety program, which has been developed to support DOD HEL programs by providing critical capability and knowledge with respect to laser safety. The overall aim of the program is to develop and demonstrate technologies that permit safe testing, deployment and use of high-energy laser weapons. The program spans the range of applicable technologies, including evaluation of the biological effects of high-energy laser systems, development and validation of laser hazard assessment tools, and development of appropriate eye protection for those at risk.
NASA Astrophysics Data System (ADS)
Thangavel, Ranjith; Kannan, Aravindaraj G.; Ponraj, Rubha; Thangavel, Vigneysh; Kim, Dong-Won; Lee, Yun-Sung
2018-04-01
Development of supercapacitors with high energy density and long cycle life using sustainable materials for next-generation applications is of paramount importance. The ongoing challenge is to elevate the energy density of supercapacitors on par with batteries, while upholding the power and cyclability. In addition, attaining such superior performance with green and sustainable bio-mass derived compounds is very crucial to address the rising environmental concerns. Herein, we demonstrate the use of watermelon rind, a bio-waste from watermelons, towards high energy, and ultra-stable high temperature green supercapacitors with a high-voltage ionic liquid electrolyte. Supercapacitors assembled with ultra-high surface area, hierarchically porous carbon exhibits a remarkable performance both at room temperature and at high temperature (60 °C) with maximum energy densities of ∼174 Wh kg-1 (25 °C), and 177 Wh kg-1 (60 °C) - based on active mass of both electrodes. Furthermore, an ultra-high specific power of ∼20 kW kg-1 along with an ultra-stable cycling performance with 90% retention over 150,000 cycles has been achieved even at 60 °C, outperforming supercapacitors assembled with other carbon based materials. These results demonstrate the potential to develop high-performing, green energy storage devices using eco-friendly materials for next generation electric vehicles and other advanced energy storage systems.
The 2010 Field Demonstration of the Solar Carbothermal Reduction of Regolith to Produce Oxygen
NASA Technical Reports Server (NTRS)
Muscatello, Anthony; Gustafson, Robert (Bob)
2010-01-01
This slide presentation reviews a demonstration of the use of solar carbothermal reduction processing of regolith to produce oxygen and silicon from silica. A contractor developed the Carbothermal Regolith Reduction Module to demonstrate the extraction of oxygen from lunar regolith simulant using concentrated solar energy at a site that has similar terrain to the moon and Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossabi, J.; Jenkins, R.A.; Wise, M.B.
1993-12-31
The Department of Energy`s Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ``Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.`` New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise.more » Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure.« less
Large Energy Development Projects: Lessons Learned from Space and Politics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, Harrison H.
2005-04-15
The challenge to global energy future lies in meeting the needs and aspirations of the ten to twelve billion earthlings that will be on this planet by 2050. At least an eight-fold increase in annual production will be required by the middle of this century. The energy sources that can be considered developed and 'in the box' for consideration as sources for major increases in supply over the next half century are fossil fuels, nuclear fission, and, to a lesser degree, various forms of direct and stored solar energy and conservation. None of these near-term sources of energy will providemore » an eight-fold or more increase in energy supply for various technical, environmental and political reasons.Only a few potential energy sources that fall 'out of the box' appear worthy of additional consideration as possible contributors to energy demand in 2050 and beyond. These particular candidates are deuterium-tritium fusion, space solar energy, and lunar helium-3 fusion. The primary advantage that lunar helium-3 fusion will have over other 'out of the box' energy sources in the pre-2050 timeframe is a clear path into the private capital markets. The development and demonstration of new energy sources will require several development paths, each of Apollo-like complexity and each with sub-paths of parallel development for critical functions and components.« less
Understanding the Relationship Between Food Variety, Food Intake, and Energy Balance.
Raynor, Hollie A; Vadiveloo, Maya
2018-03-01
In accordance with US dietary guidance, incorporating variety into the diet can align with energy balance, though greater food variety in some categories may make energy balance more challenging. Thus, experimental and epidemiologic evidence is summarized on the relationship between food variety, food and energy intake, and energy balance. Lab-based, experimental research consistently demonstrates that greater variety within foods or sensory characteristics of food increases food and energy intake within an eating occasion. Epidemiologic evidence is less consistent, potentially driven by differing methodologies, particularly in defining and measuring food variety. Moreover, the effect of variety on energy balance appears to be moderated by food energy density. Integrating insights from experimental and epidemiologic research are essential for strengthening food variety guidance including developing evidence-based definitions of food variety, understanding moderators of the relationship, and developing practical guidance interpretable to consumers.
GAIN Technology Workshops Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori Ann
National and global demand for nuclear energy is increasing and United States (U.S.) global leadership is eroding. There is a sense of urgency with respect to the deployment of the innovative nuclear energy technologies. The Gateway for Accelerated Innovation in Nuclear (GAIN) initiative is based on the simultaneous achievement of three strategic goals. The first is maintaining global technology leadership within the U.S. Department of Energy (DOE). The second is enabling global industrial leadership for nuclear vendors and suppliers. The third is focused on utility optimization of nuclear energy within the clean energy portfolio. An effective public-private partnership is requiredmore » to achieve these goals. DOEs recognizes the recent sense of urgency new developers and investors have in getting their concepts to market. They know that time to market for nuclear technology takes too long and the facilities needed to conduct the necessary research, development and demonstration (RD&D) activities are very expensive to develop and maintain. Early technologies, in the lower technology readiness levels (TRL) need materials testing, analysis, modeling, code development, etc., most of which currently exists in the DOE national laboratory system. However, mature technologies typically need large component testing and demonstration facilities, which are expensive and long-lead efforts. By understanding the needs of advanced nuclear technology developers, GAIN will connect DOE national laboratory capabilities (e.g., facilities, expertise, materials, and data) with industry RD&D needs. In addition, GAIN is working with the Nuclear Regulatory Commission (NRC) to streamline processes and increase understanding of the licensing requirements for advanced reactors.« less
NASA Astrophysics Data System (ADS)
Scherr, Rachel E.; Robertson, Amy D.
2015-06-01
We observe teachers in professional development courses about energy constructing mechanistic accounts of energy transformations. We analyze a case in which teachers investigating adiabatic compression develop a model of the transformation of kinetic energy to thermal energy. Among their ideas is the idea that thermal energy is generated as a byproduct of individual particle collisions, which is represented in science education research literature as an obstacle to learning. We demonstrate that in this instructional context, the idea that individual particle collisions generate thermal energy is not an obstacle to learning, but instead is productive: it initiates intellectual progress. Specifically, this idea initiates the reconciliation of the teachers' energy model with mechanistic reasoning about adiabatic compression, and leads to a canonically correct model of the transformation of kinetic energy into thermal energy. We claim that the idea's productivity is influenced by features of our particular instructional context, including the instructional goals of the course, the culture of collaborative sense making, and the use of certain representations of energy.
Public budgets for energy RD&D and the effects on energy intensity and pollution levels.
Balsalobre, Daniel; Álvarez, Agustín; Cantos, José María
2015-04-01
This study, based on the N-shaped cubic model of the environmental Kuznets curve, analyzes the evolution of per capita greenhouse gas emissions (GHGpc) using not just economic growth but also public budgets dedicated to energy-oriented research development and demonstration (RD&D) and energy intensity. The empirical evidence, obtained from an econometric model of fixed effects for 28 OECD countries during 1994-2010, suggests that energy innovations help reduce GHGpc levels and mitigate the negative impact of energy intensity on environmental quality. When countries develop active energy RD&D policies, they can reduce both the rates of energy intensity and the level of GHGpc emissions. This paper incorporates a moderating variable to the econometric model that emphasizes the effect that GDP has on energy intensity. It also adds a variable that reflects the difference between countries that have made a greater economic effort in energy RD&D, which in turn corrects the GHG emissions resulting from the energy intensity of each country.
To, Tsz-Leung; Fadul, Michael J.; Shu, Xiaokun
2014-01-01
Many cellular processes are carried out by large protein complexes that can span several tens of nanometers. Whereas Forster resonance energy transfer has a detection range of <10 nm, here we report the theoretical development and experimental demonstration of a new fluorescence imaging technology with a detection range of up to several tens of nanometers: singlet oxygen triplet energy transfer. We demonstrate that our method confirms the topology of a large protein complex in intact cells, which spans from the endoplasmic reticulum to the outer mitochondrial membrane and the matrix. This new method is thus suited for mapping protein proximity in large protein complexes. PMID:24905026
Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis.
Berglund, Eric D; Liu, Chen; Sohn, Jong-Woo; Liu, Tiemin; Kim, Mi Hwa; Lee, Charlotte E; Vianna, Claudia R; Williams, Kevin W; Xu, Yong; Elmquist, Joel K
2013-12-01
Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor agonists on energy and glucose homeostasis are unknown. Here, we show that mice lacking serotonin 2C receptors (Htr2c) specifically in pro-opiomelanocortin (POMC) neurons had normal body weight but developed glucoregulatory defects including hyperinsulinemia, hyperglucagonemia, hyperglycemia, and insulin resistance. Moreover, these mice did not show anorectic responses to serotonergic agents that suppress appetite and developed hyperphagia and obesity when they were fed a high-fat/high-sugar diet. A requirement of serotonin 2C receptors in POMC neurons for the maintenance of normal energy and glucose homeostasis was further demonstrated when Htr2c loss was induced in POMC neurons in adult mice using a tamoxifen-inducible POMC-cre system. These data demonstrate that serotonin 2C receptor-expressing POMC neurons are required to control energy and glucose homeostasis and implicate POMC neurons as the target for the effect of serotonin 2C receptor agonists on weight-loss induction and improved glycemic control.
Silicon-Based Lithium-Ion Capacitor for High Energy and High Power Application
NASA Technical Reports Server (NTRS)
Wu, James J.; Demattia, Brianne; Loyselle, Patricia; Reid, Concha; Kohout, Lisa
2017-01-01
Si-based Li-ion capacitor has been developed and demonstrated. The results show it is feasible to improve both power density and energy density in this configuration. The applied current density impacts the power and energy density: low current favors energy density while high current favors power density. Active carbon has a better rate capability than Si. Next StepsFuture Directions. Si electrode needs to be further studied and improved. Further optimization of SiAC ratio and evaluation of its impact on energy density and power density.
Development of an Enhanced Payback Function for the Superior Energy Performance Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Therkelsen, Peter; Rao, Prakash; McKane, Aimee
2015-08-03
The U.S. DOE Superior Energy Performance (SEP) program provides recognition to industrial and commercial facilities that achieve certification to the ISO 50001 energy management system standard and third party verification of energy performance improvements. Over 50 industrial facilities are participating and 28 facilities have been certified in the SEP program. These facilities find value in the robust, data driven energy performance improvement result that the SEP program delivers. Previous analysis of SEP certified facility data demonstrated the cost effectiveness of SEP and identified internal staff time to be the largest cost component related to SEP implementation and certification. This papermore » analyzes previously reported and newly collected data of costs and benefits associated with the implementation of an ISO 50001 and SEP certification. By disaggregating “sunk energy management system (EnMS) labor costs”, this analysis results in a more accurate and detailed understanding of the costs and benefits of SEP participation. SEP is shown to significantly improve and sustain energy performance and energy cost savings, resulting in a highly attractive return on investment. To illustrate these results, a payback function has been developed and is presented. On average facilities with annual energy spend greater than $2M can expect to implement SEP with a payback of less than 1.5 years. Finally, this paper also observes and details decreasing facility costs associated with implementing ISO 50001 and certifying to the SEP program, as the program has improved from pilot, to demonstration, to full launch.« less
Nuclear electric propulsion development and qualification facilities
NASA Technical Reports Server (NTRS)
Dutt, D. S.; Thomassen, K.; Sovey, J.; Fontana, Mario
1991-01-01
This paper summarizes the findings of a Tri-Agency panel consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD) that were charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1) a thruster developmental testing facility, (2) a thruster lifetime testing facility, (3) a dynamic energy conversion development and demonstration facility, and (4) an advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualifications and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000's.
A workshop will be conducted to demonstrate and focus on two decision support tools developed at EPA/ORD: 1. Community-scale MARKAL model: an energy-water technology evaluation tool and 2. Municipal Solid Waste Decision Support Tool (MSW DST). The Workshop will be part of Southea...
ERIC Educational Resources Information Center
Wangdi, Dumcho; Kanthang, Paisan; Precharattana, Monamorn
2017-01-01
This paper attempts to investigate the understanding of the law of mechanical energy conservation using a guided inquiry approach. A simple hands-on model was constructed and used to demonstrate the law of mechanical energy conservation. A total of 30 grade ten students from one of the middle secondary schools in western Bhutan participated in…
Fabric-based integrated energy devices for wearable activity monitors.
Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong
2014-09-01
A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Weatherization and Intergovernmental Programs Office FY 2017 Budget At-A-Glance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-03-01
The Weatherization and Intergovernmental Programs (WIP) Office is part of EERE’s balanced research, development, demonstration, and deployment approach to accelerate America’s transition to a clean energy economy. WIP’s mission is to partner with state and local organizations to improve energy security and to significantly accelerate the deployment of clean energy technologies and practices by a wide range of government, community, and business stakeholders.
NASA Technical Reports Server (NTRS)
Warrick, J. C.; Desjardins, S. P.
1979-01-01
This report presents the methodology and results of a program conducted to develop two underseat energy absorber (E/A) concepts for application to nonadjustable crashworthy passenger seats for general aviation aircraft. One concept utilizes an inflated air bag, and the other, a convoluted sheet metal bellows. Prototypes of both were designed, built, and tested. Both concepts demonstrated the necessary features of an energy absorber (load-limiter); however, the air bag concept is particularly encouraging because of its light weight. Several seat frame concepts also were investigated as a means of resisting longitudinal and lateral loads and of guiding the primary vertical stroke of the underseat energy absorber. Further development of a seat system design using the underseat energy absorbers is recommended because they provide greatly enhanced crash survivability as compared with existing general aviation aircraft seats.
Irvine Smart Grid Demonstration, a Regional Smart Grid Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yinger, Robert; Irwin, Mark
ISGD was a comprehensive demonstration that spanned the electricity delivery system and extended into customer homes. The project used phasor measurement technology to enable substation-level situational awareness, and demonstrated SCE’s next-generation substation automation system. It extended beyond the substation to evaluate the latest generation of distribution automation technologies, including looped 12-kV distribution circuit topology using URCIs. The project team used DVVC capabilities to demonstrate CVR. In customer homes, the project evaluated HAN devices such as smart appliances, programmable communicating thermostats, and home energy management components. The homes were also equipped with energy storage, solar PV systems, and a number ofmore » energy efficiency measures (EEMs). The team used one block of homes to evaluate strategies and technologies for achieving ZNE. A home achieves ZNE when it produces at least as much renewable energy as the amount of energy it consumes annually. The project also assessed the impact of device-specific demand response (DR), as well as load management capabilities involving energy storage devices and plug-in electric vehicle charging equipment. In addition, the ISGD project sought to better understand the impact of ZNE homes on the electric grid. ISGD’s SENet enabled end-to-end interoperability between multiple vendors’ systems and devices, while also providing a level of cybersecurity that is essential to smart grid development and adoption across the nation. The ISGD project includes a series of sub-projects grouped into four logical technology domains: Smart Energy Customer Solutions, Next-Generation Distribution System, Interoperability and Cybersecurity, and Workforce of the Future. Section 2.3 provides a more detailed overview of these domains.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawyer, Karma; Green, Johney; Jackson, Roderick
ORNL and many industry partners developed the Additive Manufacturing Integrated Energy (AMIE) demonstration to address electricity supply and reliability challenges via an integrated approach to power generation, storage, and use. AMIE demonstrates rapid innovation through additive manufacturing (3D printing) to connect a natural gas-powered hybrid electric vehicle to a high-performance building that produces, consumes, and stores renewable energy. To offset power supply disruptions, the vehicle’s engine can provide complementary power to the building. Fitted with an advanced power control system and then scaled up, this concept can support electricity needs worldwide.
Sawyer, Karma; Green, Johney; Jackson, Roderick; Love, Lonnie
2018-01-16
ORNL and many industry partners developed the Additive Manufacturing Integrated Energy (AMIE) demonstration to address electricity supply and reliability challenges via an integrated approach to power generation, storage, and use. AMIE demonstrates rapid innovation through additive manufacturing (3D printing) to connect a natural gas-powered hybrid electric vehicle to a high-performance building that produces, consumes, and stores renewable energy. To offset power supply disruptions, the vehicleâs engine can provide complementary power to the building. Fitted with an advanced power control system and then scaled up, this concept can support electricity needs worldwide.
Song, Mengmeng; Cheng, Mengjiao; Ju, Guannan; Zhang, Yajun; Shi, Feng
2014-11-05
A smart device that can dive or surface in aqueous medium has been developed by combining a pH-responsive surface with acid-responsive magnesium. The diving-surfacing cycles can be used to convert chemical energy into electricity. During the diving-surfacing motion, the smart device cuts magnetic flux lines and produces a current, demonstrating that motional energy can be realized by consuming chemical energy of magnesium, thus producing electricity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laboratory Directed Research and Development LDRD-FY-2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dena Tomchak
2012-03-01
This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.
Research opportunities to advance solar energy utilization.
Lewis, Nathan S
2016-01-22
Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Cushwa, C. T.; Laroche, G.; Dubrock, C. W.
1982-01-01
The U.S. Fish and Wildlife Service developed a statewide fish and wildlife data base for the Pennsylvania Game Commission that includes 125 categories of information on each of the 844 species. This species data base is integrated with geobased and remotely-sensed land use/land cover data from two sites in Pennsylvania. One site is an energy development project; the other is a high-energy use area. Analyses using the combined animal and land use data bases can be demonstrated for a variety of land use/land cover types at both sites. The ability to make "what if" analysis prior to project implementation is presented.
Lightweight, high-opacity paper : process costs and energy use reduction
John H. Klungness; Fabienne Pianta; Mathew L. Stroika; Marguerite Sykes; Freya Tan; Said AbuBakr
1999-01-01
Fiber loading is an environmentally friendly, energy efficient, and economical method for depositing precipitated calcium carbonate (PCC) partly within pulp fibers. Fiber loading can easily be done within the existing pulp processing system. This paper is a review of the process development from bench-scale to industrial-scale demonstrations, with additional...
Predicting Human Thermal Comfort in Automobiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rugh, J.; Bharathan, D.; Chaney, L.
The objects of this report are to: (1) increase national energy security by reducing fuel use for vehicle climate control systems; (2) show/demonstrate technology that can reduce the fuel used by LD vehicles' ancillary systems; and (3) develop tools to evaluate the effectiveness of energy-efficient systems including--comfort, cost, practicality, ease-of-use, and reliability.
The Simbol-X Low Energy Detector
NASA Astrophysics Data System (ADS)
Lechner, Peter
2009-05-01
For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.
Thermoelectric Waste Heat Recovery Program for Passenger Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jovovic, Vladimir
2015-12-31
Gentherm began work in October 2011 to develop a Thermoelectric Waste Energy Recovery System for passenger vehicle applications. Partners in this program were BMW and Tenneco. Tenneco, in the role of TIER 1 supplier, developed the system-level packaging of the thermoelectric power generator. As the OEM, BMW Group demonstrated the TEG system in their vehicle in the final program phase. Gentherm demonstrated the performance of the TEG in medium duty and heavy duty vehicles. Technology developed and demonstrated in this program showed potential to reduce fuel consumption in medium and heavy duty vehicles. In light duty vehicles it showed moremore » modest potential.« less
INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
FuelCell Energy
2005-05-16
With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP Vmore » Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.« less
HEDP and new directions for fusion energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, Ronald C
2009-01-01
The Quest for fusion energy has a long history and the demonstration of thermonuclear energy release in 1951 represented a record achievement for high energy density. While this first demonstration was in response to the extreme fears of mankind, it also marked the beginning of a great hope that it would usher in an era of boundless cheap energy. In fact, fusion still promises to be an enabling technology that can be compared to the prehistoric utilization of fire. Why has the quest for fusion energy been so long on promises and so short in fulfillment? This paper briefly reviewsmore » past approaches to fusion energy and suggests new directions. By putting aside the old thinking and vigorously applying our experimental, computational and theoretical tools developed over the past decades we should be able to make rapid progress toward satisfying an urgent need. Fusion not only holds the key to abundant green energy, but also promises to enable deep space missions and the creation of rare elements and isotopes for wide-ranging industrial applications and medical diagnostics.« less
Lindblad, Peter; Lindberg, Pia; Oliveira, Paulo; Stensjö, Karin; Heidorn, Thorsten
2012-01-01
There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H(2) production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabharwall, Piyush; O'Brien, James E.; McKellar, Michael G.
2015-03-01
Hybrid energy system research has the potential to expand the application for nuclear reactor technology beyond electricity. The purpose of this research is to reduce both technical and economic risks associated with energy systems of the future. Nuclear hybrid energy systems (NHES) mitigate the variability of renewable energy sources, provide opportunities to produce revenue from different product streams, and avoid capital inefficiencies by matching electrical output to demand by using excess generation capacity for other purposes when it is available. An essential step in the commercialization and deployment of this advanced technology is scaled testing to demonstrate integrated dynamic performancemore » of advanced systems and components when risks cannot be mitigated adequately by analysis or simulation. Further testing in a prototypical environment is needed for validation and higher confidence. This research supports the development of advanced nuclear reactor technology and NHES, and their adaptation to commercial industrial applications that will potentially advance U.S. energy security, economy, and reliability and further reduce carbon emissions. Experimental infrastructure development for testing and feasibility studies of coupled systems can similarly support other projects having similar developmental needs and can generate data required for validation of models in thermal energy storage and transport, energy, and conversion process development. Experiments performed in the Systems Integration Laboratory will acquire performance data, identify scalability issues, and quantify technology gaps and needs for various hybrid or other energy systems. This report discusses detailed scaling (component and integrated system) and heat transfer figures of merit that will establish the experimental infrastructure for component, subsystem, and integrated system testing to advance the technology readiness of components and systems to the level required for commercial application and demonstration under NHES.« less
Utility experience with two demonstration wind turbine generators
NASA Astrophysics Data System (ADS)
Wehrey, M. C.
Edison has committed 360 MW of nameplate generating capacity to wind energy by year 1990 in its long-range generation plan. To reach this goal the Company's wind energy program focuses on three areas: the continuous evaluation of the wind resource, the hands-on demonstration of wind turbine generators (WTG) and an association with wind park developers. Two demonstration WTGs have been installed and operated at Edison's Wind Energy Center near Palm Springs, California: a 3 MW horizontal axis Bendix/Schachle WTG and a 500 kW vertical axis Alcoa WTG. They are part of a one to two year test program during which the performance of the WTGs will be evaluated, their system operation and environmental impact will be assessed and the design criteria of future WTGs will be identified. Edison's experience with these two WTGs is summarized and the problems encountered with the operation of the two machines are discussed.
Yan, Yong; Crisp, Ryan W.; Gu, Jing; ...
2017-04-03
Multiple exciton generation (MEG) in quantum dots (QDs) has the potential to greatly increase the power conversion efficiency in solar cells and in solar-fuel production. During the MEG process, two electron-hole pairs (excitons) are created from the absorption of one high-energy photon, bypassing hot-carrier cooling via phonon emission. Here we demonstrate that extra carriers produced via MEG can be used to drive a chemical reaction with quantum efficiency above 100%. We developed a lead sulfide (PbS) QD photoelectrochemical cell that is able to drive hydrogen evolution from aqueous Na 2S solution with a peak external quantum efficiency exceeding 100%. QDmore » photoelectrodes that were measured all demonstrated MEG when the incident photon energy was larger than 2.7 times the bandgap energy. Finally, our results demonstrate a new direction in exploring high-efficiency approaches to solar fuels.« less
Utility experience with two demonstration wind turbine generators
NASA Technical Reports Server (NTRS)
Wehrey, M. C.
1982-01-01
Edison has committed 360 MW of nameplate generating capacity to wind energy by year 1990 in its long-range generation plan. To reach this goal the Company's wind energy program focuses on three areas: the continuous evaluation of the wind resource, the hands-on demonstration of wind turbine generators (WTG) and an association with wind park developers. Two demonstration WTGs have been installed and operated at Edison's Wind Energy Center near Palm Springs, California: a 3 MW horizontal axis Bendix/Schachle WTG and a 500 kW vertical axis Alcoa WTG. They are part of a one to two year test program during which the performance of the WTGs will be evaluated, their system operation and environmental impact will be assessed and the design criteria of future WTGs will be identified. Edison's experience with these two WTGs is summarized and the problems encountered with the operation of the two machines are discussed.
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen S.; ...
2018-03-24
Urban buildings account for up to 75% of total energy use in the United States (U.S.). Understanding urban building energy use is important for developing feasible options to mitigate energy use and greenhouse gas emissions. In this study, an improved bottom-up building energy use model, named City Building Energy Use Model (CityBEUM), was developed to estimate building energy use for all buildings in Polk County, Iowa. First, 28 commercial and 6 residential building prototypes were designed by combing Assessor's parcel data and building footprint data. Then, the EnergyPlus in the CityBEUM was calibrated for all building prototypes using the U.S.more » Energy Information Administration's survey data, monthly utility meter data, and actual weather data. Finally, spatial and temporal variations of building energy use in the study area were estimated using the CityBEUM. Results indicate that the spatial variation of building energy use in the study area can be captured using the CityBEUM. With the monthly-calibrated model, the temporal pattern of urban building energy use can be well represented. The comparison of building energy use using the Typical Meteorological Year and actual weather data demonstrates the importance of using actual weather data in building energy modeling for an improved temporal representation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen S.
Urban buildings account for up to 75% of total energy use in the United States (U.S.). Understanding urban building energy use is important for developing feasible options to mitigate energy use and greenhouse gas emissions. In this study, an improved bottom-up building energy use model, named City Building Energy Use Model (CityBEUM), was developed to estimate building energy use for all buildings in Polk County, Iowa. First, 28 commercial and 6 residential building prototypes were designed by combing Assessor's parcel data and building footprint data. Then, the EnergyPlus in the CityBEUM was calibrated for all building prototypes using the U.S.more » Energy Information Administration's survey data, monthly utility meter data, and actual weather data. Finally, spatial and temporal variations of building energy use in the study area were estimated using the CityBEUM. Results indicate that the spatial variation of building energy use in the study area can be captured using the CityBEUM. With the monthly-calibrated model, the temporal pattern of urban building energy use can be well represented. The comparison of building energy use using the Typical Meteorological Year and actual weather data demonstrates the importance of using actual weather data in building energy modeling for an improved temporal representation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scaglione, John M; Montgomery, Rose; Bevard, Bruce Balkcom
This test plan describes the experimental work to be implemented by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) to characterize high burnup (HBU) spent nuclear fuel (SNF) in conjunction with the High Burnup Dry Storage Cask Research and Development Project and serves to coordinate and integrate the multi-year experimental program to collect and develop data regarding the continued storage and eventual transport of HBU (i.e., >45 GWd/MTU) SNF. The work scope involves the development, performance, technical integration, and oversight of measurements and collection of relevant data, guided by analyses and demonstration of need.
Low-rank coal study: national needs for resource development. Volume 6. Peat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-11-01
The requirements and potential for development of US peat resources for energy use are reviewed. Factors analyzed include the occurrence and properties of major peat deposits; technologies for extraction, dewatering, preparation, combustion, and conversion of peat to solid, liquid, or gaseous fuels; environmental, regulatory, and market constraints; and research, development, and demonstration (RD and D) needs. Based on a review of existing research efforts, recommendations are made for a comprehensive national RD and D program to enhance the use of peat as an energy source.
Renewable energy-based electricity for rural social and economic development in Ghana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weingart, J.
1997-12-01
This paper describes a project whose goals include the establishment of a pilot renewable energy-based rural energy services enterprise to serve communities in the Mamprusi East District, focused on: economically productive activities; community services; household non-thermal energy. The program also seeks to establish the technical, economic, financial, institutional, and socio-cultural requirements for sustainability, to demonstrate bankability and financial sustainability, as a pre-investment prelude to commercial growth of such projects, and to establish technical, financial, and service performance standards for private sector rural energy service companies. This project is being implemented now because the government is undergoing structural reform, including privatizationmore » of the power sector, there is active foreign capital available for international development, and the government and people are committed to and able to pay for renewable energy services.« less
Space assets, technology and services in support of energy policy
NASA Astrophysics Data System (ADS)
Vasko, C. A.; Adriaensen, M.; Bretel, A.; Duvaux-Bechon, I.; Giannopapa, C. G.
2017-09-01
Space can be used as a tool by decision and policy makers in developing, implementing and monitoring various policy areas including resource management, environment, transport, security and energy. This paper focuses on the role of space for the energy policy. Firstly, the paper summarizes the European Union's (EU) main objectives in energy policy enclosed in the Energy Strategy 2020-2030-2050 and demonstrates how space assets can contribute to achieving those objectives. Secondly, the paper addresses how the European Space Agency (ESA) has established multiple initiatives and programs that directly finance the development of space assets, technology and applications that deliver services in support of the EU energy policy and sector. These efforts should be continued and strengthened in order to overcome identified technological challenges. The use of space assets, technology and applications, can help achieve the energy policy objectives for the next decades.
Evaluation of Savings in Energy-Efficient Public Housing in the Pacific Northwest
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-10-01
This report presents the results of an energy performance and cost-effectiveness analysis. The Salishan phase 7 and demonstration homes were compared to Salishan phase 6 homes built to 2006 Washington State Energy Code specifications 2. Predicted annual energy savings (over Salishan phase 6) was 19% for Salishan phase 7, and between 19-24% for the demonstration homes (depending on ventilation strategy). Approximately two-thirds of the savings are attributable to the DHP. Working with the electric utility provider, Tacoma Public Utilities, researchers conducted a billing analysis for Salishan phase 7. Median energy use for the development is 11,000 kWh; annual energy costsmore » are $780, with a fair amount of variation dependent on size of home. Preliminary analysis of savings between Salishan 7 and previous phases (4 through 6) suggest savings of between 20 and 30 percent. A more comprehensive comparison between Salishan 7 and previous phases will take place in year two of this project.« less
Evaluation of Savings in Energy-Efficient Public Housing in the Pacific Northwest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, A.; Lubliner, M.; Howard, L.
2013-10-01
This report presents the results of an energy performance and cost-effectiveness analysis. The Salishan phase 7 and demonstration homes were compared to Salishan phase 6 homes built to 2006 Washington State Energy Code specifications 2. Predicted annual energy savings (over Salishan phase 6) was 19% for Salishan phase 7, and between 19-24% for the demonstration homes (depending on ventilationstrategy). Approximately two-thirds of the savings are attributable to the DHP. Working with the electric utility provider, Tacoma Public Utilities, researchers conducted a billing analysis for Salishan phase 7. Median energy use for the development is 11,000 kWh; annual energy costs aremore » $780, with a fair amount of variation dependent on size of home. Preliminary analysis of savings betweenSalishan 7 and previous phases (4 through 6) suggest savings of between 20 and 30 percent. A more comprehensive comparison between Salishan 7 and previous phases will take place in year two of this project.« less
Derivation and application of the energy dissipation factor in the design of fishways
Towler, Brett; Mulligan, Kevin; Haro, Alexander J.
2015-01-01
Reducing turbulence and associated air entrainment is generally considered advantageous in the engineering design of fish passage facilities. The well-known energy dissipation factor, or EDF, correlates with observations of the phenomena. However, inconsistencies in EDF forms exist and the bases for volumetric energy dissipation rate criteria are often misunderstood. A comprehensive survey of EDF criteria is presented. Clarity in the application of the EDF and resolutions to these inconsistencies are provided through formal derivations; it is demonstrated that kinetic energy represents only 1/3 of the total energy input for the special case of a broad-crested weir. Specific errors in published design manuals are identified and resolved. New, fundamentally sound, design equations for culvert outlet pools and standard Denil Fishway resting pools are developed. The findings underscore the utility of EDF equations, demonstrate the transferability of volumetric energy dissipation rates, and provide a foundation for future refinement of component-, species-, and life-stage-specific EDF criteria.
NASA Astrophysics Data System (ADS)
Chan, Ngo Yeung
This study is aimed at improving the current ultrasound assisted oxidative desulfurization (UAOD) process by utilizing superoxide radical as oxidant. Research was also conducted to investigate the feasibility of ultraviolet (UV) irradiation-assisted desulfurization. These modifications can enhance the process with the following achievements: (1) Meet the upcoming sulfur standards on various fuels including diesel fuel oils and residual oils; (2) More efficient oxidant with significantly lower consumption in accordance with stoichiometry; (3) Energy saving by 90%; (4) Greater selectivity in petroleum composition. Currently, the UAOD process and subsequent modifications developed in University of Southern California by Professor Yen's research group have demonstrated high desulfurization efficiencies towards various fuels with the application of 30% wt. hydrogen peroxide as oxidant. The UAOD process has demonstrated more than 50% desulfurization of refractory organic sulfur compounds with the use of Venturella type catalysts. Application of quaternary ammonium fluoride as phase transfer catalyst has significantly improved the desulfurization efficiency to 95%. Recent modifications incorporating ionic liquids have shown that the modified UAOD process can produce ultra-low sulfur, or near-zero sulfur diesels under mild conditions with 70°C and atmospheric pressure. Nevertheless, the UAOD process is considered not to be particularly efficient with respect to oxidant and energy consumption. Batch studies have demonstrated that the UAOD process requires 100 fold more oxidant than the stoichiometic requirement to achieve high desulfurization yield. The expected high costs of purchasing, shipping and storage of the oxidant would reduce the practicability of the process. The excess use of oxidant is not economically desirable, and it also causes environmental and safety issues. Post treatments would be necessary to stabilize the unspent oxidant residual to prevent the waste stream from becoming reactive or even explosive. High energy consumption is another drawback in the UAOD process. A typical 10 minutes ultrasonication applied in the UAOD process to achieve 95% desulfurization for 20g of diesel requires 450 kJ of energy, which is equivalent to approximately 50% of the energy that can be provided by the treated diesel. This great expenditure of energy is impractical for industries to adopt. In this study, modifications of the UAOD process, including the application of superoxide and selection of catalysts, were applied to lower the oxidant dosage and to improve the applicability towards heavy-distillates such as residual oil. The results demonstrated that the new system required 80% less oxidant as compared to previous generations of UAOD process without the loss of desulfurization efficiency. The new system demonstrated its suitability towards desulfurizing commercial mid-distillates including jet fuels, marine gas oil and sour diesel. This process also demonstrated a new method to desulfurize residual oil with high desulfurization yields. The new process development has been supported by Eco Energy Solutions Inc., Reno, Nevada and Intelligent Energy Inc., Long Beach, California. A feasibility study on UV assisted desulfurization by replacing ultrasound with UV irradiation was also conducted. The study demonstrated that the UV assisted desulfurization process consumes 90% less energy than the comparable process using ultrasonication. These process modifications demonstrated over 98% desulfurization efficiency on diesel oils and more than 75% on residual oils with significantly less oxidant and energy consumption. Also the feasibility to desulfurize commercial sour heavy oil was demonstrated. Based on the UAOD process and the commercialized modifications by Wan and Cheng, the feasible applications of superoxide and UV irradiation in the UAOD process could provide deep-desulfurization on various fuels with practical cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, David G.; Cook, Marvin A.
This report summarizes collaborative efforts between Secure Scalable Microgrid and Korean Institute of Energy Research team members . The efforts aim to advance microgrid research and development towards the efficient utilization of networked microgrids . The collaboration resulted in the identification of experimental and real time simulation capabilities that may be leveraged for networked microgrids research, development, and demonstration . Additional research was performed to support the demonstration of control techniques within real time simulation and with hardware in the loop for DC microgrids .
Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2000-09-01
The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric powermore » marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.« less
Misquitta, Alston J; Stone, Anthony J; Price, Sarah L
2008-01-01
In part 1 of this two-part investigation we set out the theoretical basis for constructing accurate models of the induction energy of clusters of moderately sized organic molecules. In this paper we use these techniques to develop a variety of accurate distributed polarizability models for a set of representative molecules that include formamide, N-methyl propanamide, benzene, and 3-azabicyclo[3.3.1]nonane-2,4-dione. We have also explored damping, penetration, and basis set effects. In particular, we have provided a way to treat the damping of the induction expansion. Different approximations to the induction energy are evaluated against accurate SAPT(DFT) energies, and we demonstrate the accuracy of our induction models on the formamide-water dimer.
Energy recovery from solid waste. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
1975-01-01
A systems analysis of energy recovery from solid waste which demonstrates the feasibility of several processes for converting solid waste to an energy form is presented. The social, legal, environmental, and political factors are considered and recommendations made in regard to legislation and policy. A technical and economic evaluation of available and developing energy-recovery processes is given with emphasis on thermal decomposition and biodegradation. A pyrolysis process is suggested. The use of prepared solid waste as a fuel supplemental to coal is considered to be the most economic process for recovery of energy from solid waste. Markets are discussed with suggestions for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pivovar, Bryan
2017-03-31
Final report from the H2@Scale Workshop held November 16-17, 2016, at the National Renewable Energy Laboratory in Golden, Colorado. The U.S. Department of Energy's National Renewable Energy Laboratory hosted a technology workshop to identify the current barriers and research needs of the H2@Scale concept. H2@Scale is a concept regarding the potential for wide-scale impact of hydrogen produced from diverse domestic resources to enhance U.S. energy security and enable growth of innovative technologies and domestic industries. Feedback received from a diverse set of stakeholders at the workshop will guide the development of an H2@Scale roadmap for research, development, and early stagemore » demonstration activities that can enable hydrogen as an energy carrier at a national scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Wei; Gowri, Krishnan; Thornton, Brian A.
2010-06-30
This paper presents the process, methodology, and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document that provides specific recommendations for achieving 50% energy savings in roadside motels (highway lodging) above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004. This 50% solution represents a further step toward realization of the U.S. Department of Energy’s net-zero energy building goal, and go beyond the 30% savings in the Advanced Energy Design Guide series (upon which this work was built). This work can serve as the technical feasibility study for the development of a 50%more » saving Advanced Energy Design Guide for highway lodging, and thus should greatly expedite the development process. The purpose of this design package is to provide user-friendly design assistance to designers, developers, and owners of highway lodging properties. It is intended to encourage energy-efficient design by providing prescriptive energy-efficiency recommendations for each climate zone that attains the 50% the energy savings target. This paper describes the steps that were taken to demonstrate the technical feasibility of achieving a 50% reduction in whole-building energy use with practical and commercially available technologies. The energy analysis results are presented, indicating the recommended energy-efficient measures achieved a national-weighted average energy savings of 55%, relative to Standard 90.1-2004. The cost-effectiveness of the recommended technology package is evaluated and the result shows an average simple payback of 11.3 years.« less
Development of steady-state model for MSPT and detailed analyses of receiver
NASA Astrophysics Data System (ADS)
Yuasa, Minoru; Sonoda, Masanori; Hino, Koichi
2016-05-01
Molten salt parabolic trough system (MSPT) uses molten salt as heat transfer fluid (HTF) instead of synthetic oil. The demonstration plant of MSPT was constructed by Chiyoda Corporation and Archimede Solar Energy in Italy in 2013. Chiyoda Corporation developed a steady-state model for predicting the theoretical behavior of the demonstration plant. The model was designed to calculate the concentrated solar power and heat loss using ray tracing of incident solar light and finite element modeling of thermal energy transferred into the medium. This report describes the verification of the model using test data on the demonstration plant, detailed analyses on the relation between flow rate and temperature difference on the metal tube of receiver and the effect of defocus angle on concentrated power rate, for solar collector assembly (SCA) development. The model is accurate to an extent of 2.0% as systematic error and 4.2% as random error. The relationships between flow rate and temperature difference on metal tube and the effect of defocus angle on concentrated power rate are shown.
Headwater peatland channels in south-eastern Australia; the attainment of equilibrium
NASA Astrophysics Data System (ADS)
Nanson, R. A.; Cohen, T. J.
2014-05-01
Many small headwater catchments (< 50 km2) in temperate south-eastern Australia store sediment in valley fills. While accumulation in some of these systems commenced up to 30,000 years ago, most did not commence filling with peat or clastic material until at least the mid Holocene. In such headwater settings, many clastic valley fills develop cut-and-fill channels, which contrast to some peatland settings where sinuous equilibrium channels have evolved. Four peatland systems within this dataset demonstrate stable channel systems which span nearly the full spectrum of observed valley-floor slopes. We assess new and published longitudinal data from these four channels and demonstrate that each of these channels has achieved equilibrium profiles. New and published flow and survey data are synthesised to demonstrate how these peatland systems have attained equilibrium. Low rates of sediment supply and exceptionally high bank strengths have resulted in low width to depth ratios which accommodate rapid changes in flow velocity and depth with changes in discharge. In small peatland channels, planform adjustments have been sufficient to counter the energy provided by these hydraulically efficient cross-sections and have enabled the achievement of regime energy-slopes. In larger and higher energy peatland channels, large, armoured, stable, bedforms have developed. These bedforms integrate with planform adjustments to maintain a condition of minimum variance in energy losses as represented by the slope profiles and, therefore, a uniform increase in downstream entropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Walmart partnered with the U.S. Department of Energy (DOE) in 2009 to develop and demonstrate energy retrofits for existing buildings. The goal was to reduce energy consumption by at least 30% versus ASHRAE Standard 90.1-2007, as part of DOE's Commercial Building Partnerships (CBP) Program. The project presented here, the retrofit of a 213,000 square foot store in Centennial, Colorado, withefficiency measures across multiple building systems, is part of Walmart's ongoing environmental sustainability program, which originated in 2005.
Gao, Rui; Yan, Dongpeng
2017-01-01
Tuning and optimizing the efficiency of light energy transfer play an important role in meeting modern challenges of minimizing energy loss and developing high-performance optoelectronic materials. However, attempts to fabricate systems giving highly efficient energy transfer between luminescent donor and acceptor have achieved limited success to date. Herein, we present a strategy towards phosphorescence energy transfer at a 2D orderly crystalline interface. We first show that new ultrathin nanosheet materials giving long-afterglow luminescence can be obtained by assembling aromatic guests into a layered double hydroxide host. Furthermore, we demonstrate that co-assembly of these long-lived energy donors with an energy acceptor in the same host generates an ordered arrangement of phosphorescent donor-acceptor pairs spatially confined within the 2D nanogallery, which affords energy transfer efficiency as high as 99.7%. Therefore, this work offers an alternative route to develop new types of long-afterglow nanohybrids and efficient light transfer systems with potential energy, illumination and sensor applications.
Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, Vahan; O'Neill, Barbara
A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Officemore » selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlak, Gregory S.; Henze, Gregor P.; Hirsch, Adam I.
This paper demonstrates an energy signal tool to assess the system-level and whole-building energy use of an office building in downtown Denver, Colorado. The energy signal tool uses a traffic light visualization to alert a building operator to energy use which is substantially different from expected. The tool selects which light to display for a given energy end-use by comparing measured energy use to expected energy use, accounting for uncertainty. A red light is only displayed when a fault is likely enough, and abnormal operation costly enough, that taking action will yield the lowest cost result. While the theoretical advancesmore » and tool development were reported previously, it has only been tested using a basic building model and has not, until now, been experimentally verified. Expected energy use for the field demonstration is provided by a compact reduced-order representation of the Alliance Center, generated from a detailed DOE-2.2 energy model. Actual building energy consumption data is taken from the summer of 2014 for the office building immediately after a significant renovation project. The purpose of this paper is to demonstrate a first look at the building following its major renovation compared to the design intent. The tool indicated strong under-consumption in lighting and plug loads and strong over-consumption in HVAC energy consumption, which prompted several focused actions for follow-up investigation. In addition, this paper illustrates the application of Bayesian inference to the estimation of posterior parameter probability distributions to measured data. Practical discussion of the application is provided, along with additional findings from further investigating the significant difference between expected and actual energy consumption.« less
Building a Better Grid, in Partnership with the OMNETRIC Group and Siemens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waight, Jim; Grover, Shailendra; Wiedetz, Clark
In collaboration with Siemens and the National Renewable Energy Laboratory (NREL), OMNETRIC Group developed a distributed control hierarchy—based on an open field message bus (OpenFMB) framework—that allows control decisions to be made at the edge of the grid. The technology was validated and demonstrated at NREL’s Energy Systems Integration Facility.
Hurricanes, Coral Reefs and Rainforests: Resistance, Ruin and Recovery in the Caribbean
A. E. Lugo; C. S. Rogers; S. W Nixon
2000-01-01
The coexistence of hurricanes, coral reefs, and rainforests in the Caribbean demonstrates that highly structured ecosystems with great diversity can flourish in spite of recurring exposure to intense destructive energy. Coral reefs develop in response to wave energy and resist hurricanes largely by virtue of their structural strength. Limited fetch also protects some...
Optimum insulation thickness in wood-framed homes.
A.E. Oviatt
1975-01-01
New design methods must be developed to reduce energy waste in buildings. This study examines an economic approach to the design of thermal insulation in the home and demonstrates graphically that an optimum point of insulation thickness occurs where total costs of insulation and energy over the useful life of a building are a minimum. The optimum thickness thus...
Development and Evaluation of Control System for Microgrid Supplying Heat and Electricity
NASA Astrophysics Data System (ADS)
Kojima, Yasuhiro; Koshio, Masanobu; Nakamura, Shizuka
Photovoltaic (PV) and Wind Turbine (WT) generation systems are expected to offer solutions to reduce green house gases and become more widely used in the future. However, the chief technical drawback of using these kinds of weather-dependent generators is the difficulty of forecasting their output, which can have negative impacts on commercial grids if a large number of them are introduced. Thus, this problem may hinder the wider application of PV and WT generation systems. The Regional Power Grid with Renewable Energy Resources Project was launched to seek a solution to this problem. The scope of the project is to develop, operate, and evaluate a Dispersed Renewable Energy Supply System with the ability to adapt the total energy output in response to changes in weather and demand. Such a system would reduce the impact that PV and WT generation systems have on commercial grids and allow the interconnection of more Dispersed Energy Resources (DER). In other words, the main objective of this project is to demonstrate an integrated energy management system, or a type of microgrid [1], as a new way of introducing DERs. The system has been in operation since October 2005 and will continue operation until March 2008. Through the project period, the data on power quality, system efficiency, operation cost, and environmental burden will be gathered and a cost-benefit analysis of the system will be undertaken. In this paper, firstly we introduce the concept of microgrid for reducing negative impact of natural energy, and secondly illustrate the structure of electric and thermal supply control system for Microgrid, especially for the Hachinohe demonstration project. The control system consists of four stages; weekly operation planning, economic dispatching control, tie-line control and local frequency control. And finally demonstration results and evaluation results are shown.
NASA Astrophysics Data System (ADS)
Bruder, Daniel
2010-11-01
The DC Glow Discharge Exhibit is intended to demonstrate the effects a magnetic field produces on a plasma in a vacuum chamber. The display, which will be featured as a part of The Liberty Science Center's ``Energy Quest Exhibition,'' consists of a DC glow discharge tube and information panels to educate the general public on plasma and its relation to fusion energy. Wall posters and an information booklet will offer brief descriptions of fusion-based science and technology, and will portray plasma's role in the development of fusion as a viable source of energy. The display features a horse-shoe magnet on a movable track, allowing viewers to witness the effects of a magnetic field upon a plasma. The plasma is created from air within a vacuum averaging between 100-200 mTorr. Signage within the casing describes the hardware components. The display is pending delivery to The Liberty Science Center, and will replace a similar, older exhibit presently at the museum.
Present status of developing petroleum-substituting energy (EC)
NASA Astrophysics Data System (ADS)
1993-03-01
The EC has had approximately 50% of its total energy demand supplied by imports from the exterior of the Community. Hence, it is getting important to develop oil-substituting renewable energy as well as to curtail the emission of carbon dioxide. In consideration of these situations, the results of investigation on the energy policy of the European Community are described. The policy comprises three courses: European Energy Charter, formation of an open European Community energy market, and environmental conservation. Particularly, concerning the reduction of carbon dioxide emission, the EC Council has decided to introduce carbon dioxide taxation so as to suppress the carbon dioxide emission in the year 2000 to the 1990 level. The arrangement for its introduction, however, encountered with difficulties because of the opposition of various countries other than the European Community and the industrial world of the European Community. Legislation of the investment promotion law for energy saving and the construction of infrastructure footing and an information network are ineffective due to the sluggish fuel price and economic recession. A plurality of EC member countries are advancing a comprehensive activity within the framework of the joint programs of research, development, and demonstration set for the renewable energy policy ensuring energy supply and environmental harmonization.
High Temperature Transparent Furnace Development
NASA Technical Reports Server (NTRS)
Bates, Stephen C.
1997-01-01
This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.
A compressor designed for the energy research and development agency automotive gas turbine program
NASA Technical Reports Server (NTRS)
Galvas, M. R.
1975-01-01
A centrifugal compressor was designed for a gas turbine powered automobile as part of the Energy Research and Development Agency program to demonstrate emissions characteristics that meet 1978 standards with fuel economy and acceleration which are competitive with conventionally powered vehicles. A backswept impeller was designed for the compressor in order to attain the efficiency goal range required for the objectives of this program. Details of the design and method of flow analysis of the compressor are presented.
Solar heating and cooling technical data and systems analysis
NASA Technical Reports Server (NTRS)
Christensen, D. L.
1976-01-01
The acquisition and processing of selected parametric data for inclusion in a computerized Data Base using the Marshall Information Retrieval and Data System (MIRADS) developed by NASA-MSFC is discussed. This data base provides extensive technical and socioeconomic information related to solar energy heating and cooling on a national scale. A broadly based research approach was used to assist in the support of program management and the application of a cost-effective program for solar energy development and demonstration.
Plasmon-assisted radiolytic energy conversion in aqueous solutions
Kim, Baek Hyun; Kwon, Jae W.
2014-01-01
The field of conventional energy conversion using radioisotopes has almost exclusively focused on solid-state materials. Herein, we demonstrate that liquids can be an excellent media for effective energy conversion from radioisotopes. We also show that free radicals in liquid, which are continuously generated by beta radiation, can be utilized for electrical energy generation. Under beta radiation, surface plasmon obtained by the metallic nanoporous structures on TiO2 enhanced the radiolytic conversion via the efficient energy transfer between plasmons and free radicals. This work introduces a new route for the development of next-generation power sources. PMID:24918356
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwab, Amy
The Bioenergy Technologies Office is one of the 10 technology development offices within the Office of Energy Efficiency and Renewable Energy at the U.S. Department of Energy. This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office (the Office). It identifies the research, development, and demonstration (RD&D), and market transformation and crosscutting activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Officemore » manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.« less
Technical Potential Assessment for the Renewable Energy Zone (REZ) Process: A GIS-Based Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Nathan; Roberts, Billy J
Geographic Information Systems (GIS)-based energy resource and technical potential assessments identify areas capable of supporting high levels of renewable energy (RE) development as part of a Renewable Energy Zone (REZ) Transmission Planning process. This document expands on the REZ Process to aid practitioners in conducting GIS-based RE resource and technical potential assessments. The REZ process is an approach to plan, approve, and build transmission infrastructure that connects REZs - geographic areas that have high-quality RE resources, suitable topography and land-use designations, and demonstrated developer interest - to the power system. The REZ process helps to increase the share of solarmore » photovoltaic (PV), wind, and other resources while also maintaining reliability and economics.« less
Dish concentrators for solar thermal energy - Status and technology development
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1981-01-01
Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.
Energy efficient engine. Volume 1: Component development and integration program
NASA Technical Reports Server (NTRS)
1981-01-01
Technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines are developed, evaluated, and demonstrated. The four program objectives are: (1) propulsion system analysis; (2) component analysis, design, and development; (3) core design, fabrication, and test; and (4) integrated core/low spoon design, fabrication, and test.
Rep. Bartlett, Roscoe G. [R-MD-6
2011-01-05
House - 03/03/2011 Referred to the Subcommittee on Rural Development, Research, Biotechnology, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
General aviation crash safety program at Langley Research Center
NASA Technical Reports Server (NTRS)
Thomson, R. G.
1976-01-01
The purpose of the crash safety program is to support development of the technology to define and demonstrate new structural concepts for improved crash safety and occupant survivability in general aviation aircraft. The program involves three basic areas of research: full-scale crash simulation testing, nonlinear structural analyses necessary to predict failure modes and collapse mechanisms of the vehicle, and evaluation of energy absorption concepts for specific component design. Both analytical and experimental methods are being used to develop expertise in these areas. Analyses include both simplified procedures for estimating energy absorption capabilities and more complex computer programs for analysis of general airframe response. Full-scale tests of typical structures as well as tests on structural components are being used to verify the analyses and to demonstrate improved design concepts.
American Fuel Cell Bus Project Evaluation. Second Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew
2015-09-01
This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Administration's (FTA's) National Fuel Cell Bus Program. Through the non-profit consortia CALSTART, a team led by SunLine Transit Agency and BAE Systems developed a new fuel cell electric bus for demonstration. SunLine added two more AFCBs to its fleet in 2014 and another in 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE) and DOE'smore » National Renewable Energy Laboratory to evaluate the buses in revenue service. This report summarizes the performance results for the buses through June 2015.« less
Development of the Second-Generation Oscillating Surge Wave Energy Converter with Variable Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan M; Yu, Yi-Hsiang; Thresher, Robert W
This study investigates the effect of design changes on the hydrodynamics of a novel oscillating surge wave energy converter being developed at the National Renewable Energy Laboratory. The design utilizes controllable geometry features to shed structural loads while maintaining a rated power over a greater number of sea states. The second-generation design will seek to provide a more refined control of performance because the first-generation design demonstrated performance reductions considered too large for smooth power output. Performance is evaluated using frequency domain analysis with consideration of a nonideal power-take-off system, with respect to power absorption, foundation loads, and power-take-off torque.
Facilities and Infrastructure FY 2017 Budget At-A-Glance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-03-01
The Facilities and Infrastructure Program includes EERE’s capital investments, operations and maintenance, and site-wide support of the National Renewable Energy Laboratory (NREL). It is the nation’s only national laboratory with a primary mission dedicated to the research, development and demonstration (RD&D) of energy efficiency, renewable energy and related technologies. EERE is NREL’s steward, primary client and sponsor of NREL’s designation as a Federally Funded Research and Development Center. The Facilities and Infrastructure (F&I) budget maintains NREL’s research and support infrastructure, ensures availability for EERE’s use, and provides a safe and secure workplace for employees.
LED Lighting in a Performing Arts Building at the University of Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Naomi J.; Kaye, Stan; Coleman, Patricia
The U.S. DOE GATEWAY Demonstration Program supports demonstrations of high-performance solid-state lighting (SSL) products in order to develop empirical data and experience with the in-the-field applications of this advanced lighting technology. This report describes the process and results of the 2013 - 2014 GATEWAY demonstration of SSL technology in the Nadine McGuire Theatre and Dance Pavilion at the University of Florida, Gainesville, FL. The LED solutions combined with dimming controls utilized in four interior spaces - the Acting Studio, Dance Studio, Scene Shop, and Dressing Room - received high marks from instructors, students/performers, and reduced energy use in all cases.more » The report discusses in depth and detail of each project area including specifications, energy savings, and user observations. The report concludes with lessons learned during the demonstration.« less
Flywheels Upgraded for Systems Research
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.
2003-01-01
With the advent of high-strength composite materials and microelectronics, flywheels are becoming attractive as a means of storing electrical energy. In addition to the high energy density that flywheels provide, other advantages over conventional electrochemical batteries include long life, high reliability, high efficiency, greater operational flexibility, and higher depths of discharge. High pulse energy is another capability that flywheels can provide. These attributes are favorable for satellites as well as terrestrial energy storage applications. In addition to energy storage for satellites, the several flywheels operating concurrently can provide attitude control, thus combine two functions into one system. This translates into significant weight savings. The NASA Glenn Research Center is involved in the development of this technology for space and terrestrial applications. Glenn is well suited for this research because of its world-class expertise in power electronics design, rotor dynamics, composite material research, magnetic bearings, and motor design and control. Several Glenn organizations are working together on this program. The Structural Mechanics and Dynamics Branch is providing magnetic bearing, controls, and mechanical engineering skills. It is working with the Electrical Systems Development Branch, which has expertise in motors and generators, controls, and avionics systems. Facility support is being provided by the Space Electronic Test Engineering Branch, and the program is being managed by the Space Flight Project Branch. NASA is funding an Aerospace Flywheel Technology Development Program to design, fabricate, and test the Attitude Control/Energy Storage Experiment (ACESE). Two flywheels will be integrated onto a single power bus and run simultaneously to demonstrate a combined energy storage and 1-degree-of-freedom momentum control system. An algorithm that independently regulates direct-current bus voltage and net torque output will be experimentally demonstrated.
Combustor design tool for a gas fired thermophotovoltaic energy converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindler, K.W.; Harper, M.J.
1995-12-31
Recently, there has been a renewed interest in thermophotovoltaic (TPV) energy conversion. A TPV device converts radiant energy from a high temperature incandescent emitter directly into electricity by photovoltaic cells. The current Department of Energy sponsored research involves the design, construction and demonstration of a prototype TPV converter that uses a hydrocarbon fuel (such as natural gas) as the energy source. As the photovoltaic cells are designed to efficiently convert radiant energy at a prescribed wavelength, it is important that the temperature of the emitter be nearly constant over its entire surface. The U. S. Naval Academy has been taskedmore » with the development of a small emitter (with a high emissivity) that can be maintained at 1756 K (2700 F). This paper describes the computer spreadsheet model that was developed as a tool to be used for the design of the high temperature emitter.« less
NASA Astrophysics Data System (ADS)
Ding, Qi
The increasing energy demand in our society has stimulated intensive research in the development of sustainable and renewable energy sources to lessen our strong dependence on fossil fuels. Hydrogen is a clean, storable, and high-energy density energy carrier, and is a promising sustainable solution to achieve an environmentally friendly fuel economy. Electrochemical and solar-driven photoelectrochemical water splitting is regarded as one of the most promising approaches to utilize renewable energy to product hydrogen fuel, yet Pt remains the best electrocatalyst for hydrogen evolution reaction (HER), the high cost of which ultimately limit the scalability of such technologies. Layered transition metal dichalcogenides (TMDCs) is a family of compounds that has attracted widespread attention due to their broad range of applications in electronics, optoelectronics, sensing, energy storage, and catalysis. My research has primarily focused on understanding the chemistry of MoS2 and related compounds, and developing rational approaches to enable these materials for efficient electrocatalytic and photoelectrochemical (PEC) hydrogen evolution. We demonstrated highly efficient and robust photocathodes based on heterostructures of chemically exfoliated metallic 1T-MoS2 and planar p-type Si for PEC-HER. Photocurrents up to 17.6 mA/cm2 at 0 V vs reversible hydrogen electrode (RHE) were achieved under simulated 1 sun irradiation, and excellent stability was demonstrated over long-term operation. Building upon the 1T-MoS2 groundwork, amorphous ternary compounds MoQxCly (Q = S, Se) were then developed as excellent catalysts for HER. The preparation of MoQxCly requires much lower temperature and easier fabrication, yet the PEC performance of MoSxCly-based photocathode is even better than 1T-MoS2-based photocathode. Moreover, when MoSxCly is incorporated with n+pp+ Si micropyramids (MPs), we demonstrate the highest current density ever reported for Si-based photocathodes. Furthermore, to fully harness the potentials of MoS2 and utilize it for a broader range of applications, we demonstrate covalent functionalization on the basal plane of 2H-MoS2 via thiol conjugation, despite the general belief that the basal plane is too inert for functionalization. We correlate the degree of functionalization to the amount of sulfur vacancies on MoS2 basal plane, and successfully demonstrated the preparation of MoS2-PbSe quantum dot heterostructures using a bi-functional dithiol linker molecule.
Energy Savings Potential and RD&D Opportunities for Commercial Building Appliances (2015 Update)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Guernsey, Matt; Foley, Kevin
The Department of Energy commissioned a technology characterization and assessment of appliances used in commercial buildings for cooking, cleaning, water heating, and other end-uses. The primary objectives of this study were to document the energy consumed by commercial appliances and identify research, development, and demonstration opportunities to improve energy efficiency in each end-use. This report serves as an update to a 2009 report of the same name by incorporating updated data and sources where possible and updating the available technology options that provide opportunities for efficiency improvements.
NASA Astrophysics Data System (ADS)
Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy
2016-04-01
As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.
Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian Polagye; Jim Thomson; Chris Bassett
2012-03-30
Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbinesmore » as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project has significantly advanced the District's goals of developing a demonstration-scale tidal energy project in Admiralty Inlet. Pilot demonstrations of this type are an essential step in the development of commercial-scale tidal energy in the United States. This is a renewable resource capable of producing electricity in a highly predictable manner.« less
High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
1999-01-01
Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, T.O.
Recent state and regional energy crises demonstrate the delicate balance between energy systems, the environment, and the economy. Indeed, the interaction between these three elements of society is very complex. This project develops curriculum materials that would better provide students with an understanding and awareness of fundamental principles of energy supply, conversion processes, and utilization now and in the future. The project had two specific objectives: to transfer knowledge of energy systems, analysis techniques, and advanced technologies from the energy analyst community to the teacher participants; and to involve teachers in the preparation of modular case studies on energy issuesmore » for use within the classroom. These curriculum modules are intended to enhance the teacher's ability to provide energy-related education to students within his or her own academic setting. The project is organized as a three-week summer program, as noted in the flyer (Appendix A). Mornings are spent in seminars with energy and environmental specialists (their handout lecture notes are included as Appendix B); afternoons are devoted to high school curriculum development based on the seminar discussions. The curriculum development is limited to five areas: conservation, electricity demand scheduling, energy in the food system, new technologies (solar, wind, biomass), and environment. Appendix C consists of one-day lession plans in these areas.« less
Instrumentation, Control, and Intelligent Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2005-09-01
Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a majormore » center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.« less
NASA Astrophysics Data System (ADS)
Walsh, Michael J.; Gerber Van Doren, Léda; Sills, Deborah L.; Archibald, Ian; Beal, Colin M.; Gen Lei, Xin; Huntley, Mark E.; Johnson, Zackary; Greene, Charles H.
2016-11-01
The goals of ensuring energy, water, food, and climate security can often conflict. Microalgae (algae) are being pursued as a feedstock for both food and fuels—primarily due to algae’s high areal yield and ability to grow on non-arable land, thus avoiding common bioenergy-food tradeoffs. However, algal cultivation requires significant energy inputs that may limit potential emission reductions. We examine the tradeoffs associated with producing fuel and food from algae at the energy-food-water-climate nexus. We use the GCAM integrated assessment model to demonstrate that algal food production can promote reductions in land-use change emissions through the offset of conventional agriculture. However, fuel production, either via co-production of algal food and fuel or complete biomass conversion to fuel, is necessary to ensure long-term emission reductions, due to the high energy costs of cultivation. Cultivation of salt-water algae for food products may lead to substantial freshwater savings; but, nutrients for algae cultivation will need to be sourced from waste streams to ensure sustainability. By reducing the land demand of food production, while simultaneously enhancing food and energy security, algae can further enable the development of terrestrial bioenergy technologies including those utilizing carbon capture and storage. Our results demonstrate that large-scale algae research and commercialization efforts should focus on developing both food and energy products to achieve environmental goals.
Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; ...
2014-12-31
Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commerciallymore » attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.« less
A new approach to enhance the selectivity of liberation and the efficiency of coal grinding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X.H.; Guo, Q.; Parekh, B.K.
1993-12-31
An innovative process has been developed at the University of Kentucky to enhance the liberation of mineral matter from coal and the efficiency of grinding energy utilization. Through treating coal with a swelling agent prior to grinding, the grindability of coals can be considerably improved. The Hardgrove Grindability tests show that the HGI of a KY. No. 9 coal increases from 41 for the untreated coal to 60-90 after swelling pretreatment for a short time. Batch stirred ball mill grinding results demonstrate that this new technique has a great potential in reducing the energy consumption of fine coal grinding. Dependingmore » on the pretreatment conditions, the specific energy consumption of producing less than 10 {mu}m product is reduced to 41-60% of that of the untreated coal feed. The production rate of -10 {mu}m particles increases considerably for the pretreated coal. The Energy-Dispersive-X-ray Analytical Scanning Electron Microscope (EDXA-SEM) studies clearly demonstrate that intensive cracking and fracturing were developed during the swelling pretreatment. Cracks and fractures were induced in the coal matrix, preferentially along the boundaries between the pyrite particles and coal matrix. These may be responsible for enhancement in both the efficiency of grinding energy consumption and the selectivity of liberation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2014-09-30
The Maui Smart Grid Project (MSGP) is under the leadership of the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The project team includes Maui Electric Company, Ltd. (MECO), Hawaiian Electric Company, Inc. (HECO), Sentech (a division of SRA International, Inc.), Silver Spring Networks (SSN), Alstom Grid, Maui Economic Development Board (MEDB), University of Hawaii-Maui College (UHMC), and the County of Maui. MSGP was supported by the U.S. Department of Energy (DOE) under Cooperative Agreement Number DE-FC26-08NT02871, with approximately 50% co-funding supplied by MECO. The project was designed to develop and demonstrate an integrated monitoring, communications,more » database, applications, and decision support solution that aggregates renewable energy (RE), other distributed generation (DG), energy storage, and demand response technologies in a distribution system to achieve both distribution and transmission-level benefits. The application of these new technologies and procedures will increase MECO’s visibility into system conditions, with the expected benefits of enabling more renewable energy resources to be integrated into the grid, improving service quality, increasing overall reliability of the power system, and ultimately reducing costs to both MECO and its customers.« less
Final Technical Report: Commercial Advanced Lighting Control (ALC) Demonstration and Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Gabe
This three-year demonstration and deployment project sought to address market barriers to accelerating the adoption of Advanced Lighting Controls (ALCs), an underutilized technology with low market penetration. ALCs are defined as networked, addressable lighting control systems that utilize software or intelligent controllers to combine multiple energy-saving lighting control strategies in a single space (e.g., smart-time scheduling, daylight harvesting, task tuning, occupancy control, personal control, variable load-shedding, and plug-load control). The networked intelligent aspect of these systems allows applicable lighting control strategies to be combined in a single space, layered over one another, maximizing overall energy-savings. The project included five realmore » building demonstrations of ALCs across the Northeast US region. The demonstrations provided valuable data and experience to support deployment tasks that are necessary to overcome market barriers. These deployment tasks included development of training resources for building designers, installers, and trades, as well as development of new energy efficiency rebates for the technology from Efficiency Forward’s utility partners. Educating designers, installers, and trades on ALCs is a critical task for reducing the cost of the technology that is currently inflated due to perceived complexity and unfamiliarity with how to design and install the systems. Further, utility and non-utility energy efficiency programs continue to relegate the technology to custom or ill-suited prescriptive program designs that do not effectively deploy the technology at scale. This project developed new, scalable rebate approaches for the technology. Efficiency Forward utilized their DesignLights Consortium® (DLC) brand and network of 81 DLC member utilities to develop and deploy the results of the project. The outputs of the project have included five published case studies, a six-hour ALC technology training curriculum that has already been deployed in five US states, and new rebates offered for the technology that have been deployed by a dozen utilities across the US. Widespread adoption of ALC technology in commercial buildings would provide tremendous benefits. The current market penetration of ALC systems is estimated at <0.1% in commercial buildings. If ALC systems were installed in all commercial buildings, approximately 1,051 TBtu of energy could be saved. This would translate into customer cost savings of approximately $10.7 billion annually.« less
Energy technologies and the environment: Environmental information handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-10-01
This revision of Energy Technologies and the Environment reflects the changes in energy supply and demand, focus of environmental concern, and emphasis of energy research and development that have occurred since publication of the earlier edition in 1980. The increase in availability of oil and natural gas, at least for the near term, is responsible in part for a reduced emphasis on development of replacement fuels and technologies. Trends in energy development also have been influenced by an increased reliance on private industry initiatives, and a correspondingly reduced government involvement, in demonstrating more developed technologies. Environmental concerns related to acidmore » rain and waste management continue to increase the demand for development of innovative energy systems. The basic criteria for including a technology in this report are that (1) the technology is a major current or potential future energy supply and (2) significant changes in employing or understanding the technology have occurred since publication of the 1980 edition. Coal is seen to be a continuing major source of energy supply, and thus chapters pertaining to the principal coal technologies have been revised from the 1980 edition (those on coal mining and preparation, conventional coal-fired power plants, fluidized-bed combustion, coal gasification, and coal liquefaction) or added as necessary to include emerging technologies (those on oil shale, combined-cycle power plants, coal-liquid mixtures, and fuel cells).« less
Water Use Optimization Toolset Project: Development and Demonstration Phase Draft Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasper, John R.; Veselka, Thomas D.; Mahalik, Matthew R.
2014-05-19
This report summarizes the results of the development and demonstration phase of the Water Use Optimization Toolset (WUOT) project. It identifies the objective and goals that guided the project, as well as demonstrating potential benefits that could be obtained by applying the WUOT in different geo-hydrologic systems across the United States. A major challenge facing conventional hydropower plants is to operate more efficiently while dealing with an increasingly uncertain water-constrained environment and complex electricity markets. The goal of this 3-year WUOT project, which is funded by the U.S. Department of Energy (DOE), is to improve water management, resulting in moremore » energy, revenues, and grid services from available water, and to enhance environmental benefits from improved hydropower operations and planning while maintaining institutional water delivery requirements. The long-term goal is for the WUOT to be used by environmental analysts and deployed by hydropower schedulers and operators to assist in market, dispatch, and operational decisions.« less
Simulation of Watts Bar Unit 1 Initial Startup Tests with Continuous Energy Monte Carlo Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godfrey, Andrew T; Gehin, Jess C; Bekar, Kursat B
2014-01-01
The Consortium for Advanced Simulation of Light Water Reactors* is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications. One component of the testing and validation plan for VERA is comparison of neutronics results to a set of continuous energy Monte Carlo solutions for a range of pressurized water reactor geometries using the SCALE component KENO-VI developed by Oak Ridge National Laboratory. Recent improvements in data, methods, and parallelism have enabled KENO, previously utilized predominately as a criticality safety code, to demonstrate excellent capability and performance for reactor physics applications. The highlymore » detailed and rigorous KENO solutions provide a reliable nu-meric reference for VERAneutronics and also demonstrate the most accurate predictions achievable by modeling and simulations tools for comparison to operating plant data. This paper demonstrates the performance of KENO-VI for the Watts Bar Unit 1 Cycle 1 zero power physics tests, including reactor criticality, control rod worths, and isothermal temperature coefficients.« less
Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collar, Craig W
2012-11-16
Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy's Wind and Hydropower Technologies Program's goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step towardmore » potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.« less
Feasibility Study of Cargo Airship Transportation Systems Powered by New Green Energy Technologies
NASA Technical Reports Server (NTRS)
Skuza, Jonathan R.; Park, Yeonjoon; Kim, Hyun Jung; Seaman, Shane T.; King, Glen C.; Choi, Sang H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Kunik
2014-01-01
The development of transportation systems that use new and sustainable energy technologies is of utmost importance due to the possible future shortfalls that current transportation modes will encounter because of increased volume and costs. The introduction and further research and development of new transportation and energy systems by materials researchers at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) and the Department of Transportation are discussed in this Technical Memorandum. In this preliminary study, airship concepts were assessed for cargo transportation using various green energy technologies capable of 24-hour operation (i.e., night and day). Two prototype airships were successfully constructed and tested at LaRC to demonstrate their feasibility: one with commercially available solar cells for operation during the daytime and one with microwave rectennas (i.e., rectifying antennas) developed in-house for night-time operation. The test results indicate the feasibility of a cargo transportation airship powered by new green energy sources and wireless power technology. Future applications will exploit new green energy sources that use materials and devices recently developed or are in the process of being developed at LaRC. These include quantum well SiGe solar cells; low, mid-, and high temperature thermoelectric modules; and wireless microwave and optical rectenna devices. This study examines the need and development of new energy sources for transportation, including the current status of research, materials, and potential applications.
Development of crashworthy passenger seats for general-aviation aircraft
NASA Technical Reports Server (NTRS)
Reilly, M. J.; Tanner, A. E.
1979-01-01
Two types of energy absorbing passenger seat concepts suitable for installation in light twin-engine fixed wing aircraft were developed. An existing passenger seat for such an aircraft was used to obtain the envelope constraints. Ceiling suspended and floor supported seat concept designs were developed. A restraint system suitable for both concepts was designed. Energy absorbing hardware for both concepts was fabricated and tension and compression tests were conducted to demonstrate the stroking capability and the force deflection characteristics. Crash impact analysis was made and seat loads developed. The basic seat structures were analyzed to determine the adequacy of their strength under impact loading.
NASA Astrophysics Data System (ADS)
Kim, Byungwoo; Chung, Haegeun; Kim, Woong
2012-04-01
We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ˜75 F g-1, ˜987 kW kg-1 and ˜27 W h kg-1, respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (˜158 F g-1) and energy density (˜53 W h kg-1). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices.
Kim, Byungwoo; Chung, Haegeun; Kim, Woong
2012-04-20
We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ~75 F g(-1), ~987 kW kg(-1) and ~27 W h kg(-1), respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (~158 F g(-1)) and energy density (~53 W h kg(-1)). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices. © 2012 IOP Publishing Ltd
Machine Learning Estimates of Natural Product Conformational Energies
Rupp, Matthias; Bauer, Matthias R.; Wilcken, Rainer; Lange, Andreas; Reutlinger, Michael; Boeckler, Frank M.; Schneider, Gisbert
2014-01-01
Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures. PMID:24453952
Galvanic high energy cells with molten salt electrolytes
NASA Astrophysics Data System (ADS)
Borger, W.; Kappus, W.; Kunze, D.; Laig-Hoerstebrock, H.; Panesar, H.; Sterr, G.
1981-02-01
Engineering scale LiAl/LiCl Kcl/FeS electrochemical storage cells were developed for electric vehicle propulsion and peak current compensation. More than 300 deep cycles and 50 Whr/kg in 100 Ahr cells and up to 100 deep cycles and more than 80 Whr/kg in 200 Ahr cells were demonstrated. Separator development for LiAl/FeS cells was focused on ceramic powders. The aluminum nitride powder separator is promising for LiAl/FeS cells. The further development of these cells includes the enhancement of energy density and lifetime as well as ceramic powder separators.
High-speed engine/component performance assessment using exergy and thrust-based methods
NASA Technical Reports Server (NTRS)
Riggins, D. W.
1996-01-01
This investigation summarizes a comparative study of two high-speed engine performance assessment techniques based on energy (available work) and thrust-potential (thrust availability). Simple flow-fields utilizing Rayleigh heat addition and one-dimensional flow with friction are used to demonstrate the fundamental inability of conventional energy techniques to predict engine component performance, aid in component design, or accurately assess flow losses. The use of the thrust-based method on these same examples demonstrates its ability to yield useful information in all these categories. Energy and thrust are related and discussed from the stand-point of their fundamental thermodynamic and fluid dynamic definitions in order to explain the differences in information obtained using the two methods. The conventional definition of energy is shown to include work which is inherently unavailable to an aerospace Brayton engine. An engine-based energy is then developed which accurately accounts for this inherently unavailable work; performance parameters based on this quantity are then shown to yield design and loss information equivalent to the thrust-based method.
ERIC Educational Resources Information Center
Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.
Three volumes present brief abstracts of projects funded by the Energy Research and Development Administration (ERDA) and conducted under the National Program for Solar Heating and Cooling of Buildings through July 1976. The overall federal program includes demonstrations of heating and/or combined cooling for residential and commercial buildings…
Design and development of a prototype platform for gait analysis
NASA Astrophysics Data System (ADS)
Diffenbaugh, T. E.; Marti, M. A.; Jagani, J.; Garcia, V.; Iliff, G. J.; Phoenix, A.; Woolard, A. G.; Malladi, V. V. N. S.; Bales, D. B.; Tarazaga, P. A.
2017-04-01
The field of event classification and localization in building environments using accelerometers has grown significantly due to its implications for energy, security, and emergency protocols. Virginia Tech's Goodwin Hall (VT-GH) provides a robust testbed for such work, but a reduced scale testbed could provide significant benefits by allowing algorithm development to occur in a simplified environment. Environments such as VT-GH have high human traffic that contributes external noise disrupting test signals. This paper presents a design solution through the development of an isolated platform for data collection, portable demonstrations, and the development of localization and classification algorithms. The platform's success was quantified by the resulting transmissibility of external excitation sources, demonstrating the capabilities of the platform to isolate external disturbances while preserving gait information. This platform demonstrates the collection of high-quality gait information in otherwise noisy environments for data collection or demonstration purposes.
Eigenvalue Detonation of Combined Effects Aluminized Explosives
NASA Astrophysics Data System (ADS)
Capellos, Christos; Baker, Ernest; Balas, Wendy; Nicolich, Steven; Stiel, Leonard
2007-06-01
This paper reports on the development of theory and performance for recently developed combined effects aluminized explosives. Traditional high energy explosives used for metal pushing incorporate high loading percentages of HMX or RDX, whereas blast explosives incorporate some percentage of aluminum. However, the high blast explosives produce increased blast energies, with reduced metal pushing capability due to late time aluminum reaction. Metal pushing capability refers to the early volume expansion work produced during the first few volume expansions associated with cylinder wall velocities and Gurney energies. Our Recently developed combined effects aluminized explosives (PAX-29C, PAX-30, PAX-42) are capable of achieving excellent metal pushing and high blast energies. Traditional Chapman-Jouguet detonation theory does not explain the observed detonation states achieved by these combined effects explosives. This work demonstrates, with the use of cylinder expansion data and thermochemical code calculations (JAGUAR and CHEETAH), that eigenvalue detonation theory explains the observed behavior.
Characterization of cellulose nanofibrillation by micro grinding
Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas
2014-01-01
A fundamental understanding of the morphological development of cellulose fibers during fibrillation using micro grinder is very essential to develop effective strategies for process improvement and to reduce energy consumption. We demonstrated some simple measures for characterizing cellulose fibers fibrillated at different fibrillation times through the grinder. The...
Renewable Energy Development on Fort Mojave Reservation Feasiblity Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell Gum, ERCC analytics LLC
2008-03-17
The Ft. Mojave tribe, whose reservation is located along the Colorado River in the states of Arizona, California, and Nevada near the point where all three states meet, has a need for increased energy supplies. This need is a direct result of the aggressive and successful economic development projects undertaken by the tribe in the last decade. While it is possible to contract for additional energy supplies from fossil fuel sources it was the desire of the tribal power company, AHA MACAV Power Service (AMPS) to investigate the feasibility and desirability of producing power from renewable sources as an alternativemore » to increased purchase of fossil fuel generated power and as a possible enterprise to export green power. Renewable energy generated on the reservation would serve to reduce the energy dependence of the tribal enterprises on off reservation sources of energy and if produced in excess of reservation needs, add a new enterprise to the current mix of economic activities on the reservation. Renewable energy development would also demonstrate the tribe’s support for improving environmental quality, sustainability, and energy independence both on the reservation and for the larger community.« less
Transition through co-optation: Harnessing carbon democracy for clean energy
NASA Astrophysics Data System (ADS)
Meng, Kathryn-Louise
This dissertation explores barriers to a clean energy transition in the United States. Clean energy is demonstrably viable, yet the pace of clean energy adoption in the U.S. is slow, particularly given the immediate threat of global climate change. The purpose of this dissertation is to examine the factors inhibiting a domestic energy transition and to propose pragmatic approaches to catalyzing a transition. The first article examines the current political-economic and socio-technical energy landscape in the U.S. Fossil fuels are central to the functioning of the American economy. Given this centrality, constellations of power have been constructed around the reliable and affordable access of fossil fuels. The fossil fuel energy regime is comprised of: political-economic networks with vested interests in continued fossil fuel reliance, and fixed infrastructure that is minimally compatible with distributed generation. A transition to clean energy threatens the profitability of fossil fuel regime actors. Harnessing structural critiques from political ecology and process and function-oriented socio-technical systems frameworks, I present a multi-level approach to identifying pragmatic means to catalyzing an energy transition. High-level solutions confront the existing structure, mid-level solutions harness synergy with the existing structure, and low-level solutions lie outside of the energy system or foster the TIS. This is exemplified using a case study of solar development in Massachusetts. Article two presents a case study of the clean energy technological innovation system (TIS) in Massachusetts. I examine the actors and institutions that support cleantech development. Further, I scrutinize the actors and institutions that help sustain the TIS support system. The concept of a catalyst is presented; a catalyst is an actor that serves to propel TIS functions. Catalysts are critical to facilitating anchoring. Strategic corporate partners are identified as powerful catalysts that can help infuse capital into the TIS, propel TIS functions, and facilitate anchoring to the socio-technical regime and landscape. In the final article I argue that the environmental narrative that traditionally frames the need for clean energy is ineffective. Environmental narratives are antagonistic towards powerful actors and institutions discussed in the first article. Such antagonism can impede the development of clean energy incentives, decelerating a transition to clean energy. The need for clean energy can be reframed according to a security discourse. I demonstrate the compatibility between clean energy development and national security imperatives and argue that security imperatives are more likely to receive legislative and financial support than environmental imperatives. Ultimately I argue that geographers can find utility in the very structures, institutions, and actors that they critique. Capitalist imperatives of profit and growth can be harnessed so as to appeal to strategic corporate partners. The military, its budget, industrial complex, and research and development resources can in fact be beneficial to developing clean energy domestically.
A view from the AIAA: Introduction of new energy storage technology into orbital programs
NASA Technical Reports Server (NTRS)
Badcock, Charles
1987-01-01
The development of new energy storage technology must be heavily weighted toward the application. The requirements for transitioning low risk technology into operational space vehicles must remain the central theme even at the preliminary development stages by the development of efforts to define operational issues and verify the reliability of the system. Failure to follow a complete plan that results in a flight qualified unit may lead to an orphan technology. Development efforts must be directed toward a stable development where changes in design are evolutionary and end items are equivalent to flight units so that life and qualification testing can be used as a vehicle to demonstrate the acceptability of the technology.
An Update on Improvements to NiCE Support for PROTEUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Andrew; McCaskey, Alexander J.; Billings, Jay Jay
2015-09-01
The Department of Energy Office of Nuclear Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program has supported the development of the NEAMS Integrated Computational Environment (NiCE), a modeling and simulation workflow environment that provides services and plugins to facilitate tasks such as code execution, model input construction, visualization, and data analysis. This report details the development of workflows for the reactor core neutronics application, PROTEUS. This advanced neutronics application (primarily developed at Argonne National Laboratory) aims to improve nuclear reactor design and analysis by providing an extensible and massively parallel, finite-element solver for current and advanced reactor fuel neutronicsmore » modeling. The integration of PROTEUS-specific tools into NiCE is intended to make the advanced capabilities that PROTEUS provides more accessible to the nuclear energy research and development community. This report will detail the work done to improve existing PROTEUS workflow support in NiCE. We will demonstrate and discuss these improvements, including the development of flexible IO services, an improved interface for input generation, and the addition of advanced Fortran development tools natively in the platform.« less
Ceramic Technology for Advanced Heat Engines Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-08-01
The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional researchmore » is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.« less
PowerSat: A technology demonstration of a solar power satellite
NASA Technical Reports Server (NTRS)
Sigler, Douglas L. (Editor); Riedman, John; Duracinski, Jon; Edwards, Joe; Brown, Garry; Webb, Ron; Platzke, Mike; Yuan, Xiaolin; Rogers, Pete; Khan, Afsar
1994-01-01
PowerSat is a preliminary design strategy for microwave wireless power transfer of solar energy. Solar power satellites convert solar power into microwave energy and use wireless power transmission to transfer the power to the Earth's surface. The PowerSat project will show how new developments in inflatable technology can be used to deploy solar panels and phased array antennas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodnaruk, W.H. Jr.
1983-04-01
The aim of this study was to develop and demonstrate low energy climate control and production techniques for greenhouse grown citrus and ornamental crops. Emphasis was placed on design, fuel efficiency and plant response to warm water soil heating systems using solar energy and LP gas. An energy requirement of 28Btus output per hour per square foot of bed space will provide soil temperature of 70/sup 0/F minimum when air temperatures are maintained at 60/sup 0/F. Soil heating to 70/sup 0/ increased rooting and growth of 8 foliage plant varieties by 25 to 45% compared to plants grown under 60/supmore » 0/F air temperature conditions. Providing soil heating, however, increased fuel consumption in the central Florida test facilities by 30% in the winters of 1980-81 and 1981-82. Solar tie-in to soil heating systems has the potential of reducing fuel usage. Solar heated water provided 4 hours of soil heating following a good collection day. Decreased in-bed pipe spacing and increased storage capacity should increase the solar percentage to 6 hours.« less
Optically (solar) pumped oxygen-iodine lasers
NASA Astrophysics Data System (ADS)
Danilov, O. B.; Zhevlakov, A. P.; Yur'ev, M. S.
2014-07-01
We present the results of theoretical and experimental studies demonstrating the possibility of developing an oxygen-iodine laser (OIL) with direct optical pumping of molecular oxygen involving inter-molecular interaction with charge transfer from donor molecule (buffer gas) to acceptor molecule (oxygen). This interaction lifts degeneracy of the lower energy states of molecular oxygen and increases its absorption cross section in the visible spectral region and the UV Herzberg band, where high quantum yield of singlet oxygen is achieved (QY ˜ 1 and QY ˜ 2, respectively) at the same time. A pulse-periodic optical pump sources with pulse energy of ˜50 kJ, pulse duration of ˜25 μs, and repetition rate of ˜10 Hz, which are synchronized with the mechanism of singlet oxygen generation, are developed. This allows implementation of a pulse-periodic oxygen-iodine laser with an efficiency of ˜25%, optical efficiency of ˜40%, and parameter L/ T ˜ 1/1.5, where T is the thermal energy released in the laser active medium upon generation of energy L. It is demonstrated that, under direct solar pumping of molecular oxygen, the efficiency parameter of the OIL can reach L/ T ˜ 1/0.8 in a wide range of scaling factors.
Army Net Zero: Energy Roadmap and Program Summary, Fiscal Year 2013 (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The U.S. Army (Army) partnered with the National Renewable Energy Laboratory (NREL) and the U.S. Army Corps of Engineers to assess opportunities for increasing energy security through improved energy efficiency and optimized renewable energy strategies at nine installations across the Army's portfolio. Referred to as Net Zero Energy Installations (NZEIs), these projects demonstrate and validate energy efficiency and renewable energy technologies with approaches that can be replicated across DOD and other Federal agencies, setting the stage for broad market adoption. This report summarizes the results of the energy project roadmaps developed by NREL, shows the progress each installation could makemore » in achieving Net Zero Energy by 2020, and presents lessons learned and unique challenges from each installation.« less
Wang, Peng; Chung, Tai-Shung
2012-09-01
The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.
Modeling of direct wafer bonding: Effect of wafer bow and etch patterns
NASA Astrophysics Data System (ADS)
Turner, K. T.; Spearing, S. M.
2002-12-01
Direct wafer bonding is an important technology for the manufacture of silicon-on-insulator substrates and microelectromechanical systems. As devices become more complex and require the bonding of multiple patterned wafers, there is a need to understand the mechanics of the bonding process. A general bonding criterion based on the competition between the strain energy accumulated in the wafers and the surface energy that is dissipated as the bond front advances is developed. The bonding criterion is used to examine the case of bonding bowed wafers. An analytical expression for the strain energy accumulation rate, which is the quantity that controls bonding, and the final curvature of a bonded stack is developed. It is demonstrated that the thickness of the wafers plays a large role and bonding success is independent of wafer diameter. The analytical results are verified through a finite element model and a general method for implementing the bonding criterion numerically is presented. The bonding criterion developed permits the effect of etched features to be assessed. Shallow etched patterns are shown to make bonding more difficult, while it is demonstrated that deep etched features can facilitate bonding. Model results and their process design implications are discussed in detail.
Direct Methanol Fuel Cell Power Supply For All-Day True Wireless Mobile Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian Wells
PolyFuel has developed state-of-the-art portable fuel cell technology for the portable computing market. A novel approach to passive water recycling within the MEA has led to significant system simplification and size reduction. Miniature stack technology with very high area utilization and minimalist seals has been developed. A highly integrated balance of plant with very low parasitic losses has been constructed around the new stack design. Demonstration prototype systems integrated with laptop computers have been shown in recent months to leading OEM computer manufacturers. PolyFuel intends to provide this technology to its customers as a reference design as a means ofmore » accelerating the commercialization of portable fuel cell technology. The primary goal of the project was to match the energy density of a commercial lithium ion battery for laptop computers. PolyFuel made large strides against this goal and has now demonstrated 270 Wh/liter compared with lithium ion energy densities of 300 Wh/liter. Further, more incremental, improvements in energy density are envisioned with an additional 20-30% gains possible in each of the next two years given further research and development.« less
NREL'S Carlisle Earns Solar Service Award
professional life to promoting solar energy applications. The award recognizes those who have helped the and personal life. At NREL, she has demonstrated determination in developing projects and promoting
Does energy availability predict gastropod reproductive strategies?
McClain, Craig R.; Filler, Ryan; Auld, Josh R.
2014-01-01
The diversity of reproductive strategies in nature is shaped by a plethora of factors including energy availability. For example, both low temperatures and limited food availability could increase larval exposure to predation by slowing development, selecting against pelagic and/or feeding larvae. The frequency of hermaphroditism could increase under low food availability as population density (and hence mate availability) decreases. We examine the relationship between reproductive/life-history traits and energy availability for 189 marine gastropod families. Only larval type was related to energy availability with the odds of having planktotrophic larvae versus direct development decreasing by 1% with every one-unit increase in the square root of carbon flux. Simultaneous hermaphroditism also potentially increases with carbon flux, but this effect disappears when accounting for evolutionary relationships among taxa. Our findings are in contrast to some theory and empirical work demonstrating that hermaphroditism should increase and planktotrophic development should decrease with decreasing productivity. Instead, they suggest that some reproductive strategies are too energetically expensive at low food availabilities, or arise only when energy is available, and others serve to capitalize on opportunities for aggregation or increased energy availability. PMID:25009058
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earle, L.; Sparn, B.; Rutter, A.
2014-03-01
In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.
Muon Accelerator Program (MAP) | Neutrino Factory | Research Goals
; Committees Research Goals Research & Development Design & Simulation Technology Development Systems Demonstrations Activities MASS Muon Cooling MuCool Test Area MICE Experiment MERIT Muon Collider Research Goals Why Muons at the Energy Frontier? How does it work? Graphics Animation Neutrino Factory Research Goals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, S.T.; Atwood, T.; Qiu Daxiong
1997-12-31
Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, andmore » the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.« less
Fission Surface Power for the Exploration and Colonization of Mars
NASA Technical Reports Server (NTRS)
Houts, Mike; Porter, Ron; Gaddis, Steve; Van Dyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise
2006-01-01
The colonization of Mars will require abundant energy. One potential energy source is nuclear fission. Terrestrial fission systems are highly developed and have the demonstrated ability to safely produce tremendous amounts of energy. In space, fission systems not only have the potential to safely generate tremendous amounts of energy, but could also potentially be used on missions where alternatives are not practical. Programmatic risks such as cost and schedule are potential concerns with fission surface power (FSP) systems. To be mission enabling, FSP systems must be affordable and programmatic risk must be kept acceptably low to avoid jeopardizing exploration efforts that may rely on FSP. Initial FSP systems on Mars could be "workhorse" units sized to enable the establishment of a Mars base and the early growth of a colony. These systems could be nearly identical to FSP systems used on the moon. The systems could be designed to be safe, reliable, and have low development and recurring costs. Systems could also be designed to fit on relatively small landers. One potential option for an early Mars FSP system would be a 100 kWt class, NaK cooled system analogous to space reactors developed and flown under the U.S. "SNAP" program or those developed and flown by the former Soviet Union ("BUK" reactor). The systems could use highly developed fuel and materials. Water and Martian soil could be used to provide shielding. A modern, high-efficiency power conversion subsystem could be used to reduce required reactor thermal power. This, in turn, would reduce fuel burnup and radiation damage .effects by reducing "nuclear" fuels and materials development costs. A realistic, non-nuclear heated and fully integrated technology demonstration unit (TDU) could be used to reduce cost and programmatic uncertainties prior to initiating a flight program.
Lithium-Ion Batteries for Aerospace Applications
NASA Technical Reports Server (NTRS)
Surampudi, S.; Halpert, G.; Marsh, R. A.; James, R.
1999-01-01
This presentation reviews: (1) the goals and objectives, (2) the NASA and Airforce requirements, (3) the potential near term missions, (4) management approach, (5) the technical approach and (6) the program road map. The objectives of the program include: (1) develop high specific energy and long life lithium ion cells and smart batteries for aerospace and defense applications, (2) establish domestic production sources, and to demonstrate technological readiness for various missions. The management approach is to encourage the teaming of universities, R&D organizations, and battery manufacturing companies, to build on existing commercial and government technology, and to develop two sources for manufacturing cells and batteries. The technological approach includes: (1) develop advanced electrode materials and electrolytes to achieve improved low temperature performance and long cycle life, (2) optimize cell design to improve specific energy, cycle life and safety, (3) establish manufacturing processes to ensure predictable performance, (4) establish manufacturing processes to ensure predictable performance, (5) develop aerospace lithium ion cells in various AH sizes and voltages, (6) develop electronics for smart battery management, (7) develop a performance database required for various applications, and (8) demonstrate technology readiness for the various missions. Charts which review the requirements for the Li-ion battery development program are presented.
2016 National Algal Biofuels Technology Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barry, Amanda; Wolfe, Alexis; English, Christine
The Bioenergy Technologies Office (BETO) of the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, is committed to advancing the vision of a viable, sustainable domestic biomass industry that produces renewable biofuels, bioproducts, and biopower; enhances U.S. energy security; reduces our dependence on fossil fuels; provides environmental benefits; and creates economic opportunities across the nation. BETO’s goals are driven by various federal policies and laws, including the Energy Independence and Security Act of 2007 (EISA). To accomplish its goals, BETO has undertaken a diverse portfolio of research, development, and demonstration (RD&D) activities, in partnership with nationalmore » laboratories, academia, and industry.« less
Status of wind-energy conversion
NASA Technical Reports Server (NTRS)
Thomas, R. L.; Savino, J. M.
1973-01-01
The utilization of wind energy is technically feasible as evidenced by the many past demonstrations of wind generators. The cost of energy from the wind has been high compared to fossil fuel systems; a sustained development effort is needed to obtain economical systems. The variability of the wind makes it an unreliable source on a short term basis. However, the effects of this variability can be reduced by storage systems or connecting wind generators to: (1) fossil fuel systems; (2) hydroelectric systems; or (3) dispersing them throughout a large grid network. Wind energy appears to have the potential to meet a significant amount of our energy needs.
Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach
NASA Astrophysics Data System (ADS)
Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J.
2014-02-01
Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation.
Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newbold, Kenneth F.
2013-11-26
Led by James Madison University, Valley 25x?25 promotes using a diverse energy portfolio to achieve the goal of 25 percent renewable energy by 2025, including renewables like wind, biomass, solar, and geothermal. A primary emphasis is energy efficiency, which offers the best opportunities to decrease the use and impact of non-renewable energy sources. Endorsed by the national 25x?25 organization, Valley 25x?25 serves as an East Coast Demonstration Project, and as such, partners with regional businesses, local and state governments, institutions of higher education, and K-12 schools to explore how Valley resources can contribute to the development of innovative energy solutions.
Multifunctional Structures for High-Energy Lightweight Load-Bearing Storage
NASA Technical Reports Server (NTRS)
Loyselle, Patricia L.
2018-01-01
This is a pull-up banner of the Multifunctional Structures for High-Energy Lightweight Load-bearing Storage (M-SHELLS) technology that will be on display at the SciTech Conference in January 2018. Efforts in Multifunctional Structures for High Energy Load-Bearing Storage (M-Shells) are pushing the boundaries of development for hybrid electric propulsion for future commercial aeronautical transport. The M-Shells hybrid material would serve as the power/energy storage of the vehicle and provide structural integrity, freeing up usable volume and mass typically occupied by bulky batteries. The ultimate goal is to demonstrate a system-level mass savings with a multifunctional structure with energy storage.
Metal Matrix Superconductor Composites for SMES-Driven, Ultra High Power BEP Applications: Part 2
NASA Astrophysics Data System (ADS)
Gross, Dan A.; Myrabo, Leik N.
2006-05-01
A 2.5 TJ superconducting magnetic energy storage (SMES) design presentation is continued from the preceding paper (Part 1) with electromagnetic and associated stress analysis. The application of interest is a rechargeable power-beaming infrastructure for manned microwave Lightcraft operations. It is demonstrated that while operational performance is within manageable parameter bounds, quench (loss of superconducting state) imposes enormous electrical stresses. Therefore, alternative multiple toroid modular configurations are identified, alleviating simultaneously all excessive stress conditions, operational and quench, in the structural, thermal and electromagnetic sense — at some reduction in specific energy, but presenting programmatic advantages for a lengthy technology development, demonstration and operation schedule. To this end several natural units, based on material properties and operating parameters are developed, in order to identify functional relationships and optimization paths more effectively.
Development Status of the CECE Cryogenic Deep Throttling Demonstrator Engine
NASA Technical Reports Server (NTRS)
2008-01-01
As one of the first technology development programs awarded by NASA under the U.S. Space Exploration Policy (USSEP), the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA's Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RLI0, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Two series of demonstrator engine tests, the first in April-May 2006 and the second in March-April 2007, have demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. Both test series have explored a combustion instability ("chug") environment at low throttled power levels. These tests have provided an early demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future CECE Demonstrator engine tests.
Virus-based piezoelectric energy generation
NASA Astrophysics Data System (ADS)
Lee, Byung Yang; Zhang, Jinxing; Zueger, Chris; Chung, Woo-Jae; Yoo, So Young; Wang, Eddie; Meyer, Joel; Ramesh, Ramamoorthy; Lee, Seung-Wuk
2012-06-01
Piezoelectric materials can convert mechanical energy into electrical energy, and piezoelectric devices made of a variety of inorganic materials and organic polymers have been demonstrated. However, synthesizing such materials often requires toxic starting compounds, harsh conditions and/or complex procedures. Previously, it was shown that hierarchically organized natural materials such as bones, collagen fibrils and peptide nanotubes can display piezoelectric properties. Here, we demonstrate that the piezoelectric and liquid-crystalline properties of M13 bacteriophage (phage) can be used to generate electrical energy. Using piezoresponse force microscopy, we characterize the structure-dependent piezoelectric properties of the phage at the molecular level. We then show that self-assembled thin films of phage can exhibit piezoelectric strengths of up to 7.8 pm V-1. We also demonstrate that it is possible to modulate the dipole strength of the phage, hence tuning the piezoelectric response, by genetically engineering the major coat proteins of the phage. Finally, we develop a phage-based piezoelectric generator that produces up to 6 nA of current and 400 mV of potential and use it to operate a liquid-crystal display. Because biotechnology techniques enable large-scale production of genetically modified phages, phage-based piezoelectric materials potentially offer a simple and environmentally friendly approach to piezoelectric energy generation.
Virus-based piezoelectric energy generation.
Lee, Byung Yang; Zhang, Jinxing; Zueger, Chris; Chung, Woo-Jae; Yoo, So Young; Wang, Eddie; Meyer, Joel; Ramesh, Ramamoorthy; Lee, Seung-Wuk
2012-05-13
Piezoelectric materials can convert mechanical energy into electrical energy, and piezoelectric devices made of a variety of inorganic materials and organic polymers have been demonstrated. However, synthesizing such materials often requires toxic starting compounds, harsh conditions and/or complex procedures. Previously, it was shown that hierarchically organized natural materials such as bones, collagen fibrils and peptide nanotubes can display piezoelectric properties. Here, we demonstrate that the piezoelectric and liquid-crystalline properties of M13 bacteriophage (phage) can be used to generate electrical energy. Using piezoresponse force microscopy, we characterize the structure-dependent piezoelectric properties of the phage at the molecular level. We then show that self-assembled thin films of phage can exhibit piezoelectric strengths of up to 7.8 pm V(-1). We also demonstrate that it is possible to modulate the dipole strength of the phage, hence tuning the piezoelectric response, by genetically engineering the major coat proteins of the phage. Finally, we develop a phage-based piezoelectric generator that produces up to 6 nA of current and 400 mV of potential and use it to operate a liquid-crystal display. Because biotechnology techniques enable large-scale production of genetically modified phages, phage-based piezoelectric materials potentially offer a simple and environmentally friendly approach to piezoelectric energy generation.
Wind power: The new energy policy 1
NASA Astrophysics Data System (ADS)
1991-10-01
Increasing use of renewable energy sources is an important aspect of the new energy policy of the State government of Schleswig-Holstein. Technical and industrial innovation are involved. By expanding and developing these regionally available inexhaustible energy sources to generate electricity and heat, we are contributing to environmental protection and helping to reduce adverse affects on the climate. We are also taking our limited resources into account and expanding energy generation in a logical manner. Wind energy is the most attractive renewable energy source for Schleswig-Holstein because our State is well known for its strong winds and constant fresh breeze. For this reason the State government has made expansion of wind energy one of its primary areas of emphasis. The goals of our promotion measures includes ongoing technical and engineering development of wind energy facilities, increasing the level of use of the wind, and increasing the percentage of wind energy used for power generation. This brochure is intended to demonstrate the significance and possibilities of wind energy for our State, to outline the legal requirements for erecting wind energy facilities, and to explain the many promotion measures. It represents a favorable breeze for wind.
HOOPER BAY HOUSING ANALYSIS AND ENERGY FEASIBILITY REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
SEA LION CORPORATION; COLD CLIMATE HOUSING RESEARCH CENTER; SOLUTIONS FOR HEALTHY BREATHING
2012-12-30
Sea Lion applied for and received a grant from the Department of Energy (DOE) towards this end titled Energy Efficiency Development and Deployment in Indian Country. The initial objectives of the Hooper Bay Energy Efficiency Feasibility Study were to demonstrate a 30% reduction in residential/commercial energy usage and identify the economic benefits of implementing energy efficiency measures to the Tribe through: (1) partnering with Whitney Construction and Solutions for Healthy Breathing in the training and hire of 2 local energy assessors to conduct energy audits of 9 representative housing models and 2 commercial units in the community. These homes aremore » representative of 52 homes constructed across different eras. (2) partnering with Cold Climate Housing Research Center to document current electrical and heating energy consumption and analyze data for a final feasibility report (3) assessing the economics of electricity & heating fuel usage; (4) projecting energy savings or fossil fuel reduction by modeling of improvement scenarios and cost feasibility The following two objectives will be completed after the publication of this report: (5) the development of materials lists for energy efficiency improvements (6) identifying financing options for the follow-up energy efficiency implementation phase.« less
Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyasato, Matt; Kosowski, Mark
2015-10-01
The Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program was sponsored by the United States Department of Energy (DOE) using American Recovery and Reinvestment Act of 2009 (ARRA) funding. The purpose of the program is to develop a path to migrate plug-in hybrid electric vehicle (PHEV) technology to medium-duty vehicles by demonstrating and evaluating vehicles in diverse applications. The program also provided three production-ready PHEV systems—Odyne Systems, Inc. (Odyne) Class 6 to 8 trucks, VIA Motors, Inc. (VIA) half-ton pickup trucks, and VIA three-quarter-ton vans. The vehicles were designed, developed, validated, produced, and deployed. Data were gathered and tests weremore » run to understand the performance improvements, allow cost reductions, and provide future design changes. A smart charging system was developed and produced during the program. The partnerships for funding included the DOE; the California Energy Commission (CEC); the South Coast Air Quality Management District (SCAQMD); the Electric Power Research Institute (EPRI); Odyne; VIA; Southern California Edison; and utility and municipal industry participants. The reference project numbers are DOE FOA-28 award number EE0002549 and SCAQMD contract number 10659.« less
Energy efficiency buildings program
NASA Astrophysics Data System (ADS)
1981-05-01
Progress is reported in developing techniques for auditing the energy performance of buildings. The ventilation of buildings and indoor air quality is discussed from the viewpoint of (1) combustion generated pollutants; (2) organic contaminants; (3) radon emanation, measurements, and control; (4) strategies for the field monitoring of indoor air quality; and (5) mechanical ventilation systems using air-to-air heat exchanges. The development of energy efficient windows to provide optimum daylight with minimal thermal losses in cold weather and minimum thermal gain in hot weather is considered as well as the production of high frequency solid state ballasts for fluorescent lights to provide more efficient lighting at a 25% savings over conventional core ballasts. Data compilation, analysis, and demonstration activities are summarized.
NASA Technical Reports Server (NTRS)
Nissim, E.; Abel, I.
1978-01-01
An optimization procedure is developed based on the responses of a system to continuous gust inputs. The procedure uses control law transfer functions which have been partially determined by using the relaxed aerodynamic energy approach. The optimization procedure yields a flutter suppression system which minimizes control surface activity in a gust environment. The procedure is applied to wing flutter of a drone aircraft to demonstrate a 44 percent increase in the basic wing flutter dynamic pressure. It is shown that a trailing edge control system suppresses the flutter instability over a wide range of subsonic mach numbers and flight altitudes. Results of this study confirm the effectiveness of the relaxed energy approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojanen, K.
1984-07-01
While waiting for the federal government to develop a nuclear waste disposal strategy, California enacted legislation that bans the construction of nuclear reactors until permanent disposal technology for high-level wastes is demonstrated and approved. The US Supreme Court upheld this prohibition in Pacific Gas and Electric Co. v. State Energy Resources Conservation and Development Commission. The Court found that the California law did not attempt to regulate the construction or operation of a nuclear plant nor to infringe on federal regulation of radiation safety and nuclear wastes. The moratorium is a legitimate move by the state to avoid economic uncertainties.more » Federal preemption of the law would empower utilities to determine state energy needs and programs. 131 references.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan M; Yu, Yi-Hsiang; Thresher, Robert W
This study investigates the effect of design changes on the hydrodynamics of a novel oscillating surge wave energy converter being developed at the National Renewable Energy Laboratory. The design utilizes controllable geometry features to shed structural loads while maintaining a rated power over a greater number of sea states. The second-generation design will seek to provide a more refined control of performance because the first-generation design demonstrated performance reductions considered too large for smooth power output. Performance is evaluated using frequency domain analysis with consideration of a nonideal power-take-off system, with respect to power absorption, foundation loads, and power-take-off torque.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melton, Ron
The Pacific Northwest Smart Grid Demonstration (PNWSGD), a $179 million project that was co-funded by the U.S. Department of Energy (DOE) in late 2009, was one of the largest and most comprehensive demonstrations of electricity grid modernization ever completed. The project was one of 16 regional smart grid demonstrations funded by the American Recovery and Reinvestment Act. It was the only demonstration that included multiple states and cooperation from multiple electric utilities, including rural electric co-ops, investor-owned, municipal, and other public utilities. No fewer than 55 unique instantiations of distinct smart grid systems were demonstrated at the projects’ sites. Themore » local objectives for these systems included improved reliability, energy conservation, improved efficiency, and demand responsiveness. The demonstration developed and deployed an innovative transactive system, unique in the world, that coordinated many of the project’s distributed energy resources and demand-responsive components. With the transactive system, additional regional objectives were also addressed, including the mitigation of renewable energy intermittency and the flattening of system load. Using the transactive system, the project coordinated a regional response across the 11 utilities. This region-wide connection from the transmission system down to individual premises equipment was one of the major successes of the project. The project showed that this can be done and assets at the end points can respond dynamically on a wide scale. In principle, a transactive system of this type might eventually help coordinate electricity supply, transmission, distribution, and end uses by distributing mostly automated control responsibilities among the many distributed smart grid domain members and their smart devices.« less
Design of electrolyzer for carbon dioxide conversion to fuels and chemicals
NASA Astrophysics Data System (ADS)
Rosen, Jonathan S.
The stabilization of global atmospheric CO2 levels requires a transition towards a renewable energy based economy as well as methods for handling current CO2 output from fossil fuels. Challenges with renewable energy intermittency have thus far limited the use of these alternative energy sources to only a fraction of the current energy portfolio. To enable more widespread use of renewable energy systems, methods of large scale energy storage must be developed to store excess renewable energy when demand is low and allow for combined use of energy storage and renewable systems when demand is high. To date, no one technique has demonstrated energy storage methods on the gigawatt scale needed for integration with renewable sources; therefore the development of suitable energy storage technologies, such as CO2 electrolysis to fuels is needed. In this work, research efforts have focused on two major thrusts related to electrochemical methods of CO 2 conversion to fuels. The first thrust focuses on the synthesis and design of highly efficient anode and cathode catalysts with emphasis on understanding structure-property relationships. A second thrust focuses on the design of novel electrochemical devices for CO2 conversion and integration of synthesized materials into flow cell systems. On the anode side, the synthesis of highly active catalysts using abundant transition metals is crucial to reducing capital costs and enabling widespread use of electrochemical CO2 conversion devices. Highly active mesoporous Co3O4 and metal-substituted Co3O4 water oxidation catalysts were designed to investigate the role of the spinel structure on water oxidation activity. Further analysis of metal substituted samples reveal the importance of the octahedral sites in the spinel structure, which was later used to design an Mg-Co3O4 sample with improved water oxidation activity. The design of efficient cathode materials which can selectivity reduce CO2 to fuels and chemicals is critical to the widespread use of CO2 electrolysis. A nanoporous Ag material was synthesized through a dealloying technique able to operate with less than 0.5 V overpotential and high selectivity towards CO. CO is a valuable intermediate chemical which can used in Fischer-Tropsch or Gas-to-liquids technologies to produce liquids fuels. A detailed investigation of nanostructured Ag catalysts found stepped sites to be responsible for enhanced CO2 reduction activity due to improved stabilization of the COOH intermediate on the catalyst surface. In addition, an low-cost Zn dendrite electrocatalyst was developed using an electroplating technique. Low coordinated sites formed through electrodeposition demonstrated the suppression of hydrogen evolution while maintaining CO activity. The Zn dendrite electrocatalyst was further examined using a newly developed in situ X-ray absorption technique able to probe catalyst stability and crystalline structure under CO2 reduction operating conditions. A final hurdle in the realization of CO2 electrolysis technologies is the integration of catalysts into working flow cell devices. To address this issue and enable testing in a practical system, a highly efficient and robust CO2 electrolysis flow cell was designed including the scale up of the previous nanoporous Ag synthesis procedure. Using the modified porous Ag catalyst, currents in the Amp regime were demonstrated approaching rates needed for energy storage applications. Stability on the order of days was successfully demonstrated due to use of robust system components and conditions suitable for process scale up.
Heat-activated Plasmonic Chemical Sensors for Harsh Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Michael; Oh, Sang-Hyun
2015-12-01
A passive plasmonics based chemical sensing system to be used in harsh operating environments was investigated and developed within this program. The initial proposed technology was based on combining technologies developed at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering (CNSE) and at the University of Minnesota (UM). Specifically, a passive wireless technique developed at UM was to utilize a heat-activated plasmonic design to passively harvest the thermal energy from within a combustion emission stream and convert this into a narrowly focused light source. This plasmonic device was based on a bullseye design patterned into a gold filmmore » using focused ion beam methods (FIB). Critical to the design was the use of thermal stabilizing under and overlayers surrounding the gold film. These stabilizing layers were based on both atomic layer deposited films as well as metal laminate layers developed by United Technologies Aerospace Systems (UTAS). While the bullseye design was never able to be thermally stabilized for operating temperatures of 500oC or higher, an alternative energy harvesting design was developed by CNSE within this program. With this new development, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The method was further improved by patterning rods which harvested energy in the near infrared, which led to a factor of 10 decrease in data acquisition times as well as demonstrated selectivity with a reduced wavelength data set. The combination of a plasmonic-based energy harvesting sensing paradigm with PCA analysis and wavelength down selection offers a novel path towards simplification and integration of plasmonic-based sensing methods using selected wavelengths rather than a full spectral analysis. Integration efforts were designed and modeled for thermal and mass transport considerations by UTAS which led to the 3D printing of scaled models that would serve as the housing for the alternative energy harvesting plasmonic chemical sensor design developed by CNSE.« less
NREL's Cyanobacteria Engineering Shortens Biofuel Production Process, Captures CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-01
This highlight describes NREL's work to systematically analyze the flow of energy in a photosynthetic microbe and show how the organism adjusts its metabolism to meet the increased energy demand for making ethylene. This work successfully demonstrates that the organism could cooperate by stimulating photosynthesis. The results encourage further genetic engineering for the conversion of CO2 to biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting. biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting.
The JPL space photovoltaic program. [energy efficient so1 silicon solar cells for space applications
NASA Technical Reports Server (NTRS)
Scott-Monck, J. A.
1979-01-01
The development of energy efficient solar cells for space applications is discussed. The electrical performance of solar cells as a function of temperature and solar intensity and the influence of radiation and subsequent thermal annealing on the electrical behavior of cells are among the factors studied. Progress in GaAs solar cell development is reported with emphasis on improvement of output power and radiation resistance to demonstrate a solar cell array to meet the specific power and stability requirements of solar power satellites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, David L
2013-06-30
The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuelmore » Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cell technology academic program at Florida Institute of Technology in Melbourne, Florida. Design and Development of an Advanced Hydrogen Storage System using Novel Materials ? E. Stefanakos, University of South Florida The goal of this project was to design and develop novel conducting polymeric nanomaterials for on-board hydrogen storage. The project approach was to examine synthesis of polyaniline solid state hydrogen storage materials. Advanced HiFoil ? Bipolar Plates ? J. Braun, M. Fuchs, EnerFuel, Inc. The goal of this project was to provide a durable, low cost bipolar plate for high temperature proton exchange membrane fuel cells. The project results produced a durable, low cost bipolar plate with very high in-plane thermal conductivity.« less
Geothermal energy - Ready for use
NASA Astrophysics Data System (ADS)
Miskell, J. T.
1980-11-01
The use of geothermal energy in the United States for heating applications is discussed. The three major forms of geothermal energy, hydrothermal, pertrothermal and geopressured, are briefly reviewed, with attention given to the types of energy available from each. Federally supported projects demonstrating the use of geothermal hot water to heat homes in Boise, Idaho, and hot dry rocks in Fenton Hill, New Mexico to produce electricity are presented. Data available from existing geothermal energy applications are presented which show that geothermal is cost competitive with conventional energy sources using existing technology, and government economic incentives to the producers and users of geothermal energy are indicated. Finally, advanced equipment currently under development for the generation of electricity from geothermal resources at reduced costs is presented.
NASA Technical Reports Server (NTRS)
Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Bradley, J. G.; Conley, J. M.
1986-01-01
A mercuric iodide energy dispersive X-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K(alpha) at 5.9 keV and 195 eV (FWHM) for the Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies.
The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies
NASA Astrophysics Data System (ADS)
Campbell, E. Michael
2010-02-01
Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )
Davis, Kendall M; Nguyen, Michael N; McClung, Maureen R; Moran, Matthew D
2018-05-01
The United States energy industry is transforming with the rapid development of alternative energy sources and technological advancements in fossil fuels. Two major changes include the growth of wind turbines and unconventional oil and gas. We measured land-use impacts and associated ecosystem services costs of unconventional gas and wind energy development within the Anadarko Basin of the Oklahoma Woodford Shale, an area that has experienced large increases in both energy sectors. Unconventional gas wells developed three times as much land compared to wind turbines (on a per unit basis), resulting in higher ecosystem services costs for gas. Gas wells had higher impacts on intensive agricultural lands (i.e., row crops) compared to wind turbines that had higher impacts on natural grasslands/pastures. Because wind turbines produced on average less energy compared to gas wells, the average land-use-related ecosystem cost per gigajoule of energy produced was almost the same. Our results demonstrate that both unconventional gas and wind energy have substantial impacts on land use, which likely affect wildlife populations and land-use-related ecosystem services. Although wind energy does not have the associated greenhouse gas emissions, we suggest that the direct impacts on ecosystems in terms of land use are similar to unconventional fossil fuels. Considering the expected rapid global expansion of these two forms of energy production, many ecosystems are likely to be at risk.
NASA Astrophysics Data System (ADS)
Peng, Hong-Gang; Wang, Jian-Qiang
2017-11-01
In recent years, sustainable energy crop has become an important energy development strategy topic in many countries. Selecting the most sustainable energy crop is a significant problem that must be addressed during any biofuel production process. The focus of this study is the development of an innovative multi-criteria decision-making (MCDM) method to handle sustainable energy crop selection problems. Given that various uncertain data are encountered in the evaluation of sustainable energy crops, linguistic intuitionistic fuzzy numbers (LIFNs) are introduced to present the information necessary to the evaluation process. Processing qualitative concepts requires the effective support of reliable tools; then, a cloud model can be used to deal with linguistic intuitionistic information. First, LIFNs are converted and a novel concept of linguistic intuitionistic cloud (LIC) is proposed. The operations, score function and similarity measurement of the LICs are defined. Subsequently, the linguistic intuitionistic cloud density-prioritised weighted Heronian mean operator is developed, which served as the basis for the construction of an applicable MCDM model for sustainable energy crop selection. Finally, an illustrative example is provided to demonstrate the proposed method, and its feasibility and validity are further verified by comparing it with other existing methods.
NASA Astrophysics Data System (ADS)
Alejo, A.; Gwynne, D.; Doria, D.; Ahmed, H.; Carroll, D. C.; Clarke, R. J.; Neely, D.; Scott, G. G.; Borghesi, M.; Kar, S.
2016-10-01
Ongoing developments in laser-driven ion acceleration warrant appropriate modifications to the standard Thomson Parabola Spectrometer (TPS) arrangement in order to match the diagnostic requirements associated to the particular and distinctive properties of laser-accelerated beams. Here we present an overview of recent developments by our group of the TPS diagnostic aimed to enhance the capability of diagnosing multi-species high-energy ion beams. In order to facilitate discrimination between ions with same Z/A, a recursive differential filtering technique was implemented at the TPS detector in order to allow only one of the overlapping ion species to reach the detector, across the entire energy range detectable by the TPS. In order to mitigate the issue of overlapping ion traces towards the higher energy part of the spectrum, an extended, trapezoidal electric plates design was envisaged, followed by its experimental demonstration. The design allows achieving high energy-resolution at high energies without sacrificing the lower energy part of the spectrum. Finally, a novel multi-pinhole TPS design is discussed, that would allow angularly resolved, complete spectral characterization of the high-energy, multi-species ion beams.
The Liquid Fluoride Thorium Reactor: Energy Cheaper Than Coal
NASA Astrophysics Data System (ADS)
Stone, Cavan
2011-11-01
This century, we face significant environmental challenges. Our demand for limited natural resources is rapidly increasing and much of humanity is concerned about the consequences. Our unsustainably growing population drives these challenges, and humanely stabilizing it would alleviate these pressures. Demographic data clearly shows that prosperity stabilizes population and it also shows that prosperity critically requires energy. In spite of the pressing and demonstrable nature of these challenges however, politically there is no international consensus on global energy policy. Developing nations simply will not accept a policy that will hamper their economic growth. Yet, we do have a solution to these challenges, an idea conceived and experimentally tested by Alvin Weinberg at Oak Ridge National Laboratory, the Liquid Fluoride Thorium Reactor. Presently, various laboratories and start-up companies, including the Chinese Academy of Sciences have begun efforts to commercialize the technology. By delivering the promise of inexpensive energy it will be in the economic interest of the developing nations to use this carbon-free energy source. By delivering superior performance on longstanding public concerns about nuclear energy, it will be technologically and politically feasible for developing nations to stabilize their population with the bounty of energy cheaper than coal.
Status of wind-energy conversion
NASA Technical Reports Server (NTRS)
Thomas, R. L.; Savino, J. M.
1973-01-01
The utilization of wind energy is technically feasible as evidenced by the many past demonstrations of wind generators. The cost of energy from the wind has been high compared to fossil fuel systems. A sustained development effort is needed to obtain economical systems. The variability of the wind makes it an unreliable source on a short-term basis. However, the effects of this variability can be reduced by storage systems or connecting wind generators to fossil fuel systems, hydroelectric systems, or dispersing them throughout a large grid network. The NSF and NASA-Lewis Research Center have sponsored programs for the utilization of wind energy.
A method of predicting the energy-absorption capability of composite subfloor beams
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1987-01-01
A simple method of predicting the energy-absorption capability of composite subfloor beam structure was developed. The method is based upon the weighted sum of the energy-absorption capability of constituent elements of a subfloor beam. An empirical data base of energy absorption results from circular and square cross section tube specimens were used in the prediction capability. The procedure is applicable to a wide range of subfloor beam structure. The procedure was demonstrated on three subfloor beam concepts. Agreement between test and prediction was within seven percent for all three cases.
«Smart Grid» Concept As A Modern Technology For The Power Industry Development
NASA Astrophysics Data System (ADS)
Vidyaev, Igor G.; Ivashutenko, Alexandr S.; Samburskaya, Maria A.
2017-01-01
The article discusses the main problems of the power industry and energy supply to the distribution networks. One of the suggested solutions for these problems is the use of intelligent energy networks on the basis of digital reality simulation, in particular, the concept of «SMART GRID». The article presents the basic points of the concept and the peculiarities of its application at the enterprises. It was demonstrated that the use of this technology eliminates power shortage, reduces the energy intensity and improves the energy efficiency throughout the operation of an enterprise as a whole.
Hydropower, an energy source whose time has come again
NASA Astrophysics Data System (ADS)
1980-01-01
Recent price increases in imported oil demonstrate the urgency for the U.S. to rapidly develop its renewable resources. One such renewable resource for which technology is available now is hydropower. Studies indicate that hydropower potential, particularly at existing dam sites, can save the county hundreds of thousands of barrels of oil per day. But problems and constraints-economic, environmental, institutional, and operational-limit is full potential. Federal programs have had little impact on helping to bring hydro projects on line. Specifically, the Department of Energy's Small Hydro Program could do more to overcome hydro constraints and problems through an effective outreach program and more emphasis on demonstration projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2007-03-01
This document summarizes the results of the benefits analysis of EERE's programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and for each of its nine Research, Development, Demonstration, and Deployment (RD3) programs. Benefits for the FY 2008 budget request are estimated for the midterm (2008-2030) and long term (2030-2050).
The Light Ion Pulsed Power Induction Accelerator for ETF
1995-07-01
the technical development necessary to demonstrate scientific and engineering feasibility for fusion energy production with a reprated driver. In...order for ETF to be cost effective, the accelerator system must be able to drive several target chambers which will test various Inertial Fusion ... Energy (IFE) reactor technologies. We envision an elevator system positioning and removing multiple target chambers from the center area of the ion beam
A national research & development strategy for biomass crop feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, L.L.; Cushman, J.H.
Planning was initiated in 1996 with the objective of reevaluating current biomass feedstock research and development strategies to: (1) assure that by 2005, one or more commercial lignocellulosic to ethanol projects will be able to acquire a dependable supply of biomass crop feedstocks; (2) assure that recently initiated demonstrations of crops to electricity will be successful and; (3) assure that the research base needed to support future biomass industry expansion is being developed. Multiple trends and analyses indicate that biomass energy research and development strategies must take into account the fact that competition for land will define the upper limitsmore » of available biomass energy crop supplies and will largely dictate the price of those supplies. Only crop production and utilization strategies which contribute profit to the farmer or landowner and to energy producers will be used commercially for biomass energy production. Strategies for developing biomass {open_quotes}energy{close_quotes} crop supplies must take into consideration all of the methods by which biomass crops will enter biomass energy markets. The lignocellulosic materials derived from crops can be available as primary residues or crop by-products; secondary residues or processing by-products; co-products (at both the crop production and processing stages); or, as dedicated energy crops. Basic research and development (R&D) leading to yield improvement continues to be recommended as a major long-term focus for dedicated energy crops. Many additional near term topics need attention, some of which are also applicable to by-products and co-products. Switchgrass R&D should be expanded and developed with greater collaboration of USDA and state extension groups. Woody crop research should continue with significant cost-share from industries developing the crops for other commercial products. Co-product options need more investigation.« less
Energy Cost Impact of Non-Residential Energy Code Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jian; Hart, Philip R.; Rosenberg, Michael I.
2016-08-22
The 2012 International Energy Conservation Code contains 396 separate requirements applicable to non-residential buildings; however, there is no systematic analysis of the energy cost impact of each requirement. Consequently, limited code department budgets for plan review, inspection, and training cannot be focused on the most impactful items. An inventory and ranking of code requirements based on their potential energy cost impact is under development. The initial phase focuses on office buildings with simple HVAC systems in climate zone 4C. Prototype building simulations were used to estimate the energy cost impact of varying levels of non-compliance. A preliminary estimate of themore » probability of occurrence of each level of non-compliance was combined with the estimated lost savings for each level to rank the requirements according to expected savings impact. The methodology to develop and refine further energy cost impacts, specific to building type, system type, and climate location is demonstrated. As results are developed, an innovative alternative method for compliance verification can focus efforts so only the most impactful requirements from an energy cost perspective are verified for every building and a subset of the less impactful requirements are verified on a random basis across a building population. The results can be further applied in prioritizing training material development and specific areas of building official training.« less
A seesaw-type approach for enhancing nonlinear energy harvesting
NASA Astrophysics Data System (ADS)
Deng, Huaxia; Wang, Zhemin; Du, Yu; Zhang, Jin; Ma, Mengchao; Zhong, Xiang
2018-05-01
Harvesting sustainable mechanical energy is the ultimate objective of nonlinear energy harvesters. However, overcoming potential barriers, especially without the use of extra excitations, poses a great challenge for the development of nonlinear generators. In contrast to the existing methods, which typically modify the barrier height or utilize additional excitations, this letter proposes a seesaw-type approach to facilitate escape from potential wells by transfer of internal energy, even under low-intensity excitation. This approach is adopted in the design of a seesaw-type nonlinear piezoelectric energy harvester and the energy transfer process is analyzed by deriving expressions for the energy to reveal the working mechanism. Comparison experiments demonstrate that this approach improves energy harvesting in terms of an increase in the working frequency bandwidth by a factor of 60.14 and an increase in the maximum output voltage by a factor of 5.1. Moreover, the output power is increased by a factor of 51.3, which indicates that this approach significantly improves energy collection efficiency. This seesaw-type approach provides a welcome boost to the development of renewable energy collection methods by improving the efficiency of harvesting of low-intensity ambient mechanical energy.
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew; Jeffers, Matthew
This report, published annually, summarizes the progress of fuel cell electric bus development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. Funding for this effort is provided by the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy and by the U.S. Department of Transportation's Federal Transit Administration. The 2016 summary results primarily focus on the most recent year for each demonstration, from August 2015 through Julymore » 2016. The results for these buses account for more than 550,000 miles traveled and 59,500 hours of fuel cell power system operation. The primary results presented in the report are from three demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus Project at SunLine Transit Agency in California; and American Fuel Cell Bus Project at the University of California at Irvine.« less
Advanced fuels campaign 2013 accomplishments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori; Hamelin, Doug
The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle optionsmore » defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.« less
High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; C. M. Stoots; J. S. Herring
2010-02-01
The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research andmore » development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.« less
Demonstration of roundabout lighting based on the ecoluminance approach.
DOT National Transportation Integrated Search
2012-08-01
Roundabout lighting consisting of pole-mounted high pressure sodium luminaires can be energy intensive : and does not necessary provide clear delineation for drivers and pedestrians navigating a roundabout. Using : the ecoluminance concept developed ...
Demonstration of roundabout lighting based on the ecoluminance approach.
DOT National Transportation Integrated Search
2012-08-01
"Roundabout lighting consisting of pole-mounted high pressure sodium luminaires can be energy intensive : and does not necessary provide clear delineation for drivers and pedestrians navigating a roundabout. Using : the ecoluminance concept developed...
Automated transit infrastructure maintenance demonstration.
DOT National Transportation Integrated Search
2009-04-01
The report was prepared by Bentley Systems, Inc. (Bentley) in the course of performing work contracted : for and sponsored by the New York State Energy Research and Development Authority (NYSERDA), the : New York State Department of Transportation (N...
Research & Development Roadmap for Next-Generation Appliances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Sutherland, Timothy; Foley, Kevin
2012-03-01
Appliances present an attractive opportunity for near-term energy savings in existing building, because they are less expensive and replaced more regularly than heating, ventilation, and air-conditioning (HVAC) systems or building envelope components. This roadmap targets high-priority research and development (R&D), demonstration and commercialization activities that could significantly reduce residential appliance energy consumption. The main objective of the roadmap is to seek activities that accelerate the commercialization of high-efficiency appliance technologies while maintaining the competitiveness of American industry. The roadmap identified and evaluated potential technical innovations, defined research needs, created preliminary research and development roadmaps, and obtained stakeholder feedback on themore » proposed initiatives.« less
Development and Commercialization of the Lunar Solar Power System
NASA Astrophysics Data System (ADS)
Criswell, D. R.
2002-01-01
The proposed Lunar Solar Power (LSP) System consists of pairs of power bases located on opposite limbs of the Moon as seen from Earth. The power bases collect the solar energy and convert it to beams of microwaves. The microwaves are delivered directly to moonward-facing receivers on Earth or indirectly through relay satellites in orbit about Earth (1, 2, 3, 4). The LSP System may be the only reasonable method for establishing sustainable global energy prosperity within two generations. Commercial power prosperity requires at least 2 kWe/person. For ten billion people this implies 20 TWe and 2,000 TWe-y of electric energy or ~6,000 TWt-y of thermal energy per century (5, 6, 7, 8). A brief overview is presented of a reference LSP System that supplies 20 TWe by 2050. The engineering scales and the cost and benefits of this system are described. In order to provide low cost commercial electric energy, the power bases are made primarily of local lunar materials by machines, facilities, and people deployed from Earth (1, 2, 3). In addition, lunar production machinery can be made primarily from lunar materials. Advantages of this approach, versus the reference LSP System, are discussed. Full-scale production of a LSP System will certainly be proceeded by terrestrial and lunar operation of the production machinery and a small-scale demonstration of the operational system (1). Using government funds to establishing a permanent lunar base and the associated transportation system would significantly reduce the upfront cost for the demonstration of a commercial LSP System (2). The government program would provide a legal framework for commercial development of the LSP System (3, 9). The LSP System offers the opportunity to establish a materials industry on the Moon that can produce a growing mass and variety of goods and enable new services of benefit on the Earth and the Moon (10). New priorities are suggested for civilian space programs that can accelerate the establishment of a demonstration LSP System and growing commercialization of the Moon and cis-lunar space. 1. Criswell, David R. (2001) Lunar Solar Power System: Industrial Research, Development, and Demonstration, Session 1.2.2: Hydroelectricity, Nuclear Energy and New Renewables, 18th World Energy Congress. [http://www.wec.co.ukin the Congress Papers, Discussion Sessions] 2. Criswell, D. R. and Waldron, R. D. 1993. International Lunar Base and Lunar-based Power System to Supply Earth with Electric Power, Acta Astronautica, Vol. 29, No. 6, pp. 469-480. Pergamon Press Ltd. 3. NASA TASK FORCE. 1989 (July) Report of NASA Lunar Energy Enterprise Case Study Task Force. NASA Technical Memo 101652. 163pp. NASA Headquarters, Office of Exploration (Code Z), Washington, D.C. 20546. 4. Moore, T. (2000, Spring) "Renewed interest in space solar power," EPRI Journal, pp. 6-17. 5. World Energy Council (2000) Energy for Tomorrow's World - Acting Now!, 175pp., Atalink Projects Ltd, London. 6. Criswell, David R. (2002) Energy Prosperity within the 21st Century and Beyond: Options and the Unique Roles of the Sun and the Moon. Chapter 9: Innovative Solutions To CO2 Stabilization, R. Watts (editor), Cambridge Un. Press 7. Strong, Maurice (2001) Where on Earth are We Going?, (See p. 351-352), 419pp., Random House (forward by Kofi Annan) 8. Criswell, D. R. and Thompson, R. G. (1996), "Data envelopment analysis of space and terrestrial-based large scale commercial power systems for Earth: A prototype analysis of their relative economic advantages," Solar Energy, 56, No. 1: 119-131. 9 ILEWG (1997), Proc. 2nd International Lunar Workshop, organized by: International Lunar Exploration Working Group, Inst. Space and Astronautical Science, and National Space Development Agency of Japan, Kyoto, Japan, (October 14 - 17), 89pp. 10. Criswell, D.R. 2000 (October) Commercial power for Earth and lunar industrial development, 7pp., 51st Congress of the International Astronautical Federation (IAF). (Rio de Janeiro, Brazil). Paper #IAA-00-IAA.13.2.06.
K-Ion Batteries Based on a P2-Type K 0.6CoO 2 Cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Haegyeom; Kim, Jae Chul; Bo, Shou-Hang
K-ion batteries are a potentially exciting and new energy storage technology that can combine high specific energy, cycle life, and good power capability, all while using abundant potassium resources. The discovery of novel cathodes is a critical step toward realizing K-ion batteries (KIBs). In this work, a layered P2-type K 0.6CoO 2 cathode is developed and highly reversible K ion intercalation is demonstrated. In situ X-ray diffraction combined with electrochemical titration reveals that P2-type K 0.6CoO 2 can store and release a considerable amount of K ions via a topotactic reaction. Despite the large amount of phase transitions as functionmore » of K content, the cathode operates highly reversibly and with good rate capability. The practical feasibility of KIBs is further demonstrated by constructing full cells with a graphite anode. This work highlights the potential of KIBs as viable alternatives for Li-ion and Na-ion batteries and provides new insights and directions for the development of next-generation energy storage systems.« less
K-Ion Batteries Based on a P2-Type K 0.6CoO 2 Cathode
Kim, Haegyeom; Kim, Jae Chul; Bo, Shou-Hang; ...
2017-05-02
K-ion batteries are a potentially exciting and new energy storage technology that can combine high specific energy, cycle life, and good power capability, all while using abundant potassium resources. The discovery of novel cathodes is a critical step toward realizing K-ion batteries (KIBs). In this work, a layered P2-type K 0.6CoO 2 cathode is developed and highly reversible K ion intercalation is demonstrated. In situ X-ray diffraction combined with electrochemical titration reveals that P2-type K 0.6CoO 2 can store and release a considerable amount of K ions via a topotactic reaction. Despite the large amount of phase transitions as functionmore » of K content, the cathode operates highly reversibly and with good rate capability. The practical feasibility of KIBs is further demonstrated by constructing full cells with a graphite anode. This work highlights the potential of KIBs as viable alternatives for Li-ion and Na-ion batteries and provides new insights and directions for the development of next-generation energy storage systems.« less
Plasma wakefield acceleration experiments at FACET II
NASA Astrophysics Data System (ADS)
Joshi, C.; Adli, E.; An, W.; Clayton, C. E.; Corde, S.; Gessner, S.; Hogan, M. J.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; O'shea, B.; Xu, Xinlu; White, G.; Yakimenko, V.
2018-03-01
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the ‘blow-out regime’ have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currently under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. We then briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.
Plasma wakefield acceleration experiments at FACET II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, C.; Adli, E.; An, W.
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less
Plasma wakefield acceleration experiments at FACET II
Joshi, C.; Adli, E.; An, W.; ...
2018-01-12
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less
Economic Analysis of Solar Energy Using in Oil Sector Economy in Republic of Tatarstan
NASA Astrophysics Data System (ADS)
Kulikova, L. I.; Goshunova, A. V.; Nutfullina, D. I.
2017-11-01
In the current economic conditions further increase of the profit or maintenance of its current level on the base of extensive development factors is no longer possible. The example of the oil-extracting company in the Republic of Tatarstan demonstrates that in the future it will be possible to replace traditional energy sources with solar energy; it will reduce energy costs for oil extraction, production costs and provide an increase of corporate efficiency. The economic analysis results show that the use of solar electricity can lead to 4.68% reduction in total electricity costs. In addition, the energy consumption per ton of oil produced is reduced. The share of electricity costs in the oil cost is reducing from 12.13% to 11.56%. Consequently, in the long term, the impact of total energy costs reduction can become more significant. In this way solar energy can become quite a real alternative in ensuring the energy needs of the economy of the oil-extracting sector of the Republic of Tatarstan and become a driver of intensive economic development.
Economic optimization of operations for hybrid energy systems under variable markets
Chen, Jen; Garcia, Humberto E.
2016-05-21
We prosed a hybrid energy systems (HES) which is an important element to enable increasing penetration of clean energy. Our paper investigates the operations flexibility of HES, and develops a methodology for operations optimization for maximizing economic value based on predicted renewable generation and market information. A multi-environment computational platform for performing such operations optimization is also developed. In order to compensate for prediction error, a control strategy is accordingly designed to operate a standby energy storage element (ESE) to avoid energy imbalance within HES. The proposed operations optimizer allows systematic control of energy conversion for maximal economic value. Simulationmore » results of two specific HES configurations are included to illustrate the proposed methodology and computational capability. These results demonstrate the economic viability of HES under proposed operations optimizer, suggesting the diversion of energy for alternative energy output while participating in the ancillary service market. Economic advantages of such operations optimizer and associated flexible operations are illustrated by comparing the economic performance of flexible operations against that of constant operations. Sensitivity analysis with respect to market variability and prediction error, are also performed.« less
Economic optimization of operations for hybrid energy systems under variable markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jen; Garcia, Humberto E.
We prosed a hybrid energy systems (HES) which is an important element to enable increasing penetration of clean energy. Our paper investigates the operations flexibility of HES, and develops a methodology for operations optimization for maximizing economic value based on predicted renewable generation and market information. A multi-environment computational platform for performing such operations optimization is also developed. In order to compensate for prediction error, a control strategy is accordingly designed to operate a standby energy storage element (ESE) to avoid energy imbalance within HES. The proposed operations optimizer allows systematic control of energy conversion for maximal economic value. Simulationmore » results of two specific HES configurations are included to illustrate the proposed methodology and computational capability. These results demonstrate the economic viability of HES under proposed operations optimizer, suggesting the diversion of energy for alternative energy output while participating in the ancillary service market. Economic advantages of such operations optimizer and associated flexible operations are illustrated by comparing the economic performance of flexible operations against that of constant operations. Sensitivity analysis with respect to market variability and prediction error, are also performed.« less
Exciton shelves for charge and energy transport in third-generation quantum-dot devices
NASA Astrophysics Data System (ADS)
Goodman, Samuel; Singh, Vivek; Noh, Hyunwoo; Casamada, Josep; Chatterjee, Anushree; Cha, Jennifer; Nagpal, Prashant
2014-03-01
Quantum dots are semiconductor nanocrystallites with size-dependent quantum-confined energy levels. While they have been intensively investigated to utilize hot-carriers for photovoltaic applications, to bridge the mismatch between incident solar photons and finite bandgap of semiconductor photocells, efficient charge or exciton transport in quantum-dot films has proven challenging. Here we show development of new coupled conjugated molecular wires with ``exciton shelves'', or different energy levels, matched with the multiple energy levels of quantum dots. Using single nanoparticle and ensemble device measurements we show successful extraction and transport of both bandedge and high-energy charge carriers, and energy transport of excitons. We demonstrate using measurements of electronic density of states, that careful matching of energy states of quantum-dot with molecular wires is important, and any mismatch can generate midgap states leading to charge recombination and reduced efficiency. Therefore, these exciton-shelves and quantum dots can lead to development of next-generation photovoltaic and photodetection devices using simultaneous transport of bandedge and hot-carriers or energy transport of excitons in these nanostructured solution-processed films.
Analytic second derivatives of the energy in the fragment molecular orbital method
NASA Astrophysics Data System (ADS)
Nakata, Hiroya; Nagata, Takeshi; Fedorov, Dmitri G.; Yokojima, Satoshi; Kitaura, Kazuo; Nakamura, Shinichiro
2013-04-01
We developed the analytic second derivatives of the energy for the fragment molecular orbital (FMO) method. First we derived the analytic expressions and then introduced some approximations related to the first and second order coupled perturbed Hartree-Fock equations. We developed a parallel program for the FMO Hessian with approximations in GAMESS and used it to calculate infrared (IR) spectra and Gibbs free energies and to locate the transition states in SN2 reactions. The accuracy of the Hessian is demonstrated in comparison to ab initio results for polypeptides and a water cluster. By using the two residues per fragment division, we achieved the accuracy of 3 cm-1 in the reduced mean square deviation of vibrational frequencies from ab initio for all three polyalanine isomers, while the zero point energy had the error not exceeding 0.3 kcal/mol. The role of the secondary structure on IR spectra, zero point energies, and Gibbs free energies is discussed.
The Electrochemical Flow Capacitor: Capacitive Energy Storage in Flowable Media
NASA Astrophysics Data System (ADS)
Dennison, Christopher R.
Electrical energy storage (EES) has emerged as a necessary aspect of grid infrastructure to address the increasing problem of grid instability imposed by the large scale implementation of renewable energy sources (such as wind or solar) on the grid. Rapid energy recovery and storage is critically important to enable immediate and continuous utilization of these resources, and provides other benefits to grid operators and consumers as well. In past decades, there has been significant progress in the development of electrochemical EES technologies which has had an immense impact on the consumer and micro-electronics industries. However, these advances primarily address small-scale storage, and are often not practical at the grid-scale. A new energy storage concept called "the electrochemical flow capacitor (EFC)" has been developed at Drexel which has significant potential to be an attractive technology for grid-scale energy storage. This new concept exploits the characteristics of both supercapacitors and flow batteries, potentially enabling fast response rates with high power density, high efficiency, and long cycle lifetime, while decoupling energy storage from power output (i.e., scalable energy storage capacity). The unique aspect of this concept is the use of flowable carbon-electrolyte slurry ("flowable electrode") as the active material for capacitive energy storage. This dissertation work seeks to lay the scientific groundwork necessary to develop this new concept into a practical technology, and to test the overarching hypothesis that energy can be capacitively stored and recovered from a flowable media. In line with these goals, the objectives of this Ph.D. work are to: i) perform an exploratory investigation of the operating principles and demonstrate the technical viability of this new concept and ii) establish a scientific framework to assess the key linkages between slurry composition, flow cell design, operating conditions and system performance. To achieve these goals, a combined experimental and computational approach is undertaken. The technical viability of the technology is demonstrated, and in-depth studies are performed to understand the coupling between flow rate and slurry conductivity, and localized effects arising within the cell. The outlook of EFCs and other flowable electrode technologies is assessed, and opportunities for future work are discussed.
Development of the Flame Test Concept Inventory: Measuring Student Thinking about Atomic Emission
ERIC Educational Resources Information Center
Bretz, Stacey Lowery; Murata Mayo, Ana Vasquez
2018-01-01
This study reports the development of a 19-item Flame Test Concept Inventory, an assessment tool to measure students' understanding of atomic emission. Fifty-two students enrolled in secondary and postsecondary chemistry courses were interviewed about atomic emission and explicitly asked to explain flame test demonstrations and energy level…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fregosi, D.; Ravula, S.; Brhlik, D.
2015-04-22
Bosch has developed and demonstrated a novel DC microgrid system designed to maximize utilization efficiency for locally generated photovoltaic energy while offering high reliability, safety, redundancy, and reduced cost compared to equivalent AC systems. Several demonstration projects validating the system feasibility and expected efficiency gains have been completed and additional ones are in progress. This work gives an overview of the Bosch DC microgrid system and presents key results from a large simulation study done to estimate the energy savings of the Bosch DC microgrid over conventional AC systems. The study examined the system performance in locations across the Unitedmore » States for several commercial building types and operating profiles and found that the Bosch DC microgrid uses generated PV energy 6%–8% more efficiently than traditional AC systems.« less
Chiarotti, Ugo; Moroli, Valerio; Menchetti, Fernando; Piancaldini, Roberto; Bianco, Loris; Viotto, Alberto; Baracchini, Giulia; Gaspardo, Daniele; Nazzi, Fabio; Curti, Maurizio; Gabriele, Massimiliano
2017-03-01
A 39-W thermoelectric generator prototype has been realized and then installed in industrial plant for on-line trials. The prototype was developed as an energy harvesting demonstrator using low temperature cooling water waste heat as energy source. The objective of the research program is to measure the actual performances of this kind of device working with industrial water below 90 °C, as hot source, and fresh water at a temperature of about 15 °C, as cold sink. The article shows the first results of the research program. It was verified, under the tested operative conditions, that the produced electric power exceeds the energy required to pump the water from the hot source and cold sink to the thermoelectric generator unit if they are located at a distance not exceeding 50 m and the electric energy conversion efficiency is 0.33%. It was calculated that increasing the distance of the hot source and cold sink to the thermoelectric generator unit to 100 m the produced electric energy equals the energy required for water pumping, while reducing the distance of the hot source and cold sink to zero meters the developed unit produces an electric energy conversion efficiency of 0.61%.
Chen, Jiehui; Salim, Mariam B; Matsumoto, Mitsuji
2010-01-01
Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations.
Chen, Jiehui; Salim, Mariam B.; Matsumoto, Mitsuji
2010-01-01
Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations. PMID:22163503
High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kepler, Keith D.; Slater, Michael
This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The majormore » technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuoka, Daiki; Takahashi, Hideaki, E-mail: hideaki@m.tohoku.ac.jp; Morita, Akihiro
2014-04-07
We developed a perturbation approach to compute solvation free energy Δμ within the framework of QM (quantum mechanical)/MM (molecular mechanical) method combined with a theory of energy representation (QM/MM-ER). The energy shift η of the whole system due to the electronic polarization of the solute is evaluated using the second-order perturbation theory (PT2), where the electric field formed by surrounding solvent molecules is treated as the perturbation to the electronic Hamiltonian of the isolated solute. The point of our approach is that the energy shift η, thus obtained, is to be adopted for a novel energy coordinate of the distributionmore » functions which serve as fundamental variables in the free energy functional developed in our previous work. The most time-consuming part in the QM/MM-ER simulation can be, thus, avoided without serious loss of accuracy. For our benchmark set of molecules, it is demonstrated that the PT2 approach coupled with QM/MM-ER gives hydration free energies in excellent agreements with those given by the conventional method utilizing the Kohn-Sham SCF procedure except for a few molecules in the benchmark set. A variant of the approach is also proposed to deal with such difficulties associated with the problematic systems. The present approach is also advantageous to parallel implementations. We examined the parallel efficiency of our PT2 code on multi-core processors and found that the speedup increases almost linearly with respect to the number of cores. Thus, it was demonstrated that QM/MM-ER coupled with PT2 deserves practical applications to systems of interest.« less
Fedy, Bradley C.; O'Donnell, Michael; Bowen, Zachary H.
2015-01-01
Human impacts on wildlife populations are widespread and prolific and understanding wildlife responses to human impacts is a fundamental component of wildlife management. The first step to understanding wildlife responses is the documentation of changes in wildlife population parameters, such as population size. Meaningful assessment of population changes in potentially impacted sites requires the establishment of monitoring at similar, nonimpacted, control sites. However, it is often difficult to identify appropriate control sites in wildlife populations. We demonstrated use of Geographic Information System (GIS) data across large spatial scales to select biologically relevant control sites for population monitoring. Greater sage-grouse (Centrocercus urophasianus; hearafter, sage-grouse) are negatively affected by energy development, and monitoring of sage-grouse population within energy development areas is necessary to detect population-level responses. Weused population data (1995–2012) from an energy development area in Wyoming, USA, the Atlantic Rim Project Area (ARPA), and GIS data to identify control sites that were not impacted by energy development for population monitoring. Control sites were surrounded by similar habitat and were within similar climate areas to the ARPA. We developed nonlinear trend models for both the ARPA and control sites and compared long-term trends from the 2 areas. We found little difference between the ARPA and control sites trends over time. This research demonstrated an approach for control site selection across large landscapes and can be used as a template for similar impact-monitoring studies. It is important to note that identification of changes in population parameters between control and treatment sites is only the first step in understanding the mechanisms that underlie those changes. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke Liu; Jin Ki Hong; Wei Wei
Research and development on hydrogen and syngas production have great potential in addressing the following challenges in energy arena: (1) produce more clean fuels to meet the increasing demands for clean liquid and gaseous fuels for transportation and electricity generation, (2) increase the efficiency of energy utilization for fuels and electricity production, and (3) eliminate the pollutants and decouple the link between energy utilization and greenhouse gas emissions in end-use systems [Song, 2006, Liu, Song & Subramani 2009]. In this project, GE Global Research (GEGR) collaborated with Argonne National Laboratory (ANL) and the University of Minnesota (UoMn), developed and demonstratedmore » a low cost, compact staged catalytic partial oxidation (SCPO) technology for distributed hydrogen generation. GEGR analyzed different reforming system designs, and developed the SCPO reforming system which is a unique technology staging and integrating 3 different short contact time catalysts in a single, compact reactor: catalytic partial oxidation (CPO), steam methane reforming (SMR) and water-gas shift (WGS). This integration is demonstrated via the fabrication of a prototype scale unit of each key technology. Approaches for key technical challenges of the program includes: · Analyzed different system designs · Designed the SCPO hydrogen production system · Developed highly active and sulfur tolerant CPO catalysts · Designed and built different pilot-scale reactors to demonstrate each key technology · Evaluated different operating conditions · Quantified the efficiency and cost of the system · Developed process design package (PDP) for 1500 kg H2/day distributed H2 production unit. SCPO met the Department of Energy (DOE) and GE’s cost and efficiency targets for distributed hydrogen production.« less
Lexington Children`s Museum final report on EnergyQuest
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
EnergyQuest is a museum-wide exhibit that familiarizes children and their families with energy sources, uses, and issues and with the impact of those issues on their lives. It was developed and built by Lexington Children`s Museum with support from the US Department of Energy, Kentucky Utilities, and the Kentucky Coal Marketing and Export Council. EnergyQuest featured six hands-on exhibit stations in each of six museum galleries. Collectively, the exhibits examine the sources, uses and conservation of energy. Each EnergyQuest exhibit reflects the content of its gallery setting. During the first year after opening EnergyQuest, a series of 48 public educationalmore » programs on energy were conducted at the Museum as part of the Museum`s ongoing schedule of demonstrations, performances, workshops and classes. In addition, teacher training was conducted.« less
NASA Astrophysics Data System (ADS)
Slenzka, K.; Appel, R.; Kappel, Th.; Rahmann, H.
Biochemical analyses of the brain of cichlid fish larvae, exposed for 7 days to increased acceleration of 3g (hyper-g), revealed an increase in energy availability (succinate dehydrogenase activity, SDH), and in mitochondrial energy transformation (creatine kinase, Mi_a-CK), but no changes in an energy consumptive process (high-affinity Ca^2+-ATPase). Brain glucose-6-phosphate dehydrogenase (G6PDH) of developing fish was previously found to be increased after hyper-g exposure. Three respectively 5 hours thereafter dramatic fluctuations in enzyme activity were registered. Analysing the cytosolic or plasma membrane-located brain creatine kinase (BB-CK) of clawed toad larvae after long-term hyper-g exposure a significant increase in enzyme activity was demonstrated, whereas the activity of a high affinity Ca^2+-ATPase remained unaffected.
Cloth-Based Power Shirt for Wearable Energy Harvesting and Clothes Ornamentation.
Li, Suling; Zhong, Qize; Zhong, Junwen; Cheng, Xiaofeng; Wang, Bo; Hu, Bin; Zhou, Jun
2015-07-15
Harvesting ambient mechanical energy from human body motion has attracted great research interest. In this work, a power shirt based on triboelectrification and the electrostatic induction effect between fluorinated ethylene propylene (FEP) and external objects is demonstrated. This power shirt can effectively convert the ambient mechanical energy into electric power, and the working mechanism is systematically discussed. A maximum short-circuit current density of ∼0.37 μA/cm2 and a maximum peak power density of ∼4.65 μW/cm2 were achieved. Simultaneously, 11 blue LEDs were lit by sliding the sleeve and power shirt, indicating the potential application of the power shirt in clothes ornamentation and risk warning. This study develops an efficient path for harvesting human body energy and promoting the development of wearable electronics and smart garments.
Development of the Concept of Energy Conservation using Simple Experiments for Grade 10 Students
NASA Astrophysics Data System (ADS)
Rachniyom, S.; Toedtanya, K.; Wuttiprom, S.
2017-09-01
The purpose of this research was to develop students’ concept of and retention rate in relation to energy conservation. Activities included simple and easy experiments that considered energy transformation from potential to kinetic energy. The participants were 30 purposively selected grade 10 students in the second semester of the 2016 academic year. The research tools consisted of learning lesson plans and a learning achievement test. Results showed that the experiments worked well and were appropriate as learning activities. The students’ achievement scores significantly increased at the statistical level of 05, the students’ retention rates were at a high level, and learning behaviour was at a good level. These simple experiments allowed students to learn to demonstrate to their peers and encouraged them to use familiar models to explain phenomena in daily life.
Amylin and Leptin: Co-Regulators of Energy Homeostasis and Neuronal Development.
Levin, Barry E; Lutz, Thomas A
2017-02-01
While the regulation of energy homeostasis by amylin is already well-characterized, emerging data suggest that amylin is also crucial for the development of neural pathways in the hypothalamus and caudal hindbrain (area postrema, AP; nucleus tractus solitarius, NTS). Exciting new findings demonstrate crucial amylin-leptin interactions in altering the activity of specific hypothalamic and AP neurons, and a role for amylin as a novel class of 'leptin sensitizers' which enhance leptin signaling in both leptin-sensitive and -resistant individuals, in part by stimulating IL-6 production by hypothalamic microglia. This review summarizes these findings and provides a hypothetical framework for future studies to elucidate the mechanisms by which amylin and leptin act individually and as co-conspirators to alter energy homeostasis and neuronal development. Copyright © 2016 Elsevier Ltd. All rights reserved.
The NEED (National Energy Education Development) Project
NASA Astrophysics Data System (ADS)
Hogan, D.; Spruill, M.
2012-04-01
The NEED (National Energy Education Development) Project is a non-profit organization which provides a wide range of K-12 curriculum on energy education topics. The curriculum is specific for primary, elementary, intermediate and secondary levels with age appropriate activities and reading levels. The NEED Project covers a wide range of topics from wind energy, nuclear energy, solar energy, hydropower, hydrogen, fossil fuels, energy conservation, energy efficiency and much more. One of the major strengths of this organization is its Teacher Advisory Board. The curriculum is routinely revised and updated by master classroom teachers who use the lessons and serve on the advisory board. This ensures it is of the highest quality and a useful resource. The NEED Project through a variety of sponsors including businesses, utility companies and government agencies conducts hundreds of teacher professional development workshops each year throughout the United States and have even done some workshops internationally. These workshops are run by trained NEED facilitators. At the workshops, teachers gain background understanding of the energy topics and have time to complete the hands on activities which make up the curriculum. The teachers are then sent a kit of equipment after successfully completing the workshop. This allows them to teach the curriculum and have their students perform the hands on labs and activities in the classroom. The NEED Project is the largest provider of energy education related curriculum in the United States. Their efforts are educating teachers about energy topics and in turn educating students in the hope of developing citizens who are energy literate. Many of the hands on activities used to teach about various energy sources will be described and demonstrated.
A Sustainable Energy Laboratory Course for Non-Science Majors
NASA Astrophysics Data System (ADS)
Nathan, Stephen A.; Loxsom, Fred
2016-10-01
Sustainable energy is growing in importance as the public becomes more aware of climate change and the need to satisfy our society's energy demands while minimizing environmental impacts. To further this awareness and to better prepare a workforce for "green careers," we developed a sustainable energy laboratory course that is suitable for high school and undergraduate students, especially non-science majors. Thirteen hands-on exercises provide an overview of sustainable energy by demonstrating the basic principles of wind power, photovoltaics, electric cars, lighting, heating/cooling, insulation, electric circuits, and solar collectors. The order of content presentation and instructional level (secondary education or college) can easily be modified to suit instructor needs and/or academic programs (e.g., engineering, physics, renewable and/or sustainable energy).
Biotechnological storage and utilization of entrapped solar energy.
Bhattacharya, Sumana; Schiavone, Marc; Nayak, Amiya; Bhattacharya, Sanjoy K
2005-03-01
Our laboratory has recently developed a device employing immobilized F0F1 adenosine triphosphatase (ATPase) that allows synthesis of adenosine triphosphate (ATP) from adenosine 5'-diphosphate and inorganic phosphate using solar energy. We present estimates of total solar energy received by Earth's land area and demonstrate that its efficient capture may allow conversion of solar energy and storage into bonds of biochemicals using devices harboring either immobilized ATPase or NADH dehydrogenase. Capture and storage of solar energy into biochemicals may also enable fixation of CO2 emanating from polluting units. The cofactors ATP and NADH synthesized using solar energy could be used for regeneration of acceptor D-ribulose-1,5-bisphosphate from 3-phosphoglycerate formed during CO2 fixation.
Gotoh, Hitoshi; Nomura, Tadashi; Ono, Katsuhiko
2017-06-01
Large amounts of energy are required when cells undergo cell proliferation and differentiation for mammalian neuronal development. Early neonatal mice face transient starvation and use stored energy for survival or to support development. Glycogen is a branched polysaccharide that is formed by glucose, and serves as an astrocytic energy store for rapid energy requirements. Although it is present in radial glial cells and astrocytes, the role of glycogen during development remains unclear. In the present study, we demonstrated that glycogen accumulated in glutamate aspartate transporter (GLAST)+ astrocytes in the subventricular zone and rostral migratory stream. Glycogen levels markedly decreased after birth due to the increase of glycogen phosphorylase, an essential enzyme for glycogen metabolism. In primary cultures and in vivo, the inhibition of glycogen phosphorylase decreased the proliferation of astrocytic cells. The number of cells in the G1 phase increased in combination with the up-regulation of cyclin-dependent kinase inhibitors or down-regulation of the phosphorylation of retinoblastoma protein (pRB), a determinant for cell cycle progression. These results suggest that glycogen accumulates in astrocytes located in specific areas during the prenatal stage and is used as an energy source to maintain normal development in the early postnatal stage.
NASA Astrophysics Data System (ADS)
Close, Hunter G.; Scherr, Rachel E.
2015-04-01
We demonstrate that a particular blended learning space is especially productive in developing understanding of energy transfers and transformations. In this blended space, naturally occurring learner interactions like body movement, gesture, and metaphorical speech are blended with a conceptual metaphor of energy as a substance in a class of activities called Energy Theater. We illustrate several mechanisms by which the blended aspect of the learning environment promotes productive intellectual engagement with key conceptual issues in the learning of energy, including distinguishing among energy processes, disambiguating matter and energy, identifying energy transfer, and representing energy as a conserved quantity. Conceptual advancement appears to be promoted especially by the symbolic material and social structure of the Energy Theater environment, in which energy is represented by participants and objects are represented by areas demarcated by loops of rope, and by Energy Theater's embodied action, including body locomotion, gesture, and coordination of speech with symbolic spaces in the Energy Theater arena. Our conclusions are (1) that specific conceptual metaphors can be leveraged to benefit science instruction via the blending of an abstract space of ideas with multiple modes of concrete human action, and (2) that participants' structured improvisation plays an important role in leveraging the blend for their intellectual development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leboeuf, C.; Taylor, R.W.; Corbus, D.
A cooperative renewable energy project is underway between the U.S. Department of Energy (through the National Renewable Energy Laboratory, NREL), and the Federal Republic of Brazil (through the Centro de Pesquisas de Energia Eletrica, CEPEL). The objectives of this joint US/Brazilian program are to establish technical, institutional, and economic confidence in using renewable energy systems to meet the needs of the people of rural Brazil, to build ongoing partnerships beneficial to both countries, and to demonstrate the potential for large-scale rural electrification through the use of renewable energy systems. Phase 1 of this program resulted in the deployment of moremore » than 700 photovoltaic (PV) electric lighting systems in the Brazilian states of Pernambuco and Ceara. Phase 2 of the program extends the pilot project into six additional Brazilian states and demonstrates a wider variety of stand-alone end uses, including the use of wind electric power generation for selected sites and applications. Additionally, Phase 2 also includes the development of two hybrid village power systems, including one comprising PV, wind, battery, and diesel power sources. This paper focuses on this hybrid system, which is located in the Amazon River delta.« less
Molognoni, Daniele; Chiarolla, Stefania; Cecconet, Daniele; Callegari, Arianna; Capodaglio, Andrea G
2018-01-01
Development of renewable energy sources, efficient industrial processes, energy/chemicals recovery from wastes are research issues that are quite contemporary. Bioelectrochemical processes represent an eco-innovative technology for energy and resources recovery from both domestic and industrial wastewaters. The current study was conducted to: (i) assess bioelectrochemical treatability of industrial (dairy) wastewater by microbial fuel cells (MFCs); (ii) determine the effects of the applied organic loading rate (OLR) on MFC performance; (iii) identify factors responsible for reactor energy recovery losses (i.e. overpotentials). For this purpose, an MFC was built and continuously operated for 72 days, during which the anodic chamber was fed with dairy wastewater and the cathodic chamber with an aerated mineral solution. The study demonstrated that industrial effluents from agrifood facilities can be treated by bioelectrochemical systems (BESs) with >85% (average) organic matter removal, recovering power at an observed maximum density of 27 W m -3 . Outcomes were better than in previous (shorter) analogous experiences, and demonstrate that this type of process could be successfully used for dairy wastewater with several advantages.
Studying fish near ocean energy devices using underwater video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzner, Shari; Hull, Ryan E.; Harker-Klimes, Genevra EL
The effects of energy devices on fish populations are not well-understood, and studying the interactions of fish with tidal and instream turbines is challenging. To address this problem, we have evaluated algorithms to automatically detect fish in underwater video and propose a semi-automated method for ocean and river energy device ecological monitoring. The key contributions of this work are the demonstration of a background subtraction algorithm (ViBE) that detected 87% of human-identified fish events and is suitable for use in a real-time system to reduce data volume, and the demonstration of a statistical model to classify detections as fish ormore » not fish that achieved a correct classification rate of 85% overall and 92% for detections larger than 5 pixels. Specific recommendations for underwater video acquisition to better facilitate automated processing are given. The recommendations will help energy developers put effective monitoring systems in place, and could lead to a standard approach that simplifies the monitoring effort and advances the scientific understanding of the ecological impacts of ocean and river energy devices.« less
Application of the docking program SOL for CSAR benchmark.
Sulimov, Alexey V; Kutov, Danil C; Oferkin, Igor V; Katkova, Ekaterina V; Sulimov, Vladimir B
2013-08-26
This paper is devoted to results obtained by the docking program SOL and the post-processing program DISCORE at the CSAR benchmark. SOL and DISCORE programs are described. SOL is the original docking program developed on the basis of the genetic algorithm, MMFF94 force field, rigid protein, precalculated energy grid including desolvation in the frame of simplified GB model, vdW, and electrostatic interactions and taking into account the ligand internal strain energy. An important SOL feature is the single- or multi-processor performance for up to hundreds of CPUs. DISCORE improves the binding energy scoring by the local energy optimization of the ligand docked pose and a simple linear regression on the base of available experimental data. The docking program SOL has demonstrated a good ability for correct ligand positioning in the active sites of the tested proteins in most cases of CSAR exercises. SOL and DISCORE have not demonstrated very exciting results on the protein-ligand binding free energy estimation. Nevertheless, for some target proteins, SOL and DISCORE were among the first in prediction of inhibition activity. Ways to improve SOL and DISCORE are discussed.
University of Arizona Compressed Air Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Joseph; Muralidharan, Krishna
2012-12-31
Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the costmore » of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.« less
High Efficiency, High Performance Clothes Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Pescatore; Phil Carbone
This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for bothmore » dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a gas dryer, significant time and energy savings, combined with dramatically reduced fabric temperatures, was achieved in a cost-effective manner. The key design factor lay in developing a system that matches the heat input to the dryer with the fabrics ability to absorb it. The development work done on the modulating gas dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) Up to 25% reduction in energy consumption for small and medium loads; (2) Up to 35% time savings for large loads with 10-15% energy reduction and no adverse effect on cloth temperatures; (3) Reduced fabric temperatures, dry times and 18% energy reduction for delicate loads; and, (4) Robust performance across a range of vent restrictions.« less
Achieving Energy Savings in Municipal Construction in Long Beach California
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Long Beach Gas and Oil (LBGO), the public gas utility in Long Beach, California, partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build a new, low-energy modular office building that is at least 50% below requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) program. The LBGO building, which demonstrates that modular construction can be very energy efficient, is expected to exceed the ASHRAEmore » baseline by about 45%.« less
CLEAN HYDROGEN TECHNOLOGY FOR 3-WHEEL TRANSPORTATION IN INDIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna Sapru
2005-11-15
Hydrogen is a clean burning, non-polluting transportation fuel. It is also a renewable energy carrier that can be produced from non-fossil fuel resources such as solar, wind and biomass. Utilizing hydrogen as an alternative fuel for vehicles will diversify the resources of energy, and reduce dependence on oil in the transportation sector. Additionally, clean burning hydrogen fuel will also alleviate air pollution that is a very severe problem in many parts of world, especially major metropolitan areas in developing countries, such as India and China. In our efforts to foster international collaborations in the research, development, and demonstration of hydrogenmore » technologies, through a USAID/DOE cost-shared project, Energy Conversion Devices, Inc.,(www.ovonic.com) a leading materials and alternative energy company, in collaboration with Bajaj Auto Limited, India's largest three-wheeler taxi manufacturer, has successfully developed and demonstrated prototype hydrogen ICE three-wheelers in the United States and India. ECD's proprietary Ovonic solid-state hydrogen storage technology is utilized on-board to provide a means of compact, low pressure, and safe hydrogen fuel. These prototype hydrogen three-wheelers have demonstrated comparable performance to the original CNG version of the vehicle, achieving a driving range of 130 km. The hydrogen storage system capable of storing 1 kg hydrogen can be refilled to 80% of its capacity in about 15 minutes at a pressure of 300 psi. The prototype vehicles developed under this project have been showcased and made available for test rides to the public at exhibits such as the 16th NHA annual meeting in April 2005, Washington, DC, and the SIAM (Society of Indian Automotive Manufacturers) annual conference in August 2005, New Delhi, India. Passengers have included members of the automotive industry, founders of both ECD and Bajaj, members of the World Bank, the Indian Union Minister for Finance, the President of the Asia Development Bank, members of USAID, USDOE and many other individuals, all of whom have had praise for the vehicle and the technology. The progress made through this phase I work and the importance of hydrogen three-wheelers has also resulted in extensive press coverage by the news media around the world.« less
Smart Water Conservation System for Irrigated Landscape. ESTCP Cost and Performance Report
2016-10-01
water use by as much as 70% in support of meeting EO 13693. Additional performance objectives were to validate energy reduction, cost effectiveness ...Additional performance objectives were to validate energy reduction, cost effectiveness , and system reliability while maintaining satisfactory plant health...developments. The demonstration was conducted for two different climatic regions in the southwestern part of the United States (U.S.), where a typical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, N.; Ye, Z.
This report documents part of a multiyear research program dedicated to the development of requirements to support the definition, design, and demonstration of a distributed generation-electric power system interconnection interface concept. The report focuses on the dynamic behavior of power systems when a significant portion of the total energy resource is distributed generation. It also focuses on the near-term reality that the majority of new DG relies on rotating synchronous generators for energy conversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebber, I.; Dean, J.; Dominick, J.
2014-03-01
As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft 2 exchangemore » store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).« less
Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light.
Ooi, Amanda; Wong, Aloysius; Ng, Tien Khee; Marondedze, Claudius; Gehring, Christoph; Ooi, Boon S
2016-09-23
Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture.
Integrated solar thermochemical reaction system for steam methane reforming
Zheng, Feng; Diver, Rich; Caldwell, Dustin D.; ...
2015-06-05
Solar-aided upgrade of the energy content of fossil fuels, such as natural gas, can provide a near-term transition path towards a future solar-fuel economy and reduce carbon dioxide emission from fossil fuel consumption. Both steam and dry reforming a methane-containing fuel stream have been studied with concentrated solar power as the energy input to drive the highly endothermic reactions but the concept has not been demonstrated at a commercial scale. Under a current project with the U.S. Department of Energy, PNNL is developing an integrated solar thermochemical reaction system that combines solar concentrators with micro- and meso-channel reactors and heatmore » exchangers to accomplish more than 20% solar augment of methane higher heating value. The objective of our three-year project is to develop and prepare for commercialization such solar reforming system with a high enough efficiency to serve as the frontend of a conventional natural gas (or biogas) combined cycle power plant, producing power with a levelized cost of electricity less than 6¢/kWh, without subsidies, by the year 2020. In this paper, we present results from the first year of our project that demonstrated a solar-to-chemical energy conversion efficiency as high as 69% with a prototype reaction system.« less
Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light
Ooi, Amanda; Wong, Aloysius; Ng, Tien Khee; Marondedze, Claudius; Gehring, Christoph; Ooi, Boon S.
2016-01-01
Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. PMID:27659906
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xu; Marnay, Chris; Feng, Wei
The Chinese government has paid growing attention to renewable energy development and has set ambitious goals for carbon dioxide (CO2) emissions reduction and energy savings. Smart grid (SG) technologies have been regarded as emerging ways to integrate renewable energy and to help achieve these climate and energy goals. This report first reviews completed SG demonstrations under the U.S. American Recovery and Reinvestment Act (ARRA); especially two key programs: the SG Investment Grant (SGIG) and the SG Demonstration Project (SGDP). Under the SGIG, the larger of the two programs, over $3.4 billion was used to help industry deploy existing advanced SGmore » technologies and tools to improve grid performance and reduce costs. Including industry investment, a total of $8 billion was spent on 99 cost-shared projects, which involved more than 200 participating electric utilities and other organizations. These projects aimed to modernize the electric grid, strengthen cyber security, improve interoperability, and collect comprehensive data on SG operations and benefits.« less
Feasibility of flywheel energy storage systems for applications in future space missions
NASA Technical Reports Server (NTRS)
Santo, G. Espiritu; Gill, S. P.; Kotas, J. F.; Paschall, R.
1995-01-01
The objective of this study was to examine the overall feasibility of deploying electromechanical flywheel systems in space used for excess energy storage. Results of previous Rocketdyne studies have shown that the flywheel concept has a number of advantages over the NiH2 battery, including higher specific energy, longer life and high roundtrip efficiency. Based on this prior work, this current study was broken into four subtasks. The first subtask investigated the feasibility of replacing the NiH2 battery orbital replacement unit (ORU) on the international space station (ISSA) with a flywheel ORU. In addition, a conceptual design of a generic flywheel demonstrator experiment implemented on the ISSA was completed. An assessment of the life cycle cost benefits of replacing the station battery energy storage ORU's with flywheel ORU's was performed. A fourth task generated a top-level development plan for critical flywheel technologies, the flywheel demonstrator experiments and its evolution into the production unit flywheel replacement ORU.
Tanaka, Yo; Funano, Shun-ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko
2016-01-01
Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices. PMID:27241817
NASA Astrophysics Data System (ADS)
Tanaka, Yo; Funano, Shun-Ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko
2016-05-01
Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices.
High-pressure pair distribution function (PDF) measurement using high-energy focused x-ray beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J.; Ehm, Lars
In this paper, we report recent development of the high-pressure pair distribution function (HP-PDF) measurement technique using a focused high-energy X-ray beam coupled with a diamond anvil cell (DAC). The focusing optics consist of a sagittally bent Laue monochromator and Kirkpatrick-Baez (K–B) mirrors. This combination provides a clean high-energy X-ray beam suitable for HP-PDF research. Demonstration of the HP-PDF technique for nanocrystalline platinum under quasi-hydrostatic condition above 30 GPa is presented.
Advanced energy system program
NASA Astrophysics Data System (ADS)
Trester, K.
1989-02-01
The objectives of the program are to design, develop and demonstrate a natural-gas-fueled, highly recuperated, 50 kW Brayton-cycle cogeneration system for commercial, institutional, and multifamily residential applications. Marketing studies have shown that this Advanced Energy System (AES), with its many unique and cost-effective features, has the potential to offer significant reductions in annual electrical and thermal energy costs to the consumer. Specific advantages of the system that result in low cost of ownership are high electrical efficiency (30 percent, HHV), low maintenance, high reliability and long life (20 years).
Energy as a witness of multipartite entanglement in chains of arbitrary spins
NASA Astrophysics Data System (ADS)
Troiani, F.; Siloi, I.
2012-09-01
We develop a general approach for deriving the energy minima of biseparable states in chains of arbitrary spins s, and we report numerical results for spin values s≤5/2 (with N≤8). The minima provide a set of threshold values for exchange energy that allow us to detect different degrees of multipartite entanglement in one-dimensional spin systems. We finally demonstrate that the Heisenberg exchange Hamiltonian of N spins has a nondegenerate N-partite entangled ground state, and it can thus witness such correlations in all finite spin chains.
Simulation-Based Valuation of Transactive Energy Systems
Huang, Qiuhua; McDermott, Tom; Tang, Yingying; ...
2018-05-18
Transactive Energy (TE) has been recognized as a promising technique for integrating responsive loads and distributed energy resources as well as advancing grid modernization. To help the industry better understand the value of TE and compare different TE schemes in a systematic and transparent manner, a comprehensive simulation-based TE valuation method is developed. The method has the following salient features: 1) it formally defines the valuation scenarios, use cases, baseline and valuation metrics; 2) an open-source simulation platform for transactive energy systems has been developed by integrating transmission, distribution and building simulators, and plugin TE and non-TE agents through themore » Framework for Network Co-Simulation (FNCS); 3) transparency and flexibility of the valuation is enhanced through separation of simulation and valuation, base valuation metrics and final valuation metrics. In conclusion, a valuation example based on the Smart Grid Interoperability Panel (SGIP) Use Case 1 is provided to demonstrate the developed TE simulation program and the valuation method.« less
Yosipof, Abraham; Nahum, Oren E; Anderson, Assaf Y; Barad, Hannah-Noa; Zaban, Arie; Senderowitz, Hanoch
2015-06-01
Growth in energy demands, coupled with the need for clean energy, are likely to make solar cells an important part of future energy resources. In particular, cells entirely made of metal oxides (MOs) have the potential to provide clean and affordable energy if their power conversion efficiencies are improved. Such improvements require the development of new MOs which could benefit from combining combinatorial material sciences for producing solar cells libraries with data mining tools to direct synthesis efforts. In this work we developed a data mining workflow and applied it to the analysis of two recently reported solar cell libraries based on Titanium and Copper oxides. Our results demonstrate that QSAR models with good prediction statistics for multiple solar cells properties could be developed and that these models highlight important factors affecting these properties in accord with experimental findings. The resulting models are therefore suitable for designing better solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1982-01-01
The objective of the Energy Efficient Engine Component Development and Integration program is to develop, evaluate, and demonstrate the technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines. Minimum goals have been set for a 12 percent reduction in thrust specific fuel consumption (TSFC), 5 percent reduction in direct operating cost (DOC), and 50 percent reduction in performance degradation for the Energy Efficient Engine (flight propulsion system) relative to the JT9D-7A reference engine. The Energy Efficienct Engine features a twin spool, direct drive, mixed flow exhaust configuration, utilizing an integrated engine nacelle structure. A short, stiff, high rotor and a single stage high pressure turbine are among the major enhancements in providing for both performance retention and major reductions in maintenance and direct operating costs. Improved clearance control in the high pressure compressor and turbines, and advanced single crystal materials in turbine blades and vanes are among the major features providing performance improvement. Highlights of work accomplished and programs modifications and deletions are presented.
Simulation-Based Valuation of Transactive Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qiuhua; McDermott, Tom; Tang, Yingying
Transactive Energy (TE) has been recognized as a promising technique for integrating responsive loads and distributed energy resources as well as advancing grid modernization. To help the industry better understand the value of TE and compare different TE schemes in a systematic and transparent manner, a comprehensive simulation-based TE valuation method is developed. The method has the following salient features: 1) it formally defines the valuation scenarios, use cases, baseline and valuation metrics; 2) an open-source simulation platform for transactive energy systems has been developed by integrating transmission, distribution and building simulators, and plugin TE and non-TE agents through themore » Framework for Network Co-Simulation (FNCS); 3) transparency and flexibility of the valuation is enhanced through separation of simulation and valuation, base valuation metrics and final valuation metrics. In conclusion, a valuation example based on the Smart Grid Interoperability Panel (SGIP) Use Case 1 is provided to demonstrate the developed TE simulation program and the valuation method.« less
Demonstration of a Small Modular Biopower System Using Poultry Litter-Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Reardon; Art Lilley
2004-06-15
On-farm conversion of poultry litter into energy is a unique market connected opportunity for commercialization of small modular bioenergy systems. The United States Department of Energy recognized the need in the poultry industry for alternative litter management as an opportunity for bioenergy. The DOE created a relevant topic in the December 2000 release of the small business innovative research (SBIR) grant solicitation. Community Power Corporation responded to this solicitation by proposing the development of a small modular gasification and gas cleanup system to produce separate value streams of clean producer gas and mineral rich solids. This phase II report describesmore » our progress in the development of an on-farm litter to energy system.« less
Wind Energy Program Summary. Volume 2: Research summaries, fiscal year 1988
NASA Astrophysics Data System (ADS)
1989-04-01
Activities by the Federal Wind Energy program since the early 1980s have focused on developing a technology base necessary for industry to demonstrate the viability of wind energy as an alternative energy supply. The Federal Wind Energy Program's research has targeted the sciences of wind turbine dynamics and the development of advanced components and systems. These efforts have resulted in major advancements toward the development and commercialization of wind technology as an alternative energy source. The installation of more than 16,000 wind turbines in California by the end of 1987 provides evidence that commercial use of wind energy technology can be a viable source of electric power. Research in wind turbine sciences has focused on atmospheric fluid dynamics, aerodynamics, and structural dynamics. As outlines in the projects that are described in this document, advancements in atmospheric fluid dynamics have been made through the development and refinement of wind characterization models and wind/rotor interaction prediction codes. Recent gains in aerodynamics can be attributed to a better understanding of airfoil operations, using innovative research approaches such as flow-visualization techniques. Qualitative information and data from laboratory and field tests are being used to document fatigue damage processes. These data are being used to develop new theories and data bases for structural dynamics, and will help to achieve long-term unit life and lower capital and maintenance costs. Material characterization and modeling techniques have been improved to better analyze effects of stress and fatigue on system components.
NASA Astrophysics Data System (ADS)
Volkov, A.; Aristova, A.
2017-06-01
Recently megalopolises have become centres of economy development worldwide. Gradual growth in energy consumption and thereafter - enormous power production and delivery to sustain metropolis’ needs entailed, rapid increase in emissions of hazardous substances in quantities, no longer tolerable for secure residence in majority of these cities. Ekaterinburg, is one of them. In order to abridge harmful pollution in Ekaterinburg and further centralize economic importance of the city, this paper proposes to implement the concept of urban sustainable development/ref. / by introducing alternative energy sources, which would progressively displace traditional fossil fuels. A number of actual cases, where the concept was successfully implemented, were studied and analysed to demonstrate how different shares of renewables can become effective substitutes to conventional energy sources in the cities strongly dependent on them: 1. Energy strategy of Pecs (Hungary); 2. International low carbon city (ILCC) project (Shenzhen, China); 3. Electric power system template of Tangshan city (China). Further, regional environmental and economic specifics of Ekaterinburg were studied to understand power consumption needs and energy generation possibilities, which led authors to conclude on the alternative energy sources feasibility, plot specific flow chart for RES implementation in Ekaterinburg’s power network and outline recommendations for future works.
A Compendium of Energy Conservation Success Stories
DOE R&D Accomplishments Database
1988-09-01
Three-quarters of DOE's Conservation R and D funds have been devoted to technology research and development: basic and applied research, exploratory R and D, engineering feasibility studies, pilot-scale prototype R and D, and technology demonstration. Non R and D projects have involved technology assessment program planning and analysis, model development, technology transfer and consumer information, health effects and safety research, and technical support for rule making. The success stories summarized in this compendium fall into three general categories: Completed Technology Success Stories, projects that have resulted in new energy-saving technologies that are presently being used in the private sector; Technical Success Stories, projects that have produced or disseminated important scientific/technical information likely to result in future energy savings; Program Success Stories, non-R and D activities that have resulted in nationally significant energy benefits. The Energy Conservation research and development program at DOE is managed by the Office of Conservation under the direction of the Deputy Assistant Secretary for Conservation. Three subordinate Program Offices correspond to the buildings, transportation, and industrial end-use sectors. A fourth subordinate Program Office{endash}Energy Utilization Research{endash}sponsors research and technical inventions for all end-use sectors.
Accelerating Clean Energy Commercialization. A Strategic Partnership Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Richard; Pless, Jacquelyn; Arent, Douglas J.
Technology development in the clean energy and broader clean tech space has proven to be challenging. Long-standing methods for advancing clean energy technologies from science to commercialization are best known for relatively slow, linear progression through research and development, demonstration, and deployment (RDD&D); and characterized by well-known valleys of death for financing. Investment returns expected by traditional venture capital investors have been difficult to achieve, particularly for hardware-centric innovations, and companies that are subject to project finance risks. Commercialization support from incubators and accelerators has helped address these challenges by offering more support services to start-ups; however, more effort ismore » needed to fulfill the desired clean energy future. The emergence of new strategic investors and partners in recent years has opened up innovative opportunities for clean tech entrepreneurs, and novel commercialization models are emerging that involve new alliances among clean energy companies, RDD&D, support systems, and strategic customers. For instance, Wells Fargo and Company (WFC) and the National Renewable Energy Laboratory (NREL) have launched a new technology incubator that supports faster commercialization through a focus on technology development. The incubator combines strategic financing, technology and technical assistance, strategic customer site validation, and ongoing financial support.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gschwind, Benoit, E-mail: benoit.gschwind@mines-paristech.fr; Lefevre, Mireille, E-mail: mireille.lefevre@mines-paristech.fr; Blanc, Isabelle, E-mail: isabelle.blanc@mines-paristech.fr
This article proposes a new method to assess the health impact of populations exposed to fine particles (PM{sub 2.5}) during their whole lifetime, which is suitable for comparative analysis of energy scenarios. The method takes into account the variation of particle concentrations over time as well as the evolution of population cohorts. Its capabilities are demonstrated for two pathways of European energy system development up to 2050: the Baseline (BL) and the Low Carbon, Maximum Renewable Power (LC-MRP). These pathways were combined with three sets of assumptions about emission control measures: Current Legislation (CLE), Fixed Emission Factors (FEFs), and themore » Maximum Technically Feasible Reductions (MTFRs). Analysis was carried out for 45 European countries. Average PM{sub 2.5} concentration over Europe in the LC-MRP/CLE scenario is reduced by 58% compared with the BL/FEF case. Health impacts (expressed in days of loss of life expectancy) decrease by 21%. For the LC-MRP/MTFR scenario the average PM{sub 2.5} concentration is reduced by 85% and the health impact by 34%. The methodology was developed within the framework of the EU's FP7 EnerGEO project and was implemented in the Platform of Integrated Assessment (PIA). The Platform enables performing health impact assessments for various energy scenarios. - Highlights: • A new method to assess health impact of PM{sub 2.5} for energy scenarios is proposed. • An algorithm to compute Loss of Life Expectancy attributable to exposure to PM{sub 2.5} is depicted. • Its capabilities are demonstrated for two pathways of European energy system development up to 2050. • Integrating the temporal evolution of PM{sub 2.5} is of great interest for assessing the potential impacts of energy scenarios.« less
Freeze cast porous barium titanate for enhanced piezoelectric energy harvesting
NASA Astrophysics Data System (ADS)
Roscow, J. I.; Zhang, Y.; Kraśny, M. J.; Lewis, R. W. C.; Taylor, J.; Bowen, C. R.
2018-06-01
Energy harvesting is an important developing technology for a new generation of self-powered sensor networks. This paper demonstrates the significant improvement in the piezoelectric energy harvesting performance of barium titanate by forming highly aligned porosity using freeze casting. Firstly, a finite element model demonstrating the effect of pore morphology and angle with respect to poling field on the poling behaviour of porous ferroelectrics was developed. A second model was then developed to understand the influence of microstructure-property relationships on the poling behaviour of porous freeze cast ferroelectric materials and their resultant piezoelectric and energy harvesting properties. To compare with model predictions, porous barium titanate was fabricated using freeze casting to form highly aligned microstructures with excellent longitudinal piezoelectric strain coefficients, d 33. The freeze cast barium titanate with 45 vol.% porosity had a d 33 = 134.5 pC N‑1 compared to d 33 = 144.5 pC N‑1 for dense barium titanate. The d 33 coefficients of the freeze cast materials were also higher than materials with uniformly distributed spherical porosity due to improved poling of the aligned microstructures, as predicted by the models. Both model and experimental data indicated that introducing porosity provides a large reduction in the permittivity () of barium titanate, which leads to a substantial increase in energy harvesting figure of merit, , with a maximum of 3.79 pm2 N‑1 for barium titanate with 45 vol.% porosity, compared to only 1.40 pm2 N‑1 for dense barium titanate. Dense and porous barium titanate materials were then used to harvest energy from a mechanical excitation by rectification and storage of the piezoelectric charge on a capacitor. The porous barium titanate charged the capacitor to a voltage of 234 mV compared to 96 mV for the dense material, indicating a 2.4-fold increase that was similar to that predicted by the energy harvesting figures of merit.
Harvesting electrical energy from torsional thermal actuation driven by natural convection.
Kim, Shi Hyeong; Sim, Hyeon Jun; Hyeon, Jae Sang; Suh, Dongseok; Spinks, Geoffrey M; Baughman, Ray H; Kim, Seon Jeong
2018-06-07
The development of practical, cost-effective systems for the conversion of low-grade waste heat to electrical energy is an important area of renewable energy research. We here demonstrate a thermal energy harvester that is driven by the small temperature fluctuations provided by natural convection. This harvester uses coiled yarn artificial muscles, comprising well-aligned shape memory polyurethane (SMPU) microfibers, to convert thermal energy to torsional mechanical energy, which is then electromagnetically converted to electrical energy. Temperature fluctuations in a yarn muscle, having a maximum hot-to-cold temperature difference of about 13 °C, were used to spin a magnetic rotor to a peak torsional rotation speed of 3,000 rpm. The electromagnetic energy generator converted the torsional energy to electrical energy, thereby producing an oscillating output voltage of up to 0.81 V and peak power of 4 W/kg, based on SMPU mass.
High energy diode-pumped solid-state laser development at the Central Laser Facility
NASA Astrophysics Data System (ADS)
Mason, Paul D.; Banerjee, Saumyabrata; Ertel, Klaus; Phillips, P. Jonathan; Butcher, Thomas; Smith, Jodie; De Vido, Mariastefania; Chekhlov, Oleg; Hernandez-Gomez, Cristina; Edwards, Chris; Collier, John
2016-04-01
In this paper we review the development of high energy, nanosecond pulsed diode-pumped solid state lasers within the Central Laser Facility (CLF) based on cryogenic gas cooled multi-slab ceramic Yb:YAG amplifier technology. To date two 10J-scale systems, the DiPOLE prototype amplifier and an improved DIPOLE10 system, have been developed, and most recently a larger scale system, DiPOLE100, designed to produce 100 J pulses at up to 10 Hz. These systems have demonstrated amplification of 10 ns duration pulses at 1030 nm to energies in excess of 10 J at 10 Hz pulse repetition rate, and over 100 J at 1 Hz, with optical-to-optical conversion efficiencies of up to 27%. We present an overview of the cryo-amplifier concept and compare the design features of these three systems, including details of the amplifier designs, gain media, diode pump lasers and the cryogenic gas cooling systems. The most recent performance results from the three systems are presented along with future plans for high energy DPSSL development within the CLF.
Interactive Marine Spatial Planning: Siting Tidal Energy Arrays around the Mull of Kintyre
Alexander, Karen A.; Janssen, Ron; Arciniegas, Gustavo; O'Higgins, Timothy G.; Eikelboom, Tessa; Wilding, Thomas A.
2012-01-01
The rapid development of the offshore renewable energy sector has led to an increased requirement for Marine Spatial Planning (MSP) and, increasingly, this is carried out in the context of the ‘ecosystem approach’ (EA) to management. We demonstrate a novel method to facilitate implementation of the EA. Using a real-time interactive mapping device (touch-table) and stakeholder workshops we gathered data and facilitated negotiation of spatial trade-offs at a potential site for tidal renewable energy off the Mull of Kintyre (Scotland). Conflicts between the interests of tidal energy developers and commercial and recreational users of the area were identified, and use preferences and concerns of stakeholders were highlighted. Social, cultural and spatial issues associated with conversion of common pool to private resource were also revealed. The method identified important gaps in existing spatial data and helped to fill these through interactive user inputs. The workshops developed a degree of consensus between conflicting users on the best areas for potential development suggesting that this approach should be adopted during MSP. PMID:22253865
The Office of Technology Development technical reports. A bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-09-01
The US Department of Energy`s Office of Technology Development (OTD) within the Office of Environmental Management was established in 1989 to conduct an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT&E) for innovative environmental cleanup solutions that are safer and more time- and cost-effective than those currently available. In many cases, the development of new technology presents the best hope for ensuring a substantive reduction in risk to the environment and improved worker/public safety within realistic financial constraints. Five major remediation and waste management problem areas have been identified to date within the DOE weapons complex;more » Contaminant Plume Containment and Remediation; Mixed Waste Characterization, Treatment, and Disposal; High-Level Waste Tank Remediation; Landfill Stabilization; and Facility Transitioning, Decommissioning, and Final Disposition. New technologies to address these problem areas are demonstrated to the point that they are proven to work and that they can be transferred to the private sector end-users. This bibliography contains information on scientific and technical reports sponsored by the Office of Environmental Management from its inception in 1989 through June 1994. Future issues contain reports from Technology Development activities and will be published biannually.« less
NASA Astrophysics Data System (ADS)
Mo, Yunjeong
The purpose of this research is to support the development of an intelligent Decision Support System (DSS) by integrating quantitative information with expert knowledge in order to facilitate effective retrofit decision-making. To achieve this goal, the Energy Retrofit Decision Process Framework is analyzed. Expert system shell software, a retrofit measure cost database, and energy simulation software are needed for developing the DSS; Exsys Corvid, the NREM database and BEopt were chosen for implementing an integration model. This integration model demonstrates the holistic function of a residential energy retrofit system for existing homes, by providing a prioritized list of retrofit measures with cost information, energy simulation and expert advice. The users, such as homeowners and energy auditors, can acquire all of the necessary retrofit information from this unified system without having to explore several separate systems. The integration model plays the role of a prototype for the finalized intelligent decision support system. It implements all of the necessary functions for the finalized DSS, including integration of the database, energy simulation and expert knowledge.
Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks
Hunter, Scott Robert; Lavrik, Nickolay V; Datskos, Panos G; ...
2014-11-01
Recent advances in technologies for harvesting waste thermal energy from ambient environments present an opportunity to implement truly wireless sensor nodes in nuclear power plants. These sensors could continue to operate during extended station blackouts and during periods when operation of the plant s internal power distribution system has been disrupted. The energy required to power the wireless sensors must be generated using energy harvesting techniques from locally available energy sources, and the energy consumption within the sensor circuitry must therefore be low to minimize power and hence the size requirements of the energy harvester. Harvesting electrical energy from thermalmore » energy sources can be achieved using pyroelectric or thermoelectric conversion techniques. Recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics in self powered wireless sensor applications and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, is outlined. This paper outlines the modeling of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.« less
Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, Scott Robert; Lavrik, Nickolay V; Datskos, Panos G
Recent advances in technologies for harvesting waste thermal energy from ambient environments present an opportunity to implement truly wireless sensor nodes in nuclear power plants. These sensors could continue to operate during extended station blackouts and during periods when operation of the plant s internal power distribution system has been disrupted. The energy required to power the wireless sensors must be generated using energy harvesting techniques from locally available energy sources, and the energy consumption within the sensor circuitry must therefore be low to minimize power and hence the size requirements of the energy harvester. Harvesting electrical energy from thermalmore » energy sources can be achieved using pyroelectric or thermoelectric conversion techniques. Recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics in self powered wireless sensor applications and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, is outlined. This paper outlines the modeling of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragg-Sitton, Shannon; Boardman, Richard; Ruth, Mark
The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can significantly reduce environmental impacts in an efficient and economically viable manner while utilizing both clean energy generation sources and hydrocarbon resources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean nuclear and renewable energy generation sources. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that better optimizesmore » energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing energy (thermal or electrical) where it is needed, when it is needed. For the purposes of this work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. This definition requires coupling of subsystems ‘‘behind’’ the electrical transmission bus, where energy flows are dynamically apportioned as necessary to meet demand and the system has a single connection to the grid that provides dispatchable electricity as required while capital intensive generation assets operate at full capacity. Development of integrated energy systems for an “energy park” must carefully consider the intended location and the associated regional resources, traditional industrial processes, energy delivery infrastructure, and markets to identify viable region-specific system configurations. This paper will provide an overview of the current status of regional hybrid energy system design, development and application of dynamic analysis tools to assess technical and economic performance, and roadmap development to identify and prioritize component, subsystem and system testing that will lead to prototype demonstration.« less
Final Technical Report. Project Boeing SGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Thomas E.
Boeing and its partner, PJM Interconnection, teamed to bring advanced “defense-grade” technologies for cyber security to the US regional power grid through demonstration in PJM’s energy management environment. Under this cooperative project with the Department of Energy, Boeing and PJM have developed and demonstrated a host of technologies specifically tailored to the needs of PJM and the electric sector as a whole. The team has demonstrated to the energy industry a combination of processes, techniques and technologies that have been successfully implemented in the commercial, defense, and intelligence communities to identify, mitigate and continuously monitor the cyber security of criticalmore » systems. Guided by the results of a Cyber Security Risk-Based Assessment completed in Phase I, the Boeing-PJM team has completed multiple iterations through the Phase II Development and Phase III Deployment phases. Multiple cyber security solutions have been completed across a variety of controls including: Application Security, Enhanced Malware Detection, Security Incident and Event Management (SIEM) Optimization, Continuous Vulnerability Monitoring, SCADA Monitoring/Intrusion Detection, Operational Resiliency, Cyber Range simulations and hands on cyber security personnel training. All of the developed and demonstrated solutions are suitable for replication across the electric sector and/or the energy sector as a whole. Benefits identified include; Improved malware and intrusion detection capability on critical SCADA networks including behavioral-based alerts resulting in improved zero-day threat protection; Improved Security Incident and Event Management system resulting in better threat visibility, thus increasing the likelihood of detecting a serious event; Improved malware detection and zero-day threat response capability; Improved ability to systematically evaluate and secure in house and vendor sourced software applications; Improved ability to continuously monitor and maintain secure configuration of network devices resulting in reduced vulnerabilities for potential exploitation; Improved overall cyber security situational awareness through the integration of multiple discrete security technologies into a single cyber security reporting console; Improved ability to maintain the resiliency of critical systems in the face of a targeted cyber attack of other significant event; Improved ability to model complex networks for penetration testing and advanced training of cyber security personnel« less
Inspection applications with higher electron beam energies
NASA Astrophysics Data System (ADS)
Norman, D. R.; Jones, J. L.; Yoon, W. Y.; Haskell, K. J.; Sterbentz, J. W.; Zabriskie, J. M.; Hunt, A. W.; Harmon, F.; Kinlaw, M. T.
2005-12-01
The Idaho National Laboratory has developed prototype shielded nuclear material detection systems based on pulsed photonuclear assessment (PPA) techniques for the inspection of cargo containers. During this work, increased nuclear material detection capabilities have been demonstrated at higher electron beam energies than those allowed by federal regulations for cargo inspection. This paper gives a general overview of a nuclear material detection system, the PPA technique and discusses the benefits of using these higher energies. This paper also includes a summary of the numerical and test results from LINAC operations up to 24 MeV and discusses some of the federal energy limitations associated with cargo inspection.
Conservation and renewable energy technologies for transportation
NASA Astrophysics Data System (ADS)
1990-11-01
The Office of Transportation Technologies (OTT) is charged with long-term, high-risk, and potentially high-payoff research and development of promising transportation technologies that are unlikely to be undertaken by the private sector alone. OTT activities are designed to develop an advanced technology base within the U.S. transportation industry for future manufacture of more energy-efficient, fuel-flexible, and environmentally sound transportation systems. OTT operations are focused on three areas: advanced automotive propulsion systems including gas turbines, low heat rejection diesel, and electric vehicle technologies; advanced materials development and tribology research; and research, development, demonstration, test, and evaluation (including field testing in fleet operations) of alternative fuels. Five papers describing the transportation technologies program have been indexed separately for inclusion on the data base.
Concentrating Solar Power Gen3 Demonstration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehos, Mark; Turchi, Craig; Vidal, Judith
Today's power-tower concentrating solar power (CSP) technology exists in large part as a result of Department of Energy (DOE) and utility industry funding of demonstration systems in the 1980s and 1990s. Today's most advanced towers are integrated with molten-salt thermal energy storage, delivering thermal energy at 565 degrees C for integration with conventional steam-Rankine cycles. The supercritical carbon dioxide power cycle has been identified as a likely successor to the steam-Rankine power cycle due to its potential for high efficiency when operating at elevated temperatures of 700 degrees C or greater. Over the course of the SunShot Initiative, DOE hasmore » supported a number of technology pathways that can operate efficiently at these temperatures and that hold promise to be reliable and cost effective. Three pathways - molten salt, particle, and gaseous - were selected for further investigation based on a two-day workshop held in August of 2016. The information contained in this roadmap identifies research and development challenges and lays out recommended research activities for each of the three pathways. DOE foresees that by successfully addressing the challenges identified in this roadmap, one or more technology pathways will be positioned for demonstration and subsequent commercialization within the next ten years. Based on current knowledge of the three power tower technologies, all three have the potential to achieve the SunShot goal of 6 cents/kilowatt-hour. Further development, modeling, and testing are now required to bring one or more of the technologies to a stage where integrated system tests and pilot demonstrations are feasible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammerstrom, Donald J.; Widergren, Steven E.; Irwin, Chris
About 11 years ago, the U.S. Department of Energy (DOE) funded the Pacific Northwest National Laboratory (PNNL) to conduct one of the first-ever field demonstrations of what later became called a transactive system. Transactive systems have since become important tools in the DOE’s research efforts to modernize the U.S. electric power grid and conserve energy in U.S. buildings. The DOE currently funds fundamental and applied research to advance transactive system technologies, including their simulation, standardization, theoretical principles, valuation, demonstration, and automation. This article will discuss both the historical and recent DOE research and development activities in this topic area, includingmore » especially a recent PNNL report concerning the valuation of transactive systems.« less
Development of a Thermoacoustic Stirling Engine Technology Demonstrator
NASA Astrophysics Data System (ADS)
Reissner, Alexander; Gerger, Joachim; Hummel, Stefan; Reißig, Jannis; Pawelke, Roland
2014-08-01
Waste heat is a primary source of energy loss in many aerospace and terrestrial applications. FOTEC, an Austrian Research Company located in Wiener Neustadt, is presently developing a micro power converter, promising high efficiencies even for small- scale applications. The converter is based on an innovative thermoacoustic stirling engine concept without any moving parts. Such a maintenance-free engine system would be particularly suitable for advanced space power systems (radioisotope, waste heat) or even within the scope of terrestrial energy harvesting. This paper will summarizes the status of our ongoing efforts on this micro power converter technology.
Development and study of aluminum-air electrochemical generator and its main components
NASA Astrophysics Data System (ADS)
Ilyukhina, A. V.; Kleymenov, B. V.; Zhuk, A. Z.
2017-02-01
Aluminum-air power sources are receiving increased attention for applications in portable electronic devices, transportation, and energy systems. This study reports on the development of an aluminum-air electrochemical generator (AA ECG) and provides a technical foundation for the selection of its components, i.e., aluminum anode, gas diffusion cathode, and alkaline electrolyte. A prototype 1.5 kW AA ECG with specific energy of 270 Wh kg-1 is built and tested. The results of this study demonstrate the feasibility of AA ECGs as portable reserve and emergency power sources, as well as power sources for electric vehicles.
NASA Astrophysics Data System (ADS)
Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.
2013-11-01
We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.
SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Subhasish Mukerjee
2003-12-08
The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burnmore » internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.« less
SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Subhasish Mukerjee
2003-06-09
The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A); and Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustionmore » engine. This technical progress report covers work performed by Delphi from July through December 2002 under Department of Energy Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: Task 1--System Design and Integration; Task 2--Solid Oxide Fuel Cell Stack Developments; Task 3--Reformer Developments; Task 4--Development of Balance of Plant (BOP) Components; Task 5--Manufacturing Development (Privately Funded); Task 6--System Fabrication; and Task 7--System Testing.« less
Advanced 2-micron Solid-state Laser for Wind and CO2 Lidar Applications
NASA Technical Reports Server (NTRS)
Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.
2006-01-01
Significant advancements in the 2-micron laser development have been made recently. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. The world record 2-micron laser energy is demonstrated with an oscillator and two amplifiers system. It generates more than one joule per pulse energy with excellent beam quality. Based on the successful demonstration of a fully conductive cooled oscillator by using heat pipe technology, an improved fully conductively cooled 2-micron amplifier was designed, manufactured and integrated. It virtually eliminates the running coolant to increase the overall system efficiency and reliability. In addition to technology development and demonstration, a compact and engineering hardened 2-micron laser is under development. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser is expected to be integrated to a lidar system and take field measurements. The recent achievements push forward the readiness of such a laser system for space lidar applications. This paper will review the developments of the state-of-the-art solid-state 2-micron laser.
Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Authors, Various
1980-01-01
The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distancesmore » necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.« less
Development of new methodologies for evaluating the energy performance of new commercial buildings
NASA Astrophysics Data System (ADS)
Song, Suwon
The concept of Measurement and Verification (M&V) of a new building continues to become more important because efficient design alone is often not sufficient to deliver an efficient building. Simulation models that are calibrated to measured data can be used to evaluate the energy performance of new buildings if they are compared to energy baselines such as similar buildings, energy codes, and design standards. Unfortunately, there is a lack of detailed M&V methods and analysis methods to measure energy savings from new buildings that would have hypothetical energy baselines. Therefore, this study developed and demonstrated several new methodologies for evaluating the energy performance of new commercial buildings using a case-study building in Austin, Texas. First, three new M&V methods were developed to enhance the previous generic M&V framework for new buildings, including: (1) The development of a method to synthesize weather-normalized cooling energy use from a correlation of Motor Control Center (MCC) electricity use when chilled water use is unavailable, (2) The development of an improved method to analyze measured solar transmittance against incidence angle for sample glazing using different solar sensor types, including Eppley PSP and Li-Cor sensors, and (3) The development of an improved method to analyze chiller efficiency and operation at part-load conditions. Second, three new calibration methods were developed and analyzed, including: (1) A new percentile analysis added to the previous signature method for use with a DOE-2 calibration, (2) A new analysis to account for undocumented exhaust air in DOE-2 calibration, and (3) An analysis of the impact of synthesized direct normal solar radiation using the Erbs correlation on DOE-2 simulation. Third, an analysis of the actual energy savings compared to three different energy baselines was performed, including: (1) Energy Use Index (EUI) comparisons with sub-metered data, (2) New comparisons against Standards 90.1-1989 and 90.1-2001, and (3) A new evaluation of the performance of selected Energy Conservation Design Measures (ECDMs). Finally, potential energy savings were also simulated from selected improvements, including: minimum supply air flow, undocumented exhaust air, and daylighting.
Air-steam hybrid engine : an alternative to internal combustion.
DOT National Transportation Integrated Search
2011-03-01
In this Small Business Innovation Research (SBIR) Phase 1 project, an energy-efficient air-steam propulsion system has been developed and patented, and key performance attributes have been demonstrated to be superior to those of internal combustion e...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheppy, M.; Metzger, I.; Cutler, D.
2014-01-01
As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of themore » technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.« less
Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; ...
2015-05-07
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions« less
Development of lasers optimized for pumping Ti:Al2O3 lasers
NASA Technical Reports Server (NTRS)
Rines, Glen A.; Schwarz, Richard A.
1994-01-01
Laboratory demonstrations that were completed included: (1) an all-solid-state, broadly tunable, single-frequency, Ti:Al2O3 master oscillator, and (2) a technique for obtaining 'long' (nominally 100- to 200-ns FWHM) laser pulses from a Q-switched, Nd oscillator at energy levels commensurate with straightforward amplification to the joule level. A diode-laser-pumped, Nd:YLF laser with intracavity SHG was designed, constructed, and evaluated. With this laser greater than 0.9 W of CW, output power at 523.5 nm with 10 W of diode-laser pump power delivered to the Nd:YLF crystal was obtained. With this laser as a pump source, for the first time, to our knowledge, an all solid-state, single frequency, Ti:Al203 laser with sufficient output power to injection seed a high-energy oscillator over a 20-nm bandwidth was demonstrated. The pulsed laser work succeeded in demonstrating pulse-stretching in a Q-switched Nd:YAG oscillator. Pulse energies greater than 50-mJ were obtained in pulses with 100- to 200-ns pulsewidths (FWHM).
Status of nickel/zinc and nickel/iron battery technology for electric vehicle applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, N.P.; Christianson, C.C.; Elliott, R.C.
1980-01-01
Significant progress in nickel/zinc and nickel/iron technology has been made towards achieving the battery technical performance goals necessary for widespread use of these battery systems in electric vehicle applications. This progress is reviewed. Nickel/zinc module test data have shown a specific energy of nearly 70 Whr/kg and a specific power of 130 W/kg. However, cycle life improvements are still needed (presently demonstrated capability of 120 cycles) and are expected to be demonstrated during 1980. Nickel/iron modules have demonstrated a specific energy of nearly 50 Wh/kg and a specific power of 100 W/kg. Indications are that improved performance in these areasmore » can be shown during 1980. Nickel/iron modules cycle lives of 300 have been achieved during early 1980 and testing continues. Energy efficiency has been improved from less than 50% to over 65%. Cost reduction (both initial and operating) continues to receive major emphasis at developers of both nickel/zinc and nickel/iron batteries in order to achieve the lowest possible life cycle cost to the battery user.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.
2015-05-07
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.« less
State Technologies Advancement Collaborative
DOE Office of Scientific and Technical Information (OSTI.GOV)
David S. Terry
2012-01-30
The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligatingmore » funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.« less
10 CFR 50.21 - Class 104 licenses; for medical therapy and research and development facilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Class 104 licenses; for medical therapy and research and...; for medical therapy and research and development facilities. A class 104 license will be issued, to an... Administration entered into under the Cooperative Power Reactor Demonstration Program, except as otherwise...
NREL Staff Recognized by DOE for Outstanding Achievements at 2016 Annual
Bryan Pivovar was recognized for his outstanding dedication and contributions in developing the H2 at developing a white paper, demonstrating approaches to deeply decarbonize multiple energy sectors. H2 at Scale commercialized through a tech transfer opportunity, paving the way for U.S. manufacturing leadership. Market
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1997-01-01
Recent work on the development of single-reference perturbation theories for the study of excited electronic states will be discussed. The utility of these methods will be demonstrated by comparison to linear-response coupled-cluster excitation energies. Results for some halogen molecules of interest in stratospheric chemistry will be presented.
Healthcare Energy Efficiency Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Douglas R.; Lai, Judy; Lanzisera, Steven M
2011-01-31
Hospitals are known to be among the most energy intensive commercial buildings in California. Estimates of energy end-uses (e.g. for heating, cooling, lighting, etc.) in hospitals are uncertain for lack of information about hospital-specific mechanical system operations and process loads. Lawrence Berkeley National Laboratory developed and demonstrated a benchmarking system designed specifically for hospitals. Version 1.0 featured metrics to assess energy performance for the broad variety of ventilation and thermal systems that are present in California hospitals. It required moderate to extensive sub-metering or supplemental monitoring. In this new project, we developed a companion handbook with detailed equations that canmore » be used toconvert data from energy and other sensors that may be added to or already part of hospital heating, ventilation and cooling systems into metrics described in the benchmarking document.This report additionally includes a case study and guidance on including metering into designs for new hospitals, renovations and retrofits. Despite widespread concern that this end-use is large and growing, there is limited reliable information about energy use by distributed medical equipment and other miscellaneouselectrical loads in hospitals. This report proposes a framework for quantifying aggregate energy use of medical equipment and miscellaneous loads. Novel approaches are suggested and tried in an attempt to obtain data to support this framework.« less
Increasing Flexibility in Energy Code Compliance: Performance Packages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, Philip R.; Rosenberg, Michael I.
Energy codes and standards have provided significant increases in building efficiency over the last 38 years, since the first national energy code was published in late 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. As the code matures, the prescriptive path becomes more complicated, and also more restrictive. It is likely that an approach that considers the building as an integrated system will be necessary to achieve the next real gains in building efficiency. Performance code paths are increasing in popularity; however, there remains a significant designmore » team overhead in following the performance path, especially for smaller buildings. This paper focuses on development of one alternative format, prescriptive packages. A method to develop building-specific prescriptive packages is reviewed based on a multiple runs of prototypical building models that are used to develop parametric decision analysis to determines a set of packages with equivalent energy performance. The approach is designed to be cost-effective and flexible for the design team while achieving a desired level of energy efficiency performance. A demonstration of the approach based on mid-sized office buildings with two HVAC system types is shown along with a discussion of potential applicability in the energy code process.« less
NASA Technical Reports Server (NTRS)
Kurtz, D.; Roan, V.
1985-01-01
The JPL Electric and Hybrid Vehicle System Research and Development Project was established in the spring of 1977. Originally administered by the Energy Research and Development Administration (ERDA) and later by the Electric and Hybrid Vehicle Division of the U.S. Department of Energy (DOE), the overall Program objective was to decrease this nation's dependence on foreign petroleum sources by developing the technologies and incentives necessary to bring electric and hybrid vehicles successfully into the marketplace. The ERDA/DOE Program structure was divided into two major elements: (1) technology research and system development and (2) field demonstration and market development. The Jet Propulsion Laboratory (JPL) has been one of several field centers supporting the former Program element. In that capacity, the specific historical areas of responsibility have been: (1) Vehicle system developments (2) System integration and test (3) Supporting subsystem development (4) System assessments (5) Simulation tool development.
Medjoubi, Kadda; Thompson, Andrew; Bérar, Jean-François; Clemens, Jean-Claude; Delpierre, Pierre; Da Silva, Paulo; Dinkespiler, Bernard; Fourme, Roger; Gourhant, Patrick; Guimaraes, Beatriz; Hustache, Stéphanie; Idir, Mourad; Itié, Jean-Paul; Legrand, Pierre; Menneglier, Claude; Mercere, Pascal; Picca, Frederic; Samama, Jean-Pierre
2012-05-01
The XPAD3S-CdTe, a CdTe photon-counting pixel array detector, has been used to measure the energy and the intensity of the white-beam diffraction from a lysozyme crystal. A method was developed to calibrate the detector in terms of energy, allowing incident photon energy measurement to high resolution (approximately 140 eV), opening up new possibilities in energy-resolved X-ray diffraction. In order to demonstrate this, Laue diffraction experiments were performed on the bending-magnet beamline METROLOGIE at Synchrotron SOLEIL. The X-ray energy spectra of diffracted spots were deduced from the indexed Laue patterns collected with an imaging-plate detector and then measured with both the XPAD3S-CdTe and the XPAD3S-Si, a silicon photon-counting pixel array detector. The predicted and measured energy of selected diffraction spots are in good agreement, demonstrating the reliability of the calibration method. These results open up the way to direct unit-cell parameter determination and the measurement of high-quality Laue data even at low resolution. Based on the success of these measurements, potential applications in X-ray diffraction opened up by this type of technology are discussed.
Neutron Imaging Developments at LANSCE
NASA Astrophysics Data System (ADS)
Nelson, Ron; Hunter, James; Schirato, Richard; Vogel, Sven; Swift, Alicia; Ickes, Tim; Ward, Bill; Losko, Adrian; Tremsin, Anton
2015-10-01
Neutron imaging is complementary to x-ray imaging because of its sensitivity to light elements and greater penetration of high-Z materials. Energy-resolved neutron imaging can provide contrast enhancements for elements and isotopes due to the variations with energy in scattering cross sections due to nuclear resonances. These cross section differences exist due to compound nuclear resonances that are characteristic of each element and isotope, as well as broader resonances at higher energies. In addition, multi-probe imaging, such as combined photon and neutron imaging, is a powerful tool for discerning properties and features in materials that cannot be observed with a single probe. Recently, we have demonstrated neutron imaging, both radiography and computed tomography, using the moderated (Lujan Center) and high-energy (WNR facility) neutron sources at LANSCE. Flat panel x-ray detectors with suitable scintillator-converter screens provide good sensitivity for both low and high neutron energies. Micro-Channel-Plate detectors and iCCD scintillator camera systems that provide the fast time gating needed for energy-resolved imaging have been demonstrated as well. Examples of recent work will be shown including fluid flow in plants and imaging through dense thick objects. This work is funded by the US Department of Energy, National Nuclear Security Administration, and performed by Los Alamos National Security LLC under Contract DE-AC52-06NA25396.
Globalization and sustainable development an E7 point of view
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strassburg, W.
1998-07-01
The energy sector is a crucial feedstock to economic development. One example of this industry sector's contribution towards sustainable development is the so-called E7 initiative on sustainable energy development of some of the biggest electric utilities. E7 members from Canada, France, Germany, Italy, Japan and the US are demonstrating the functioning of the requested globally synchronized approach between developed and developing countries. E7 members focus their activities on (1) the efficient use of primary energy resources, (2) maximizing the use of renewable energy resources, (3) maximizing efficiency in the generation, delivery, and use of electricity, (4) minimizing environmental impacts ofmore » energy production and use and, (5) implementing innovative options to promote win-win benefits for the environment and the economy through their network of expertise on a pro bono basis. A main emphasis lies in the consistent Joint Implementation given the fact that innovative and efficient Green House Gas reduction measures will be the core of future E7 activities. Especially commercial projects will provide valuable contributions to Green House Gas reductions as well as to economic development of the recipient country. Other instruments, such Emission Trading and Clean Development Mechanism will have to be investigated appropriately in terms of their practicability for Green House Gas reductions so that their will be a notification by the international climate protection regime. Therefore Emission Trading and Clean Development Mechanism are of importance for E7 members' future operations, too. With respect to Sustainable Development industry, energy and environmental policy in leading industry countries must be more closely aligned to a global approach than has so far been the case. The electricity sector is called on to make a major contribution.« less
Flywheel rotor and containment technology development for FY 1982
NASA Astrophysics Data System (ADS)
Kulkarni, S. V.
1982-12-01
The status of technology development for an efficient, economical, and practical composite flywheel having an energy density of 88 Wh/kg (20 to 25 E Wh/lb) and an energy storge capacity of approximately 1 kWh is reported. Progress is also reported in the development of a fail-safe, lightweight, and low cost composite containment for the flywheel. One containment design was selected for prototype fabrication and testing. Flywheel rotor cyclic test capability was also demonstrated and evaluated. High strength Kevlar and graphite fibers are being studied. Tests of the elastomeric bond between the rotor and hub indicate that the bond strength exceeds the minimum torque requirements for automobile applications.
Tribal Energy Program for California Indian Tribes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, S.
A strategic plan is needed to catalyze clean energy in the more than 100 California Indian tribal communities with varying needs and energy resources. We propose to conduct a scoping study to identify tribal lands with clean energy potential, as well as communities with lack of grid-tied energy and communications access. The research focus would evaluate the energy mixture and alternatives available to these tribal communities, and evaluate greenhouse gas emissions associated with accessing fossil fuel used for heat and power. Understanding the baseline of energy consumption and emissions of communities is needed to evaluate improvements and advances from technology.more » Based on this study, we will develop a strategic plan that assesses solutions to address high energy fuel costs due to lack of electricity access and inform actions to improve economic opportunities for tribes. This could include technical support for tribes to access clean energy technologies and supporting collaboration for on-site demonstrations.« less
Integrated Model-Based Decisions for Water, Energy and Food Nexus
NASA Astrophysics Data System (ADS)
Zhang, X.; Vesselinov, V. V.
2015-12-01
Energy, water and food are critical resources for sustaining social development and human lives; human beings cannot survive without any one of them. Energy crises, water shortages and food security are crucial worldwide problems. The nexus of energy, water and food has received more and more attention in the past decade. Energy, water and food are closely interrelated; water is required in energy development such as electricity generation; energy is indispensable for collecting, treating, and transporting water; both energy and water are crucial inputs for food production. Changes of either of them can lead to substantial impacts on other two resources, and vice versa. Effective decisions should be based on thorough research efforts for better understanding of their complex nexus. Rapid increase of population has significantly intensified the pressures on energy, water and food. Addressing and quantifying their interactive relationships are important for making robust and cost-effective strategies for managing the three resources simultaneously. In addition, greenhouse gases (GHGs) are emitted in energy, water, food production, consequently making contributions to growing climate change. Reflecting environmental impacts of GHGs is also desired (especially, on the quality and quantity of fresh water resources). Thus, a socio-economic model is developed in this study to quantitatively address the complex connections among energy, water and food production. A synthetic problem is proposed to demonstrate the model's applicability and feasibility. Preliminary results related to integrated decisions on energy supply management, water use planning, electricity generation planning, energy facility capacity expansion, food production, and associated GHG emission control are generated for providing cost-effective supports for decision makers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fregosi, Daniel; Ravula, Sharmila; Brhlik, Dusan
2015-06-07
Bosch has developed and demonstrated a novel direct current (DC) microgrid system that maximizes the efficiency of locally generated photovoltaic energy while offering high reliability, safety, redundancy, and reduced cost compared to equivalent alternating current (AC) systems. Several demonstration projects validating the system feasibility and expected efficiency gains have been completed and additional ones are in progress. This paper gives an overview of the Bosch DC microgrid system and presents key results from a large simulation study done to estimate the energy savings of the Bosch DC microgrid over conventional AC systems. The study examined the system performance in locationsmore » across the United States for several commercial building types and operating profiles. It found that the Bosch DC microgrid uses generated PV energy 6%-8% more efficiently than traditional AC systems.« less
Shepertycky, Michael; Li, Qingguo
2015-01-01
Background Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W) while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator). Methodology/Principal Findings We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH), which evaluates a harvester’s overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0) is lower than that of conventional power generation methods. Conclusions/Significance These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities. PMID:26039493
Shepertycky, Michael; Li, Qingguo
2015-01-01
Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W) while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator). We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH), which evaluates a harvester's overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0) is lower than that of conventional power generation methods. These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities.
Delphi`s DETOXSM process: Preparing to treat high organic content hazardous and mixed wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, D.T.; Rogers, T.W.; Goldblatt, S.D.
1998-12-31
The US Department of Energy (DOE) Federal Energy Technology Center is sponsoring a full-scale technology demonstration of Delphi Research, Inc.`s patented DETOX{sup SM} catalytic wet chemical oxidation waste treatment process at the Savannah River Site (SRS) in South Carolina. The process is being developed primarily to treat hazardous and mixed wastes within the DOE complex as an alternative to incineration, but it has significant potential to treat wastes in the commercial sector. The results of the demonstration will be intensively studied and used to validate the technology. A critical objective in preparing for the demonstration was the successful completion ofmore » a programmatic Operational Readiness Review. Readiness Reviews are required by DOE for all new process startups. The Readiness Review provided the vehicle to ensure that Delphi was ready to start up and operate the DETOX{sup SM} process in the safest manner possible by implementing industry accepted management practices for safe operation. This paper provides an overview of the DETOX{sup SM} demonstration at SRS, and describes the crucial areas of the Readiness Review that marked the first steps in Delphi`s transition from a technology developer to an operating waste treatment services provider.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janke, Christopher James; Das, Sadananda; Oyola, Yatsandra
2014-08-01
This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent wasmore » synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janke, Christopher James; Das, Sadananda; Oyola, Yatsandra
This report describes work on the successful completion of Milestone M2FT-15OR0310041 (1/30/2015) entitled, Demonstrate braided material with 3.5 g U/kg sorption capacity under seawater testing condition . This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent braided materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed four braided fiber adsorbents that have demonstrated uranium adsorption capacities greater than 3.5 g U/kg adsorbent after marine testing at PNNL. Themore » braided adsorbents were synthesized by braiding or leno weaving high surface area polyethylene fibers and conducting radiation-induced graft polymerization of itaconic acid and acrylonitrile monomers onto the braided materials followed by amidoximation and base conditioning. The four braided adsorbents demonstrated capacity values ranging from 3.7 to 4.2 g U/kg adsorbent after 56 days of exposure in natural coastal seawater at 20 oC. All data are normalized to a salinity of 35 psu.« less
NASA Astrophysics Data System (ADS)
Vielstich, W.; Iwasita, T.
1982-08-01
Direct conversion of chemical energy into electrical energy is a problem which has received increasing attention during the last years. Fuel-cell power plants on the basis of natural gas are in the course of demonstration, hydrogen/air cells are discussed in the electric vehicle application. Future developments will depend on the progress in electrocatalysis (e.g. the direct anodic oxidation of methanol) and in material technology as in the case of molten-carbonate fuel cells for power generation.
Wind Measurements with High Energy 2 Micron Coherent Doppler Lidar
NASA Technical Reports Server (NTRS)
Barnes, Bruce W.; Koch, Grady J.; Petros, Mulugeta; Beyon, Jeffrey Y.; Amzajerdian, Farzin; Yu, Ji-Rong; Kavaya, Michael J.; Singh, Upendra N.
2004-01-01
A coherent Doppler lidar based on an injection seeded Ho:Tm:YLF pulsed laser was developed for wind measurements. A transmitted pulse energy over 75 mJ at 5 Hz repetition rate has been demonstrated. Designs are presented on the laser, injection seeding, receiver, and signal processing subsystems. Sample data of atmospheric measurements are presented including a wind profile extending from the atmospheric boundary layer (ABL) to the free troposphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-04-27
Twenty-seven Native American tribal members, council members, and other interested parties gathered in Santa Fe, New Mexico, to attend the Native American Workshop on Petroleum Energy on August 11 and 12, 1997, sponsored by the U.S. Department of Energy and presented by BDM-Oklahoma, Inc, staff. Tribes represented at the workshop included the Jicarilla Apache, Pueblo of Acoma and Ute. Representatives of the Environmental Protection Agency (USEPA), Bureau of Indian Affairs (BIA), Bureau of Land Management (BLM), and Minerals Management Service (MMS) also attended. BDM-Oklahoma developed and organized the Native American Workshop on Petroleum Energy to help meet the goals ofmore » the U.S. Department of Energy's Domestic Gas and Oil Initiative to help Native American tribes become more self-sufficient in developing and managing petroleum resources.« less
Overview of International Thermonuclear Experimental Reactor (ITER) engineering design activities*
NASA Astrophysics Data System (ADS)
Shimomura, Y.
1994-05-01
The International Thermonuclear Experimental Reactor (ITER) [International Thermonuclear Experimental Reactor (ITER) (International Atomic Energy Agency, Vienna, 1988), ITER Documentation Series, No. 1] project is a multiphased project, presently proceeding under the auspices of the International Atomic Energy Agency according to the terms of a four-party agreement among the European Atomic Energy Community (EC), the Government of Japan (JA), the Government of the Russian Federation (RF), and the Government of the United States (US), ``the Parties.'' The ITER project is based on the tokamak, a Russian invention, and has since been brought to a high level of development in all major fusion programs in the world. The objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER design is being developed, with support from the Parties' four Home Teams and is in progress by the Joint Central Team. An overview of ITER Design activities is presented.
Surface tension and modeling of cellular intercalation during zebrafish gastrulation.
Calmelet, Colette; Sepich, Diane
2010-04-01
In this paper we discuss a model of zebrafish embryo notochord development based on the effect of surface tension of cells at the boundaries. We study the process of interaction of mesodermal cells at the boundaries due to adhesion and cortical tension, resulting in cellular intercalation. From in vivo experiments, we obtain cell outlines of time-lapse images of cell movements during zebrafish embryo development. Using Cellular Potts Model, we calculate the total surface energy of the system of cells at different time intervals at cell contacts. We analyze the variations of total energy depending on nature of cell contacts. We demonstrate that our model can be viable by calculating the total surface energy value for experimentally observed configurations of cells and showing that in our model these configurations correspond to a decrease in total energy values in both two and three dimensions.
Offshore Wind Initiatives at the U.S. Department of Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Coastal and Great Lakes states account for nearly 80% of U.S. electricity demand, and the winds off the shores of these coastal load centers have a technical resource potential twice as large as the nation’s current electricity use. With the costs of offshore wind energy falling globally and the first U.S. offshore wind farm installed off the coast of Block Island, Rhode Island in 2016, offshore wind has the potential to contribute significantly to a clean, affordable, and secure national energy mix. To support the development of a world-class offshore wind industry, the U.S. Department of Energy has been supportingmore » a broad portfolio of offshore wind research, development, and demonstration projects since 2011 and released a new National Offshore Wind Strategy jointly with the U.S. Department of the Interior in 2016.« less
Energy-level alignment at organic heterointerfaces
Oehzelt, Martin; Akaike, Kouki; Koch, Norbert; Heimel, Georg
2015-01-01
Today’s champion organic (opto-)electronic devices comprise an ever-increasing number of different organic-semiconductor layers. The functionality of these complex heterostructures largely derives from the relative alignment of the frontier molecular-orbital energies in each layer with respect to those in all others. Despite the technological relevance of the energy-level alignment at organic heterointerfaces, and despite continued scientific interest, a reliable model that can quantitatively predict the full range of phenomena observed at such interfaces is notably absent. We identify the limitations of previous attempts to formulate such a model and highlight inconsistencies in the interpretation of the experimental data they were based on. We then develop a theoretical framework, which we demonstrate to accurately reproduce experiment. Applying this theory, a comprehensive overview of all possible energy-level alignment scenarios that can be encountered at organic heterojunctions is finally given. These results will help focus future efforts on developing functional organic interfaces for superior device performance. PMID:26702447
Babin, Volodymyr; Leforestier, Claude; Paesani, Francesco
2013-12-10
The development of a "first principles" water potential with flexible monomers (MB-pol) for molecular simulations of water systems from gas to condensed phases is described. MB-pol is built upon the many-body expansion of the intermolecular interactions, and the specific focus of this study is on the two-body term (V2B) representing the full-dimensional intermolecular part of the water dimer potential energy surface. V2B is constructed by fitting 40,000 dimer energies calculated at the CCSD(T)/CBS level of theory and imposing the correct asymptotic behavior at long-range as predicted from "first principles". The comparison of the calculated vibration-rotation tunneling (VRT) spectrum and second virial coefficient with the corresponding experimental results demonstrates the accuracy of the MB-pol dimer potential energy surface.
Survey of electrochemical metal winning processes. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaaler, L.E.
1979-03-01
The subject program was undertaken to find electrometallurgical technology that could be developed into energy saving commercial metal winning processes. Metals whose current production processes consume significant energy (excepting copper and aluminum) are magnesium, zinc, lead, chromium, manganese, sodium, and titanium. The technology of these metals, with the exception of titanium, was reviewed. Growth of titanium demand has been too small to justify the installation of an electrolyte process that has been developed. This fact and the uncertainty of estimates of future demand dissuaded us from reviewing titanium technology. Opportunities for developing energy saving processes were found for magnesium, zinc,more » lead, and sodium. Costs for R and D and demonstration plants have been estimated. It appeared that electrolytic methods for chromium and manganese cannot compete energywise or economically with the pyrometallurgical methods of producing the ferroalloys, which are satisfactory for most uses of chromium and manganese.« less
A rotational and axial motion system load frame insert for in situ high energy x-ray studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shade, Paul A., E-mail: paul.shade.1@us.af.mil; Schuren, Jay C.; Turner, Todd J.
2015-09-15
High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert withmore » a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.« less
New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiss, T.; Chaney, L.; Meyer, J.
Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic systemmore » simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.« less
The Mercury Project: A High Average Power, Gas-Cooled Laser For Inertial Fusion Energy Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayramian, A; Armstrong, P; Ault, E
Hundred-joule, kilowatt-class lasers based on diode-pumped solid-state technologies, are being developed worldwide for laser-plasma interactions and as prototypes for fusion energy drivers. The goal of the Mercury Laser Project is to develop key technologies within an architectural framework that demonstrates basic building blocks for scaling to larger multi-kilojoule systems for inertial fusion energy (IFE) applications. Mercury has requirements that include: scalability to IFE beamlines, 10 Hz repetition rate, high efficiency, and 10{sup 9} shot reliability. The Mercury laser has operated continuously for several hours at 55 J and 10 Hz with fourteen 4 x 6 cm{sup 2} ytterbium doped strontiummore » fluoroapatite (Yb:S-FAP) amplifier slabs pumped by eight 100 kW diode arrays. The 1047 nm fundamental wavelength was converted to 523 nm at 160 W average power with 73% conversion efficiency using yttrium calcium oxy-borate (YCOB).« less
Pan, Hao; Ma, Jing; Ma, Ji; Zhang, Qinghua; Liu, Xiaozhi; Guan, Bo; Gu, Lin; Zhang, Xin; Zhang, Yu-Jun; Li, Liangliang; Shen, Yang; Lin, Yuan-Hua; Nan, Ce-Wen
2018-05-08
Developing high-performance film dielectrics for capacitive energy storage has been a great challenge for modern electrical devices. Despite good results obtained in lead titanate-based dielectrics, lead-free alternatives are strongly desirable due to environmental concerns. Here we demonstrate that giant energy densities of ~70 J cm -3 , together with high efficiency as well as excellent cycling and thermal stability, can be achieved in lead-free bismuth ferrite-strontium titanate solid-solution films through domain engineering. It is revealed that the incorporation of strontium titanate transforms the ferroelectric micro-domains of bismuth ferrite into highly-dynamic polar nano-regions, resulting in a ferroelectric to relaxor-ferroelectric transition with concurrently improved energy density and efficiency. Additionally, the introduction of strontium titanate greatly improves the electrical insulation and breakdown strength of the films by suppressing the formation of oxygen vacancies. This work opens up a feasible and propagable route, i.e., domain engineering, to systematically develop new lead-free dielectrics for energy storage.
Integrated modeling for assessment of energy-water system resilience under changing climate
NASA Astrophysics Data System (ADS)
Yan, E.; Veselka, T.; Zhou, Z.; Koritarov, V.; Mahalik, M.; Qiu, F.; Mahat, V.; Betrie, G.; Clark, C.
2016-12-01
Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. The IWESAF currently includes an extreme climate event generator to predict future extreme weather events, hydrologic and reservoir models, riverine temperature model, power plant water use simulator, and power grid operation and cost optimization model. The IWESAF can facilitate the interaction among the modeling systems and provide insights of the sustainability and resilience of the energy-water system under extreme climate events and economic consequence. The regional case demonstration in the Midwest region will be presented. The detailed information on some of individual modeling components will also be presented in several other abstracts submitted to AGU this year.
Energy recovery from solid waste. Volume 2: Technical report. [pyrolysis and biodegradation
NASA Technical Reports Server (NTRS)
Huang, C. J.; Dalton, C.
1975-01-01
A systems analysis of energy recovery from solid waste demonstrates the feasibility of several current processes for converting solid waste to an energy form. The social, legal, environmental, and political factors are considered in depth with recommendations made in regard to new legislation and policy. Biodegradation and thermal decomposition are the two areas of disposal that are considered with emphasis on thermal decomposition. A technical and economic evaluation of a number of available and developing energy-recovery processes is given. Based on present technical capabilities, use of prepared solid waste as a fuel supplemental to coal seems to be the most economic process by which to recover energy from solid waste. Markets are considered in detail with suggestions given for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste, and a new pyrolysis process is suggested. An application of the methods of this study are applied to Houston, Texas.