Science.gov

Sample records for development division decontamination

  1. Decontamination solution development studies

    SciTech Connect

    Allen, R.P.; Fetrow, L.K.; Kjarmo, H.E.; Pool, K.H.

    1993-09-01

    This study was conducted for the Westinghouse Hanford Company (WHC) by Pacific Northwest Laboratory (PNL) as part of the Hanford Grout Technology Program (HGTP). The objective of this study was to identify decontamination solutions capable of removing radioactive contaminants and grout from the Grout Treatment Facility (GTF) process equipment and to determine the impact of these solutions on equipment components and disposal options. The reference grout used in this study was prepared with simulated double-shell slurry feed (DSSF) and a dry blend consisting of 40 wt % limestone flour, 28 wt % blast furnace slag, 28 wt % fly ash, and 4 wt % type I/II Portland cement.

  2. Developing decontamination strategies and monitoring tools.

    PubMed

    Bissett, Linda

    Decontamination within the healthcare setting plays a significant role in reducing the risk of healthcare-associated infections. This article will examine decontamination from hand hygiene to sterilization of instruments and discuss how hazard analysis at critical control points (HACCP) can be used to monitor and record practice, ensuring that consistent standards are based on recommended guidelines, the law and policies.

  3. Electronics Division research and development

    NASA Astrophysics Data System (ADS)

    MacRoberts, M. D. J.; Courtney, E. J.

    1984-03-01

    The status of the research development activities in the Electronics Division at the Los Alamos National Laboratory is described. Much of the work described is sponsored by the Laboratory; however, other topics are included for completeness. The Fuels Cells for Transportation Applications and the majority of the electrochemistry research are reported separately in LA-9787-PR. The Thermionic Integrated Circuits are being reported separately. The following topics are continuations of articles reported in Electronics Division Research and Development, October 1, 1981-September 30, 1982 (LA-9726-PR): Photoconductive Circuit Elements, Photoconductive Materials for Far-Infrared Detector Applications, Saturable Ferromagnetic Elements, Repetitive Opening Switches, Capacitor Test Facility, Fast Gating of Microchannel-Plate Image Intensifiers, and Oxygen-Reduction Reaction - Electrode Kinetics and Electrocatalysis. The following topics are new work or were included for completeness: Photoconductive Power Switches, Ion Beam Analysis, Link Access Control and Encryption System, Coded Aperture Imaging of Gamma-Ray Sources, and Multilayer Printed Wiring Boards.

  4. Large scale, urban decontamination; developments, historical examples and lessons learned

    SciTech Connect

    Demmer, R.L.

    2007-07-01

    Recent terrorist threats and actions have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the prospect for the cleanup and removal of radioactive dispersal device (RDD or 'dirty bomb') residues. In response, the United States Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. The efficiency of RDD cleanup response will be improved with these new developments and a better understanding of the 'old reliable' methodologies. While an RDD is primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. There are a number of significant lessons that can be gained from a look at previous large scale cleanup projects. Too often we are quick to apply a costly 'package and dispose' method when sound technological cleaning approaches are available. Understanding historical perspectives, advanced planning and constant technology improvement are essential to successful decontamination. (authors)

  5. Development of the Decontamination Approach for the West Valley Demonstration Project Decontamination Project Plan

    SciTech Connect

    Milner, T. N.; Watters, W. T.

    2002-02-25

    This paper details the development of a decontamination approach for the West Valley Demonstration Project (WVDP), Decontamination Project Plan (Plan). The WVDP is operated by West Valley Nuclear Services Company (WVNSCO), a subsidiary of Westinghouse Government and Environmental Services, and its parent companies Washington Group International and British Nuclear Fuels Limited (BNFL). The WVDP is a waste management effort being conducted by the United States Department of Energy (DOE) at the site of the only commercial nuclear fuel reprocessing facility to have operated in the United States. This facility is part of the Western New York Nuclear Service Center (WNYNSC), which is owned by the New York State Energy Research and Development Authority (NYSERDA). As authorized by Congress in 1980 through the West Valley Demonstration Project Act (WVDP Act, Public Law 96-368), the DOE's primary mission at the WVDP is to solidify high-level liquid nuclear waste safely; transport the high-level waste (HLW) to a federal repository; and decontaminate and decommission the facilities and hardware used to solidify the HLW and conduct the WVDP. This includes a provision for the disposal of low-level waste (LLW) and transuranic waste (TRU) produced during processing of the HLW. Continuation of the effort to reduce the hazard and risk associated with historic operations to the extent needed to ensure the health and safety of the public and the environment will see a change in focus from stabilization of liquid HLW to stabilization of former plutonium and uranium extraction (PUREX) reprocessing plant facilities. This will be achieved through the activities of in-cell component removal and packaging, and preparation for long-term disposal of the long- lived radionuclides. These radionuclides are associated with the former PUREX facility operations, including, and upstream from, facilities utilized in the primary separation and first plutonium/uranium split cycles. The closure

  6. Physics Division research and development

    NASA Astrophysics Data System (ADS)

    Hollen, G. Y.; Schappert, G. T.

    1994-07-01

    This report discusses its following topics: Recent Weapons-Physics Experiments on the Pegasus II Pulsed Power Facility; Operation of a Large-Scale Plasma Source Ion Implantation Experiment; Production of Charm and Beauty Mesons at Fermilab Sudbury Neutrino Observatory; P-Division's Essential Role in the Redirected Inertial Confinement Fusion Program; Trident Target Physics Program; Comparative Studies of Brain Activation with Magnetocephalography and Functional Magnetic Resonance Imaging; Cellular Communication, Interaction of G-Proteins, and Single-Photon Detection; Nuclear Magnetic Resonance Studies of Oxygen-doped La2CuO(4+delta) Thermoacoustic Engines; A Shipborne Raman Water-Vapor Lidar for the Central Pacific Experiment; Angara-5 Pinch Temperature Verification with Time-resolved Spectroscopy; Russian Collaborations on Megagauss Magnetic Fields and Pulsed-Power Applications; Studies of Energy Coupling from Underground Explosions; Trapping and Cooling Large Numbers of Antiprotons: A First Step Toward the Measurement of Gravity on Antimatter; and Nuclear-Energy Production Without a Long-Term High-Level Waste Stream.

  7. Development and testing of a laser-based decontamination system

    NASA Astrophysics Data System (ADS)

    Anthofer, A.; Lippmann, W.; Hurtado, A.

    2013-06-01

    Decontamination of radioactive concrete surfaces may be necessary during operation or decommissioning of nuclear power plants. Usually only the upper layers of the concrete structure are contaminated and are removed using labor-intensive mechanical milling processes. Production of a large amount of dust, which can lead to secondary contamination, is inherent to these processes. Improvements in high-energy laser technology have now made it possible for laser radiation to be used in decontamination technologies for the removal of concrete layers. A decontamination unit comprising a diode laser with a beam power of 10 kW in continuous wave (CW) mode in combination with an autonomous manipulator was developed for use in nuclear plants. The laser beam melts the concrete surface to a depth of approximately 5 mm. Compressed air jets then detach the molten layer from the concrete surface and convey it to a suction system, with which it is transported to a collection container. Most of the radionuclides are trapped in the solidifying melt particles, which form an extremely stable effluent well suited to long-term storage. A relatively small amount of dust is generated in the process. Because there is no backlash during energy transfer, the laser device carrier can be designed to be lightweight and flexible. A specially developed manipulator that can move freely along walls and ceilings by means of suction plates is used for the carrier unit. This results in short setup times for preparing for use of the device and minimal personnel exposure to the radiation. Experiments were conducted on a concrete wall to demonstrate the functionality of the overall system in realistic conditions. An optimal ablation rate of 2.16 m²/h at an ablation depth of 1-5 mm was achieved. Today's commercially available diode lasers with powers higher than 50 kW enable ablation rates of >10 m²/h to be achieved and hence make these laser-based systems competitive alternatives to mechanical systems.

  8. Development of haemostatic decontaminants for the treatment of wounds contaminated with chemical warfare agents. 2: evaluation of in vitro topical decontamination efficacy using undamaged skin.

    PubMed

    Dalton, Christopher H; Hall, Charlotte A; Lydon, Helen L; Chipman, J K; Graham, John S; Jenner, John; Chilcott, Robert P

    2015-05-01

    The risk of penetrating, traumatic injury occurring in a chemically contaminated environment cannot be discounted. Should a traumatic injury be contaminated with a chemical warfare (CW) agent, it is likely that standard haemostatic treatment options would be complicated by the need to decontaminate the wound milieu. Thus, there is a need to develop haemostatic products that can simultaneously arrest haemorrhage and decontaminate CW agents. The purpose of this study was to evaluate a number of candidate haemostats for efficacy as skin decontaminants against three CW agents (soman, VX and sulphur mustard) using an in vitro diffusion cell containing undamaged pig skin. One haemostatic product (WoundStat™) was shown to be as effective as the standard military decontaminants Fuller's earth and M291 for the decontamination of all three CW agents. The most effective haemostatic agents were powder-based and use fluid absorption as a mechanism of action to sequester CW agent (akin to the decontaminant Fuller's earth). The envisaged use of haemostatic decontaminants would be to decontaminate from within wounds and from damaged skin. Therefore, WoundStat™ should be subject to further evaluation using an in vitro model of damaged skin. PMID:25219755

  9. Development of haemostatic decontaminants for the treatment of wounds contaminated with chemical warfare agents. 2: evaluation of in vitro topical decontamination efficacy using undamaged skin.

    PubMed

    Dalton, Christopher H; Hall, Charlotte A; Lydon, Helen L; Chipman, J K; Graham, John S; Jenner, John; Chilcott, Robert P

    2015-05-01

    The risk of penetrating, traumatic injury occurring in a chemically contaminated environment cannot be discounted. Should a traumatic injury be contaminated with a chemical warfare (CW) agent, it is likely that standard haemostatic treatment options would be complicated by the need to decontaminate the wound milieu. Thus, there is a need to develop haemostatic products that can simultaneously arrest haemorrhage and decontaminate CW agents. The purpose of this study was to evaluate a number of candidate haemostats for efficacy as skin decontaminants against three CW agents (soman, VX and sulphur mustard) using an in vitro diffusion cell containing undamaged pig skin. One haemostatic product (WoundStat™) was shown to be as effective as the standard military decontaminants Fuller's earth and M291 for the decontamination of all three CW agents. The most effective haemostatic agents were powder-based and use fluid absorption as a mechanism of action to sequester CW agent (akin to the decontaminant Fuller's earth). The envisaged use of haemostatic decontaminants would be to decontaminate from within wounds and from damaged skin. Therefore, WoundStat™ should be subject to further evaluation using an in vitro model of damaged skin.

  10. Idaho National Engineering Laboratory decontamination and decommissioning robotics development program

    SciTech Connect

    McKay, M.D.

    1993-04-01

    As part of the Idaho National Engineering Laboratory (INEL) Robotics Technology Development Program (RTDP) Decontamination & Decommissioning (D&D) robotics program, a task was designed to integrate the plasma arc cutting technology being developed under the Waste Facility Operations (WFO) robotics program into D&D cutting applications. The plasma arc cutting technology is based upon the use of a high energy plasma torch to cut metallic objects. Traditionally, D&D workers removing equipment and processes from a facility have used plasma arc cutting to accomplish this task. The worker is required to don a protective suit to shield from the high electromagnetic energy released from the cutting operation. Additionally, the worker is required to don protective clothing to shield against the radioactive materials and contamination. This protective clothing can become restrictive and cumbersome to work in. Because some of the work areas contain high levels of radiation, the worker is not allowed to dwell in the environment for sustained periods of time. To help alleviate some of the burdens required to accomplish this task, reduce or eliminate the safety hazardous to the worker, and reduce the overall cost of remediation, a program was established though the Office of Technology Development (OTD) to design and develop a robotic system capable of performing cutting operations using a plasma arc torch. Several D&D tasks were identified having potential for use of the plasma arc cutting technology. The tasks listed below were chosen to represent common D&D type activities where the plasma arc cutting technology can be applied.

  11. Section III, Division 5 - Development And Future Directions

    SciTech Connect

    Morton, Dana K.; Jetter, Robert I; Nestell, James E.; Burchell, Timothy D; Sham, Sam

    2012-01-01

    This paper provides commentary on a new division under Section III of the ASME Boiler and Pressure Vessel (BPV) Code. This new Division 5 has an issuance date of November 1, 2011 and is part of the 2011 Addenda to the 2010 Edition of the BPV Code. The new Division covers the rules for the design, fabrication, inspection and testing of components for high temperature nuclear reactors. Information is provided on the scope and need for Division 5, the structure of Division 5, where the rules originated, the various changes made in finalizing Division 5, and the future near-term and long-term expectations for Division 5 development.

  12. Universal Oxidation for CBW Decontamination: L-Gel System Development and Deployment

    SciTech Connect

    Raber, E.; McGuire, R.; Hoffman, M.; Alcaraz, A.; Shepley, D.; Elliot, J.; Krauter, P.; Garcia, E.

    2000-12-16

    The general philosophy of this work is to develop an integrated set of decontamination methods and tools that will work on the major CBW threat agents. The work includes some near term techniques that can be demonstrated within a year and implemented soon thereafter as well as longer term research objectives. It is recognized that there is a balance between somewhat less effective methods which can be demonstrated quickly and more effective ones which may require a much longer time to fruition. The optimum goal of this study is to find a single decontamination system for chemical and biological agents which is non-toxic, non-corrosive, and easily deployable. One of the goals is to have decontamination systems that might be used by first responders as well as more complete systems to be used by specialized decontamination teams. Therefore, the overall project goal is to develop better decontamination methods that can be quickly implemented by these organizations. This includes early demonstrations and field work with companies or other government agencies who can identify implementation concerns and needs. The approach taken in this work is somewhat different than the standard military approach to decontamination. In a battlefield scenario, it is critical to decontaminate to a useful level in a very short time so the soldiers can continue their mission. In a domestic, urban scenario, time is of less consequence but collateral damage and recertification (public perception and stakeholder acceptance) are of much greater importance. The specific objective of the LLNL work to date has been to evaluate various oxidizer systems as reagents to allow for detoxification and/or degradation to non-toxic environmentally acceptable components rather than necessitate complete destruction. Detoxification requires less reagent material than total oxidation, thereby reducing the logistic burden for a decontamination team. Since we also wanted to maximize the contact time between the

  13. Large-Scale Urban Decontamination; Developments, Historical Examples and Lessons Learned

    SciTech Connect

    Rick Demmer

    2007-02-01

    Recent terrorist threats and actual events have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the real potential for the cleanup and removal of radioactive dispersal device (RDD or “dirty bomb”) residues. In response the U. S. Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. Interest in chemical and biological (CB) cleanup has also peaked with the threat of terrorist action like the anthrax attack at the Hart Senate Office Building and with catastrophic natural events such as Hurricane Katrina. The efficiency of cleanup response will be improved with these new developments and a better understanding of the “old reliable” methodologies. Perhaps the most interesting area of investigation for large area decontamination is that of the RDD. While primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. Non-radioactive, CB threats each have unique decontamination challenges and recent events have provided some examples. The U. S. Environmental Protection Agency (EPA), as lead agency for these emergency

  14. Universal Oxidation for CBW Decontamination: L-Gel System Development and Deployment

    SciTech Connect

    Raber, E.; McGuire, R.; Hoffman, M.; Shepley, D.; Carlsen, T.; Krauter, P.; Alcaraz, A.

    2000-07-10

    The optimum goal of this study is to develop a single decontamination system for chemical and biological agents which is non-toxic, non-corrosive, and easily deployable. The specific objective of this work was to evaluate oxidizer systems as reagents for detoxification and/or degradation to non-toxic environmentally acceptable components rather than necessitate complete destruction. Detoxification requires less reagent material than total oxidation, thereby reducing the logistic burden for a decontamination team. One of the goals is to develop decontamination systems for use by first responders as well as more complete systems to be used by specialized decontamination teams. Therefore, the overall project goal is to develop better decontamination methods that can be quickly implemented by these organizations. This includes early demonstrations and field work with companies or other government agencies who can identify implementation concerns and needs. The approach taken in this work is somewhat different than the standard military approach to decontamination. In a battlefield scenario, it is critical to decontaminate to a useful level in a very short time so the soldiers can continue their mission. In a domestic, urban scenario, time is of less consequence but collateral damage and re-certification (public perception and stakeholder acceptance) are of much greater importance. Since we wanted to maximize the contact time between the decontaminating reagent and the contaminant agent, we selected gelled reagents as the primary carrier material. Gels have the additional advantage of adhering to vertical or horizontal surfaces such as walls and ceilings. Lawrence Livermore National Laboratory, over a period of twenty years from the late 1960s to the late 1980s, developed a series of extrudable high explosives based on the gelling of polar energetic liquids. While never going into production, this development served as an experience base for formulation

  15. Applying crowd psychology to develop recommendations for the management of mass decontamination.

    PubMed

    Carter, Holly; Drury, John; Rubin, G James; Williams, Richard; Amlôt, Richard

    2015-01-01

    Mass decontamination is a public health intervention employed by emergency responders following a chemical, biological, or radiological release. It involves a crowd of people whose interactions with each other and with the emergency responders managing the incident are likely to affect the success of the decontamination process. The way in which members of the public collectively experience decontamination is likely to affect their behavior and hence is crucial to the success of the decontamination process. Consequently, responders and the responsible authorities need to understand crowd psychology during mass emergencies and disasters. Recently, the social identity approach to crowd psychology has been applied to explain public perceptions and behavior during mass emergencies. This approach emphasizes that crowd events are characteristically intergroup encounters, in which the behavior of one group can affect the perceptions and behavior of another. We summarize the results from a program of research in which the social identity approach was applied to develop and test recommendations for the management of mass decontamination. The findings from this program of research show that (1) responders' perceptions of crowd behavior matter; (2) participants value greater communication and this affects their compliance; and (3) social identity processes explain the relationship between effective responder communication and relevant outcome variables, such as public compliance, public cooperation, and public anxiety. Based on this program of research, we recommend 4 responder management strategies that focus on increasing public compliance, increasing orderly and cooperative behavior among members of the public, reducing public anxiety, and respecting public needs for privacy.

  16. Applying Crowd Psychology to Develop Recommendations for the Management of Mass Decontamination

    PubMed Central

    Drury, John; Rubin, G. James; Williams, Richard; Amlôt, Richard

    2015-01-01

    Mass decontamination is a public health intervention employed by emergency responders following a chemical, biological, or radiological release. It involves a crowd of people whose interactions with each other and with the emergency responders managing the incident are likely to affect the success of the decontamination process. The way in which members of the public collectively experience decontamination is likely to affect their behavior and hence is crucial to the success of the decontamination process. Consequently, responders and the responsible authorities need to understand crowd psychology during mass emergencies and disasters. Recently, the social identity approach to crowd psychology has been applied to explain public perceptions and behavior during mass emergencies. This approach emphasizes that crowd events are characteristically intergroup encounters, in which the behavior of one group can affect the perceptions and behavior of another. We summarize the results from a program of research in which the social identity approach was applied to develop and test recommendations for the management of mass decontamination. The findings from this program of research show that (1) responders' perceptions of crowd behavior matter; (2) participants value greater communication and this affects their compliance; and (3) social identity processes explain the relationship between effective responder communication and relevant outcome variables, such as public compliance, public cooperation, and public anxiety. Based on this program of research, we recommend 4 responder management strategies that focus on increasing public compliance, increasing orderly and cooperative behavior among members of the public, reducing public anxiety, and respecting public needs for privacy. PMID:25812428

  17. Reactive decontamination of absorbing thin film polymer coatings: model development and parameter determination

    NASA Astrophysics Data System (ADS)

    Varady, Mark; Mantooth, Brent; Pearl, Thomas; Willis, Matthew

    2014-03-01

    A continuum model of reactive decontamination in absorbing polymeric thin film substrates exposed to the chemical warfare agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (known as VX) was developed to assess the performance of various decontaminants. Experiments were performed in conjunction with an inverse analysis method to obtain the necessary model parameters. The experiments involved contaminating a substrate with a fixed VX exposure, applying a decontaminant, followed by a time-resolved, liquid phase extraction of the absorbing substrate to measure the residual contaminant by chromatography. Decontamination model parameters were uniquely determined using the Levenberg-Marquardt nonlinear least squares fitting technique to best fit the experimental time evolution of extracted mass. The model was implemented numerically in both a 2D axisymmetric finite element program and a 1D finite difference code, and it was found that the more computationally efficient 1D implementation was sufficiently accurate. The resulting decontamination model provides an accurate quantification of contaminant concentration profile in the material, which is necessary to assess exposure hazards.

  18. Section III, Division 5 - Development and Future Directions

    SciTech Connect

    D. K. Morton; R I Jetter; James E Nestell; T. D. Burchell; T L Sham

    2012-07-01

    This paper provides commentary on a new division under Section III of the ASME Boiler and Pressure Vessel (BPV) Code. This new Division 5 has an issuance date of November 1, 2011 and is part of the 2011 Addenda to the 2010 Edition of the BPV Code. The new Division covers the rules for the design, fabrication, inspection and testing of components for high temperature nuclear reactors. Information is provided on the scope and need for Division 5, the structure of Division 5, where the rules originated, the various changes made in finalizing Division 5, and the future near-term and long-term expectations for Division 5 development. Portions of this paper were based on Chapter 17 of the Companion Guide to the ASME Boiler & Pressure Vessel Code, Fourth Edition, © ASME, 2012, Reference.

  19. Nonchemical decontamination techniques

    SciTech Connect

    Allen, R.P.

    1985-06-01

    The decontamination techniques summarized in this article represent a variety of surface cleaning methods developed or adapted for component and facility-type decontamination applications ranging from small hand tools to reactor cavities and other large surface areas. Representative nonchemical decontamination techniques include: ultrasonics, abrasive cleaning, high-pressure Freon cleaning, and vibratory finishing.

  20. Development of chlorine dioxide releasing film and its application in decontaminating fresh produce

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A feasibility study was conducted to develop chlorine dioxide releasing packaging films for decontaminating fresh produce. Sodium chlorite and citric acid powder were incorporated into polylactic acid (PLA) polymer. Films made with different amount of PLA (100 & 300 mg), percentage of reactant (5-60...

  1. Development of mobile installation for NPP sanitary-technical area decontamination

    SciTech Connect

    Raginsky, L.S.; Zavjalov, S.K.; Kuznetsov, Yu.V.

    1993-12-31

    Preliminary investigations of the land in the Chernobyl area revealed that the silt fraction was contaminated. The objective of this work was to develop and test a mobile laboratory for extraction and decontamination. Silt classifications were carried out. Results are described.

  2. Environmental decontamination

    SciTech Connect

    Cristy, G.A.; Jernigan, H.C.

    1981-02-01

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination. (DLS)

  3. Development of a test system to evaluate procedures for decontamination of respirators containing viral droplets.

    PubMed

    Vo, Evanly; Rengasamy, Samy; Shaffer, Ronald

    2009-12-01

    The aim of this study was to develop a test system to evaluate the effectiveness of procedures for decontamination of respirators contaminated with viral droplets. MS2 coliphage was used as a surrogate for pathogenic viruses. A viral droplet test system was constructed, and the size distribution of viral droplets loaded directly onto respirators was characterized using an aerodynamic particle sizer. The sizes ranged from 0.5 to 15 mum, and the sizes of the majority of the droplets were the range from 0.74 to 3.5 mum. The results also showed that the droplet test system generated similar droplet concentrations (particle counts) at different respirator locations. The test system was validated by studying the relative efficiencies of decontamination of sodium hypochlorite (bleach) and UV irradiation with droplets containing MS2 virus on filtering facepiece respirators. It was hypothesized that more potent decontamination treatments would result in corresponding larger decreases in the number of viable viruses recovered from the respirators. Sodium hypochlorite doses of 2.75 to 5.50 mg/liter with a 10-min decontamination period resulted in approximately 3- to 4-log reductions in the level of MS2 coliphage. When higher sodium hypochlorite doses (> or =8.25 mg/liter) were used with the same contact time that was used for the dilute solutions containing 2.75 to 5.50 mg/liter, all MS2 was inactivated. For UV decontamination at a wavelength of 254 nm, an approximately 3-log reduction in the level of MS2 virus was achieved with dose of 4.32 J/cm(2) (3 h of contact time with a UV intensity of 0.4 mW/cm(2)), while with higher doses of UV irradiation (> or =7.20 J/cm(2); UV intensity, 0.4 mW/cm(2); contact times, > or =5 h), all MS2 was inactivated. These findings may lead to development of a standard method to test decontamination of respirators challenged by viral droplets. PMID:19801477

  4. Task 21 - Development of Systems Engineering Applications for Decontamination and Decommissioning Activities

    SciTech Connect

    Erickson, T.A.

    1998-11-01

    The objectives of this task are to: Develop a model (paper) to estimate the cost and waste generation of cleanup within the Environmental Management (EM) complex; Identify technologies applicable to decontamination and decommissioning (D and D) operations within the EM complex; Develop a database of facility information as linked to project baseline summaries (PBSs). The above objectives are carried out through the following four subtasks: Subtask 1--D and D Model Development, Subtask 2--Technology List; Subtask 3--Facility Database, and Subtask 4--Incorporation into a User Model.

  5. The development and evaluation of radiological decontamination procedures for documents, document inks, and latent fingermarks on porous surfaces.

    PubMed

    Parkinson, Andrew; Colella, Michael; Evans, Tegan

    2010-05-01

    Criminal acts such as an attack utilizing a radiological dispersal device (RDD or dirty bomb), the manufacture of such a device, or the illicit trafficking of radioactive materials would warrant a criminal investigation. This could involve the collection, transportation, and analysis of radiologically contaminated trace evidence. But are law enforcement agencies and forensic scientists capable of dealing with this? This research investigates the decontamination efficacy of two decontamination techniques (chemical and physical) designed for the removal of radiological material from documents of forensic importance. The impact that these procedures have on the development of latent fingermarks and the forensic analysis of the inks on these documents is also studied. It was found that slight changes in the color and chemical composition of a variety of document inks and a destruction of fingermark ridges occurred after chemical decontamination. Physical decontamination had no impact on these parameters. PMID:20345791

  6. Chemopreventive Agent Development | Division of Cancer Prevention

    Cancer.gov

    This group promotes and supports research on early chemopreventive agent development, from preclinical studies to pha | Research on early chemopreventive agent development, from preclinical studies to phase I clinical trials.

  7. DEVELOPMENT OF PERSONAL PROTECTIVE EQUIPMENT FOR DECONTAMINATION AND DECOMMISSIONING

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    The purpose of this one-year investigation is to perform a technology integration/search, thereby ensuring that the safest and most cost-effective options are developed and subsequently used during the deactivation and decommissioning (D&D) of U.S. Department of Energy Environmental Management (DOE-EM) sites. Issues of worker health and safety are the main concern, followed by cost. Two lines of action were explored: innovative Personal Cooling Systems (PCS) and Personal Monitoring Equipment (PME). PME refers to sensors affixed to the worker that warn of an approaching heat stress condition, thereby preventing it. Three types of cooling systems were investigated: Pre-Chilled or Forced-Air System (PCFA), Umbilical Fluid-Chilled System (UFCS), and Passive Vest System (PVS). Of these, the UFCS leads the way. The PVS or Gel pack vest lagged due to a limited cooling duration. And the PCFA or chilled liquid air supply was cumbersome and required an expensive and complex recharge system. The UFCS in the form of the Personal Ice Cooling System (PICS) performed exceptionally. The technology uses a chilled liquid circulating undergarment and a Personal Protective Equipment (PPE) external pump and ice reservoir. The system is moderately expensive, but the recharge is low-tech and inexpensive enough to offset the cost. There are commercially available PME that can be augmented to meet the DOE's heat stress alleviation need. The technology is costly, in excess of $4,000 per unit. Workers easily ignore the alarm. The benefit to health & safety is indirect so can be overlooked. A PCS is a more justifiable expenditure.

  8. Decontamination and decommissioning of the JANUS reactor at the Argonne National Laboratory-East site

    SciTech Connect

    Fellhauer, C.R.; Garlock, G.A.

    1997-05-01

    Argonne National Laboratory has begun the decontamination and decommissioning (D&D) of the JANUS Reactor Facility. The project is managed by the Technology Development Division`s D&D Program personnel. D&D procedures are performed by sub-contractor personnel. Specific activities involving the removal, size reduction, and packaging of radioactive components and facilities are discussed.

  9. Cognitive Development At The Middle-Division Level

    NASA Astrophysics Data System (ADS)

    Manogue, Corinne A.; Gire, Elizabeth

    2009-11-01

    One of the primary goals, as students transition from the lower-division to upper-division courses is to facilitate the cognitive development needed for work as a physicist. The Paradigms in Physics curriculum (junior-level courses developed at Oregon State University) addresses this goal by coaching students to coordinate different modes of reasoning, highlighting common techniques and concepts across physics topics, and setting course expectations to be more aligned with the professional culture of physicists. This poster will highlight some of the specific ways in which we address these cognitive changes in the context of classical mechanics and E&M.

  10. Collective synchronization of divisions in Drosophila development

    NASA Astrophysics Data System (ADS)

    Vergassola, Massimo

    Mitoses in the early development of most metazoans are rapid and synchronized across the entire embryo. While diffusion is too slow, in vitro experiments have shown that waves of the cell-cycle regulator Cdk1 can transfer information rapidly across hundreds of microns. However, the signaling dynamics and the physical properties of chemical waves during embryonic development remain unclear. We develop FRET biosensors for the activity of Cdk1 and the checkpoint kinase Chk1 in Drosophila embryos and exploit them to measure waves in vivo. We demonstrate that Cdk1 chemical waves control mitotic waves and that their speed is regulated by the activity of Cdk1 during the S-phase (and not mitosis). We quantify the progressive slowdown of the waves with developmental cycles and identify its underlying control mechanism by the DNA replication checkpoint through the Chk1/Wee1 pathway. The global dynamics of the mitotic signaling network illustrates a novel control principle: the S-phase activity of Cdk1 regulates the speed of the mitotic wave, while the Cdk1 positive feedback ensures an invariantly rapid onset of mitosis. Mathematical modeling captures the speed of the waves and predicts a fundamental distinction between the S-phase Cdk1 trigger waves and the mitotic phase waves, which is illustrated by embryonic ablation experiments. In collaboration with Victoria Deneke1, Anna Melbinger2, and Stefano Di Talia1 1 Department of Cell Biology, Duke University Medical Center 2 Department of Physics, University of California San Diego.

  11. Development and uses of upper-division conceptual assessments

    NASA Astrophysics Data System (ADS)

    Wilcox, Bethany R.; Caballero, Marcos D.; Baily, Charles; Sadaghiani, Homeyra; Chasteen, Stephanie V.; Ryan, Qing X.; Pollock, Steven J.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] The use of validated conceptual assessments alongside conventional course exams to measure student learning in introductory courses has become standard practice in many physics departments. These assessments provide a more standard measure of certain learning goals, allowing for comparisons of student learning across instructors, semesters, institutions, and pedagogies. Researchers at the University of Colorado Boulder have developed several similar assessments designed to target the more advanced physics of upper-division classical mechanics, electrostatics, quantum mechanics, and electrodynamics courses. Here, we synthesize the existing research on our upper-division assessments and discuss some of the barriers and challenges associated with their development, validation, and implementation as well as some of the strategies we have used to overcome these barriers.

  12. 2010-11 Research Portfolio: Research & Development Division

    ERIC Educational Resources Information Center

    Educational Testing Service, 2010

    2010-01-01

    This document describes the breadth of the research that the ETS (Educational Testing Service) Research & Development division is conducting in 2010. This portfolio will be updated in early 2011 to reflect changes to existing projects and new projects that were added after this document was completed. The research described in this portfolio falls…

  13. Development of Biodegradable Isosaccharinate-Containing Foams for Decontamination of Actinides

    SciTech Connect

    Rai, Dhanpat; Rao, Linfeng; Moore, R.C.; Hess, Nancy J.; Tucker, Mark D.

    2003-09-11

    The objective of this project is to develop fundamental information that will lead to the development of a new, more environmentally acceptable technology for decontaminating Pu and other actinides. The key component of this technology is isosaccharinate (ISA), a degradation product of cellulose materials that is biodegradable and binds strongly with tetravalent actinides. We are developing fundamental constants for (1) the effect of a wide range in pH and Ca concentrations on the speciation and thermodynamic reactions of ISA and (2) thermodynamic and kinetic reactions of ISA with tetravalent actinides and other competing ions such as Fe(III). We have successfully formulated and tested several ISA containing foams and gels for their effectiveness in removing tetravalent actinides from concrete and steel surfaces. These data along with a comprehensive thermodynamic mo del developed for Np(IV) and Ca(II) and applicable to a wide range in pH, ISA concentrations, and ionic strengths, will be presented.

  14. Asymmetric cell division during T cell development controls downstream fate

    PubMed Central

    Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min

    2015-01-01

    During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500

  15. Innovative Laser Ablation Technology for Surface Decontamination

    SciTech Connect

    Chen, Winston C. H.

    2003-06-01

    The objective of this project is to develop a novel laser ablation in liquid for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination. Another aim is to make this surface decontamination technology becomes economically feasible for large scale decontamination.

  16. Mitochondrial dynamics and inheritance during cell division, development and disease

    PubMed Central

    Mishra, Prashant; Chan, David C.

    2014-01-01

    Preface During cell division, it is critical to properly partition functional sets of organelles to each daughter cell. The partitioning of mitochondria shares some common features with other organelles, particularly in their interactions with cytoskeletal elements to facilitate delivery to the daughter cells. However, mitochondria have unique features – including their own genome and a maternal mode of germline transmission – that place additional demands on this process. We discuss the mechanisms regulating mitochondrial segregation during cell division, oogenesis, fertilization and tissue development. The mechanisms that ensure the integrity of these organelles and their DNA include fusion-fission dynamics, organelle transport, mitophagy, and genetic selection of functional genomes. Defects in these processes can lead to cell and tissue pathologies. PMID:25237825

  17. Mitochondrial dynamics and inheritance during cell division, development and disease.

    PubMed

    Mishra, Prashant; Chan, David C

    2014-10-01

    During cell division, it is critical to properly partition functional sets of organelles to each daughter cell. The partitioning of mitochondria shares some common features with that of other organelles, particularly in the use of interactions with cytoskeletal elements to facilitate delivery to the daughter cells. However, mitochondria have unique features - including their own genome and a maternal mode of germline transmission - that place additional demands on this process. Consequently, mechanisms have evolved to regulate mitochondrial segregation during cell division, oogenesis, fertilization and tissue development, as well as to ensure the integrity of these organelles and their DNA, including fusion-fission dynamics, organelle transport, mitophagy and genetic selection of functional genomes. Defects in these processes can lead to cell and tissue pathologies. PMID:25237825

  18. Mitochondrial dynamics and inheritance during cell division, development and disease.

    PubMed

    Mishra, Prashant; Chan, David C

    2014-10-01

    During cell division, it is critical to properly partition functional sets of organelles to each daughter cell. The partitioning of mitochondria shares some common features with that of other organelles, particularly in the use of interactions with cytoskeletal elements to facilitate delivery to the daughter cells. However, mitochondria have unique features - including their own genome and a maternal mode of germline transmission - that place additional demands on this process. Consequently, mechanisms have evolved to regulate mitochondrial segregation during cell division, oogenesis, fertilization and tissue development, as well as to ensure the integrity of these organelles and their DNA, including fusion-fission dynamics, organelle transport, mitophagy and genetic selection of functional genomes. Defects in these processes can lead to cell and tissue pathologies.

  19. Development of a new approach for microbial decontamination of water using modified Fenton's reaction.

    PubMed

    Shah, Shreya; Dzikovski, Boris; Shah, Vishal

    2007-07-01

    Microbial decontamination of water was carried out using a novel radical generating system consisting of ion exchange resin, copper and hydrogen peroxide. The system was successful in reducing the microbial load in water by more than 99% in 15 min and is effective against all the microorganisms tested. The method was also successful in decontaminating the flood water obtained from Industrial Canal and 17th Street Canal in New Orleans. Decontamination is due to the formation of hydroxyl radicals, formed during the decomposition of hydrogen peroxide by the metal-polymer complex.

  20. Development of chlorine dioxide releasing film and its application in decontaminating fresh produce.

    PubMed

    Ray, Soumi; Jin, Tony; Fan, Xuetong; Liu, Linshu; Yam, Kit L

    2013-02-01

    A feasibility study was conducted to develop chlorine dioxide (ClO(2) )-releasing packaging films for decontaminating fresh produce. Sodium chlorite and citric acid powder were incorporated into polylactic acid (PLA) polymer. Films made with different amounts of PLA (100 and 300 mg), percentages of reactant (5% to 60%), and ratios of sodium chlorite to citric acid (1:2 or 2:1) were prepared using a solvent casting method. The release of ClO(2) from the resultant films was activated by moisture. Increase of reactants in the films produced more ClO(2) while higher PLA content in the films resulted in less release of ClO(2) . The ratio of sodium chlorite to citric acid and activation temperature (22 °C compared with 10 °C) did not affect the ClO(2) release from the films. Antimicrobial efficacy of ClO(2) released from the films was evaluated using grape tomato as a model food. The results indicate that the films were activated by moisture from tomatoes in the package and the released ClO(2) reduced Salmonella spp. and Escherichia coli O157:H7 inoculated on the tomatoes to undetectable levels (<5 colony forming units (CFU)/tomato), achieving more than 3 log reduction. The film-treated tomatoes did not show significant changes in color and texture as compared to controls during storage at 10 °C for 21 d. This study demonstrated the technical feasibility for development of gaseous ClO(2) -releasing packaging system to enhance microbial safety and extend shelf life of fresh produce.

  1. Development of chlorine dioxide releasing film and its application in decontaminating fresh produce.

    PubMed

    Ray, Soumi; Jin, Tony; Fan, Xuetong; Liu, Linshu; Yam, Kit L

    2013-02-01

    A feasibility study was conducted to develop chlorine dioxide (ClO(2) )-releasing packaging films for decontaminating fresh produce. Sodium chlorite and citric acid powder were incorporated into polylactic acid (PLA) polymer. Films made with different amounts of PLA (100 and 300 mg), percentages of reactant (5% to 60%), and ratios of sodium chlorite to citric acid (1:2 or 2:1) were prepared using a solvent casting method. The release of ClO(2) from the resultant films was activated by moisture. Increase of reactants in the films produced more ClO(2) while higher PLA content in the films resulted in less release of ClO(2) . The ratio of sodium chlorite to citric acid and activation temperature (22 °C compared with 10 °C) did not affect the ClO(2) release from the films. Antimicrobial efficacy of ClO(2) released from the films was evaluated using grape tomato as a model food. The results indicate that the films were activated by moisture from tomatoes in the package and the released ClO(2) reduced Salmonella spp. and Escherichia coli O157:H7 inoculated on the tomatoes to undetectable levels (<5 colony forming units (CFU)/tomato), achieving more than 3 log reduction. The film-treated tomatoes did not show significant changes in color and texture as compared to controls during storage at 10 °C for 21 d. This study demonstrated the technical feasibility for development of gaseous ClO(2) -releasing packaging system to enhance microbial safety and extend shelf life of fresh produce. PMID:23294122

  2. Remote methods for decontamination and decommissioning operations. [Fission Product Development Laboratory

    SciTech Connect

    DeVore, J.R.

    1986-01-01

    Three methods for the decontamination and decommissioning of nuclear facilities are described along with operational experience associated with each method. Each method described in some way reduces radiation exposure to the operating personnel involved. Electrochemical decontamination of process tanks is described using an in-situ method. Descriptions of two processes, electropolishing and cerium redox decontamination, are listed. A method of essentially smokeless cutting of process piping using a plasma-arc cutting torch is described. In one technique, piping is cut remotely from a distance using a specially modified torch holder. In another technique, cutting is done with master-slave manipulators inside a hot cell. Finally, a method for remote cutting and scarification of contaminated concrete is described. This system, which utilizes high-pressure water jets, is coupled to a cutting head or rotating scarification head. The system is suited for cutting contaminated concrete for removal or removing a thin layer in a controlled manner for decontamination. 4 refs., 6 figs.

  3. Division XII: Commission 46: Education & Development of Astronomy

    NASA Astrophysics Data System (ADS)

    Ros, Rosa M.; Hearnshaw, John; Stavinschi, Magda; Garcia, Beatriz; Gerbaldi, Michele; Greve, Jean-Pierre De; Guinan, Edward; Haubold, Hans; Jones, Barrie; Marshall, Laurence A.; Pasachoff, Jay

    2015-08-01

    C46 is a Commission of the Executive Committee of the IAU under Division XII Union-Wide Activities. Aiming at improvement of astronomy education and research at all levels worldwide (through the various projects it initiates),maintains, develops, as well as through the dissemination of information. C46 has 332 members and it was managed by the Organizing Committee, formed by the Commission President (Rosa M. Ros, from Spain), the Vice-Presiden (John Hearnshaw, from New Zealand), the Retiring President (Magda Stavinschi, from Romania), the Vice-President of the IAU (George Miley, from Netherland) and the PG chairs: • Worldwide Development of Astronomy WWDA: John Hearnshaw • Teaching Astronomy for Development TAD: Edward Guinan and Laurence A. Marshall • International Schools for Young Astronomers ISYA; chair: Jean-Pierre de Greve • Network for Astronomy School Education NASE: Rosa M. Ros and Beatriz Garcia • Public Understanding at the times of Solar Eclipses and transit Phenomena PUTSE: Jay Pasachoff • National Liaison and Newsletter: Barrie Jones • Collaborative Programs: Hans Haubold

  4. Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program

    SciTech Connect

    Backus, P.M.; Benson, C.E.; Gilbert, V.P.

    1994-08-01

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT&E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A/O/D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT&E projects. This report details the activities to be performed under the A/O/D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris.

  5. Public experiences of mass casualty decontamination.

    PubMed

    Carter, Holly; Drury, John; Rubin, G James; Williams, Richard; Amlôt, Richard

    2012-09-01

    In this article, we analyze feedback from simulated casualties who took part in field exercises involving mass decontamination, to gain an understanding of how responder communication can affect people's experiences of and compliance with decontamination. We analyzed questionnaire data gathered from 402 volunteers using the framework approach, to provide an insight into the public's experiences of decontamination and how these experiences are shaped by the actions of emergency responders. Factors that affected casualties' experiences of the decontamination process included the need for greater practical information and better communication from responders, and the need for privacy. Results support previous findings from small-scale incidents that involved decontamination in showing that participants wanted better communication from responders during the process of decontamination, including more practical information, and that the failure of responders to communicate effectively with members of the public led to anxiety about the decontamination process. The similarity between the findings from the exercises described in this article and previous research into real incidents involving decontamination suggests that field exercises provide a useful way to examine the effect of responder communication strategies on the public's experiences of decontamination. Future exercises should examine in more detail the effect of various communication strategies on the public's experiences of decontamination. This will facilitate the development of evidence-based communication strategies intended to reduce anxiety about decontamination and increase compliance among members of the public during real-life incidents that involve mass decontamination.

  6. Public experiences of mass casualty decontamination.

    PubMed

    Carter, Holly; Drury, John; Rubin, G James; Williams, Richard; Amlôt, Richard

    2012-09-01

    In this article, we analyze feedback from simulated casualties who took part in field exercises involving mass decontamination, to gain an understanding of how responder communication can affect people's experiences of and compliance with decontamination. We analyzed questionnaire data gathered from 402 volunteers using the framework approach, to provide an insight into the public's experiences of decontamination and how these experiences are shaped by the actions of emergency responders. Factors that affected casualties' experiences of the decontamination process included the need for greater practical information and better communication from responders, and the need for privacy. Results support previous findings from small-scale incidents that involved decontamination in showing that participants wanted better communication from responders during the process of decontamination, including more practical information, and that the failure of responders to communicate effectively with members of the public led to anxiety about the decontamination process. The similarity between the findings from the exercises described in this article and previous research into real incidents involving decontamination suggests that field exercises provide a useful way to examine the effect of responder communication strategies on the public's experiences of decontamination. Future exercises should examine in more detail the effect of various communication strategies on the public's experiences of decontamination. This will facilitate the development of evidence-based communication strategies intended to reduce anxiety about decontamination and increase compliance among members of the public during real-life incidents that involve mass decontamination. PMID:22823588

  7. Chemopreventive Agent Development Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Chemopreventive Agent Development Funding Opportunities | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Active Chemopreventive Agent Development Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Chemopreventive Agent Development Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Development of a Complimentary Low Temperature Decontamination Technique for Spacecraft Materials

    NASA Astrophysics Data System (ADS)

    Pottage, Thomas; Bennett, Allan; Walker, James; Fowler, Chantal; Weber, Christina; Rohr, Thomas; Kminek, Gerhard

    Dry heat microbial reduction (DHMR) is one of the current processes used to ensure that the microbial burden of a spacecraft lander meets the predetermined levels set out within the COSPAR policy regarding planetary protection. DHMR involves heating the craft or compo-nents to approximately 110-125C for over 6-30hrs, and was previously used to decontaminate the entire Viking lander spacecraft and parts of almost all other spacecrafts sent to Mars after-wards. This process, whilst proving effective and reproducible is not compatible with the some highly sensitive sensor and electronic components of a modern spacecraft. For these components an alternative method for low temperature decontamination needs to be identified. The Health Protection Agency, UK, investigated three gaseous decontamination technologies in a project funded by European Space Agency. These technologies consisted of two hydrogen peroxide technologies (Vapour Hydrogen Peroxide, Steris Inc. and Hydrogen Peroxide Vapour, Bioquell Ltd.) and one chlorine dioxide (ClorDiSys) system. The technologies were chosen after a comprehensive literature study identified them as the most suitable technologies for the decontamination process. An environmental chamber (20m3 ) was used as the test chamber to expose two commercially available biological indicators, three naturally occurring organisms chosen by ESA and a range of spacecraft materials to each of the technologies. The commercial biological indicators, Bacil-lus atrophaeus and Geobacillus sterothermophilus, were exposed to 3 varying concentrations of each of the technologies in order to attempt to achieve a 6-log reduction in recoverable organ-isms. After these results were obtained the most efficacious cycle was chosen for each technology and the naturally occurring organisms and materials to be tested were exposed to three cy-cles. Whilst the microbial enumeration was completed at the HPA, material compatibility was undertaken at ESTEC and residue

  12. The History and Development of the Alabama Division of the American Rehabilitation Counseling Association

    ERIC Educational Resources Information Center

    Templeton, Mary Anne

    2007-01-01

    The Alabama Division of the American Rehabilitation Association is an organization committed to representing those counselors who work in the field of rehabilitation across the state. The division is focused on offering leadership within the field of rehabilitation counseling, promoting professional development opportunities for counselors, and…

  13. Development of Biodegradable Isosaccharinate-Containing Foams for Decontamination of Actinides: Thermodynamic and Kinetic Reactions between Isosaccharinate and Actinides on Metal and Concrete Surfaces

    SciTech Connect

    Rai, Dhanpat; Rao, Linfeng; Moore, Robert C.; Bontchev, Ranko; Holt, Kathleen

    2004-06-01

    Actinide contamination of steel and concrete surfaces is a major problem within the DOE complex. Almost all current decontamination technologies rely on removal of the contaminated surface layer by mechanical means or by chemical methods using harsh chemicals. Some of the technologies are ineffective. Others are expensive, labor intensive, and hazardous to workers. Still others create secondary mixed wastes that are not environmentally acceptable. This project seeks fundamental information that will lead to the development of a new and more environmentally acceptable technology for decontamination of actinides, especially Pu, on steel and concrete surfaces. The key component of this technology is isosaccharinate (ISA), a degradation product of cellulose materials that is biodegradable. Isosaccharinate will be incorporated into foams/gels for safe and easy use in decontamination of actinides from steel, concrete, and other surfaces. Thermodynamic data are being developed on ISA species as a function of pH and on ISA interactions with actinides and competing metals [e.g., Fe(III) and Ca(II)] under a wide range of conditions relevant to decontamination of steel and concrete. The efficiency of the ISA containing foams/gels/solutions for decontamination is also being tested. This project builds on capabilities at three different national laboratories, and represents a joint effort between PNNL, LBNL, and SNL.

  14. DEVELOPMENT OF BIODEGRADABLE ISOSACCHARINATE-CONTAINING FOAMS FOR DECONTAMINATION OF ACTINIDES: THERMODYNAMIC AND KINETIC REACTIONS BETWEEN ISOSACCHARINATE AND ACTINIDES ON METAL AND CONCRETE SURFACES

    SciTech Connect

    Rai, Dhanpat; Moore, Robert C.; Linfeng, Rao; Tucker, Mark D.

    2003-06-01

    Actinide contamination of steel and concrete surfaces is a major problem within the DOE complex. Almost all current decontamination technologies rely on removal of the contaminated surface layer by mechanical means or by chemical methods, using harsh chemicals. Some of the technologies are ineffective. Others are expensive, labor intensive, and hazardous to workers. Still others create secondary mixed wastes that are not environmentally acceptable. This project seeks fundamental information that will lead to the development of a new and more environmentally acceptable technology for decontamination of actinides, especially Pu, on steel and concrete surfaces. The key component of this technology is isosaccharinate (ISA), a degradation product of cellulose materials that is biodegradable. Isosaccharinate will be incorporated into foams/gels for safe and easy use in decontamination of actinides from steel, concrete, and other surfaces. Thermodynamic data are being developed on the interactions of ISA with actinides and competing metals [e.g., Fe(III) and Ca(II)] under a wide range of conditions relevant to decontamination of steel and concrete. The efficiency of the ISA containing foams/gels/solutions for decontamination is also being tested. This project builds on capabilities at three different national laboratories, and represents a joint effort between PNNL, LBNL, and SNL.

  15. Development of a chemical process using nitric acid-cerium(IV) for decontamination of high-level waste canisters

    SciTech Connect

    Bray, L.A.

    1988-06-01

    A simple and effective method was developed for contamination of high-level waste containers. This method of chemical decontamination is applicable to a wide variety of contaminated equipment found in the nuclear industry. The process employs a oxidant system (Ce(IV)) in nitric acid (HNO/sub 3/) solution to chemically mill a thin layer from the canister surface. Contaminated canisters are simply immersed in the solution at a controlled temperature and Ce(IV) concentration level. The spent solution is discarded to the high-level waste stream and added to subsequent glass batches. The Ce(IV)/HNO/sub 3/ solution has been shown to be effective in chemically milling the surface of stainless steel, similar to the electropolishing process, but without the need for an applied electrical current. West Valley (WV) staff had previously evaluated several canister decontamination methods, including electropolishing, liquid abrasive blast, high-pressure water wash, and ultrasonic cleaning, before the Ce(IV)/HNO/sub 3/ redox solution on treatment was selected. The initial concept involved continuous electrochemical regeneration of the ceric ion. Extensive in-cell pumping and close-coupled heat transfer and electrochemical equipment were required. The objective of this study, was to simplify the original concept. 2 refs., 16 figs., 4 tabs.

  16. Glacial ice cores: A model system for developing extraterrestrial decontamination protocols

    NASA Astrophysics Data System (ADS)

    Christner, Brent C.; Mikucki, Jill A.; Foreman, Christine M.; Denson, Jackie; Priscu, John C.

    2005-04-01

    Evidence gathered from spacecraft orbiting Mars has shown that water ice exists at both poles and may form a large subsurface reservoir at lower latitudes. The recent exploration of the martian surface by unmanned landers and surface rovers, and the planned missions to eventually return samples to Earth have raised concerns regarding both forward and back contamination. Methods to search for life in these icy environments and adequate protocols to prevent contamination can be tested with earthly analogues. Studies of ice cores on Earth have established past climate changes and geological events, both globally and regionally, but only recently have these results been correlated with the biological materials (i.e., plant fragments, seeds, pollen grains, fungal spores, and microorganisms) that are entrapped and preserved within the ice. The inclusion of biology into ice coring research brings with it a whole new approach towards decontamination. Our investigations on ice from the Vostok core (Antarctica) have shown that the outer portion of the cores have up to 3 and 2 orders of magnitude higher bacterial density and dissolved organic carbon (DOC) than the inner portion of the cores, respectively, as a result of drilling and handling. The extreme gradients that exist between the outer and inner portion of these samples make contamination a very relevant aspect of geomicrobiological investigations with ice cores, particularly when the actual numbers of ambient bacterial cells are low. To address this issue and the inherent concern it raises for the integrity of future investigations with ice core materials from terrestrial and extraterrestrial environments, we employed a procedure to monitor the decontamination process in which ice core surfaces are painted with a solution containing a tracer microorganism, plasmid DNA, and fluorescent dye before sampling. Using this approach, a simple and direct method is proposed to verify the authenticity of geomicrobiological

  17. Development of Biodegradable Isosaccharinate-Containing Foams for Decontamination of Actinides: Thermodynamic and Kinetic Reactions between Isosaccharinate and Actinides on Metal and Concrete Surfaces

    SciTech Connect

    Rai, Dhanpat; Moore, Robert C.; Tucker, Mark D.; Rao, Linfeng

    2002-06-01

    Actinide contamination of steel and concrete surfaces is a major problem within the U.S. Department of Energy (DOE) complex. For steel surfaces, the primary problem is contamination of sections of nuclear power reactors, weapons production facilities, laboratories, and waste tanks. For concrete, there are an estimated 18,000 acres of concrete contaminated with radioactive materials that need decontamination. Significant efforts have gone into developing decontamination technologies. Almost all current decontamination technologies rely on removal of the contaminated surface layer by mechanical means or by chemical methods using harsh chemicals. Some of the technologies are ineffective. Others are expensive, labor intensive, and hazardous to workers. Still others create secondary mixed wastes that are not environmentally acceptable.

  18. Large-bore pipe decontamination

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  19. The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila.

    PubMed

    Nakato, H; Futch, T A; Selleck, S B

    1995-11-01

    We have devised a genetic screen to obtain mutants affecting cell division patterning in the developing central nervous system of Drosophila. The division abnormally delayed (dally) locus was identified using a combination of "enhancer trap" and behavioral screening methods. The ordered cell cycle progression of lamina precursor cells, which generate synaptic target neurons for photoreceptors, is disrupted in dally mutants. The first of two lamina precursor cell divisions shows a delayed entry into mitosis. The second division, one that is triggered by an intercellular signal from photoreceptor axons, fails to take place. Similar to lamina precursors, cells that generate the ommatidia of the adult eye show two synchronized divisions found along the morphogenetic furrow in the eye disc and the first division cycle in dally mutants displays a delayed progression into M phase like that found in the first lamina precursor cell division. dally mutations also affect viability and produce morphological defects in several adult tissues, including the eye, antenna, wing and genitalia. Sequencing of a dally cDNA reveals a potential open reading frame of 626 amino acids with homology to a family of Glypican-related integral membrane proteoglycans. These heparan sulfate-containing proteins are attached to the external leaflet of the plasma membrane via a glycosylphosphatidylinositol linkage. Heparan sulfate proteoglycans may serve as co-receptors for a variety of secreted proteins including fibroblast growth factor, vascular endothelial growth factor, hepatocyte growth factor and members of the Wnt, TGF-beta and Hedgehog families. The cell division defects found in dally mutants implicate the Glypican group of integral membrane proteoglycans in the control of cell division during development.

  20. Vibratory finishing as a decontamination process

    SciTech Connect

    McCoy, M.W.; Arrowsmith, H.W.; Allen, R.P.

    1980-10-01

    The major objective of this research is to develop vibratory finishing into a large-scale decontamination technique that can economicaly remove transuranic and other surface contamination from large volumes of waste produced by the operation and decommissioning of retired nuclear facilities. The successful development and widespread application of this decontamination technique would substantially reduce the volume of waste requiring expensive geologic disposal. Other benefits include exposure reduction for decontamination personnel and reduced risk of environmental contamination. Laboratory-scale studies showed that vibratory finishing can rapidly reduce the contamination level of transuranic-contaminated stainless steel and Plexiglas to well below the 10-nCi/g limit. The capability of vibratory finishing as a decontamination process was demonstrated on a large scale. The first decontamination demonstration was conducted at the Hanford N-Reactor, where a vibratory finisher was installed to reduce personnel exposure during the summer outage. Items decontaminated included fuel spacers, process-tube end caps, process-tube inserts, pump parts, ball-channel inspection tools and miscellaneous hand tools. A second demonstration is currently being conducted in the decontamination facility at the Hanford 231-Z Building. During this demonstration, transuranic-contaminated material from decommissioned plutonium facilities is being decontaminated to <10 nCi/g to minimize the volume of material that will require geologic disposal. Items that are being decontaminated include entire glove boxes, process-hood structural material and panels, process tanks, process-tank shields, pumps, valves and hand tools used during the decommissioning work.

  1. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION SYSTEM

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    This report summarizes the activities performed during FY98 and describes the planned activities for FY99. Accomplishments for FY98 include identifying and selecting decontamination, the screening of potential characterization technologies, development of minimum performance factors for the decontamination technology, and development and identification of Applicable, Relevant and Appropriate Regulations (ARARs).

  2. DIVISIBLE AUDITORIUMS.

    ERIC Educational Resources Information Center

    Educational Facilities Labs., Inc., New York, NY.

    BUILDING DESIGNS WHICH HAVE BEEN SIGNIFICANT IN THE DEVELOPMENT OF THE DIVISIBLE AUDITORIUM AND THEATER AND THE FUNDAMENTAL CONCEPTS OF THE MULTI-PURPOSE FACILITY WERE REVIEWED. WHILE NOT A COMPREHENSIVE COLLECTION OF DIVISIBLE FACILITIES, THE INSTALLATIONS REPORTED ON ARE THOSE THAT APPEAR TO BE LANDMARKS IN THE EVOLUTION OF THE MULTI-USE…

  3. Divisible Auditoriums.

    ERIC Educational Resources Information Center

    Educational Facilities Labs., Inc., New York, NY.

    Building designs which have been significant in the development of the divisible auditorium and theater and the fundamental concepts of the multi-purpose facility were reviewed. While not a comprehensive collection of divisible facilities, the installations reported on are those that appear to be landmarks in the evolution of the multi-use…

  4. Reactive decontamination formulation

    DOEpatents

    Giletto, Anthony; White, William; Cisar, Alan J.; Hitchens, G. Duncan; Fyffe, James

    2003-05-27

    The present invention provides a universal decontamination formulation and method for detoxifying chemical warfare agents (CWA's) and biological warfare agents (BWA's) without producing any toxic by-products, as well as, decontaminating surfaces that have come into contact with these agents. The formulation includes a sorbent material or gel, a peroxide source, a peroxide activator, and a compound containing a mixture of KHSO.sub.5, KHSO.sub.4 and K.sub.2 SO.sub.4. The formulation is self-decontaminating and once dried can easily be wiped from the surface being decontaminated. A method for decontaminating a surface exposed to chemical or biological agents is also disclosed.

  5. [Decontamination of chemical and biological warfare agents].

    PubMed

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis. PMID:19122437

  6. [Decontamination of chemical and biological warfare agents].

    PubMed

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis.

  7. D-type cyclins control cell division and developmental rate during Arabidopsis seed development.

    PubMed

    Collins, Carl; Dewitte, Walter; Murray, James A H

    2012-06-01

    Seed development in Arabidopsis is characterized by stereotypical division patterns, suggesting that coordinated control of cell cycle may be required for correct patterning and growth of the embryo and endosperm. D-type cyclins (CYCD) are key cell cycle regulators with roles in developmental processes, but knowledge regarding their involvement in seed development remains limited. Here, a family-wide gene expression, and loss- and gain-of-function approach was adopted to reveal additional functions for CYCDs in the development of seed tissues. CYCD genes have both discrete and overlapping tissue-specific expression patterns in the seed as revealed by GUS reporter gene expression. Analysis of different mutant combinations revealed that correct CYCD levels are required in seed development. The CYCD3 subgroup is specifically required as its loss caused delayed development, whereas overexpression in the embryo and endosperm of CYCD3;1 or a previously uncharacterized gene, CYCD7;1, variously leads to induced proliferation, abnormal phenotypes, and elevated seed abortion. CYCD3;1 overexpression provoked a delay in embryonic developmental progression and abnormalities including additional divisions of the hypophysis and suspensor, regions where CYCD3 genes are normally expressed, but did not affect endosperm development. Overexpression of CYCD7;1, not normally expressed in seed development, promoted overgrowth of both embryo and endosperm through increased division and cell enlargement. In contrast to post-germination growth, where pattern and organ size is not generally related to division, results suggest that a close control of cell division through regulation of CYCD activity is important during seed development in conferring both developmental rate and correct patterning. PMID:22412186

  8. Technology Development, Evaluation, and Application (TDEA) FY 2001 Progress Report Environment, Safety, and Health (ESH) Division

    SciTech Connect

    L.G. Hoffman; K. Alvar; T. Buhl; E. Foltyn; W. Hansen; B. Erdal; P. Fresquez; D. Lee; B. Reinert

    2002-05-01

    This progress report presents the results of 11 projects funded ($500K) in FY01 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division (ESH). Five projects fit into the Health Physics discipline, 5 projects are environmental science and one is industrial hygiene/safety. As a result of their TDEA-funded projects, investigators have published sixteen papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplement funds and in-kind contributions, such as staff time, instrument use, and workspace, were also provided to TDEA-funded projects by organizations external to ESH Divisions.

  9. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    SciTech Connect

    Larry G. Hoffman

    2000-12-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division.

  10. Stem and progenitor cell division kinetics during postnatal mouse mammary gland development.

    PubMed

    Giraddi, Rajshekhar R; Shehata, Mona; Gallardo, Mercedes; Blasco, Maria A; Simons, Benjamin D; Stingl, John

    2015-01-01

    The cycling properties of mammary stem and progenitor cells is not well understood. To determine the division properties of these cells, we administered synthetic nucleosides for varying periods of time to mice at different stages of postnatal development and monitored the rate of uptake of these nucleosides in the different mammary cell compartments. Here we show that most cell division in the adult virgin gland is restricted to the oestrogen receptor-expressing luminal cell lineage. Our data also demonstrate that the oestrogen receptor-expressing, milk and basal cell subpopulations have telomere lengths and cell division kinetics that are not compatible with these cells being hierarchically organized; instead, our data indicate that in the adult homeostatic gland, each cell type is largely maintained by its own restricted progenitors. We also observe that transplantable stem cells are largely quiescent during oestrus, but are cycling during dioestrus when progesterone levels are high.

  11. ITP Filter Particulate Decontamination Measurement

    SciTech Connect

    Dworjanyn, L.O.

    1993-05-21

    A new test method was developed which showed the installed In- Tank Precipitation Filter Unit {number_sign}3 provided at least 40, 000 x decontamination of the precipitated potassium tetraphenylborate (KTPB) during the cold chemical runs.This filter is expected to meet the needed 40,000 x hot cesium decontamination requirements, assuming that the cesium precipitate, CsTPB, behaves the same as KTPB. The new method permits cold chemicals field testing of installed filters to quantify particulate decontamination and verify filter integrity before going hot. The method involves a 1000 x concentration of fine particulate KTPB in the filtrate to allow direct analysis by counting for naturally radioactive isotope K-40 using the underground SRTC gamma spectroscopy facility. The particulate concentration was accomplished by ultra filtration at Rhone-Poulenc, NJ, using a small cross-flow bench facility, followed by collection of all suspended solids on a small filter disc for K analysis.

  12. A Model for the Development an Upper-Division Marketing Certificate Program: Professional Sales.

    ERIC Educational Resources Information Center

    Grahn, Joyce L.

    The sequential components of a model for the development of an upper-division marketing certificate program in professional sales are described in this report as they were implemented at the University of Minnesota's General College during Fall 1980. After introductory material examining the responsibilities of the professional sales…

  13. 76 FR 10403 - Western Digital Technologies, Inc., Coporate Headquaters/Hard Drive Development Division, Lake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... Development Division, Lake Forest, CA; Notice of Negative Determination on Reconsideration On October 7, 2010... Notice was published in the Federal Register on October 25, 2010 (75 FR 65517). The subject workers...) manufacturing. The initial negative determination was based on the Department's findings that that the...

  14. Characteristics of 5th Graders' Logical Development Through Learning Division with Decimals

    ERIC Educational Resources Information Center

    Okazaki, Masakazu; Koyama, Masataka

    2005-01-01

    When we consider the gap between mathematics at elementary and secondary levels, and given the logical nature of mathematics at the latter level, it can be seen as important that the aspects of children's logical development in the upper grades in elementary school be clarified. In this study we focus on the teaching and learning of "division with…

  15. Development of a Process to Internationalize Occupational Programs in the Consumer and Hospitality Services Division.

    ERIC Educational Resources Information Center

    Advincula-Carpenter, Marietta M.

    The purpose of a practicum project was to develop a process to internationalize occupational programs in the consumer and hospitality services division (CHSD). Five procedures were used to complete the project. First, a review of literature was conducted on how other colleges had internalized their courses. It included some research and practices…

  16. Determination of vapor-liquid equilibrium data and decontamination factors needed for the development of evaporator technology for use in volume reduction of radioactive waste streams

    SciTech Connect

    Betts, S.E.

    1993-10-01

    A program is currently in progress at Argonne National Laboratory to evaluate and develop evaporator technology for concentrating radioactive waste streams. By concentrating radioactive waste streams, disposal costs can be significantly reduced. To effectively reduce the volume of waste, the evaporator must achieve high decontamination factors so that the distillate is sufficiently free of radioactive material. One technology that shows a great deal of potential for this application is being developed by LICON, Inc. In this program, Argonne plans to apply LICON`s evaporator designs to the processing of radioactive solutions. Concepts that need to be incorporated into the design of the evaporator include, criticality safety, remote operation and maintenance, and materials of construction. To design an effective process for concentrating waste streams, both solubility and vapor-liquid equilibrium data are needed. The key issue, however, is the high decontamination factors that have been demonstrated by this equipment. Two major contributions were made to this project. First, a literature survey was completed to obtain available solubility and vapor-liquid equilibrium data. Some vapor-liquid data necessary for the project but not available in the literature was obtained experimentally. Second, the decontamination factor for the evaporator was determined using neutron activation analysis (NAA).

  17. Electrochemical decontamination system for actinide processing gloveboxes

    SciTech Connect

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL`s Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused.

  18. Gnome site decontamination and decommissioning project

    SciTech Connect

    Orcutt, J.A.; Sorom, E.R.

    1982-08-01

    In July 1977, DOE/Headquarters directed DOE/NV to design a decontamination and decommissioning plan for the Gnome site, 48 kilometers southeast of Carlsbad, New Mexico. The plan incorporated three distinct phases. During Phase I, both aerial and ground radiological surveys were conducted on the site. Radiological decontamination criteria were established, and a decontamination plan was developed based on the radiological survey results. During Phase II, site preparatory and rehabilitation work was completed. The actual land area decontamination was accomplished during Phase III with conventional earthmoving equipment. A gravity water injection system deposited 36,700 metric tons of contaminated soil and salt in the Gnome cavity. After completion of the decontamination and decommissioning operations, the Gnome site was returned to the Bureau of Land Management for unrestricted surface use.

  19. General safety basis development guidance for environmental restoration decontamination and decommissioning

    SciTech Connect

    Ellingson, D.R.; Kerr, N.; Bohlander, K.; Hansen, J.; Crowley, W.

    1994-02-01

    Safety analyses have the objective of contributing to two essential ingredients of a successful operation. The first is promoting the safety of the operation through worker involvement in information development (safety basis). The second is obtaining approval to conduct the operation (authorization). Typically these ingredients are assembled under separate programs covered by separate DOE requirements. DOE authorization relies on successful development of a document containing up to 21 topics written in terms and language suited to reviewers and approvers. Safety relies on successful training and procedures that convert the technical documented information into terms and language understandable to the worker. This separation can lead to successful incorporation of one ingredient independent of the other. At best, this separation may result in a safe but unauthorized operation; at worst, the separation may result in an unsafe operation authorized to proceed. This guide is based on experiences gained by contractors who have integrated rather than separated the safety and authorization. The short duration of ER/D&D activities, the uncertainties of hazards, and the publicly expressed desire for demonstrable progress in cleanup activities add emphasis to the need to integrate rather than separate and develop new programs. Experience-based information has been useful to workers, safety analysis practitioners, and reviewers in the following ways: (1) Acquiring or developing the needed information in a useful form; (2) Managing the uncertainties during activity development and operation; (3) Identifying the subset of applicable requirements for an activity; (4) Developing the appropriate level of documentation detail for a specific activity; and (5) Increasing the usefulness and use of safety analysis (ownership).

  20. Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development.

    PubMed Central

    Hemerly, A; Engler, J de A; Bergounioux, C; Van Montagu, M; Engler, G; Inzé, D; Ferreira, P

    1995-01-01

    Because plant cells do not move and are surrounded by a rigid cell wall, cell division rates and patterns are believed to be directly responsible for generating new structures throughout development. To study the relationship between cell division and morphogenesis, transgenic tobacco and Arabidopsis plants were constructed expressing dominant mutations in a key regulator of the Arabidopsis cell cycle, the Cdc2a kinase. Plants constitutively overproducing the wild-type Cdc2a or the mutant form predicted to accelerate the cell cycle did not exhibit a significantly altered development. In contrast, a mutation expected to arrest the cell cycle abolished cell division when expressed in Arabidopsis, whereas some tobacco plants constitutively producing this mutant protein were recovered. These plants had a reduced histone H1 kinase activity and contained considerably fewer cells. These cells were, however, much larger and underwent normal differentiation. Morphogenesis, histogenesis and developmental timing were unaffected. The results indicate that, in plants, the developmental controls defining shape can act independently from cell division rates. Images PMID:7664733

  1. Decontamination & decommissioning focus area

    SciTech Connect

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  2. The Phosphatase PP4c Controls Spindle Orientation to Maintain Proliferative Symmetric Divisions in the Developing Neocortex

    PubMed Central

    Xie, Yunli; Jüschke, Christoph; Esk, Christopher; Hirotsune, Shinji; Knoblich, Juergen A.

    2013-01-01

    Summary In the developing neocortex, progenitor cells expand through symmetric division before they generate cortical neurons through multiple rounds of asymmetric cell division. Here, we show that the orientation of the mitotic spindle plays a crucial role in regulating the transition between those two division modes. We demonstrate that the protein phosphatase PP4c regulates spindle orientation in early cortical progenitor cells. Upon removing PP4c, mitotic spindles fail to orient in parallel to the neuroepithelial surface and progenitors divide with random orientation. As a result, their divisions become asymmetric and neurogenesis starts prematurely. Biochemical and genetic experiments show that PP4c acts by dephosphorylating the microtubule binding protein Ndel1, thereby enabling complex formation with Lis1 to form a functional spindle orientation complex. Our results identify a key regulator of cortical development and demonstrate that changes in the orientation of progenitor division are responsible for the transition between symmetric and asymmetric cell division. PMID:23830831

  3. Gross decontamination experiment report

    SciTech Connect

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.

  4. Microgravity effects during fertilization, cell division, development, and calcium metabolism in sea urchins

    NASA Technical Reports Server (NTRS)

    Schatten, Heide

    1996-01-01

    The overall objectives of this project are to explore the role of microgravity during fertilization, early development, cytoskeletal organization, and skeletal calcium deposition in a model development system: the sea urchin eggs and embryos. While pursuing these objectives, we have also helped to develop, test, and fly the Aquatic Research Facility (ARF) system. Cells were fixed at preselected time points to preserve the structures and organelles of interest with regards to cell biology events during development. The protocols used for the analysis of the results had been developed during the earlier part of this research and were applied for post-flight analysis using light and (immuno)fluorescence microscopy, scanning electron microscopy, and transmission electron microscopy. The structures of interest are: microtubules during fertilization, cell division, and cilia movement; microfilaments during cell surface restructuring and cell division; centrosomes and centrioles during cell division, cell differentiation, and cilia formation and movement; membranes, Golgi, endoplasmic reticulum, mitochondria, and chromosomes at all stages of development; and calcium deposits during spicule formation in late-stage embryos. In addition to further explore aspects important or living in space, several aspects of this research are also aimed at understanding diseases that affect humans on Earth which may be accelerated in space.

  5. Three-dimensional patterns of cell division and expansion throughout the development of Arabidopsis thaliana leaves.

    PubMed

    Kalve, Shweta; Fotschki, Joanna; Beeckman, Tom; Vissenberg, Kris; Beemster, Gerrit T S

    2014-12-01

    Variations in size and shape of multicellular organs depend on spatio-temporal regulation of cell division and expansion. Here, cell division and expansion rates were quantified relative to the three spatial axes in the first leaf pair of Arabidopsis thaliana. The results show striking differences in expansion rates: the expansion rate in the petiole is higher than in the leaf blade; expansion rates in the lateral direction are higher than longitudinal rates between 5 and 10 days after stratification, but become equal at later stages of leaf blade development; and anticlinal expansion co-occurs with, but is an order of magnitude slower than periclinal expansion. Anticlinal expansion rates also differed greatly between tissues: the highest rates occurred in the spongy mesophyll and the lowest in the epidermis. Cell division rates were higher and continued for longer in the epidermis compared with the palisade mesophyll, causing a larger increase of palisade than epidermal cell area over the course of leaf development. The cellular dynamics underlying the effect of shading on petiole length and leaf thickness were then investigated. Low light reduced leaf expansion rates, which was partly compensated by increased duration of the growth phase. Inversely, shading enhanced expansion rates in the petiole, so that the blade to petiole ratio was reduced by 50%. Low light reduced leaf thickness by inhibiting anticlinal cell expansion rates. This effect on cell expansion was preceded by an effect on cell division, leading to one less layer of palisade cells. The two effects could be uncoupled by shifting plants to contrasting light conditions immediately after germination. This extended kinematic analysis maps the spatial and temporal heterogeneity of cell division and expansion, providing a framework for further research to understand the molecular regulatory mechanisms involved.

  6. Gate road development at Southern Ohio Coal Company-Meigs Division

    SciTech Connect

    Kidder, N.L.; Latham, J.W. III

    1996-12-31

    Southern Ohio Coal Company`s (SOCCo) Meigs Division, a part of American Electric Power`s Fuel Supply Division, is located in the southeastern Ohio counties of Meigs and Vinton, and consists of two large underground mines and a central coal preparation plant. The division began mining the 54-inch Clarion 4A seam in the early 1970`s, with three underground mines, which first used conventional mining, but changed to continuous mining after only a few years. Longwall mining began in 1978 at the Meigs No. 2 Mine. In 1989, Meigs No. 1 and Raccoon No. 3 Mines were interconnected underground, with the combined mine being named Meigs No. 31. A longwall was installed in Meigs No. 31 in September 1989. The Meigs Division operated three longwalls until 1993, but then reduced to two longwalls (one at each mine) and five continuous miner sections, which are used solely to develop main entries and gateroads for the longwalls. Longwall panel size has steadily increased through the years, growing from the initial 500 ft. wide by 5000 ft. long panels to the present panels which range from 900 to 1100 ft. wide by 10,000 to 13,000 ft. long.

  7. Environmental Education and Development Division (EM-522). Annual report, Fiscal year 1993

    SciTech Connect

    Not Available

    1993-12-31

    The Environmental Education and Development Division (EM-522) is one of three divisions within the Office of Technology Integration and Environmental Education and Development (EM-52) in Environmental Restoration and Waste Management`s (EM`s) Office of Technology Development (EM-50). The primary design criterion for EM-522 education activities is directly related to meeting EM`s goal of environmental compliance on an accelerated basis and cleanup of the 1989 inventory of inactive sites and facilities by the year 2019. Therefore, EM-522`s efforts are directed specifically toward stimulating knowledge and capabilities to achieve the goals of EM while contributing to DOE`s overall goal of increasing scientific, mathematical, and technical literacy and competency. This report discusses fiscal year 1993 activities.

  8. Real-time prediction of cell division timing in developing zebrafish embryo

    PubMed Central

    Kozawa, Satoshi; Akanuma, Takashi; Sato, Tetsuo; Sato, Yasuomi D.; Ikeda, Kazushi; Sato, Thomas N.

    2016-01-01

    Combination of live-imaging and live-manipulation of developing embryos in vivo provides a useful tool to study developmental processes. Identification and selection of target cells for an in vivo live-manipulation are generally performed by experience- and knowledge-based decision-making of the observer. Computer-assisted live-prediction method would be an additional approach to facilitate the identification and selection of the appropriate target cells. Herein we report such a method using developing zebrafish embryos. We choose V2 neural progenitor cells in developing zebrafish embryo as their successive shape changes can be visualized in real-time in vivo. We developed a relatively simple mathematical method of describing cellular geometry of V2 cells to predict cell division-timing based on their successively changing shapes in vivo. Using quantitatively measured 4D live-imaging data, features of V2 cell-shape at each time point prior to division were extracted and a statistical model capturing the successive changes of the V2 cell-shape was developed. By applying sequential Bayesian inference method to the model, we successfully predicted division-timing of randomly selected individual V2 cells while the cell behavior was being live-imaged. This system could assist pre-selecting target cells desirable for real-time manipulation–thus, presenting a new opportunity for in vivo experimental systems. PMID:27597656

  9. Real-time prediction of cell division timing in developing zebrafish embryo.

    PubMed

    Kozawa, Satoshi; Akanuma, Takashi; Sato, Tetsuo; Sato, Yasuomi D; Ikeda, Kazushi; Sato, Thomas N

    2016-01-01

    Combination of live-imaging and live-manipulation of developing embryos in vivo provides a useful tool to study developmental processes. Identification and selection of target cells for an in vivo live-manipulation are generally performed by experience- and knowledge-based decision-making of the observer. Computer-assisted live-prediction method would be an additional approach to facilitate the identification and selection of the appropriate target cells. Herein we report such a method using developing zebrafish embryos. We choose V2 neural progenitor cells in developing zebrafish embryo as their successive shape changes can be visualized in real-time in vivo. We developed a relatively simple mathematical method of describing cellular geometry of V2 cells to predict cell division-timing based on their successively changing shapes in vivo. Using quantitatively measured 4D live-imaging data, features of V2 cell-shape at each time point prior to division were extracted and a statistical model capturing the successive changes of the V2 cell-shape was developed. By applying sequential Bayesian inference method to the model, we successfully predicted division-timing of randomly selected individual V2 cells while the cell behavior was being live-imaged. This system could assist pre-selecting target cells desirable for real-time manipulation-thus, presenting a new opportunity for in vivo experimental systems. PMID:27597656

  10. Development of a multiple-step process for the microbial decontamination of beef trim.

    PubMed

    Kang, D H; Koohmaraie, M; Dorsa, W J; Siragusa, G R

    2001-01-01

    A multiple-hurdle antimicrobial process for beef trim was developed. The microbial profiles of inoculated lean beef trim tissue (BTL) and fat-covered lean beef trim (BTF) were monitored during prolonged refrigerated storage following the application of successive multiple antimicrobial treatments applied to inoculated beef trim on a processing conveyor belt set at a belt speed of 1 cm/s. Beef trim (meat size approximately 15 by 15 cm) was preinoculated with bovine feces before all treatments that included the following: control, no treatment; water wash at 65 psi for five passes; water plus lactic acid (2% [vol/vol] room temperature lactic acid wash at 30 psi for three passes); combination treatment 1 (water plus 65 degrees C hot water at 30 psi for one pass plus hot air at 510 degrees C for four passes plus lactic acid), combination treatment 2 (water plus hot water at 82 degrees C for one pass plus hot air at 510 degrees C for five passes plus lactic acid), and combination treatment 3 (water plus hot water at 82 degrees C for three passes plus hot air at 510 degrees C for six passes plus lactic acid). The effects of treatments on bacterial populations were monitored by enumerating mesophilic aerobic bacteria (APC), presumptive lactic acid bacteria (PLAB), psychrotrophic bacteria (PCT), coliforms, and Escherichia coli biotype 1 on product stored for up to 7 days at 4 degrees C. In the case of BTL, the numbers of APC, PCT, and PLAB increased during storage at 5 degrees C, whereas the numbers of coliform and E. coli decreased on average by 1.8 log CFU/cm2, then remained constant following the initial reduction. Negligible effects on color quality were observed from multihurdle treatment combination 1. In the case of the BTF, the microbial reductions by treatments were much greater than the reduction on BTL. The pH of treated BTF increased more slowly than the pH of treated BTL, resulting in further reduction of the microflora on BTF. Except for control and water

  11. The Development of Expert Male National Collegiate Athletic Association Division I Certified Athletic Trainers.

    PubMed

    Malasarn, Ruemruk; Bloom, Gordon A; Crumpton, Rebecca

    2002-03-01

    OBJECTIVE: To identify the major influences in the development of expert male National Collegiate Athletic Association (NCAA) Division I certified athletic trainers. DESIGN AND SETTING: The participants were individually interviewed, and the data were transcribed and coded. SUBJECTS: Seven male NCAA Division I certified athletic trainers, who averaged 29 years of experience in the profession and 20 years at the Division I level. RESULTS: We found 3 higher-order categories that explained the development of the certified athletic trainers and labeled these meaningful experiences, personal attributes, and mentoring. The growth and development of the athletic trainers were influenced by a variety of meaningful experiences that began during their time as students and continued throughout their careers. These experiences involved dealing with challenging job conditions, educational conditions, and attempts to promote and improve the profession. The personal attributes category encompassed the importance of a caring and service-oriented attitude, building relationships with athletes, and maintaining strong bonds within their own families. Mentoring of these individuals occurred both inside and outside the athletic training profession. CONCLUSION: We provide a unique view of the development of athletic trainers that should be of interest to those in the field, regardless of years of experience.

  12. Electronics Division research and development. Progress report, October 1, 1982-September 30, 1983

    SciTech Connect

    MacRoberts, M.D.J.; Courtney, E.J.

    1984-03-01

    This report describes the status of the research development activities in the Electronics Division at the Los Alamos National Laboratory. Much of the work described is sponsored by the Laboratory; however, other topics are included for completeness. The Fuels Cells for Transportation Applications and the majority of the electrochemistry research are reported separately in LA-9787-PR. The Thermionic Integrated Circuits are being reported separately. The following topics are continuations of articles reported in Electronics Division Research and Development, October 1, 1981-September 30, 1982 (LA-9726-PR): Photoconductive Circuit Elements, Photoconductive Materials for Far-Infrared Detector Applications, Saturable Ferromagnetic Elements, Repetitive Opening Switches, Capacitor Test Facility, Fast Gating of Microchannel-Plate Image Intensifiers, and Oxygen-Reduction Reaction - Electrode Kinetics and Electrocatalysis. The following topics are new work or have been included for completeness: Photoconductive Power Switches, Ion Beam Analysis, Link Access Control and Encryption System, Coded Aperture Imaging of Gamma-Ray Sources, and Multilayer Printed Wiring Boards.

  13. The Cyclical Development of Trypanosoma vivax in the Tsetse Fly Involves an Asymmetric Division

    PubMed Central

    Ooi, Cher-Pheng; Schuster, Sarah; Cren-Travaillé, Christelle; Bertiaux, Eloise; Cosson, Alain; Goyard, Sophie; Perrot, Sylvie; Rotureau, Brice

    2016-01-01

    Trypanosoma vivax is the most prevalent trypanosome species in African cattle. It is thought to be transmitted by tsetse flies after cyclical development restricted to the vector mouthparts. Here, we investigated the kinetics of T. vivax development in Glossina morsitans morsitans by serial dissections over 1 week to reveal differentiation and proliferation stages. After 3 days, stable numbers of attached epimastigotes were seen proliferating by symmetric division in the cibarium and proboscis, consistent with colonization and maintenance of a parasite population for the remaining lifespan of the tsetse fly. Strikingly, some asymmetrically dividing cells were also observed in proportions compatible with a continuous production of pre- metacyclic trypomastigotes. The involvement of this asymmetric division in T. vivax metacyclogenesis is discussed and compared to other trypanosomatids. PMID:27734008

  14. NPOx Decontamination System

    SciTech Connect

    Archibald, K.; Demmer, R.; Argyle, M.; Ancho, M.; Hai-Pao, J.

    2002-02-25

    The nitric acid/potassium permanganate/oxalic acid (NPOx) Phase II system is being prepared for remote operation at the Idaho National Engineering and Environmental Laboratory (INEEL). Several tests have been conducted to prepare the system for remote operation. This system performs very well with high decontamination efficiencies and very low quantities of waste generated during decontamination.

  15. Technology Development, Evaluation, and Application (TDEA) FY 1998 Progress Report Environment, Safety, and Health (ESH) Division

    SciTech Connect

    Larry G. Hoffman; Kenneth Alvar; Thomas Buhl; Bruce Erdal; Philip Fresquez; Elizabeth Foltyn; Wayne Hansen; Bruce Reinert

    1999-06-01

    This progress report presents the results of 10 projects funded ($504K) in FY98 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Nine projects are new for this year; two projects were completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published 19 papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space were also provided to the TDEA-funded projects by organizations external to ESH Division. Products generated from the projects funded in FY98 included a new extremity dosimeter that replaced the previously used finger-ring dosimeters, a light and easy-to-use detector to measure energy deposited by neutron interactions, and a device that will allow workers to determine the severity of a hazard.

  16. Oxidative Tritium Decontamination System

    SciTech Connect

    Charles A. Gentile; John J. Parker; Gregory L. Guttadora; Lloyd P. Ciebiera

    2002-02-11

    The Princeton Plasma Physics Laboratory, Tritium Systems Group has developed and fabricated an Oxidative Tritium Decontamination System (OTDS), which is designed to reduce tritium surface contamination on various components and items. The system is configured to introduce gaseous ozone into a reaction chamber containing tritiated items that require a reduction in tritium surface contamination. Tritium surface contamination (on components and items in the reaction chamber) is removed by chemically reacting elemental tritium to tritium oxide via oxidation, while purging the reaction chamber effluent to a gas holding tank or negative pressure HVAC system. Implementing specific concentrations of ozone along with catalytic parameters, the system is able to significantly reduce surface tritium contamination on an assortment of expendable and non-expendable items. This paper will present the results of various experimentation involving employment of this system.

  17. Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development

    PubMed Central

    de Jong, Maaike; Wolters-Arts, Mieke; Schimmel, Bernardus C. J.; Stultiens, Catharina L. M.; de Groot, Peter F. M.; Powers, Stephen J.; Tikunov, Yury M.; Bovy, Arnoud G.; Mariani, Celestina; Vriezen, Wim H.; Rieu, Ivo

    2015-01-01

    The transformation of the ovary into a fruit after successful completion of pollination and fertilization has been associated with many changes at transcriptomic level. These changes are part of a dynamic and complex regulatory network that is controlled by phytohormones, with a major role for auxin. One of the auxin-related genes differentially expressed upon fruit set and early fruit development in tomato is Solanum lycopersicum AUXIN RESPONSE FACTOR 9 (SlARF9). Here, the functional analysis of this ARF is described. SlARF9 expression was found to be auxin-responsive and SlARF9 mRNA levels were high in the ovules, placenta, and pericarp of pollinated ovaries, but also in other plant tissues with high cell division activity, such as the axillary meristems and root meristems. Transgenic plants with increased SlARF9 mRNA levels formed fruits that were smaller than wild-type fruits because of reduced cell division activity, whereas transgenic lines in which SlARF9 mRNA levels were reduced showed the opposite phenotype. The expression analysis, together with the phenotype of the transgenic lines, suggests that, in tomato, ARF9 negatively controls cell division during early fruit development. PMID:25883382

  18. Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development.

    PubMed

    de Jong, Maaike; Wolters-Arts, Mieke; Schimmel, Bernardus C J; Stultiens, Catharina L M; de Groot, Peter F M; Powers, Stephen J; Tikunov, Yury M; Bovy, Arnoud G; Mariani, Celestina; Vriezen, Wim H; Rieu, Ivo

    2015-06-01

    The transformation of the ovary into a fruit after successful completion of pollination and fertilization has been associated with many changes at transcriptomic level. These changes are part of a dynamic and complex regulatory network that is controlled by phytohormones, with a major role for auxin. One of the auxin-related genes differentially expressed upon fruit set and early fruit development in tomato is Solanum lycopersicum AUXIN RESPONSE FACTOR 9 (SlARF9). Here, the functional analysis of this ARF is described. SlARF9 expression was found to be auxin-responsive and SlARF9 mRNA levels were high in the ovules, placenta, and pericarp of pollinated ovaries, but also in other plant tissues with high cell division activity, such as the axillary meristems and root meristems. Transgenic plants with increased SlARF9 mRNA levels formed fruits that were smaller than wild-type fruits because of reduced cell division activity, whereas transgenic lines in which SlARF9 mRNA levels were reduced showed the opposite phenotype. The expression analysis, together with the phenotype of the transgenic lines, suggests that, in tomato, ARF9 negatively controls cell division during early fruit development.

  19. Coordination of Division and Development Influences Complex Multicellular Behavior in Agrobacterium tumefaciens

    PubMed Central

    Fuqua, Clay

    2013-01-01

    The α-Proteobacterium Agrobacterium tumefaciens has proteins homologous to known regulators that govern cell division and development in Caulobacter crescentus, many of which are also conserved among diverse α-Proteobacteria. In light of recent work demonstrating similarity between the division cycle of C. crescentus and that of A. tumefaciens, the functional conservation for this presumptive control pathway was examined. In C. crescentus the CtrA response regulator serves as the master regulator of cell cycle progression and cell division. CtrA activity is controlled by an integrated pair of multi-component phosphorelays: PleC/DivJ-DivK and CckA-ChpT-CtrA. Although several of the conserved orthologues appear to be essential in A. tumefaciens, deletions in pleC or divK were isolated and resulted in cell division defects, diminished swimming motility, and a decrease in biofilm formation. A. tumefaciens also has two additional pleC/divJ homologue sensor kinases called pdhS1 and pdhS2, absent in C. crescentus. Deletion of pdhS1 phenocopied the ΔpleC and ΔdivK mutants. Cells lacking pdhS2 morphologically resembled wild-type bacteria, but were decreased in swimming motility and elevated for biofilm formation, suggesting that pdhS2 may serve to regulate the motile to non-motile switch in A. tumefaciens. Genetic analysis suggests that the PleC/DivJ-DivK and CckA-ChpT-CtrA phosphorelays in A. tumefaciens are vertically-integrated, as in C. crescentus. A gain-of-function mutation in CckA (Y674D) was identified as a spontaneous suppressor of the ΔpleC motility phenotype. Thus, although the core architecture of the A. tumefaciens pathway resembles that of C. crescentus there are specific differences including additional regulators, divergent pathway architecture, and distinct target functions. PMID:23437210

  20. Reactive skin decontamination lotion (RSDL) for the decontamination of chemical warfare agent (CWA) dermal exposure.

    PubMed

    Schwartz, M D; Hurst, C G; Kirk, M A; Reedy, S J D; Braue, E H

    2012-08-01

    Rapid decontamination of the skin is the single most important action to prevent dermal absorption of chemical contaminants in persons exposed to chemical warfare agents (CWA) and toxic industrial chemicals (TICs) as a result of accidental or intentional release. Chemicals on the skin may be removed by mechanical means through the use of dry sorbents or water. Recent interest in decontamination systems which both partition contaminants away from the skin and actively neutralize the chemical has led to the development of several reactive decontamination solutions. This article will review the recently FDA-approved Reactive Skin Decontamination Lotion (RSDL) and will summarize the toxicity and efficacy studies conducted to date. Evidence of RSDL's superior performance against vesicant and organophosphorus chemical warfare agents compared to water, bleach, and dry sorbents, suggests that RSDL may have a role in mass human exposure chemical decontamination in both the military and civilian arenas.

  1. Reactive skin decontamination lotion (RSDL) for the decontamination of chemical warfare agent (CWA) dermal exposure.

    PubMed

    Schwartz, M D; Hurst, C G; Kirk, M A; Reedy, S J D; Braue, E H

    2012-08-01

    Rapid decontamination of the skin is the single most important action to prevent dermal absorption of chemical contaminants in persons exposed to chemical warfare agents (CWA) and toxic industrial chemicals (TICs) as a result of accidental or intentional release. Chemicals on the skin may be removed by mechanical means through the use of dry sorbents or water. Recent interest in decontamination systems which both partition contaminants away from the skin and actively neutralize the chemical has led to the development of several reactive decontamination solutions. This article will review the recently FDA-approved Reactive Skin Decontamination Lotion (RSDL) and will summarize the toxicity and efficacy studies conducted to date. Evidence of RSDL's superior performance against vesicant and organophosphorus chemical warfare agents compared to water, bleach, and dry sorbents, suggests that RSDL may have a role in mass human exposure chemical decontamination in both the military and civilian arenas. PMID:22352732

  2. Concrete decontamination by Electro-Hydraulic Scabbling (EHS). Topical report

    SciTech Connect

    1996-03-30

    Electro-Hydraulic Scabbling (EHS) technology and equipment for decontaminating concrete structures from radionuclides, organic substances, and hazardous metals is being developed by Textron Systems Division (TSD). This wet scabbling technique involves the generation of powerful shock waves and intense cavitation by a strong pulsed electric discharge in a water layer at the concrete surface. The high pressure impulse results in stresses which crack and peel off a concrete layer of a controllable thickness. Scabbling produces contaminated debris of relatively small volume which can be easily removed, leaving clean bulk concrete. This new technology is being developed under Contract No. DE-AC21-93MC30164. The project objective is to develop and demonstrate a cost-efficient, rapid, controllable process to remove the surface layer of contaminated concrete while generating minimal secondary waste. The primary target of this program is uranium-contaminated concrete floors which constitute a substantial part of the contaminated area at DOE weapon facilities.

  3. Piezoelectric motor development at AlliedSignal Inc., Kansas City Division

    SciTech Connect

    Pressly, R.B.; Mentesana, C.P.

    1994-11-01

    The Kansas City Division of AlliedSignal Inc. has been investigating the fabrication and use of piezoelectric motors in mechanisms for United States Department of Energy (DOE) weapons applications for about four years. These motors exhibit advantages over solenoids and other electromagnetic actuators. Prototype processes have been developed for complete fabrication of motors from stock materials, including abrasive machining of piezoelectric ceramics and more traditional machining of other motor components, electrode plating and sputtering, electric poling, cleaning, bonding and assembly. Drive circuits have been fabricated and motor controls are being developed. Laboratory facilities have been established for electrical/mechanical testing and evaluation of piezo materials and completed motors. Recent project efforts have focused on the potential of piezoelectric devices for commercial and industrial use. A broad range of various motor types and application areas has been identified, primarily in Japan. The Japanese have been developing piezo motors for many years and have more recently begun commercialization. Piezoelectric motor and actuator technology is emerging in the United States and quickly gaining in commercial interest. The Kansas City Division is continuing development of piezoelectric motors and actuators for defense applications while supporting and participating in the commercialization of piezoelectric devices with private industry through various technology transfer and cooperative development initiatives.

  4. Long lasting decontamination foam

    DOEpatents

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  5. Decontamination system study for the Tank Waste Retrieval System

    SciTech Connect

    Reutzel, T.; Manhardt, J.

    1994-05-01

    This report summarizes the findings of the Idaho National Engineering Laboratory`s decontamination study in support of the Tank Waste Retrieval System (TWRS) development program. Problems associated with waste stored in existing single shell tanks are discussed as well as the justification for the TWRS program. The TWRS requires a decontamination system. The subsystems of the TWRS are discussed, and a list of assumptions pertinent to the TWRS decontamination system were developed. This information was used to develop the functional and operational requirements of the TWRS decontamination system. The requirements were combined with a comprehensive review of currently available decontamination techniques to produced a set of evaluation criteria. The cleaning technologies and techniques were evaluated, and the CO{sub 2} blasting decontamination technique was chosen as the best technology for the TWRS.

  6. Food decontamination using nanomaterials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The research indicates that nanomaterials including nanoemulsions are promising decontamination media for the reduction of food contaminating pathogens. The inhibitory effect of nanoparticles for pathogens could be due to deactivate cellular enzymes and DNA; disrupting of membrane permeability; and/...

  7. Facility decontamination technology workshop

    SciTech Connect

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  8. Nuclear reactor decontamination

    SciTech Connect

    Torok, J.

    1981-09-01

    Heat transfer and associated surfaces in nuclear reactors are decontaminated by treating the surface with ozone to oxidize acid -insoluble metal oxides to a more soluble state, removing oxidized solubilized metal oxides, and removing other surface oxides using low concentrations of decontaminating reagents. Ozone treatment has been found very effective with alloys having surface metal oxides rendered more easily dissolved by ozone oxidation especially with chromium or chromium-nickel containing alloys.

  9. Plastid division

    PubMed Central

    Pyke, Kevin Andrew

    2010-01-01

    Background and aims Plastids undergo a process of binary fission in order to replicate. Plastid replication is required at two distinct stages of plant growth: during cell division to ensure correct plastid segregation, and during cell expansion and development to generate large populations of functional plastids, as in leaf mesophyll cells. This review considers some of the recent advances in the understanding of how plastids undergo binary fission, a process which uses several different proteins, both internal and external to the plastid, which have been derived from the original endosymbiont's genome as well as new proteins that have been recruited from the host genome. Key points Several of the proteins currently used in this process in higher plants have homologues in modern-day bacteria. An alternative mode of replication by a budding-type mechanism also appears to be used in some circumstances. The review also highlights how most of our knowledge of plastid division is centred on the chloroplast developing in leaf mesophyll cells and a role for plastid division during the development of other plastid types is poorly understood. Whilst models for a protein-based mechanism have been devised, exactly how the division process is controlled at the plastid level and at the plastid population level is poorly understood. PMID:22476074

  10. Lessons Learned from Decontamination Experiences

    SciTech Connect

    Sorensen, JH

    2000-11-16

    This interim report describes a DOE project currently underway to establish what is known about decontamination of buildings and people and the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  11. Decontamination demonstration facility (D. D. F) modularization/mobility study

    SciTech Connect

    FitzPatrick, V.F.; Butts, H.L.; Moles, R.G.; Lundgren, R.A.

    1980-11-01

    The component decontamination technology, developed under the DOE sponsored TRU Waste Decontamination Program, has potential benefits to nuclear utility owners in four strategic areas: (1) Meeting ALARA Criteria for Maintenance/Operations; (2) Management of wastes and waste forms; (3) Accident Response; (4) Decommissioning. The most significant step in transferring this technology directly to the nuclear industry is embodied in the TMI Decontamination Demonstration Facility (D.D.F.).

  12. Pickering emulsions for skin decontamination.

    PubMed

    Salerno, Alicia; Bolzinger, Marie-Alexandrine; Rolland, Pauline; Chevalier, Yves; Josse, Denis; Briançon, Stéphanie

    2016-08-01

    This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e. solid-stabilized emulsions, containing silica (S-PE) or Fuller's earth (FE-PE) were formulated. Their efficiency for skin decontamination was evaluated, in vitro, 45min after an exposure to VX, one of the most highly toxic chemical warfare agents. Pickering emulsions were compared to FE (FE-W) and silica (S-W) aqueous suspensions. PE containing an oil with a similar hydrophobicity to VX should promote its extraction. All the formulations reduced significantly the amount of VX quantified on and into the skin compared to the control. Wiping the skin surface with a pad already allowed removing more than half of VX. FE-W was the less efficient (85% of VX removed). The other formulations (FE-PE, S-PE and S-W) resulted in more than 90% of the quantity of VX removed. The charge of particles was the most influential factor. The low pH of formulations containing silica favored electrostatic interactions of VX with particles explaining the better elimination from the skin surface. Formulations containing FE had basic pH, and weak interactions with VX did not improve the skin decontamination. However, these low interactions between VX and FE promote the transfer of VX into the oil droplets in the FE-PE.

  13. Pickering emulsions for skin decontamination.

    PubMed

    Salerno, Alicia; Bolzinger, Marie-Alexandrine; Rolland, Pauline; Chevalier, Yves; Josse, Denis; Briançon, Stéphanie

    2016-08-01

    This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e. solid-stabilized emulsions, containing silica (S-PE) or Fuller's earth (FE-PE) were formulated. Their efficiency for skin decontamination was evaluated, in vitro, 45min after an exposure to VX, one of the most highly toxic chemical warfare agents. Pickering emulsions were compared to FE (FE-W) and silica (S-W) aqueous suspensions. PE containing an oil with a similar hydrophobicity to VX should promote its extraction. All the formulations reduced significantly the amount of VX quantified on and into the skin compared to the control. Wiping the skin surface with a pad already allowed removing more than half of VX. FE-W was the less efficient (85% of VX removed). The other formulations (FE-PE, S-PE and S-W) resulted in more than 90% of the quantity of VX removed. The charge of particles was the most influential factor. The low pH of formulations containing silica favored electrostatic interactions of VX with particles explaining the better elimination from the skin surface. Formulations containing FE had basic pH, and weak interactions with VX did not improve the skin decontamination. However, these low interactions between VX and FE promote the transfer of VX into the oil droplets in the FE-PE. PMID:27021875

  14. Equipment decontamination: A brief survey of the DOE complex

    SciTech Connect

    Conner, C.; Chamberlain, D.B; Chen, L.; Vandegrift, G.F.

    1995-03-01

    Deactivation at DOE facilities has left a tremendous amount of contaminated equipment behind. In-situ methods are needed to decontaminate the interiors of the equipment sufficiently to allow either free release or land disposal. A brief survey was completed of the DOE complex on their needs for equipment decontamination with in-situ technology to determine (1) the types of contamination problems within the DOE complex, (2) decontamination processes that are being used or are being developed within the DOE, and (3) the methods that are available to dispose of spent decontamination solutions. In addition, potential sites for testing decontamination methods were located. Based on the information obtained from these surveys, the Rocky Flats Plant and the Idaho National Engineering Laboratory appear to be best suited to complete the initial testing of the decontamination processes.

  15. Developing the Pathologists' Monthly Assignment Schedule: A Case Study at the Division of Anatomical Pathology of The Ottawa Hospital.

    PubMed

    Montazeri, Amine; Patrick, Jonathan; Michalowski, Wojtek; Banerjee, Diponkar

    2015-01-01

    In the Division of Anatomical Pathology of a teaching hospital at the beginning of each month, clinical managers assign expected daily pathology requests to the pathologists on duty. Since the number of these requests is usually large and a division employs a number of pathologists with different sub-specialties, the size of the problem is significant and finding a feasible assignment schedule manually is time-consuming. Moreover, every time there is a need to change, a new assignment schedule needs to be developed taking into account all the pre-defined constraints including pathologists' availability, sub-specialty mix, teaching/research releases, etc. In this paper we describe an analytics optimization model embedded in a decision support tool that helps the clinical managers of the division determine the optimal monthly assignment schedule. The decision support tool has been validated using data from the Division of Anatomical Pathology at The Ottawa Hospital in Ottawa, Ontario, Canada.

  16. Gentilly 1: decontamination program

    SciTech Connect

    Le, H.; Denault, P.

    1985-11-01

    The Gentilly 1 station, a 250-MW(e) light-water-cooled and heavy-water-moderated nuclear reactor, is being decommissioned to a static state (variant of stage 1) condition by Atomic Energy of Canada Limited (AECL). The scope of the decontamination program at the Gentilly 1 site includes the fuel pool and associated systems, the decontamination center, the laundry, the feedwater pumps and piping systems, the service building ventilation and drainage systems, and miscellaneous floor and wall areas. After an extensive literature review for acceptable decontamination methods, it was decided that the decontamination equipment used at Gentilly 1 during the program would include a hydrolaser, a scarifier, chipping hammers, a steam cleaner, an ultrasonic bath, and cutting tools. In addition, various foams, acids, detergents, surfactants, and abrasives are used alone and in tandem with the above equipment. This paper highlights the result of these decontaminations, their effectiveness, and the recommendation for future application. The methodology in performing these operations are also presented.

  17. From Meiosis to Mitosis: The Astonishing Flexibility of Cell Division Mechanisms in Early Mammalian Development.

    PubMed

    Bury, L; Coelho, P A; Glover, D M

    2016-01-01

    The execution of female meiosis and the establishment of the zygote is arguably the most critical stage of mammalian development. The egg can be arrested in the prophase of meiosis I for decades, and when it is activated, the spindle is assembled de novo. This spindle must function with the highest of fidelity and yet its assembly is unusually achieved in the absence of conventional centrosomes and with minimal influence of chromatin. Moreover, its dramatic asymmetric positioning is achieved through remarkable properties of the actin cytoskeleton to ensure elimination of the polar bodies. The second meiotic arrest marks a uniquely prolonged metaphase eventually interrupted by egg activation at fertilization to complete meiosis and mark a period of preparation of the male and female pronuclear genomes not only for their entry into the mitotic cleavage divisions but also for the imminent prospect of their zygotic expression. PMID:27475851

  18. Oxidative Tritium Decontamination System

    DOEpatents

    Gentile, Charles A. , Guttadora, Gregory L. , Parker, John J.

    2006-02-07

    The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.

  19. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize

    PubMed Central

    Moon, Jihyun; Skibbe, David; Timofejeva, Ljudmilla; Rachel Wang, Chung-Ju; Kelliher, Timothy; Kremling, Karl; Walbot, Virginia; Zacheus Cande, William

    2014-01-01

    Summary Male fertility in flowering plants relies on proper division and differentiation of cells in the anther, a process that gives rise to four somatic layers surrounding central germinal cells. The maize gene male sterility32 (ms32) encodes a basic helix–loop–helix (bHLH) transcription factor, which functions as an important regulator of both division and differentiation during anther development. After the four somatic cell layers are generated properly through successive periclinal divisions, in the ms32 mutant, tapetal precursor cells fail to differentiate, and, instead, undergo additional periclinal divisions to form extra layers of cells. These cells become vacuolated and expand, and lead to failure in pollen mother cell development. ms32 expression is specific to the pre-meiotic anthers and is distributed initially broadly in the four lobes, but as the anther develops, its expression becomes restricted to the innermost somatic layer, the tapetum. The ms32-ref mac1-1 double mutant is unable to form tapetal precursors and also exhibits excessive somatic proliferation leading to numerous, disorganized cell layers, suggesting a synergistic interaction between ms32 and mac1. Altogether, our results show that MS32 is a major regulator in maize anther development that promotes tapetum differentiation and inhibits periclinal division once a tapetal cell is specified. PMID:24033746

  20. Decontamination: back to basics.

    PubMed

    Meredith, Susan J; Sjorgen, Geoff

    2008-07-01

    My invitation from this Journal's Editor, Felicia Cox, to provide a paper for this themed issue, included the sentence 'I was wondering if you or a colleague would like to contribute a back to basics article on the relevant standards and guidelines for decontamination, including what is compliance?'. The reason it is so interesting to me is that the term 'back to basics' implies reverting to a simpler time in life - when by just sticking to the rules, life became easier. However, with decontamination this is not actually true. PMID:18710126

  1. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  2. The Package-Based Development Process in the Flight Dynamics Division

    NASA Technical Reports Server (NTRS)

    Parra, Amalia; Seaman, Carolyn; Basili, Victor; Kraft, Stephen; Condon, Steven; Burke, Steven; Yakimovich, Daniil

    1997-01-01

    The Software Engineering Laboratory (SEL) has been operating for more than two decades in the Flight Dynamics Division (FDD) and has adapted to the constant movement of the software development environment. The SEL's Improvement Paradigm shows that process improvement is an iterative process. Understanding, Assessing and Packaging are the three steps that are followed in this cyclical paradigm. As the improvement process cycles back to the first step, after having packaged some experience, the level of understanding will be greater. In the past, products resulting from the packaging step have been large process documents, guidebooks, and training programs. As the technical world moves toward more modularized software, we have made a move toward more modularized software development process documentation, as such the products of the packaging step are becoming smaller and more frequent. In this manner, the QIP takes on a more spiral approach rather than a waterfall. This paper describes the state of the FDD in the area of software development processes, as revealed through the understanding and assessing activities conducted by the COTS study team. The insights presented include: (1) a characterization of a typical FDD Commercial Off the Shelf (COTS) intensive software development life-cycle process, (2) lessons learned through the COTS study interviews, and (3) a description of changes in the SEL due to the changing and accelerating nature of software development in the FDD.

  3. Plasmolysis bays in Escherichia coli: are they related to development and positioning of division sites?

    PubMed

    Mulder, E; Woldringh, C L

    1993-04-01

    Plasmolysis bays, induced in Escherichia coli by hypertonic treatment, are flanked by zones of adhesion between the plasma membrane and the cell wall. To test the proposition of Cook et al. (W. R. Cook, F. Joseleau-Petit, T. J. MacAlister, and L. I. Rothfield, Proc. Natl. Acad. Sci. USA 84:7144-7148, 1987) that these zones, called periseptal annuli, play a role in determining the division site, we analyzed the positions of these zones by phase-contrast and electron microscopy. In situ treatment of cells grown in agar showed that the youngest cell pole was the most susceptible to plasmolysis, whereas the constriction site was resistant. Lateral bays occurred only at some distance from a polar bay or a resistant constriction site. Orienting cells with their most prominently plasmolyzed polar bay in one direction showed that the lateral bays were always displaced away from the polar bay at about half the distance to the other cell pole. If no poles were plasmolyzed, lateral bays occurred either in the centers of nonconstricting cells or at the 1/4 or 3/4 position of cell length in constricting cells. The asymmetric positions of lateral plasmolysis bays, caused by their abrupt displacement in the presence of polar bays or constriction sites, does not confirm the periseptal annulus model (Cook et al.), which predicts a gradual and symmetric change in the position of lateral bays with increasing cell length. Our analysis indicates that plasmolysis bays have no relation to the development and positioning of the future division site.

  4. Microgravity Effecs During Fertilization, Cell Division, Development, and Calcium Metabolism in Sea Urchins

    NASA Technical Reports Server (NTRS)

    Schatten, Heide

    1999-01-01

    Calcium loss and muscle atrophy are two of the main metabolic changes experienced by astronauts and crew members during exposure to microgravity in space. For long-term exposure to space it is crucial to understand the underlying mechanisms for altered physiological functions. Fundamental occurrences in cell biology which are likely to depend on gravity include cytoskeletal dynamics, chromatin and centrosome cycling, and ion immobilization. These events can be studied during fertilization and embryogenesis within invertebrate systems. We have chosen the sea urchin system to study the effects of microgravity on cytoskeletal processes and calcium metabolism during fertilization, cell division, development, and embryogenesis. Experiments during an aircraft parabolic flight (KC-135) demonstrated: (1) the viability of sea urchin eggs prior to fertilization, (2) the suitability of our specimen containment system, (3) the feasibility of fertilization in a reduced gravity environment (which was achieved during 25 seconds of reduced gravity under parabolic flight conditions). Two newly developed pieces of spaceflight hardware made further investigations possible on a spaceflight (STS-77); (1) the Aquatic Research Facility (ARF), and (2) the Fertilization Syringe Unit (FSU). The Canadian Space Agency developed ARF to conduct aquatic spaceflight experiments requiring controlled conditions of temperature, humidity, illumination, and fixation at predetermined time points. It contained a control centrifuge which simulated the 1 g environment of earth during spaceflight. The FSU was developed at the Kennedy Space Center (KSC) by the Bionetics Corporation specifically to enable the crew to perform sea urchin fertilization operations in space.

  5. Condensed draft action description memorandum for the decontamination and decommissioning of Battelle Columbus facilities

    SciTech Connect

    1988-07-12

    Under provisions of the Surplus Facilities Management Program (SFMP), the US Department of Energy, Chicago Operations Office, proposes to provide funding for Surveillance and Maintenance (S & M) and subsequent Decontamination and Decommissioning (D & D) of fifteen facilities and associated premises belonging to Battelle Columbus Division. The fifteen facilities are contaminated as a result of nuclear research and development activities conducted over a period of approximately 43 years for DOE and its predecessor agencies--the Energy Research and Development Administration (ERDA), the Atomic Energy Commission (AEC) and the Manhattan Engineer District (MED). The proposed action includes continuation of ongoing S & M as well as a D & D of the facilities. The S & M activities include a continued environmental monitoring program to maintain assurance that radioactive contamination has not escaped to the surrounding environment; regularly scheduled inspection and maintenance of health, safety, and radiation protection equipment and instrumentation; a program of health physics surveillance monitoring, personnel dosimetry, and equipment and instrumentation maintenance and calibration; and emergency planning, training, and drills. The so- called dismantlement D & D mode is the proposed alternative for D & D of these facilities. For the facilities in question this will generally involve dismantlement and/or removal of equipment; decontamination of building structures; and restoration of the buildings. The decontamination will reduce contamination to levels consistent with unrestricted use of the facilities.

  6. Decontaminating metal surfaces

    DOEpatents

    Childs, Everett L.

    1984-11-06

    Radioactively contaminated surfaces can be electrolytically decontaminated with greatly increased efficiencies by using electrolytes containing higher than heretofore conventional amounts of nitrate, e.g.,>600 g/l of NaNO.sub.3, or by using nitrate-containing electrolytes which are acidic, e.g., of a pH<6.

  7. Decontaminating metal surfaces

    DOEpatents

    Childs, E.L.

    1984-01-23

    Radioactively contaminated surfaces can be electrolytically decontaminated with greatly increased efficiencies by using electrolytes containing higher than heretofore conventional amounts of nitrate, e.g., >600 g/1 of NaNO/sub 3/, or by using nitrate-containing electrolytes which are acidic, e.g., of a pH < 6.

  8. Bleaching process preferred to decontaminate odorants

    SciTech Connect

    1996-10-01

    The problem of decontaminating and disposing of out-of-service gas odorizers has long faced both gas transmission and distribution companies since the early 1980s. Finding a methodology to safely and effectively decontaminate odorant-contaminated equipment has caused many companies to simply cap the equipment and put it in storage. The recommended process of decontamination by odorant manufacturers is currently a bleaching-type process. A sodium hypochlorite solution is added to water and either circulated or left standing in the contaminated equipment. The sodium hypochlorite effectively neutralizes the smell of the odorant and slightly corrodes the inside of the equipment to neutralize any odorant which has permeated the metal. The waste sodium hypochlorite and water is then shipped as hazardous waste (pH of 12.5) or non-hazardous waste after the pH has been adjusted. The bleaching process has proven cost-effective and less time-consuming than most other methods including bioremediation. To effectively use it, there are several problems to overcome--most importantly the removal of residual product and the release of vapors into the atmosphere. River Valley Technologies, a contractor located in Cincinnati, OH, specializing in odorant-equipment decontamination, has developed several methods and engineering controls to eliminate most of the problems associated with decontaminating odorant equipment. The paper describes these methods.

  9. Novel Laser Ablation Technology for Surface Decontamination

    SciTech Connect

    Cheng, Chung H.

    2004-06-01

    Laser ablation for surface cleaning has been pursued for the removal of paint on airplanes. It has also been pursued for the cleaning of semiconductor surfaces. However, all these approaches have been pursued by laser ablation in air. For highly contaminated surface, laser ablation in air can easily cause secondary contamination. Thus it is not suitable to apply to achieve surface decontamination for DOE facilities since many of these facilities have radioactive contaminants on the surface. Any secondary contamination will be a grave concern. The objective of this project is to develop a novel technology for laser ablation in liquid for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination and to evaluate the economic feasibility for large scale surface decontamination with laser ablation in liquid. When laser ablation is pursued in the solution, all the desorbed contaminants will be confined in liquid. The contaminants can be precipitated and subsequently contained in a small volume for disposal. It can reduce the risk of the decontamination workers. It can also reduce the volume of contaminants dramatically.

  10. Decontamination: a microbiologist's perspective.

    PubMed

    Graham, G S

    1988-01-01

    The primary objective of decontamination is to protect healthcare workers who handle medical devices from infectious diseases that may be present on those devices. Ideally, the decontamination process should provide both cleaning and biocidal activity. A wide range of equipment, from automatic washer/sterilizers to semi-automated washer/sanitizers are commercially available to satisfy this need. The primary difference between these pieces of equipment, from a microbiology perspective, is in the level of safety they provide. A summary comparison of the decontamination methods is shown in Table 1. Without a doubt, steam sterilization as a method of decontamination provides a greater safety level than may be required. However, the question is, "Do disinfection and sanitization provide an adequate safety level?" Although items do not necessarily need to be sterile to be safe to handle, sterilization processes provide the greatest margin of safety because of the significant microbial lethality and the ability to effectively monitor the process via biological indicators. Sterilization effectively eliminates the concern regarding the nearly unanswerable question of bioburden. Unfortunately, not all items are capable of being processed through a washer/sterilizer. Therefore, consideration must be given to the process compatibility of each device. Disinfection processes provide the next level of safety. Unfortunately, there is no recognized or accepted method for quantitatively describing or monitoring a thermal disinfection process. As is the case with sterilization consideration must be given to the process compatibility of each device. Sanitization provides the lowest level of safety for the decontamination process.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:10285793

  11. Electronics Division research and development. Progress report, October 1, 1981-September 30, 1982

    SciTech Connect

    MacRoberts, M.D.J.; Newmyer, R.A.; Kruse, N.E.

    1983-05-01

    This report, the first in a series of annual reports, describes the status of the research and development activities in the Electronics Division at Los Alamos National Laboratory. Much of the work described is sponsored by the Laboratory; however, other topics are included for completeness. Topics covered in this report are the use of photoconductive semiconductors as fast gates, switches, and detectors; high-temperature, radiation-hardened electronics; growth and characterization of III-V compound semiconductor material for far-infrared detector applications; the use of saturable ferromagnetic elements for high-power, high-repetition-rate switches; the development of a high-power, high-repetition-rate opening switch for use with inductive storage; the implementation of a facility for testing high-power components, initially capacitors, in a high-repetition-rate environment; fast gating and characterization of image intensifier tubes; and the application of ion beam analysis and ellipsometry to the problem of the oxygen reduction reaction at fuel cell electrodes.

  12. Radioactive scrap metal decontamination technology assessment report

    SciTech Connect

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.

  13. Going MAD: development of a "matrix academic division" to facilitate translating research to personalized medicine.

    PubMed

    Whitcomb, David C

    2011-11-01

    Personalized medicine integrates an individual's genetic and other information for the prevention or treatment of complex disorders, and translational research seeks to identify those data most important to disease processes based on observations at the bench and the bedside. To understand complex disorders such as chronic pancreatitis, inflammatory bowel disease, liver cirrhosis, and other idiopathic chronic inflammatory diseases, physician-scientists must systematically collect data on relevant risks, clinical status, biomarkers, and outcomes. The author describes a "matrix academic division" (MAD), a highly effective academic program created at the University of Pittsburgh School of Medicine and the University of Pittsburgh Medical Center using translational research to rapidly develop personalized medicine for digestive diseases. MAD is designed to capture patient-specific data and biologic samples for analysis of steps in a complex process (reverse engineering), reconstructing the system conceptually and mathematically (disease modeling), and deciphering disease mechanism in individual patients to predict the effects of interventions (personalized medicine). MAD draws on the expertise of the medical school's and medical center's physician-scientists to translate essential disease information between the bed and the bench and to communicate with researchers from multiple domains, including epidemiology, genetics, cell biology, immunology, regenerative medicine, neuroscience, and oncology. The author illustrates this approach by describing its successful application to the reverse engineering of chronic pancreatitis.

  14. Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors

    NASA Astrophysics Data System (ADS)

    Doriese, W. B.; Morgan, K. M.; Bennett, D. A.; Denison, E. V.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; Mates, J. A. B.; O'Neil, G. C.; Reintsema, C. D.; Robbins, N. O.; Schmidt, D. R.; Swetz, D. S.; Tatsuno, H.; Vale, L. R.; Ullom, J. N.

    2016-07-01

    Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers. Here we present the details of two different versions of our TDM system designed to read out X-ray TESs. The first has been field-deployed in two 160-sensor (8 columns × 20 rows) spectrometers and four 240-sensor (8 columns × 30 rows) spectrometers. It has a three-SQUID-stage architecture, switches rows every 320 ns, and has total readout noise of 0.41 μ Φ 0 / surd Hz. The second, which is presently under development, has a two-SQUID-stage architecture, switches rows every 160 ns, and has total readout noise of 0.19 μ Φ 0 / surd Hz. Both quoted noise values are non-multiplexed and referred to the first-stage SQUID. In a demonstration of this new architecture, a multiplexed 1-column × 32-row array of NIST TESs achieved average energy resolution of 2.55± 0.01 eV at 6 keV.

  15. Prototype prosperity-diversity game for the Laboratory Development Division of Sandia National Laboratories

    SciTech Connect

    VanDevender, P.; Berman, M.; Savage, K.

    1996-02-01

    The Prosperity Game conducted for the Laboratory Development Division of National Laboratories on May 24--25, 1995, focused on the individual and organizational autonomy plaguing the Department of Energy (DOE)-Congress-Laboratories` ability to manage the wrenching change of declining budgets. Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Each Prosperity Game is unique in that both the game format and the player contributions vary from game to game. This particular Prosperity Game was played by volunteers from Sandia National Laboratories, Eastman Kodak, IBM, and AT&T. Since the participants fully control the content of the games, the specific outcomes will be different when the team for each laboratory, Congress, DOE, and the Laboratory Operating Board (now Laboratory Operations Board) is composed of executives from those respective organizations. Nevertheless, the strategies and implementing agreements suggest that the Prosperity Games stimulate cooperative behaviors and may permit the executives of the institutions to safely explore the consequences of a family of DOE concert.

  16. Structures Division

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1995 are presented.

  17. Decontamination of radioisotopes

    PubMed Central

    Domínguez-Gadea, Luis; Cerezo, Laura

    2011-01-01

    Contaminations with radioactive material may occur in several situations related to medicine, industry or research. Seriousness of the incident depends mainly on the radioactive element involved; usually there are no major acute health effects, but in the long term can cause malignancies, leukemia, genetic defects and teratogenic anomalies. The most common is superficial contamination, but the radioactive material can get into the body and be retained by the cells of target organs, injuring directly and permanently sensitive elements of the body. Rapid intervention is very important to remove the radioactive material without spreading it. Work must be performed in a specially prepared area and personnel involved should wear special protective clothing. For external decontamination general cleaning techniques are used, usually do not require chemical techniques. For internal decontamination is necessary to use specific agents, according to the causative element, as well physiological interventions to enhance elimination and excretion. PMID:24376972

  18. Decontamination and decommissioning focus area. Technology summary

    SciTech Connect

    1995-06-01

    This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities.

  19. Systems analysis of decontamination options for civilian vehicles.

    SciTech Connect

    Foltz, Greg W.; Hoette, Trisha Marie

    2010-11-01

    The objective of this project, which was supported by the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Chemical and Biological Division (CBD), was to investigate options for the decontamination of the exteriors and interiors of vehicles in the civilian setting in order to restore those vehicles to normal use following the release of a highly toxic chemical. The decontamination of vehicles is especially challenging because they often contain sensitive electronic equipment, multiple materials some of which strongly adsorb chemical agents, and in the case of aircraft, have very rigid material compatibility requirements (i.e., they cannot be exposed to reagents that may cause even minor corrosion). A systems analysis approach was taken examine existing and future civilian vehicle decontamination capabilities.

  20. [Selective bowel decontamination].

    PubMed

    Szántó, Zoltán; Pulay, István; Kotsis, Lajos; Dinka, Tibor

    2006-04-01

    Infective complications play major role in mortality of high risk patients demanding intensive care. Selective Bowel Decontamination prevents endogenous infections by reducing the number of potentially pathogen microbes (aerobic bacteria, fungi) in the oropharynx and gastrointestinal tract, saving anaerobic bacteria. It had been used 20 years ago for the first time. Authors survey it's literature ever since. Selective Bowel Decontamination is performed by the mixture of antibiotics and antimycotic drug, administered orally in hydrogel, and suspension form in nasojejunal tube. The number of Gram negative optional aerobic bacteria and fungi decrease significantly in the gut, and the microbial translocation is following this tendency. Foreign authors achieved good results in acute necrotizing pancreatitis, after liver transplant, in polytrauma, in serious burn and in haematological malignancies. According to the literature Selective Bowel Decontamination shows advantages in selected groups of high risk surgical patients. In some studies the administration took few months, but the minimum time was one week. There was no report of increasing MRSA appearance. Regular bacteriological sampling is highly recommended in order to recognize any new antibiotic resistance in time. PMID:16711371

  1. Instrumentation and Controls Division Overview: Sensors Development for Harsh Environments at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Zeller, Mary V.; Lei, Jih-Fen

    2002-01-01

    The Instrumentation and Controls Division is responsible for planning, conducting and directing basic and applied research on advanced instrumentation and controls technologies for aerospace propulsion and power applications. The Division's advanced research in harsh environment sensors, high temperature high power electronics, MEMS (microelectromechanical systems), nanotechnology, high data rate optical instrumentation, active and intelligent controls, and health monitoring and management will enable self-feeling, self-thinking, self-reconfiguring and self-healing Aerospace Propulsion Systems. These research areas address Agency challenges to deliver aerospace systems with reduced size and weight, and increased functionality and intelligence for future NASA missions in advanced aeronautics, economical space transportation, and pioneering space exploration. The Division also actively supports educational and technology transfer activities aimed at benefiting all humankind.

  2. Comparison and Evaluation of Various Tritium Decontamination Techniques and Processes

    SciTech Connect

    C.A. Gentile; S.W. Langish; C.H. Skinner; L.P. Ciebiera

    2004-09-10

    In support of fusion energy development, various techniques and processes have been developed over the past two decades for the removal and decontamination of tritium from a variety of items, surfaces, and components. Tritium decontamination, by chemical, physical, mechanical, or a combination of these methods, is driven by two underlying motivational forces. The first of these motivational forces is safety. Safety is paramount to the established culture associated with fusion energy. The second of these motivational forces is cost. In all aspects, less tritium contamination equals lower operational and disposal costs. This paper will discuss and evaluate the various processes employed for tritium removal and decontamination.

  3. Summary of beryllium electrorefining technology developed by KBI Division of Cabot Berylco Inc

    SciTech Connect

    Pistole, C.O.

    1983-05-27

    Proprietary beryllium electrorefining technology has been purchased from the KBI Division of Cabot Berylco Inc. by Rockwell International, Rocky Flats Plant, as part of a DOE beryllium option study. This technology has been reviewed and is summarized. 12 figures, 7 tables.

  4. Mission planning and analysis division development plan for STS-2 through STS-4

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The baseline products, schedules, and resource requirements for the Mission Planning and Analysis Division's support of Space Transportation System flights 2, 3, and 4 are presented. Major functions addressed are: orbiter software, Mission Control Center software, flight design, flight operations support, simulation tools, and postflight analysis.

  5. CD8 Memory Cells Develop Unique DNA Repair Mechanisms Favoring Productive Division

    PubMed Central

    Galgano, Alessia; Barinov, Aleksandr; Vasseur, Florence; de Villartay, Jean-Pierre; Rocha, Benedita

    2015-01-01

    Immune responses are efficient because the rare antigen-specific naïve cells are able to proliferate extensively and accumulate upon antigen stimulation. Moreover, differentiation into memory cells actually increases T cell accumulation, indicating improved productive division in secondary immune responses. These properties raise an important paradox: how T cells may survive the DNA lesions necessarily induced during their extensive division without undergoing transformation. We here present the first data addressing the DNA damage responses (DDRs) of CD8 T cells in vivo during exponential expansion in primary and secondary responses in mice. We show that during exponential division CD8 T cells engage unique DDRs, which are not present in other exponentially dividing cells, in T lymphocytes after UV or X irradiation or in non-metastatic tumor cells. While in other cell types a single DDR pathway is affected, all DDR pathways and cell cycle checkpoints are affected in dividing CD8 T cells. All DDR pathways collapse in secondary responses in the absence of CD4 help. CD8 T cells are driven to compulsive suicidal divisions preventing the propagation of DNA lesions. In contrast, in the presence of CD4 help all the DDR pathways are up regulated, resembling those present in metastatic tumors. However, this up regulation is present only during the expansion phase; i.e., their dependence on antigen stimulation prevents CD8 transformation. These results explain how CD8 T cells maintain genome integrity in spite of their extensive division, and highlight the fundamental role of DDRs in the efficiency of CD8 immune responses. PMID:26485718

  6. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION (IVOD) SYSTEM

    SciTech Connect

    M.A. Ebadian, Ph.D.

    2001-01-01

    The deactivation and decommissioning of 1200 buildings within the U.S. Department of Energy-Office of Environmental Management complex will require the disposition of a large quantity of contaminated concrete and metal surfaces. It has been estimated that 23 million cubic meters of concrete and over 600,000 tons of metal will need disposition. The disposition of such large quantities of material presents difficulties in the area of decontamination and characterization. The final disposition of this large amount of material will take time and money as well as risk to the D&D work force. A single automated system that would decontaminate and characterize surfaces in one step would not only reduce the schedule and decrease cost during D&D operations but would also protect the D&D workers from unnecessary exposures to contaminated surfaces. This report summarizes the activities performed during FY00 and describes the planned activities for FY01. Accomplishments for FY00 include the following: Development and field-testing of characterization system; Completion of Title III design of deployment platform and decontamination unit; In-house testing of deployment platform and decontamination unit; Completion of system integration design; Identification of deployment site; and Completion of test plan document for deployment of IVOD at Rancho Seco nuclear power facility.

  7. Decontaminating pesticide protective clothing.

    PubMed

    Laughlin, J

    1993-01-01

    The review of recent work on the mechanisms of soil removal from textiles assists in understanding decontamination of pesticide protective clothing. The current work provides explanatory conclusions about residue retention as a basis of making recommendations for the most effective decontamination procedures. A caution about generalizations: Some pesticides produce very idiosyncratic responses to decontamination. An example is the paraquat/salt response. Other pesticides exhibit noticeable and unique responses to a highly alkaline medium (carbaryl), or to bleach (chlorpyrifos), or are quickly volatilized (methyl parathion). Responses such as these do not apply to other pesticides undergoing decontamination. Given this caution, there are soil, substrate, and solvent responses that do maximize residue removal. Residue removal is less complete as the concentration of pesticide increases. The concentration of pesticide in fabric builds with successive exposures, and the more concentrated the pesticide, the more difficult the removal. Use a prewash product and/or presoak. The surfactant and/or solvent in a prewash product is a booster in residue removal. Residues transfer from contaminated clothing to other clothing during the washing cycle. Use a full washer of water for a limited number of garments to increase residue removal. The hotter the washing temperature, the better. Generally, this means a water temperature of at least 49 degrees C, and preferably 60 degrees C. Select the detergent shown to be more effective for the formulation: heavy-duty liquid detergents for emulsifiable concentrate formulations and powdered phosphate detergents for wettable powder formulations. If the fabric has a soil-repellent finish, use 1.25 times the amount recommended on the detergent label. For water hardness above 300 ppm, an additional amount of powdered phosphate detergent is needed to obtain the same level of residue removal as obtained with the heavy-duty liquid detergent when

  8. Effects of CBRN decontaminants in common use by first responders on the recovery of latent fingerprints--assessment of the loss of ridge detail on glass.

    PubMed

    Zuidberg, Matthijs C; van Woerkom, Tiest; de Bruin, Karla G; Stoel, Reinoud D; de Puit, Marcel

    2014-01-01

    Following a CBRN incident, first responders use decontamination procedures to reduce the risk of exposure. The effect of decontamination on forensic trace material has, however, not been fully examined. This study sought to evaluate the effect of five different physical or chemical decontamination materials on the recovery of latent fingerprints. Fingerprints were deposited on glass slides, decontaminated, and assessed on the presence of ridge detail. The results demonstrate that decontamination affects the quality of latent fingerprints substantially. On at least 61% of the fingerprints, a reduced amount of ridge detail was observed upon decontamination. Furthermore, development with cyanoacrylate appeared not to succeed anymore. Instead, the ability of vacuum metal deposition to successfully develop decontaminated fingerprints is demonstrated. The results from this study may contribute to an increased forensic awareness regarding decontamination and emphasize the necessity for further research into new item decontamination procedures or new forensic initiatives prior to decontamination. PMID:24400827

  9. Effects of CBRN decontaminants in common use by first responders on the recovery of latent fingerprints--assessment of the loss of ridge detail on glass.

    PubMed

    Zuidberg, Matthijs C; van Woerkom, Tiest; de Bruin, Karla G; Stoel, Reinoud D; de Puit, Marcel

    2014-01-01

    Following a CBRN incident, first responders use decontamination procedures to reduce the risk of exposure. The effect of decontamination on forensic trace material has, however, not been fully examined. This study sought to evaluate the effect of five different physical or chemical decontamination materials on the recovery of latent fingerprints. Fingerprints were deposited on glass slides, decontaminated, and assessed on the presence of ridge detail. The results demonstrate that decontamination affects the quality of latent fingerprints substantially. On at least 61% of the fingerprints, a reduced amount of ridge detail was observed upon decontamination. Furthermore, development with cyanoacrylate appeared not to succeed anymore. Instead, the ability of vacuum metal deposition to successfully develop decontaminated fingerprints is demonstrated. The results from this study may contribute to an increased forensic awareness regarding decontamination and emphasize the necessity for further research into new item decontamination procedures or new forensic initiatives prior to decontamination.

  10. Integrated decontamination process for metals

    DOEpatents

    Snyder, Thomas S.; Whitlow, Graham A.

    1991-01-01

    An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

  11. Development of haemostatic decontaminants for the treatment of wounds contaminated with chemical warfare agents. 1: evaluation of in vitro clotting efficacy in the presence of certain contaminants.

    PubMed

    Hall, Charlotte A; Lydon, Helen L; Dalton, Christopher H; Chipman, J K; Graham, John S; Chilcott, Robert P

    2015-05-01

    The treatment of penetrating, haemorrhaging injuries sustained within a hazardous environment may be complicated by contamination with toxic chemicals. There are currently no specific medical countermeasures for such injuries. Haemostats with an absorbent mechanism of action have the potential to simultaneously stop bleeding and decontaminate wounds. However, a primary requirement of a 'haemostatic decontaminant' is the retention of clotting function in the presence of chemical contaminants. Thus, the aim of this study was to investigate the haemostatic efficacy of seven commercially available haemostats in the presence of toxic chemicals (soman, VX, sulphur mustard, petrol, aviation fuel and motor oil). Clot viscosity was assessed ex vivo using thrombelastography following treatment of pig blood with: (i) toxic chemical; (ii) haemostat; or (iii) haemostat in combination with toxic chemical. Several contaminants (VX, petrol and GD) were found to be pro-haemostatic and none had an adverse effect on the rate with which the test products attained haemostasis. However, the total clot strength for blood treated with certain haemostats in the presence of sulphur mustard, soman and petrol was significantly decreased. Three test products failed to demonstrate haemostatic function in this ex vivo (thrombelastography) model; this was tentatively ascribed to the products achieving haemostasis through a tamponade mechanism of action, which can only be replicated using in vivo models. Overall, this study has identified a number of commercial products that may have potential as haemostatic decontaminants and warrant further investigation to establish their decontaminant efficacy.

  12. Cutaneous challenge with chemical warfare agents in the SKH-1 hairless mouse. (I) Development of a model for screening studies in skin decontamination and protection.

    PubMed

    Dorandeu, F; Taysse, L; Boudry, I; Foquin, A; Hérodin, F; Mathieu, J; Daulon, S; Cruz, C; Lallement, G

    2011-06-01

    Exposure to lethal chemical warfare agents (CWAs) is no longer only a military issue due to the terrorist threat. Among the CWAs of concern are the organophosphorus nerve agent O-ethyl-S-(2[di-isopropylamino]ethyl)methyl-phosphonothioate (VX) and the vesicant sulfur mustard (SM). Although efficient means of decontamination are available, most of them lose their efficacy when decontamination is delayed after exposure of the bare skin. Alternatively, CWA skin penetration can be prevented by topical skin protectants. Active research in skin protection and decontamination is thus paramount. In vivo screening of decontaminants or skin protectants is usually time consuming and may be expensive depending on the animal species used. We were thus looking for a suitable, scientifically sound and cost-effective model, which is easy to handle. The euthymic hairless mouse Crl: SKH-1 (hr/hr) BR is widely used in some skin studies and has previously been described to be suitable for some experiments involving SM or SM analogs. To evaluate the response of this species, we studied the consequences of exposing male anaesthetized SKH-1 mice to either liquid VX or to SM, the latter being used in liquid form or as saturated vapours. Long-term effects of SM burn were also evaluated. The model was then used in the companion paper (Taysse et al.(1)).

  13. Savannah River Laboratory Decontamination Program

    SciTech Connect

    Rankin, W.N.

    1991-12-31

    Savannah River Laboratory (SRL) has had a Decontamination and Decommissioning (D&D) Technology program since 1981. The objective of this program is to provide state-of-the-art technology for use in D&D operations that will enable our customers to minimize waste generated and personal exposure, increase productivity and safety, and to minimize the potential for release and uptake of radioactive material. The program identifies and evaluates existing technology, develops new technology, and provides technical assistance to implement its use onsite. This program has impacted not only the Savannah River Site (SRS), but the entire Department of Energy (DOE) complex. To document and communicate the technology generated by this program, 28 papers have been presented at National and International meetings in the United States and Foreign Countries.

  14. Savannah River Laboratory Decontamination Program

    SciTech Connect

    Rankin, W.N.

    1991-01-01

    Savannah River Laboratory (SRL) has had a Decontamination and Decommissioning (D D) Technology program since 1981. The objective of this program is to provide state-of-the-art technology for use in D D operations that will enable our customers to minimize waste generated and personal exposure, increase productivity and safety, and to minimize the potential for release and uptake of radioactive material. The program identifies and evaluates existing technology, develops new technology, and provides technical assistance to implement its use onsite. This program has impacted not only the Savannah River Site (SRS), but the entire Department of Energy (DOE) complex. To document and communicate the technology generated by this program, 28 papers have been presented at National and International meetings in the United States and Foreign Countries.

  15. Surface decontamination of solid waste

    SciTech Connect

    McCoy, M.W.; Allen, R.P.; Arrowsmith, H.W.

    1980-04-01

    This paper summarizes work in progress at Pacific Northwest Laboratory to develop vibratory finishing into a large-scale decontamination system that can minimize the volume of surface-contaminated metallic and nonmetallic waste requiring geologic disposal. Vibratory finishing is a mass finishing process used in the metal finishing industry to debur, clean and improve surface finishes. The process combines a mechanical scrubbing action of a solid medium with the cleaning action of a liquid compound. The process takes place in a vibrating tub. Tests have demonstrated the ability to rapidly reduce contamination levels of transuranic-contaminated waste to substantially less than 10 nCi/g, the current limit for transuranic waste. The process is effective on a wide range of materials including stainless steel, Plexiglas, Neoprene, and Hypalon, the principal materials in Hanford glove boxes.

  16. Comparative analysis of showering protocols for mass-casualty decontamination.

    PubMed

    Amlot, Richard; Larner, Joanne; Matar, Hazem; Jones, David R; Carter, Holly; Turner, Elizabeth A; Price, Shirley C; Chilcott, Robert P

    2010-01-01

    A well-established provision for mass-casualty decontamination that incorporates the use of mobile showering units has been developed in the UK. The effectiveness of such decontamination procedures will be critical in minimizing or preventing the contamination of emergency responders and hospital infrastructure. The purpose of this study was to evaluate three empirical strategies designed to optimize existing decontamination procedures: (1) instructions in the form of a pictorial aid prior to decontamination; (2) provision of a washcloth within the showering facility; and (3) an extended showering period. The study was a three-factor, between-participants (or "independent") design with 90 volunteers. The three factors each had two levels: use of washcloths (washcloth/no washcloth), washing instructions (instructions/no instructions), and shower cycle duration (three minutes/six minutes). The effectiveness of these strategies was quantified by whole-body fluorescence imaging following application of a red fluorophore to multiple, discrete areas of the skin. All five showering procedures were relatively effective in removing the fluorophore "contaminant", but the use of a cloth (in the absence of instructions) led to a significant ( appox. 20%) improvement in the effectiveness of decontamination over the standard protocol (p <0.05). Current mass-casualty decontamination effectiveness, especially in children, can be optimized by the provision of a washcloth. This simple but effective approach indicates the value of performing controlled volunteer trials for optimizing existing decontamination procedures.

  17. Long-term decontamination engineering study. Volume 1

    SciTech Connect

    Geuther, W.J.

    1995-04-03

    This report was prepared by Westinghouse Hanford Company (WHC) with technical and cost estimating support from Pacific Northwest Laboratories (PNL) and Parsons Environmental Services, Inc. (Parsons). This engineering study evaluates the requirements and alternatives for decontamination/treatment of contaminated equipment at the Hanford Site. The purpose of this study is to determine the decontamination/treatment strategy that best supports the Hanford Site environmental restoration mission. It describes the potential waste streams requiring treatment or decontamination, develops the alternatives under consideration establishes the criteria for comparison, evaluates the alternatives, and draws conclusions (i.e., the optimum strategy for decontamination). Although two primary alternatives are discussed, this study does identify other alternatives that may warrant additional study. hanford Site solid waste management program activities include storage, special processing, decontamination/treatment, and disposal facilities. This study focuses on the decontamination/treatment processes (e.g., waste decontamination, size reduction, immobilization, and packaging) that support the environmental restoration mission at the Hanford Site.

  18. Preconceptual design of the gas-phase decontamination demonstration cart

    SciTech Connect

    Munday, E.B.

    1993-12-01

    Removal of uranium deposits from the interior surfaces of gaseous diffusion equipment will be a major portion of the overall multibillion dollar effort to decontaminate and decommission the gaseous diffusion plants. Long-term low-temperature (LTLT) gas-phase decontamination is being developed at the K-25 Site as an in situ decontamination process that is expected to significantly lower the decontamination costs, reduce worker exposure to radioactive materials, and reduce safeguard concerns. This report documents the preconceptual design of the process equipment that is necessary to conduct a full-scale demonstration of the LTLT method in accordance with the process steps listed above. The process equipment and method proposed in this report are not intended to represent a full-scale production campaign design and operation, since the gas evacuation, gas charging, and off-gas handling systems that would be cost effective in a production campaign are not cost effective for a first-time demonstration. However, the design presented here is expected to be applicable to special decontamination projects beyond the demonstration, which could include the Deposit Recovery Program. The equipment will therefore be sized to a 200 ft size 1 converter (plus a substantial conservative design margin), which is the largest item of interest for gas phase decontamination in the Deposit Recovery Program. The decontamination equipment will allow recovery of the UF{sub 6}, which is generated from the reaction of ClF{sub 3} with the uranium deposits, by use of NaF traps.

  19. miR-430 regulates oriented cell division during neural tube development in zebrafish.

    PubMed

    Takacs, Carter M; Giraldez, Antonio J

    2016-01-15

    MicroRNAs have emerged as critical regulators of gene expression. Originally shown to regulate developmental timing, microRNAs have since been implicated in a wide range of cellular functions including cell identity, migration and signaling. miRNA-430, the earliest expressed microRNA during zebrafish embryogenesis, is required to undergo morphogenesis and has previously been shown to regulate maternal mRNA clearance, Nodal signaling, and germ cell migration. The functions of miR-430 in brain morphogenesis, however, remain unclear. Herein we find that miR-430 instructs oriented cell divisions in the neural rod required for neural midline formation. Loss of miR-430 function results in mitotic spindle misorientation in the neural rod, failed neuroepithelial integration after cell division, and ectopic cell accumulation in the dorsal neural tube. We propose that miR-430, independently of canonical apicobasal and planar cell polarity (PCP) pathways, coordinates the stereotypical cell divisions that instruct neural tube morphogenesis.

  20. Development of a test system to apply virus-containing particles to filtering facepiece respirators for the evaluation of decontamination procedures.

    PubMed

    Fisher, Edward; Rengasamy, Samy; Viscusi, Dennis; Vo, Evanly; Shaffer, Ronald

    2009-03-01

    A chamber to apply aerosolized virus-containing particles to air-permeable substrates (coupons) was constructed and validated as part of a method to assess the virucidal efficacy of decontamination procedures for filtering facepiece respirators. Coliphage MS2 was used as a surrogate for pathogenic viruses for confirmation of the efficacy of the bioaerosol respirator test system. The distribution of virus applied onto and within the coupons was characterized, and the repeatability of applying a targeted virus load was examined. The average viable virus loaded onto 90 coupons over the course of 5 days was found to be 5.09 +/- 0.19 log(10) PFU/coupon (relative standard deviation, 4%). To determine the ability to differentiate the effectiveness of disinfecting procedures with different levels of performance, sodium hypochlorite and steam treatments were tested in experiments by varying the dose and time, respectively. The role of protective factors was assessed by aerosolizing the virus with various concentrations of the aerosol-generating medium. A sodium hypochlorite (bleach) concentration of 0.6% and steam treatments of 45 s and longer resulted in log reductions (>4 logs) which reached the detection limits for both levels of protective factors. Organic matter (ATCC medium 271) as a protective factor afforded some protection to the virus in the sodium hypochlorite experiments but was not a factor in the steam experiments. The evaluation of the bioaerosol respirator test system demonstrated a repeatable method for applying a targeted viral load onto respirator coupons and provided insight into the properties of aerosols that are of importance to the development of disinfection assays for air-permeable materials. PMID:19139225

  1. Development of a Test System To Apply Virus-Containing Particles to Filtering Facepiece Respirators for the Evaluation of Decontamination Procedures▿

    PubMed Central

    Fisher, Edward; Rengasamy, Samy; Viscusi, Dennis; Vo, Evanly; Shaffer, Ronald

    2009-01-01

    A chamber to apply aerosolized virus-containing particles to air-permeable substrates (coupons) was constructed and validated as part of a method to assess the virucidal efficacy of decontamination procedures for filtering facepiece respirators. Coliphage MS2 was used as a surrogate for pathogenic viruses for confirmation of the efficacy of the bioaerosol respirator test system. The distribution of virus applied onto and within the coupons was characterized, and the repeatability of applying a targeted virus load was examined. The average viable virus loaded onto 90 coupons over the course of 5 days was found to be 5.09 ± 0.19 log10 PFU/coupon (relative standard deviation, 4%). To determine the ability to differentiate the effectiveness of disinfecting procedures with different levels of performance, sodium hypochlorite and steam treatments were tested in experiments by varying the dose and time, respectively. The role of protective factors was assessed by aerosolizing the virus with various concentrations of the aerosol-generating medium. A sodium hypochlorite (bleach) concentration of 0.6% and steam treatments of 45 s and longer resulted in log reductions (>4 logs) which reached the detection limits for both levels of protective factors. Organic matter (ATCC medium 271) as a protective factor afforded some protection to the virus in the sodium hypochlorite experiments but was not a factor in the steam experiments. The evaluation of the bioaerosol respirator test system demonstrated a repeatable method for applying a targeted viral load onto respirator coupons and provided insight into the properties of aerosols that are of importance to the development of disinfection assays for air-permeable materials. PMID:19139225

  2. Electrolytic decontamination of the 3013 inner can

    SciTech Connect

    Wedman, D.E.; Nelson, T.O.; Rivera, Y.; Weisbrod, K.; Martinez, H.E.; Limback, S.

    1998-12-31

    Disposition of plutonium recovered from nuclear weapons or production residues must be stored in a manner that ensures safety. The criteria that has been established to assure the safety of stored materials for a minimum of 50 years is DOE-STD-3013. This standard specifies both the requirements for containment and furthermore specifies that the inner container be decontaminated to a level of {le}20 dpm/100 cm{sup 2} swipable and {le}500 dpm/100 cm{sup 2} direct alpha such that a failure of the outer containment barrier will have a lower probability of resulting in a spread of contamination. The package consists of an optional convenience (food pack) can, a welded type 304L stainless steel inner (primary) can, and a welded type 304L stainless steel outer (secondary) can. Following the welding process, the can is checked for leaks and then sent down the line for decontamination. Once decontaminated, the sealed primary can may be removed from the glove box line. Welding of the secondary container takes place outside the glove box line. The highly automated decontamination process that has been developed to support the packaging of Special Nuclear Materials is based on an electrolytic process similar to the wide spread industrial technique of electropolishing. The can is placed within a specially designed stainless steel fixture built within a partition of a glove box. The passage of current through this electrolytic cell results in a uniform anodic dissolution of the surface metal layers of the can. This process results in a rapid decontamination of the can. The electrolyte is fully recyclable, and the separation of the chromium from the actinides results in a compact, non RCRA secondary waste product.

  3. 8. The development and evolution of division of labor and foraging specialization in a social insect (Apis mellifera L.).

    PubMed

    Page, Robert E; Scheiner, Ricarda; Erber, Joachim; Amdam, Gro V

    2006-01-01

    How does complex social behavior evolve? What are the developmental building blocks of division of labor and specialization, the hallmarks of insect societies? Studies have revealed the developmental origins in the evolution of division of labor and specialization in foraging worker honeybees, the hallmarks of complex insect societies. Selective breeding for a single social trait, the amount of surplus pollen stored in the nest (pollen hoarding) revealed a phenotypic architecture of correlated traits at multiple levels of biological organization in facultatively sterile female worker honeybees. Verification of this phenotypic architecture in "wild-type" bees provided strong support for a "pollen foraging syndrome" that involves increased senso-motor responses, motor activity, associative learning, reproductive status, and rates of behavioral development, as well as foraging behavior. This set of traits guided further research into reproductive regulatory systems that were co-opted by natural selection during the evolution of social behavior. Division of labor, characterized by changes in the tasks performed by bees, as they age, is controlled by hormones linked to ovary development. Foraging specialization on nectar and pollen results also from different reproductive states of bees where nectar foragers engage in pre-reproductive behavior, foraging for nectar for self-maintenance, while pollen foragers perform foraging tasks associated with reproduction and maternal care, collecting protein.

  4. Division: The Sleeping Dragon

    ERIC Educational Resources Information Center

    Watson, Anne

    2012-01-01

    Of the four mathematical operators, division seems to not sit easily for many learners. Division is often described as "the odd one out". Pupils develop coping strategies that enable them to "get away with it". So, problems, misunderstandings, and misconceptions go unresolved perhaps for a lifetime. Why is this? Is it a case of "out of sight out…

  5. Site Specific Metal Criteria Developed Using Kentucky Division of Water Procedures

    SciTech Connect

    Kszos, L.A.; Phipps, T.L.

    1999-10-09

    Alternative limits for Cu, Ni, Pb, and Zn were developed for treated wastewater from four outfalls at a Gaseous Diffusion Plant. Guidance from the Kentucky Division of Water (KDOW) was used to (1) estimate the toxicity of the effluents using water fleas (Ceriodaphnia dubia) and fathead minnow (Pimephales promelas) larvae; (2) determine total recoverable and dissolved concentrations of Cu, Pb, Ni, and Zn ; (3) calculate ratios of dissolved metal (DM) to total recoverable metal (TRM); and (4) assess chemical characteristics of the effluents. Three effluent samples from each outfall were collected during each of six test periods; thus, a total of 18 samples from each outfall were evaluated for toxicity, DM and TRM. Subsamples were analyzed for alkalinity, hardness, pH, conductivity, and total suspended solids. Short-term (6 or 7 d), static renewal toxicity tests were conducted according to EPA methodology. Ceriodaphnia reproduction was reduced in one test of effluent from Outfall A , and effluent from Outfall B was acutely toxic to both test species during one test. However, the toxicity was not related to the metals present in the effluents. Of the 18 samples from each outfall, more than 65% of the metal concentrations were estimated quantities. With the exception of two total recoverable Cu values in Outfall C, all metal concentrations were below the permit limits and the federal water quality criteria. Ranges of TR for all outfalls were: Cd, ,0.1-0.4 {micro}g/L; Cr,1.07-3.93 {micro}g/L; Cu, 1.59-7.24 {micro}g/L; Pb, <0.1-3.20 {micro}g/L; Ni, 0.82-10.7 {micro}g/L, Zn, 4.75-67.3 {micro}g/L. DM:TRM ratios were developed for each outfall. The proportion of dissolved Cu in the effluents ranged from 67 to 82%; the proportion of dissolved Ni ranged from 84 to 91%; and the proportion of dissolved Zn ranged from 74 to 94%. The proportion of dissolved Pb in the effluents was considerably lower (37-51%). TRM and/or DM concentrations of Cu, Ni, Pb, or Zn differed significantly

  6. Recent Developments in the Management of Cameco Corporation's Fuel Services Division Waste - 13144

    SciTech Connect

    Smith, Thomas P.

    2013-07-01

    Cameco Corporation is a world leader in uranium production. Headquartered in Saskatoon, Saskatchewan our operations provide 16% of the world uranium mine production and we have approximately 435 million pounds of proven and probable uranium reserves. Cameco mining operations are located in Saskatchewan, Wyoming, Nebraska and Kazakhstan. Cameco is also a major supplier of uranium processing services required to produce fuel for the generation of clean energy. These operations are based in Blind River, Cobourg and Port Hope, Ontario and are collectively referred to as the Fuel Services Division. The Fuel Services Division produces uranium trioxide from uranium ore concentrate at the Blind River Refinery. Cameco produces uranium hexafluoride and uranium dioxide at the Port Hope Conversion Facility. Cameco operates a fuel manufacturing facility in Port Hope, Ontario and a metal fabrication facility located in Cobourg, Ontario. The company manufactures fuel bundles utilized in the Candu reactors. Cameco's Fuel Services Division produces several types of low-level radioactively contaminated wastes. Internal processing capabilities at both the Blind River Refinery and Port Hope Conversion Facility are extensive and allow for the recycling of several types of waste. Notwithstanding these capabilities there are certain wastes that are not amenable to the internal processing capabilities and must be disposed of appropriately. Disposal options for low-level radioactively contaminated wastes in Canada are limited primarily due to cost considerations. In recent years, Cameco has started to ship marginally contaminated wastes (<500 ppm uranium) to the United States for disposal in an appropriate landfill. The landfill is owned by US Ecology Incorporated and is located near Grand View, Idaho 70 miles southeast of Boise in the Owyhee Desert. The facility treats and disposes hazardous waste, non-hazardous industrial waste and low-activity radioactive material. The site's arid

  7. DEVELOPMENT OF PROTOTYPE TITANATE ION EXCHANGE LOADED MEMBRANES FOR STRONTIUM, CESIUM AND ACTINIDE DECONTAMINATION FROM AQUEOUS MEDIA

    SciTech Connect

    Oji, L; Keisha Martin, K; David Hobbs, D

    2008-05-30

    We have successfully incorporated high surface area particles of titanate ion exchange materials (monosodium titanate and crystalline silicotitanate) with acceptable particle size distribution into porous and inert support membrane fibrils consisting of polytetrafluoroethylene (Teflon{reg_sign}), polyethylene and cellulose materials. The resulting membrane sheets, under laboratory conditions, were used to evaluate the removal of surrogate radioactive materials for cesium-137 and strontium-90 from high caustic nuclear waste simulants. These membrane supports met the nominal requirement for nonchemical interaction with the embedded ion exchange materials and were porous enough to allow sufficient liquid flow. Some of this 47-mm size stamped out prototype titanium impregnated ion exchange membrane discs was found to remove more than 96% of dissolved cesium-133 and strontium-88 from a caustic nuclear waste salt simulants. Since in traditional ion exchange based column technology monosodium titanate (MST) is known to have great affinity for the sorbing of other actinides like plutonium, neptunium and even uranium, we expect that the MST-based membranes developed here, although not directly evaluated for uptake of these three actinides because of costs associated with working with actinides which do not have 'true' experimental surrogates, would also show significant affinity for these actinides in aqueous media. It was also observed that crystalline silicotitanate impregnated polytetrafluoroethylene or polyethylene membranes became less selective and sorbed both cesium and strontium from the caustic aqueous salt simulants.

  8. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    SciTech Connect

    Heiser,J.; Sullivan, T.

    2009-06-30

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers during the

  9. Granulated decontamination formulations

    DOEpatents

    Tucker, Mark D.

    2007-10-02

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  10. Glovebox decontamination technology comparison

    SciTech Connect

    Quintana, D.M.; Rodriguez, J.B.; Cournoyer, M.E.

    1999-09-26

    Reconfiguration of the CMR Building and TA-55 Plutonium Facility for mission requirements will require the disposal or recycle of 200--300 gloveboxes or open front hoods. These gloveboxes and open front hoods must be decontaminated to meet discharge limits for Low Level Waste. Gloveboxes and open front hoods at CMR have been painted. One of the deliverables on this project is to identify the best method for stripping the paint from large numbers of gloveboxes. Four methods being considered are the following: conventional paint stripping, dry ice pellets, strippable coatings, and high pressure water technology. The advantages of each technology will be discussed. Last, cost comparisons between the technologies will be presented.

  11. Skin decontamination: principles and perspectives.

    PubMed

    Chan, Heidi P; Zhai, Hongbo; Hui, Xiaoying; Maibach, Howard I

    2013-11-01

    Skin decontamination is the primary intervention needed in chemical, biological and radiological exposures, involving immediate removal of the contaminant from the skin performed in the most efficient way. The most readily available decontamination system on a practical basis is washing with soap and water or water only. Timely use of flushing with copious amounts of water may physically remove the contaminant. However, this traditional method may not be completely effective, and contaminants left on the skin after traditional washing procedures can have toxic consequences. This article focuses on the principles and practices of skin decontamination. PMID:22851522

  12. QA RESOURCE MATERIALS TO ASSIST IN DEVELOPING AND WRITING RESEARCH PLANS AT A USEPA OFFICE OF RESEARCH AND DEVELOPMENT DIVISION

    EPA Science Inventory

    In the process of adapting the Agency's Data Quality Objectives Workshop for presentation at an ORD Research Facility, ownership and consensus approval of the presentation by the Division's research staff was sought. Three groups of researchers, at various levels of responsibilit...

  13. Dynamic analysis of epidermal cell divisions identifies specific roles for COP10 in Arabidopsis stomatal lineage development.

    PubMed

    Delgado, Dolores; Ballesteros, Isabel; Torres-Contreras, Javier; Mena, Montaña; Fenoll, Carmen

    2012-08-01

    Stomatal development in Arabidopsis thaliana has been linked to photoreceptor-perceived light through several components of the photomorphogenic switch, whose lack of function is often seedling-lethal. CONSTITUTIVE PHOTOMORPHOGENIC 10 (COP10) is an important component of this switch, its loss of function producing stomatal clusters. Exploiting the reduced lethality of the cop10-1 mutant we characterized the developmental basis of its stomatal phenotype. Constitutive, light-independent stomata overproduction accounts for half of cop10-1 stomatal abundance and appears very early in development. Clusters are responsible for the remaining stomata excess and build-up progressively at later stages. Serial impressions of living cotyledon epidermis allowed a dynamic, quantitative analysis of stomatal lineage types by reconstructing their division histories. We found that COP10 adjusts the initiation frequency and extension of stomatal lineages (entry and amplifying asymmetric divisions) and represses stomatal fate in lineage cells; COP10 also supervises the orientation of spacing divisions in satellite lineages, preventing the appearance of stomata in contact. Aberrant accumulation of the proliferating stomatal lineage cell marker TMMpro::TMM-GFP showed that the abundant cop10-1 stomatal lineages maintained extended and ectopic competence for stomatal fate. Expression of stomatal development master genes suggests that the mutant does not bypass major molecular actors in this process. cop10-1 first leaf produces trichomes and apparently normal pavement cells, but functionally and morphologically aberrant stomata; COP10 operates genetically in parallel to the stomatal repressor SDD1 and does not generally affect epidermal cell differentiation, but seems to operate on stomatal lineages where it controls specific cell-lineage and cell-signaling developmental mechanisms.

  14. Combined decontamination processes for wastes containing PCBs.

    PubMed

    Kastánek, Frantisek; Kastánek, Petr

    2005-01-31

    This project has focused on the development of a complex assembly of mutually corresponding technological units: a low temperature thermal process for the desorption of PCBs and other organics from soils and other contaminated solid wastes; the extraction of PCBs from soils by an ecological friendly aqueous solution of selected surfactants; the chemical decontamination of PCBs in oils and in-oil-in-water emulsions by metallic sodium and potassium in polyethylene glycols in the presence of aluminum powder; the modified alkaline catalyzed chemical decontamination of PCBs in oil-in-water dispersions in a solid-state reactor (in a film of reacting emulsion on solid carriers); and the breakdown of PCBs in aqueous emulsions with activated hydroxyl radicals enhanced by UV radiation. The processes operate in a closed loop configuration with effluents circulating among the process unit. These technologies have been verified at laboratory and pilot-plant scales.

  15. Technology for treatment of decontamination products

    SciTech Connect

    Kavkhuta, G.A.; Rozdzyalovskaya, L.F.

    1994-12-31

    The research concerning the methods of management and processing of products generated as the result of post Chernobyl decontamination activities is being carried out by the Institute of Radioecological Problems of Belarus Academy of Science (IRP) in the framework of the Belarus National Programme. The main goal of this work is choice and development of an appropriate system for treatment of the decontamination radwastes, based on currently available information and experimental studies. This paper presents the technological schemes being studied for treating the post-Chernobyl liquid and solid wastes and will also briefly discuss the approach being used to settle a problem on collecting/management of low-level radioactive ash wastes, generated from the use of contaminated fuel.

  16. The relationship between cell division and elongation during development of the nectar-yielding petal spur in Centranthus ruber (Valerianaceae)

    PubMed Central

    Mack, Jaimie-Lee K.; Davis, Arthur R.

    2015-01-01

    Background and Aims Floral spurs are hollow, tubular outgrowths that typically conceal nectar. By their involvement in specialized pollinator interactions, spurs have ecological and evolutionary significance, often leading to speciation. Despite their importance and diversity in shape and size among angiosperm taxa, detailed investigations of the mechanism of spur development have been conducted only recently. Methods Initiation and growth of the nectar-yielding petal spur of Centranthus ruber ‘Snowcloud’ was investigated throughout seven stages, based on bud size and developmental events. The determination of the frequency of cell division, quantified for the first time in spurs, was conducted by confocal microscopy following 4',6-diamidino-2-phenylindole (DAPI) staining of mitotic figures. Moreover, using scanning electron microscospy of the outer petal spur surface unobstructed by trichomes, morphometry of epidermal cells was determined throughout development in order to understand the ontogeny of this elongate, hollow tube. Key Results Spur growth from the corolla base initially included diffuse cell divisions identified among epidermal cells as the spur progressed through its early stages. However, cell divisions clearly diminished before a petal spur attained 30 % of its final length of 4·5 mm. Thereafter until anthesis, elongation of individual cells was primarily responsible for the spur’s own extension. Consequently, a prolonged period of anisotropy, wherein epidermal cells elongated almost uniformly in all regions along the petal spur’s longitudinal axis, contributed principally to the spur’s mature length. Conclusions This research demonstrates that anisotropic growth of epidermal cells – in the same orientation as spur elongation – chiefly explains petal spur extension in C. ruber. Representing the inaugural investigation of the cellular basis for spur ontogeny within the Euasterids II clade, this study complements the patterns in

  17. A rapid and inexpensive bioassay to evaluate the decontamination of organophosphates.

    PubMed

    Claborn, David M; Martin-Brown, Skylar A; Sagar, Sanjay Gupta; Durham, Paul

    2012-01-01

    An inexpensive and rapid bioassay using adult red flour beetles was developed for use in assessing the decontamination of environments containing organophosphates and related chemicals. A decontamination protocol was developed which demonstrated that 2 to 3 applications of 5% bleach solution were required to obtain nearly complete decontamination of malathion. The bioassay was also used to screen common household cleaners as potential decontaminating agents, but only 5% bleach was effective at improving survival of insects on steel plates treated with 25% malathion. A toxic degradation product (malaoxon) was detected using gas chromatography/mass spectrophotometry; this toxin affected the decontamination efficacy and resulted in continued toxicity to the beetles until subsequent decontaminations. The bioassay provides evidence to support the use of red flour beetles as a sensitive, less expensive method for determining safety levels of environments contaminated with malathion and other toxins, and may have application in the study of chemical warfare agents.

  18. Modeling the electrokinetic decontamination of concrete

    SciTech Connect

    Harris, M.T.; DePaoli, D.W.; Ally, M.R.

    1997-01-01

    The decontamination of concrete is a major concern in many Department of (DOE) facilities. Numerous techniques (abrasive methods, manual methods, ultrasonics, concrete surface layer removal, chemical extraction methods, etc.) have been used to remove radioactive contamination from the surface of concrete. Recently, processes that are based on electrokinetic phenomena have been developed to decontaminate concrete. Electrokinetic decontamination has been shown to remove from 70 to over 90% of the surface radioactivity. To evaluate and improve the electrokinetic processes, a model has been developed to simulate the transport of ionic radionuclei constituents through the pores of concrete and into the anolyte and catholyte. The model takes into account the adsorption and desorption kinetics of the radionuclei from the pore walls, and ion transport by electro-osmosis, electromigration, and diffusion. A numerical technique, orthogonal collocation, is used to simultaneously solve the governing convective diffusion equations for a porous concrete slab and the current density equation. This paper presents the theoretical framework of the model and the results from the computation of the dynamics of ion transport during electrokinetic treatment of concrete. The simulation results are in good agreement with experimental data.

  19. Development of Frequency-Division Multiplexing Readout System for Large-Format TES X-ray Microcalorimeter Arrays

    NASA Astrophysics Data System (ADS)

    Sakai, K.; Yamamoto, R.; Takei, Y.; Mitsuda, K.; Yamasaki, N. Y.; Hidaka, M.; Nagasawa, S.; Kohjiro, S.; Miyazaki, T.

    2016-07-01

    We are developing the frequency-division multiplexing (FDM) readout system aimed to realize the 400-pixel transition edge sensor (TES) microcalorimeter array for the DIOS mission as well as large-format arrays with more than a thousand of TES for future space missions such as the ATHENA mission. The developed system consists of the low-power superconducting quantum interference device (SQUID), the digital FDM electronics, and the analog front-end to bridge the SQUID and the digital electronics. Using the developed readout system, we performed a TES readout experiment and succeeded to multiplex four TES signals with the single-staged cryogenic setup. We have experienced two issues during the experiment: an excess noise and crosstalk. The brief overview of the developed system and the details, results, and issues of the TES multiplexing readout experiment is discussed.

  20. Decontamination of process equipment using recyclable chelating solvent

    SciTech Connect

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-12-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment. Current approaches to the decontamination of metals most often involve one of four basic process types: (1) chemical, (2) manual and mechanical, (3) electrochemical, and (4) ultrasonic. {open_quotes}Hard{close_quotes} chemical decontamination solutions, capable of achieving decontamination factors (Df`s) of 50 to 100, generally involve reagent concentrations in excess of 5%, tend to physically degrade the surface treated, and generate relatively large volumes of secondary waste. {open_quotes}Soft{close_quotes} chemical decontamination solutions, capable of achieving Df`s of 5 to 10, normally consist of reagents at concentrations of 0.1 to 1%, generally leave treated surfaces in a usable condition, and generate relatively low secondary waste volumes. Under contract to the Department of Energy, the Babcock & Wilcox Company is developing a chemical decontamination process using chelating agents to remove uranium compounds and other actinide species from process equipment.

  1. Application of Ultrasonic for Decontamination of Contaminated Soil - 13142

    SciTech Connect

    Vasilyev, A.P.; Lebedev, N.M.; Savkin, A.E.

    2013-07-01

    The trials of soil decontamination were carried out with the help of a pilot ultrasonic installation in different modes. The installation included a decontamination bath equipped with ultrasonic sources, a precipitator for solution purification from small particles (less than 80 micrometer), sorption filter for solution purification from radionuclides washing out from soil, a tank for decontamination solution, a pump for decontamination solution supply. The trials were carried out on artificially contaminated sand with specific activity of 4.5 10{sup 5} Bk/kg and really contaminated soil from Russian Scientific Center 'Kurchatovsky Institute' (RSC'KI') with specific activity of 2.9 10{sup 4} Bk/kg. It was established that application of ultrasonic intensify the process of soil reagent decontamination and increase its efficiency. The decontamination factor for the artificially contaminated soil was ∼200 and for soil from RSC'KI' ∼30. The flow-sheet diagram has been developed for the new installation as well as determined the main technological characteristics of the equipment. (authors)

  2. Liquid abrasive grit blasting literature search and decontamination scoping tests report

    SciTech Connect

    Ferguson, R.L.

    1993-10-01

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP) have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using the current decontamination techniques of chemical/water flushes and steam jet cleaning. With the curtailment of reprocessing at the ICPP, the focus of decontamination is shifting from maintenance for continued operation of the facilities to decommissioning. As decommissioning plans are developed, new decontamination methods must be used which result in higher decontamination factors and generate lower amounts of sodium-bearing secondary waste. The primary initiative of the WINCO Decontamination Development Program is the development of methods to eliminate/minimize the use of sodium-bearing decontamination chemicals. One method that was chosen for cold scoping studies during FY-93 was abrasive grit blasting. Abrasive grit blasting has been used in many industries and a vast amount of research and development has already been conducted. However, new grits, process improvements and ICPP applicability was investigated. This evaluation report is a summary of the research efforts and scoping tests using the liquid abrasive grit blasting decontamination technique. The purpose of these scoping tests was to determine the effectiveness of three different abrasive grits: plastic beads, glass beads and alumina oxide.

  3. Electroosmotic decontamination of concrete

    SciTech Connect

    Bostick, W.D.; Bush, S.A.; Marsh, G.C.; Henson, H.M.; Box, W.D.; Morgan, I.L.

    1993-03-01

    A method is described for the electroosmotic decontamination of concrete surfaces, in which an electrical field is used to induce migration of ionic contaminants from porous concrete into an electrolyte solution that may be disposed of as a low-level liquid radioactive waste (LLRW); alternately, the contaminants from the solution can be sorbed onto anion exchange media in order to prevent contaminant buildup in the solution and to minimize the amount of LLRW generated. We have confirmed the removal of uranium (and infer the removal of {sup 99}Tc) from previously contaminated concrete surfaces. In a typical experimental configuration, a stainless steel mesh is placed in an electrolyte solution contained within a diked cell to serve as the negative electrode (cathode) and contaminant collection medium, respectively, and an existing metal penetration (e.g., piping, conduit, or rebar reinforcement within the concrete surface) serves as the positive electrode (anode) to complete the cell. Typically we have achieved 70 to >90% reductions in surface activity by applying <400 V and <1 A for 1--3 h (energy consumption of 0.4--12 kWh/ft{sup 2}).

  4. TRU-waste decontamination and size reduction review, June 1983, US DOE/PNC technology exchange. [Electropolishing, vibratory cleaning and spray decontamination

    SciTech Connect

    Becker, G.W. Jr.

    1983-01-01

    A review of transuranic (TRU) noncombustible waste decontamination and size reduction technology is presented. Electropolishing, vibratory cleaning, and spray decontamination processes developed at Battelle Pacific Northwest Laboratory (PNL) and Savannah River Laboratory (SRL) are highlighted. TRU waste size reduction processes at (PNL), Los Alamos National Laboratory (LANL), the Rocky Flats Plant (RFP), and SRL are also highlighted.

  5. BNL Building 650 lead decontamination and treatment feasibility study. Final report

    SciTech Connect

    Kalb, P.D.; Cowgill, M.G.; Milian, L.W.

    1995-10-01

    Lead has been used extensively at Brookhaven National Laboratory (BNL) for radiation shielding in numerous reactor, accelerator and other research programs. A large inventory of excess lead (estimated at 410,000 kg) in many shapes and sizes is currently being stored. Due to it`s toxicity, lead and soluble lead compounds are considered hazardous waste by the Environmental Protection Agency. Through use at BNL, some of the lead has become radioactive, either by contamination of the surface or through activation by neutrons or deuterons. This study was conducted at BNL`s Environmental and Waste Technology Center for the BNL Safety and Environmental Protection Division to evaluate feasibility of various treatment options for excess lead currently being stored. The objectives of this effort included investigating potential treatment methods by conducting a review of the literature, developing a means of screening lead waste to determine the radioactive characteristics, examining the feasibility of chemical and physical decontamination technologies, and demonstrating BNL polyethylene macro-encapsulation as a means of treating hazardous or mixed waste lead for disposal. A review and evaluation of the literature indicated that a number of physical and chemical methods are available for decontamination of lead. Many of these techniques have been applied for this purpose with varying degrees of success. Methods that apply mechanical techniques are more appropriate for lead bricks and sheet which contain large smooth surfaces amenable to physical abrasion. Lead wool, turnings, and small irregularly shaped pieces would be treated more effectively by chemical decontamination techniques. Either dry abrasion or wet chemical methods result in production of a secondary mixed waste stream that requires treatment prior to disposal.

  6. [Decontamination of chemical warfare agents by photocatalysis].

    PubMed

    Hirakawa, Tsutomu; Mera, Nobuaki; Sano, Taizo; Negishi, Nobuaki; Takeuchi, Koji

    2009-01-01

    Photocatalysis has been widely applied to solar-energy conversion and environmental purification. Photocatalyst, typically titanium dioxide (TiO(2)), produces active oxygen species under irradiation of ultraviolet light, and can decompose not only conventional pollutants but also different types of hazardous substances at mild conditions. We have recently started the study of photocatalytic decontamination of chemical warfare agents (CWAs) under collaboration with the National Research Institute of Police Science. This article reviews environmental applications of semiconductor photocatalysis, decontamination methods for CWAs, and previous photocatalytic studies applied to CWA degradation, together with some of our results obtained with CWAs and their simulant compounds. The data indicate that photocatalysis, which may not always give a striking power, certainly helps detoxification of such hazardous compounds. Unfortunately, there are not enough data obtained with real CWAs due to the difficulty in handling. We will add more scientific data using CWAs in the near future to develop useful decontamination systems that can reduce the damage caused by possible terrorism. PMID:19122438

  7. Decontamination of radionuclides from skin: an overview.

    PubMed

    Tazrart, Anissa; Bérard, Philippe; Leiterer, Alexandra; Ménétrier, Florence

    2013-08-01

    The accident in Fukushima has emphasized the need to increase the capacity of health protection for exposed workers, first responders, and the general public in a major accident situation with release of radioactivity. Skin contamination is one of the most probable risks following major nuclear or radiological incidents, but this risk also exists and incidents can happen in industry, research laboratories, or in nuclear medicine departments. The aim of this paper is to provide an overview of the products currently used after skin contamination in order to highlight the needs and ways to improve the medical management of victims. From this review, it can be observed that the current use of these radiological decontamination products is essentially based on empiricism. In addition, some of these products are harsh and irritating, even toxic, possibly damaging the skin barrier. In some emergency situations in which clean water is in short supply, most of the current products cannot be used. Research on the mechanisms of action of decontaminating products is needed to develop a decontamination strategy.

  8. Operational concerns regarding chemical biological decontamination of fixed sites. Final report

    SciTech Connect

    Fleisch, D.L.

    1996-06-14

    Existing U.S. military doctrine and practice are deficient regarding CBW decontamination capabilities and procedures for fixed sites. Currently, responsibility for decontamination is left to each service component and focused on individual unit requirements. Further, joint doctrine splits the responsibility for all phases of decontamination between the theater commander and the services. Recommendations include: Doctrinal changes to emphasize realistic CBW consequences, practical solutions, and eliminate confusion regarding fixed site responsibility; OPLAN development more specific with respect to fixed sites; Additional units must be trained and equipped to provide fixed site decontamination.

  9. Aligning Transition Services with Secondary Educational Reform: A Position Statement of the Division on Career Development and Transition.

    PubMed

    Morningstar, Mary E; Bassett, Diane S; Cashman, Joanne; Kochhar-Bryant, Carol; Wehmeyer, Michael L

    2012-12-01

    Society has witnessed significant improvements in the lives of students receiving transition services over the past 30 years. The field of transition has developed an array of evidence-based interventions and promising practices, however, secondary school reform efforts have often overlooked these approaches for youth without disabilities. If we are to see improvements in postsecondary outcomes for all youth, reform efforts must begin with active participation of both general and special educators and critical home, school, and community stakeholders. In the Division on Career Development for Exceptional Individuals' position paper, we discuss the evolution of transition in light of reform efforts in secondary education. We review and identify secondary educational initiatives that embrace transition principles. Finally, recommendations are provided for advancing alignment of transition services with secondary education reforms. PMID:25221733

  10. Decontamination of BWR fuel bundles

    SciTech Connect

    Ocken, H.

    1988-01-01

    Decontamination of individual systems in operating reactors, such as recirculation piping in boiling water reactors (BWRs) and steam generators in pressurized water reactors, is becoming an accepted technique to reduce radiation fields and occupational radiation exposure. Because a significant inventory of radioactivity resides on the reactor core, a longer term goal is to effect full plant decontamination with the fuel in place. Full plant decontamination has proved effective in CANDU and steam-generating heavy water reactor plants, but only recently have US plants begun to consider seriously the merits of such an approach. Clearly, a first step is to show that exposure to commercial decontamination solvents of highly irradiated core components will not induce any adverse effects. This paper describes a study of the application of the LOMI and CANDECON solvents to three-cycle discharged fuel bundles from the Quad Cities-2 BWR. Highly irradiated stainless steel specimens cut from a section of a LaCrosse BWR control blade also were decontaminated at the same time as the fuel bundles. CANDECON was selected as being representative of dilute chelant process and LOMI as representative of more strongly reducing processes. Both processes were preceded by the application of an oxidizing alkaline permanganate (AP) oxidizing step to help dissolve chromium.

  11. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    SciTech Connect

    Bossart, Steven J.; Blair, Danielle M.

    2003-02-27

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D&D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials.

  12. Evaluation of nonchemical decontamination techniques for use on reactor coolant systems. [PWR

    SciTech Connect

    Gardner, H.R.; Allen, R.P.; Polentz, L.M.; Skiens, W.E.; Wolf, G.A.

    1982-10-01

    The objective of this work is to describe, characterize, and evaluate a number of decontamination techniques that could be applied to the cleaning of fuel debris and corrosion products from reactor coolant systems and components. Excluded from consideration are the traditional or common chemical decontamination techniques. The information developed for each technique includes: theory of operation, methods of application, accessibility requirements, remote operation capability, state of development, previous applications, decontamination effectiveness, corrosion problems during and after decontamination, material removal, radiological and industrial safety, cost, post-decontamination cleanup, need for post-decontamination surface treatment, waste generation and disposal, and redistribution of contamination. The techniques treated are: Mechanical Methods; High-Pressure Water (< 20,000 psi); Ultrahigh-Pressure Water (> 20,000 psi); Abrasive Cleaning; Vibratory Finishing; Ultrasonics; High-Pressure FREON Cleaning; Electropolishing; Alternative Electrolyte Techniques; Steam/Hot Water Cleaning and Two-Phase Mixtures; Decontamination Foams, Gels, and Pastes; Strippable Decontamination Coatings; Reflux Decontamination; Dry Ice Blasting; Electrochemically-Activated Solutions; Molten Salt Methods; and Thermal Erosion.

  13. Investigating the Molecular Mechanism of TSO1 Function in Arabidopsis cell division and meristem development

    SciTech Connect

    Zhongchi Liu

    2004-10-01

    Unlike animals, plants are constantly exposed to environmental mutagens including ultraviolet light and reactive oxygen species. Further, plant cells are totipotent with highly plastic developmental programs. An understanding of molecular mechanisms underlying the ability of plants to monitor and repair its DNA and to eliminate damaged cells are of great importance. Previously we have identified two genes, TSO1 and TSO2, from a flowering plant Arabidopsis thaliana. Mutations in these two genes cause callus-like flowers, fasciated shoot apical meristems, and abnormal cell division, indicating that TSO1 and TSO2 may encode important cell cycle regulators. Previous funding from DOE led to the molecular cloning of TSO1, which was shown to encode a novel nuclear protein with two CXC domains suspected to bind DNA. This DOE grant has allowed us to characterize and isolate TSO2 that encodes the small subunit of the ribonucleotide reductase (RNR). RNR comprises two large subunits (R1) an d two small subunits (R2), catalyzes a rate-limiting step in the production of deoxyribonucleotides needed for DNA replication and repair. Previous studies in yeast and mammals indicated that defective RNR often led to cell cycle arrest, growth retardation and p53-dependent apoptosis while abnormally elevated RNR activities led to higher mutation rates. Subsequently, we identified two additional R2 genes, R2A and R2B in the Arabidopsis genome. Using reverse genetics, mutations in R2A and R2B were isolated, and double and triple mutants among the three R2 genes (TSO2, R2A and R2B) were constructed and analyzed. We showed that Arabidopsis tso2 mutants, with reduced dNTP levels, were more sensitive to UV-C. While r2a or r2b single mutants did not exhibit any phenotypes, tso2 r2b double mutants were embryonic lethal and tso2 r2a double mutants were seedling lethal indicating redundant functions among the three R2 genes. Furthermore, tso2 r2a double mutants exhibited increased DNA dam age

  14. A simplified model of decontamination by BWR steam suppression pools

    SciTech Connect

    Powers, D.A.

    1997-05-01

    Phenomena that can decontaminate aerosol-laden gases sparging through steam suppression pools of boiling water reactors during reactor accidents are described. Uncertainties in aerosol properties, aerosol behavior within gas bubbles, and bubble behavior in plumes affect predictions of decontamination by steam suppression pools. Uncertainties in the boundary and initial conditions that are dictated by the progression of severe reactor accidents and that will affect predictions of decontamination by steam suppression pools are discussed. Ten parameters that characterize boundary and initial condition uncertainties, nine parameters that characterize aerosol property and behavior uncertainties, and eleven parameters that characterize uncertainties in the behavior of bubbles in steam suppression pools are identified. Ranges for the values of these parameters and subjective probability distributions for parametric values within the ranges are defined. These uncertain parameters are used in Monte Carlo uncertainty analyses to develop uncertainty distributions for the decontamination that can be achieved by steam suppression pools and the size distribution of aerosols that do emerge from such pools. A simplified model of decontamination by steam suppression pools is developed by correlating features of the uncertainty distributions for total decontamination factor, DF(total), mean size of emerging aerosol particles, d{sub p}, and the standard deviation of the emerging aerosol size distribution, {sigma}, with pool depth, H. Correlations of the median values of the uncertainty distributions are suggested as the best estimate of decontamination by suppression pools. Correlations of the 10 percentile and 90 percentile values of the uncertainty distributions characterize the uncertainty in the best estimates. 295 refs., 121 figs., 113 tabs.

  15. About the Chemopreventive Agent Development Research Group | Division of Cancer Prevention

    Cancer.gov

    The Chemopreventive Agent Development Research Group promotes and supports research on early chemopreventive agent development, from preclinical studies to phase I clinical trials. The group’s projects aim to identify and develop prevention agents with the potential to block, reverse, or delay the early stages of cancer. The overarching goal is to determine positive and negative predictive values of preclinical models for clinical development. |

  16. MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT

    SciTech Connect

    M.A. Ebadian, Ph.D.

    2001-01-01

    Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project.

  17. Development and Application of a Two-Tier Multiple-Choice Diagnostic Test for High School Students' Understanding of Cell Division and Reproduction

    ERIC Educational Resources Information Center

    Sesli, Ertugrul; Kara, Yilmaz

    2012-01-01

    This study involved the development and application of a two-tier diagnostic test for measuring students' understanding of cell division and reproduction. The instrument development procedure had three general steps: defining the content boundaries of the test, collecting information on students' misconceptions, and instrument development.…

  18. IFT88 plays a cilia- and PCP-independent role in controlling oriented cell divisions during vertebrate embryonic development.

    PubMed

    Borovina, Antonia; Ciruna, Brian

    2013-10-17

    The role for cilia in establishing planar cell polarity (PCP) is contentious. Although knockdown of genes known to function in ciliogenesis has been reported to cause PCP-related morphogenesis defects in zebrafish, genetic mutations affecting intraflagellar transport (IFT) do not show PCP phenotypes despite the requirement for IFT in cilia formation. This discrepancy has been attributed to off-target effects of antisense morpholino oligonucleotide (MO) injection, confounding maternal effects in zygotic mutant embryos, or an inability to distinguish between cilia-dependent versus cilia-independent protein functions. To determine the role of cilia in PCP, we generated maternal + zygotic IFT88 (MZift88) mutant zebrafish embryos, which never form cilia. We clearly demonstrate that cilia are not required to establish PCP. Rather, IFT88 plays a cilia-independent role in controlling oriented cell divisions at gastrulation and neurulation. Our results have important implications for the interpretation of cilia gene function in normal development and in disease.

  19. Criteria for the evaluation of a dilute decontamination demonstration

    SciTech Connect

    FitzPatrick, V.F.; Divine, J.R.; Hoenes, G.R.; Munson, L.F.; Card, C.J.

    1981-12-01

    This document provides the prerequisite technical information required to evaluate and/or develop a project to demonstrate the dilute chemical decontamination of the primary coolant system of light water reactors. The document focuses on five key areas: the basis for establishing programmatic prerequisites and the key decision points that are required for proposal evaluation and/or RFP (Request for Proposal) issuance; a technical review of the state-of-the-art to identify the potential impacts of a reactor's primary-system decontamination on typical BWR and PWR plants; a discussion of the licensing, recertification, fuel warranty, and institutional considerations and processes; a preliminary identification and development of the selection criteria for the reactor and the decontamination process; and a preliminary identification of further research and development that might be required.

  20. 46 CFR 154.1410 - Decontamination shower.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Decontamination shower. 154.1410 Section 154.1410... Equipment § 154.1410 Decontamination shower. When Table 4 references this section, a vessel carrying the listed cargo must have a decontamination shower and an eye wash that: (a) Are on the weatherdeck; and...

  1. 46 CFR 154.1410 - Decontamination shower.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Decontamination shower. 154.1410 Section 154.1410... Equipment § 154.1410 Decontamination shower. When Table 4 references this section, a vessel carrying the listed cargo must have a decontamination shower and an eye wash that: (a) Are on the weatherdeck; and...

  2. 46 CFR 154.1410 - Decontamination shower.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Decontamination shower. 154.1410 Section 154.1410... Equipment § 154.1410 Decontamination shower. When Table 4 references this section, a vessel carrying the listed cargo must have a decontamination shower and an eye wash that: (a) Are on the weatherdeck; and...

  3. 46 CFR 154.1410 - Decontamination shower.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Decontamination shower. 154.1410 Section 154.1410... Equipment § 154.1410 Decontamination shower. When Table 4 references this section, a vessel carrying the listed cargo must have a decontamination shower and an eye wash that: (a) Are on the weatherdeck; and...

  4. 46 CFR 154.1410 - Decontamination shower.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Decontamination shower. 154.1410 Section 154.1410... Equipment § 154.1410 Decontamination shower. When Table 4 references this section, a vessel carrying the listed cargo must have a decontamination shower and an eye wash that: (a) Are on the weatherdeck; and...

  5. Multiple animal studies for medical chemical defense program in soldier/patient decontamination and drug development on task order 86-25: Evaluation of the effectiveness of two ROHM and HAAS candidate decontamination systems against percutaneous application of undiluted TGD, Gd, VX HD, and L on the laboratory albino rabbit. Final report, 1 September 1986-1 February 1987

    SciTech Connect

    Joiner, R.L.; Keys, W.B.; Harroff, H.H.; Snider, H.

    1988-02-18

    A task was assigned to Battelle's Medical Research and Evaluation Facility(MREF) to evaluate the effectiveness of two candidate decontamination systems when compared to the standard dual component M258A1 decontamination system currently fielded by the U.S. Army. The chemical surety material (CSM) used in the evaluation were the organophosphates Soman (GD), polymer thickened GD (TGD), and VX, and the vesicants sulfur mustard (HD) and Lewisite (LS). The efficacies of the two candidate decontamination systems were evaluated in such a manner as to determine the LD50 and protective ratio (PR) for each decontaminant against each organophosphate CSM as compared to the standard M258A1 decontamination system LD50. The PR constituted a comparison for each candidate system against the M258A1 standard. In the vesicant phase of the screen, the efficacies of the candidate systems were evaluated in a side-by-side comparison to the M258A1 decontamination system to determine whether the candidates were as good as or better than the standard dual component system.

  6. Development of guidance on applications of regulatory requirements for regulating large, contaminated equipment and large decommissioning and decontamination (D and D) components

    SciTech Connect

    Pope, R.B.; Easton, E.P.; Cook, J.R.; Boyle, R.W.

    1997-10-01

    In 1985, the International Atomic Energy Agency issued revised regulations for the safe transport of radioactive material. Significant were major changes to requirements for Low Specific Activity material and Surface Contaminated Objects. As these requirements were adopted into regulations in the US, it was recognized that guidance on how to apply these requirements to large, contaminated/activated pieces of equipment and decommissioning and decontamination objects would be needed both by the regulators and those regulated to clarify technical uncertainties and ensure implementation. Thus, the US Department of Transportation and the US Nuclear Regulatory Commission, with assistance of staff from Oak Ridge National Laboratory, are preparing regulatory guidance which will present examples of acceptable methods for demonstrating compliance with the revised rules for large items. Concepts being investigated for inclusion in the pending guidance are discussed in this paper. Under current plans, the guidance will be issued for public comment before final issuance in 1997.

  7. 77 FR 65582 - Pfizer Therapeutic Research, Pfizer Worldwide Reasearch & Development Division, Formerly Known as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... as Neuroscience Research Unit), Global External Supply Department, Pharmaceutical Development... Neuroscience Research Unit. In order to ensure proper worker group coverage, the Department is amending the... Research Unit (currently known as Neuroscience Research Unit), Global External Supply...

  8. Fighting Ebola with novel spore decontamination technologies for the military

    DOE PAGES

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; Olinger, Gene G.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrance

    2015-08-12

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). Here, the basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized asmore » a dry mixed-chemical for bacterial spore decontamination.« less

  9. Fighting Ebola with novel spore decontamination technologies for the military

    SciTech Connect

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; Olinger, Gene G.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrance

    2015-08-12

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). Here, the basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination.

  10. Quarterly progress report for the Chemical Development Section of the Chemical Technology Division: October--December 1996

    SciTech Connect

    Jubin, R.T.

    1997-06-01

    This report summarizes the major activities conducted in the Chemical Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October-December 1996. The report describes ten tasks conducted in four major areas of research and development within the section. The first major research area -- Chemical Processes for Waste Management -- includes the following tasks: Comprehensive Supernate Treatment, Partitioning of Sludge Components by Caustic Leaching, Hot Demonstration of Proposed Commercial Nuclide Removal Technology, Development and Testing of Inorganic Sorbents, and Sludge Treatment Studies. Within the second research area -- Reactor Fuel Chemistry -- the distribution of iodine in containment during an AP600 design-basis accident was evaluated using models in the TRENDS code. Within the third research area -- Thermodynamics -- efforts continued in the Thermodynamics and Kinetics of energy-Related Materials task. The fourth major research area -- Processes for Waste Management -- includes work on these tasks: Ion-Exchange Process for Heavy Metals Removal, Search for Technetium in Natural Metallurgical Residues, and Waste Form Development and Testing of a Glass- and Cement-Based Dedicated Hot-Cell Facility.

  11. ORNL decontamination and decommissioning program

    SciTech Connect

    Bell, J. P.

    1980-01-01

    A program has been initiated at ORNL to decontaminate and decommission surplus or abandoned nuclear facilities. Program planning and technical studies have been performed by UCC-ND Engineering. A feasibility study for decommissioning the Metal Recovery Facility, a fuel reprocessing pilot plant, has been completed.

  12. Hospital use of decontaminating mats.

    PubMed

    Marchetti, M G; Finzi, G; Cugini, P; Manfrini, M; Salvatorelli, G

    2003-09-01

    Decontaminating mats made of several layers of adhesive sheets (water-based acrylic 6 g/m2) supplemented with a bactericidal agent (3-1 benzoisothiazolin) at a concentration of 25% were placed in the passages providing access to the operating rooms of an orthopaedic service. Contact plates containing tryptone soy agar were used to assess bacterial concentration at specific points in front of and beyond the mats. For trolley passageways two areas were defined: central and lateral paths, corresponding to the areas walked upon by the personnel pushing the trolleys and to the paths covered by the trolley wheels, respectively. In order to exclude a simple mechanical effect, a comparison of bacterial loads at defined sites beyond the mats was carried out in the presence and in the absence of decontaminating mats. Bacterial colony counts in the presence of decontaminating mats were substantially and statistically significantly reduced compared with the absence of mats. The lower mean number of colony-forming units detected at points located beyond the mats parallels this finding; this difference is also statistically significant. We thus conclude that decontaminating mats are potentially useful in decreasing micro-organism carry-over due to personnel or the passage of trolleys into areas at high risk of infection such as operating rooms.

  13. Division I Student Athletes' Perceptions: How Well Does the Athletic Department Promote Student Athlete Development in an Urban-Serving University?

    ERIC Educational Resources Information Center

    Vermillion, Mark

    2014-01-01

    The purpose of the research was to identify student athletes' perceptions of their athletic department regarding student development. Student athletes from a Division I athletic department were surveyed (n = 369) in order to monitor their development. Regression analyses, which included respondent's sport, gender, classification, reports of abuse,…

  14. Decontamination in the Aftermath of a Radiological Attack

    NASA Astrophysics Data System (ADS)

    Yassif, Jaime

    2004-05-01

    Much of the damage caused by a radiological weapon would result from long-term contamination, yet the U.S. lacks a coherent plan for cleanup in the aftermath of an attack. A rapidly implemented decontamination strategy could minimize economic damage by restoring normal activity, when possible, and could ease the cleanup process, which can become more difficult as time passes. Loose dust particles can become trapped under layers of oxidized metal and organic materials or penetrate deeper into porous surfaces, and reactive elements, such as cesium-137, chemically bind to components of glass, asphalt and concrete. Decontamination planning requires identification of appropriate existing technologies that are transferable from small-scale tasks, such as nuclear facility decommissioning, and adaptable to urban-scale operations. Applicable technologies should effectively contain and remove fixed and loose contamination with α-, β- and γ-emitters without generating large quantities of secondary waste. Development of new technologies is also necessary, particularly to improve α-detection, as is research to test existing technologies for their effectiveness in large-scale operations. These techniques will be most effective if integrated into a broad strategy that identifies appropriate exposure limits, prioritizes decontamination tasks and assigns authority and responsibility for performing these tasks. This talk will address existing decontamination thresholds and suggest ways to modify them and will discuss appropriate, existing technologies that can decontaminate to the required levels.

  15. Electrochemical Decontamination of Painted and Heavily Corroded Metals

    SciTech Connect

    Marczak, S.; Anderson, J.; Dziewinski, J.

    1998-09-08

    The radioactive metal wastes that are generated from nuclear fuel plants and radiochemical laboratories are mainly contaminated by the surface deposition of radioactive isotopes. There are presently several techniques used in removing surface contamination involving physical and chemical processes. However, there has been very little research done in the area of soiled, heavily oxidized, and painted metals. Researchers at Los Alamos National Laboratory have been developing electrochemical procedures for the decontamination of bare and painted metal objects. These methods have been found to be effective on highly corroded as well as relatively new metals. This study has been successful in decontaminating projectiles and shrapnel excavated during environmental restoration projects after 40+ years of exposure to the elements. Heavily corroded augers used in sampling activities throughout the area were also successfully decontaminated. This process has demonstrated its effectiveness and offers several advantages over the present metal decontamination practices of media blasting and chemical solvents. These advantages include the addition of no toxic or hazardous chemicals, low operating temperature and pressure, and easily scaleable equipment. It is in their future plans to use this process in the decontamination of gloveboxes destined for disposal as TRU waste.

  16. Proceedings of the 2007 ANS Topical Meeting on Decommissioning, Decontamination, and Reutilization - DD and R 2007

    SciTech Connect

    2008-01-15

    The American Nuclear Society (ANS) Topical Meeting on Decommissioning, Decontamination, and Reutilization (DD and R 2007), 'Capturing Decommissioning Lessons Learned', is sponsored by the ANS Decommissioning, Decontamination and Reutilization; Environmental Sciences; and Fuel Cycle and Waste Management Divisions. This meeting provides a forum for an international exchange of technical knowledge and project management experience gained from the ongoing process of decommissioning nuclear facilities. Of particular note is the number of projects that are approaching completion. This document gathers 113 presentations given at this meeting.

  17. Decontamination of Battelle-Columbus' Plutonium Facility. Final report

    SciTech Connect

    Rudolph, A.; Kirsch, G.; Toy, H.L.

    1984-11-12

    The Plutonium Laboratory, owned and operated by Battelle Memorial Institute's Columbus Division, was located in Battelle's Nuclear Sciences area near West Jefferson, Ohio, approximately 17 miles west of Columbus, Ohio. Originally built in 1960 for plutonium research and processing, the Plutonium Laboratory was enlarged in 1964 and again in 1967. With the termination of the Advanced Fuel Program in March, 1977, the decision was made to decommission the Plutonium Laboratory and to decontaminate the building for unrestricted use. Decontamination procedures began in January, 1978. All items which had come into contact with radioactivity from the plutonium operations were cleaned or disposed of through prescribed channels, maintaining procedures to ensure that D and D operations would pose no risk to the public, the environment, or the workers. The entire program was conducted under the cognizance of DOE's Chicago Operations Office. The building which housed the Plutonium Laboratory has now been decontaminated to levels allowing it to house ordinary laboratory and office operations. A ''Finding of No Significant Impact'' (FNSI) was issued in May, 1980.

  18. How to improve the clinical development paradigm and its division into phases I, II and III.

    PubMed

    Bamberger, Marion; Moore, Nicholas; Lechat, Philippe

    2011-01-01

    Based on the observation that over the last 30 years the cost of development has risen regularly as the number of new chemical entities reaching the market has fallen, how can "savings" be made in terms of clinical development, the objective being more rapid access to a drug for medical needs that are not covered? Several instruments exist to enable innovative products to be made available more quickly: temporary use authorisations, which are not concerned by this work (ATUs), conditional marketing authorisations (MAs) and MAs under exceptional circumstances. These aspects have been taken up in the European medicines agency (EMA)'s "Road Map", which states "A key issue for Regulators will be if a more "staggered" approval should be envisaged, characterised by a better defined/more restricted population of good responders, followed by a broadening of the population post-authorisation when more "real life" data are available. In addition, maximising the value of information generated in the post-authorisation phase should be developed through the use of cohorts and other prospectively collected use data, especially in the case of conditional marketing authorisations." The rules of procedure of the Transparency Commission for their part provide for the notion of preliminary examination: in order to prepare as best as possible the examination of dossiers of products assumed to be innovative and to limit delays, the office can undertake a preliminary study as soon as the dossier has been filed at the Committee for medicinal products for human use (CHMP). It may, at this time, request the firm to provide further information and may call on external experts. The implementation of this preliminary study does not exonerate the firm of the obligation of filing a complete dossier. The post inscription studies requested by the Transparency Commission (ISPEP - public health benefit and post-marketing studies) are usually requested in the case of hesitations regarding the level

  19. How to improve the clinical development paradigm and its division into phases I, II and III.

    PubMed

    Bamberger, Marion; Moore, Nicholas; Lechat, Philippe

    2011-01-01

    Based on the observation that over the last 30 years the cost of development has risen regularly as the number of new chemical entities reaching the market has fallen, how can "savings" be made in terms of clinical development, the objective being more rapid access to a drug for medical needs that are not covered? Several instruments exist to enable innovative products to be made available more quickly: temporary use authorisations, which are not concerned by this work (ATUs), conditional marketing authorisations (MAs) and MAs under exceptional circumstances. These aspects have been taken up in the European medicines agency (EMA)'s "Road Map", which states "A key issue for Regulators will be if a more "staggered" approval should be envisaged, characterised by a better defined/more restricted population of good responders, followed by a broadening of the population post-authorisation when more "real life" data are available. In addition, maximising the value of information generated in the post-authorisation phase should be developed through the use of cohorts and other prospectively collected use data, especially in the case of conditional marketing authorisations." The rules of procedure of the Transparency Commission for their part provide for the notion of preliminary examination: in order to prepare as best as possible the examination of dossiers of products assumed to be innovative and to limit delays, the office can undertake a preliminary study as soon as the dossier has been filed at the Committee for medicinal products for human use (CHMP). It may, at this time, request the firm to provide further information and may call on external experts. The implementation of this preliminary study does not exonerate the firm of the obligation of filing a complete dossier. The post inscription studies requested by the Transparency Commission (ISPEP - public health benefit and post-marketing studies) are usually requested in the case of hesitations regarding the level

  20. Decontamination and Recycling of Radioactive Material from Retired Components

    SciTech Connect

    Bushart, S.P.; Wood, C.J.; Bradbury, D.; Elder, G.

    2007-07-01

    This paper describes the development of the EPRI DFDX (Decontamination For Decommissioning, electrochemical ion exchange) process for the chemical decontamination of reactor coolant systems and components. A US patent has been awarded and a plant, conforming to exacting nuclear industry standards, has been constructed to demonstrate the process at a number of sites. The plant has completed successful demonstration tests at Studsvik in Sweden and Dounreay in Scotland. The R and D phase for this technology is now complete, and the plant is now in commercial operation in the United Kingdom. (authors)

  1. Concrete decontamination by Electro-Hydraulic Scabbling (EHS)

    SciTech Connect

    1994-11-01

    EHS is being developed for decontaminating concrete structures from radionuclides, organic substances, and hazardous metals. EHS involves the generation of powerful shock waves and intense cavitation by a strong pulsed electric discharge in a water layer at the concrete surface; high impulse pressure results in stresses which crack and peel off a concrete layer of controllable thickness. Scabbling produces contaminated debris of relatively small volume which can be easily removed, leaving clean bulk concrete. Objective of Phase I was to prove the technical feasibility of EH for controlled scabbling and decontamination of concrete. Phase I is complete.

  2. Role of symmetric and asymmetric division of stem cells in developing drug resistance

    PubMed Central

    Tomasetti, Cristian; Levy, Doron

    2010-01-01

    Often, resistance to drugs is an obstacle to a successful treatment of cancer. In spite of the importance of the problem, the actual mechanisms that control the evolution of drug resistance are not fully understood. Many attempts to study drug resistance have been made in the mathematical modeling literature. Clearly, in order to understand drug resistance, it is imperative to have a good model of the underlying dynamics of cancer cells. One of the main ingredients that has been recently introduced into the rapidly growing pool of mathematical cancer models is stem cells. Surprisingly, this all-so-important subset of cells has not been fully integrated into existing mathematical models of drug resistance. In this work we incorporate the various possible ways in which a stem cell may divide into the study of drug resistance. We derive a previously undescribed estimate of the probability of developing drug resistance by the time a tumor is detected and calculate the expected number of resistant cancer stem cells at the time of tumor detection. To demonstrate the significance of this approach, we combine our previously undescribed mathematical estimates with clinical data that are taken from a recent six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myelogenous leukemia. Based on our analysis we conclude that leukemia stem cells must tend to renew symmetrically as opposed to their healthy counterparts that predominantly divide asymmetrically. PMID:20826440

  3. Similarities and Differences in Perceptions of Adjunct Faculty and Division Chairpersons regarding Teaching Support, Mentoring, and Professional Development Opportunities for Adjunct Faculty at a Community College

    ERIC Educational Resources Information Center

    Diegel, Betsy L.

    2010-01-01

    This dissertation examines the similarities and differences in perceptions between division chair people and adjunct faculty regarding teaching support, mentoring, and professional development opportunities. Adjunct faculty have a significant presence in higher education institutions and need to feel supported so they are prepared to teach. A…

  4. An Analysis of How Participating in a NCAA Division I-A Football Program Impacts the Christian Faith Development of Student Athletes

    ERIC Educational Resources Information Center

    Epting, James B., Jr.

    2013-01-01

    The current study described and analyzed the perspectives of traditional-aged college student-athletes who participated in National Collegiate Athletic Association (NCAA) Division I football regarding the impact the sport had on Christian faith development. The study entailed a qualitative research method approach using in-depth semi-structured…

  5. Identifying and Promoting Transition Evidence-Based Practices and Predictors of Success: A Position Paper of the Division on Career Development and Transition

    ERIC Educational Resources Information Center

    Mazzotti, Valerie L.; Rowe, Dawn A.; Cameto, Renee; Test, David W.; Morningstar, Mary E.

    2013-01-01

    This position paper describes the Division of Career Development and Transition's stance and recommendations for identifying and promoting secondary transition evidence-based practices and predictors of postschool success for students with disabilities. Recommendations for experimental research, correlational research, and secondary analysis…

  6. Decontamination and Management of Human Remains Following Incidents of Hazardous Chemical Release

    SciTech Connect

    Hauschild, Veronique; Watson, Annetta Paule; Bock, Robert Eldon

    2012-01-01

    Abstract Objective: To provide specific procedural guidance and resources for identification, assessment, control, and mitigation of compounds that may contaminate human remains resulting from chemical attack or release. Design: A detailed technical, policy, and regulatory review is summarized. Setting: Guidance is suitable for civilian or military settings where human remains potentially contaminated with hazardous chemicals may be present. Settings would include sites of transportation accidents, natural disasters, terrorist or military operations, mortuary affairs or medical examiner processing and decontamination points, and similar. Patients, Participants: While recommended procedures have not been validated with actual human remains, guidance has been developed from data characterizing controlled experiments with fabrics, materiel, and laboratory animals. Main Outcome Measure(s): Presentation of logic and specific procedures for remains management, protection and decontamination of mortuary affairs personnel, as well as decision criteria for determining when remains are sufficiently decontaminated so as to pose no chemical health hazard. Results: Established procedures and existing equipment/materiel available for decontamination and verification provide appropriate and reasonable means to mitigate chemical hazards from remains. Extensive characterization of issues related to remains decontamination indicates that supra-lethal concentrations of liquid chemical warfare agent VX may prove difficult to decontaminate and verify in a timely fashion. Specialized personnel can and should be called upon to assist with monitoring necessary to clear decontaminated remains for transport and processing. Conclusions: Once appropriate decontamination and verification have been accomplished, normal procedures for remains processing and transport to the decedent s family and the continental United States can be followed.

  7. Percutaneous toxicity and decontamination of soman, VX, and paraoxon in rats using detergents.

    PubMed

    Misík, Jan; Pavliková, Růžena; Kuča, Kamil

    2013-06-01

    Highly toxic organophosphorus compounds (OPs) were originally developed for warfare or as agricultural pesticides. Today, OPs represent a serious threat to military personnel and civilians. This study investigates the in vivo decontamination of male Wistar rats percutaneously exposed to paraoxon and two potent nerve agents--soman (GD) and VX. Four commercial detergents were tested as decontaminants--Neodekont(TM), Argos(TM), Dermogel(TM), and FloraFree(TM). Decontamination performed 2 min after exposure resulted in a higher survival rate in comparison with non-decontaminated controls. The decontamination effectiveness was expressed as protective ratio (PR, median lethal dose of agent in decontaminated animals divided by the median lethal dose of agent in untreated animals). The highest decontamination effectiveness was consistently achieved with Argos(TM) (PR=2.3 to 64.8), followed by Dermogel(TM) (PR=2.4 to 46.1). Neodekont(TM) and FloraFree(TM) provided the lowest decontamination effectiveness, equivalent to distilled water (PR=1.0 to 43.2). PMID:23819929

  8. Percutaneous toxicity and decontamination of soman, VX, and paraoxon in rats using detergents.

    PubMed

    Misík, Jan; Pavliková, Růžena; Kuča, Kamil

    2013-06-01

    Highly toxic organophosphorus compounds (OPs) were originally developed for warfare or as agricultural pesticides. Today, OPs represent a serious threat to military personnel and civilians. This study investigates the in vivo decontamination of male Wistar rats percutaneously exposed to paraoxon and two potent nerve agents--soman (GD) and VX. Four commercial detergents were tested as decontaminants--Neodekont(TM), Argos(TM), Dermogel(TM), and FloraFree(TM). Decontamination performed 2 min after exposure resulted in a higher survival rate in comparison with non-decontaminated controls. The decontamination effectiveness was expressed as protective ratio (PR, median lethal dose of agent in decontaminated animals divided by the median lethal dose of agent in untreated animals). The highest decontamination effectiveness was consistently achieved with Argos(TM) (PR=2.3 to 64.8), followed by Dermogel(TM) (PR=2.4 to 46.1). Neodekont(TM) and FloraFree(TM) provided the lowest decontamination effectiveness, equivalent to distilled water (PR=1.0 to 43.2).

  9. Non-destructive decontamination of building materials

    NASA Astrophysics Data System (ADS)

    Holecek, Josef; Otahal, Petr

    2015-11-01

    For nondestructive radiation decontamination of surfaces it is necessary to use varnishes, such as ARGONNE, DG1101, DG1108, etc. This text evaluates the use of manufactured strippable coatings for radiation decontamination. To evaluate decontamination capability of such coatings the following varnishes were selected and subsequently used: AZ 1-700 and AXAL 1807S. The varnishes were tested on different building materials surfaces contaminated by short-term radioisotopes of Na-24 or La-140, in water soluble or water insoluble forms. Decontamination quality was assessed by the decontamination efficiency value, defined as the proportion of removed activity to the applied activity. It was found that decontamination efficiency of both used varnishes depends not only on the form of contaminant, but in the case of application of AXAL 1807S varnish it also depends on the method of its application on the contaminated surface. The values of the decontamination efficiency for AZ1-700 varnish range from 46% for decontamination of a soluble form of the radioisotope from concrete surface to 98% for the decontamination of a soluble form of the radioisotope from ceramic tile surface. The decontamination efficiency values determined for AXAL 1807S varnish range from 48% for decontamination of a soluble form of the radioisotope from concrete surface to 96% for decontamination of an insoluble form of the radioisotope from ceramic tile surface. Comparing these values to the values given for the decontaminating varnishes we can conclude that AXAL 1807S varnish is possible to use on all materials, except highly porous materials, such as plasterboard or breeze blocks, or plastic materials. AZ 1-700 varnish can be used for all dry materials except plasterboard.

  10. Organization of a hospital-based victim decontamination plan using the incident command structure.

    PubMed

    Powers, Robert

    2007-01-01

    Hospitals are required to have the capability of performing patient decontamination. Incorporating the incident command structure provided by the National Incident Management System and the Hospital Incident Command System into their decontamination plans will enable hospitals to be better organized and efficient in managing events producing contaminated patients. HAZMAT Branch incident command includes the leadership positions of a HAZMAT Branch director and a Victim Decontamination Unit leader, as well as managers for each zone, logistics, triage, medical monitoring, and support roles. Coupling a well-developed decontamination command structure with staff practice in their roles will help to ensure an organized response. This article describes the specific roles and responsibilities included in an incident command system-based hospital decontamination plan than has been used successfully in a multi-hospital system.

  11. Organization of a hospital-based victim decontamination plan using the incident command structure.

    PubMed

    Powers, Robert

    2007-01-01

    Hospitals are required to have the capability of performing patient decontamination. Incorporating the incident command structure provided by the National Incident Management System and the Hospital Incident Command System into their decontamination plans will enable hospitals to be better organized and efficient in managing events producing contaminated patients. HAZMAT Branch incident command includes the leadership positions of a HAZMAT Branch director and a Victim Decontamination Unit leader, as well as managers for each zone, logistics, triage, medical monitoring, and support roles. Coupling a well-developed decontamination command structure with staff practice in their roles will help to ensure an organized response. This article describes the specific roles and responsibilities included in an incident command system-based hospital decontamination plan than has been used successfully in a multi-hospital system. PMID:17996656

  12. Application of a laser to decontamination and decommissioning of nuclear facilities at JAERI

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Takakuni; Kameo, Yutaka; Myodo, Masato

    2000-01-01

    In the research and development of various advanced technologies needed for decontamination and decommissioning of nuclear facilities, laser was applied to decontamination of metal and concrete surfaces and to cutting of large metal of low level radioactive waste. (a) Laser decontamination for metal waste: Metal waste was irradiated by laser in the atmosphere of chloride gas, and contaminant was changed from oxide to chloride which is sublimable or soluble in water and could be easily removed; and also metal waste coated with gel-decontamination reagent was irradiated by laser, and contaminant could be removed through the laser-induced chemical reaction. (b) Laser decontamination for concrete surface: Concrete surface was bursted or vitrified by laser irradiation and easily removed. (c) Laser cutting: Laser cutter was applied to cutting of large metal wastes such as tanks arising from dismantling of nuclear facilities.

  13. Hexachlorocyclohexane: persistence, toxicity and decontamination.

    PubMed

    Nayyar, Namita; Sangwan, Naseer; Kohli, Puneet; Verma, Helianthous; Kumar, Roshan; Negi, Vivek; Oldach, Phoebe; Mahato, Nitish Kumar; Gupta, Vipin; Lal, Rup

    2014-01-01

    Hexachlorocyclohexane (HCH), a persistent organochlorine insecticide, has been extensively used in the past for control of agricultural pests and vector borne diseases. The use of HCH has indeed accrued benefits, however the unusual production of the insecticidal isomer; γ-HCH (lindane) and unregulated disposal of HCH muck has created various dumpsites all over the world, leading to serious environmental concerns. HCH isomers have been ranked as possible human carcinogens and endocrine disruptors with proven teratogenic, mutagenic and genotoxic effects, hence making its decontamination mandatory. Efforts in this direction have led to the isolation of various HCH degrading bacteria from the dumpsites, reflecting their role in HCH bioremediation. This review summarizes the problem of environmental persistence of HCH isomers along with their toxicity and possible solutions for their decontamination. PMID:24622782

  14. Filming in decontamination by mopping

    SciTech Connect

    Rankin, W.N.; Toole, P.A.

    1993-09-28

    Technical assistance was provided High Level Waste Engineering in the investigation and prevention of filming during decontamination by mopping. After mopping operations in a Tank Farm application, a film of the cleaning agent sometimes remained on the surface being cleaned which interfered with monitoring to detect the presence of radioactive material. Scoping tests were conducted to investigate filming characteristics of two cleaning materials. In addition, rinsing test were conducted to demonstrate how filming can be prevented.

  15. Quarterly progress report for the Chemical Development Section of the Chemical Technology Division: April--June 1996

    SciTech Connect

    Jubin, R.T.

    1996-11-01

    This report summarizes the major activities conducted in the Chemical Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period April--June 1996. The report describes 12 tasks conducted in 4 major areas of research and development within the section. The first major research area--Chemical Processes for Waste Management--includes the following tasks: Comprehensive Supernate Treatment, Partitioning of Sludge Components by Caustic Leaching, Studies on Treatment of Dissolved MVST Sludge Using TRUEX Process, ACT*DE*CON{sup SM} Test Program, Hot Demonstration of Proposed Commercial Nuclide Removal Technology, Sludge Treatment Studies, and Development and Testing of Inorganic Sorbents. Within the second research area--Reactor Fuel Chemistry--a new scope of work for the Technical Assistance in Review of Advanced Reactors task has been established to include assessments of iodine behavior nd pH control in operating nuclear reactor containments as well as in advanced reactor systems. This task is on hold, awaiting finalization of the revised proposal and receipt of the necessary information from Westinghouse to permit the start of the study. Within the third research area--Thermodynamics--the Thermodynamics and Kinetics of Energy-Related Materials task has used a differential thermal analysis (DTA)/thermogravimetric analysis (TGA) to study the phase transitions of phase-pure YBa{sub 2}Cu{sub 3}O{sub 6+x} (123). The fourth major research area--Processes for Waste Management--includes work on these tasks: Ion Exchange Process for Heavy Metals Removal, Hot Cell Cross-Flow Filtration Studies of Gunite Tank Sludges, and Chemical Conversion of Nitrate Directly to Nitrogen Gas: A Feasibility Study.

  16. Minimal impact, waterless decontamination technologies for improving food safety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogen contamination of produce, meats, poultry, shellfish, and other foods remains an ongoing concern. Chemical sanitizers are widely employed for foods and food contact surfaces. However, there is growing interest in the development of minimal impact, waterless decontamination processes that wil...

  17. New Waste Calcining Facility Non-Radioactive Process Decontamination

    SciTech Connect

    Swenson, Michael C.

    2001-09-30

    This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre- decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with photographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

  18. Soil Washing Experiment for Decontamination of Contaminated NPP Soil

    SciTech Connect

    Son, J.K.; Kang, K.D.; Kim, K.D.; Ha, J.H.; Song, M.J.

    2006-07-01

    The preliminary experiment was performed to obtain the operating conditions of soil washing decontamination process such as decontamination agent, decontamination temperature, decontamination time and ratio of soil and decontamination agent. To estimate decontamination efficiency, particle size of soil was classified into three categories; {>=} 2.0 mm, 2.0 {approx} 0.21 mm and {<=} 0.21 mm. Major target of this experiment was decontamination of Cs-137. The difference of decontamination efficiency using water and neutral salts as decontamination agent is not high. It is concluded that the best temperature of decontamination agent is normal temperature and the best decontamination time was about 60 minutes. And the best ratio of soil and decontamination agent is 1:10. In case of Cs decontamination for fine soils, the decontamination results using neutral salts such as Na{sub 2}CO{sub 3} and Na{sub 3}PO{sub 4} shows some limits while using strong acid such as sulfuric acid or hydrochloric acid shows high decontamination efficiency ({>=}90%). But we conclude that decontamination using strong acid is also inappropriate because of the insufficiency of decontamination efficiency for highly radioactive fine soils and the difficulty for treatment of secondary liquid waste. It is estimated that the best decontamination process is to use water as decontamination agent for particles which can be decontaminated to clearance level, after particle size separation. (authors)

  19. New Waste Calcining Facility Non-radioactive Process Decontamination

    SciTech Connect

    Swenson, Michael Clair

    2001-09-01

    This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre-decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with hotographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

  20. Area 6 Decontamination Pond Corrective Action Unit 92 Post-Closure Inspection Annual Report for the Period January 2000-December 2000

    SciTech Connect

    J. L. Traynor

    2001-03-01

    The Area 6 Decontamination Pond, Corrective Action Unit 92, was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection [NDEP, 1995]) and the Federal Facility Agreement and Consent Order (NDEP, 1996) on May 11, 1999. Historically the Decontamination Pond was used for the disposal of partially treated liquid effluent discharged from the Decontamination Facility (Building 6-05) and the Industrial Laundry (Building 6-07) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1996). The Decontamination Pond was constructed and became operational in 1979. Releases of RCRA-regulated hazardous waste or hazardous waste constituents have not been discharged to the Decontamination Pond since 1988 (DOE/NV, 1996). The pipe connecting the Decontamination Pond and Decontamination Facility and Industrial Laundry were cut and sealed at the Decontamination Pad Oil/Water Separator in 1992. The Decontamination Pond was closed in place by installing a RCRA cover. Fencing was installed around the periphery to prevent accidental damage to the cover. Post-closure monitoring at the site consists of quarterly inspections of the RCRA cover and fencing, and a subsidence survey. Additional inspections are conducted if: Precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in]) in a 24-hour period, or An earthquake occurs with a magnitude exceeding 4.5 on the Richter scale within 100 kilometers (km) (62 miles [mi]) of the closure.

  1. CO{sub 2} pellet blasting literature search and decontamination scoping tests report

    SciTech Connect

    Archibald, K.E.

    1993-12-01

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP) have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using current decontamination techniques. Chemical decontamination flushes have provided a satisfactory level of decontamination. However, this method generates large amounts of sodium-bearing secondary waste. Steam jet cleaning has also been used with a great deal of success but cannot be used on concrete or soft materials. With the curtailment of reprocessing at the ICPP, the focus of decontamination is shifting from maintenance for continued operation of the facilities to decommissioning. Treatment of sodium-bearing waste is a particularly difficult problem due to the high content of alkali metals in the sodium-bearing liquid waste. It requires a very large volume of cold chemical additive for calcination. In addition, the sodium content of the sodium-bearing waste exceeds the limit that can be incorporated into vitrified waste without the addition of glass-forming compounds (primarily silicon) to produce an acceptable immobilized waste form. The primary initiatives of the Decontamination Development Program is the development of methods to eliminate/minimize the use of sodium-bearing decontamination chemicals and to minimize all liquid decontamination wastes. One method chosen for cold scoping studies during FY-93 was CO{sub 2} pellet blasting. CO{sub 2} pellet blasting has been used extensively by commercial industries for general cleaning. However, using this method for decontamination of nuclear materials is a fairly new concept. The following report discusses the research and scoping tests completed on CO{sub 2} pellet blasting.

  2. Advanced technologies for decontamination and conversion of scrap metal

    SciTech Connect

    MacNair, V.; Muth, T.; Shasteen, K.; Liby, A.; Hradil, G.; Mishra, B.

    1996-12-31

    In October 1993, Manufacturing Sciences Corporation was awarded DOE contract DE-AC21-93MC30170 to develop and test recycling of radioactive scrap metal (RSM) to high value and intermediate and final product forms. This work was conducted to help solve the problems associated with decontamination and reuse of the diffusion plant barrier nickel and other radioactively contaminated scrap metals present in the diffusion plants. Options available for disposition of the nickel include decontamination and subsequent release or recycled product manufacture for restricted end use. Both of these options are evaluated during the course of this research effort. work during phase I of this project successfully demonstrated the ability to make stainless steel from barrier nickel feed. This paved the way for restricted end use products made from stainless steel. Also, after repeated trials and studies, the inducto-slag nickel decontamination process was eliminated as a suitable alternative. Electro-refining appeared to be a promising technology for decontamination of the diffusion plant barrier material. Goals for phase II included conducting experiments to facilitate the development of an electro-refining process to separate technetium from nickel. In parallel with those activities, phase II efforts were to include the development of the necessary processes to make useful products from radioactive scrap metal. Nickel from the diffusion plants as well as stainless steel and carbon steel could be used as feed material for these products.

  3. Resource Conservation and Recovery Act industrial site environmental restoration, site characterization plan: Area 6 Decontamination Pond Facility. Revision 1

    SciTech Connect

    1996-08-01

    This plan presents the strategy for the characterization of the Area 6 Decontamination Pond Facility at the Nevada Test Site which will be conducted for the US Department of Energy, Nevada Operations Office, Environmental Restoration Division. The objectives of the planned activities are to: obtain sufficient, sample analytical data from which further assessment, remediation, and/or closure strategies may be developed for the site; obtain sufficient, sample analytical data for management of investigation-derived waste. The scope of the characterization may include surface radiation survey(s), surface soil sampling, subsurface soil boring (i.e., drilling), and sampling of soil in and around the pond; in situ sampling of the soil within subsurface soil borings; and sample analysis for both site characterization and waste management purposes.

  4. Properties and solidification of decontamination wastes

    SciTech Connect

    Davis, M.S.; Piciulo, P.L.; Bowerman, B.S.; Adams, J.W.; Milian, L.

    1983-01-01

    LWRs will require one or more chemical decontaminations to achieve their designed lifetimes. Primary system decontamination is designed to lower radiation fields in areas where plant maintenance personnel must work. Chemical decontamination methods are either hard (concentrated chemicals, approximately 5 to 25 weight percent) or soft (dilute chemicals less than 1 percent by weight). These methods may have different chemical reagents, some tailor-made to the crud composition and many methods are and will be proprietary. One factor common to most commercially available processes is the presence of organic acids and chelates. These types of organic reagents are known to enhance the migration of radionuclides after disposal in a shallow land burial site. The NRC sponsors two programs at Brookhaven National Laboratory that are concerned with the management of decontamination wastes which will be generated by the full system decontamination of LWRs. These two programs focus on potential methods for degrading or converting decontamination wastes to more acceptable forms prior to disposal and the impact of disposing of solidified decontamination wastes. The results of the solidification of simulated decontamination resin wastes will be presented. Recent results on combustion of simulated decontamintion wastes will be described and procedures for evaluating the release of decontamination reagents from solidified wastes will be summarized.

  5. Proceedings of the concrete decontamination workshop

    SciTech Connect

    Halter, J.M.; Sullivan, R.G.; Currier, A.J.

    1980-05-28

    Fourteen papers were presented. These papers describe concrete surface removal methods and equipment, as well as experiences in decontaminating and removing both power and experimental nuclear reactors.

  6. Resource Conservation and Recovery Act corrective measures study: Area 6 decontamination pond facility, corrective action unit no. 92

    SciTech Connect

    1997-10-01

    Corrective Action Unit (CAU) No. 92, the Area 6 Decontamination Pond Facility (DPF), is an historic disposal unit located at the Nevada Test Site (NTS) in Nye County, Nevada (Figures 1 - 1, 1-2, and 1-3). The NTS is operated by the U.S. Department of Energy, Nevada Operations Office (DOE/NV), which has been required by the Nevada Division of Environmental Protection (NDEP) to characterize the DPF under the requirements of the Resource Conservation and Recovery Act (RCRA) Part A Permit (NDEP, 1995) for the NTS and Title 40 Code of Federal Regulations (CFR) Part 265 (1996c). The DPF is prioritized in the Federal Facility Agreement and Consent Order (FFACO, 1996) but is governed by the permit. The DPF was characterized through sampling events in 1994, 1996, and 1997. The results of these sampling events are contained in the Final Resource Conservation and Recovery Act Industrial Site Environmental Restoration Site Characterization Report, Area 6 Decontamination Pond Facility, Revision I (DOE/NV, 1997). This Corrective Measures Study (CMS) for the Area 6 DPF has been prepared for the DOE/NV`s Environmental Restoration Project. The CMS has been developed to support the preparation of a Closure Plan for the DPF. Because of the complexities of the contamination and regulatory issues associated with the DPF, DOE/NV determined a CMS would be beneficial to the evaluation and selection of a closure alternative.

  7. Chemical decontamination technical resources at Los Alamos National Laboratory (2008)

    SciTech Connect

    Moore, Murray E

    2008-01-01

    This document supplies information resources for a person seeking to create planning or pre-planning documents for chemical decontamination operations. A building decontamination plan can be separated into four different sections: Pre-planning, Characterization, Decontamination (Initial response and also complete cleanup), and Clearance. Of the identified Los Alamos resources, they can be matched with these four sections: Pre-planning -- Dave Seidel, EO-EPP, Emergency Planning and Preparedness; David DeCroix and Bruce Letellier, D-3, Computational fluids modeling of structures; Murray E. Moore, RP-2, Aerosol sampling and ventilation engineering. Characterization (this can include development projects) -- Beth Perry, IAT-3, Nuclear Counterterrorism Response (SNIPER database); Fernando Garzon, MPA-11, Sensors and Electrochemical Devices (development); George Havrilla, C-CDE, Chemical Diagnostics and Engineering; Kristen McCabe, B-7, Biosecurity and Public Health. Decontamination -- Adam Stively, EO-ER, Emergency Response; Dina Matz, IHS-IP, Industrial hygiene; Don Hickmott, EES-6, Chemical cleanup. Clearance (validation) -- Larry Ticknor, CCS-6, Statistical Sciences.

  8. Pesticides water decontamination in oxygen-limited conditions.

    PubMed

    Suciu, Nicoleta Alina; Ferrari, Federico; Vasileiadis, Sotirios; Merli, Annalisa; Capri, Ettore; Trevisan, Marco

    2013-01-01

    This study was undertaken to develop a laboratory bioreactor, with a functioning principle similar with that of biobed systems but working in oxygen-limited conditions, suitable for decontaminating wastewater mixtures with pesticides. The system is composed by two cylindrical plastic containers. The first one, where the pesticides solution is collected, is open, whereas the second one, where the biomass is disposed, is closed. The pesticides solution was pumped at the biomass surface and subsequently recollected and disposed in the first container. Four pesticides with different physical-chemical characteristics were tested. The results obtained showed a relatively good capacity of the developed prototype to decontaminate waste water containing the mixture of pesticides. The time of the experiment, the number of cycles that the solution made in the system and the environmental temperature have a significantly influence for the decontamination of acetochlor and chlorpyrifos whereas for the decontamination of terbuthylazine and metalaxyl no significant influence was observed. Even if the present prototype could represent a valid solution to manage the water pesticides residues in a farm and to increase the confidence of bystanders and residents, the practical difficulties when replacing the biomass could represent a limit of the system.

  9. Phytochrome-mediated regulation of cell division and growth during regeneration and sporeling development in the liverwort Marchantia polymorpha.

    PubMed

    Nishihama, Ryuichi; Ishizaki, Kimitsune; Hosaka, Masashi; Matsuda, Yoriko; Kubota, Akane; Kohchi, Takayuki

    2015-05-01

    Light regulates various aspects of development throughout the life cycle of sessile land plants. Photoreceptors, such as the red (R) and far-red (FR) light receptors phytochromes, play pivotal roles in modulating developmental programs. Reflecting high developmental plasticity, plants can regenerate tissues, organs, and whole bodies from varieties of cells. Among land plants, bryophytes exhibit extraordinary competency of regeneration under hormone-free conditions. As an environmental factor, light plays critical roles in regeneration of bryophytes. However, how light regulates regeneration remains unknown. Here we show that using the liverwort Marchantia polymorpha, which contains a single phytochrome gene, the phytochrome regulates re-entry into the cell cycle and cell shape in newly regenerating tissues. Our morphological and cytological observations revealed that S-phase entry of G1-arrested epidermal cells around the midrib on the ventral surface of thallus explants was greatly retarded in the dark or under phytochrome-inactive R/FR cycle irradiation conditions, where, nevertheless, small, laterally narrow regenerants were eventually formed. Thus, consistent with earlier descriptions published over a century ago, light is not essential for, but exerts profound effects on regeneration in M. polymorpha. Ventral cells in regenerants grown under R/FR cycle conditions were longer and narrower than those under R cycle. Expression of a constitutively active mutant of M. polymorpha phytochrome allowed regeneration of well grown, widely expanded thalli even in the dark when sugar was supplied, further demonstrating that the phytochrome signal promotes cell proliferation, which is rate-limited by sucrose availability. Similar effects of R and FR irradiation on cell division and elongation were observed in sporelings as well. Thus, besides activation of photosynthesis, major roles of R in regeneration of M. polymorpha are to facilitate proliferation of rounder cells

  10. Materials Science and Technology (MST) Division, Nuclear Materials Process Technology Group (MST-12), chemical process research and development report

    SciTech Connect

    Clifton, D.G.

    1984-04-01

    A process for the recovery of plutonium and americium from molten salt extraction (MSE) salt residues has been demonstrated. It is based upon a new chloride anion-exchange process at low acidity that eliminates corrosive HCl fumes. The Los Alamos americium oxide production line has been improved to give more product with a concurrent lowering of personnel radiation exposure. A cost study has been made for the disposal of americium-contaminated calcium metal buttons that were obtained by pyrochemical recovery of plutonium from MSE salts. The waste form used in the study conforms to WIPP-Facility standards and current state-of-the-art radioactive waste disposal. The cost estimate is approx. $300/g /sup 241/Am. Plutonium decontamination factors of approx. 300 have been obtained from lead-platinum alloy dissolution experiments carried out in alumina crucibles using lead oxide slag to getter the plutonium.

  11. Transition and Skills Development through Education, Training and Work Experiences: A Follow-up Study, Seven Oaks School Division.

    ERIC Educational Resources Information Center

    Taylor, Lynn; Simpson, Wayne; McClure, Karen; Graham, Barbara; Levin, Benjamin

    A Canadian study of the school-to-work transition followed students enrolled in grade 11 in 1990 (n=177), 1992 (n=172), and 1994 (n=347) in Seven Oaks School Division's three high schools. Based largely on questions from the Statistics Canada (SC) School Leavers Survey and SC Graduates Study (1997), the telephone survey focused on these elements:…

  12. Metal decontamination for waste minimization using liquid metal refining technology

    SciTech Connect

    Joyce, E.L. Jr.; Lally, B.; Ozturk, B.; Fruehan, R.J.

    1993-09-01

    The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species.

  13. Chemical and Laser Sciences Division annual report 1989

    SciTech Connect

    Haines, N.

    1990-06-01

    The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions.

  14. Managing mass casualties and decontamination.

    PubMed

    Chilcott, Robert P

    2014-11-01

    Careful planning and regular exercising of capabilities is the key to implementing an effective response following the release of hazardous materials, although ad hoc changes may be inevitable. Critical actions which require immediate implementation at an incident are evacuation, followed by disrobing (removal of clothes) and decontamination. The latter can be achieved through bespoke response facilities or various interim methods which may utilise water or readily available (dry, absorbent) materials. Following transfer to a safe holding area, each casualty's personal details should be recorded to facilitate a health surveillance programme, should it become apparent that the original contaminant has chronic health effects.

  15. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.L.; SenGupta, A.K.; Yachmenev, V.

    1996-12-31

    ELECTROSORB Electrokinetic Extraction Technology, developed by ISOTRON Corp., offers a cost-effective approach to treating contaminated concrete. Heavy metals/radionuclides trapped in concrete can be extracted using this process if they are chemically solubilized; solubilizers used are citric acid alone and a mixture of citric and nitric acids. A DC electric field is applied across the contaminated concrete to electrokinetically transport the solubilized contaminants from the concrete pores to a collector on the concrete surface. The collector is an extraction pad laid on the surface. The pad provides confinement for a planar electrode and solubilizer solution; it is operated under a vacuum to hold the pad against the concrete surface. Operation requires little attendance, reducing the workers` health hazards. The process incorporates a mechanism for recycling the solubilizer solution. A field demonstration of the process took place in Building 21 of DOE`s Mound facility in Miamisburg, OH, over 12 days in June 1996. The thorium species present in this building`s concrete floors included ThO{sub 2} and thorium oxalate. The nitric acid was found to facilitate Th extraction.

  16. DISPOSAL OF RESIDUES FROM BUILDING DECONTAMINATION ACTIVITIES

    EPA Science Inventory

    After a building has gone through decontamination activities from a chemical attack there will be a significant amount of building decontamination residue that will need to undergo disposal. This project consists of a fundamental study to investigate the desorption of simulated c...

  17. 40 CFR 170.250 - Decontamination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mixing site. (2) Exception for pilots. Decontamination supplies for a pilot who is applying pesticides... in remote areas. When handling activities are performed more than 1/4 mile from the nearest place of..., streams, lakes, or other sources for decontamination at the remote work site, if such water is...

  18. 40 CFR 170.250 - Decontamination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... mixing site. (2) Exception for pilots. Decontamination supplies for a pilot who is applying pesticides... in remote areas. When handling activities are performed more than 1/4 mile from the nearest place of..., streams, lakes, or other sources for decontamination at the remote work site, if such water is...

  19. 40 CFR 170.250 - Decontamination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... mixing site. (2) Exception for pilots. Decontamination supplies for a pilot who is applying pesticides... in remote areas. When handling activities are performed more than 1/4 mile from the nearest place of..., streams, lakes, or other sources for decontamination at the remote work site, if such water is...

  20. 40 CFR 170.250 - Decontamination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... mixing site. (2) Exception for pilots. Decontamination supplies for a pilot who is applying pesticides... in remote areas. When handling activities are performed more than 1/4 mile from the nearest place of..., streams, lakes, or other sources for decontamination at the remote work site, if such water is...

  1. Testing and evaluation of eight decontamination chemicals

    SciTech Connect

    Demmer, R.

    1994-09-01

    This report covers experimental work comparing eight different decontamination chemicals. Seven of these chemicals have some novelty, or are not currently in use at the ICPP. The eighth is a common ICPP decontamination reagent used as a baseline for effective comparison. Decontamination factors, waste generation values, and corrosion rates are tabulated for these chemicals. Recommendations are given for effective methods of non-sodium or low-sodium decontamination chemicals. The two most effective chemical for decontamination found in these test were a dilute hydrofluoric and nitric acid (HF/HNO{sub 3}) mixture and a fluoroboric acid solution. The fluoroboric acid solution (1 molar) was by far the most effective decontamination reagent, but suffered the problem of generating significant final calcine volume. The HF/HNO{sub 3} solution performed a very good decontamination of the SIMCON coupons while generating only small amounts of calcine volume. Concentration variables were also tested, and optimized for these two solutions. Several oxidation/reduction decon chemical systems were also tested. These systems were similar to the TURCO 4502 and TURCO 4521 solutions used for general decontamination at the ICPP. A low sodium alternative, nitric acid/potassium permanganate, to the ``high sodium`` TURCO 4502 was tested extensively, optimized and recommended for general ICPP use. A reductive chemical solution, oxalic acid/nitric acid was also shown to have significant advantages.

  2. The ROVCO2 surface decontamination system

    SciTech Connect

    Resnick, A.M.; Reed, M.; Lopez-Yanes, O.

    1996-12-31

    DOE needs to decontaminated over one million square feet of nuclear contaminated concrete surfaces. The 1000 lb ROVCO2 system, which automates blasting functions and eliminates secondary blasting waste, integrates a remotely operated vehicle and an enhanced commercial CO{sub 2} blasting system with an Oceaneering-developed work arm and control system. The remote operation protects the operation from contamination and supports functional automation of tedious tasks. The blasting system shoots pellets of dry ice propelled by pressurized gas at the surface to be cleaned. Impact of the pellets fractures and scales off a layer of the contaminated surface. At impact, the pellets return to a gaseous state which is vacuumed up with the debris. The CO{sub 2} gas and debris are passed through the vacuum filter, leaving only the removed material for waste disposal. Phase 2 testing achieved nearly all of the success criteria, with the exception of the commercial workhead`s performance.

  3. Psychosocial considerations for mass decontamination.

    PubMed

    Lemyre, Louise; Johnson, Colleen; Corneil, Wayne

    2010-11-01

    Mass exposure to explosions, infectious agents, foodborne illnesses, chemicals or radiological materials may require mass decontamination that have critical psychosocial implications for the public and for both traditional and non-traditional responders in terms of impact and of response. Five main issues are common to mass decontamination events: (i) perception, (ii) somatisation, (iii) media role and communication, (iv) information sharing, (v) behavioural guidance and (vi) organisational issues. Empirical evidence is drawn from a number of cases, including Chernobyl; Goiania, Brazil; the sarin gas attack in Tokyo; the anthrax attacks in the USA; Three Mile Island; and by features of the 2003 severe acute respiratory syndrome pandemic. In this paper, a common platform for mass casualty management is explored and suggestions for mass interventions are proposed across the complete event timeline, from pre-event threat and warning stages through to the impact and reconstruction phases. Implication for responders, healthcare and emergency infrastructure, public behaviour, screening processes, risk communication and media management are described. PMID:20924122

  4. Psychosocial considerations for mass decontamination.

    PubMed

    Lemyre, Louise; Johnson, Colleen; Corneil, Wayne

    2010-11-01

    Mass exposure to explosions, infectious agents, foodborne illnesses, chemicals or radiological materials may require mass decontamination that have critical psychosocial implications for the public and for both traditional and non-traditional responders in terms of impact and of response. Five main issues are common to mass decontamination events: (i) perception, (ii) somatisation, (iii) media role and communication, (iv) information sharing, (v) behavioural guidance and (vi) organisational issues. Empirical evidence is drawn from a number of cases, including Chernobyl; Goiania, Brazil; the sarin gas attack in Tokyo; the anthrax attacks in the USA; Three Mile Island; and by features of the 2003 severe acute respiratory syndrome pandemic. In this paper, a common platform for mass casualty management is explored and suggestions for mass interventions are proposed across the complete event timeline, from pre-event threat and warning stages through to the impact and reconstruction phases. Implication for responders, healthcare and emergency infrastructure, public behaviour, screening processes, risk communication and media management are described.

  5. Division 1137 property control system

    SciTech Connect

    Pastor, D.J.

    1982-01-01

    An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

  6. Take a Bite out of Fraction Division

    ERIC Educational Resources Information Center

    Cengiz, Nesrin; Rathouz, Margaret

    2011-01-01

    Division of fractions is often considered the most mechanical and least understood topic in elementary school. Enacting fraction division tasks in meaningful ways requires that teachers know not only "how" fraction division works but also "why" it works. The authors have created materials to help preservice teachers develop that knowledge. To…

  7. Treatability studies for decontamination of Melton Valley Storage Tank supernate

    SciTech Connect

    Arnold, W.D.; Fowler, V.L.; Perona, J.J.; McTaggart, D.R.

    1992-08-01

    Liquid low-level waste, primarily nitric acid contaminated with radionuclides and minor concentrations of organics and heavy metals, is neutralized with sodium hydroxide, concentrated by evaporation, and stored for processing and disposal. The evaporator concentrate separates into sludge and supernate phases upon cooling. The supernate is 4 to 5 mol/L sodium nitrate contaminated with soluble radionuclides, principally {sup 137}Cs, {sup 90}Sr, and {sup 14}C, while the sludge consists of precipitated carbonates and hydroxides of metals and transuranic elements. Methods for treatment and disposal of this waste are being developed. In studies to determine the feasibility of removing {sup 137}Cs from the supernates before solidification campaigns, batch sorption measurements were made from four simulated supernate solutions with four different samples of potassium hexacyanocobalt ferrate (KCCF). Cesium decontamination factors of 1 to 8 were obtained with different KCCF batches from a highly-salted supernate at pH 13. Decontamination factors as high as 50 were measured from supernates with lower salt content and pH, in fact, the pH had a greater effect than the solution composition on the decontamination factors. The decontamination factors were highest after 1 to 2 d of mixing and decreased with longer mixing times due to decomposition of the KCCF in the alkaline solution. The decontamination factors decreased with settling time and were lower for the same total contact time (mixing + settling) for the longer mixing times, indicating more rapid KCCF decomposition during mixing than during settling. There was no stratification of cesium in the tubes as the KCCF decomposed.

  8. Plasma Decontamination of Space Equipment for Planetary Protection

    NASA Astrophysics Data System (ADS)

    Thomas, Hubertus; Barczyk, Simon; Rettberg, Petra; Shimizu, Satoshi; Shimizu, Tetsuji; Klaempfl, Tobias; Morfill, Gregor; Zimmermann, Julia; Weber, Peter

    The search for extraterrestrial life is one of the most challenging science topics for the next decades. Space missions, like ExoMars, plan to land and search for biological remnants on planets and moons in our nearby Solar system. Planetary protection regulations defined by COSPAR prevent that during the mission biological contamination of the bodies occur through the space probes. Therefore decontamination of the probes and more general space equipment is necessary before the launch. The up-to-date accepted decontamination procedure originate from the old NASA Viking missions and use dry heat (T>110°C for 30h) - a technology not well suited for sensitive equipment nowadays. We investigated in a study financed by the German Space Agency* cold atmospheric plasma (CAP) as an alternative for such decontamination. It is well known that CAP can kill bacteria or spores within seconds or minutes, respectively, if the plasma is in direct contact with the treated sample. This procedure might also be quite aggressive to the treated surface materials. Therefore, we developed an afterglow CAP device specially designed for the soft treatment of space equipment. Afterglow plasma produced by a SMD device in air is transported into a “larger” treatment chamber where the samples are positioned. It could be shown that samples of different bacteria and spores, the latter defined by COSPAR as a means to show the effectiveness of the decontamination process, positioned on different materials (steel, Teflon, quartz) could be effectively inactivated. The surface materials were investigated after the plasma treatment to identify etching or deposition problems. The afterglow in the treatment chamber could even overcome obstacles (tubes of different height and diameter) which simulate more complicated structures of the relevant surfaces. Up to now, CAP looks like a quite promising alternative to decontaminate space equipment and need to be studied in greater detail in the near future

  9. E-Division activities report

    SciTech Connect

    Barschall, H.H.

    1983-07-01

    This report describes some of the activities in E (Experimental Physics) Division during the past year. E-division carries out research and development in areas related to the missions of the Laboratory. Many of the activities are in pure and applied atomic and nuclear physics and in materials science. In addition, this report describes development work on accelerators and on instrumentation for plasma diagnostics, nitrogen exchange rates in tissue, and breakdown in gases by microwave pulses.

  10. The feasibility study of hot cell decontamination by the PFC spray method

    SciTech Connect

    Hui-Jun Won; Chong-Hun Jung; Jei-Kwon Moon

    2008-01-15

    The characteristics of per-fluorocarbon compounds (PFC) are colorless, non-toxic, easily vaporized and nonflammable. Also, some of them are liquids of a high density, low surface tension, low latent heat and low specific heat. These particular chemical and physical properties of fluoro-organic compounds permit their use in very different fields such as electronics, medicine, tribology, nuclear and material science. The Sonatol process was developed under a contract with the DOE. The Sonatol process uses an ultrasonic agitation in a PFC solution that contains a fluorinated surfactant to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to be reused indefinitely. They applied the Sonatol process to the decontamination of a heterogeneous legacy Pu-238 waste that exhibited an excessive hydrogen gas generation, which prevents a transportation of such a waste to a Waste Isolation Pilot Plant. Korea Atomic Energy Research Institute (KAERI) is developing dry decontamination technologies applicable to a decontamination of a highly radioactive area loosely contaminated with radioactive particles. This contamination has occurred as a result of an examination of a post-irradiated material or the development of the DUPIC process. The dry decontamination technologies developed are the carbon dioxide pellet spray method and the PFC spray method. As a part of the project, PFC ultrasonic decontamination technology was developed in 2004. The PFC spray decontamination method which is based on the test results of the PFC ultrasonic method has been under development since 2005. The developed PFC spray decontamination equipment consists of four modules (spray, collection, filtration and distillation). Vacuum cup of the collection module gathers the contaminated PFC solution, then the solution is moved to the filtration module and it is recycled. After a multiple recycling of the spent PFC solution, it is purified in the distillation

  11. Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes.

    PubMed

    Jacquet, Pauline; Daudé, David; Bzdrenga, Janek; Masson, Patrick; Elias, Mikael; Chabrière, Eric

    2016-05-01

    Organophosphorus chemicals are highly toxic molecules mainly used as pesticides. Some of them are banned warfare nerve agents. These compounds are covalent inhibitors of acetylcholinesterase, a key enzyme in central and peripheral nervous systems. Numerous approaches, including chemical, physical, and biological decontamination, have been considered for developing decontamination methods against organophosphates (OPs). This work is an overview of both validated and emerging strategies for the protection against OP pollution with special attention to the use of decontaminating enzymes. Considerable efforts have been dedicated during the past decades to the development of efficient OP degrading biocatalysts. Among these, the promising biocatalyst SsoPox isolated from the archaeon Sulfolobus solfataricus is emphasized in the light of recently published results. This hyperthermostable enzyme appears to be particularly attractive for external decontamination purposes with regard to both its catalytic and stability properties. PMID:26832878

  12. Phase 2 microwave concrete decontamination results

    SciTech Connect

    White, T.L.; Foster, D. Jr.; Wilson, C.T.; Schaich, C.R.

    1995-04-01

    The authors report on the results of the second phase of a four-phase program at Oak Ridge National Laboratory to develop a system to decontaminate concrete using microwave energy. The microwave energy is directed at the concrete surface through the use of an optimized wave guide antenna, or applicator, and this energy rapidly heats the free water present in the interstitial spaces of the concrete matrix. The resulting steam pressure causes the surface to burst in much the same way popcorn pops in a home microwave oven. Each steam explosion removes several square centimeters of concrete surface that are collected by a highly integrated wave guide and vacuum system. The authors call this process the microwave concrete decontamination, or MCD, process. In the first phase of the program the principle of microwaves concrete removal concrete surfaces was demonstrated. In these experiments, concrete slabs were placed on a translator and moved beneath a stationary microwave system. The second phase demonstrated the ability to mobilize the technology to remove the surfaces from concrete floors. Area and volume concrete removal rates of 10.4 cm{sup 2}/s and 4.9 cm{sup 3}/S, respectively, at 18 GHz were demonstrated. These rates are more than double those obtained in Phase 1 of the program. Deeper contamination can be removed by using a longer residence time under the applicator to create multiple explosions in the same area or by taking multiple passes over previously removed areas. Both techniques have been successfully demonstrated. Small test sections of painted and oil-soaked concrete have also been removed in a single pass. Concrete with embedded metal anchors on the surface has also been removed, although with some increased variability of removal depth. Microwave leakage should not pose any operational hazard to personnel, since the observed leakage was much less than the regulatory standard.

  13. Fighting Ebola with novel spore decontamination technologies for the military

    SciTech Connect

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; Olinger, Gene G.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrance

    2015-08-12

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. Here, we present the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical

  14. Fighting Ebola with novel spore decontamination technologies for the military.

    PubMed

    Doona, Christopher J; Feeherry, Florence E; Kustin, Kenneth; Olinger, Gene G; Setlow, Peter; Malkin, Alexander J; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC's novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  15. Fighting Ebola with novel spore decontamination technologies for the military

    DOE PAGES

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; Olinger, Gene G.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrance

    2015-08-12

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as amore » dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. Here, we present the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of

  16. Fighting Ebola with novel spore decontamination technologies for the military

    PubMed Central

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; Olinger, Gene G.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  17. Physics division annual report 2006.

    SciTech Connect

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  18. A NEW APPROACH TO DEVELOPMENT OF VOLUNTARY DECOMISSIONING STANDARDS

    SciTech Connect

    Lawrence M. Zull; Richard H. Meservey; Lawrence E. Boing

    2007-09-01

    The purpose of the Decontamination, Decommissioning, and Reutilization (DDR) Division of the American Nuclear Society (ANS) is to advance the technology of decontamination, decommissioning, and reutilization of nuclear and former nuclear installations, materials, facilities, and sites [1]. This includes sharing collective decommissioning experiences and lessons learned with others in the industry. An integral part of the work of the DDR Division is the preparation of voluntary decommissioning standards through its recently re-established DDR Standards Committee. This Committee intends to support development of various standards with other divisions of the ANS. The Committee also intends to participate with external organizations to disseminate information and lessons learned regarding decontamination activities, and participate in the development of voluntary decommissioning standards. External organizations, such as ASTM International, are involved in the development of consensus standards for nuclear decommissioning work. This paper describes the work of the DDR Standards Committee on a new co-operative initiative with ASTM International to develop voluntary consensus standards for nuclear decommissioning work.

  19. The use of chemical gel for decontamination during decommissioning of nuclear facilities

    NASA Astrophysics Data System (ADS)

    Gurau, Daniela; Deju, Radu

    2015-01-01

    A technical research study was developed for testing the decontamination using chemical gels. The study was realized for different type of samples, systems often encountered in the VVR-S nuclear research reactor from Magurele-Romania. The results obtained in the study have demonstrated that the decontamination gels could be an efficient way to reduce or to eliminate the surface contamination of buildings or equipment's, minimizing the potential for spreading contamination during decommissioning activities.

  20. Summary of decontamination cover manufacturing experience

    SciTech Connect

    Ulrich, G.B.; Berry, H.W.

    1995-02-01

    Decontamination cover forming cracks and vent cup assembly leaks through the decontamination covers were early manufacturing problems. The decontamination cover total manufacturing process yield was as low as 55%. Applicable tooling and procedures were examined. All manufacturing steps from foil fabrication to final assembly leak testing were considered as possible causes or contributing factors to these problems. The following principal changes were made to correct these problems: (1) the foil annealing temperature was reduced from 1375{degrees} to 1250{degrees}C, (2) the decontamination cover fabrication procedure (including visual inspection for surface imperfections and elimination of superfluous operations) was improved, (3) the postforming dye penetrant inspection procedure was revised for increased sensitivity, (4) a postforming (prewelding) 1250{degrees}C/1 h vacuum stress-relief operation was added, (5) a poststress relief (prewelding) decontamination cover piece-part leak test was implemented, (6) the hold-down fixture used during the decontamination cover-to-cup weld was modified, and concomitantly, and (7) the foil fabrication process was changed from the extruding and rolling of 63-mm-diam vacuum arc-remelted ingots (extrusion process) to the rolling of 19-mm-square arc-melted drop castings (drop cast process). Since these changes were incorporated, the decontamination cover total manufacturing process yield has been 91 %. Most importantly, more than 99% of the decontamination covers welded onto vent cup assemblies were acceptable. The drastic yield improvement is attributed primarily to the change in the foil annealing temperature from 1375{degrees} to 1250{degrees}C and secondarily to the improvements in the decontamination cover fabrication procedure.

  1. Decontamination formulation with sorbent additive

    DOEpatents

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  2. Physico-Chemical Dynamics of Nanoparticle Formation during Laser Decontamination

    SciTech Connect

    Cheng, M.D.

    2005-06-01

    Laser-ablation based decontamination is a new and effective approach for simultaneous removal and characterization of contaminants from surfaces (e.g., building interior and exterior walls, ground floors, etc.). The scientific objectives of this research are to: (1) characterize particulate matter generated during the laser-ablation based decontamination, (2) develop a technique for simultaneous cleaning and spectroscopic verification, and (3) develop an empirical model for predicting particle generation for the size range from 10 nm to tens of micrometers. This research project provides fundamental data obtained through a systematic study on the particle generation mechanism, and also provides a working model for prediction of particle generation such that an effective operational strategy can be devised to facilitate worker protection.

  3. E-Division activities report

    SciTech Connect

    Barschall, H.H.

    1981-07-01

    This report describes some of the activities in E (Experimental Physics) Division during the past year. E-Division carries out research and development in areas related to the missions of the Laboratory. Many of the activities are in pure and applied atomic and nuclear physics and in material science. In addition this report describes work on accelerators, microwaves, plasma diagnostics, determination of atmospheric oxygen and of nitrogen in tissue.

  4. Pilot-scale decontamination solution test results HGTP-93-0702-02

    SciTech Connect

    Clemmer, R.G.; Allen, R.P.; Bagaasen, L.M.; Fetrow, L.K.

    1993-05-01

    Decontamination solution testing constitutes a task of the Hanford Grout Technology Program (HGTP) at Pacific Northwest Laboratory (PNL). The HGTP provides technical support to the Westinghouse Hanford Company (WHC) Grout Disposal Program. Cementitious grout has been identified as the waste form for low-level radioactive waste. Grout processing equipment, including mixers, pumps, and piping, will require periodic maintenance. Decontamination of components is needed to reduce radiation dose to maintenance workers. The purpose of this work was to develop and test methods for decontaminating grout processing equipment. The proposed method of decontamination is to use a mild chemical solution, such as a 6 N citric acid to dissolve the grout. The method should effectively remove grout without causing degradation of grout processing equipment.

  5. A DECONTAMINATION PROCESS FOR METAL SCRAPS FROM THE DECOMMISSIONING OF TRR

    SciTech Connect

    Wei, T.Y.; Gan, J.S.; Lin, K.M.; Chung, Z.J.

    2003-02-27

    A decontamination facility including surface condition categorizing, blasting, chemical/electrochemical cleaning, very low radioactivity measuring, and melting, is being established at INER. The facility will go into operation by the end of 2004. The main purpose is to clean the dismantled metal wastes from the decommissioning of Taiwan Research Reactor (TRR). The pilot test shows that over 70% of low level metal waste can be decontaminated to very low activity and can be categorized as BRC (below regulatory concern) waste. All the chemical decontamination technologies applied are developed by INER. In order to reduce the secondary wastes, chemical reagents will be regenerated several times with a selective precipitation method. The exhausted chemical reagent will be solidified with INER's patented process. The total secondary waste is estimated about 0.1-0.3 wt.% of the original waste. This decontamination process is accessed to be economic and feasible.

  6. Decontamination of Anthrax spores in critical infrastructure and critical assets.

    SciTech Connect

    Boucher, Raymond M.; Crown, Kevin K.; Tucker, Mark David; Hankins, Matthew Granholm

    2010-05-01

    Decontamination of anthrax spores in critical infrastructure (e.g., subway systems, major airports) and critical assets (e.g., the interior of aircraft) can be challenging because effective decontaminants can damage materials. Current decontamination methods require the use of highly toxic and/or highly corrosive chemical solutions because bacterial spores are very difficult to kill. Bacterial spores such as Bacillus anthracis, the infectious agent of anthrax, are one of the most resistant forms of life and are several orders of magnitude more difficult to kill than their associated vegetative cells. Remediation of facilities and other spaces (e.g., subways, airports, and the interior of aircraft) contaminated with anthrax spores currently requires highly toxic and corrosive chemicals such as chlorine dioxide gas, vapor- phase hydrogen peroxide, or high-strength bleach, typically requiring complex deployment methods. We have developed a non-toxic, non-corrosive decontamination method to kill highly resistant bacterial spores in critical infrastructure and critical assets. A chemical solution that triggers the germination process in bacterial spores and causes those spores to rapidly and completely change to much less-resistant vegetative cells that can be easily killed. Vegetative cells are then exposed to mild chemicals (e.g., low concentrations of hydrogen peroxide, quaternary ammonium compounds, alcohols, aldehydes, etc.) or natural elements (e.g., heat, humidity, ultraviolet light, etc.) for complete and rapid kill. Our process employs a novel germination solution consisting of low-cost, non-toxic and non-corrosive chemicals. We are testing both direct surface application and aerosol delivery of the solutions. A key Homeland Security need is to develop the capability to rapidly recover from an attack utilizing biological warfare agents. This project will provide the capability to rapidly and safely decontaminate critical facilities and assets to return them to

  7. Functional Characterization of the GATA Transcription Factors GNC and CGA1 Reveals Their Key Role in Chloroplast Development, Growth, and Division in Arabidopsis1[W][OA

    PubMed Central

    Chiang, Yi-Hsuan; Zubo, Yan O.; Tapken, Wiebke; Kim, Hyo Jung; Lavanway, Ann M.; Howard, Louisa; Pilon, Marinus; Kieber, Joseph J.; Schaller, G. Eric

    2012-01-01

    Chloroplasts develop from proplastids in a process that requires the interplay of nuclear and chloroplast genomes, but key steps in this developmental process have yet to be elucidated. Here, we show that the nucleus-localized transcription factors GATA NITRATE-INDUCIBLE CARBON-METABOLISM-INVOLVED (GNC) and CYTOKININ-RESPONSIVE GATA1 (CGA1) regulate chloroplast development, growth, and division in Arabidopsis (Arabidopsis thaliana). GNC and CGA1 are highly expressed in green tissues, and the phytohormone cytokinin regulates their expression. A gnc cga1 mutant exhibits a reduction in overall chlorophyll levels as well as in chloroplast size in the hypocotyl. Ectopic overexpression of either GNC or CGA1 promotes chloroplast biogenesis in hypocotyl cortex and root pericycle cells, based on increases in the number and size of the chloroplasts, and also results in expanded zones of chloroplast production into the epidermis of hypocotyls and cotyledons and into the cortex of roots. Ectopic overexpression also promotes the development of etioplasts from proplastids in dark-grown seedlings, subsequently enhancing the deetiolation process. Inducible expression of GNC demonstrates that GNC-mediated chloroplast biogenesis can be regulated postembryonically, notably so for chloroplast production in cotyledon epidermal cells. Analysis of the gnc cga1 loss-of-function and overexpression lines supports a role for these transcription factors in regulating the effects of cytokinin on chloroplast division. These data support a model in which GNC and CGA1 serve as two of the master transcriptional regulators of chloroplast biogenesis, acting downstream of cytokinin and mediating the development of chloroplasts from proplastids and enhancing chloroplast growth and division in specific tissues. PMID:22811435

  8. An Efficient Multistrategy DNA Decontamination Procedure of PCR Reagents for Hypersensitive PCR Applications

    PubMed Central

    Pruvost, Mélanie; Bennett, E. Andrew; Grange, Thierry; Geigl, Eva-Maria

    2010-01-01

    Background PCR amplification of minute quantities of degraded DNA for ancient DNA research, forensic analyses, wildlife studies and ultrasensitive diagnostics is often hampered by contamination problems. The extent of these problems is inversely related to DNA concentration and target fragment size and concern (i) sample contamination, (ii) laboratory surface contamination, (iii) carry-over contamination, and (iv) contamination of reagents. Methodology/Principal Findings Here we performed a quantitative evaluation of current decontamination methods for these last three sources of contamination, and developed a new procedure to eliminate contaminating DNA contained in PCR reagents. We observed that most current decontamination methods are either not efficient enough to degrade short contaminating DNA molecules, rendered inefficient by the reagents themselves, or interfere with the PCR when used at doses high enough to eliminate these molecules. We also show that efficient reagent decontamination can be achieved by using a combination of treatments adapted to different reagent categories. Our procedure involves γ- and UV-irradiation and treatment with a mutant recombinant heat-labile double-strand specific DNase from the Antarctic shrimp Pandalus borealis. Optimal performance of these treatments is achieved in narrow experimental conditions that have been precisely analyzed and defined herein. Conclusions/Significance There is not a single decontamination method valid for all possible contamination sources occurring in PCR reagents and in the molecular biology laboratory and most common decontamination methods are not efficient enough to decontaminate short DNA fragments of low concentration. We developed a versatile multistrategy decontamination procedure for PCR reagents. We demonstrate that this procedure allows efficient reagent decontamination while preserving the efficiency of PCR amplification of minute quantities of DNA. PMID:20927390

  9. Metal Surface Decontamination by the PFC Solution

    SciTech Connect

    Hui-Jun Won; Gye-Nam Kim; Wang-Kyu Choi; Chong-Hun Jung; Won-Zin Oh

    2006-07-01

    PFC (per-fluorocarbon) spray decontamination equipment was fabricated and its decontamination behavior was investigated. Europium oxide powder was mixed with the isotope solution which contains Co-60 and Cs-137. The different shape of metal specimens artificially contaminated with europium oxide powder was used as the surrogate contaminants. Before and after the application of the PFC spray decontamination method, the radioactivity of the metal specimens was measured by MCA. The decontamination factors were in the range from 9.6 to 62.4. The spent PFC solution was recycled by distillation. Before and after distillation, the turbidity of PFC solution was also measured. From the test results, it was found that more than 98% of the PFC solution could be recycled by a distillation. (authors)

  10. Testing and comparison of seventeen decontamination chemicals

    SciTech Connect

    Demmer, R.L.

    1996-09-01

    This report details the testing and evaluation of seventeen decontamination chemicals. Tests were conducted with SIMCON (simulated contamination) coupons under controlled conditions to compare cleaning effectiveness, overall corrosion potential for plant equipment, interim waste generation and final waste generation.

  11. Urban Decontamination Experience at Pripyat Ukraine - 13526

    SciTech Connect

    Paskevych, Sergiy; Voropay, Dmitry; Schmieman, Eric

    2013-07-01

    This paper describes the efficiency of radioactive decontamination activities of the urban landscape in the town of Pripyat, Ukraine. Different methods of treatment for various urban infrastructure and different radioactive contaminants are assessed. Long term changes in the radiation condition of decontaminated urban landscapes are evaluated: 1. Decontamination of the urban system requires the simultaneous application of multiple methods including mechanical, chemical, and biological. 2. If a large area has been contaminated, decontamination of local areas of a temporary nature. Over time, there is a repeated contamination of these sites due to wind transport from neighboring areas. 3. Involvement of earth-moving equipment and removal of top soil by industrial method achieves 20-fold reduction in the level of contamination by radioactive substances, but it leads to large amounts of waste (up to 1500 tons per hectare), and leads to the re-contamination of treated areas due to scatter when loading, transport pollutants on the wheels of vehicles, etc.. (authors)

  12. Decontamination of laryngoscopes in The Netherlands.

    PubMed

    Bucx, M J; Dankert, J; Beenhakker, M M; Harrison, T E

    2001-01-01

    In this study the decontamination procedures of laryngoscopes in Dutch hospitals are described, based on a structured telephone questionnaire. There were substantial differences between decontamination procedures in Dutch hospitals and the standards of the APIC (Association of Professionals in Infection Control and Epidemiology), CDC (Centers of Disease Control) and ASA (American Society of Anesthesiology) were met in full in 19.4% of the hospitals. The standards of manual decontamination, used in 78% of the 139 hospitals, were particularly disappointing; manual cleaning was considered inadequate in 22.9% of these hospitals and manual disinfection did not meet the standards of the APIC, CDC or ASA in any of these hospitals. Decontamination by instrument cleaning machines as a standard procedure was used in 30 (22%) hospitals. In three of these hospitals the blades were subsequently sterilized. We suggest adherence to the infection control guidelines of the CDC, APIC and ASA, until the safety of less conservative infection control practices are demonstrated.

  13. Skin decontamination of commonly used medical radionuclides.

    PubMed

    Moore, P H; Mettler, F A

    1980-05-01

    The increasing use of radionuclides in medical diagnosis raises the possibility of accidental spills and skin contamination. This study was performed to evaluate the effectiveness of several decontaminating agents. Most nuclides were easily removed to levels of less than 5% of their original activity. Sodium pertechnetate (Tc-99m) was the most difficult compound to remove. Little difference was found between the effectiveness of tap water, soap and water, and two commercially available decontaminating agents.

  14. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    DOEpatents

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  15. Plutonium decontamination studies using Reverse Osmosis

    SciTech Connect

    Plock, C.E.; Travis, T.N.

    1980-06-17

    Water in batches of 45 gallons each, from a creek crossing the Rocky Flats Plant, was transferred to the Reverse Osmosis (RO) laboratory for experimental testing. The testing involved using RO for plutonium decontamination. For each test, the water was spiked with plutonium, had its pH adjusted, and was then processed by RO. At a water recovery level of 87%, the plutonium decontamination factors ranged from near 100 to 1200, depending on the pH of the processed water.

  16. Decontamination and disposal of PCB wastes.

    PubMed Central

    Johnston, L E

    1985-01-01

    Decontamination and disposal processes for PCB wastes are reviewed. Processes are classed as incineration, chemical reaction or decontamination. Incineration technologies are not limited to the rigorous high temperature but include those where innovations in use of oxident, heat transfer and residue recycle are made. Chemical processes include the sodium processes, radiant energy processes and low temperature oxidations. Typical processing rates and associated costs are provided where possible. PMID:3928363

  17. Decontaminating breast pump kits: new guidance.

    PubMed

    Oxtoby, Kathy

    Various methods can be used to decontaminate breast pump milk collection kits and items related to infant feeding but they have some drawbacks and risks. In 2015, the Joint Working Group of the Healthcare Infection Society and Infection Prevention Society published guidance to support the safe decontamination of this equipment at home and in hospital. This article summarises its recommendations for health professionals to use and communicate to other groups, such as parents and carers. PMID:27400623

  18. Auxin Import and Local Auxin Biosynthesis Are Required for Mitotic Divisions, Cell Expansion and Cell Specification during Female Gametophyte Development in Arabidopsis thaliana

    PubMed Central

    Panoli, Aneesh; Martin, Maria Victoria; Alandete-Saez, Monica; Simon, Marissa; Neff, Christina; Swarup, Ranjan; Bellido, Andrés; Yuan, Li; Pagnussat, Gabriela C.; Sundaresan, Venkatesan

    2015-01-01

    The female gametophyte of flowering plants, called the embryo sac, develops from a haploid cell named the functional megaspore, which is specified after meiosis by the diploid sporophyte. In Arabidopsis, the functional megaspore undergoes three syncitial mitotic divisions followed by cellularization to form seven cells of four cell types including two female gametes. The plant hormone auxin is important for sporophytic developmental processes, and auxin levels are known to be regulated by biosynthesis and transport. Here, we investigated the role of auxin biosynthetic genes and auxin influx carriers in embryo sac development. We find that genes from the YUCCA/TAA pathway (YUC1, YUC2, YUC8, TAA1, TAR2) are expressed asymmetrically in the developing ovule and embryo sac from the two-nuclear syncitial stage until cellularization. Mutants for YUC1 and YUC2 exhibited defects in cell specification, whereas mutations in YUC8, as well as mutations in TAA1 and TAR2, caused defects in nuclear proliferation, vacuole formation and anisotropic growth of the embryo sac. Additionally, expression of the auxin influx carriers AUX1 and LAX1 were observed at the micropylar pole of the embryo sac and in the adjacent cells of the ovule, and the aux1 lax1 lax2 triple mutant shows multiple gametophyte defects. These results indicate that both localized auxin biosynthesis and auxin import, are required for mitotic divisions, cell expansion and patterning during embryo sac development. PMID:25970627

  19. Stochastic flow shop scheduling of overlapping jobs on tandem machines in application to optimizing the US Army's deliberate nuclear, biological, and chemical decontamination process, (final report). Master's thesis

    SciTech Connect

    Novikov, V.

    1991-05-01

    The U.S. Army's detailed equipment decontamination process is a stochastic flow shop which has N independent non-identical jobs (vehicles) which have overlapping processing times. This flow shop consists of up to six non-identical machines (stations). With the exception of one station, the processing times of the jobs are random variables. Based on an analysis of the processing times, the jobs for the 56 Army heavy division companies were scheduled according to the best shortest expected processing time - longest expected processing time (SEPT-LEPT) sequence. To assist in this scheduling the Gap Comparison Heuristic was developed to select the best SEPT-LEPT schedule. This schedule was then used in balancing the detailed equipment decon line in order to find the best possible site configuration subject to several constraints. The detailed troop decon line, in which all jobs are independent and identically distributed, was then balanced. Lastly, an NBC decon optimization computer program was developed using the scheduling and line balancing results. This program serves as a prototype module for the ANBACIS automated NBC decision support system.... Decontamination, Stochastic flow shop, Scheduling, Stochastic scheduling, Minimization of the makespan, SEPT-LEPT Sequences, Flow shop line balancing, ANBACIS.

  20. Hand decontamination practices in paediatric wards.

    PubMed

    Jelly, S; Tjale, A

    2003-12-01

    The purpose of this study was to determine and describe hand decontamination practices of health care professionals in the paediatric wards of an academic hospital in Johannesburg. The purpose was addressed within a survey design and through the use of descriptive and comparative methods. Data were collected through direct observation conducted with the use of a researcher-administered checklist. A sample of sixty-six health professionals was obtained through convenience sampling. Results indicated that significantly fewer health professionals did not decontaminate their hands on entering the ward (16.6%), prior to making patient contact (34.8%) and prior to donning gloves (9.1%). Significantly more health professionals did decontaminate their hands following contact with the patient (63.6%) and following removal of gloves (77.8%). More health professional did not wash their hands after leaving the ward (51.5%). More than half (57.6%) of the health professionals who decontaminate their hands used the correct hand washing technique. Compliance with standard hand decontamination practices of health professionals was found to be poor with only 83.4% of health professionals decontaminating their hands at the start of work.

  1. Nuclear reactor cooling system decontamination reagent regeneration

    DOEpatents

    Anstine, Larry D.; James, Dean B.; Melaika, Edward A.; Peterson, Jr., John P.

    1985-01-01

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  2. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    SciTech Connect

    Wilson, K.L.

    1985-10-01

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)

  3. Mobile workstation for decontamination and decommissioning operations

    SciTech Connect

    Whittaker, W.L.; Osborn, J.F.; Thompson, B.R.

    1993-10-01

    This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The project has three phases. In this the first phase, an existing teleoperated worksystem, the Remote Work Vehicle (developed for use in the Three Mile Island Unit 2 Reactor Building basement), was enhanced for telerobotic performance of several D&D operations. Its ability to perform these operations was then assessed through a series of tests in a mockup facility that contained generic structures and equipment similar to those that D&D work machines will encounter in DOE facilities. Building upon the knowledge gained through those tests and evaluations, a next generation mobile worksystem, the RWV II, and a more advanced controller will be designed, integrated and tested in the second phase, which is scheduled for completion in January 1995. The third phase of the project will involve testing of the RWV II in the real DOE facility.

  4. Decontamination & Decommissioning Equipment Tracking System (DDETS)

    SciTech Connect

    Cook, S.

    1994-07-01

    At the request of the Department of Energy (DOE)(EM-50), the Scientific Computing Unit developed a prototype system to track information and data relevant to equipment and tooling removed during decontamination and decommissioning activities. The DDETS proof-of-concept tracking system utilizes a one-dimensional (1D) and two-dimensional (2D) bar coding technology to retain and track information such as identification number, manufacturer, requisition information, and various contaminant information, etc. The information is encoded in a bar code, printed on a label and can be attached to corresponding equipment. The DDETS was developed using a proven relational database management system which allows the addition, modification, printing, and deletion of data. In addition, communication interfaces with bar code printers and bar code readers were developed. Additional features of the system include: (a) Four different reports available for the user (REAPS, transaction, and two inventory), (b) Remote automated inventory tracking capabilities, (c) Remote automated inventory tracking capability (2D bar codes allow equipment to be scanned/tracked without being linked to the DDETS database), (d) Edit, update, delete, and query capabilities, (e) On-line bar code label printing utility (data from 2D bar codes can be scanned directly into the data base simplifying data entry), and (f) Automated data backup utility. Compatibility with the Reportable Excess Automated Property System (REAPS) to upload data from DDETS is planned.

  5. Emerging facets of plastid division regulation.

    PubMed

    Basak, Indranil; Møller, Simon Geir

    2013-02-01

    Plastids are complex organelles that are integrated into the plant host cell where they differentiate and divide in tune with plant differentiation and development. In line with their prokaryotic origin, plastid division involves both evolutionary conserved proteins and proteins of eukaryotic origin where the host has acquired control over the process. The plastid division apparatus is spatially separated between the stromal and the cytosolic space but where clear coordination mechanisms exist between the two machineries. Our knowledge of the plastid division process has increased dramatically during the past decade and recent findings have not only shed light on plastid division enzymology and the formation of plastid division complexes but also on the integration of the division process into a multicellular context. This review summarises our current knowledge of plastid division with an emphasis on biochemical features, the functional assembly of protein complexes and regulatory features of the overall process. PMID:22965912

  6. Emerging facets of plastid division regulation.

    PubMed

    Basak, Indranil; Møller, Simon Geir

    2013-02-01

    Plastids are complex organelles that are integrated into the plant host cell where they differentiate and divide in tune with plant differentiation and development. In line with their prokaryotic origin, plastid division involves both evolutionary conserved proteins and proteins of eukaryotic origin where the host has acquired control over the process. The plastid division apparatus is spatially separated between the stromal and the cytosolic space but where clear coordination mechanisms exist between the two machineries. Our knowledge of the plastid division process has increased dramatically during the past decade and recent findings have not only shed light on plastid division enzymology and the formation of plastid division complexes but also on the integration of the division process into a multicellular context. This review summarises our current knowledge of plastid division with an emphasis on biochemical features, the functional assembly of protein complexes and regulatory features of the overall process.

  7. DECONTAMINATION OF ZIRCALOY SPENT FUEL CLADDING HULLS

    SciTech Connect

    Rudisill, T; John Mickalonis, J

    2006-09-27

    The reprocessing of commercial spent nuclear fuel (SNF) generates a Zircaloy cladding hull waste which requires disposal as a high level waste in the geologic repository. The hulls are primarily contaminated with fission products and actinides from the fuel. During fuel irradiation, these contaminants are deposited in a thin layer of zirconium oxide (ZrO{sub 2}) which forms on the cladding surface at the elevated temperatures present in a nuclear reactor. Therefore, if the hulls are treated to remove the ZrO{sub 2} layer, a majority of the contamination will be removed and the hulls could potentially meet acceptance criteria for disposal as a low level waste (LLW). Discard of the hulls as a LLW would result in significant savings due to the high costs associated with geologic disposal. To assess the feasibility of decontaminating spent fuel cladding hulls, two treatment processes developed for dissolving fuels containing zirconium (Zr) metal or alloys were evaluated. Small-scale dissolution experiments were performed using the ZIRFLEX process which employs a boiling ammonium fluoride (NH{sub 4}F)/ammonium nitrate (NH{sub 4}NO{sub 3}) solution to dissolve Zr or Zircaloy cladding and a hydrofluoric acid (HF) process developed for complete dissolution of Zr-containing fuels. The feasibility experiments were performed using Zircaloy-4 metal coupons which were electrochemically oxidized to produce a thin ZrO{sub 2} layer on the surface. Once the oxide layer was in place, the ease of removing the layer using methods based on the two processes was evaluated. The ZIRFLEX and HF dissolution processes were both successful in removing a 0.2 mm (thick) oxide layer from Zircaloy-4 coupons. Although the ZIRFLEX process was effective in removing the oxide layer, two potential shortcomings were identified. The formation of ammonium hexafluorozirconate ((NH{sub 4}){sub 2}ZrF{sub 6}) on the metal surface prior to dissolution in the bulk solution could hinder the decontamination

  8. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis

    PubMed Central

    Stratilo, Chad W.; Crichton, Melissa K. F.; Sawyer, Thomas W.

    2015-01-01

    Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin), compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in human skin keratinocyte primary cultures. The chlorine dioxide decontaminant was similarly effective to sodium hypochlorite in reducing spore numbers of Bacillus anthracis Ames in liquid suspension after a 10 minute exposure. After five minutes, the chlorine dioxide product was significantly more efficacious. Decontamination of isolated swine skin contaminated with Bacillus anthracis Sterne with the chlorine dioxide product resulted in no viable spores sampled. The toxicity of the chlorine dioxide decontaminant was up to two orders of magnitude less than that of sodium hypochlorite in human skin keratinocyte cultures. In summary, the chlorine dioxide based decontaminant efficiently killed Bacillus anthracis spores in liquid suspension, as well as on isolated swine skin, and was less toxic than sodium hypochlorite in cultures of human skin keratinocytes. PMID:26394165

  9. DECONTAMINATION/DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE

    SciTech Connect

    Chris Jones; Javier Del Campo; Patrick Nevins; Stuart Legg

    2002-08-01

    The United States Department of Energy's Savannah River Site has approximately 5000 55-gallon drums of {sup 238}Pu contaminated waste in interim storage. These may not be shipped to WIPP in TRUPACT-II containers due to the high rate of hydrogen production resulting from the radiolysis of the organic content of the drums. In order to circumvent this problem, the {sup 238}Pu needs to be separated from the organics--either by mineralization of the latter or by decontamination by a chemical separation. We have conducted ''cold'' optimization trials and surrogate tests in which a combination of a mediated electrochemical oxidation process (SILVER II{trademark}) and ultrasonic mixing have been used to decontaminate the surrogate waste materials. The surrogate wastes were impregnated with copper oxalate for plutonium dioxide. Our process combines both mineralization of reactive components (such cellulose, rubber, and oil) and surface decontamination of less reactive materials such as polyethylene, polystyrene and polyvinylchloride. By using this combination of SILVER II and ultrasonic mixing, we have achieved 100% current efficiency for the destruction of the reactive components. We have demonstrated that: The degree of decontamination achieved would be adequate to meet both WIPP waste acceptance criteria and TRUPACT II packaging and shipping requirements; The system can maintain near absolute containment of the surrogate radionuclides; Only minimal pre-treatment (coarse shredding) and minimal waste sorting are required; The system requires minimal off gas control processes and monitoring instrumentation; The laboratory trials have developed information that can be used for scale-up purposes; The process does not produce dioxins and furans; Disposal routes for secondary process arisings have already been demonstrated in other programs. Based on the results from Phase 1, the recommendation is to proceed to Phase 2 and use the equipment at Savannah River Site to demonstrate

  10. Assessment of strippable coatings for decontamination and decommissioning

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    Strippable or temporary coatings were developed to assist in the decontamination of the Three Mile Island (TMI-2) reactor. These coatings have become a viable option during the decontamination and decommissioning (D and D) of both US Department of Energy (DOE) and commercial nuclear facilities to remove or fix loose contamination on both vertical and horizontal surfaces. A variety of strippable coatings are available to D and D professionals. However, these products exhibit a wide range of performance criteria and uses. The Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) was commissioned to perform a 2-year investigation into strippable coatings. This investigation was divided into four parts: (1) identification of commercially available strippable coating products; (2) survey of D and D professionals to determine current uses of these coatings and performance criteria; (3) design and implementation of a non-radiological testing program to evaluate the physical properties of these coatings; and (4) design and implementation of a radiological testing program to determine decontamination factors and effects of exposure to ionizing radiation. Activities during fiscal year 1997 are described.

  11. Decontamination systems information and research program -- Literature review in support of development of standard test protocols and barrier design models for in situ formed barriers project

    SciTech Connect

    1994-12-01

    The US Department of Energy is responsible for approximately 3,000 sites in which contaminants such as carbon tetrachloride, trichlorethylene, perchlorethylene, non-volatile and soluble organic and insoluble organics (PCBs and pesticides) are encountered. In specific areas of these sites radioactive contaminants are stored in underground storage tanks which were originally designed and constructed with a 30-year projected life. Many of these tanks are now 10 years beyond the design life and failures have occurred allowing the basic liquids (ph of 8 to 9) to leak into the unconsolidated soils below. Nearly one half of the storage tanks located at the Hanford Washington Reservation are suspected of leaking and contaminating the soils beneath them. The Hanford site is located in a semi-arid climate region with rainfall of less than 6 inches annually, and studies have indicated that very little of this water finds its way to the groundwater to move the water down gradient toward the Columbia River. This provides the government with time to develop a barrier system to prevent further contamination of the groundwater, and to develop and test remediation systems to stabilize or remove the contaminant materials. In parallel to remediation efforts, confinement and containment technologies are needed to retard or prevent the advancement of contamination plumes through the environment until the implementation of remediation technology efforts are completed. This project examines the various confinement and containment technologies and protocols for testing the materials in relation to their function in-situ.

  12. Chemical Technology Division annual technical report 1997

    SciTech Connect

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  13. Decontamination testing of radioactive-contaminated stainless steel coupons using a Ce(IV) solution

    SciTech Connect

    Bray, L.A.; Elmore, M.R.; Carson, K.J.; Elovich, R.J.; Richardson, G.M.; Anderson, L.D.

    1992-08-01

    The current Hanford Waste Vitrification Plant (HWVP) reference process for canister decontamination describes an air-atomized frit/water slurry blaster developed for the Defense Waste Processing Facility (DWPF). Westinghouse Hanford Company (WHC) identified incentives to evaluate potential HWVP cost savings from adapting the Ce(IV)/HNO{sub 3} canister decontamination approach being developed for the West Valley Demonstration Project (WVDP) at West Valley, New York. Development studies were recommended by WHC to address issues related to further assessment of the adaptation of the Ce(IV)/HN0{sub 3} decontamination system to HWVP, and to resolve a number of technical uncertainties. Laboratory studies at the Pacific Northwest Laboratory (PNL) were performed to provide further data to support the selection of an effective flowsheet for the Ce(IV)/HN0{sub 3} decontamination of HWVP stainless steel (SS) vitrification canisters. The results reconfirmed the predictability of this unique chemical milling and decontamination process. The decontamination process developed in the laboratory will be scaled up by a factor of 5,000:1 and tested in FY 1992 by the WVDP at West Valley using uncontaminated full-scale glass-filled canisters. An engineering uncertainty remains to be resolved concerning the removal of a layer of loosely held oxide, some of which may remain on the SS surface after removal of the canister from the decontamination solution. In this laboratory study, low-pressure water from a standard laboratory wash bottle was used to rinse the surfaces of the test coupons. Ultrasonic agitation has been a suggested alternative or addition to spray nozzles for rinsing but has not been selected for the initial series of full-scale tests.

  14. Transuranic decontamination of nitric acid solutions by the TRUEX solvent extraction process: preliminary development studies. [Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide

    SciTech Connect

    Vandegrift, G.F.; Leonard, R.A.; Steindler, M.J.; Horwitz, E.P.; Basile, L.J.; Diamond, H.; Kalina, D.G.; Kaplan, L.

    1984-07-01

    This report summarizes the work that has been performed to date at Argonne National Laboratory on the development of the TRUEX process, a solvent extraction process employing a bifunctional organophosphorous reagent in a PUREX process solvent (tributyl phosphate-normal paraffinic hydrocarbons). The purpose of this extraction process is to separate and concentrate transuranic (TRU) elements from nuclear waste. Assessments were made of the use of two TRUEX solvents: one incorporating the well-studied dihexyl-N,N-diethylcarbamoylmethylphosphonate (DHDECMP) and a second incorporating an extractant with superior properties for a 1M HNO/sub 3/ acid feed, octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (O/sub phi/D(IB)CMPO). In this report, conceptual flowsheets for the removal of soluble TRUs from high-level nuclear wastes using these two TRUEX proces solvents are presented, and flowsheet features are discussed in detail. The conceptual flowsheet for TRU-element removal from a PUREX waste by the O/sub phi/D(IB)CMPO-TRUEX process solvent was tested in a bench-scale countercurrent experiment, and results of that experiment are presented and discussed. The conclusion of this study is that the TRUEX process is able to separate TRUs from high-level wastes so that the major portion of the solid waste (approx. 99%) can be classified as non-TRU. Areas where more experimentation is needed are listed at the end of the report. 45 references, 17 figures, 56 tables.

  15. Waste Isolation Pilot Plant Salt Decontamination Testing

    SciTech Connect

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  16. Laboratory Demonstration of Radiological Decontamination Using Radpro

    SciTech Connect

    Lear, P.; Greene, R.; Isham, J.; Martin, R.; Norton, C.

    2007-07-01

    In the event of terrorist activity involving the explosive dispersion of radioactive materials (a 'dirty' bomb), a number of different types of surfaces and substrates, including concrete, granite, brick, cinder block, tile, asphalt, wood, glass, plastic, iron, and steel, may become radiologically contaminated. Incident cleanup is assumed to involve decontamination of these surfaces. Laboratory testing was conducted using samples of concrete, ferrous metal, steel, aluminum, lead, tin, glass, lexan, vinyl, asphalt shingle, wood, and rubber surfaces. The surfaces were sprayed with Cs-137 or Co-60 solutions to simulate contamination. The entire surface area of the samples was surveyed using a Ludlum Model 2360 scaler/ratemeter with Ludlum Model 43-93-2 100 cm{sup 2} open area alpha/beta scintillation probe. The surfaces were then decontaminated using RadPro{sup R} chemical decontamination technology that is currently field proven and ready to deploy. The entire surface area of the samples was re-surveyed following decontamination. The RadPro{sup R} chemical decontamination technology was able to remove virtually all of the removable contamination and over 90% of the fixed contamination from these surfaces during the laboratory testing. (authors)

  17. Chemical Warfare Agent Degradation and Decontamination

    SciTech Connect

    Talmage, Sylvia Smith; Watson, Annetta Paule; Hauschild, Veronique; Munro, Nancy B; King, J.

    2007-02-01

    The decontamination of chemical warfare agents (CWA) from structures, environmental media, and even personnel has become an area of particular interest in recent years due to increased homeland security concerns. In addition to terrorist attacks, scenarios such as accidental releases of CWA from U.S. stockpile sites or from historic, buried munitions are also subjects for response planning. To facilitate rapid identification of practical and effective decontamination approaches, this paper reviews pathways of CWA degradation by natural means as well as those resulting from deliberately applied solutions and technologies; these pathways and technologies are compared and contrasted. We then review various technologies, both traditional and recent, with some emphasis on decontamination materials used for surfaces that are difficult to clean. Discussion is limited to the major threat CWA, namely sulfur mustard (HD, bis(2-chloroethyl)sulfide), VX (O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate), and the G-series nerve agents. The principal G-agents are GA (tabun, ethyl N,N-dimethylphosphoramidocyanidate), GB (sarin, isopropyl methylphosphonofluoridate), and GD (soman, pinacolyl methylphosphonofluoridate). The chemical decontamination pathways of each agent are outlined, with some discussion of intermediate and final degradation product toxicity. In all cases, and regardless of the CWA degradation pathway chosen for decontamination, it will be necessary to collect and analyze pertinent environmental samples during the treatment phase to confirm attainment of clearance levels.

  18. Developmentally regulated HEART STOPPER, a mitochondrially targeted L18 ribosomal protein gene, is required for cell division, differentiation, and seed development in Arabidopsis

    PubMed Central

    Zhang, Hongyu; Luo, Ming; Day, Robert C.; Talbot, Mark J.; Ivanova, Aneta; Ashton, Anthony R.; Chaudhury, Abed M.; Macknight, Richard C.; Hrmova, Maria; Koltunow, Anna M.

    2015-01-01

    Evidence is presented for the role of a mitochondrial ribosomal (mitoribosomal) L18 protein in cell division, differentiation, and seed development after the characterization of a recessive mutant, heart stopper (hes). The hes mutant produced uncellularized endosperm and embryos arrested at the late globular stage. The mutant embryos differentiated partially on rescue medium with some forming callus. HES (At1g08845) encodes a mitochondrially targeted member of a highly diverged L18 ribosomal protein family. The substitution of a conserved amino residue in the hes mutant potentially perturbs mitoribosomal function via altered binding of 5S rRNA and/or influences the stability of the 50S ribosomal subunit, affecting mRNA binding and translation. Consistent with this, marker genes for mitochondrial dysfunction were up-regulated in the mutant. The slow growth of the endosperm and embryo indicates a defect in cell cycle progression, which is evidenced by the down-regulation of cell cycle genes. The down-regulation of other genes such as EMBRYO DEFECTIVE genes links the mitochondria to the regulation of many aspects of seed development. HES expression is developmentally regulated, being preferentially expressed in tissues with active cell division and differentiation, including developing embryos and the root tips. The divergence of the L18 family, the tissue type restricted expression of HES, and the failure of other L18 members to complement the hes phenotype suggest that the L18 proteins are involved in modulating development. This is likely via heterogeneous mitoribosomes containing different L18 members, which may result in differential mitochondrial functions in response to different physiological situations during development. PMID:26105995

  19. Targeted Gene Knockouts Reveal Overlapping Functions of the Five Physcomitrella patens FtsZ Isoforms in Chloroplast Division, Chloroplast Shaping, Cell Patterning, Plant Development, and Gravity Sensing

    PubMed Central

    Martin, Anja; Lang, Daniel; Hanke, Sebastian T.; Mueller, Stefanie J.X.; Sarnighausen, Eric; Vervliet-Scheebaum, Marco; Reski, Ralf

    2009-01-01

    Chloroplasts and bacterial cells divide by binary fission. The key protein in this constriction division is FtsZ, a self-assembling GTPase similar to eukaryotic tubulin. In prokaryotes, FtsZ is almost always encoded by a single gene, whereas plants harbor several nuclear-encoded FtsZ homologs. In seed plants, these proteins group in two families and all are exclusively imported into plastids. In contrast, the basal land plant Physcomitrella patens, a moss, encodes a third FtsZ family with one member. This protein is dually targeted to the plastids and to the cytosol. Here, we report on the targeted gene disruption of all ftsZ genes in P. patens. Subsequent analysis of single and double knockout mutants revealed a complex interaction of the different FtsZ isoforms not only in plastid division, but also in chloroplast shaping, cell patterning, plant development, and gravity sensing. These results support the concept of a plastoskeleton and its functional integration into the cytoskeleton, at least in the moss P. patens. PMID:19946616

  20. The Materials Division: A case study

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.; Lowell, Carl E.

    1989-01-01

    The Materials Division at NASA's Lewis Research Center has been engaged in a program to improve the quality of its output. The division, its work, and its customers are described as well as the methodologies developed to assess and improve the quality of the Division's staff and output. Examples of these methodologies are presented and evaluated. An assessment of current progress is also presented along with a summary of future plans.

  1. Technology needs for decommissioning and decontamination

    SciTech Connect

    Bundy, R.D.; Kennerly, J.M.

    1993-12-01

    This report summarizes the current view of the most important decontamination and decommissioning (D & D) technology needs for the US Department of Energy facilities for which the D & D programs are the responsibility of Martin Marietta Energy Systems, Inc. The source of information used in this assessment was a survey of the D & D program managers at each facility. A summary of needs presented in earlier surveys of site needs in approximate priority order was supplied to each site as a starting point to stimulate thinking. This document reflects a brief initial assessment of ongoing needs; these needs will change as plans for D & D are finalized, some of the technical problems are solved through successful development programs, and new ideas for D and D technologies appear. Thus, this assessment should be updated and upgraded periodically, perhaps, annually. This assessment differs from others that have been made in that it directly and solely reflects the perceived need for new technology by key personnel in the D & D programs at the various facilities and does not attempt to consider the likelihood that these technologies can be successfully developed. Thus, this list of technology needs also does not consider the cost, time, and effort required to develop the desired technologies. An R & D program must include studies that have a reasonable chance for success as well as those for which there is a high need. Other studies that considered the cost and probability of successful development as well as the need for new technology are documented. However, the need for new technology may be diluted in such studies; this document focuses only on the need for new technology as currently perceived by those actually charged with accomplishing D & D.

  2. DECONTAMINATION AND BENEFICIAL USE OF DREDGED MATERIALS.

    SciTech Connect

    STERN, E.A.; LODGE, J.; JONES, K.W.; CLESCERI, N.L.; FENG, H.; DOUGLAS, W.S.

    2000-12-03

    Our group is leading a large-sale demonstration of dredged material decontamination technologies for the New York/New Jersey Harbor. The goal of the project is to assemble a complete system for economic transformation of contaminated dredged material into an environmentally-benign material used in the manufacture of a variety of beneficial use products. This requires the integration of scientific, engineering, business, and policy issues on matters that include basic knowledge of sediment properties, contaminant distribution visualization, sediment toxicity, dredging and dewatering techniques, decontamination technologies, and product manufacturing technologies and marketing. A summary of the present status of the system demonstrations including the use of both existing and new manufacturing facilities is given here. These decontamination systems should serve as a model for use in dredged material management plans of regions other than NY/NJ Harbor, such as Long Island Sound, where new approaches to the handling of contaminated sediments are desirable.

  3. PYROCHEMICAL DECONTAMINATION METHOD FOR REACTOR FUEL

    DOEpatents

    Buyers, A.G.

    1959-06-30

    A pyro-chemical method is presented for decontaminating neutron irradiated uranium and separating plutonium therefrom by contact in the molten state with a metal chloride salt. Uranium trichloride and uranium tetrachloride either alone or in admixture with alkaline metal and alkaline eanth metal fluorides under specified temperature and specified phase ratio conditions extract substantially all of the uranium from the irradiated uranium fuel together with certain fission products. The phases are then separated leaving purified uranium metal. The uranium and plutonium in the salt phase can be reduced to forin a highly decontaminated uraniumplutonium alloy. The present method possesses advantages for economically decontaminating irradiated nuclear fuel elements since irradiated fuel may be proccessed immediately after withdrawal from the reactor and the uranium need not be dissolved and later reduced to the metallic form. Accordingly, the uranium may be economically refabricated and reinserted into the reactor.

  4. Radio-decontamination efficacy and safety studies on optimized decontamination lotion formulation.

    PubMed

    Rana, S; Bhatt, S; Dutta, M; Khan, A W; Ali, J; Sultana, S; Kotta, S; Ansari, S H; Sharma, R K

    2012-09-15

    Objective of the present study was to optimize decontamination lotion and to evaluate its relative decontamination efficacy using three radio-isotopes (Technetium-99m, Iodine-131 and Thallium-201) as contaminants with varying length of contaminant exposure (0-1h). Experiments were performed on Sprague Dawley rat's intact skin and human tissue equivalent models. Rat's hair was removed by using depilator after trimming with scissors. Relative decontamination efficacy of the optimized lotion was investigated and compared with water as control. Static counts were recorded before and after decontamination using single photon emission computed tomography (SPECT). Measured decontamination efficacy (DE) values were analyzed using one way ANOVA and Student's t-test (p value<0.05) and were found statistically significant. Decontamination efficacy of the lotion was observed to be 90 ± 5%, 80 ± 2% and 85 ± 2%, for the (131)I, (201)Tl and (99m)Tc radio-contaminants respectively on skin. Reduced contaminant removal was recorded for the skin which was cleaned by depilator (50-60%). Skin decontamination was found more efficacious for rat skin decontamination than the human tissue equivalent model. Decontamination efficacy of the lotion against (99m)Tc was recorded 70 ± 15% at 0-1h on the tissue equivalent model. In vitro chelation efficacy of the lotion was also established by using the instant thin layer chromatography-slica gel (ITLC-SG) and >95% of (99m)Tc was recorded. Neither erythema nor edema was scored in the primary skin irritancy test visually observed for two weeks.

  5. Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems

    SciTech Connect

    Bayrakal, S.

    1993-09-30

    Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within.

  6. Environmental restoration and decontamination & decommissioning safety documentation. Revision 2

    SciTech Connect

    Hansen, J.L.; Frauenholz, L.H.; Kerr, N.R.

    1993-05-18

    This document presents recommendations of a working group designated by the Environmental Restoration and Remediation (ER) and Decontamination and Decommissioning (D&D) subcommittees of the Westinghouse M&O (Management and Operation) Nuclear Facility Safety Committee. A commonalty of approach to safety documentation specific to ER and D&D activities was developed and is summarized below. Allowance for interpretative tolerance and documentation flexibility appropriate to the activity, graded for hazard category, duration, and complexity, was a primary consideration in development of this guidance.

  7. Unit costs for decontamination and dismantlement of structures.

    SciTech Connect

    Folga, S.; Davis, M. J.; Janke, R. J.; Decision and Information Sciences; DOE

    1997-04-01

    A series of relationships have been developed for estimating unit costs for decontamination and dismantlement (D&D) of a number of structure types. These relationships may be applied in the absence of other data to obtain rough order-of-magnitude cost estimates for D&D activities. The relationships were developed using D&D costs estimated for various types of buildings at the U.S. Department of Energy Fernald site. These unit costs take into account the level of radiological contamination as well as the building size and type.

  8. In vitro skin permeation and decontamination of the organophosphorus pesticide paraoxon under various physical conditions--evidence for a wash-in effect.

    PubMed

    Misik, Jan; Pavlikova, Ruzena; Josse, Denis; Cabal, Jiri; Kuca, Kamil

    2012-09-01

    Misuse of various chemicals, such as chemical warfare agents, industrial chemicals or pesticides during warfare or terrorists attacks requires adequate protection. Thus, development and evaluation of novel decontamination dispositives and techniques are needed. In this study, in vitro permeation and decontamination of a potentially hazardous compound paraoxon, an active metabolite of organophosphorus pesticide parathion, was investigated. Skin permeation and decontamination experiments were carried out in modified Franz diffusion cells. Pig skin was used as a human skin model. Commercially produced detergent-based washing solutions FloraFree(™) and ArgosTM were used as decontamination means. The experiments were done under "warm", "cold", "dry" and "wet" skin conditions in order to determine an effect of various physical conditions on skin permeation of paraoxon and on a subsequent decontamination process. There was no significant difference in skin permeation of paraoxon under warm, cold and dry conditions, whereas wet conditions provided significantly higher permeation rates. In the selected conditions, decontamination treatments performed 1 h after a skin exposure did not decrease the agent volume that permeated through the skin. An exception were wet skin conditions with non-significant decontamination efficacy 18 and 28% for the FloraFree(™) and Argos(™) treatment, respectively. In contrast, the skin permeation of paraoxon under warm, cold and dry conditions increased up to 60-290% following decontamination compared to non-decontaminated controls. This has previously been described as a skin wash-in effect. PMID:22519880

  9. In vitro skin permeation and decontamination of the organophosphorus pesticide paraoxon under various physical conditions--evidence for a wash-in effect.

    PubMed

    Misik, Jan; Pavlikova, Ruzena; Josse, Denis; Cabal, Jiri; Kuca, Kamil

    2012-09-01

    Misuse of various chemicals, such as chemical warfare agents, industrial chemicals or pesticides during warfare or terrorists attacks requires adequate protection. Thus, development and evaluation of novel decontamination dispositives and techniques are needed. In this study, in vitro permeation and decontamination of a potentially hazardous compound paraoxon, an active metabolite of organophosphorus pesticide parathion, was investigated. Skin permeation and decontamination experiments were carried out in modified Franz diffusion cells. Pig skin was used as a human skin model. Commercially produced detergent-based washing solutions FloraFree(™) and ArgosTM were used as decontamination means. The experiments were done under "warm", "cold", "dry" and "wet" skin conditions in order to determine an effect of various physical conditions on skin permeation of paraoxon and on a subsequent decontamination process. There was no significant difference in skin permeation of paraoxon under warm, cold and dry conditions, whereas wet conditions provided significantly higher permeation rates. In the selected conditions, decontamination treatments performed 1 h after a skin exposure did not decrease the agent volume that permeated through the skin. An exception were wet skin conditions with non-significant decontamination efficacy 18 and 28% for the FloraFree(™) and Argos(™) treatment, respectively. In contrast, the skin permeation of paraoxon under warm, cold and dry conditions increased up to 60-290% following decontamination compared to non-decontaminated controls. This has previously been described as a skin wash-in effect.

  10. Decontamination of Dissolved Salt Solution from Tank 19F Using Duolite CS-100 and Amberlite IRC-718 Resins

    SciTech Connect

    Lee, L.M.

    2001-10-17

    In this study actual Savannah River Plant liquid supernate solutions were processed to refine and verify these synthetic solution studies. The main objectives were: (1) confirm high decontamination factors (DFs) for cesium-137 and strontium-90 using Duolite CS-100 and Amberlite IRC-718 ion exchange resins, (2) obtain DFs for other minor radioactive isotopes such as plutonium, technetium and ruthenium, (3) provide ion exchange elutriant containing cesium-137, strontium-90 and other radioactive isotopes for ''hot'' melter studies, (4) determine the quality of the decontaminated salt solution, and (5) provide actual decontaminated salt solution for saltcrete development programs.

  11. Literature review on decontaminating groundwater sampling devices: Organic pollutants

    SciTech Connect

    Parker, L.V.

    1995-07-01

    Current protocols for decontaminating devices used to sample groundwater for organic contaminants are reviewed. Most of the methods given by regulatory agencies provide little scientific evidence that justify the recommended protocols. In addition, only a few studies that actually compared various decontamination protocols could be found in the open literature, and those studies were limited in their scope. Various approaches for decontamination and criteria that are important in determining how effectively a surface could be decontaminated are discussed.

  12. Decontamination of metals using chemical etching

    DOEpatents

    Lerch, Ronald E.; Partridge, Jerry A.

    1980-01-01

    The invention relates to chemical etching process for reclaiming contaminated equipment wherein a reduction-oxidation system is included in a solution of nitric acid to contact the metal to be decontaminated and effect reduction of the reduction-oxidation system, and includes disposing a pair of electrodes in the reduced solution to permit passage of an electrical current between said electrodes and effect oxidation of the reduction-oxidation system to thereby regenerate the solution and provide decontaminated equipment that is essentially radioactive contamination-free.

  13. High pressure freon decontamination of remote equipment

    SciTech Connect

    Wilson, C.E.

    1987-01-01

    A series of decontamination tests using high pressure FREON 113 was conducted in the 200 Area of the Hanford site. The intent of these tests was to evaluate the effectiveness of FREON 113 in decontamination of manipulator components, tools, and equipment items contaminated with mixed fission products. The test results indicated that high pressure FREON 113 is very effective in removing fissile material from a variety of objects and can reduce both the quantity and the volume of the radioactive waste material presently being buried.

  14. DECONTAMINATION OF NEUTRON-IRRADIATED REACTOR FUEL

    DOEpatents

    Buyers, A.G.; Rosen, F.D.; Motta, E.E.

    1959-12-22

    A pyrometallurgical method of decontaminating neutronirradiated reactor fuel is presented. In accordance with the invention, neutron-irradiated reactor fuel may be decontaminated by countercurrently contacting the fuel with a bed of alkali and alkaine fluorides under an inert gas atmosphere and inductively melting the fuel and tracking the resulting descending molten fuel with induction heating as it passes through the bed. By this method, a large, continually fresh surface of salt is exposed to the descending molten fuel which enhances the efficiency of the scrubbing operation.

  15. Rocketdyne division, environmental monitoring and facility effluent. Annual Report, De Soto and Santa Susana Field Laboratories Sites 1987

    SciTech Connect

    Moore, J. D.

    1988-03-01

    Environmental and facility effluent radioactivity monitoring at the Rocketdyne Division of Rockwell International is performed by the Radiation and Nuclear Safety Group of the Health, Safety, and Environment Department. Soil and surface water are routinely sampled to a distance of 10 miles from Division sites. Ground water from site supply water wells and other test wells is periodically sampled to measure radioactivity in these waters. Continuous ambient air sampling and direct radiation monitoring by thermoluminescent dosimetry are performed at several on-site and off-site locations for measuring airborne radioactivity concentrations and site ambient radiation levels. Radioactivity in effluents discharged to the atmosphere from nuclear facilities is continually sampled and monitored to ensure that amounts released to uncontrolled areas are below appropriate limited and to identify processes that rnay require additional engineering safeguards to minimize radioactivity in such discharges. In addition, selected nonradioactive chemical constituent concentrations in surface water discharged to uncontrolled areas are determined. The environmental radioactivity reported herein is attributed to natural sources and to residual fallout of radioactive material from past atmospheric testing of nuclear devices. Work in nuclear energy research and development in what has become the Rocketdyne Division of Rockwell International Corporation began in 1946. In addition to a broad spectrum of conventional programs in rocket propulsion, utilization of space, and national defense, Rocketdyne is working on the design, development, and testing of components and systems for central station nuclear power plants, the decladding of irradiated nuclear fuel, and the decontamination and decommissioning of facilities.

  16. 41 CFR 101-45.001 - Demilitarization and decontamination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... decontamination. 101-45.001 Section 101-45.001 Public Contracts and Property Management Federal Property..., ABANDONMENT, OR DESTRUCTION OF PERSONAL PROPERTY § 101-45.001 Demilitarization and decontamination. (a... characteristics, or otherwise making it unfit for further use. (b) Demilitarization or decontamination of...

  17. 41 CFR 101-45.001 - Demilitarization and decontamination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... decontamination. 101-45.001 Section 101-45.001 Public Contracts and Property Management Federal Property..., ABANDONMENT, OR DESTRUCTION OF PERSONAL PROPERTY § 101-45.001 Demilitarization and decontamination. (a... characteristics, or otherwise making it unfit for further use. (b) Demilitarization or decontamination of...

  18. 41 CFR 101-45.001 - Demilitarization and decontamination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... decontamination. 101-45.001 Section 101-45.001 Public Contracts and Property Management Federal Property..., ABANDONMENT, OR DESTRUCTION OF PERSONAL PROPERTY § 101-45.001 Demilitarization and decontamination. (a... characteristics, or otherwise making it unfit for further use. (b) Demilitarization or decontamination of...

  19. Overexpression of the oil palm (Elaeis guineensis Jacq.) TAPETUM DEVELOPMENT1-like Eg707 in rice affects cell division and differentiation and reduces fertility.

    PubMed

    Thuc, Le Vinh; Geelen, Danny; Ky, Huynh; Ooi, Siew-Eng; Napis, Suhaimi B; Sinniah, Uma Rani; Namasivayam, Parameswari

    2013-02-01

    The functional analysis of the TAPETUM DEVELOPMENT1-like analog Eg707 of oil palm was carried out in rice by over-expressing Eg707 under the control of a double cauliflower mosaic virus 35S promoter. Ectopic expression of Eg707 in rice induced dark green and matured compact brownish calli compared to pale wild type and negative control calli. Regenerated transgenic rice plants exhibited a reduction in organ size and plant height, rolled, erect leaves, less tillers, increased chlorophyll content, and reduced fertility with smaller green seeds. At the molecular level Eg707 overexpression caused an increase in the transcription of SAPK9, a SnRK2 protein kinase family member that is activated by ABA and hyperosmotic stress. Together, the results show that ectopic Eg707 expression influences cell division and differentiation, presumably via altered hormone homeostasis. PMID:23086301

  20. TREATABILITY STUDIES USED TO TEST FOR EXOTHERMIC REACTIONS OF PLUTONIUM DECONTAMINATION CHEMICALS

    SciTech Connect

    EWALT, J.R.

    2005-06-06

    Fluor Hanford is decommissioning the Plutonium Finishing Plant (PFP) at the Hanford site in Eastern Washington. Aggressive chemicals are commonly used to remove transuranic contaminants from process equipment to allow disposal as low level waste. Chemicals being considered for decontamination of gloveboxes in PFP include cerium(IV) nitrate in a nitric acid solution, and proprietary commercial solutions that include acids, degreasers, and sequestering agents. Fluor's decontamination procedure involves application of chemical solutions as a spray on the contaminated surfaces, followed by a wipe-down with rags. This process effectively transfers the transuranic materials to the decontamination liquids, which are then absorbed by rags and packaged for disposal as TRU waste. Concerns regarding the safety of this procedure developed following a fire at Rocky Flats in 2003. The fire occurred in a glovebox that had been treated with cerium nitrate, which is one of the decontamination chemicals that Fluor Hanford has proposed to use. The investigation of the event was hampered by the copious use of chemicals and water to extinguish the fire, and was not conclusive regarding the cause. However, the reviewers noted that rags were found in the glovebox, suggesting that the combination of rags and chemicals may have contributed to the fire. With that uncertainty, Fluor began an investigation into the potential for fire when using the chemicals and materials in the decontamination process. The focus of this work has been to develop a disposal strategy that will provide a chemically stable waste form at expected Hanford waste storage temperatures. Treatability tests under CERCLA were used to assess the use of certain chemicals and wipes during the decontamination process. Chemicals being considered for decontamination of gloveboxes at PFP include cerium (IV) nitrate in a nitric acid solution, and proprietary commercial solutions as RadPro{trademark} that include acids, degreasers

  1. Next Generation Non-particulate Dry Nonwoven Pad for Chemical Warfare Agent Decontamination

    SciTech Connect

    Ramkumar, S S; Love, A; Sata, U R; Koester, C J; Smith, W J; Keating, G A; Hobbs, L; Cox, S B; Lagna, W M; Kendall, R J

    2008-05-01

    New, non-particulate decontamination materials promise to reduce both military and civilian casualties by enabling individuals to decontaminate themselves and their equipment within minutes of exposure to chemical warfare agents or other toxic materials. One of the most promising new materials has been developed using a needlepunching nonwoven process to construct a novel and non-particulate composite fabric of multiple layers, including an inner layer of activated carbon fabric, which is well-suited for the decontamination of both personnel and equipment. This paper describes the development of a composite nonwoven pad and compares efficacy test results for this pad with results from testing other decontamination systems. The efficacy of the dry nonwoven fabric pad was demonstrated specifically for decontamination of the chemical warfare blister agent bis(2-chloroethyl)sulfide (H or sulfur mustard). GC/MS results indicate that the composite fabric was capable of significantly reducing the vapor hazard from mustard liquid absorbed into the nonwoven dry fabric pad. The mustard adsorption efficiency of the nonwoven pad was significantly higher than particulate activated carbon (p=0.041) and was similar to the currently fielded US military M291 kit (p=0.952). The nonwoven pad has several advantages over other materials, especially its non-particulate, yet flexible, construction. This composite fabric was also shown to be chemically compatible with potential toxic and hazardous liquids, which span a range of hydrophilic and hydrophobic chemicals, including a concentrated acid, an organic solvent and a mild oxidant, bleach.

  2. Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation

    PubMed Central

    Smékalová, Veronika; Luptovčiak, Ivan; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Doskočilová, Anna; Takáč, Tomáš; Vadovič, Pavol; Novák, Ondřej; Pechan, Tibor; Ziemann, Anja; Košútová, Petra; Šamaj, Jozef

    2015-01-01

    Summary The role of YODA MITOGEN ACTIVATED PROTEIN KINASE KINASE KINASE 4 (MAPKKK4) upstream of MITOGEN ACTIVATED PROTEIN KINASE 6 (MPK6) was studied during post-embryonic root development of Arabidopsis thaliana. Loss- and gain-of-function mutants of YODA (yda1 and ΔNyda1) were characterized in terms of root patterning, endogenous auxin content and global proteomes.We surveyed morphological and cellular phenotypes of yda1 and ΔNyda1 mutants suggesting possible involvement of auxin. Endogenous indole-3-acetic acid (IAA) levels were up-regulated in both mutants. Proteomic analysis revealed up-regulation of auxin biosynthetic enzymes tryptophan synthase and nitrilases in these mutants. The expression, abundance and phosphorylation of MPK3, MPK6 and MICROTUBULE ASSOCIATED PROTEIN 65–1 (MAP65-1) were characterized by quantitative polymerase chain reaction (PCR) and western blot analyses and interactions between MAP65-1, microtubules and MPK6 were resolved by quantitative co-localization studies and co-immunoprecipitations.yda1 and ΔNyda1 mutants showed disoriented cell divisions in primary and lateral roots, abortive cytokinesis, and differential subcellular localization of MPK6 and MAP65-1. They also showed deregulated expression of TANGLED1 (TAN1), PHRAGMOPLAST ORIENTING KINESIN 1 (POK1), and GAMMA TUBULIN COMPLEX PROTEIN 4 (GCP4).The findings that MPK6 localized to preprophase bands (PPBs) and phragmoplasts while the mpk6-4 mutant transformed with MPK6AEF (alanine (A)–glutamic acid (E)–phenylanine (F)) showed a root phenotype similar to that of yda1 demonstrated that MPK6 is an important player downstream of YODA. These data indicate that YODA and MPK6 are involved in post-embryonic root development through an auxin-dependent mechanism regulating cell division and mitotic microtubule (PPB and phragmoplast) organization. PMID:24923680

  3. Vocational Education in Developing Countries. A Review of Studies and Project Experience. Education Division Documents No. 34.

    ERIC Educational Resources Information Center

    Hultin, Mats

    This paper looks at the position taken in available literature and evaluation reports of multinational and bilateral agencies in regard to vocational education in developing countries. Section 1 provides background on such topics as links between education and development, support of vocational education, diversified secondary education, foreign…

  4. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  5. Advances in Sterilization and Decontamination: a Survey

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Recent technical advances made in the field of sterilization and decontamination and their applicability to private and commercial interests are discussed. Government-sponsored programs by NASA produced the bulk of material presented in this survey. The summary of past and current research discussed is detailed to enhance an effective transfer of technology from NASA to potential users.

  6. Hand decontamination: nurses' opinions and practices.

    PubMed

    Gould, D

    Infection is spread in hospital mainly by hands, making hand decontamination the most important means of preventing dissemination. There is some evidence to suggest that when access to hand-decontaminating agents is poor or the agents available are disliked, hands are washed too seldom, increasing risks of cross-infection. However, little attention has been paid to the use of towels and factors which promote their use, although it is known that damp hands transfer bacteria more readily than dry ones and that hands which become sore through poor drying have higher bacterial counts, contributing to the risk of cross-infection. This paper reports the results of the Nursing Times Hand Drying survey designed to assess nurses' access to hand decontamination agents and towels. The results suggest that the 112 nurses who participated were aware of the need for attention to hand hygiene but that access to both hand-decontaminating agents and paper towels was variable. Forty-one per cent complained of a shortage of soap and although nearly all used paper towels, these were in many cases of poor quality. Such towels were perceived as damaging to hands, leaving them feeling damp and sore. Good-quality, soft, paper towels were much appreciated by respondents in this sample. It is concluded that the quality of paper towels contributes to good infection control practice.

  7. Experiences with decontaminating tritium-handling apparatus

    SciTech Connect

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T.

    1991-07-01

    Tritium-handling apparatus has been decontaminated as part of the shutdown of the LLNL Tritium Facility. Two stainless-steel gloveboxes that had been used to process lithium deuteride-tritide (LiDT) salt were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. Further surface decontamination was performed by scrubbing the interior with paper towels and ethyl alcohol or Swish{trademark}. The surface contamination, as shown by swipe surveys, was reduced from 4{times}10{sup 4}--10{sup 6} disintegrations per minute (dpm)/cm{sup 2} to 2{times}10{sup 2}--4{times}10{sup 4} dpm/cm{sup 2}. Details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given.

  8. Testing and evaluation of light ablation decontamination

    SciTech Connect

    Demmer, R.L.; Ferguson, R.L.

    1994-10-01

    This report details the testing and evaluation of light ablation decontamination. It details WINCO contracted research and application of light ablation efforts by Ames Laboratory. Tests were conducted with SIMCON (simulated contamination) coupons and REALCON (actual radioactive metal coupons) under controlled conditions to compare cleaning effectiveness, speed and application to plant process type equipment.

  9. HAZARDOUS WASTE DECONTAMINATION WITH PLASMA REACTORS

    EPA Science Inventory

    The use of electrical energy in the form of plasma has been considered as a potentially efficient means of decontaminating hazardous waste, although to date only a few attempts have been made to do so. There are a number of relative advantages and some potential disadvantages to...

  10. [Drinking water decontamination with isolative sorbent disinfectants].

    PubMed

    Krasnov, M S

    2004-01-01

    Drinking water can be decontaminated with the use of isolative sorbent disinfectants. Consideration of the effectiveness of water disinfectants and the sorptive power of porous materials against bacteria and viruses attested to the favour of iodine and silver-containing disinfectants and their compositions on porous aggressive carriers to be employed in extreme conditions such as on board crewed space vehicles.

  11. Ultrasociality and the division of cognitive labor.

    PubMed

    Noles, Nicholaus Samuel; Danovitch, Judith Harmony

    2016-01-01

    Gowdy & Krall describe the development of ultrasociality in terms of economics and the division of labor. We propose that the division of cognitive labor allows humans to behave in an ultrasocial manner without the radical evolutionary changes that are experienced by other species, suggesting that species may traverse different paths to achieve ultrasociality. PMID:27561899

  12. Cognitive and Neural Sciences Division 1990 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Jr., Ed.

    Research and development efforts carried out under sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research during fiscal year 1990 are described in this compilation of project description summaries. The Division's research is organized in three types of programs: (1) Cognitive Science (the human learner--cognitive…

  13. Cognitive and Neural Sciences Division, 1991 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    This report documents research and development performed under the sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research in fiscal year 1991. It provides abstracts (title, principal investigator, project code, objective, approach, progress, and related reports) of projects of three program divisions (cognitive…

  14. Guide to the Division of Research Programs.

    ERIC Educational Resources Information Center

    National Endowment for the Humanities (NFAH), Washington, DC.

    This brief guide to the Research Programs Division of the National Endowment for the Humanities covers basic information, describes programs, and summarizes policies and procedures. An introductory section describes the division and its mission to encourage the development and dissemination of significant knowledge and scholarship in the…

  15. 1998 Chemical Technology Division Annual Technical Report.

    SciTech Connect

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  16. A comparative study of infrared and microwave heating for microbial decontamination of paprika powder

    PubMed Central

    Eliasson, Lovisa; Isaksson, Sven; Lövenklev, Maria; Ahrné, Lilia

    2015-01-01

    There is currently a need in developing new decontamination technologies for spices due to limitations of existing technologies, mainly regarding their effects on spices’ sensory quality. In the search of new decontamination solutions, it is of interest to compare different technologies, to provide the industry with knowledge for taking decisions concerning appropriate decontamination technologies for spices. The present study compares infrared (IR) and microwave decontamination of naturally contaminated paprika powder after adjustment of water activity to 0.88. IR respectively microwave heating was applied to quickly heat up paprika powder to 98°C, after which the paprika sample was transferred to a conventional oven set at 98°C to keep the temperature constant during a holding time up to 20 min. In the present experimental set-up microwave treatment at 98°C for 20 min resulted in a reduction of 4.8 log units of the total number of mesophilic bacteria, while the IR treatment showed a 1 log unit lower reduction for the corresponding temperature and treatment time. Microwave and IR heating created different temperature profiles and moisture distribution within the paprika sample during the heating up part of the process, which is likely to have influenced the decontamination efficiency. The results of this study are used to discuss the difficulties in comparing two thermal technologies on equal conditions due to differences in their heating mechanisms. PMID:26483783

  17. Evidence-based patient decontamination: an integral component of mass exposure chemical incident planning and response.

    PubMed

    Leary, Adam D; Schwartz, Michael D; Kirk, Mark A; Ignacio, Joselito S; Wencil, Elaine B; Cibulsky, Susan M

    2014-06-01

    Decontaminating patients who have been exposed to hazardous chemicals can directly benefit the patients' health by saving lives and reducing the severity of toxicity. While the importance of decontaminating patients to prevent the spread of contamination has long been recognized, its role in improving patient health outcomes has not been as widely appreciated. Acute chemical toxicity may manifest rapidly-often minutes to hours after exposure. Patient decontamination and emergency medical treatment must be initiated as early as possible to terminate further exposure and treat the effects of the dose already absorbed. In a mass exposure chemical incident, responders and receivers are faced with the challenges of determining the type of care that each patient needs (including medical treatment, decontamination, and behavioral health support), providing that care within the effective window of time, and protecting themselves from harm. The US Department of Health and Human Services and Department of Homeland Security have led the development of national planning guidance for mass patient decontamination in a chemical incident to help local communities meet these multiple, time-sensitive health demands. This report summarizes the science on which the guidance is based and the principles that form the core of the updated approach.

  18. A comparative study of infrared and microwave heating for microbial decontamination of paprika powder.

    PubMed

    Eliasson, Lovisa; Isaksson, Sven; Lövenklev, Maria; Ahrné, Lilia

    2015-01-01

    There is currently a need in developing new decontamination technologies for spices due to limitations of existing technologies, mainly regarding their effects on spices' sensory quality. In the search of new decontamination solutions, it is of interest to compare different technologies, to provide the industry with knowledge for taking decisions concerning appropriate decontamination technologies for spices. The present study compares infrared (IR) and microwave decontamination of naturally contaminated paprika powder after adjustment of water activity to 0.88. IR respectively microwave heating was applied to quickly heat up paprika powder to 98°C, after which the paprika sample was transferred to a conventional oven set at 98°C to keep the temperature constant during a holding time up to 20 min. In the present experimental set-up microwave treatment at 98°C for 20 min resulted in a reduction of 4.8 log units of the total number of mesophilic bacteria, while the IR treatment showed a 1 log unit lower reduction for the corresponding temperature and treatment time. Microwave and IR heating created different temperature profiles and moisture distribution within the paprika sample during the heating up part of the process, which is likely to have influenced the decontamination efficiency. The results of this study are used to discuss the difficulties in comparing two thermal technologies on equal conditions due to differences in their heating mechanisms.

  19. A comparative study of infrared and microwave heating for microbial decontamination of paprika powder.

    PubMed

    Eliasson, Lovisa; Isaksson, Sven; Lövenklev, Maria; Ahrné, Lilia

    2015-01-01

    There is currently a need in developing new decontamination technologies for spices due to limitations of existing technologies, mainly regarding their effects on spices' sensory quality. In the search of new decontamination solutions, it is of interest to compare different technologies, to provide the industry with knowledge for taking decisions concerning appropriate decontamination technologies for spices. The present study compares infrared (IR) and microwave decontamination of naturally contaminated paprika powder after adjustment of water activity to 0.88. IR respectively microwave heating was applied to quickly heat up paprika powder to 98°C, after which the paprika sample was transferred to a conventional oven set at 98°C to keep the temperature constant during a holding time up to 20 min. In the present experimental set-up microwave treatment at 98°C for 20 min resulted in a reduction of 4.8 log units of the total number of mesophilic bacteria, while the IR treatment showed a 1 log unit lower reduction for the corresponding temperature and treatment time. Microwave and IR heating created different temperature profiles and moisture distribution within the paprika sample during the heating up part of the process, which is likely to have influenced the decontamination efficiency. The results of this study are used to discuss the difficulties in comparing two thermal technologies on equal conditions due to differences in their heating mechanisms. PMID:26483783

  20. Decontamination of chemical agents in Freon-113. Final report, February 1984-August 1988

    SciTech Connect

    Johnson, W.C.; Collins, K.R.; Ward, J.R.; Richmond, J.A.

    1993-06-01

    Freon solubilizes hydrophobic chemical warfare agents, such as soman, without damaging sensitive electronic equipment, such as night-vision goggles or communication equipment. Freon is used in this manner in the Nonaqueous Equipment Decontamination System (NAEDS) under development at CRDEC. The contaminated Freon is returned to a still, after which it is distilled through an aqueous layer containing bleach to decontaminate the residual agent. This report describes the results of experiments to measure how effectively agent is destroyed in the NAEDS. These results show that residual agent is still left in the redistilled Freon, and there is little difference whether the active decontaminant is removed from the aqueous layer. A mixture was prepared consisting of a 1:1:1 mixture of ethanol, 8 m sodium hydroxide, and Freon. It was demonstrated that the use of this mixture in the NAEDS would destroy all agent and that the redistilled Freon was free of soman. Freon-113, Bleach, Decontamination, Distillation, Non-Aqueous equipment decontamination system, Ethanol blend.

  1. Decontamination of Terrorist-Dispersed Radionuclides from Surfaces in Urban Environments

    SciTech Connect

    Fischer, Robert; Sutton, Mark; Gates-Anderson, Dianne; Gray, Jeremy; Hu, Qinhong; McNab, Walt; Viani, Brian

    2008-01-15

    Research is currently underway at Lawrence Livermore National Laboratory (LLNL) to advance the basic scientific knowledge of radionuclide-substrate interactions in the urban environment. Investigations have focused on more optimized decontamination agents for cesium (Cs) and americium (Am) specifically for use in mass transit infrastructure and urban environments. This project is designed to enhance the capability of the United States to effectively respond to a Radiological Dispersal Device (RDD) attack. The work addresses recognized data gaps by advancing the basic scientific knowledge of radionuclide-substrate interactions in the urban environment and provides a solution to a national need. The research is focused in four major areas: (1) a better understanding of urban surface conditions that influence the efficacy of decontamination processes, (2) development of prototype decontamination agents for Am and Cs optimized for use in urban environments, (3) the development of capabilities to realistically contaminate surfaces at both the real world and laboratory scale and (4) a validated model for radionuclide-surface interactions. The decontamination of urban surfaces following the detonation of an RDD presents a number of challenges. The following key points are found to be critical for the efficiency of decontamination agents in an urban environment: - Particle size and surface deposition of radionuclide particles on urban surface materials. - Interactions between radionuclides and urban materials. - The presence of grime and carbonation/alteration layers on the surface of urban surfaces. - Post-detonation penetration of radionuclides strongly affected by the dynamic wetting/drying processes. A laboratory scale contamination system has been developed allowing for samples to be contaminated and radionuclide interactions to be studied. In combination with laboratory scale experiments, a real scale outdoor test is scheduled for the spring of 2007. In conclusion

  2. Effective Responder Communication Improves Efficiency and Psychological Outcomes in a Mass Decontamination Field Experiment: Implications for Public Behaviour in the Event of a Chemical Incident

    PubMed Central

    Carter, Holly; Drury, John; Amlôt, Richard; Rubin, G. James; Williams, Richard

    2014-01-01

    identification with responders, which in turn resulted in higher levels of expected compliance during a real incident, and increased willingness to help other members of the public. This study shows that an understanding of the social identity approach facilitates the development of effective responder communication strategies for incidents involving mass decontamination. PMID:24595097

  3. Effective responder communication improves efficiency and psychological outcomes in a mass decontamination field experiment: implications for public behaviour in the event of a chemical incident.

    PubMed

    Carter, Holly; Drury, John; Amlôt, Richard; Rubin, G James; Williams, Richard

    2014-01-01

    responders, which in turn resulted in higher levels of expected compliance during a real incident, and increased willingness to help other members of the public. This study shows that an understanding of the social identity approach facilitates the development of effective responder communication strategies for incidents involving mass decontamination.

  4. Effect of decontamination on aging processes and considerations for life extension

    SciTech Connect

    Diercks, D.R.

    1987-10-01

    The basis for a recently initiated program on the chemical decontamination of nuclear reactor components and the possible impact of decontamination on extended-life service is described. The incentives for extending plant life beyond the present 40-year limit are discussed, and the possible aging degradation processes that may be accentuated in extended-life service are described. Chemical decontamination processes for nuclear plant primary systems are summarized with respect to their corrosive effects on structural alloys, particularly those in the aged condition. Available experience with chemical cleaning processes for the secondary side of PWR steam generators is also briefly considered. Overall, no severe materials corrosion problems have been found that would preclude the use of these chemical processes, but concerns have been raised in several areas, particularly with respect to corrosion-related problems that may develop during extended service.

  5. Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada

    SciTech Connect

    G. N. Doyle

    2002-02-01

    Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

  6. Release limits and decontamination efficacy for tritium: lessons learned outside nuclear power operations.

    PubMed

    Waller, Edward J; Cole, David; Jamieson, Terry

    2007-11-01

    Various pieces of equipment in use by the Canadian Department of National Defence (DND) contain radiation-emitting components. One such piece is a sight knob used on light artillery. At the request of the DND's Director General Nuclear Safety (DGNS-DND's internal nuclear regulatory agency), the authors were contacted to remove the luminous tritium-impregnated paint strip from over 300 sight knobs. This paper discusses the physical description of the sight knobs, the protocol developed for decontaminating the sight knobs, the rationale for the release limits used, and experience gained in using and modifying the decontamination protocol.

  7. Graduate Research Assistant Program for Professional Development at Oak Ridge National Laboratory (ORNL) Global Nuclear Security Technology Division (GNSTD)

    SciTech Connect

    Eipeldauer, Mary D; Shelander Jr, Bruce R

    2012-01-01

    The southeast is a highly suitable environment for establishing a series of nuclear safety, security and safeguards 'professional development' courses. Oak Ridge National Laboratory (ORNL) provides expertise in the research component of these subjects while the Y-12 Nuclear Security Complex handles safeguards/security and safety applications. Several universities (i.e., University of Tennessee, Knoxville (UTK), North Carolina State University, University of Michigan, and Georgia Technology Institute) in the region, which offer nuclear engineering and public policy administration programs, and the Howard Baker Center for Public Policy make this an ideal environment for learning. More recently, the Institute for Nuclear Security (INS) was established between ORNL, Y-12, UTK and Oak Ridge Associate Universities (ORAU), with a focus on five principal areas. These areas include policy, law, and diplomacy; education and training; science and technology; operational and intelligence capability building; and real-world missions and applications. This is a new approach that includes professional development within the graduate research assistant program addressing global needs in nuclear security, safety and safeguards.

  8. Development of an advanced, continuous mild-gasification process for the production of coproducts. Report for Task 4.8, Decontamination and disassembly of the mild-gasification and char-to-carbon PRUs and disposal of products from testing

    SciTech Connect

    Merriam, N.W.; Jha, Mahesh C.

    1991-11-01

    This report contains descriptions of mild-gasification and char-to-carbon process research units (PRUS) used by WRI and AMAX R&D Center to conduct tests under contract AC21-87MC24268. Descriptions of materials produced during those tests are also contained herein. Western Research Institute proposes to dispose of remaining fines and dried coal by combustion and remaining coal liquids by incineration during mid-1992. The mild-gasification PRU will be used for additional tests until 1993, at which time WRI proposes to decontaminate and disassemble the PRU. AMAX R&D Center intends to return the spent char, any remaining feed char, and unusable product carbon to the Eagle Butte Mine near Gillette, Wyoming, from where the coal originally came. The solid products will be added to the mine`s coal product stream. Coal liquids collected from condensers will be concentrated and sent to a local oil and solvent recycling company where the liquids will be burned as fuel. The char-to-carbon PRU will be operated periodically until 1993 when the plant will be decontaminated and disassembled.

  9. Division Iv: Stars

    NASA Astrophysics Data System (ADS)

    Corbally, Christopher; D'Antona, Francesca; Spite, Monique; Asplund, Martin; Charbonnel, Corinne; Docobo, Jose Angel; Gray, Richard O.; Piskunov, Nikolai E.

    2012-04-01

    This Division IV was started on a trial basis at the General Assembly in The Hague 1994 and was formally accepted at the Kyoto General Assembly in 1997. Its broad coverage of ``Stars'' is reflected in its relatively large number of Commissions and so of members (1266 in late 2011). Its kindred Division V, ``Variable Stars'', has the same history of its beginning. The thinking at the time was to achieve some kind of balance between the number of members in each of the 12 Divisions. Amid the current discussion of reorganizing the number of Divisions into a more compact form it seems advisable to make this numerical balance less of an issue than the rationalization of the scientific coverage of each Division, so providing more effective interaction within a particular field of astronomy. After all, every star is variable to a certain degree and such variability is becoming an ever more powerful tool to understand the characteristics of every kind of normal and peculiar star. So we may expect, after hearing the reactions of members, that in the restructuring a single Division will result from the current Divisions IV and V.

  10. Cost Savings through Innovation in Decontamination, Decommissioning, and Dismantlement

    SciTech Connect

    Neal A. Yancey

    2003-02-27

    The United States Department of Energy (DOE) continually seeks safer and more cost effective technologies for the decontamination and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsored large-scale demonstration and deployment projects (LSDDPs) to help bring new technologies into the D&D programs. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of needs defining specific problems where improved technologies could be incorporated into ongoing D&D tasks. The needs fell into 5 major categories--characterization, dismantlement, safety, material dispositioning, and decontamination. Technologies were carefully selected that provide a large benefit for a small investment. The technologies must provide significant improvements in cost, safety, radiation exposure, waste volume reduction, or schedule savings and widely applicable throughout the DOE complex. The LSDDP project provided training for the new technologies and worked with technology suppliers to resolve any questions that arose. Since 1998, 26 technologies have been demonstrated or deployed through the LSDDP for the D&D program at the INEEL. Of the 26 demonstrated and deployed technologies, 14 were in characterization, 3 were in decontamination, 4 were in dismantlement, 3 were in safety, and 2 were in material dispositioning. To promote the use of these technologies at other sites within the DOE complex, the LSDDP team published fact sheets, videos, technology summary reports, articles in INEEL star newspaper, posters, and maintained an internet home page on the project. As a result, additional deployments have taken place at the Hanford, Mound, Fernald, Oak Ridge, Ashtabula, and West Valley. Eight of the 26 technologies evaluated were developed in foreign countries. The technologies demonstrated have been shown to be faster, less expensive, and/or safer. The

  11. Decontamination and Decommissioning Experience at a Sellafield Uranium Purification Plant

    SciTech Connect

    Prosser, J.L.

    2006-07-01

    Built in the 1950's, this plant was originally designed to purify depleted uranyl nitrate solution arising from reprocessing operations at the Primary Separation and Head End Plant (Fig. 1). The facility was used for various purposes throughout its life cycle such as research, development and trial based processes. Test rigs were operated in the building from the 1970's until 1984 to support development of the process and equipment now used at Sellafield's Thermal Oxide Reprocessing Plant (THORP). The extensive decommissioning program for this facility began over 15 years ago. Many challenges have been overcome throughout this program such as decommissioning the four main process cells, which were very highly alpha contaminated. The cells contained vessels and pipeline systems that were contaminated to such levels that workers had to use pressurized suits to enter the cells. Since decommissioning at Sellafield was in its infancy, this project has trialed various decontamination/decommissioning methods and techniques in order to progress the project, and this has provided valuable learning for other decommissioning projects. The project has included characterization, decontamination, dismantling, waste handling, and is now ready for demolition during late 2005, early 2006. This will be the first major facility within the historic Separation Area at Sellafield to be demolished down to base slab level. The lessons learnt from this project will directly benefit numerous decommissioning projects as the cleanup at Sellafield continues. (authors)

  12. Decontamination of steel by melt refining: A literature review

    SciTech Connect

    Ozturk, B.; Fruehan, R.J.

    1994-12-31

    It has been reported that a large amount of metal waste is produced annually by nuclear fuel processing and nuclear power plants. These metal wastes are contaminated with radioactive elements, such as uranium and plutonium. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain level. Because of high cost, it is important to develop an effective decontamination and volume reduction method for low level contaminated metals. It has been shown by some investigators that a melt refining technique can be used for the processing of the contaminated metal wastes. In this process, contaminated metal is melted wit a suitable flux. The radioactive elements are oxidized and transferred to a slag phase. In order to develop a commercial process it is important to have information on the thermodynamics and kinetics of the removal. Therefore, a literature search was carried out to evaluate the available information on the decontamination uranium and transuranic-contaminated plain steel, copper and stainless steel by melt a refining technique. Emphasis was given to the thermodynamics and kinetics of the removal. Data published in the literature indicate that it is possible to reduce the concentration of radioactive elements to a very low level by the melt refining method. 20 refs.

  13. Studies on residue-free decontaminants for chemical warfare agents.

    PubMed

    Wagner, George W

    2015-03-17

    Residue-free decontaminants based on hydrogen peroxide, which decomposes to water and oxygen in the environment, are examined as decontaminants for chemical warfare agents (CWA). For the apparent special case of CWA on concrete, H2O2 alone, without any additives, effectively decontaminates S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate (VX), pinacolyl methylphosphorofluoridate (GD), and bis(2-choroethyl) sulfide (HD) in a process thought to involve H2O2 activation by surface-bound carbonates/bicarbonates (known H2O2 activators for CWA decontamination). A plethora of products are formed during the H2O2 decontamination of HD on concrete, and these are characterized by comparison to synthesized authentic compounds. As a potential residue-free decontaminant for surfaces other than concrete (or those lacking adsorbed carbonate/bicarbonate) H2O2 activation for CWA decontamination is feasible using residue-free NH3 and CO2 as demonstrated by reaction studies for VX, GD, and HD in homogeneous solution. Although H2O2/NH3/CO2 ("HPAC") decontaminants are active for CWA decontamination in solution, they require testing on actual surfaces of interest to assess their true efficacy for surface decontamination.

  14. Studies on residue-free decontaminants for chemical warfare agents.

    PubMed

    Wagner, George W

    2015-03-17

    Residue-free decontaminants based on hydrogen peroxide, which decomposes to water and oxygen in the environment, are examined as decontaminants for chemical warfare agents (CWA). For the apparent special case of CWA on concrete, H2O2 alone, without any additives, effectively decontaminates S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate (VX), pinacolyl methylphosphorofluoridate (GD), and bis(2-choroethyl) sulfide (HD) in a process thought to involve H2O2 activation by surface-bound carbonates/bicarbonates (known H2O2 activators for CWA decontamination). A plethora of products are formed during the H2O2 decontamination of HD on concrete, and these are characterized by comparison to synthesized authentic compounds. As a potential residue-free decontaminant for surfaces other than concrete (or those lacking adsorbed carbonate/bicarbonate) H2O2 activation for CWA decontamination is feasible using residue-free NH3 and CO2 as demonstrated by reaction studies for VX, GD, and HD in homogeneous solution. Although H2O2/NH3/CO2 ("HPAC") decontaminants are active for CWA decontamination in solution, they require testing on actual surfaces of interest to assess their true efficacy for surface decontamination. PMID:25710477

  15. Reducing the Risks. In the aftermath of a terrorist attack, wastewater utilities may have to contend with decontamination water containing chemical, biological, or radiological substances

    SciTech Connect

    Warren, Linda P.; Hornback, Chris; Strom, Daniel J.

    2006-08-01

    In the aftermath of a chemical, biological, or radiological (CBR) attack, decontamination of people and infrastructure will be needed. Decontamination inevitably produces wastewater, and wastewater treatment plants (WTPs) need to know how to handle decontamination wastewater. This article describes CBR substances; planning, coordinating, and communicating responses across agencies; planning within a utility; coordination with local emergency managers and first responders; mitigating effects of decontamination wastewater; and mitigating effects on utility personnel. Planning for Decontamination Wastewater: A Guide for Utilities, the document on which this article is based, was developed under a cooperative agreement from the U.S. Environmental Protection Agency by the National Association of Clean Water Agencies (NACWA) and its contractor, CH2MHILL, Inc.

  16. Gravity and the orientation of cell division

    NASA Technical Reports Server (NTRS)

    Helmstetter, C. E.

    1997-01-01

    A novel culture system for mammalian cells was used to investigate division orientations in populations of Chinese hamster ovary cells and the influence of gravity on the positioning of division axes. The cells were tethered to adhesive sites, smaller in diameter than a newborn cell, distributed over a nonadhesive substrate positioned vertically. The cells grew and divided while attached to the sites, and the angles and directions of elongation during anaphase, projected in the vertical plane, were found to be random with respect to gravity. However, consecutive divisions of individual cells were generally along the same axis or at 90 degrees to the previous division, with equal probability. Thus, successive divisions were restricted to orthogonal planes, but the choice of plane appeared to be random, unlike the ordered sequence of cleavage orientations seen during early embryo development.

  17. Microbiological decontamination of natural honey by irradiation

    NASA Astrophysics Data System (ADS)

    Migdał, W.; Owczarczyk, H. B.; K ȩdzia, B.; Hołderna-K ȩdzia, E.; Madajczyk, D.

    2000-03-01

    Degree of microbiological decontamination, organoleptic and physico-chemical properties of natural honeys were investigated after radiation treatment. Seven kinds of honeys were irradiated with the beams of 10 MeV electrons from a 10 kW linear accelerator "Elektronika 10-10" at the dose 10 kGy. It was shown, that after irradiation, the total count of aerobic and anaerobic bacteria and moulds decrease by 99%. The antibiotic value in investigated honeys increased in turn from 1.67 to 2.67 after irradiation. Such factors and parameters of investigated honeys as their consistency, content of water and saccharose, acidity, the diastase and 5-HMF values were not changed significantly after irradiation. Decontamination by irradiation is a process which allows us to obtain high microbiological purity of honeys. It is especially needed, when honeys are used in surgical treatment of injuries and in nutrition of babies with food deficiency.

  18. APSIC Guidelines for environmental cleaning and decontamination.

    PubMed

    Ling, Moi Lin; Apisarnthanarak, Anucha; Thu, Le Thi Anh; Villanueva, Victoria; Pandjaitan, Costy; Yusof, Mohamad Yasim

    2015-01-01

    This document is an executive summary of APSIC Guidelines for Environmental Cleaning and Decontamination. It describes best practices in routine cleaning and decontamination in healthcare facilities as well as in specific settings e.g. management of patients with isolation precautions, food preparation areas, construction and renovation, and following a flood. It recommends the implementation of environmental hygiene program to keep the environment safe for patients, staff and visitors visiting a healthcare facility. Objective assessment of cleanliness and quality is an essential component of this program as a method for identifying quality improvement opportunities. Recommendations for safe handling of linen and bedding; as well as occupational health and safety issues are included in the guidelines. A training program is vital to ensure consistent adherence to best practices. PMID:26719796

  19. Polarized Cell Division of Chlamydia trachomatis

    PubMed Central

    Abdelrahman, Yasser; Ouellette, Scot P.; Belland, Robert J.; Cox, John V.

    2016-01-01

    Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments. PMID:27505160

  20. Polarized Cell Division of Chlamydia trachomatis.

    PubMed

    Abdelrahman, Yasser; Ouellette, Scot P; Belland, Robert J; Cox, John V

    2016-08-01

    Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments.

  1. Polarized Cell Division of Chlamydia trachomatis.

    PubMed

    Abdelrahman, Yasser; Ouellette, Scot P; Belland, Robert J; Cox, John V

    2016-08-01

    Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments. PMID:27505160

  2. Decontamination and Decommisioning Equipment Tracking System

    1994-08-26

    DDETS is Relational Data Base Management System (RDBMS) which incorporates 1-D (code 39) and 2-D (PDF417) bar codes into its equipment tracking capabilities. DDETS is compatible with the Reportable Excess Automated Property System (REAPS), and has add, edit, delete and query capabilities for tracking equipment being decontaminated and decommissioned. In addition, bar code technology is utilized in the inventory tracking and shipping of equipment.

  3. DESCALING AND DECONTAMINATING METHOD FOR METALS

    DOEpatents

    Baybarz, R.D.

    1961-04-25

    Oxide scale is removed from the surface of stainless steels and similar metals by contacting the metal under an inert atmosphere with a dilute sulfuric acid solution containing chromous sulfate. The removed oxide scale is either dissolved or disintegrated into a slurry by the solution. Preferred reagent concentrations are 0.3 to 0.5 M chromous sulfate and 0.4 to 0.6 M sulfuric acid. This process is particularly applicable to decontamination of aqueous homogsneous nuclear reactor systems.

  4. Method for electrochemical decontamination of radioactive metal

    SciTech Connect

    Ekechukwu, Amy A.

    2008-06-10

    A decontamination method for stripping radionuclides from the surface of stainless steel or aluminum material comprising the steps of contacting the metal with a moderately acidic carbonate/bicarbonate electrolyte solution containing sodium or potassium ions and thereafter electrolytically removing the radionuclides from the surface of the metal whereby radionuclides are caused to be stripped off of the material without corrosion or etching of the material surface.

  5. Method for the decontamination of metallic surfaces

    DOEpatents

    Purohit, Ankur; Kaminski, Michael D.; Nunez, Luis

    2003-01-01

    A method of decontaminating a radioactively contaminated oxide on a surface. The radioactively contaminated oxide is contacted with a diphosphonic acid solution for a time sufficient to dissolve the oxide and subsequently produce a precipitate containing most of the radioactive values. Thereafter, the diphosphonic solution is separated from the precipitate. HEDPA is the preferred diphosphonic acid and oxidizing and reducing agents are used to initiate precipitation. SFS is the preferred reducing agent.

  6. Resource Conservation and Recovery Act Industrial Site Environmental Restoration Site Characterization Plan, Area 6 Decontamination Pond Facility, Revision 1

    SciTech Connect

    1996-08-12

    This plan presents the strategy for the characterization of the Area 6 Decontamination Pond Facility (DPF) at the Nevada Test Site (NTS) which will be conducted for the U.S. Department of Energy, Nevada Operations OffIce (DOE/NV), Environmental Restoration Division (ERD). The objectives of the planned activities are to: o Obtain sufficient, ample analytical data from which further assessment, remediation, and/or closure strategies maybe developed for the site. o Obtain sufficient, sample analytical data for management of investigation-derived waste. All references to regulations contained in this plan are to the versions of the regulations that are current at the time of publication of this plan. The scope of the characterization may include surface radiation survey(s), surface soil sampling, subsurface soil boring (i.e., drilling), and sampling of soil in and Mound the pond; in situ sampling of the soil within subsurface soil borings; and sample analysis for both site . . characterization and waste management purposes.

  7. Physics division annual report 2000.

    SciTech Connect

    Thayer, K., ed.

    2001-10-04

    This report summarizes the research performed in 2000 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory and medium energy physics research, and accelerator research and development. As the Nuclear Science Advisory Committee and the nuclear science community create a new long range plan for the field in 2001, it is clear that the research of the Division is closely aligned with and continues to help define the national goals of our field. The NSAC 2001 Long Range Plan recommends as the highest priority for major new construction the Rare Isotope Accelerator (RIA), a bold step forward for nuclear structure and nuclear astrophysics. The accelerator R&D in the Physics Division has made major contributions to almost all aspects of the RIA design concept and the community was convinced that this project is ready to move forward. 2000 saw the end of the first Gammasphere epoch at ATLAS, One hundred Gammasphere experiments were completed between January 1998 and March 2000, 60% of which used the Fragment Mass Analyzer to provide mass identification in the reaction. The experimental program at ATLAS then shifted to other important research avenues including proton radioactivity, mass measurements with the Canadian Penning Trap and measurements of high energy gamma-rays in nuclear reactions with the MSU/ORNL/Texas A&M BaF{sub 2} array. ATLAS provided 5460 beam-research hours for user experiments and maintained an operational reliability of 95%. Radioactive beams accounted for 7% of the beam time. ATLAS also provided a crucial test of a key RIA concept, the ability to accelerate multiple charge states in a superconducting heavy-ion linac. This new capability was immediately used to increase the performance for a scheduled experiment. The medium energy program continued to make strides in examining how the quark-gluon structure of matter

  8. Decontamination of high-level waste canisters

    SciTech Connect

    Nesbitt, J.F.; Slate, S.C.; Fetrow, L.K.

    1980-12-01

    This report presents evaluations of several methods for the in-process decontamination of metallic canisters containing any one of a number of solidified high-level waste (HLW) forms. The use of steam-water, steam, abrasive blasting, electropolishing, liquid honing, vibratory finishing and soaking have been tested or evaluated as potential techniques to decontaminate the outer surfaces of HLW canisters. Either these techniques have been tested or available literature has been examined to assess their applicability to the decontamination of HLW canisters. Electropolishing has been found to be the most thorough method to remove radionuclides and other foreign material that may be deposited on or in the outer surface of a canister during any of the HLW processes. Steam or steam-water spraying techniques may be adequate for some applications but fail to remove all contaminated forms that could be present in some of the HLW processes. Liquid honing and abrasive blasting remove contamination and foreign material very quickly and effectively from small areas and components although these blasting techniques tend to disperse the material removed from the cleaned surfaces. Vibratory finishing is very capable of removing the bulk of contamination and foreign matter from a variety of materials. However, special vibratory finishing equipment would have to be designed and adapted for a remote process. Soaking techniques take long periods of time and may not remove all of the smearable contamination. If soaking involves pickling baths that use corrosive agents, these agents may cause erosion of grain boundaries that results in rough surfaces.

  9. Laser decontamination of the radioactive lightning rods

    NASA Astrophysics Data System (ADS)

    Potiens, A. J.; Dellamano, J. C.; Vicente, R.; Raele, M. P.; Wetter, N. U.; Landulfo, E.

    2014-02-01

    Between 1970 and 1980 Brazil experienced a significant market for radioactive lightning rods (RLR). The device consists of an air terminal with one or more sources of americium-241 attached to it. The sources were used to ionize the air around them and to increase the attraction of atmospheric discharges. Because of their ineffectiveness, the nuclear regulatory authority in Brazil suspended the license for manufacturing, commerce and installation of RLR in 1989, and determined that the replaced RLR were to be collected to a centralized radioactive waste management facility for treatment. The first step for RLR treatment is to remove the radioactive sources. Though they can be easily removed, some contaminations are found all over the remaining metal scrap that must decontaminated for release, otherwise it must be treated as radioactive waste. Decontamination using various chemicals has proven to be inefficient and generates large amounts of secondary wastes. This work shows the preliminary results of the decontamination of 241Am-contaminated metal scrap generated in the treatment of radioactive lightning rods applying laser ablation. A Nd:YAG nanoseconds laser was used with 300 mJ energy leaving only a small amount of secondary waste to be treated.

  10. Chemical System Decontamination at PWR Power Stations Biblis A and B by Advanced System Decontamination by Oxidizing Chemistry (ASDOC-D) Process Technology - 13081

    SciTech Connect

    Loeb, Andreas; Runge, Hartmut; Stanke, Dieter; Bertholdt, Horst-Otto; Adams, Andreas; Impertro, Michael; Roesch, Josef

    2013-07-01

    For chemical decontamination of PWR primary systems the so called ASDOC-D process has been developed and qualified at the German PWR power station Biblis. In comparison to other chemical decontamination processes ASDOC-D offers a number of advantages: - ASDOC-D does not require separate process equipment but is completely operated and controlled by the nuclear site installations. Feeding of chemical concentrates into the primary system is done by means of the site's dosing systems. Process control is performed by standard site instrumentation and analytics. - ASDOC-D safely prevents any formation and precipitation of insoluble constituents - Since ASDOC-D is operated without external equipment there is no need for installation of such equipment in high radioactive radiation surrounding. The radioactive exposure rate during process implementation and process performance may therefore be neglected in comparison to other chemical decontamination processes. - ASDOC-D does not require auxiliary hose connections which usually bear high leakage risk. The above mentioned technical advantages of ASDOC-D together with its cost-effectiveness gave rise to Biblis Power station to agree on testing ASDOC-D at the volume control system of PWR Biblis unit A. By involving the licensing authorities as well as expert examiners into this test ASDOC-D received the official qualification for primary system decontamination in German PWR. As a main outcome of the achieved results NIS received contracts for full primary system decontamination of both units Biblis A and B (each 1.200 MW) by end of 2012. (authors)

  11. Health, Safety, and Environment Division

    SciTech Connect

    Wade, C

    1992-01-01

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.

  12. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    1999-01-01

    The Structures and Acoustics Division of NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported are a synopsis of the work and accomplishments reported by the Division during the 1996 calendar year. A bibliography containing 42 citations is provided.

  13. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    2001-01-01

    The Structures and Acoustics Division of the NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included in this report are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported is a synopsis of the work and accomplishments completed by the Division during the 1997, 1998, and 1999 calendar years. A bibliography containing 93 citations is provided.

  14. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties.. Annual report to be submitted to DOE Program Managers for posting on web page.

    SciTech Connect

    Davison, BH

    2001-06-15

    The proposed research aims to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies will include the following: decreased exposure hazards for workers; decreased secondary waste generation; increased efficiency of decontamination; positive public appeal and development of novel, nature-friendly business opportunities; and lower cost of cleanup to the government.

  15. Laser decontamination of epoxy painted concrete surfaces in nuclear plants

    NASA Astrophysics Data System (ADS)

    Anthofer, A.; Lippmann, W.; Hurtado, A.

    2014-04-01

    Laser technology offers an efficient decontamination of surfaces contaminated by polychlorinated biphenyls (PCB) by precise application of highly focused laser beam power. In the context of nuclear decommissioning all walls and floors of a reactor building have to be cleaned from chemical-toxic substances. State of the art is a manual and mechanic ablation and a subsequent treatment in a hazardous waste incinerator. In this study, alternatively, a laser-based system exhibiting, decontamination rates of up to 6.4 m2/h has been operated using a 10 kW diode laser in continuous wave (CW) mode with a spot size of 45×10 mm2 and a wavelength of 980-1030 nm. The system allows a rapid heating of the surfaces up to temperatures of more than 1000 °C leading to ablation and thermal decomposition of PCB in one process step. Thermal quenching prevents formation of polychlorinated dioxines (PCDD) and polychlorinate furans (PCDF) in the flue gas. Additionally, an in situ measurement system based on laser induced fluorescence (LIF) is developed to monitor the thermal decomposition of PCB. For initial experiments samples covered with epoxy paint were used to evaluate the process and to carry out finite element based simulations. In this paper, experimental results of ablation tests by laser irradiation of epoxy painted concrete are presented and discussed.

  16. Dismantlement and decontamination of a plutonium-238 facility at SRS

    SciTech Connect

    Smith, R.H. Jr.; Hootman, H.E.

    1994-01-01

    There has been very little, documented decontamination and decommissioning (D&D) experience on which to project cleanup costs and schedules for plutonium facilities at SRS and other DOE sites. A portion of the HB-Line, a plutonium-238 processing facility at SRS, has been undergoing D&D intermittently since 1984. Although this cleanup effort was not originally intended to quantify results, some key data have been project has demonstrated effective methods of accumulated, and the performing D&D work, and has demonstrated cleanup equipment and techniques under conditions of high contamination. Plutonium facilities where D&D is already underway provide an opportunity for` timely field testing of characterization, size reduction, and decontamination techniques. Some data are presented here; however, more specific tests and data may be obtained during the remainder of this project. This project has been recommended as a candidate test facility for a DOE planned ``Integrated D&D Demonstration`` managed by EM-50 to develop and demonstrate technology for D&D and surplus facilities deactivation. Both the remainder of this project and the Integrated D&D Demonstration Program can benefit from a joint effort, and the, overall costs should be reduced.

  17. Decontamination of control rod housing from Palisades Nuclear Power Station.

    SciTech Connect

    Kaminski, M.D.; Nunez, L.; Purohit, A.

    1999-05-03

    Argonne National Laboratory has developed a novel decontamination solvent for removing oxide scales formed on ferrous metals typical of nuclear reactor piping. The decontamination process is based on the properties of the diphosphonic acids (specifically 1-hydroxyethane-1,1-diphosphonic acid or HEDPA) coupled with strong reducing-agents (e.g., sodium formaldehyde sulfoxylate, SFS, and hydroxylamine nitrate, HAN). To study this solvent further, ANL has solicited actual stainless steel piping material that has been recently removed from an operating nuclear reactor. On March 3, 1999 ANL received segments of control rod housing from Consumers Energy's Palisades Nuclear Plant (Covert, MI) containing radioactive contamination from both neutron activation and surface scale deposits. Palisades Power plant is a PWR type nuclear generating plant. A total of eight segments were received. These segments were from control rod housing that was in service for about 6.5 years. Of the eight pieces that were received two were chosen for our experimentation--small pieces labeled Piece A and Piece B. The wetted surfaces (with the reactor's pressurized water coolant/moderator) of the pieces were covered with as a scale that is best characterized visually as a smooth, shiny, adherent, and black/brown in color type oxide covering. This tenacious oxide could not be scratched or removed except by aggressive mechanical means (e.g., filing, cutting).

  18. Oxidative Decontamination of Tritiated Materials Employing Ozone Gas

    SciTech Connect

    Charles A. Gentile; John J. Parker; Gregory L. Guttadora

    2001-11-12

    The Princeton Plasma Physics Laboratory has developed a process by which to significantly reduce surface and near surface tritium contamination from various materials. The Oxidative Tritium Decontamination System (OTDS) reacts gaseous state ozone (accelerated by presence of catalyst), with tritium entrained/deposited on the surface of components (stainless steel, copper, plastics, ceramics, etc.), for the purpose of activity reduction by means of oxidation-reduction chemistry. In addition to removing surface and near surface tritium contamination from (high monetary value) components for reuse in non-tritium environments, the OTDS has the capability of removing tritium from the surfaces of expendable items, which can then be disposed of in a less expensive fashion. The OTDS can be operated in a batch mode by which up to approximately 40 pounds of tritium contaminated (expendable) items can be processed and decontaminated to levels permissible for free release (less than1,000 dpm/100 cm 2). This paper will discuss the OTDS process, the level of tritium surface contamination removed from various materials, and a technique for ''deep scrubbing'' tritium from subsurface layers.

  19. Characterization of jet-contaminant interaction flow in chemical decontamination

    NASA Astrophysics Data System (ADS)

    Chang, L. M.

    1984-09-01

    A numerical simulation and study are presented for characterization of the flow interaction of a water jet with a chemical contaminant droplet on a plane wall, which occurs in chemical decontamination processes. Two models are developed for this analysis, namely, one-fluid flow and two-fluid flow, both governed by the two-dimensional Navier-Stokes equations. Emphases of the study are on the evolution of the contaminant droplet and the effects of various flow parameters. Computer plots of the movement of the droplet are present. Computed results show that a jet impingement at 45-60 degrees from the contaminated wall can perform in the most effective and most efficient way in displacing the contaminant. The results also show that an increase in the jet velocity or the cross-sectional area of the jet can greatly improve the cleaning power. However, for a given jet flow rate, it is more advantageous to adopt a jet spray composed of a number of small high-speed jets than one consisting of a single large low-speed jet. The jet-contaminant interactions taking place in confined geometries, such as cavities and corners of two perpendicular walls, are also examined. We have found that an inclined jet is more effective than a normal jet for decontaminating such geometries. In all of the flow cases studied, the impact pressure on the impingement wall far exceeds the steady-state stagnation pressure of the jet.

  20. Aquatic toxicity of the decontamination agent: Multipurpose (DAM) decontamination solution. Final report, May-December 1992

    SciTech Connect

    Haley, M.V.; Kurnas, C.W.; Chester, N.A.; Muse, W.T.

    1994-05-01

    A new formulation, Decontaminating Agent: Multipurpose (DAM) Decontamination Solution, is being considered as a replacement to the DS-2 decontaminating solution. The new formulation is composed of calcium hypochlorite and N-cyclohexyl-2-pyrrolidinone. Since this is a new formulation little environmental data exists. To estimate potential impact to an aquatic environment, Daphnia magna and Photobacterium phosphoreum (a luminescent marine bacterium) were exposed to the DAM solution and to the individual components (Calcium hypochlorite and N-cyclohexyl-2-pyrrolidinone). The toxicity of the DAM solution to D. magna and P. phosphoreum was 5000 and 0.00053, respectively (highly toxic). The toxicity of calcium hypochlorite' and N-cyclohexyl-2-pyrrolidinone to daphnia was 0.04 mg/L (highly toxic) and 107 mg/L (moderately toxic), respectively.

  1. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    SciTech Connect

    Davison, Brian H.; Kurtiz,Tanya

    1999-06-01

    The proposed research aims to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies will include the following: (1) decreased exposure hazards for workers; (2) decreased secondary waste generation; (3) increased efficiency of decontamination; (4) positive public appeal and development of novel, nature-friendly business opportunities; and (5) lower cost of cleanup to the government. We propose to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) will then be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  2. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    SciTech Connect

    Davison, Brian H.

    2002-04-30

    The proposed research aimed to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies include the following: decreased exposure hazards for workers; decreased secondary waste generation; increased efficiency of decontamination; positive public appeal and development of novel, nature-friendly business opportunities; and lower cost of cleanup to the government. We proposed to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) was to be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  3. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    SciTech Connect

    Davison, Brian H.; Kuritz, Tanya

    2000-06-01

    The proposed research aims to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies will include the following: (1) decreased exposure hazards for workers; (2) decreased secondary waste generation; (3) increased efficiency of decontamination; (4) positive public appeal and development of novel, nature-friendly business opportunities; and (5) lower cost of cleanup to the government. We propose to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) will then be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  4. Wide-area decontamination in an urban environment after radiological dispersion: A review and perspectives.

    PubMed

    Kaminski, Michael D; Lee, Sang Don; Magnuson, Matthew

    2016-03-15

    Nuclear or radiological terrorism in the form of uncontrolled radioactive contamination presents a unique challenge in the field of nuclear decontamination. Potential targets require an immediate decontamination response, or mitigation plan to limit the social and economic impact. To date, experience with urban decontamination of building materials - specifically hard, porous, external surfaces - is limited to nuclear weapon fallout and nuclear reactor accidents. Methods are lacking for performing wide-area decontamination in an urban environment so that in all release scenarios the area may be re-occupied without evaluation and/or restriction. Also lacking is experience in developing mitigation strategies, that is, methods of mitigating contamination and its resultant radiation dose in key areas during the immediate aftermath of an event and after lifesaving operations. To date, the tremendous strategy development effort primarily by the European community has focused on the recovery phase, which extends years beyond the release event. In this review, we summarize the methods and data collected over the past 70 years in the field of hard, external surface decontamination of radionuclide contaminations, with emphasis on methods suitable for response to radiological dispersal devices and their potentially unique physico-chemical characteristics. This review concludes that although a tremendous amount of work has been completed primarily by the European Community (EU) and the United Kingdom (UK), the few studies existing on each technique permit only very preliminary estimates of decontamination factors for various building materials and methods and extrapolation of those values for use in environments outside the EU and UK. This data shortage prevents us from developing an effective and detailed mitigation response plan and remediation effort. Perhaps most importantly, while the data available does include valuable information on the practical aspects of performing

  5. Wide-area decontamination in an urban environment after radiological dispersion: A review and perspectives.

    PubMed

    Kaminski, Michael D; Lee, Sang Don; Magnuson, Matthew

    2016-03-15

    Nuclear or radiological terrorism in the form of uncontrolled radioactive contamination presents a unique challenge in the field of nuclear decontamination. Potential targets require an immediate decontamination response, or mitigation plan to limit the social and economic impact. To date, experience with urban decontamination of building materials - specifically hard, porous, external surfaces - is limited to nuclear weapon fallout and nuclear reactor accidents. Methods are lacking for performing wide-area decontamination in an urban environment so that in all release scenarios the area may be re-occupied without evaluation and/or restriction. Also lacking is experience in developing mitigation strategies, that is, methods of mitigating contamination and its resultant radiation dose in key areas during the immediate aftermath of an event and after lifesaving operations. To date, the tremendous strategy development effort primarily by the European community has focused on the recovery phase, which extends years beyond the release event. In this review, we summarize the methods and data collected over the past 70 years in the field of hard, external surface decontamination of radionuclide contaminations, with emphasis on methods suitable for response to radiological dispersal devices and their potentially unique physico-chemical characteristics. This review concludes that although a tremendous amount of work has been completed primarily by the European Community (EU) and the United Kingdom (UK), the few studies existing on each technique permit only very preliminary estimates of decontamination factors for various building materials and methods and extrapolation of those values for use in environments outside the EU and UK. This data shortage prevents us from developing an effective and detailed mitigation response plan and remediation effort. Perhaps most importantly, while the data available does include valuable information on the practical aspects of performing

  6. Total decontamination cost of the anthrax letter attacks.

    PubMed

    Schmitt, Ketra; Zacchia, Nicholas A

    2012-03-01

    All of the costs associated with decontamination following the 2001 anthrax letter attacks were summarized, estimated, and aggregated based on existing literature and news media reports. A comprehensive list of all affected structures was compiled. Costs were analyzed by building class and decontamination type. Sampling costs and costs of worker relocation were also included. Our analysis indicates that the total cost associated with decontamination was about $320 million.

  7. Decontamination after a release of B. anthracis spores.

    PubMed

    Campbell, Chris G; Kirvel, Robert D; Love, Adam H; Bailey, Christopher G; Miles, Robin; Schweickert, Jerry; Sutton, Mark; Raber, Ellen

    2012-03-01

    Decontaminating civilian facilities or large urban areas following an attack with Bacillus anthracis poses daunting challenges because of the lack of resources and proven technologies. Nevertheless, lessons learned from the 2001 cleanups together with advances derived from recent research have improved our understanding of what is required for effective decontamination. This article reviews current decontamination technologies appropriate for use in outdoor environments, on material surfaces, within large enclosed spaces, in water, and on waste contaminated with aerosolized B. anthracis spores. PMID:22352747

  8. Decontamination after a release of B. anthracis spores.

    PubMed

    Campbell, Chris G; Kirvel, Robert D; Love, Adam H; Bailey, Christopher G; Miles, Robin; Schweickert, Jerry; Sutton, Mark; Raber, Ellen

    2012-03-01

    Decontaminating civilian facilities or large urban areas following an attack with Bacillus anthracis poses daunting challenges because of the lack of resources and proven technologies. Nevertheless, lessons learned from the 2001 cleanups together with advances derived from recent research have improved our understanding of what is required for effective decontamination. This article reviews current decontamination technologies appropriate for use in outdoor environments, on material surfaces, within large enclosed spaces, in water, and on waste contaminated with aerosolized B. anthracis spores.

  9. Decontamination technologies for release from bioprocessing facilities. Part I. Introduction. Part II. Decontamination of wastewater

    SciTech Connect

    Wickramanayake, G.B. )

    1990-01-01

    Genetically engineered microorganisms are widely used in biotechnology. Wastewater from bioprocessing facilities will require treatment to ensure that effluents discharged into surface water or other waste streams are not a source of viable organisms or transmittable genetic material. The application of treatment technologies used in other industries to decontaminate the releases from biotechnology processing facilities was evaluated. Since published literature on the inactivation of recombinant-DNA organisms is very limited, information for bacteria, viruses, fungi and subcellular components was obtained. The data indicated that ozone, chlorine, chlorine dioxide, heat, ultraviolet light and ionizing radiation offer good performance potential for decontamination of rDNA processing wastewater. 180 refs., 7 figs., 26 tabs.

  10. Personal protective equipment and decontamination of adults and children.

    PubMed

    Holland, Michael G; Cawthon, David

    2015-02-01

    Accurate identification of the hazardous material is essential for proper care. Efficient hospital security and triage must prevent contaminated victims from entering the emergency department (ED) and causing secondary contamination. The decontamination area should be located outside the ambulance entrance. Decontamination priorities are protection of the health care worker, utilization of Level C personal protective equipment, and proper decontamination of the exposed patient. Decontamination proceeds in a head-to-toe sequence. Run-off water is a hazardous waste. Hospital and Community Management Planning for these emergencies is essential for proper preparation and effective response to the hazardous materials incident.

  11. Personal protective equipment and decontamination of adults and children.

    PubMed

    Holland, Michael G; Cawthon, David

    2015-02-01

    Accurate identification of the hazardous material is essential for proper care. Efficient hospital security and triage must prevent contaminated victims from entering the emergency department (ED) and causing secondary contamination. The decontamination area should be located outside the ambulance entrance. Decontamination priorities are protection of the health care worker, utilization of Level C personal protective equipment, and proper decontamination of the exposed patient. Decontamination proceeds in a head-to-toe sequence. Run-off water is a hazardous waste. Hospital and Community Management Planning for these emergencies is essential for proper preparation and effective response to the hazardous materials incident. PMID:25455662

  12. Modification of Experimental Protocols for a Space Shuttle Flight and Applications for the Analysis of Cytoskeletal Structures During Fertilization, Cell Division , and Development in Sea Urchin Embryos

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Amitabha; Stoecker, Andrew; Schatten, Heide

    1995-01-01

    To explore the role of microgravity on cytoskeletal organization and skeletal calcium deposition during fertilization, cell division, and early development, the sea urchin was chosen as a model developmental system. Methods were developed to employ light, immunofluorescence, and electron microscopy on cultures being prepared for flight on the Space Shuttle. For analysis of microfilaments, microtubules, centrosomes, and calcium-requiring events, our standard laboratory protocols had to be modified substantially for experimentation on the Space Shuttle. All manipulations were carried out in a closed culture chamber containing 35 ml artificial sea water as a culture fluid. Unfertilized eggs stored for 24 hours in these chambers were fertilized with sperm diluted in sea water and fixed with concentrated fixatives for final fixation in formaldehyde, taxol, EGTA, and MgCl2(exp -6)H2O for 1 cell to 16 cell stages to preserve cytoskeletal structures for simultaneous analysis with light, immunofluorescence, and electron microscopy, and 1.5 percent glutaraldehyde and 0.4 percent formaldehyde for blastula and plueus stages. The fixed samples wre maintained in chambers without degradation for up to two weeks after which the specimens were processed and analyzed with routine methods. Since complex manipulations are not possible in the closed chambers, the fertilization coat was removed from fixation using 0.5 percent freshly prepared sodium thioglycolate solution at pH 10.0 which provided reliable immunofluorescence staining for microtubules. Sperm/egg fusion, mitosis, cytokinesis, and calcium deposition during spicule formatin in early embryogenesis were found to be without artificial alterations when compared to cells fixed fresh and processed with conventional methods.

  13. SELECTED WATER DECONTAMINATION RESEARCH PROJECT

    EPA Science Inventory

    The Water Environment Federation (WEF), through funding from the U.S. Environmental Protection Agency (EPA) and the Agency's Office of Research and Development (ORD), will host the first of three regional water sector stakeholder workshops March 15-17, 2005 at the Phoenix Marriot...

  14. Wet decontamination-induced stratum corneum hydration--effects on the skin barrier function to diethylmalonate.

    PubMed

    Loke, W K; U, S H; Lau, S K; Lim, J S; Tay, G S; Koh, C H

    1999-01-01

    Decontamination of chemical agents from the skin uses both dry and wet decontamination processes. Recent studies have shown that wet decontamination frequently results in stratum corneum hydration. To evaluate the hydration effect of wet decontamination on the skin barrier function and hence on the decontamination efficiency, a series of comparative studies were carried out on human skin contaminated with the nerve agent simulant diethylmalonate, using decontamination media having different salinity and surfactants. The results showed that, compared to non-decontaminated skin, remnant diethylmalonate on decontaminated skin penetrated at an accelerated rate in the immediate 2 h following decontamination. This transient enhancement effect, ranging from 20 to 98%, was depended on the nature of the decontamination media used and was more obvious in skin samples that were decontaminated 1 h postexposure. All decontamination media exhibited this effect, with the greatest enhancement observed in the following order: anionic surfactant > cationic surfactant > non-ionic surfactant > deionized water > 0.9% saline > 9% saline.

  15. Decontamination and reuse of ORGDP aluminum scrap

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF{sub 6}. This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible.

  16. Health care worker protection in mass casualty respiratory failure: infection control, decontamination, and personal protective equipment.

    PubMed

    Daugherty, Elizabeth L

    2008-02-01

    Maintenance of a safe and stable health care infrastructure is critical to an effective mass casualty disaster response. Both secondary contamination during chemical disasters and hospital-associated infections during epidemic illness can pose substantial threats to achieving this goal. Understanding basic principles of decontamination and infection control during responses to chemical and biologic disasters can help minimize the risks to patients and health care workers. Effective decontamination following toxic chemical exposure should include both removal of contaminated clothing and decontamination of the victim's skin. Wet decontamination is the most feasible strategy in a mass casualty situation and should be performed promptly by trained personnel. In the event of an epidemic, infection prevention and control measures are based on essential principles of hand hygiene and standard precautions. Expanded precautions should be instituted as needed to target contact, droplet, and airborne routes of infectious disease transmission. Specific equipment and measures for critical care delivery may serve to decrease risk to health care workers in the event of an epidemic. Their use should be considered in developing comprehensive disaster response plans.

  17. A METHOD FOR REGENERATION OF SPENT ELECTROCHEMICAL DECONTAMINATION SOLUTION AND ITS TREATMENT FOR FINAL DISPOSAL

    SciTech Connect

    Davydov, D.Yu.; Davydov, Yu.P.; Toropov, I.G.; John, J.; Rosikova, K.; Motl, A.; Hudson, M.J.; Prazska, M.

    2003-02-27

    This paper describes the method of regeneration of spent electrochemical decontamination solution. The proposed method allows separation of radionuclides and stable metals from spent decontamination solution in a form suitable for final disposal and repeated use of the remaining solution for electrochemical decontamination. Development of this method was based on the results of the speciation studies which showed that Fe(III) can be precipitated in the presence of organic complexing agents, in a form of iron hydroxide, and Ag-110m, Co-60, Mn-54 radionuclides can be coprecipitated on it. In order to verify the conclusions made as a result of the speciation studies, the experiments with electrochemically prepared simulant solution and real solution were carried out. The test results proved that the proposed method can be applied in practice. Treatment of the ultimately spent decontamination solutions can be also made applying iron precipitation, which allows for removal of the bulk amount of contaminants, as the first step. Then, if necessary the remaining radionuclides can be removed by sorption. A series of novel absorbers has been tested for their potential for the sorption removal of the remaining radionuclides from the supernate. The test results showed that most of them were more effective in neutral or alkaline range of pH, however, the high efficiency of the sorption removal can be achieved only after the removal of the oxalic and citric acids from solution.

  18. Automated Single Cell Data Decontamination Pipeline

    SciTech Connect

    Tennessen, Kristin; Pati, Amrita

    2014-03-21

    Recent technological advancements in single-cell genomics have encouraged the classification and functional assessment of microorganisms from a wide span of the biospheres phylogeny.1,2 Environmental processes of interest to the DOE, such as bioremediation and carbon cycling, can be elucidated through the genomic lens of these unculturable microbes. However, contamination can occur at various stages of the single-cell sequencing process. Contaminated data can lead to wasted time and effort on meaningless analyses, inaccurate or erroneous conclusions, and pollution of public databases. A fully automated decontamination tool is necessary to prevent these instances and increase the throughput of the single-cell sequencing process

  19. Microwave-Based Water Decontamination System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Byerly, Diane (Inventor); Sognier, Marguerite (Inventor); Dusl, John (Inventor)

    2016-01-01

    A system for decontaminating a medium. The system can include a medium having one or more contaminants disposed therein. The contaminants can be or include bacteria, fungi, parasites, viruses, and combinations thereof. A microwave energy radiation device can be positioned proximate the medium. The microwave energy radiation device can be adapted to generate a signal having a frequency from about 10 GHz to about 100 GHz. The signal can be adapted to kill one or more of the contaminants disposed within the medium while increasing a temperature of the medium by less than about 10 C.

  20. Decontamination, decommissioning, and vendor advertorial issue, 2006

    SciTech Connect

    Agnihotri, Newal

    2006-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: NPP Krsko revised decommissioning program, by Vladimir Lokner and Ivica Levanat, APO d.o.o., Croatia, and Nadja Zeleznik and Irena Mele, ARAO, Slovenia; Supporting the renaissance, by Marilyn C. Kray, Exelon Nuclear; Outage world an engineer's delight, by Tom Chrisopher, Areva, NP Inc.; Optimizing refueling outages with R and D, by Ross Marcoot, GE Energy; and, A successful project, by Jim Lash, FirstEnergy.

  1. Decontamination formulations for disinfection and sterilization

    DOEpatents

    Tucker, Mark D.; Engler, Daniel E.

    2007-09-18

    Aqueous decontamination formulations that neutralize biological pathogens for disinfection and sterilization applications. Examples of suitable applications include disinfection of food processing equipment, disinfection of areas containing livestock, mold remediation, sterilization of medical instruments and direct disinfection of food surfaces, such as beef carcasses. The formulations include at least one reactive compound, bleaching activator, inorganic base, and water. The formulations can be packaged as a two-part kit system, and can have a pH value in the range of 7-8.

  2. Investigation of electrokinetic decontamination of concrete

    SciTech Connect

    DePaoli, D.W.; Harris, M.T.; Morgan, I.L.; Ally, M.R.

    1995-12-31

    Experiments have been conducted to investigate the capabilities of electrokinetic decontamination of concrete. Batch equilibration studies have determined that the loading of cesium and strontium on concrete may be decreased using electrolyte solutions containing competing cations, while solubilization of uranium and cobalt, that precipitate at high pH, will require lixiviants containing complexing agents. Dynamic electrokinetic experiments showed greater mobility of cesium than strontium, while some positive results were obtained for the transport of cobalt through concrete using EDTA and for uranium using carbonate.

  3. Decontamination, decommissioning, and vendor advertorial issue, 2005

    SciTech Connect

    Agnihotri, Newal

    2005-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major interviews, articles and reports in this issue include: Increasing momentum, by Gary Taylor, Entergy Nuclear, Inc.; An acceptable investment, by Tom Chrisopher, Areva, Inc.; Fuel recycling for the U.S. and abroad, by Philippe Knoche, Areva, France; We're bullish on nuclear power, by Dan R. Keuter, Entergy Nuclear, Inc.; Ten key actions for decommissioning, by Lawrence E. Boing, Argonne National Laboratory; Safe, efficient and cost-effective decommissioning, by Dr. Claudio Pescatore and Torsten Eng, OECD Nuclear Energy Agency (NEA), France; and, Plant profile: SONGS decommissioning.

  4. Large area cold plasma applicator for decontamination

    NASA Astrophysics Data System (ADS)

    Konesky, G. A.

    2008-04-01

    Cold plasma applicators have been used in the Medical community for several years for uses ranging from hemostasis ("stop bleeding") to tumor removal. An added benefit of this technology is enhanced wound healing by the destruction of infectious microbial agents without damaging healthy tissue. The beam is typically one millimeter to less than a centimeter in diameter. This technology has been adapted and expanded to large area applicators of potentially a square meter or more. Decontamination applications include both biological and chemical agents, and assisting in the removal of radiological agents, with minimal or no damage to the contaminated substrate material. Linear and planar multiemitter array plasma applicator design and operation is discussed.

  5. Process for Descaling and Decontaminating Metals

    DOEpatents

    Baybarz, R. D.

    1961-04-25

    The oxide scale on the surface of stainless steels and similar metals is removed by contacting the metal under an inert atmosphere with a dilute H/sub 2/ SO/sub 4/ solution containing CrSO/sub 4/. The removed oxide scale is either dissolved or disintegrated into a slurry by the solution. Preferred reagent concentrations are 0.3 to 0.5 M CrSO/sub 4/ and 0.5 to 0.6 M H/sub 2/SO/sub 4/. The process is particularly applicable to decontamination of aqueous homogeneous nuclear reactor systems. (AEC)

  6. Investigating Quantum Mechanical Tunneling at the Nanoscale via Analogy: Development and Assessment of a Teaching Tool for Upper-Division Chemistry

    ERIC Educational Resources Information Center

    Muniz, Marc N.; Oliver-Hoyo, Maria T.

    2014-01-01

    We report a novel educational activity designed to teach quantum mechanical tunneling to upper-division undergraduate students in the context of nanochemistry. The activity is based on a theoretical framework for analogy and is split into three parts that are linked pedagogically through the framework: classical ball-and-ramp system, tunneling…

  7. Nuclear decontamination technology evaluation to address contamination of a municipal water system

    SciTech Connect

    McFee, J.; Langsted, J.; Young, M.; Porcon, J.; Day, E.

    2007-07-01

    The US Environmental Protection Agency (EPA) and US Department of Homeland Security (DHS) are considering the impact and recovery from contamination of municipal water systems, including intentional contamination of those systems. Industrial chemicals, biological agents, drugs, pesticides, chemical warfare agents, and radionuclides all could be introduced into a municipal water system to create detrimental health effects and disrupt a community. Although unintentional, the 1993 cryptosporidium contamination of the Milwaukee WS water system resulted in 100 fatalities and disrupted the city for weeks. Shaw Environmental and Infrastructure Inc, (Shaw), as a subcontractor on a DHS contract with Michael Baker Jr., Inc., was responsible for evaluation of the impact and recovery from radionuclide contamination in a municipal water system distribution system. Shaw was tasked to develop a matrix of nuclear industry decontamination technologies and evaluate applicability to municipal water systems. Shaw expanded the evaluation to include decontamination methods commonly used in the drinking water supply. The matrix compared all technologies for implementability, effectiveness, and cost. To address the very broad range of contaminants and contamination scenarios, Shaw bounded the problem by identification of specific contaminant release scenario(s) for specific water system architecture(s). A decontamination technology matrix was developed containing fifty-nine decontamination technologies potentially applicable to the water distribution system piping, pumps, tanks, associated equipment, and/or contaminated water. Qualitatively, the majority of the nuclear industry decontamination technologies were eliminated from consideration due to implementability concerns. However, inclusion of the municipal water system technologies supported recommendations that combined the most effective approaches in both industries. (authors)

  8. The genetic control of plastid division in higher plants.

    PubMed

    Pyke, K

    1997-08-01

    The division of plastids is an important part of plastid differentiation and development and in distinct cell types, such as leaf mesophyll cells, results in large populations of chloroplasts. The morphology and population dynamics of plastid division have been well documented, but the molecular controls underlying plastid division are largely unknown. With the isolation of Arabidopsis mutants in which specific aspects of plastid and proplastid division have been disrupted, the potential exists for a detailed knowledge of how plastids divide and what factors control the rate of division in different cell types. It is likely that knowledge of plant homologues of bacterial cell division genes will be essential for understanding this process in full. The processes of plastid division and expansion appear to be mutually independent processes, which are compensatory when either division or expansion are disrupted genetically. The rate of cell expansion appears to be an important factor in initiating plastid division and several systems involving rapid cell expansion show high levels of plastid division activity. In addition, observation of plastids in different cell types in higher plants shows that cell-specific signals are also important in the overall process in determining not only the differentiation pathway of plastids but also the extent of plastid division. It appears likely that with the exploitation of molecular techniques and mutants, a detailed understanding of the molecular basis of plastid division may soon be a reality.

  9. 40 CFR 761.79 - Decontamination standards and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... disassembled electrical equipment), concrete, and non-porous surfaces covered with a porous surface, such as... person decontaminating porous surfaces other than concrete under paragraph (b)(4) of this section and non..., concrete, or non-porous surfaces. (1) The decontamination standard for water containing PCBs is: (i)...

  10. Emergency department external decontamination for hazardous chemical exposure

    SciTech Connect

    Lavoie, F.W.; Coomes, T.; Cisek, J.E.; Fulkerson, L. )

    1992-02-01

    Although external decontamination is an integral aspect of the emergency management of hazardous chemicals exposure, no standard protocol or report of human experience is available. We performed a retrospective review of all patients decontaminated in our emergency department over a 6-y period for hazardous chemicals exposure. Patients were treated by a universal substances protocol in a specially designed decontamination area. Ocular irrigation utilizing 1500 ml of normal saline po was employed in 27 patients. Oral mucosal irrigation utilizing 1500 ml water was employed in 2 patients. All 72 patients received skin and hair decontamination. Skin was washed 3 times with detergent and cornmeal mixture, and water irrigation or shower for 3 min. Hair was shampooed 3 times with mild soap for 3 min. A subset of patients (n = 31) received pre-decontamination and post-decontamination skin swabbing. Swabs were analyzed by a certified analytical chemistry laboratory utilizing gas chromatography/mass spectrometry. Positive pre-decontamination swabs were seen for pesticides and PCBs. All post-decontamination swab analyses were negative, indicating that the method utilized was effective.

  11. Biology Division progress report, October 1, 1993--September 30, 1995

    SciTech Connect

    1995-10-01

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1993, through September 30, 1995. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report. Attention is focused on the following research activities: molecular, cellular, and cancer biology; mammalian genetics and development; genome mapping program; and educational activities.

  12. Electromagnetic mixed waste processing system for asbestos decontamination

    SciTech Connect

    Kasevich, R.S.; Vaux, W.G.; Nocito, T.

    1995-10-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the U.S. nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCB`s, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay and fission products of DOE operations. The asbestos must be converted by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives.

  13. Chemical and Biological Substances Decontamination Study for Mars Missions and Terrestrial Applications

    NASA Astrophysics Data System (ADS)

    Pottage, Thomas; Walker, James; Bennett, Allan; Vrublevskis, John; Hovland, Scott

    This study, funded by the European Space Agency (ESA) and undertaken by the Health Protec-tion Agency, UK supported by Systems Engineering and Assessment Ltd., was devised to select suitable current decontamination technologies for development for future manned missions to the Moon and Mars. There is a requirement to decontaminate the habitat module due to the concerns about astronaut ill health, microbial deterioration of materials and potential forward contamination in the case of Mars. In the case of the MIR space station, biodeterioration of components and materials occurred, and dangerous levels of airborne microorganisms were detected during air sampling procedures which lead to the introduction of microbial exposure limits (as MORD SSP 50260) to ensure the health of the crew. COSPAR planetary protection guidelines highlight the need to reduce any potential forward or backwards contamination issues that may occur through the use of Extra Vehicular Activity (EVA) suits whilst on Mars. Decontamination of the suit exterior must be completed before any EVA activity on Mars, whilst a further decontamination cycle must be completed after entry to the airlock following EVA. Technologies and techniques have also been investigated for the microbial reduction of the interior surfaces of the EVA suit to stop biodeterioration of the materials and protect the user from pathogenic microbe accumulation. The first work package reviewed the systems description and requirements as detailed in the statement of work. The requirements were broken down into 12 further requirement sections, where they were updated and expanded, resulted in Technical Note (TN) 1 which was then used as the base document for WP2 and WP3. WP2 investigated the current technologies available for the decontamination of the habitat module interior on missions of up to 6 months and missions that have durations of greater than 6 months. A comprehensive review was carried out for the different methods that

  14. Solid State Division

    SciTech Connect

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  15. | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. The Problem with Division

    ERIC Educational Resources Information Center

    Pope, Sue

    2012-01-01

    Of the "big four", division is likely to regarded by many learners as "the odd one out", "the difficult one", "the one that is complicated", or "the scary one". It seems to have been that way "for ever", in the perception of many who have trodden the learning pathways through the world of number. But, does it have to be like this? Clearly the…

  17. Division XII Business Meetings

    NASA Astrophysics Data System (ADS)

    Smith, Malcolm G.; Genova, Francoise; Anderson, Johannes; Federman, Steven R.; Gilmore, Alan C.; Nha, Il-Seong; Norris, Raymond P.; Robson, Ian E.; Stavinschi, Magda G.; Trimble, Virginia L.; Wainscoat, Richard J.

    2010-05-01

    Brief meetings were held to confirm the elections of the incoming Division President, Francoise Genova and Vice President, Ray Norris along with the Organizing Committee which will consist of the incoming Presidents of the 7 Commissions (5,6,14,41,46,50 and 55) plus additional nominated members. The incoming Organizing Committee will thus consist of:

  18. Ag Division States Philosophy

    ERIC Educational Resources Information Center

    American Vocational Journal, 1976

    1976-01-01

    The discussion which took place during the American Vocational Association's (AVA) Agriculture Division meeting at the 1975 AVA Convention is summarized, and the statement of vo-ag education philosophy (including 13 key concepts), which was passed during the convention, is presented. (AJ)

  19. Cell division in Corynebacterineae

    PubMed Central

    Donovan, Catriona; Bramkamp, Marc

    2014-01-01

    Bacterial cells must coordinate a number of events during the cell cycle. Spatio-temporal regulation of bacterial cytokinesis is indispensable for the production of viable, genetically identical offspring. In many rod-shaped bacteria, precise midcell assembly of the division machinery relies on inhibitory systems such as Min and Noc. In rod-shaped Actinobacteria, for example Corynebacterium glutamicum and Mycobacterium tuberculosis, the divisome assembles in the proximity of the midcell region, however more spatial flexibility is observed compared to Escherichia coli and Bacillus subtilis. Actinobacteria represent a group of bacteria that spatially regulate cytokinesis in the absence of recognizable Min and Noc homologs. The key cell division steps in E. coli and B. subtilis have been subject to intensive study and are well-understood. In comparison, only a minimal set of positive and negative regulators of cytokinesis are known in Actinobacteria. Nonetheless, the timing of cytokinesis and the placement of the division septum is coordinated with growth as well as initiation of chromosome replication and segregation. We summarize here the current knowledge on cytokinesis and division site selection in the Actinobacteria suborder Corynebacterineae. PMID:24782835

  20. Analysis of Potential Concerete Floor Decontamination Technologies

    SciTech Connect

    M. A. Ebadian

    1997-08-06

    During the decontamination and decommissioning (D&D) activities to be conducted at the Femald Environmental Management Project (FEMP), contaminated concrete waste will be generated from the D&D of approximately 200 buildings and other structures [1]. The U.S. Department of Energy (DOE) owns the Fernald site. The site is a contractor-operated federal facility that produced high-purity uranium metal products for the DOE and its predecessor agency, the Atomic Energy Commission, from 1952 to 1989. Thorium being ores were also processed at FEMP, but on a smaller scale. Production activities ceased in 1989, and the production mission of the facility ended formally in 1991. FEMP was included on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List in 1989. The current mission of the site is environmental restoration according to the requirements specified by CERCLA [1]. Decontamination and decommissioning activities require the treatment of concrete floors to segregate technetium-99 contaminated concrete from the remainder of the concrete. Many proven commercial stiace removal technologies are available. These processes vary in aggressiveness, stiety requirements, waste generation, capital requirements, and operating and maintenance costs.

  1. Ares I Reaction Control System Propellant Feedline Decontamination Modeling

    NASA Technical Reports Server (NTRS)

    Pasch, James J.

    2010-01-01

    The objective of the work presented here is to quantify the effects of purge gas temperature, pressure, and mass flow rate on Hydrazine (Hz) decontamination rates of the Ares I Roll Control System and Reaction Control System. A survey of experts in this field revealed the absence of any decontamination rate prediction models. Three basic decontamination methods were identified for analysis and modeling. These include low pressure eduction, high flow rate purge, and pulse purge. For each method, an approach to predict the Hz mass transfer rate, as a function of system pressure, temperature, and purge gas mass flow rate, is developed based on the applicable physics. The models show that low pressure eduction is two orders of magnitude more effective than the high velocity purge, which in turn is two orders of magnitude more effective than the pure diffusion component of pulse purging of deadheads. Eduction subjects the system to low pressure conditions that promote the extraction of Hz vapors. At 120 F, Hz is saturated at approximately 1 psia. At lower pressures and 120 F, Hz will boil, which is an extremely efficient means to remove liquid Hz. The Hz boiling rate is predicted by equating the rate at which energy is added to the saturated liquid Hz through heaters at the tube outer wall with the energy removed from the liquid through evaporation. Boil-off fluxes were predicted by iterating through the range of local pressures with limits set by the minimum allowed pressure of 0.2 psia and maximum allowed wall temperature of 120 F established by the heaters, which gives a saturation pressure of approximately 1.0 psia. Figure 1 shows the resulting boil-off fluxes as a function of local eduction pressure. As depicted in figure 1, the flux is a strong inverse function of eduction pressure, and that minimizing the eduction pressure maximizes the boil-off flux. Also, higher outer wall temperatures lead to higher boil-off fluxes and allow for boil-off over a greater range

  2. Decontamination processes for low level radioactive waste metal objects

    SciTech Connect

    Longnecker, E.F.; Ichikawa, Sekigo; Kanamori, Osamu

    1996-12-31

    Disposal and safe storage of contaminated nuclear waste is a problem of international scope. Although the greatest volume of such waste is concentrated in the USA and former Soviet Union, Western Europe and Japan have contaminated nuclear waste requiring attention. Japan`s radioactive nuclear waste is principally generated at nuclear power plants since it has no nuclear weapons production. However, their waste reduction, storage and disposal problems may be comparable to that of the USA on an inhabited area basis when consideration is given to population density where Japan`s population, half that of the USA, lives in an area slightly smaller than that of California`s. If everyone`s backyard was in California, the USA might have insoluble radioactive waste reduction, storage and disposal problems. Viewing Japan`s contaminated nuclear waste as a national problem requiring solutions, as well as an economic opportunity, Morikawa began research and development for decontaminating low level radioactive nuclear waste seven years ago. As engineers and manufacturers of special machinery for many years Morikawa brings special electro/mechanical/pneumatic Skills and knowledge to solving these unique problems. Genden Engineering Services and Construction Company (GESC), an affiliate of Japan Atomic Power Company, recently joined with Morikawa in this R&D effort to decontaminate low level radioactive nuclear waste (LLW) and to substantially reduce the volume of such nuclear waste requiring long term storage. This paper will present equipment with both mechanical and chemical processes developed over these several years by Morikawa and most recently in cooperation with GESC.

  3. Cold atmospheric plasma - A new technology for spacecraft component decontamination

    NASA Astrophysics Data System (ADS)

    Shimizu, Satoshi; Barczyk, Simon; Rettberg, Petra; Shimizu, Tetsuji; Klaempfl, Tobias; Zimmermann, Julia L.; Hoeschen, Till; Linsmeier, Christian; Weber, Peter; Morfill, Gregor E.; Thomas, Hubertus M.

    2014-01-01

    Cold atmospheric plasma (CAP) based on the Surface Micro-Discharge (SMD) technology was investigated for inactivation of different bacteria and endospores. The used technique was developed to serve as an alternative method for the decontamination of spacecraft components based on the COSPAR planetary protection policy where currently the dry heat microbial reduction method is the only applicable way to satisfy the required demands. However it is known, that dry heat can thermally damage sophisticated components installed on the device. Therefore, the development of a low temperature sterilization system is one of the high priority issues for upcoming space missions in the extraterrestrial field. In the study presented here, the vegetative bacteria Escherichia coli and Deinococcus radiodurans and several types of bacterial endospores - including Bacillus atrophaeus, Bacillus safensis, Bacillus megaterium, Bacillus megaterium 2c1 and Bacillus thuringiensis E24 - were inactivated by exposing them indirectly i.e. only to the reactive gases produced by the SMD electrode at room temperature. The results showed a 5 log inactivation for E. coli after 10 min of exposure. In contrast D. radiodurans proved to be more resistant resulting in a reduction of 3 log after exposure of 30 min. More than 6 log reductions were achieved for B. safensis, B. megaterium and B. megaterium 2c1 after 90 min of exposure. Furthermore the applicability of the used CAP system for spacecraft decontamination according to the planetary protection policy was investigated. This included also the investigation of the inactivation homogeneity by the plasma gas, the control of the temperature at the area of interest, the measurement of the O3 density in the treatment region and the detailed investigation of the effects of the exposure on different materials.

  4. Decontamination of nuclear systems at the Grand Gulf Nuclear Station

    SciTech Connect

    Weed, R.D.; Baker, K.R.

    1996-12-31

    Early in 1994 Management at the Grand Gulf Nuclear Station realized that a potential decontamination of several reactor systems was needed to maintain the commitments to the {open_quotes}As Low As Reasonably Achievable{close_quotes} (ALARA) program. There was a substantial amount of planned outage work required to repair and replace some internals in loop isolation valves and there were inspections and other outage work that needed to be accomplished as it had been postponed from previous outages because of the radiation exposure levels in and around the system equipment. Management scheduled for the procurement specification to be revised to incorporate additional boundary areas which had not been previously considered. The schedule included the period for gathering bids, awarding a contract, and reviewing the contractor`s procedures and reports and granting approval for the decontamination to proceed during the upcoming outage. In addition to the reviews required by the engineering group for overall control of the process, the plant system engineers had to prepare procedures at the system level to provide for a smooth operation to be made during the decontamination of the systems. The system engineers were required to make certain that the decontamination fluids would be contained within the systems being decontaminated and that they would not cross contaminate any other system not being decontaminated. Since these nuclear stations do not have the provisions for decontaminating these systems with using additional equipment, the equipment required is furnished by the contractor as skid mounted packaged units which can be moved into the area, set up near the system being decontaminated, and after the decontamination is completed, the skid mounted packages are removed as part of the contract. Figure 1 shows a typical setup in block diagram required to perform a reactor system decontamination. 1 fig.

  5. Evaluation of five decontamination methods for filtering facepiece respirators.

    PubMed

    Viscusi, Dennis J; Bergman, Michael S; Eimer, Benjamin C; Shaffer, Ronald E

    2009-11-01

    Concerns have been raised regarding the availability of National Institute for Occupational Safety and Health (NIOSH)-certified N95 filtering facepiece respirators (FFRs) during an influenza pandemic. One possible strategy to mitigate a respirator shortage is to reuse FFRs following a biological decontamination process to render infectious material on the FFR inactive. However, little data exist on the effects of decontamination methods on respirator integrity and performance. This study evaluated five decontamination methods [ultraviolet germicidal irradiation (UVGI), ethylene oxide, vaporized hydrogen peroxide (VHP), microwave oven irradiation, and bleach] using nine models of NIOSH-certified respirators (three models each of N95 FFRs, surgical N95 respirators, and P100 FFRs) to determine which methods should be considered for future research studies. Following treatment by each decontamination method, the FFRs were evaluated for changes in physical appearance, odor, and laboratory performance (filter aerosol penetration and filter airflow resistance). Additional experiments (dry heat laboratory oven exposures, off-gassing, and FFR hydrophobicity) were subsequently conducted to better understand material properties and possible health risks to the respirator user following decontamination. However, this study did not assess the efficiency of the decontamination methods to inactivate viable microorganisms. Microwave oven irradiation melted samples from two FFR models. The remainder of the FFR samples that had been decontaminated had expected levels of filter aerosol penetration and filter airflow resistance. The scent of bleach remained noticeable following overnight drying and low levels of chlorine gas were found to off-gas from bleach-decontaminated FFRs when rehydrated with deionized water. UVGI, ethylene oxide (EtO), and VHP were found to be the most promising decontamination methods; however, concerns remain about the throughput capabilities for EtO and VHP

  6. Evaluation of Five Decontamination Methods for Filtering Facepiece Respirators

    PubMed Central

    Bergman, Michael S.; Eimer, Benjamin C.; Shaffer, Ronald E.

    2009-01-01

    Concerns have been raised regarding the availability of National Institute for Occupational Safety and Health (NIOSH)-certified N95 filtering facepiece respirators (FFRs) during an influenza pandemic. One possible strategy to mitigate a respirator shortage is to reuse FFRs following a biological decontamination process to render infectious material on the FFR inactive. However, little data exist on the effects of decontamination methods on respirator integrity and performance. This study evaluated five decontamination methods [ultraviolet germicidal irradiation (UVGI), ethylene oxide, vaporized hydrogen peroxide (VHP), microwave oven irradiation, and bleach] using nine models of NIOSH-certified respirators (three models each of N95 FFRs, surgical N95 respirators, and P100 FFRs) to determine which methods should be considered for future research studies. Following treatment by each decontamination method, the FFRs were evaluated for changes in physical appearance, odor, and laboratory performance (filter aerosol penetration and filter airflow resistance). Additional experiments (dry heat laboratory oven exposures, off-gassing, and FFR hydrophobicity) were subsequently conducted to better understand material properties and possible health risks to the respirator user following decontamination. However, this study did not assess the efficiency of the decontamination methods to inactivate viable microorganisms. Microwave oven irradiation melted samples from two FFR models. The remainder of the FFR samples that had been decontaminated had expected levels of filter aerosol penetration and filter airflow resistance. The scent of bleach remained noticeable following overnight drying and low levels of chlorine gas were found to off-gas from bleach-decontaminated FFRs when rehydrated with deionized water. UVGI, ethylene oxide (EtO), and VHP were found to be the most promising decontamination methods; however, concerns remain about the throughput capabilities for EtO and VHP

  7. Sectioning of contaminated components for decontamination by vibratory finishing and electropolishing

    SciTech Connect

    Fetrow, L.K.; Allen, R.P.

    1981-09-01

    This report summarizes work conducted to develop, adapt, and evaluate a variety of techniques for sectioning glove boxes, chemical processing equipment, pipes, ducts, and other contaminated components in preparation for decontamination by vibratory finishing and electropolishing. These sectioning studies were conducted with a special 10-ft x 20-ft x 10-ft stainless-steel, walk-in glove box equipped for either hands-on operation via gloves and personnel entry, or remote operation using master slave manipulators and a bridge crane. Several sectioning techniques have been evaluated with respect to effectiveness, versatility, secondary waste generation, and capability for remote operation. The methods include wet and dry plasma arc torch cutting, mechanical sawing and nibbling, abrasive cutting, and hydraulic shearing and punching. The results of these comparison studies show that the plasma arc torch is a very rapid and effective metal cutting tool for size reduction applications. However, its use to prepare material for decontamination should be minimized because of problems with smoke generation, torch manipulation, waste generation, and entrainment of contamination. Mechanical saws eliminate all but the waste generation problem, but are very slow and labor intensive. Mechanical nibblers are fast and produce a waste form that can be decontaminated, but are limited with respect to the geometry and thickness of material that can be sectioned. High-speed abrasive saws provide high cutting rates, but produce nontreatable waste from the cut as well as from blade wear. Hydraulic shearing rapidly produces sectioned material in the small sizes required for decontamination by vibratory finishing. The kerf material also can be decontaminated. However, the glove box first must be sectioned into relatively narrow strips by one of the other techniques.

  8. Structures Division 1994 Annual Report

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1994 are presented.

  9. Physics division. Progress report, January 1, 1995--December 31, 1996

    SciTech Connect

    Stewart, M.; Bacon, D.S.; Aine, C.J.; Bartsch, R.R.

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the five groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.

  10. Contaminated concrete: Occurrence and emerging technologies for DOE decontamination

    SciTech Connect

    Dickerson, K.S.; Wilson-Nichols, M.J.; Morris, M.I.

    1995-08-01

    The goals of the Facility Deactivation, Decommissioning, and Material Disposition Focus Area, sponsored by the US Department of Energy (DOE) Office of Technology Development, are to select, demonstrate, test, and evaluate an integrated set of technologies tailored to provide a complete solution to specific problems posed by deactivation, decontamination, and decommissioning, (D&D). In response to these goals, technical task plan (TTP) OR152002, entitled Accelerated Testing of Concrete Decontamination Methods, was submitted by Oak Ridge National Laboratory. This report describes the results from the initial project tasks, which focused on the nature and extent of contaminated concrete, emerging candidate technologies, and matching of emerging technologies to concrete problems. Existing information was used to describe the nature and extent of contamination (technology logic diagrams, data bases, and the open literature). To supplement this information, personnel at various DOE sites were interviewed, providing a broad perspective of concrete contamination. Because characterization is in the initial stage at many sites, complete information is not available. Assimilation of available information into one location is helpful in identifying potential areas of concern in the future. The most frequently occurring radiological contaminants within the DOE complex are {sup 137}Cs, {sup 238}U (and it daughters), and {sup 60}Co, followed closely by {sup 90}Sr and tritium, which account for {minus}30% of the total occurrence. Twenty-four percent of the contaminants were listed as unknown, indicating a lack of characterization information, and 24% were listed as other contaminants (over 100 isotopes) with less than 1% occurrence per isotope.

  11. The PLASTID DIVISION1 and 2 components of the chloroplast division machinery determine the rate of chloroplast division in land plant cell differentiation.

    PubMed

    Okazaki, Kumiko; Kabeya, Yukihiro; Suzuki, Kenji; Mori, Toshiyuki; Ichikawa, Takanari; Matsui, Minami; Nakanishi, Hiromitsu; Miyagishima, Shin-Ya

    2009-06-01

    In most algae, the chloroplast division rate is held constant to maintain the proper number of chloroplasts per cell. By contrast, land plants evolved cell and chloroplast differentiation systems in which the size and number of chloroplasts change along with their respective cellular function by regulation of the division rate. Here, we show that PLASTID DIVISION (PDV) proteins, land plant-specific components of the division apparatus, determine the rate of chloroplast division. Overexpression of PDV proteins in the angiosperm Arabidopsis thaliana and the moss Physcomitrella patens increased the number but decreased the size of chloroplasts; reduction of PDV levels resulted in the opposite effect. The level of PDV proteins, but not other division components, decreased during leaf development, during which the chloroplast division rate also decreased. Exogenous cytokinins or overexpression of the cytokinin-responsive transcription factor CYTOKININ RESPONSE FACTOR2 increased the chloroplast division rate, where PDV proteins, but not other components of the division apparatus, were upregulated. These results suggest that the integration of PDV proteins into the division machinery enabled land plant cells to change chloroplast size and number in accord with the fate of cell differentiation.

  12. Division X: Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Nan, Ren-Dong; Taylor, Russ; Rodriguez, Luis F.; Chapman, Jessica; Dubner, Gloria; Garrett, Michael; Goss, W. Miller; Torrelles, Jose M.; Hirabayashi, Hisashi; Carilli, Chris; Hills, Richard; Shastri, Prajval

    2010-05-01

    The business meeting of Division X in the IAU 2009GA took place in three sessions during the day of August 6, 2009. The meeting, being well attended, started with the approval for the meeting agenda. Then the triennium reports were made in the first session by the president of Division X, Ren-Dong Nan, and by the chairs of three working groups: “Historic Radio Astronomy WG” by Wayne Orchiston, “Astrophysically Important Lines WG” by Masatoshi Ohishi, and “Global VLBI WG” by Tasso Tzioumis (proxy chair appointed by Steven Tingay). Afterwards, a dozen reports from observatories and worldwide significant projects have been presented in the second session. Business meeting of “Interference Mitigation WG” was located in the third session.

  13. Planning guidance for nuclear-power-plant decontamination. [PWR; BWR

    SciTech Connect

    Munson, L.F.; Divine, J.R.; Martin, J.B.

    1983-06-01

    Direct and indirect costs of decontamination are considered in the benefit-cost analysis. A generic form of the benefit-cost ratio is evaluated in monetary and nonmonetary terms, and values of dollar per man-rem are cited. Federal and state agencies that may have jurisiction over various aspects of decontamination and waste disposal activities are identified. Methods of decontamination, their general effectiveness, and the advantages and disadvantages of each are outlined. Dilute or concentrated chemical solutions are usually used in-situ to dissolve the contamination layer and a thin layer of the underlying substrate. Electrochemical techniques are generally limited to components but show high decontamination effectiveness with uniform corrosion. Mechanical agents are particularly appropriate for certain out-of-system surfaces and disassembled parts. These processes are catagorized and specific concerns are discussed. The treatment, storage, and disposal or discharge or discharge of liquid, gaseous, and solid wastes generated during the decontamination process are discussed. Radioactive and other hazardous chemical wastes are considered. The monitoring, treatment, and control of radioactive and nonradioactive effluents, from both routine operations and possible accidents, are discussed. Protecting the health and safety of personnel onsite during decontamination is of prime importance and should be considered in each facet of the decontamination process. The radiation protection philosophy of reducing exposure to levels as low as reasonably achievable should be stressed. These issues are discussed.

  14. Benefits of automated surface decontamination of a radioiodine ward.

    PubMed

    Westcott, Eliza; Broadhurst, Alicia; Crossley, Steven; Lee, Lloyd; Phan, Xuyen; Scharli, Rainer; Xu, Yan

    2012-02-01

    A floor-washing robot has been acquired to assist physicists with decontamination of radioiodine therapy ward rooms after discharge of the patient at Sir Charles Gairdner Hospital. The effectiveness of the robot in decontaminating the ward has been evaluated. A controlled experiment was performed by deliberately contaminating a polyvinyl chloride flooring offcut with 131I followed by automated decontamination with the robot. The extent of fixed and removable contamination was assessed before and after decontamination by two methods: (1) direct Geiger-Mueller counting and (2) beta-counting wipe tests. Surface contamination was also assessed in situ on the ward by Geiger-Mueller counting and wipe testing. Contamination maps confirmed that contamination was removed rather than spread around by the robot. Wipe testing revealed that the robot was successful in clearing approximately 60-80% of removable contamination. The robotic floor-washing device was considered suitable to provide effective automated decontamination of the radioiodine ward. In addition, the robot affords other benefits: the time spent by the physicists decontaminating the room is greatly reduced offering financial and occupational safety and health benefits. The robot has also found utility in other decontamination applications in the healthcare environment. PMID:22249471

  15. Energy Systems Divisions

    NASA Technical Reports Server (NTRS)

    Applewhite, John

    2011-01-01

    This slide presentation reviews the JSC Energy Systems Divisions work in propulsion. Specific work in LO2/CH4 propulsion, cryogenic propulsion, low thrust propulsion for Free Flyer, robotic and Extra Vehicular Activities, and work on the Morpheus terrestrial free flyer test bed is reviewed. The back-up slides contain a chart with comparisons of LO2/LCH4 with other propellants, and reviewing the advantages especially for spacecraft propulsion.

  16. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.

    PubMed

    Gravett, M R; Hopkins, F B; Self, A J; Webb, A J; Timperley, C M; Riches, J R

    2014-08-01

    In the event of alleged use of organophosphorus nerve agents, all kinds of environmental samples can be received for analysis. These might include decontaminated and charred matter collected from the site of a suspected chemical attack. In other scenarios, such matter might be sampled to confirm the site of a chemical weapon test or clandestine laboratory decontaminated and burned to prevent discovery. To provide an analytical capability for these contingencies, we present a preliminary investigation of the effect of accelerant-based fire and liquid decontamination on soil contaminated with the nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). The objectives were (a) to determine if VX or its degradation products were detectable in soil after an accelerant-based fire promoted by aviation fuel, including following decontamination with Decontamination Solution 2 (DS2) or aqueous sodium hypochlorite, (b) to develop analytical methods to support forensic analysis of accelerant-soaked, decontaminated and charred soil and (c) to inform the design of future experiments of this type to improve analytical fidelity. Our results show for the first time that modern analytical techniques can be used to identify residual VX and its degradation products in contaminated soil after an accelerant-based fire and after chemical decontamination and then fire. Comparison of the gas chromatography-mass spectrometry (GC-MS) profiles of VX and its impurities/degradation products from contaminated burnt soil, and burnt soil spiked with VX, indicated that the fire resulted in the production of diethyl methylphosphonate and O,S-diethyl methylphosphonothiolate (by an unknown mechanism). Other products identified were indicative of chemical decontamination, and some of these provided evidence of the decontaminant used, for example, ethyl 2-methoxyethyl methylphosphonate and bis(2-methoxyethyl) methylphosphonate following decontamination with DS2. Sample preparation

  17. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.

    PubMed

    Gravett, M R; Hopkins, F B; Self, A J; Webb, A J; Timperley, C M; Riches, J R

    2014-08-01

    In the event of alleged use of organophosphorus nerve agents, all kinds of environmental samples can be received for analysis. These might include decontaminated and charred matter collected from the site of a suspected chemical attack. In other scenarios, such matter might be sampled to confirm the site of a chemical weapon test or clandestine laboratory decontaminated and burned to prevent discovery. To provide an analytical capability for these contingencies, we present a preliminary investigation of the effect of accelerant-based fire and liquid decontamination on soil contaminated with the nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). The objectives were (a) to determine if VX or its degradation products were detectable in soil after an accelerant-based fire promoted by aviation fuel, including following decontamination with Decontamination Solution 2 (DS2) or aqueous sodium hypochlorite, (b) to develop analytical methods to support forensic analysis of accelerant-soaked, decontaminated and charred soil and (c) to inform the design of future experiments of this type to improve analytical fidelity. Our results show for the first time that modern analytical techniques can be used to identify residual VX and its degradation products in contaminated soil after an accelerant-based fire and after chemical decontamination and then fire. Comparison of the gas chromatography-mass spectrometry (GC-MS) profiles of VX and its impurities/degradation products from contaminated burnt soil, and burnt soil spiked with VX, indicated that the fire resulted in the production of diethyl methylphosphonate and O,S-diethyl methylphosphonothiolate (by an unknown mechanism). Other products identified were indicative of chemical decontamination, and some of these provided evidence of the decontaminant used, for example, ethyl 2-methoxyethyl methylphosphonate and bis(2-methoxyethyl) methylphosphonate following decontamination with DS2. Sample preparation

  18. Cell Growth and Division

    PubMed Central

    Bell, George I.

    1968-01-01

    In a previous paper, we proposed a model in which the volume growth rate and probability of division of a cell were assumed to be determined by the cell's age and volume. Some further mathematical implications of the model are here explored. In particular we seek properties of the growth and division functions which are required for the balanced exponential growth of a cell population. Integral equations are derived which relate the distribution of birth volumes in successive generations and in which the existence of balanced exponential growth can be treated as an eigenvalue problem. The special case in which all cells divide at the same age is treated in some detail and conditions are derived for the existence of a balanced exponential solution and for its stability or instability. The special case of growth rate proportional to cell volume is seen to have neutral stability. More generally when the division probability depends on age only and growth rate is proportional to cell volume, there is no possibility of balanced exponential growth. Some comparisons are made with experimental results. It is noted that the model permits the appearance of differentiated cells. A generalization of the model is formulated in which cells may be described by many state variables instead of just age and volume. PMID:5643273

  19. Health physics and industrial hygiene aspects of decontamination as a precursor to decontamination

    SciTech Connect

    Card, C.J.; Hoenes, G.R.; Munson, L.F.; Halseth, G.A.

    1982-06-01

    The Pacific Northwest Laboratory is conducting a comprehensive study of the impacts, benefits and effects of decontamination as a precursor to decommissioning for the US Nuclear Regulatory Commission. The program deals primarily with chemical cleaning of light-water reactor (LWR) systems that will not be returned to operation. A major section of this study defines the health physics and industrial hygiene and safety concerns during decontamination operations. The primary health physics concerns include providing adequate protection for workers from radiation sources which are transported by the decontamination processes, estimating and limiting radioactive effluents to the environment and maintaining operations in accordance with the ALARA philosophy. Locating and identifying the areas of contamination and measuring the radiation exposure rates throughout the reactor primary system are fundamental to implementing these health physics goals. The principal industrial hygiene and safety concerns stem from the fact that a nuclear power plant is being converted for a time to a chemical plant which will contain large volumes of chemical solutions.

  20. SAFETY STUDIES TO MEASURE EXOTHERMIC REACTIONS OF SPENT PLUTONIUM CONTAMINATION CHEMICALS USING WET AND DRY DECONTAMINATION METHODS

    SciTech Connect

    Hopkins, Andrea M.; Jackson, George W.; Minette, Michael J.; Ewalt, John R.; Cooper, Thurman D.; Scott, Paul A.; Jones, Susan A.; Scheele, Randall D.; Charboneau, Stacy L.

    2005-10-12

    The Plutonium Finishing Plant (PFP) at the Hanford site in Eastern Washington is currently being decommissioned by Fluor Hanford. Chemicals being considered for decontamination of gloveboxes in PFP include cerium (IV) nitrate in a nitric acid solution, and proprietary commercial solutions that include acids and sequestering agents. Aggressive chemicals are commonly used to remove transuranic contaminants from process equipment to allow disposal of the equipment as low level waste. Fluor's decontamination procedure involves application of chemical solutions as a spray on the contaminated surfaces, followed by a wipe-down with rags. Alternatively, a process of applying oxidizing Ce IV ions contained in a gel matrix and vacuuming a dry gel material is being evaluated. These processes effectively transfer the transuranic materials to rags or a gel matrix which is then packaged as TRU waste and disposed. Fluor is investigating plutonium decontamination chemicals as a result of concerns regarding the safety of chemical procedures following a fire at Rocky Flats in 2003. The fire at Rocky Flats occurred in a glovebox that had been treated with cerium nitrate, which is one of the decontamination chemicals that Fluor Hanford has proposed to use. Although the investigation of the fire was not conclusive as to cause, the reviewers noted that rags were found in the glovebox, suggesting that the combination of rags and chemicals may have contributed to the fire. Because of this underlying uncertainty, Fluor began an investigation into the potential for fire when using the chemicals and materials using wet disposition and dry disposition of the waste generated in the decontamination process and the storage conditions to which the waste drum would be exposed. The focus of this work has been to develop a disposal strategy that will provide a chemically stable waste form at expected Hanford waste storage temperatures. Hanford waste storage conditions are such that there is added

  1. Division Quilts: A Measurement Model

    ERIC Educational Resources Information Center

    Pratt, Sarah S.; Lupton, Tina M.; Richardson, Kerri

    2015-01-01

    As teachers seek activities to assist students in understanding division as more than just the algorithm, they find many examples of division as fair sharing. However, teachers have few activities to engage students in a quotative (measurement) model of division. Efraim Fischbein and his colleagues (1985) defined two types of whole-number…

  2. Biorepositories | Division of Cancer Prevention

    Cancer.gov

    Carefully collected and controlled high-quality human biospecimens, annotated with clinical data and properly consented for investigational use, are available through the Division of Cancer Prevention Biorepositories listed in the charts below. Biorepositories Managed by the Division of Cancer Prevention Biorepositories Supported by the Division of Cancer Prevention Related Biorepositories | Information about accessing biospecimens collected from DCP-supported clinical trials and projects.

  3. Decontamination, decommissioning, and vendor advertorial issue, 2008

    SciTech Connect

    Agnihotri, Newal

    2008-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Articles and reports in this issue include: D and D technical paper summaries; The role of nuclear power in turbulent times, by Tom Chrisopher, AREVA, NP, Inc.; Enthusiastic about new technologies, by Jack Fuller, GE Hitachi Nuclear Energy; It's important to be good citizens, by Steve Rus, Black and Veatch Corporation; Creating Jobs in the U.S., by Guy E. Chardon, ALSTOM Power; and, and, An enviroment and a community champion, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovations article is titled Best of the best TIP achievement 2008, by Edward Conaway, STP Nuclear Operating Company.

  4. Radioactive hot cell access hole decontamination machine

    DOEpatents

    Simpson, William E.

    1982-01-01

    Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.

  5. Decontaminating soil organic pollutants with manufactured nanoparticles.

    PubMed

    Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2016-06-01

    Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed.

  6. Decontaminating soil organic pollutants with manufactured nanoparticles.

    PubMed

    Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2016-06-01

    Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed. PMID:26906002

  7. Enhancement of electrokinetic decontamination with EDTA.

    PubMed

    Karim, M A; Khan, L I

    2012-01-01

    The effect of ethylenediaminetetraacetic acid (EDTA) during electrokinetic decontamination (EKD) was investigated in this research. EDTA is a ligand that can form soluble complexes with precipitated heavy metals inside soil pores. Millpond sludge, primarily contaminated with lead (Pb) and zinc (Zn), was subjected to EKD with and without the presence of EDTA. Dilute EDTA solutions with strengths of 0.05 M and 0.125 M were injected into the millpond sludge by electroosmosis. Several beneficial effects of using EDTA were observed in this research. One was that the presence of EDTA substantially increased the electroosmotic (EO) flow in the millpond sludge indicating that it could significantly reduce the duration of EKD. Another advantage was that a significantly higher percentage of Pb and Zn removal was achieved from the solid phase due to the complexation of EDTA with these heavy metals. Also, EDTA was able to prevent the precipitation of metals at the cathode electrode, typically observed in EKD process. PMID:23393970

  8. ONLINE MEASUREMENT OF THE PROGRESS OF DECONTAMINATION

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    In order to determine if the sensor technology and the decontamination technology will face problems once integrated, a feasibility study (see Appendix B) was produced in which the effect of motion on the efficiency of a radiation sensor was measured. It was found that the effect is not negligible; however, it is not catastrophic, and if the sensors are properly calibrated, this obstacle can be overcome. During the first year of this project, many important tasks have been accomplished. The search for radiation sensors provided knowledge on the technologies commercially available. This, in turn, allowed for a proper assessment of the properties, limitations, different methods of measurement, and requirements of a large number of sensors. The best possible characterization and data collection instrument and decontamination technologies were chosen using the requirement information in Appendix A. There are technical problems with installing sensors within the blasting head, such as steel shot and dust interference. Therefore, the sensor array is placed so that it will measure the radioactivity after the blasting. Sensors are rather sensitive, and therefore it is not feasible to place the sensor windows in such an abrasive environment. Other factors, such as the need for radiation hardening in extreme cases, and the possible interference of gamma rays with the radio frequency modem, have been considered. These factors are expected to be negligible and can be revisited at the time of prototype production. Factors that need to be addressed are the vibrations of the blasting unit and how to isolate the sensor array from these. In addition, an electromagnetic survey must be performed to ensure there will be no interference with the electronic component that will be integrated. The integration design is shown in section 4.0.

  9. Surface Decontamination Using Laser Ablation Process - 12032

    SciTech Connect

    Moggia, Fabrice; Lecardonnel, Xavier; Damerval, Frederique

    2012-07-01

    A new decontamination method has been investigated and used during two demonstration stages by the Clean-Up Business Unit of AREVA. This new method is based on the use of a Laser beam to remove the contaminants present on a base metal surface. In this paper will be presented the type of Laser used during those tests but also information regarding the efficiency obtained on non-contaminated (simulated contamination) and contaminated samples (from the CEA and La Hague facilities). Regarding the contaminated samples, in the first case, the contamination was a quite thick oxide layer. In the second case, most of the contamination was trapped in dust and thin grease layer. Some information such as scanning electron microscopy (SEM), X-Ray scattering spectroscopy and decontamination factors (DF) will be provided in this paper. Laser technology appears to be an interesting one for the future of the D and D applications. As shown in this paper, the results in terms of efficiency are really promising and in many cases, higher than those obtained with conventional techniques. One of the most important advantages is that all those results have been obtained with no generation of secondary wastes such as abrasives, chemicals, or disks... Moreover, as mentioned in introduction, the Laser ablation process can be defined as a 'dry' process. This technology does not produce any liquid waste (as it can be the case with chemical process or HP water process...). Finally, the addition of a vacuum system allows to trap the contamination onto filters and thus avoiding any dissemination in the room where the process takes place. The next step is going to be a commercial use in 2012 in one of the La Hague buildings. (authors)

  10. Decontamination of Johnston Island Coral: a preliminary study

    SciTech Connect

    Kochen, R.L.

    1986-02-17

    A preliminary investigation was completed on the characterization and decontamination of coral samples from Johnston Island. These samples were found to contain individual particles (2 to 0.25 mm) of contaminated coral as well as a piece of contaminated magnetic metal. They ranged in activity from about 70 to 811 nCi Am-241. The decontamination methods investigated were froth flotation, ferrite treatment, attrition scrubbing, ultrasonic treatment and dry sieving. Dry sieving, the more effective technique, separated about 42 wt % of the coral into a decontaminated fraction. This fraction (>4 mm) contained about 0.5% of the total activity. 7 refs., 3 tabs.

  11. Decision Analysis System for Selection of Appropriate Decontamination Technologies

    SciTech Connect

    Ebadian, M.A.; Boudreaux, J.F.; Chinta, S.; Zanakis, S.H.

    1998-01-01

    The principal objective for designing Decision Analysis System for Decontamination (DASD) is to support DOE-EM's endeavor to employ the most efficient and effective technologies for treating radiologically contaminated surfaces while minimizing personnel and environmental risks. DASD will provide a tool for environmental decision makers to improve the quality, consistency, and efficacy of their technology selection decisions. The system will facilitate methodical comparisons between innovative and baseline decontamination technologies and aid in identifying the most suitable technologies for performing surface decontamination at DOE environmental restoration sites.

  12. Energy Technology Division research summary -- 1994

    SciTech Connect

    Not Available

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

  13. Showering effectiveness for human hair decontamination of the nerve agent VX.

    PubMed

    Josse, Denis; Wartelle, Julien; Cruz, Catherine

    2015-05-01

    In this work, our goals were to establish whether hair decontamination by showering one hour post-exposure to the highly toxic organophosphate nerve agent VX was effective, whether it required the addition of a detergent to water and, if it could be improved by using the adsorbent Fuller's Earth (FE) or the Reactive Skin Decontamination Lotion (RSDL) 30 min prior to showering. Hair exposure to VX and decontamination was performed by using an in vitro model. Hair showering led to 72% reduction of contamination. Addition of detergent to water slightly increased the decontamination effectiveness. Hair treatment with FE or RSDL improved the decontamination rate. Combination of FE use and showering, which yielded a decontamination factor of 41, was demonstrated to be the most effective hair decontamination procedure. Hair wiping after showering was shown to contribute to hair decontamination. Altogether, our results highlighted the importance of considering hair decontamination as an important part of body surface decontamination protocols.

  14. Showering effectiveness for human hair decontamination of the nerve agent VX.

    PubMed

    Josse, Denis; Wartelle, Julien; Cruz, Catherine

    2015-05-01

    In this work, our goals were to establish whether hair decontamination by showering one hour post-exposure to the highly toxic organophosphate nerve agent VX was effective, whether it required the addition of a detergent to water and, if it could be improved by using the adsorbent Fuller's Earth (FE) or the Reactive Skin Decontamination Lotion (RSDL) 30 min prior to showering. Hair exposure to VX and decontamination was performed by using an in vitro model. Hair showering led to 72% reduction of contamination. Addition of detergent to water slightly increased the decontamination effectiveness. Hair treatment with FE or RSDL improved the decontamination rate. Combination of FE use and showering, which yielded a decontamination factor of 41, was demonstrated to be the most effective hair decontamination procedure. Hair wiping after showering was shown to contribute to hair decontamination. Altogether, our results highlighted the importance of considering hair decontamination as an important part of body surface decontamination protocols. PMID:25791764

  15. NEN Division Funding Gap Analysis

    SciTech Connect

    Esch, Ernst I.; Goettee, Jeffrey D.; Desimone, David J.; Lakis, Rollin E.; Miko, David K.

    2012-09-05

    The work in NEN Division revolves around proliferation detection. The sponsor funding model seems to have shifted over the last decades. For the past three lustra, sponsors are mainly interested in funding ideas and detection systems that are already at a technical readiness level 6 (TRL 6 -- one step below an industrial prototype) or higher. Once this level is reached, the sponsoring agency is willing to fund the commercialization, implementation, and training for the systems (TRL 8, 9). These sponsors are looking for a fast turnaround (1-2 years) technology development efforts to implement technology. To support the critical national and international needs for nonprolifertion solutions, we have to maintain a fluent stream of subject matter expertise from the fundamental principals of radiation detection through prototype development all the way to the implementation and training of others. NEN Division has large funding gaps in the Valley of Death region. In the current competitive climate for nuclear nonproliferation projects, it is imminent to increase our lead in this field.

  16. Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371

    SciTech Connect

    Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.; Savkin, Alexander E.

    2012-07-01

    SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, development of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)

  17. Clinical Trials Management | Division of Cancer Prevention

    Cancer.gov

    Information for researchers about developing, reporting, and managing NCI-funded cancer prevention clinical trials. Protocol Information Office The central clearinghouse for clinical trials management within the Division of Cancer Prevention.Read more about the Protocol Information Office. | Information for researchers about developing, reporting, and managing NCI-funded cancer prevention clinical trials.

  18. Chemical Technology Division annual technical report, 1996

    SciTech Connect

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

  19. The Astrophysics Science Division Annual Report 2008

    NASA Technical Reports Server (NTRS)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  20. 40 CFR 1065.516 - Sample system decontamination and preconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Cycles § 1065.516 Sample system decontamination and preconditioning. This section describes how to manage... purified air or nitrogen. (3) When calculating zero emission levels, apply all applicable...

  1. COMPILATION OF AVAILABLE DATA ON BUILDING DECONTAMINATION ALTERNATIVES

    EPA Science Inventory

    The report presents an analysis of selected technologies that have been tested for their potential effectiveness in decontaminating a building that has been attacked using biological or chemical warfare agents, or using toxic industrial compounds. The technologies selected to be ...

  2. Planetary protection protocol using multi-jet cold plasma decontamination

    NASA Astrophysics Data System (ADS)

    Konesky, Gregory A.

    2010-09-01

    The detection of extraterrestrial life in-situ assumes that a positive indication is the result of an indigenous life form, and not the result of forward contamination from Earth. Atmospheric discharge cold plasma jets have proven effective in the decontamination of a wide range of microorganisms, including Deinococcus radiodurans, through multiple modes of action, yet the effect is relatively gentle on surfaces being decontaminated. An individual plasma jet may have a beam diameter of only a few millimeters, requiring extensive decontamination time for a given surface area. Techniques are discussed for assembling large area multi-jet arrays, and their mechanisms of decontamination. Application to back contamination in sample return missions is also considered.

  3. Enhanced toxic cloud knockdown spray system for decontamination applications

    SciTech Connect

    Betty, Rita G.; Tucker, Mark D.; Brockmann, John E.; Lucero, Daniel A.; Levin, Bruce L.; Leonard, Jonathan

    2011-09-06

    Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

  4. Modification of the Decontamination Facility at the Kruemmel NPP - 13451

    SciTech Connect

    Klute, Stefan; Kupke, Peter

    2013-07-01

    In February 2009, Siempelkamp Nukleartechnik GmbH was awarded the contract for the design, manufacture, delivery and construction of a new Decontamination Facility in the controlled area for Kruemmel NPP. The new decontamination equipment has been installed according to the state of art of Kruemmel NPP. The existing space required the following modification, retrofitting and reconstruction works: - Demounting of the existing installation: to create space for the new facility it was necessary to dismantle the old facility. The concrete walls and ceilings were cut into sizes of no more than 400 kg for ease of handling. This enabled decontamination so largest possible amount could be released for recycling. All steel parts were cut into sizes fitting for iron-barred boxes, respecting the requirement to render the parts decontaminable and releasable. - Reconstructing a decontamination facility: Reconstruction of a decontamination box with separate air lock as access area for the decontamination of components and assemblies was conducted using pressurized air with abrasives (glass beads or steel shots). The walls were equipped with sound protection, the inner walls were welded gap-free to prevent the emergence of interstices and were equipped with changeable wear and tear curtains. Abrasive processing unit positioned underneath the dry blasting box adjacent to the two discharge hoppers. A switch has been installed for the separation of the glass beads and the steel shot. The glass beads are directed into a 200 l drum for the disposal. The steel shot was cleaned using a separator. The cleaned steel shot was routed via transportation devices to the storage container, making it available for further blasting operations. A decontamination box with separate air lock as access area for the decontamination of components and assemblies using high pressure water technology was provided by new construction. Water pressures between 160 bar and 800 bar can be selected. The inner

  5. Steam Generator Group Project. Task 6. Channel head decontamination

    SciTech Connect

    Allen, R.P.; Clark, R.L.; Reece, W.D.

    1984-08-01

    The Steam Generator Group Project utilizes a retired-from-service pressurized-water-reactor steam generator as a test bed and source of specimens for research. An important preparatory step to primary side research activities was reduction of the radiation field in the steam generator channel head. This task report describes the channel head decontamination activities. Though not a programmatic research objective it was judged beneficial to explore the use of dilute reagent chemical decontamination techniques. These techniques presented potential for reduced personnel exposure and reduced secondary radwaste generation, over currently used abrasive blasting techniques. Two techniques with extensive laboratory research and vendors prepared to offer commercial application were tested, one on either side of the channel head. As indicated in the report, both techniques accomplished similar decontamination objectives. Neither technique damaged the generator channel head or tubing materials, as applied. This report provides details of the decontamination operations. Application system and operating conditions are described.

  6. The History of Metals and Ceramics Division

    SciTech Connect

    Craig, D.F.

    1999-01-01

    The division was formed in 1946 at the suggestion of Dr. Eugene P. Wigner to attack the problem of the distortion of graphite in the early reactors due to exposure to reactor neutrons, and the consequent radiation damage. It was called the Metallurgy Division and assembled the metallurgical and solid state physics activities of the time which were not directly related to nuclear weapons production. William A. Johnson, a Westinghouse employee, was named Division Director in 1946. In 1949 he was replaced by John H Frye Jr. when the Division consisted of 45 people. He was director during most of what is called the Reactor Project Years until 1973 and his retirement. During this period the Division evolved into three organizational areas: basic research, applied research in nuclear reactor materials, and reactor programs directly related to a specific reactor(s) being designed or built. The Division (Metals and Ceramics) consisted of 204 staff members in 1973 when James R. Weir, Jr., became Director. This was the period of the oil embargo, the formation of the Energy Research and Development Administration (ERDA) by combining the Atomic Energy Commission (AEC) with the Office of Coal Research, and subsequent formation of the Department of Energy (DOE). The diversification process continued when James O. Stiegler became Director in 1984, partially as a result of the pressure of legislation encouraging the national laboratories to work with U.S. industries on their problems. During that time the Division staff grew from 265 to 330. Douglas F. Craig became Director in 1992.

  7. Decontamination of process equipment using recyclable chelating solvent

    SciTech Connect

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  8. Method and coating composition for protecting and decontaminating surfaces

    DOEpatents

    Overhold, D C; Peterson, M D

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is described. This coating is placed on the surface before use and is soluble in water, allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  9. METHOD AND COATING COMPOSITION FOR PROTECTING AND DECONTAMINATING SURFACES

    DOEpatents

    Overhold, D.C.; Peterson, M.D.

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is presented. This coating is placed on the surface before use and is soluble in waters allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  10. A fit for purpose training programme for the decontamination of personnel.

    PubMed

    O'Mara, E; Cole, P; Wynn, A; Collison, R

    2015-06-01

    Contingency plans are a crucial part of operating any nuclear facility. The success of a contingency plan depends on the efficacy of the plan and the confidence and understanding of those who must enact it. This project focused on both of these aspects, clarifying technique and then designing and delivering a training programme for decontamination. The design of the training was based on the IAEA Systematic Approach to Training (SAT). The delivery focused on ways of increasing retention including use of practical examples and assessment, peer assessment and visual contingency plans. A quantitative survey of the trainees was conducted using a questionnaire before and after the training programme delivery. The results clearly demonstrate an improvement across all elements of skills and knowledge required to undertake decontamination. Effective training is fundamental to the development of a good safety culture and the methodology used in this work has led to a clear improvement in radiation protection culture at the Devonport site. PMID:25769116

  11. Available decontamination and decommissioning capabilities at the Savannah River Technology Center

    SciTech Connect

    Polizzi, L.M.; Norkus, J.K.; Paik, I.K.; Wooten, L.A.

    1992-08-19

    The Safety Analysis and Engineering Services Group has performed a survey of the Savannah River Technology Center (SRTC) technical capabilities, skills, and experience in Decontamination and Decommissioning (D&D) activities. The goal of this survey is to enhance the integration of the SRTC capabilities with the technical needs of the Environmental Restoration Department D&D program and the DOE Office of Technology Development through the Integrated Demonstration Program. This survey has identified technical capabilities, skills, and experience in the following D&D areas: Characterization, Decontamination, Dismantlement, Material Disposal, Remote Systems, and support on Safety Technology for D&D. This review demonstrates the depth and wealth of technical capability resident in the SRTC in relation to these activities, and the unique qualifications of the SRTC to supply technical support in the area of DOE facility D&D. Additional details on specific technologies and applications to D&D will be made available on request.

  12. Available decontamination and decommissioning capabilities at the Savannah River Technology Center

    SciTech Connect

    Polizzi, L.M.; Norkus, J.K.; Paik, I.K.; Wooten, L.A.

    1992-08-19

    The Safety Analysis and Engineering Services Group has performed a survey of the Savannah River Technology Center (SRTC) technical capabilities, skills, and experience in Decontamination and Decommissioning (D D) activities. The goal of this survey is to enhance the integration of the SRTC capabilities with the technical needs of the Environmental Restoration Department D D program and the DOE Office of Technology Development through the Integrated Demonstration Program. This survey has identified technical capabilities, skills, and experience in the following D D areas: Characterization, Decontamination, Dismantlement, Material Disposal, Remote Systems, and support on Safety Technology for D D. This review demonstrates the depth and wealth of technical capability resident in the SRTC in relation to these activities, and the unique qualifications of the SRTC to supply technical support in the area of DOE facility D D. Additional details on specific technologies and applications to D D will be made available on request.

  13. Separation of technetium and rare earth metals for co-decontamination process

    SciTech Connect

    Riddle, Catherine; Martin, Leigh

    2015-05-01

    Poster. In the US there are several technologies under consideration for the separation of the useful components in used nuclear fuel. One such process is the co-decontamination process to separate U, Np and Pu in a single step and produce a Np/ Pu and a U product stream. Although the behavior of the actinide elements is reasonably well defined in this system, the same is not true for the fission products, mainly Zr, Mo, Ru and Tc. As these elements are cationic and anionic they may interact with each other to extract in a manner not predicted by empirical models such as AMUSE. This poster presentation will discuss the initial results of batch contact testing under flowsheet conditions and as a function of varying acidity and flowsheet conditions to optimize recovery of Tc and minimize extraction of Mo, Zr and Ru with the goal of developing a better understanding of the behavior of these elements in the co-decontamination process.

  14. Evaluation of residual protein on unprocessed and decontaminated dental extraction forceps.

    PubMed

    Smith, Gordon W G; Smith, Andrew J

    2012-01-01

    Research into protein contamination of surgical instruments has received increasing attention and has focused on a quantitative analysis, without subsequent identification of these proteins. This study aimed to validate methods for the isolation and identification of instrument protein contamination using extraction forceps as a model. The working ends of used, unclean and decontaminated forceps were boiled in 1% (v/v) SDS and samples precipitated using StrataClean™ resin and Amicon® filtration. Proteins were visualised using SDS-PAGE and identified by mass spectrometry and Western blot. A total of 17 proteins were identified from used, unclean forceps, including blood and bacterial proteins and 2 protein bands from decontaminated forceps samples which could not be accurately identified. The methods described, when used in conjunction with quantitative and surface analysis of instruments, can aid development of cleaning processes by identifying contaminants on used devices that have been removed following cleaning.

  15. Demonstration recommendations for accelerated testing of concrete decontamination methods

    SciTech Connect

    Dickerson, K.S.; Ally, M.R.; Brown, C.H.; Morris, M.I.; Wilson-Nichols, M.J.

    1995-12-01

    A large number of aging US Department of Energy (DOE) surplus facilities located throughout the US require deactivation, decontamination, and decommissioning. Although several technologies are available commercially for concrete decontamination, emerging technologies with potential to reduce secondary waste and minimize the impact and risk to workers and the environment are needed. In response to these needs, the Accelerated Testing of Concrete Decontamination Methods project team described the nature and extent of contaminated concrete within the DOE complex and identified applicable emerging technologies. Existing information used to describe the nature and extent of contaminated concrete indicates that the most frequently occurring radiological contaminants are {sup 137}Cs, {sup 238}U (and its daughters), {sup 60}Co, {sup 90}Sr, and tritium. The total area of radionuclide-contaminated concrete within the DOE complex is estimated to be in the range of 7.9 {times} 10{sup 8} ft{sup 2}or approximately 18,000 acres. Concrete decontamination problems were matched with emerging technologies to recommend demonstrations considered to provide the most benefit to decontamination of concrete within the DOE complex. Emerging technologies with the most potential benefit were biological decontamination, electro-hydraulic scabbling, electrokinetics, and microwave scabbling.

  16. Anthrax Sampling and Decontamination: Technology Trade-Offs

    SciTech Connect

    Price, Phillip N.; Hamachi, Kristina; McWilliams, Jennifer; Sohn, Michael D.

    2008-09-12

    The goal of this project was to answer the following questions concerning response to a future anthrax release (or suspected release) in a building: 1. Based on past experience, what rules of thumb can be determined concerning: (a) the amount of sampling that may be needed to determine the extent of contamination within a given building; (b) what portions of a building should be sampled; (c) the cost per square foot to decontaminate a given type of building using a given method; (d) the time required to prepare for, and perform, decontamination; (e) the effectiveness of a given decontamination method in a given type of building? 2. Based on past experience, what resources will be spent on evaluating the extent of contamination, performing decontamination, and assessing the effectiveness of the decontamination in abuilding of a given type and size? 3. What are the trade-offs between cost, time, and effectiveness for the various sampling plans, sampling methods, and decontamination methods that have been used in the past?

  17. A survey of decontamination processes applicable to DOE nuclear facilities

    SciTech Connect

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1997-05-01

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

  18. Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR

    DOEpatents

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.

    1980-06-06

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  19. Decontamination and decarburization of stainless and carbon steel by melt refining

    SciTech Connect

    Mizia, R.E.; Worcester, S.A.; Twidwell, L.G.; Webber, D.; Paolini, D.J.; Weldon, T.A.

    1996-09-05

    With many nuclear reactors and facilities being decommissioned in the next ten to twenty years the concern for handling and storing Radioactive Scrap Metal (RSM) is growing. Upon direction of the DOE Office of Environmental Restoration and Waste Management, Lockheed Idaho Technology Company (LITCO) is developing technologies for the conditioning of spent fuels and high-level wastes for interim storage and repository acceptance, including the recycling of Radioactive Scrap Metals (RSM) for beneficial reuse with the DOE complex. In February 1993, Montana Tech of the University of Montana was contracted to develop and demonstrate technologies for the decontamination of stainless steel RSM. The general objectives of the Montana Tech research program included conducting a literature survey, performing laboratory scale melt refining experiments to optimize decontaminating slag compositions, performing an analysis of preferred melting techniques, coordinating pilot scale and commercial scale demonstrations, and producing sufficient quantities of surrogate-containing material for all of the laboratory, pilot and commercial scale test programs. Later on, the program was expanded to include decontamination of carbon steel RSM. Each research program has been completed, and results are presented in this report.

  20. Integrated sediment decontamination for the New York/New Jersey Harbor

    SciTech Connect

    Stern, W.A.; Donato, K.R.; Clesceri, N.L.; Jones, K.W.

    1998-02-01

    Disposal of dredged material taken from the New York/New Jersey (NY/NJ) Harbor is problematic because of the presence of inorganic and organic contaminants that under revised testing criteria render it unsuitable for return to the ocean or for beneficial reuse. Decontamination of the dredged material followed by beneficial reuse is one attractive component of the overall comprehensive dredged material management plan being developed by the US Army Corps of Engineers New York District. A demonstration program to validate decontamination processes and to bring them into full-scale use in the NY/NJ Harbor is now in progress. Tests of selected technologies have been completed at the bench scale and pilot-scale (2--15 m{sup 3}) levels. Procedures for demonstration testing on scales from 750 m{sup 3} to 75,000 m{sup 3} are being developed with the goal of producing a useable decontamination system by the end of 1999. The overall project goals and present status of the project are reviewed here.