Sample records for development experimental results

  1. Hydrocarbon-Fueled Rocket Engine Plume Diagnostics: Analytical Developments and Experimental Results

    NASA Technical Reports Server (NTRS)

    Tejwani, Gopal D.; McVay, Gregory P.; Langford, Lester A.; St. Cyr, William W.

    2006-01-01

    A viewgraph presentation describing experimental results and analytical developments about plume diagnostics for hydrocarbon-fueled rocket engines is shown. The topics include: 1) SSC Plume Diagnostics Background; 2) Engine Health Monitoring Approach; 3) Rocket Plume Spectroscopy Simulation Code; 4) Spectral Simulation for 10 Atomic Species and for 11 Diatomic Molecular Electronic Bands; 5) "Best" Lines for Plume Diagnostics for Hydrocarbon-Fueled Rocket Engines; 6) Experimental Set Up for the Methane Thruster Test Program and Experimental Results; and 7) Summary and Recommendations.

  2. Development and Assessment of Planetary Gear Unit for Experimental Prototype of Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Urbahs, A.; Urbaha, M.; Carjova, K.

    2017-10-01

    The theoretical calculation for development of planetary gear unit of wind turbine (WT) and its experimental tests are presented in the paper. Development of experimental prototypes from composite materials is essential to determine capability of element and its impact on feature. Two experimental scale prototypes of planetary gear unit for WT were developed for such purposes. Hall transducer, servomechanisms and optical tachometers were used to obtain results, comparison analysis of theoretical and actual data was performed as well as quality assessment of experimental prototypes of planetary gear unit. After kinematic and load analysis as well as control of rotation frequency, it is possible to declare that the unit is able to operate at designated quality. Theoretical calculations and test results obtained are used for industrial WT prototype development.

  3. Numerical and experimental modelling of the centrifugal compressor stage - setting the model of impellers with 2D blades

    NASA Astrophysics Data System (ADS)

    Matas, Richard; Syka, Tomáš; Luňáček, Ondřej

    The article deals with a description of results from research and development of a radial compressor stage. The experimental compressor and used numerical models are briefly described. In the first part, the comparisons of characteristics obtained experimentally and by numerical simulations for stage with vaneless diffuser are described. In the second part, the results for stage with vanned diffuser are presented. The results are relevant for next studies in research and development process.

  4. Results of an Experimental Exploration of Advanced Automated Geospatial Tools: Agility in Complex Planning

    DTIC Science & Technology

    2009-06-01

    AUTOMATED GEOSPATIAL TOOLS : AGILITY IN COMPLEX PLANNING Primary Topic: Track 5 – Experimentation and Analysis Walter A. Powell [STUDENT] - GMU...TITLE AND SUBTITLE Results of an Experimental Exploration of Advanced Automated Geospatial Tools : Agility in Complex Planning 5a. CONTRACT NUMBER...Std Z39-18 Abstract Typically, the development of tools and systems for the military is requirement driven; systems are developed to meet

  5. Music in film and animation: experimental semiotics applied to visual, sound and musical structures

    NASA Astrophysics Data System (ADS)

    Kendall, Roger A.

    2010-02-01

    The relationship of music to film has only recently received the attention of experimental psychologists and quantificational musicologists. This paper outlines theory, semiotical analysis, and experimental results using relations among variables of temporally organized visuals and music. 1. A comparison and contrast is developed among the ideas in semiotics and experimental research, including historical and recent developments. 2. Musicological Exploration: The resulting multidimensional structures of associative meanings, iconic meanings, and embodied meanings are applied to the analysis and interpretation of a range of film with music. 3. Experimental Verification: A series of experiments testing the perceptual fit of musical and visual patterns layered together in animations determined goodness of fit between all pattern combinations, results of which confirmed aspects of the theory. However, exceptions were found when the complexity of the stratified stimuli resulted in cognitive overload.

  6. A study of the thermoregulatory characteristics of a liquid-cooled garment with automatic temperature control based on sweat rate: Experimental investigation and biothermal man-model development

    NASA Technical Reports Server (NTRS)

    Chambers, A. B.; Blackaby, J. R.; Miles, J. B.

    1973-01-01

    Experimental results for three subjects walking on a treadmill at exercise rates of up to 590 watts showed that thermal comfort could be maintained in a liquid cooled garment by using an automatic temperature controller based on sweat rate. The addition of head- and neck-cooling to an Apollo type liquid cooled garment increased its effectiveness and resulted in greater subjective comfort. The biothermal model of man developed in the second portion of the study utilized heat rates and exchange coefficients based on the experimental data, and included the cooling provisions of a liquid-cooled garment with automatic temperature control based on sweat rate. Simulation results were good approximations of the experimental results.

  7. Team Oriented Robotic Exploration Task on Scorpion and K9 Platforms

    NASA Technical Reports Server (NTRS)

    Kirchner, Frank

    2003-01-01

    This final report describes the achievements that have been made in the project over the complete period of performance. The technical progress highlights the different areas of work in terms of Progress in Mechatronics, Sensor integration, Software Development. User Interfaces, Behavior Development and Experimental Results and System Testing. The different areas are: Mechatronics, Sensor integration, Software development, Experimental results and Basic System Testing, Behaviors Development and Advanced System Testing, User Interface and Wireless Communication.

  8. Simulation, Model Verification and Controls Development of Brayton Cycle PM Alternator: Testing and Simulation of 2 KW PM Generator with Diode Bridge Output

    NASA Technical Reports Server (NTRS)

    Stankovic, Ana V.

    2003-01-01

    Professor Stankovic will be developing and refining Simulink based models of the PM alternator and comparing the simulation results with experimental measurements taken from the unit. Her first task is to validate the models using the experimental data. Her next task is to develop alternative control techniques for the application of the Brayton Cycle PM Alternator in a nuclear electric propulsion vehicle. The control techniques will be first simulated using the validated models then tried experimentally with hardware available at NASA. Testing and simulation of a 2KW PM synchronous generator with diode bridge output is described. The parameters of a synchronous PM generator have been measured and used in simulation. Test procedures have been developed to verify the PM generator model with diode bridge output. Experimental and simulation results are in excellent agreement.

  9. ULTRASONIC STUDIES OF THE FUNDAMENTAL MECHANISMS OF RECRYSTALLIZATION AND SINTERING OF METALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TURNER, JOSEPH A.

    2005-11-30

    The purpose of this project was to develop a fundamental understanding of the interaction of an ultrasonic wave with complex media, with specific emphases on recrystallization and sintering of metals. A combined analytical, numerical, and experimental research program was implemented. Theoretical models of elastic wave propagation through these complex materials were developed using stochastic wave field techniques. The numerical simulations focused on finite element wave propagation solutions through complex media. The experimental efforts were focused on corroboration of the models developed and on the development of new experimental techniques. The analytical and numerical research allows the experimental results to bemore » interpreted quantitatively.« less

  10. 48 CFR 27.405-1 - Special works.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., books, studies, surveys, or similar documents that do not involve research, development, or experimental...; (3) Surveys of Government establishments; (4) Works pertaining to the instruction or guidance of... that resulting from research, development, or experimental work performed by the contractor), the early...

  11. 48 CFR 27.405-1 - Special works.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., books, studies, surveys, or similar documents that do not involve research, development, or experimental...; (3) Surveys of Government establishments; (4) Works pertaining to the instruction or guidance of... that resulting from research, development, or experimental work performed by the contractor), the early...

  12. 48 CFR 27.405-1 - Special works.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., books, studies, surveys, or similar documents that do not involve research, development, or experimental...; (3) Surveys of Government establishments; (4) Works pertaining to the instruction or guidance of... that resulting from research, development, or experimental work performed by the contractor), the early...

  13. 48 CFR 27.405-1 - Special works.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., books, studies, surveys, or similar documents that do not involve research, development, or experimental...; (3) Surveys of Government establishments; (4) Works pertaining to the instruction or guidance of... that resulting from research, development, or experimental work performed by the contractor), the early...

  14. 48 CFR 27.405-1 - Special works.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., books, studies, surveys, or similar documents that do not involve research, development, or experimental...; (3) Surveys of Government establishments; (4) Works pertaining to the instruction or guidance of... that resulting from research, development, or experimental work performed by the contractor), the early...

  15. Development of a modified independent parallel reactions kinetic model and comparison with the distributed activation energy model for the pyrolysis of a wide variety of biomass fuels.

    PubMed

    Sfakiotakis, Stelios; Vamvuka, Despina

    2015-12-01

    The pyrolysis of six waste biomass samples was studied and the fuels were kinetically evaluated. A modified independent parallel reactions scheme (IPR) and a distributed activation energy model (DAEM) were developed and their validity was assessed and compared by checking their accuracy of fitting the experimental results, as well as their prediction capability in different experimental conditions. The pyrolysis experiments were carried out in a thermogravimetric analyzer and a fitting procedure, based on least squares minimization, was performed simultaneously at different experimental conditions. A modification of the IPR model, considering dependence of the pre-exponential factor on heating rate, was proved to give better fit results for the same number of tuned kinetic parameters, comparing to the known IPR model and very good prediction results for stepwise experiments. Fit of calculated data to the experimental ones using the developed DAEM model was also proved to be very good. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Theory and Applications of Computational Time-Reversal Imaging

    DTIC Science & Technology

    2007-05-03

    experimental data collected by a research team from Carnegie Mellon University illustrating the use of the algorithms developed in the project. The final...2.1 Early Results from CMU experimental data ..... ................... 4 2.1.1 Basic Time Reversal Imaging ....... ...................... 4 2.1.2 Time... experimental data collected by Carnegie Mellon University illustrating the use of the algorithms developed in the project. 15. SUBJECT TERMS 16. SECURITY

  17. Room-temperature phosphorescence logic gates developed from nucleic acid functionalized carbon dots and graphene oxide

    NASA Astrophysics Data System (ADS)

    Gui, Rijun; Jin, Hui; Wang, Zonghua; Zhang, Feifei; Xia, Jianfei; Yang, Min; Bi, Sai; Xia, Yanzhi

    2015-04-01

    Room-temperature phosphorescence (RTP) logic gates were developed using capture ssDNA (cDNA) modified carbon dots and graphene oxide (GO). The experimental results suggested the feasibility of these developed RTP-based ``OR'', ``INHIBIT'' and ``OR-INHIBIT'' logic gate operations, using Hg2+, target ssDNA (tDNA) and doxorubicin (DOX) as inputs.Room-temperature phosphorescence (RTP) logic gates were developed using capture ssDNA (cDNA) modified carbon dots and graphene oxide (GO). The experimental results suggested the feasibility of these developed RTP-based ``OR'', ``INHIBIT'' and ``OR-INHIBIT'' logic gate operations, using Hg2+, target ssDNA (tDNA) and doxorubicin (DOX) as inputs. Electronic supplementary information (ESI) available: All experimental details, Part S1-3, Fig. S1-6 and Table S1. See DOI: 10.1039/c4nr07620f

  18. Experimental and computational surface and flow-field results for an all-body hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Lockman, William K.; Lawrence, Scott L.; Cleary, Joseph W.

    1990-01-01

    The objective of the present investigation is to establish a benchmark experimental data base for a generic hypersonic vehicle shape for validation and/or calibration of advanced computational fluid dynamics computer codes. This paper includes results from the comprehensive test program conducted in the NASA/Ames 3.5-foot Hypersonic Wind Tunnel for a generic all-body hypersonic aircraft model. Experimental and computational results on flow visualization, surface pressures, surface convective heat transfer, and pitot-pressure flow-field surveys are presented. Comparisons of the experimental results with computational results from an upwind parabolized Navier-Stokes code developed at Ames demonstrate the capabilities of this code.

  19. Development of a new generation solid rocket motor ignition computer code

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Jenkins, Rhonald M.; Ciucci, Alessandro; Johnson, Shelby D.

    1994-01-01

    This report presents the results of experimental and numerical investigations of the flow field in the head-end star grain slots of the Space Shuttle Solid Rocket Motor. This work provided the basis for the development of an improved solid rocket motor ignition transient code which is also described in this report. The correlation between the experimental and numerical results is excellent and provides a firm basis for the development of a fully three-dimensional solid rocket motor ignition transient computer code.

  20. Results of design studies and wind tunnel tests of an advanced high lift system for an Energy Efficient Transport

    NASA Technical Reports Server (NTRS)

    Oliver, W. R.

    1980-01-01

    The development of an advanced technology high lift system for an energy efficient transport incorporating a high aspect ratio supercritical wing is described. This development is based on the results of trade studies to select the high lift system, analysis techniques utilized to design the high lift system, and results of a wind tunnel test program. The program included the first experimental low speed, high Reynolds number wind tunnel test for this class of aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, aileron, spoilers, and Mach and Reynolds numbers. Results are discussed and compared with the experimental data and the various aerodynamic characteristics are estimated.

  1. Development of High-Speed IV-VI Photodiodes

    DTIC Science & Technology

    1976-06-01

    is not yet an adequate theoretical analysis. However, early experimental results indicated that collection efficienclea near unitv are attainable...82171~$* te g w w ( I .f 1 INTRODUCTION 2 EXPERIMENTAL 3 JUNCTION CAPACITANCE 4 THE PINCHED-OFF PHOTODIODE 4.1 Genaral Considerations 4.2...developed by Ford Research Staff. The essential references to this previous work and to new experimental detVKji are given In Section 2 of the

  2. V&V Of CFD Modeling Of The Argonne Bubble Experiment: FY15 Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyt, Nathaniel C.; Wardle, Kent E.; Bailey, James L.

    2015-09-30

    In support of the development of accelerator-driven production of the fission product Mo 99, computational fluid dynamics (CFD) simulations of an electron-beam irradiated, experimental-scale bubble chamber have been conducted in order to aid in interpretation of existing experimental results, provide additional insights into the physical phenomena, and develop predictive thermal hydraulic capabilities that can be applied to full-scale target solution vessels. Toward that end, a custom hybrid Eulerian-Eulerian-Lagrangian multiphase solver was developed, and simulations have been performed on high-resolution meshes. Good agreement between experiments and simulations has been achieved, especially with respect to the prediction of the maximum temperature ofmore » the uranyl sulfate solution in the experimental vessel. These positive results suggest that the simulation methodology that has been developed will prove to be suitable to assist in the development of full-scale production hardware.« less

  3. A critical review of the experimental data for developed free turbulent shear layers

    NASA Technical Reports Server (NTRS)

    Birch, S. F.; Eggers, J. M.

    1973-01-01

    Experimental shear layer data are reviewed and the results are compared to numerical predictions for three test cases. It was concluded from the study that many, if not most, of the apparent inconsistencies which exist in the interpretation of the experimental data for free shear layers result from confusing data taken in developed turbulent flows with those taken in transitional or developing flows. Other conclusions drawn from the study include the following: (1) The effects of Mach number are more uncertain primarily because of limited data and the absence of any turbulence measurements for supersonic shear layers. (2) The data available for heterogeneous shear layers are not sufficient to clearly establish the effect of density ratio on mixing rate.

  4. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 2 - model validation

    NASA Astrophysics Data System (ADS)

    Zhang, Yaning; Xu, Fei; Li, Bingxi; Kim, Yong-Song; Zhao, Wenke; Xie, Gongnan; Fu, Zhongbin

    2018-04-01

    This study aims to validate the three-phase heat and mass transfer model developed in the first part (Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development). Experimental results from studies and experiments were used for the validation. The results showed that the correlation coefficients for the simulated and experimental water contents at different soil depths were between 0.83 and 0.92. The correlation coefficients for the simulated and experimental liquid water contents at different soil temperatures were between 0.95 and 0.99. With these high accuracies, the developed model can be well used to predict the water contents at different soil depths and temperatures.

  5. Experimental Study of the Low Supersaturation Nucleation in Crystal Growth by Contactless Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Grasza, K.; Palosz, W.; Trivedi, S. B.

    1998-01-01

    The process of the development of the nuclei and of subsequent seeding in 'contactless' physical vapor transport is investigated experimentally. Consecutive stages of the Low Supersaturation Nucleation in 'contactless' geometry for growth of CdTe crystals from the vapor are shown. The effects of the temperature field, geometry of the system, and experimental procedures on the process are presented and discussed. The experimental results are found to be consistent with our earlier numerical modeling results.

  6. Cyclic Inelastic Deformation and Fatigue Resistance of a Rail Steel : Experimental Results and Mathematical Models

    DOT National Transportation Integrated Search

    1981-10-01

    Experimental results developed from tests of uniaxial, smooth specimens obtained from the head of an unused section of rail have been reported. Testing encompassed a broad range of conditions - monotonic tension, monotonic compression, and fully reve...

  7. RANDOMIZATION PROCEDURES FOR THE ANALYSIS OF EDUCATIONAL EXPERIMENTS.

    ERIC Educational Resources Information Center

    COLLIER, RAYMOND O.

    CERTAIN SPECIFIC ASPECTS OF HYPOTHESIS TESTS USED FOR ANALYSIS OF RESULTS IN RANDOMIZED EXPERIMENTS WERE STUDIED--(1) THE DEVELOPMENT OF THE THEORETICAL FACTOR, THAT OF PROVIDING INFORMATION ON STATISTICAL TESTS FOR CERTAIN EXPERIMENTAL DESIGNS AND (2) THE DEVELOPMENT OF THE APPLIED ELEMENT, THAT OF SUPPLYING THE EXPERIMENTER WITH MACHINERY FOR…

  8. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    NASA Astrophysics Data System (ADS)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A.; Piepel, Gregory F.; Enderlin, Carl W.

    Understanding how uncertainty manifests itself in complex experiments is important for developing the testing protocol and interpreting the experimental results. This paper describes experimental and measurement uncertainties, and how they can depend on the order of performing experimental tests. Experiments with pulse-jet mixers in tanks at three scales were conducted to characterize the performance of transient-developing periodic flows in Newtonian slurries. Other test parameters included the simulant, solids concentration, and nozzle exit velocity. Critical suspension velocity and cloud height were the metrics used to characterize Newtonian slurry flow associated with mobilization and mixing. During testing, near-replicate and near-repeat tests weremore » conducted. The experimental results were used to quantify the combined experimental and measurement uncertainties using standard deviations and percent relative standard deviations (%RSD) The uncertainties in critical suspension velocity and cloud height tend to increase with the values of these responses. Hence, the %RSD values are the more appropriate summary measure of near-replicate testing and measurement uncertainty.« less

  10. Boundary Electron and Beta Dosimetry-Quantification of the Effects of Dissimilar Media on Absorbed Dose

    NASA Astrophysics Data System (ADS)

    Nunes, Josane C.

    1991-02-01

    This work quantifies the changes effected in electron absorbed dose to a soft-tissue equivalent medium when part of this medium is replaced by a material that is not soft -tissue equivalent. That is, heterogeneous dosimetry is addressed. Radionuclides which emit beta particles are the electron sources of primary interest. They are used in brachytherapy and in nuclear medicine: for example, beta -ray applicators made with strontium-90 are employed in certain ophthalmic treatments and iodine-131 is used to test thyroid function. More recent medical procedures under development and which involve beta radionuclides include radioimmunotherapy and radiation synovectomy; the first is a cancer modality and the second deals with the treatment of rheumatoid arthritis. In addition, the possibility of skin surface contamination exists whenever there is handling of radioactive material. Determination of absorbed doses in the examples of the preceding paragraph requires considering boundaries of interfaces. Whilst the Monte Carlo method can be applied to boundary calculations, for routine work such as in clinical situations, or in other circumstances where doses need to be determined quickly, analytical dosimetry would be invaluable. Unfortunately, few analytical methods for boundary beta dosimetry exist. Furthermore, the accuracy of results from both Monte Carlo and analytical methods has to be assessed. Although restricted to one radionuclide, phosphorus -32, the experimental data obtained in this work serve several purposes, one of which is to provide standards against which calculated results can be tested. The experimental data also contribute to the relatively sparse set of published boundary dosimetry data. At the same time, they may be useful in developing analytical boundary dosimetry methodology. The first application of the experimental data is demonstrated. Results from two Monte Carlo codes and two analytical methods, which were developed elsewhere, are compared with experimental data. Monte Carlo results compare satisfactory with experimental results for the boundaries considered. The agreement with experimental results for air interfaces is of particular interest because of discrepancies reported previously by another investigator who used data obtained from a different experimental technique. Results from one of the analytical methods differ significantly from the experimental data obtained here. The second analytical method provided data which approximate experimental results to within 30%. This is encouraging but it remains to be determined whether this method performs equally well for other source energies.

  11. Aerothermal Testing for Project Orion Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.; Lillard, Randolph P.; Kirk, Benjamin S.; Fischer-Cassady, Amy

    2009-01-01

    The Project Orion Crew Exploration Vehicle aerothermodynamic experimentation strategy, as it relates to flight database development, is reviewed. Experimental data has been obtained to both validate the computational predictions utilized as part of the database and support the development of engineering models for issues not adequately addressed with computations. An outline is provided of the working groups formed to address the key deficiencies in data and knowledge for blunt reentry vehicles. The facilities utilized to address these deficiencies are reviewed, along with some of the important results obtained thus far. For smooth wall comparisons of computational convective heating predictions against experimental data from several facilities, confidence was gained with the use of algebraic turbulence model solutions as part of the database. For cavities and protuberances, experimental data is being used for screening various designs, plus providing support to the development of engineering models. With the reaction-control system testing, experimental data were acquired on the surface in combination with off-body flow visualization of the jet plumes and interactions. These results are being compared against predictions for improved understanding of aftbody thermal environments and uncertainties.

  12. Load Measurement in Structural Members Using Guided Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Wilcox, Paul D.

    2006-03-01

    A non-destructive technique to measure load in structures such as rails and bridge cables by using guided acoustic waves is investigated both theoretically and experimentally. Robust finite element models for predicting the effect of load on guided wave propagation are developed and example results are presented for rods. Reasonably good agreement of experimental results with modelling prediction is obtained. The measurement technique has been developed to perform tests on larger specimens.

  13. Quiet Clean Short-haul Experimental Engine (QCSEE). Double-annular clean combustor technology development report

    NASA Technical Reports Server (NTRS)

    Bahr, D. W.; Burrus, D. L.; Sabla, P. E.

    1979-01-01

    A sector combustor technology development program was conducted to define an advanced double annular dome combustor sized for use in the quiet clean short haul experimental engine (QCSEE). A design which meets the emission goals, and combustor performance goals of the QCSEE engine program was developed. Key design features were identified which resulted in substantial reduction in carbon monoxide and unburned hydrocarbon emission levels at ground idle operating conditions, in addition to very low nitric oxide emission levels at high power operating conditions. Their significant results are reported.

  14. Effect of formal specifications on program complexity and reliability: An experimental study

    NASA Technical Reports Server (NTRS)

    Goel, Amrit L.; Sahoo, Swarupa N.

    1990-01-01

    The results are presented of an experimental study undertaken to assess the improvement in program quality by using formal specifications. Specifications in the Z notation were developed for a simple but realistic antimissile system. These specifications were then used to develop 2 versions in C by 2 programmers. Another set of 3 versions in Ada were independently developed from informal specifications in English. A comparison of the reliability and complexity of the resulting programs suggests the advantages of using formal specifications in terms of number of errors detected and fault avoidance.

  15. Mean velocity and turbulence measurements in a 90 deg curved duct with thin inlet boundary layer

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.; Peters, C. E.; Steinhoff, J.; Hornkohl, J. O.; Nourinejad, J.; Ramachandran, K.

    1985-01-01

    The experimental database established by this investigation of the flow in a large rectangular turning duct is of benchmark quality. The experimental Reynolds numbers, Deans numbers and boundary layer characteristics are significantly different from previous benchmark curved-duct experimental parameters. This investigation extends the experimental database to higher Reynolds number and thinner entrance boundary layers. The 5% to 10% thick boundary layers, based on duct half-width, results in a large region of near-potential flow in the duct core surrounded by developing boundary layers with large crossflows. The turbulent entrance boundary layer case at R sub ed = 328,000 provides an incompressible flowfield which approaches real turbine blade cascade characteristics. The results of this investigation provide a challenging benchmark database for computational fluid dynamics code development.

  16. Analytical and experimental vibration analysis of a faulty gear system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-10-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structures. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville Distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  17. Analytical and experimental vibration analysis of a faulty gear system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-10-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  18. Analytical and Experimental Vibration Analysis of a Faulty Gear System

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-01-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  19. Robust and real-time rotor control with magnetic bearings

    NASA Technical Reports Server (NTRS)

    Sinha, A.; Wang, K. W.; Mease, K. L.

    1991-01-01

    This paper deals with the sliding mode control of a rigid rotor via radial magnetic bearings. The digital control algorithm and the results from numerical simulations are presented for an experimental rig. The experimental system which has been set up to digitally implement and validate the sliding mode control algorithm is described. Two methods for the development of control softwares are presented. Experimental results for individual rotor axis are discussed.

  20. Experimental and numerical research on forging with torsion

    NASA Astrophysics Data System (ADS)

    Petrov, Mikhail A.; Subich, Vadim N.; Petrov, Pavel A.

    2017-10-01

    Increasing the efficiency of the technological operations of blank production is closely related to the computer-aided technologies (CAx). On the one hand, the practical result represents reality exactly. On the other hand, the development procedure of new process development demands unrestricted resources, which are limited on the SMEs. The tools of CAx were successfully applied for development of new process of forging with torsion and result analysis as well. It was shown, that the theoretical calculations find the confirmation both in praxis and during numerical simulation. The mostly used constructional materials were under study. The torque angles were stated. The simulated results were evaluated by experimental procedure.

  1. NASA Airframe Icing Research Overview Past and Current

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark

    2009-01-01

    This slide presentation reviews the past and current research that NASA has done in the area of airframe icing. Both the history experimental efforts and model development to understand the process and problem of ice formation are reviewed. This has resulted in the development of new experimental methods, advanced icing simulation software, flight dynamics and experimental databases that have an impact on design, testing, construction and certification and qualification of the aircraft and its sub-systems.

  2. Numerical model updating technique for structures using firefly algorithm

    NASA Astrophysics Data System (ADS)

    Sai Kubair, K.; Mohan, S. C.

    2018-03-01

    Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.

  3. Manpower Development and Training in Correctional Programs. MDTA Experimental and Demonstration Findings No. 3.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC.

    Four conferences on manpower development and training in correctional institutions were sponsored by the Manpower Administration to bring together the basic groups of people charged with responsibility in prisoner rehabilitation and to disseminate to them the significant results of experimental, demonstration, and research projects engaged in…

  4. Development of Managers' Emotional Competencies: Mind-Body Training Implication

    ERIC Educational Resources Information Center

    Gruicic, Dusan; Benton, Stephen

    2015-01-01

    Purpose: This paper aims to research about the effect of mind-body training on the development of emotional competencies of managers. Design/methodology/approach: Quasi-experimental design, i.e. before and after (test-retest). Findings: Results showed that the experimental group, after training, achieved around 15 per cent higher scores compared…

  5. Experimental and analytical studies of high heat flux components for fusion experimental reactor

    NASA Astrophysics Data System (ADS)

    Araki, Masanori

    1993-03-01

    In this report, the experimental and analytical results concerning the development of plasma facing components of ITER are described. With respect to developing high heat removal structures for the divertor plates, an externally-finned swirl tube was developed based on the results of critical heat flux (CHF) experiments on various tube structures. As the result, the burnout heat flux, which also indicates incident CHF, of 41 (+/-) 1 MW/sq m was achieved in the externally-finned swirl tube. The applicability of existing CHF correlations based on uniform heating conditions was evaluated by comparing the CHF experimental data with the smooth and the externally-finned tubes under one-sided heating condition. As the results, experimentally determined CHF data for straight tube show good agreement, for the externally-finned tube, no existing correlations are available for prediction of the CHF. With respect to the evaluation of the bonds between carbon-based material and heat sink metal, results of brazing tests were compared with the analytical results by three dimensional model with temperature-dependent thermal and mechanical properties. Analytical results showed that residual stresses from brazing can be estimated by the analytical three directional stress values instead of the equivalent stress value applied. In the analytical study on the separatrix sweeping for effectively reducing surface heat fluxes on the divertor plate, thermal response of the divertor plate was analyzed under ITER relevant heat flux conditions and has been tested. As the result, it has been demonstrated that application of the sweeping technique is very effective for improvement in the power handling capability of the divertor plate and that the divertor mock-up has withstood a large number of additional cyclic heat loads.

  6. Coagulation of dust grains in the plasma of an RF discharge in argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankelevich, Yu. A.; Olevanov, M. A.; Pal', A. F.

    2009-03-15

    Results are presented from experimental studies of coagulation of dust grains of different sizes injected into a low-temperature plasma of an RF discharge in argon. A theoretical model describing the formation of dust clusters in a low-temperature plasma is developed and applied to interpret the results of experiments on the coagulation of dust grains having large negative charges. The grain size at which coagulation under the given plasma conditions is possible is estimated using the developed theory. The theoretical results are compared with the experimental data.

  7. Development of a mercury electromagnetic centrifugal pump for the SNAP-8 refractory boiler development program

    NASA Technical Reports Server (NTRS)

    Fuller, R. A.; Schnacke, A. W.

    1974-01-01

    An electromagnetic pump, in which pressure is developed in mercury because of the interaction of the magnetic field and current which flows as a result of the voltage induced in the mercury contained in the pump duct, was developed for the SNAP-8 refractory boiler test facility. Pump performance results are presented for ten duct configurations and two stator sizes. These test results were used to design and fabricate a pump which met the SNAP-8 criteria of 530 psi developed pressure at 12,500 lb/hr. The pump operated continuously for over 13,000 hours without failure or performance degradation. Included in this report are descriptions of the experimental equipment, measurement techniques, all experimental data, and an analysis of the electrical losses in the pump.

  8. Development of a New Diagnostic System for Human Liver Diseases Based on Conventional Ultrasonic Diagnostic Equipment

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tsuneo; Nakazawa, Toshihiro; Harada, Akimitsu; Sato, Hiroaki; Maruyama, Yukio; Sato, Sojun

    2001-05-01

    In this paper, the authors present the experimental results of using a quantitative ultrasonic diagnosis technique for human liver diseases using the fractal dimension (FD) of the shape of the power spectra (PS) of RF signals. We have developed an experimental system based on a conventional ultrasonic diagnostic system. As a result, we show that normal livers, fatty livers and liver cirrhosis can be identified using the FD values.

  9. Constructing a new theory from old ideas and new evidence

    PubMed Central

    Rhodes, Marjorie; Wellman, Henry

    2014-01-01

    A central tenet of constructivist models of conceptual development is that children’s initial conceptual level constrains how they make sense of new evidence and thus whether exposure to evidence will prompt conceptual change. Yet, little experimental evidence directly examines this claim for the case of sustained, fundamental conceptual achievements. The present study combined scaling and experimental microgenetic methods to examine the processes underlying conceptual change in the context of an important conceptual achievement of early childhood—the development of a representational theory of mind. Results from 47 children (M age = 3.7 years) indicate that only children who were conceptually close to understanding false belief at the beginning of the study, and who were experimentally exposed to evidence of people acting on false beliefs, reliably developed representational theories of minds. Combined scaling and microgenetic data revealed how prior conceptual level interacts with experience, thereby providing critical experimental evidence for how conceptual change results from the interplay between conceptions and evidence. PMID:23489194

  10. Theoretical and experimental researches of the liquid evaporation during thermal vacuum influences

    NASA Astrophysics Data System (ADS)

    Trushlyakov, V.; Panichkin, A.; Prusova, O.; Zharikov, K.; Dron, M.

    2018-01-01

    The mathematical model of the evaporation process of model liquid with the free surface boundary conditions of the "mirror" type under thermal vacuum influence and the numerical estimates of the evaporation process parameters are developed. An experimental stand, comprising a vacuum chamber, an experimental model tank with a heating element is designed; the experimental data are obtained. A comparative analysis of numerical and experimental results showed their close match.

  11. A low-cost FMCW radar for footprint detection from a mobile platform

    NASA Astrophysics Data System (ADS)

    Boutte, David; Taylor, Paul; Hunt, Allan

    2015-05-01

    Footprint and human trail detection in rugged all-weather environments is an important and challenging problem for perimeter security, passive surveillance and reconnaissance. To address this challenge a low-cost, wideband, frequency-modulated continuous wave (FMCW) radar operating at 33.4GHz - 35.5GHz is being developed through a Department of Homeland Security Science and Technology Directorate Phase I SBIR and has been experimentally demonstrated to be capable of detecting footprints and footprint trails on unimproved roads in an experimental setting. It uses a low-cost digital signal processor (DSP) that makes important operating parameters reconfigurable and allows for frequency sweep linearization, a key technique developed to increase footprint signal-to-noise ratio (SNR). This paper discusses the design, DSP implementation and experimental results of a low-cost FMCW radar for mobile footprint detection. A technique for wideband sweep linearization is detailed along with system performance metrics and experimental results showing receive-SNR from footprint trails in sand and on unimproved dirt roads. Results from a second stepped frequency CW (SFCW) Ka-band system are also shown, verifying the ability of both systems to detect footprints and footprint trails in an experimental setting. The results show that there is sufficient receive-SNR to detect even shallow footprints (~1cm) using a radar based detection system in Ka-band. Field experimental results focus on system proof of concept from a static position with mobile results also presented highlighting necessary improvements to both systems.

  12. Rapid Structural Design Change Evaluation with AN Experiment Based FEM

    NASA Astrophysics Data System (ADS)

    Chu, C.-H.; Trethewey, M. W.

    1998-04-01

    The work in this paper proposes a dynamic structural design model that can be developed in a rapid fashion. The approach endeavours to produce a simplified FEM developed in conjunction with an experimental modal database. The FEM is formulated directly from the geometry and connectivity used in an experimental modal test using beam/frame elements. The model sacrifices fine detail for a rapid development time. The FEM is updated at the element level so the dynamic response replicates the experimental results closely. The physical attributes of the model are retained, making it well suited to evaluate the effect of potential design changes. The capabilities are evaluated in a series of computational and laboratory tests. First, a study is performed with a simulated cantilever beam with a variable mass and stiffness distribution. The modal characteristics serve as the updating target with random noise added to simulate experimental uncertainty. A uniformly distributed FEM is developed and updated. The results show excellent results, all natural frequencies are within 0·001% with MAC values above 0·99. Next, the method is applied to predict the dynamic changes of a hardware portal frame structure for a radical design change. Natural frequency predictions from the original FEM differ by as much as almost 18% with reasonable MAC values. The results predicted from the updated model produce excellent results when compared to the actual hardware changes, the first five modal natural frequency difference is around 5% and the corresponding mode shapes producing MAC values above 0·98.

  13. Hypersonic Experimental and Computational Capability, Improvement and Validation. Volume 2

    NASA Technical Reports Server (NTRS)

    Muylaert, Jean (Editor); Kumar, Ajay (Editor); Dujarric, Christian (Editor)

    1998-01-01

    The results of the phase 2 effort conducted under AGARD Working Group 18 on Hypersonic Experimental and Computational Capability, Improvement and Validation are presented in this report. The first volume, published in May 1996, mainly focused on the design methodology, plans and some initial results of experiments that had been conducted to serve as validation benchmarks. The current volume presents the detailed experimental and computational data base developed during this effort.

  14. Experimental inoculation of domestic cats (Felis domesticus) with Sarcocystis neurona or S. neurona-like merozoites.

    PubMed

    Butcher, M; Lakritz, J; Halaney, A; Branson, K; Gupta, G D; Kreeger, J; Marsh, A E

    2002-07-29

    Sarcocystis neurona is the parasite most commonly associated with equine protozoal myeloencephalitis (EPM). Recently, cats (Felis domesticus) have been demonstrated to be an experimental intermediate host in the life cycle of S. neurona. This study was performed to determine if cats experimentally inoculated with culture-derived S. neurona merozoites develop tissue sarcocysts infectious to opossums (Didelphis virginiana), the definitive host of S. neurona. Four cats were inoculated with S. neurona or S. neurona-like merozoites and all developed antibodies reacting to S. neurona merozoite antigens, but tissue sarcocysts were detected in only two cats. Muscle tissues from the experimentally inoculated cats with and without detectable sarcocysts were fed to laboratory-reared opossums. Sporocysts were detected in gastrointestinal (GI) scrapings of one opossum fed experimentally infected feline tissues. The study results suggest that cats can develop tissue cysts following inoculation with culture-derived Sarcocystis sp. merozoites in which the particular isolate was originally derived from a naturally infected cat with tissue sarcocysts. This is in contrast to cats which did not develop tissue cysts when inoculated with S. neurona merozoites originally derived from a horse with EPM. These results indicate present biological differences between the culture-derived merozoites of two Sarcocystis isolates, Sn-UCD 1 and Sn-Mucat 2.

  15. Atmosphere Behavior in Gas-Closed Mouse-Algal Systems: An Experimental and Modelling Study

    NASA Technical Reports Server (NTRS)

    Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.

    1985-01-01

    A dual approach of mathematical modelling and laboratory experimentation aimed at examining the gas exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere was initiated. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is examined. A mathematical model simulating the atmospheric behavior in these systems was developed and an experimental gas closed system was constructed. These systems are described and preliminary results are presented.

  16. Vibration and noise analysis of a gear transmission system

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Qian, W.; Zakrajsek, J. J.; Oswald, F. B.

    1993-01-01

    This paper presents a comprehensive procedure to predict both the vibration and noise generated by a gear transmission system under normal operating conditions. The gearbox vibrations were obtained from both numerical simulation and experimental studies using a gear noise test rig. In addition, the noise generated by the gearbox vibrations was recorded during the experimental testing. A numerical method was used to develop linear relationships between the gearbox vibration and the generated noise. The hypercoherence function is introduced to correlate the nonlinear relationship between the fundamental noise frequency and its harmonics. A numerical procedure was developed using both the linear and nonlinear relationships generated from the experimental data to predict noise resulting from the gearbox vibrations. The application of this methodology is demonstrated by comparing the numerical and experimental results from the gear noise test rig.

  17. Experimental investigation of the combustion products in an aluminised solid propellant

    NASA Astrophysics Data System (ADS)

    Liu, Zhu; Li, Shipeng; Liu, Mengying; Guan, Dian; Sui, Xin; Wang, Ningfei

    2017-04-01

    Aluminium is widely used as an important additive to improve ballistic and energy performance in solid propellants, but the unburned aluminium does not contribute to the specific impulse and has both thermal and momentum two-phase flow losses. So understanding of aluminium combustion behaviour during solid propellant burning is significant when improving internal ballistic performance. Recent developments and experimental results reported on such combustion behaviour are presented in this paper. A variety of experimental techniques ranging from quenching and dynamic measurement, to high-speed CCD video recording, were used to study aluminium combustion behaviour and the size distribution of the initial agglomerates. This experimental investigation also provides the size distribution of the condensed phase products. Results suggest that the addition of an organic fluoride compound to solid propellant will generate smaller diameter condensed phase products due to sublimation of AlF3. Lastly, a physico-chemical picture of the agglomeration process was also developed based on the results of high-speed CCD video analysis.

  18. [Analysis of heavy-metal-mediated disease and development of a novel remediation system based on fieldwork and experimental research].

    PubMed

    Yajima, Ichiro; Zou, Cunchao; Li, Xiang; Nakano, Chizuru; Omata, Yasuhiro; Kumasaka, Mayuko Y

    2015-01-01

    Heavy-metal pollution occurs in various environments, including water, air and soil, and has serious effects on human health. Since heavy-metal pollution in drinking water causes various diseases including skin cancer, it has become a global problem worldwide. However, there is limited information on the mechanism of development of heavy-metal-mediated disease. We performed both fieldwork and experimental studies to elucidate the levels of heavy-metal pollution and mechanisms of development of heavy-metal-related disease and to develop a novel remediation system. Our fieldwork in Bangladesh, Vietnam and Malaysia demonstrated that drinking well water in these countries was polluted with high concentrations of several heavy metals including arsenic, barium, iron and manganese. Our experimental studies based on the data from our fieldwork demonstrated that these heavy metals caused skin cancer and hearing loss. Further experimental studies resulted in the development of a novel remediation system with which toxic heavy metals were absorbed from polluted drinking water. Implementation of both fieldwork and experimental studies is important for prediction, prevention and therapy of heavy-metal-mediated diseases.

  19. Variable camber wing based on pneumatic artificial muscles

    NASA Astrophysics Data System (ADS)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong

    2009-07-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.

  20. Effects of development of a natural gas well and associated pipeline on the natural and scientific resources of the Fernow Experimental Forest

    Treesearch

    Mary Beth Adams; Pamela J. Edwards; W. Mark Ford; Joshua B. Johnson; Thomas M. Schuler; Melissa Thomas-Van Gundy; Frederica Wood

    2011-01-01

    Development of a natural gas well and pipeline on the Fernow Experimental Forest, WV, raised concerns about the effects on the natural and scientifi c resources of the Fernow, set aside in 1934 for long-term research. A case study approach was used to evaluate effects of the development. This report includes results of monitoring projects as well as observations...

  1. Numerical and experimental investigation of melting with internal heat generation within cylindrical enclosures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amber Shrivastava; Brian Williams; Ali S. Siahpush

    2014-06-01

    There have been significant efforts by the heat transfer community to investigate the melting phenomenon of materials. These efforts have included the analytical development of equations to represent melting, numerical development of computer codes to assist in modeling the phenomena, and collection of experimental data. The understanding of the melting phenomenon has application in several areas of interest, for example, the melting of a Phase Change Material (PCM) used as a thermal storage medium as well as the melting of the fuel bundle in a nuclear power plant during an accident scenario. The objective of this research is two-fold. Firstmore » a numerical investigation, using computational fluid dynamics (CFD), of melting with internal heat generation for a vertical cylindrical geometry is presented. Second, to the best of authors knowledge, there are very limited number of engineering experimental results available for the case of melting with Internal Heat Generation (IHG). An experiment was performed to produce such data using resistive, or Joule, heating as the IHG mechanism. The numerical results are compared against the experimental results and showed favorable correlation. Uncertainties in the numerical and experimental analysis are discussed. Based on the numerical and experimental analysis, recommendations are made for future work.« less

  2. Modeling and experimental study of resistive switching in vertically aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ageev, O. A.; Blinov, Yu F.; Ilina, M. V.; Ilin, O. I.; Smirnov, V. A.

    2016-08-01

    Model of the resistive switching in vertically aligned carbon nanotube (VA CNT) taking into account the processes of deformation, polarization and piezoelectric charge accumulation have been developed. Origin of hysteresis in VA CNT-based structure is described. Based on modeling results the VACNTs-based structure has been created. The ration resistance of high-resistance to low-resistance states of the VACNTs-based structure amounts 48. The correlation the modeling results with experimental studies is shown. The results can be used in the development nanoelectronics devices based on VA CNTs, including the nonvolatile resistive random-access memory.

  3. Numerical and experimental modelling of the radial compressor stage

    NASA Astrophysics Data System (ADS)

    Syka, Tomáš; Matas, Richard; LuÅáček, Ondřej

    2016-06-01

    This article deals with the description of the numerical and experimental model of the new compressor stage designed for process centrifugal compressors. It's the first member of the new stages family developed to achieve the state of the art thermodynamic parameters. This stage (named RTK01) is designed for high flow coefficient with 3D shaped impeller blades. Some interesting findings were gained during its development. The article is focused mainly on some interesting aspects of the development methodology and numerical simulations improvement, not on the specific stage properties. Conditions and experimental equipment, measured results and their comparison with ANSYS CFX and NUMECA FINE/Turbo CFD simulations are described.

  4. Gene Profiling in Experimental Models of Eye Growth: Clues to Myopia Pathogenesis

    PubMed Central

    Stone, Richard A.; Khurana, Tejvir S.

    2010-01-01

    To understand the complex regulatory pathways that underlie the development of refractive errors, expression profiling has evaluated gene expression in ocular tissues of well-characterized experimental models that alter postnatal eye growth and induce refractive errors. Derived from a variety of platforms (e.g. differential display, spotted microarrays or Affymetrix GeneChips), gene expression patterns are now being identified in species that include chicken, mouse and primate. Reconciling available results is hindered by varied experimental designs and analytical/statistical features. Continued application of these methods offers promise to provide the much-needed mechanistic framework to develop therapies to normalize refractive development in children. PMID:20363242

  5. Deciphering the Landauer-Büttiker Transmission Function from Single Molecule Break Junction Experiments

    NASA Astrophysics Data System (ADS)

    Reuter, Matthew; Tschudi, Stephen

    When investigating the electrical response properties of molecules, experiments often measure conductance whereas computation predicts transmission probabilities. Although the Landauer-Büttiker theory relates the two in the limit of coherent scattering through the molecule, a direct comparison between experiment and computation can still be difficult. Experimental data (specifically that from break junctions) is statistical and computational results are deterministic. Many studies compare the most probable experimental conductance with computation, but such an analysis discards almost all of the experimental statistics. In this work we develop tools to decipher the Landauer-Büttiker transmission function directly from experimental statistics and then apply them to enable a fairer comparison between experimental and computational results.

  6. Research on Hygiene Based on Fieldwork and Experimental Studies.

    PubMed

    Yajima, Ichiro

    2017-01-01

    Several experimental studies on hygiene have recently been performed and fieldwork studies are also important and essential tools. However, the implementation of experimental studies is insufficient compared with that of fieldwork studies on hygiene. Here, we show our well-balanced implementation of both fieldwork and experimental studies of toxic-element-mediated diseases including skin cancer and hearing loss. Since the pollution of drinking well water by toxic elements induces various diseases including skin cancer, we performed both fieldwork and experimental studies to determine the levels of toxic elements and the mechanisms behind the development of toxic-element-related diseases and to develop a novel remediation system. Our fieldwork studies in several countries including Bangladesh, Vietnam and Malaysia demonstrated that drinking well water was polluted with high concentrations of several toxic elements including arsenic, barium, iron and manganese. Our experimental studies using the data from our fieldwork studies demonstrated that these toxic elements caused skin cancer and hearing loss. Further experimental studies resulted in the development of a novel remediation system that adsorbs toxic elements from polluted drinking water. A well-balanced implementation of both fieldwork and experimental studies is important for the prediction, prevention and therapy of toxic-element-mediated diseases.

  7. Optimization of an angle-beam ultrasonic approach for characterization of impact damage in composites

    NASA Astrophysics Data System (ADS)

    Henry, Christine; Kramb, Victoria; Welter, John T.; Wertz, John N.; Lindgren, Eric A.; Aldrin, John C.; Zainey, David

    2018-04-01

    Advances in NDE method development are greatly improved through model-guided experimentation. In the case of ultrasonic inspections, models which provide insight into complex mode conversion processes and sound propagation paths are essential for understanding the experimental data and inverting the experimental data into relevant information. However, models must also be verified using experimental data obtained under well-documented and understood conditions. Ideally, researchers would utilize the model simulations and experimental approach to efficiently converge on the optimal solution. However, variability in experimental parameters introduce extraneous signals that are difficult to differentiate from the anticipated response. This paper discusses the results of an ultrasonic experiment designed to evaluate the effect of controllable variables on the anticipated signal, and the effect of unaccounted for experimental variables on the uncertainty in those results. Controlled experimental parameters include the transducer frequency, incidence beam angle and focal depth.

  8. Long-term avian research at the San Joaquin Experimental Range: recommendations for monitoring and managing oak woodlands

    Treesearch

    Kathryn L. Purcell

    2011-01-01

    Experimental forests and ranges are living laboratories that provide opportunities for conducting scientific research and transferring research results to partners and stakeholders. They are invaluable for their long-term data and capacity to foster collaborative, interdisciplinary research. The San Joaquin Experimental Range (SJER) was established to develop...

  9. Articles Published in Four School Psychology Journals from 2000 to 2005: An Analysis of Experimental/Intervention Research

    ERIC Educational Resources Information Center

    Bliss, Stacy L.; Skinner, Christopher H.; Hautau, Briana; Carroll, Erin E.

    2008-01-01

    Using an experimenter-developed system, articles from four school psychology journals for the years 2000-2005 (n = 929) were classified. Results showed that 40% of the articles were narrative, 29% correlational, 16% descriptive, 8% causal-experimental, 4% causal-comparative, and 2% were meta-analytic. Further analysis of the causal-experimental…

  10. The Beliefs and Behaviors of Pupils in an Experimental School: The Science Lab.

    ERIC Educational Resources Information Center

    Lancy, David F.

    This booklet, the second in a series, reports on the results of a year-long research project conducted in an experimental school associated with the Learning Research and Development Center, University of Pittsburgh. Specifically, this is a report of findings pertaining to one major setting in the experimental school, the science lab. The science…

  11. Secondary wastewater polishing with ultrafiltration membranes for unrestricted reuse: fouling and flushing modeling.

    PubMed

    Gillerman, Leonid; Bick, Amos; Buriakovsky, Nisan; Oron, Gideon

    2006-11-01

    The effects of operating parameters such astransmembrane pressure, retentate, and recirculation volumetric flow rates on the productivity of an ultrafiltration membrane were studied using field data and development of a management model. Correlation equations for predicting the volumetric permeate flow rates were derived from general membrane blocking laws and experimental data. The experimental data were obtained from a pilot study carried out in the Arad wastewater treatment system (a pilot plant operating in feed and bleed operation mode) located several kilometers west of the City of Arad, Israel. Correlation predictions were confirmed with the independent experimental results. The results enabled us to develop a mathematical expression accurately describing the decline in flux due to fouling.

  12. Experimental Results for Titan Aerobot Thermo-Mechanical Subsystem Development

    NASA Technical Reports Server (NTRS)

    Pauken, Michael T.; Hall, Jeffery L.

    2006-01-01

    This paper presents experimental results on a set of 4 thermo-mechanical research tasks aimed at Titan and Venus aerobots: 1. A cryogenic balloon materials development program culminating in the fabrication and testing of a 4.6 m long blimp prototype at 93K. 2. A combined computational and experimental thermal analysis of the effect of radioisotope power system (RPS) waste heat on the behavior of a helium filled blimp hull. 3. Aerial deployment and inflation testing using a blimp 4. A proof of concept experiment with an aerobot-mounted steerable high gain antenna These tasks were supported with JPL internal R&D funds and executed by JPL engineers with substantial industry collaboration for Task #1, the cryogenic balloon materials

  13. Analytical investigation of a three-dimensional FRP-retrofitted reinforced concrete structure's behaviour under earthquake load effect in ANSYS program

    NASA Astrophysics Data System (ADS)

    Altun, F.; Birdal, F.

    2012-12-01

    In this study, a 1:3 scaled, three-storey, FRP (Fiber Reinforced Polymer) retrofitted reinforced concrete model structure whose behaviour and crack development were identified experimentally in the laboratory was investigated analytically. Determination of structural behaviour under earthquake load is only possible in a laboratory environment with a specific scale, as carrying out structural experiments is difficult due to the evaluation of increased parameter numbers and because it requires an expensive laboratory setup. In an analytical study, structure was modelled using ANSYS Finite Element Package Program (2007), and its behaviour and crack development were revealed. When experimental difficulties are taken into consideration, analytical investigation of structure behaviour is more economic and much faster. At the end of the study, experimental results of structural behaviour and crack development were compared with analytical data. It was concluded that in a model structure retrofitted with FRP, the behaviour and cracking model can be determined without testing by determining the reasons for the points where analytical results are not converged with experimental data. Better understanding of structural behaviour is analytically enabled with the study.

  14. Force Structure. Joint Seabasing Would Benefit from a Comprehensive Management Approach and Rigorous Experimentation before Services Spend Billions on New Capabilities

    DTIC Science & Technology

    2007-01-01

    results could be compromised. While service development efforts tied to seabasing are approaching milestones for investment decisions , it is...estimates for joint seabasing options are developed and made transparent to DOD and Congress, decision makers will not be able to evaluate the cost...Integrate Service Initiatives 10 DOD Has Not Developed a Joint Experimentation Campaign Plan to Inform Decisions About Joint Seabasing 16 Timeframe for

  15. Progressive collapse of a two-story reinforced concrete frame with embedded smart aggregates

    NASA Astrophysics Data System (ADS)

    Laskar, Arghadeep; Gu, Haichang; Mo, Y. L.; Song, Gangbing

    2009-07-01

    This paper reports the experimental and analytical results of a two-story reinforced concrete frame instrumented with innovative piezoceramic-based smart aggregates (SAs) and subjected to a monotonic lateral load up to failure. A finite element model of the frame is developed and analyzed using a computer program called Open system for earthquake engineering simulation (OpenSees). The finite element analysis (FEA) is used to predict the load-deformation curve as well as the development of plastic hinges in the frame. The load-deformation curve predicted from FEA matched well with the experimental results. The sequence of development of plastic hinges in the frame is also studied from the FEA results. The locations of the plastic hinges, as obtained from the analysis, were similar to those observed during the experiment. An SA-based approach is also proposed to evaluate the health status of the concrete frame and identify the development of plastic hinges during the loading procedure. The results of the FEA are used to validate the SA-based approach for detecting the locations and occurrence of the plastic hinges leading to the progressive collapse of the frame. The locations and sequential development of the plastic hinges obtained from the SA-based approach corresponds well with the FEA results. The proposed SA-based approach, thus validated using FEA and experimental results, has a great potential to be applied in the health monitoring of large-scale civil infrastructures.

  16. DoSSiER: Database of scientific simulation and experimental results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenzel, Hans; Yarba, Julia; Genser, Krzystof

    The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientific Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER can be easily accessed via a web application. In addition, a web service allows for programmatic access to the repository to extract records in json or xml exchange formats. In this paper, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made.

  17. DoSSiER: Database of scientific simulation and experimental results

    DOE PAGES

    Wenzel, Hans; Yarba, Julia; Genser, Krzystof; ...

    2016-08-01

    The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientific Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER can be easily accessed via a web application. In addition, a web service allows for programmatic access to the repository to extract records in json or xml exchange formats. In this paper, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made.

  18. Modeling of Pressure Drop During Refrigerant Condensation in Pipe Minichannels

    NASA Astrophysics Data System (ADS)

    Sikora, Małgorzata; Bohdal, Tadeusz

    2017-12-01

    Investigations of refrigerant condensation in pipe minichannels are very challenging and complicated issue. Due to the multitude of influences very important is mathematical and computer modeling. Its allows for performing calculations for many different refrigerants under different flow conditions. A large number of experimental results published in the literature allows for experimental verification of correctness of the models. In this work is presented a mathematical model for calculation of flow resistance during condensation of refrigerants in the pipe minichannel. The model was developed in environment based on conservation equations. The results of calculations were verified by authors own experimental investigations results.

  19. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2001-01-01

    This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.

  20. Noise characteristics of upper surface blown configurations: Analytical Studies

    NASA Technical Reports Server (NTRS)

    Reddy, N. N.; Tibbetts, J. G.; Pennock, A. P.; Tam, C. K. W.

    1978-01-01

    Noise and flow results of upper surface blown configurations were analyzed. The dominant noise source mechanisms were identified from experimental data. From far-field noise data for various geometric and operational parameters, an empirical noise prediction program was developed and evaluated by comparing predicted results with experimental data from other tests. USB aircraft compatibility studies were conducted using the described noise prediction and a cruise performance data base. A final design aircraft was selected and theory was developed for the noise from the trailing edge wake assuming it as a highly sheared layer.

  1. Development of Computer Models for the Assessment of Foreign Body Impact Events on Composite Structures

    NASA Technical Reports Server (NTRS)

    Bucinell, Ronald B.

    1997-01-01

    The objective of this project was to model the 5-3/4 inch pressure vessels used on the NASA RTOP program in an attempt to learn more about how impact damage forms and what are the residual effects of the resulting damage. A global-local finite element model was developed for the bottle and the states of stress in the bottles were determined down to the constituent level. The experimental data that was generated on the NASA RTOP program was not in a form that enabled the model developed under this grant to be correlated with the experimental data. As a result of this exercise it is recommended that an experimental program be designed using statistical design of experiment techniques to generate data that can be used to isolate the phenomenon that control the formation of impact damage. This data should include residual property determinations so that models for post impact structural integrity can be developed. It is also recommended that the global-local methodology be integrated directly into the finite element code. This will require considerable code development.

  2. Experimental Demonstration of In-Place Calibration for Time Domain Microwave Imaging System

    NASA Astrophysics Data System (ADS)

    Kwon, S.; Son, S.; Lee, K.

    2018-04-01

    In this study, the experimental demonstration of in-place calibration was conducted using the developed time domain measurement system. Experiments were conducted using three calibration methods—in-place calibration and two existing calibrations, that is, array rotation and differential calibration. The in-place calibration uses dual receivers located at an equal distance from the transmitter. The received signals at the dual receivers contain similar unwanted signals, that is, the directly received signal and antenna coupling. In contrast to the simulations, the antennas are not perfectly matched and there might be unexpected environmental errors. Thus, we experimented with the developed experimental system to demonstrate the proposed method. The possible problems with low signal-to-noise ratio and clock jitter, which may exist in time domain systems, were rectified by averaging repeatedly measured signals. The tumor was successfully detected using the three calibration methods according to the experimental results. The cross correlation was calculated using the reconstructed image of the ideal differential calibration for a quantitative comparison between the existing rotation calibration and the proposed in-place calibration. The mean value of cross correlation between the in-place calibration and ideal differential calibration was 0.80, and the mean value of cross correlation of the rotation calibration was 0.55. Furthermore, the results of simulation were compared with the experimental results to verify the in-place calibration method. A quantitative analysis was also performed, and the experimental results show a tendency similar to the simulation.

  3. On the measurement of airborne, angular-dependent sound transmission through supercritical bars.

    PubMed

    Shaw, Matthew D; Anderson, Brian E

    2012-10-01

    The coincidence effect is manifested by maximal sound transmission at angles at which trace wave number matching occurs. Coincidence effect theory is well-defined for unbounded thin plates using plane-wave excitation. However, experimental results for finite bars are known to diverge from theory near grazing angles. Prior experimental work has focused on pulse excitation. An experimental setup has been developed to observe coincidence using continuous- wave excitation and phased-array methods. Experimental results with an aluminum bar exhibit maxima at the predicted angles, showing that coincidence is observable using continuous waves. Transmission near grazing angles is seen to diverge from infinite plate theory.

  4. Experimental and computational results from a large low-speed centrifugal impeller

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Chriss, R. M.; Wood, J. R.; Strazisar, A. J.

    1993-01-01

    An experimental and computational investigation of the NASA Low-Speed Centrifugal Compressor (LSCC) flow field has been conducted using laser anemometry and Dawes' 3D viscous code. The experimental configuration consists of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane and in several cases provide details of the flow within the blade boundary layers. The experimental and computational results provide a clear understanding of the development of the throughflow momentum wake which is characteristic of centrifugal compressors.

  5. Experimental research of radio-frequency ion thruster

    NASA Astrophysics Data System (ADS)

    Antropov, N. N.; Akhmetzhanov, R. V.; Bogatyy, A. V.; Grishin, R. A.; Kozhevnikov, V. V.; Plokhikh, A. P.; Popov, G. A.; Khartov, S. A.

    2016-12-01

    The article is devoted to the research of low-power (300 W) radio-frequency ion thruster designed at the Moscow Aviation Institute. The main results of experimental research of the thruster using the testfacility power supplies and the power processing unit of their own design are presented. The dependence of the working fluid ionization cost on its mass flow rate at the constant ion beam current was investigated experimentally. The influence of the shape and material of the discharge chamber on the integral characteristics of the thruster was studied. The recommendations on the optimization of the thruster primary performance were developed based on the results of experimental studies.

  6. Low cost solar array project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The results of the free space reactor experimental work are summarized. Overall, the objectives were achieved and the unit can be confidently scaled to the EPSDU size based on the experimental work and supporting theoretical analyses. The piping and instrumentation of the fluidized bed reactor was completed.

  7. The Role of Friends' Disruptive Behavior in the Development of Children's Tobacco Experimentation: Results from a Preventive Intervention Study

    ERIC Educational Resources Information Center

    van Lier, Pol A. C.; Huizink, Anja; Vuijk, Patricia

    2011-01-01

    Having friends who engage in disruptive behavior in childhood may be a risk factor for childhood tobacco experimentation. This study tested the role of friends' disruptive behavior as a mediator of the effects of a classroom based intervention on children's tobacco experimentation. 433 Children (52% males) were randomly assigned to the Good…

  8. Developing a new experimental system for an undergraduate laboratory exercise to teach theories of visuomotor learning.

    PubMed

    Kasuga, Shoko; Ushiba, Junichi

    2014-01-01

    Humans have a flexible motor ability to adapt their movements to changes in the internal/external environment. For example, using arm-reaching tasks, a number of studies experimentally showed that participants adapt to a novel visuomotor environment. These results helped develop computational models of motor learning implemented in the central nervous system. Despite the importance of such experimental paradigms for exploring the mechanisms of motor learning, because of the cost and preparation time, most students are unable to participate in such experiments. Therefore, in the current study, to help students better understand motor learning theories, we developed a simple finger-reaching experimental system using commonly used laptop PC components with an open-source programming language (Processing Motor Learning Toolkit: PMLT). We found that compared to a commercially available robotic arm-reaching device, our PMLT accomplished similar learning goals (difference in the error reduction between the devices, P = 0.10). In addition, consistent with previous reports from visuomotor learning studies, the participants showed after-effects indicating an adaptation of the motor learning system. The results suggest that PMLT can serve as a new experimental system for an undergraduate laboratory exercise of motor learning theories with minimal time and cost for instructors.

  9. Analysis of experimental results of the inlet for the NASA hypersonic research engine aerothermodynamic integration model. [wind tunnel tests of ramjet engine hypersonic inlets

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Mackley, E. A.

    1976-01-01

    An aerodynamic engine inlet analysis was performed on the experimental results obtained at nominal Mach numbers of 5, 6, and 7 from the NASA Hypersonic Research Engine (HRE) Aerothermodynamic Integration Model (AIM). Incorporation on the AIM of the mixed-compression inlet design represented the final phase of an inlet development program of the HRE Project. The purpose of this analysis was to compare the AIM inlet experimental results with theoretical results. Experimental performance was based on measured surface pressures used in a one-dimensional force-momentum theorem. Results of the analysis indicate that surface static-pressure measurements agree reasonably well with theoretical predictions except in the regions where the theory predicts large pressure discontinuities. Experimental and theoretical results both based on the one-dimensional force-momentum theorem yielded inlet performance parameters as functions of Mach number that exhibited reasonable agreement. Previous predictions of inlet unstart that resulted from pressure disturbances created by fuel injection and combustion appeared to be pessimistic.

  10. A statistical nanomechanism of biomolecular patterning actuated by surface potential

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Ting; Lin, Chih-Hao

    2011-02-01

    Biomolecular patterning on a nanoscale/microscale on chip surfaces is one of the most important techniques used in vitro biochip technologies. Here, we report upon a stochastic mechanics model we have developed for biomolecular patterning controlled by surface potential. The probabilistic biomolecular surface adsorption behavior can be modeled by considering the potential difference between the binding and nonbinding states. To verify our model, we experimentally implemented a method of electroactivated biomolecular patterning technology and the resulting fluorescence intensity matched the prediction of the developed model quite well. Based on this result, we also experimentally demonstrated the creation of a bovine serum albumin pattern with a width of 200 nm in 5 min operations. This submicron noncovalent-binding biomolecular pattern can be maintained for hours after removing the applied electrical voltage. These stochastic understandings and experimental results not only prove the feasibility of submicron biomolecular patterns on chips but also pave the way for nanoscale interfacial-bioelectrical engineering.

  11. Improved turbulence models based on large eddy simulation of homogeneous, incompressible turbulent flows

    NASA Technical Reports Server (NTRS)

    Bardino, J.; Ferziger, J. H.; Reynolds, W. C.

    1983-01-01

    The physical bases of large eddy simulation and subgrid modeling are studied. A subgrid scale similarity model is developed that can account for system rotation. Large eddy simulations of homogeneous shear flows with system rotation were carried out. Apparently contradictory experimental results were explained. The main effect of rotation is to increase the transverse length scales in the rotation direction, and thereby decrease the rates of dissipation. Experimental results are shown to be affected by conditions at the turbulence producing grid, which make the initial states a function of the rotation rate. A two equation model is proposed that accounts for effects of rotation and shows good agreement with experimental results. In addition, a Reynolds stress model is developed that represents the turbulence structure of homogeneous shear flows very well and can account also for the effects of system rotation.

  12. GPR Imaging for Deeply Buried Objects: A Comparative Study Based on FDTD Models and Field Experiments

    NASA Technical Reports Server (NTRS)

    Tilley, roger; Dowla, Farid; Nekoogar, Faranak; Sadjadpour, Hamid

    2012-01-01

    Conventional use of Ground Penetrating Radar (GPR) is hampered by variations in background environmental conditions, such as water content in soil, resulting in poor repeatability of results over long periods of time when the radar pulse characteristics are kept the same. Target objects types might include voids, tunnels, unexploded ordinance, etc. The long-term objective of this work is to develop methods that would extend the use of GPR under various environmental and soil conditions provided an optimal set of radar parameters (such as frequency, bandwidth, and sensor configuration) are adaptively employed based on the ground conditions. Towards that objective, developing Finite Difference Time Domain (FDTD) GPR models, verified by experimental results, would allow us to develop analytical and experimental techniques to control radar parameters to obtain consistent GPR images with changing ground conditions. Reported here is an attempt at developing 20 and 3D FDTD models of buried targets verified by two different radar systems capable of operating over different soil conditions. Experimental radar data employed were from a custom designed high-frequency (200 MHz) multi-static sensor platform capable of producing 3-D images, and longer wavelength (25 MHz) COTS radar (Pulse EKKO 100) capable of producing 2-D images. Our results indicate different types of radar can produce consistent images.

  13. Optimal Doppler centroid estimation for SAR data from a quasi-homogeneous source

    NASA Technical Reports Server (NTRS)

    Jin, M. Y.

    1986-01-01

    This correspondence briefly describes two Doppler centroid estimation (DCE) algorithms, provides a performance summary for these algorithms, and presents the experimental results. These algorithms include that of Li et al. (1985) and a newly developed one that is optimized for quasi-homogeneous sources. The performance enhancement achieved by the optimal DCE algorithm is clearly demonstrated by the experimental results.

  14. Design and development of a novel strain gauge automatic pasting device for mini split Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Huang, Wenkai; Huan, Shi; He, Junfeng; Jiang, Jichang

    2018-03-01

    In a split Hopkinson pressure bar (SHPB) experiment, the pasting quality of strain gauges will directly affect the accuracy of the measurement results. The traditional method of pasting the strain gauges is done manually by the experimenter. In the process of pasting, it is easy to shift or twist the strain gauge, and the experimental results are greatly affected by human factors. In this paper, a novel type automatic pasting device for strain gauges is designed and developed, which can be used to accurately and rapidly paste the strain gauges. The paste quality is reliable, and it can guarantee the consistency of SHPB experimental measurement. We found that a clamping force of 74 N achieved a success rate of 97%, whilst ensuring good adhesion.

  15. An experimental/computational study of sharp fin induced shock wave/turbulent boundary layer interactions at Mach 5 - Experimental results

    NASA Technical Reports Server (NTRS)

    Rodi, Patrick E.; Dolling, David S.

    1992-01-01

    A combined experimental/computational study has been performed of sharp fin induced shock wave/turbulent boundary layer interactions at Mach 5. The current paper focuses on the experiments and analysis of the results. The experimental data include mean surface heat transfer, mean surface pressure distributions and surface flow visualization for fin angles of attack of 6, 8, 10, 12, 14 and 16-degrees at Mach 5 under a moderately cooled wall condition. Comparisons between the results and correlations developed earlier show that Scuderi's correlation for the upstream influence angle (recast in a conical form) is superior to other such correlations in predicting the current results, that normal Mach number based correlations for peak pressure heat transfer are adequate and that the initial heat transfer peak can be predicted using pressure-interaction theory.

  16. Experimental analysis of armouring process

    NASA Astrophysics Data System (ADS)

    Lamberti, Alberto; Paris, Ennio

    Preliminary results from an experimental investigation on armouring processes are presented. Particularly, the process of development and formation of the armour layer under different steady flow conditions has been analyzed in terms of grain size variations and sediment transport rate associated to each size fraction.

  17. GRADFLEX: Fluctuations in Microgravity

    NASA Technical Reports Server (NTRS)

    Vailati, A.; Cerbino, R.; Mazzoni, S.; Giglio, M.; Nikolaenko, G.; Cannell, D. S.; Meyer, W. V.; Smart, A. E.

    2004-01-01

    We present the results of experimental investigations of gradient driven fluctuations induced in a liquid mixture with a concentration gradient and in a single-component fluid with a temperature gradient. We also describe the experimental apparatus being developed to carry out similar measurement under microgravity conditions.

  18. Creep and Oxidation of Hafnium Diboride Based Ultra High Temperature Ceramics at 1500C

    DTIC Science & Technology

    2015-12-01

    through experimentation. Although the Literature Review showed that some theories and models have been developed based on extensive experimental results...of Some Refractory Metals & Ceramics [Fahrenholtz] ........... 14 Figure 4: Creep Strain vs Time Based on Burgers Model ...

  19. Theoretical and experimental aspects of chaos control by time-delayed feedback.

    PubMed

    Just, Wolfram; Benner, Hartmut; Reibold, Ekkehard

    2003-03-01

    We review recent developments for the control of chaos by time-delayed feedback methods. While such methods are easily applied even in quite complex experimental context the theoretical analysis yields infinite-dimensional differential-difference systems which are hard to tackle. The essential ideas for a general theoretical approach are sketched and the results are compared to electronic circuits and to high power ferromagnetic resonance experiments. Our results show that the control performance can be understood on the basis of experimentally accessible quantities without resort to any model for the internal dynamics.

  20. Design, development, and evaluation of an MRI-guided SMA spring-actuated neurosurgical robot

    PubMed Central

    Ho, Mingyen; Kim, Yeongjin; Cheng, Shing Shin; Gullapalli, Rao; Desai, Jaydev P.

    2015-01-01

    In this paper, we present our work on the development of a magnetic resonance imaging (MRI)-compatible Minimally Invasive Neurosurgical Intracranial Robot (MINIR) comprising of shape memory alloy (SMA) spring actuators and tendon-sheath mechanism. We present the detailed modeling and analysis along with experimental results of the characterization of SMA spring actuators. Furthermore, to demonstrate image-feedback control, we used the images obtained from a camera to control the motion of the robot so that eventually continuous MR images could be used in the future to control the robot motion. Since the image tracking algorithm may fail in some situations, we also developed a temperature feedback control scheme which served as a backup controller for the robot. Experimental results demonstrated that both image feedback and temperature feedback can be used to control the motion of MINIR. A series of MRI compatibility tests were performed on the robot and the experimental results demonstrated that the robot is MRI compatible and no significant visual image distortion was observed in the MR images during robot operation. PMID:26622075

  1. Host-guest interaction of ZnBDC-MOF + doxorubicin: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Iane B.; Wanderley, Kaline A.; Rodrigues, Nailton M.; da Costa, Nivan B.; Freire, Ricardo O.; Junior, Severino A.

    2017-03-01

    The incorporation of drugs in biodegradable polymeric particles is one of many processes that controllably and significantly increase their release and action. In this paper, we describe the synthesis and physicochemical characterization of ZnBDC-MOF + doxorubicin (DOXO@ZnBDC) and the system's effectiveness in the sustained release of the drug doxorubicin. An experimental and theoretical study is presented of the interaction between the [Zn(BDC)(H2O)2]n MOF and the drug doxorubicin (DOXO). The synthesis was characterized by elemental analysis and X-ray powder diffraction (XRPD). The experimental incorporation was accomplished and analyzed by Fourier transform infrared spectroscopy (FTIR), XRPD and UV-Vis (ultraviolet-visible) spectrophotometry. Based on an analysis of the doxorubicin release profile, our results suggest that the drug delivery system showed slower release than other systems under development. Studies of cytotoxicity by the MTT method showed good results for the system developed with antineoplastic doxorubicin, and together with the other results of this study, suggest the successful development of a MOF-based drug delivery system.

  2. Development of method for experimental determination of wheel-rail contact forces and contact point position by using instrumented wheelset

    NASA Astrophysics Data System (ADS)

    Bižić, Milan B.; Petrović, Dragan Z.; Tomić, Miloš C.; Djinović, Zoran V.

    2017-07-01

    This paper presents the development of a unique method for experimental determination of wheel-rail contact forces and contact point position by using the instrumented wheelset (IWS). Solutions of key problems in the development of IWS are proposed, such as the determination of optimal locations, layout, number and way of connecting strain gauges as well as the development of an inverse identification algorithm (IIA). The base for the solution of these problems is the wheel model and results of FEM calculations, while IIA is based on the method of blind source separation using independent component analysis. In the first phase, the developed method was tested on a wheel model and a high accuracy was obtained (deviations of parameters obtained with IIA and really applied parameters in the model are less than 2%). In the second phase, experimental tests on the real object or IWS were carried out. The signal-to-noise ratio was identified as the main influential parameter on the measurement accuracy. Тhе obtained results have shown that the developed method enables measurement of vertical and lateral wheel-rail contact forces Q and Y and their ratio Y/Q with estimated errors of less than 10%, while the estimated measurement error of contact point position is less than 15%. At flange contact and higher values of ratio Y/Q or Y force, the measurement errors are reduced, which is extremely important for the reliability and quality of experimental tests of safety against derailment of railway vehicles according to the standards UIC 518 and EN 14363. The obtained results have shown that the proposed method can be successfully applied in solving the problem of high accuracy measurement of wheel-rail contact forces and contact point position using IWS.

  3. Development of guidelines for optimum baghouse fluid-dynamic-system design. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eskinazi, D.; Gilbert, G.B.

    1982-06-01

    In recent years, the utility industry has turned to fabric filters as an alternative technology to electrostatic precipitators for particulate emission control from pulverized coal-fired power plants. One aspect of baghouse technology which appears to be of major importance in minimizing the size, cost, and operating pressure drop is the development of ductwork and compartment designs which achieve uniform gas and dust flow distribution to individual compartments and bags within a compartment. The objective of this project was to perform an experimental modeling program to develop design guidelines for optimizing the fluid mechanic performance of baghouses. Tasks included formulation ofmore » the appropriate modeling techniques for analysis of the flow of dust-laden gas through the collector system and extensive experimental analysis of fabric filter duct system design. A matrix of geometric configurations and operating conditions was experimentally investigated to establish the characteristics of an optimum system, to identify the level of fluid mechanic sophistication in current designs, and to experimentally develop new ideas and improved designs. Experimental results indicate that the design of the inlet and outlet manifolds, hopper entrance, hopper region below the tubesheet, and the compartment outlet have not been given sufficient attention. Unsteady flow patterns, poor velocity profiles, recirculation zones, and excessive pressure losses may be associated with these regions. It is evident from the results presented here that the fluid mechanic design of fabric filter systems can be improved significantly.« less

  4. Reverse-engineering of gene networks for regulating early blood development from single-cell measurements.

    PubMed

    Wei, Jiangyong; Hu, Xiaohua; Zou, Xiufen; Tian, Tianhai

    2017-12-28

    Recent advances in omics technologies have raised great opportunities to study large-scale regulatory networks inside the cell. In addition, single-cell experiments have measured the gene and protein activities in a large number of cells under the same experimental conditions. However, a significant challenge in computational biology and bioinformatics is how to derive quantitative information from the single-cell observations and how to develop sophisticated mathematical models to describe the dynamic properties of regulatory networks using the derived quantitative information. This work designs an integrated approach to reverse-engineer gene networks for regulating early blood development based on singel-cell experimental observations. The wanderlust algorithm is initially used to develop the pseudo-trajectory for the activities of a number of genes. Since the gene expression data in the developed pseudo-trajectory show large fluctuations, we then use Gaussian process regression methods to smooth the gene express data in order to obtain pseudo-trajectories with much less fluctuations. The proposed integrated framework consists of both bioinformatics algorithms to reconstruct the regulatory network and mathematical models using differential equations to describe the dynamics of gene expression. The developed approach is applied to study the network regulating early blood cell development. A graphic model is constructed for a regulatory network with forty genes and a dynamic model using differential equations is developed for a network of nine genes. Numerical results suggests that the proposed model is able to match experimental data very well. We also examine the networks with more regulatory relations and numerical results show that more regulations may exist. We test the possibility of auto-regulation but numerical simulations do not support the positive auto-regulation. In addition, robustness is used as an importantly additional criterion to select candidate networks. The research results in this work shows that the developed approach is an efficient and effective method to reverse-engineer gene networks using single-cell experimental observations.

  5. Individual Differences in Attention.

    DTIC Science & Technology

    1980-09-01

    allocatable mental resouce has received con- siderable attention in experimental psychology, but little effort has been made to formally apply the concept...presentation will be In four sections. The first contains a dis- cussion of the concept of attentional resources as it has been developed by experimental ...reports experimental results which pertain to this model. A closing Attention 3 section deals with further implications of the basic ideas. THE RESOURCE

  6. Closed Loop Two-Phase Thermosyphon of Small Dimensions: a Review of the Experimental Results

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro; Filippeschi, Sauro

    2012-06-01

    A bibliographical review on the heat and mass transfer in gravity assisted Closed Loop Two Phase Thermosyphons (CLTPT) with channels having a hydraulic diameter of the order of some millimetres and input power below 1 kW is proposed. The available experimental works in the literature are critically analysed in order to highlight the main results and the correlation between mass flow rate and heat input in natural circulation loops. A comparison of different experimental apparatuses and results is made. It is observed that the results are very different among them and in many cases the experimental data disagree with the conventional theory developed for an imposed flow rate. The paper analyses the main differences among the experimental devices and try to understand these disagreements. From the present analysis it is evident that further systematic studies are required to generate a meaningful body of knowledge of the heat and mass transport mechanism in these devices for practical applications in cooling devices or energy systems.

  7. Calculation of the Lateral Stability of a Directly Coupled Tandem-Towed Fighter Airplane and Correlation with Experimental Data

    NASA Technical Reports Server (NTRS)

    Shanks, Robert E.

    1958-01-01

    A theoretical method is presented for predicting the dynamic lateral stability characteristics of an airplane towed in tandem by a much larger airplane. Values of period and time to damp to one-half amplitude and rolling motions calculated by an analog computer have been correlated with results of two experimental investigations conducted in the Langley free-flight tunnel which were part of a U.S. Air Force program (Project FICON) to develop a satisfactory arrangement by which a bomber could tow a parasite fighter. In general, the theoretical results agree with the experimental results.

  8. Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant.

    PubMed

    Marco, Miguel; Giner, Eugenio; Larraínzar-Garijo, Ricardo; Caeiro, José Ramón; Miguélez, María Henar

    2017-10-01

    Bone fracture pattern prediction is still a challenge and an active field of research. The main goal of this article is to present a combined methodology (experimental and numerical) for femur fracture onset analysis. Experimental work includes the characterization of the mechanical properties and fracture testing on a bone simulant. The numerical work focuses on the development of a model whose material properties are provided by the characterization tests. The fracture location and the early stages of the crack propagation are modelled using the extended finite element method and the model is validated by fracture tests developed in the experimental work. It is shown that the accuracy of the numerical results strongly depends on a proper bone behaviour characterization.

  9. Demystifying Introductory Chemistry. Part 1: Electron Configurations from Experiment.

    ERIC Educational Resources Information Center

    Gillespie, Ronald J.; And Others

    1996-01-01

    Presents suggestions for alternative presentations of some of the material that usually forms part of the introductory chemistry course. Emphasizes development of concepts from experimental results. Discusses electronic configurations and quantum numbers, experimental evidence for electron configurations, deducing the shell model from the periodic…

  10. Survey of Army/NASA rotorcraft aeroelastic stability research

    NASA Technical Reports Server (NTRS)

    Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.

    1988-01-01

    Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability are considered. Results of parametric investigations of system behavior are presented, and correlations between theoretical results and experimental data from small- and large-scale wind tunnel and flight testing are discussed.

  11. Quiet Clean Short-Haul Experimental Engine (QCSEE): Acoustic treatment development and design

    NASA Technical Reports Server (NTRS)

    Clemons, A.

    1979-01-01

    Acoustic treatment designs for the quiet clean short-haul experimental engines are defined. The procedures used in the development of each noise-source suppressor device are presented and discussed in detail. A complete description of all treatment concepts considered and the test facilities utilized in obtaining background data used in treatment development are also described. Additional supporting investigations that are complementary to the treatment development work are presented. The expected suppression results for each treatment configuration are given in terms of delta SPL versus frequency and in terms of delta PNdB.

  12. Functionalization of MEMS cantilever beams for interconnect reliability investigation: development practice

    NASA Astrophysics Data System (ADS)

    Bieniek, T.; Janczyk, G.; Dobrowolski, R.; Wojciechowska, K.; Malinowska, A.; Panas, A.; Nieprzecki, M.; Kłos, H.

    2016-11-01

    This paper covers research results on development of the cantilevers beams test structures for interconnects reliability and robustness investigation. Presented results include design, modelling, simulation, optimization and finally fabrication stage performed on 4 inch Si wafers using the ITE microfabrication facility. This paper also covers experimental results from the test structures characterization.

  13. Experimental Results for Titan Aerobot Thermo-Mechanical Subsystem Development

    NASA Technical Reports Server (NTRS)

    Hall, Jeffrey L.; Jones, J. A.; Kerzhanovich, V. V.; Lachenmeier, T.; Mahr, P.; Pauken, M.; Plett, G. A.; Smith, L.; VanLuvender, M. L.; Yavrouian, A. H.

    2006-01-01

    This paper describes experimental results from a development program focused in maturing Titan aerobot technology in the areas of mechanical and thermal subsystems. Results from four key activities are described: first, a cryogenic balloon materials development program involving coupon and cylinder tests and culminating in the fabrication and testing of an inflated 4.6 m long prototype blimp at 93 K; second, a combined lab experiment and numerical simulation effort to assess potential problems resulting from radioisotope thermal generator waste heat generation near an inflated blimp; third, an aerial deployment and inflation development program consisting of laboratory and helicopter drop tests on a near full scale (11 m long) prototype blimp; and fourth, a proof of concept experiment demonstrating the viability of using a mechanically steerable high gain antenna on a floating blimp to perform direct to Earth telecommunications from Titan. The paper provides details on all of these successful activities and discusses their impact on the overall effort to produce mature systems technology for future Titan aerobot missions.

  14. A comparison between EGS4 and MCNP computer modeling of an in vivo X-ray fluorescence system.

    PubMed

    Al-Ghorabie, F H; Natto, S S; Al-Lyhiani, S H

    2001-03-01

    The Monte Carlo computer codes EGS4 and MCNP were used to develop a theoretical model of a 180 degrees geometry in vivo X-ray fluorescence system for the measurement of platinum concentration in head and neck tumors. The model included specification of the photon source, collimators, phantoms and detector. Theoretical results were compared and evaluated against X-ray fluorescence data obtained experimentally from an existing system developed by the Swansea In Vivo Analysis and Cancer Research Group. The EGS4 results agreed well with the MCNP results. However, agreement between the measured spectral shape obtained using the experimental X-ray fluorescence system and the simulated spectral shape obtained using the two Monte Carlo codes was relatively poor. The main reason for the disagreement between the results arises from the basic assumptions which the two codes used in their calculations. Both codes assume a "free" electron model for Compton interactions. This assumption will underestimate the results and invalidates any predicted and experimental spectra when compared with each other.

  15. Systematic methods for the design of a class of fuzzy logic controllers

    NASA Astrophysics Data System (ADS)

    Yasin, Saad Yaser

    2002-09-01

    Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental data, and a conversion algorithm, to develop a fuzzy-based control algorithm. Results were similar to those obtained by recently published conventional control based studies. The influence of the fuzzy inference operators and parameters on performance and stability of the fuzzy logic controller was studied Results indicated that, the selections of certain parameters or combinations of parameters, affect greatly the performance and stability of the fuzzy controller. Diagnostic guidelines used to tune or change certain factors or parameters to improve controller performance were developed based on knowledge gained from conventional control methods and knowledge gained from the experimental and the simulation results of this study.

  16. Historical review of missile aerodynamic developments

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    1989-01-01

    The development of missiles from early history up to about 1970 is discussed. Early unpowered missiles beyond the rock include the spear, the bow and arrow, the gun and bullet, and the cannon and projectile. Combining gunpowder with projectiles resulted in the first powered missiles. In the early 1900's, the development of guided missiles was begun. Significant advances in missile technology were made by German scientists during World War II. The dispersion of these advances to other countries following the war resulted in accelerating the development of guided missiles. In the late 1940's and early 1950's there was a proliferation in the development of missile systems in many countries. These developments were based primarily on experimental work and on relatively crude analytical techniques. Discussed here are some of the missile systems that were developed up to about 1970; some of the problems encountered; the development of an experimental data base for use with missiles; and early efforts to develop analytical methods applicable to missiles.

  17. Radiant Energy Measurements from a Scaled Jet Engine Axisymmetric Exhaust Nozzle for a Baseline Code Validation Case

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    1994-01-01

    A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.

  18. Improved thermodynamic modeling of the no-vent fill process and correlation with experimental data

    NASA Technical Reports Server (NTRS)

    Taylor, William J.; Chato, David J.

    1991-01-01

    The United States' plans to establish a permanent manned presence in space and to explore the Solar System created the need to efficiently handle large quantities of subcritical cryogenic fluids, particularly propellants such as liquid hydrogen and liquid oxygen, in low- to zero-gravity environments. One of the key technologies to be developed for fluid handling is the ability to transfer the cryogens between storage and spacecraft tanks. The no-vent fill method was identified as one way to perform this transfer. In order to understand how to apply this method, a model of the no-vent fill process is being developed and correlated with experimental data. The verified models then can be used to design and analyze configurations for tankage and subcritical fluid depots. The development of an improved macroscopic thermodynamic model is discussed of the no-vent fill process and the analytical results from the computer program implementation of the model are correlated with experimental results for two different test tanks.

  19. Development and experimental validation of downlink multiuser MIMO-OFDM in gigabit wireless LAN systems

    NASA Astrophysics Data System (ADS)

    Ishihara, Koichi; Asai, Yusuke; Kudo, Riichi; Ichikawa, Takeo; Takatori, Yasushi; Mizoguchi, Masato

    2013-12-01

    Multiuser multiple-input multiple-output (MU-MIMO) has been proposed as a means to improve spectrum efficiency for various future wireless communication systems. This paper reports indoor experimental results obtained for a newly developed and implemented downlink (DL) MU-MIMO orthogonal frequency division multiplexing (OFDM) transceiver for gigabit wireless local area network systems in the microwave band. In the transceiver, the channel state information (CSI) is estimated at each user and fed back to an access point (AP) on a real-time basis. At the AP, the estimated CSI is used to calculate the transmit beamforming weight for DL MU-MIMO transmission. This paper also proposes a recursive inverse matrix computation scheme for computing the transmit weight in real time. Experiments with the developed transceiver demonstrate its feasibility in a number of indoor scenarios. The experimental results clarify that DL MU-MIMO-OFDM transmission can achieve a 972-Mbit/s transmission data rate with simple digital signal processing of single-antenna users in an indoor environment.

  20. Uncertainty Quantification and Statistical Convergence Guidelines for PIV Data

    NASA Astrophysics Data System (ADS)

    Stegmeir, Matthew; Kassen, Dan

    2016-11-01

    As Particle Image Velocimetry has continued to mature, it has developed into a robust and flexible technique for velocimetry used by expert and non-expert users. While historical estimates of PIV accuracy have typically relied heavily on "rules of thumb" and analysis of idealized synthetic images, recently increased emphasis has been placed on better quantifying real-world PIV measurement uncertainty. Multiple techniques have been developed to provide per-vector instantaneous uncertainty estimates for PIV measurements. Often real-world experimental conditions introduce complications in collecting "optimal" data, and the effect of these conditions is important to consider when planning an experimental campaign. The current work utilizes the results of PIV Uncertainty Quantification techniques to develop a framework for PIV users to utilize estimated PIV confidence intervals to compute reliable data convergence criteria for optimal sampling of flow statistics. Results are compared using experimental and synthetic data, and recommended guidelines and procedures leveraging estimated PIV confidence intervals for efficient sampling for converged statistics are provided.

  1. Experimental investigation of heat transfer and pressure drop characteristics of water and glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

    NASA Astrophysics Data System (ADS)

    Khan, Md Mesbah-ul Ghani

    Microchannels have several advantages over traditional large tubes. Heat transfer using microchannels recently have attracted significant research and industrial design interests. Open literatures leave with question on the applicability of classical macroscale theory in microchannels. Better understanding of heat transfer in various microchannel geometries and building experimental database are continuously urged. The purpose of this study is to contribute the findings and data to this emerging area through carefully designed and well controlled experimental works. The commercially important glycol-water mixture heat transfer fluid and multiport slab serpentine heat exchangers are encountered in heating and cooling areas, e.g. in automotive, aircraft, and HVAC industries. For a given heat duty, the large diameter tubes experience turbulent flow whereas the narrow channels face laminar flow and often developing flow. Study of low Reynolds number developing glycol-water mixture laminar flow in serpentine microchannel heat exchanger with parallel multi-port slab is not available in the open literature. Current research therefore experimentally investigates glycol-water mixture and water in simultaneously developing laminar flows. Three multiport microchannel heat exchangers; straight and serpentine slabs, are used for each fluid. Friction factors of glycol-water mixture and water flows in straight slabs are higher than conventional fully developed laminar flow. If a comprehensive pressure balance is introduced, the results are well compared with conventional Poiseuille theory. Similar results are found in serpentine slab. The pressure drop for the straight core is the highest, manifolds are the intermediate, and serpentine is the least; which are beneficial for heat exchangers. The heat transfer results in serpentine slab for glycol-water mixture and water are higher and could not be compared with conventional fully developed and developing flow correlations. New heat transfer correlations are therefore developed in current study. The experimental data are compared with improved scheme of modified Wilson Plot Technique and numerical simulation having the same geometries and operating conditions. Very good agreements in results were found in all cases. The presence of adiabatic serpentine bend in multi-port flat slab heat exchanger enhances more heat transfer with less pressure drop penalty as compared to the initial entrance condition caused by the inlet manifold.

  2. A model for multiple-drop-impact erosion of brittle solids

    NASA Technical Reports Server (NTRS)

    Engel, O. G.

    1971-01-01

    A statistical model for the multiple-drop-impact erosion of brittle solids was developed. An equation for calculating the rate of erosion is given. The development is not complete since two quantities that are needed to calculate the rate of erosion with use of the equation must be assessed from experimental data. A partial test of the equation shows that it gives results that are in good agreement with experimental observation.

  3. L'Apport des Faits Phonetiques au Developpement de la Comprehension Auditive en Langue Seconde (The Influence of Phonetic Skills on the Development of Listening Comprehension in a Second Language).

    ERIC Educational Resources Information Center

    Champagne-Muzar, Cecile

    1996-01-01

    Ascertains the influence of the development of receptive phonetic skills on the level of listening comprehension of adults learning French as a second language in a formal setting. Test results indicate substantial gains in phonetics by the experimental group and a significant difference between the performance of experimental and control groups.…

  4. Development and flight test of an experimental maneuver autopilot for a highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Jones, Frank P.; Roncoli, Ralph B.

    1986-01-01

    This report presents the development of an experimental flight test maneuver autopilot (FTMAP) for a highly maneuverable aircraft. The essence of this technique is the application of an autopilot to provide precise control during required flight test maneuvers. This newly developed flight test technique is being applied at the Dryden Flight Research Facility of NASA Ames Research Center. The FTMAP is designed to increase the quantity and quality of data obtained in test flight. The technique was developed and demonstrated on the highly maneuverable aircraft technology (HiMAT) vehicle. This report describes the HiMAT vehicle systems, maneuver requirements, FTMAP development process, and flight results.

  5. Dispersion of the Neutron Emission in U{sup 235} Fission

    DOE R&D Accomplishments Database

    Feynman, R. P.; de Hoffmann, F.; Serber, R.

    1955-01-01

    Equations are developed which allow the calculation of the average number of neutrons per U{sup235} fission from experimental measurements. Experimental methods are described, the results of which give a value of (7.8 + 0.6){sup ?} neutrons per U{sup 235} thermal fission.

  6. Production of large-particle-size monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. L.; Micale, F. J.; Sudol, E. D.; Tseng, C. M.; Silwanowicz, A.

    1984-01-01

    The research program achieved two objectives: (1) it has refined and extended the experimental techniques for preparing monodisperse latexes in quantity on the ground up to a particle diameter of 10 microns; and (2) it has demonstrated that a microgravity environment can be used to grow monodisperse latexes to larger sizes, where the limitations in size have yet to be defined. The experimental development of the monodisperse latex reactor (MLR) and the seeded emulsion polymerizations carried out in the laboratory prototype of the flight hardware, as a function of the operational parameters is discussed. The emphasis is directed towards the measurement, interpretation, and modeling of the kinetics of seeded emulsion polymerization and successive seeded emulsion polymerization. The recipe development of seeded emulsion polymerization as a function of particle size is discussed. The equilibrium swelling of latex particles with monomers was investigated both theoretically and experimentally. Extensive studies are reported on both the type and concentration of initiators, surfactants, and inhibitors, which eventually led to the development of the flight recipes. The experimental results of the flight experiments are discussed, as well as the experimental development of inhibition of seeded emulsion polymerization in terms of time of inhibition and the effect of inhibitors on the kinetics of polymerization.

  7. Preliminary observations on the effects of vector-averaged gravity on the embryonic and larval development of the gastropod mollusk, Ilyanassa obsoleta Stimpson

    NASA Technical Reports Server (NTRS)

    Conrad, G. W.; Stephens, A. P.; Conrad, A. H.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Fertilized eggs of Ilyanassa obsoleta Stimpson were collected immediately after their deposition in egg capsules. Unopened egg capsules then were affixed to glass slides, and incubated either statically (controls) or on a clinostat (experimentals). After incubation for 9-14 days, hatching occurred sooner and in a higher percentage of clinostated capsules than in controls. Embryos that hatched while undergoing clinostat incubation were abnormal in morphology, whereas other embryos present in non-hatched capsules in the same tubes appeared normal, as did embryos in the control tubes. Although the results are compatible with a conclusion that vector-averaged gravity in the experimental tubes caused the altered development, some other aspects of how the incubations were done may have contributed to the differences between the control and experimental results.

  8. An Italian network to improve hybrid rocket performance: Strategy and results

    NASA Astrophysics Data System (ADS)

    Galfetti, L.; Nasuti, F.; Pastrone, D.; Russo, A. M.

    2014-03-01

    The new international attention to hybrid space propulsion points out the need of a deeper understanding of physico-chemical phenomena controlling combustion process and fluid dynamics inside the motor. This research project has been carried on by a network of four Italian Universities; each of them being responsible for a specific topic. The task of Politecnico di Milano is an experimental activity concerning the study, development, manufacturing and characterization of advanced hybrid solid fuels with a high regression rate. The University of Naples is responsible for experimental activities focused on rocket motor scale characterization of the solid fuels developed and characterized at laboratory scale by Politecnico di Milano. The University of Rome has been studying the combustion chamber and nozzle of the hybrid rocket, defined in the coordinated program by advanced physical-mathematical models and numerical methods. Politecnico di Torino has been working on a multidisciplinary optimization code for optimal design of hybrid rocket motors, strongly related to the mission to be performed. The overall research project aims to increase the scientific knowledge of the combustion processes in hybrid rockets, using a strongly linked experimental-numerical approach. Methods and obtained results will be applied to implement a potential upgrade for the current generation of hybrid rocket motors. This paper presents the overall strategy, the organization, and the first experimental and numerical results of this joined effort to contribute to the development of improved hybrid propulsion systems.

  9. Prediction of physical protein protein interactions

    NASA Astrophysics Data System (ADS)

    Szilágyi, András; Grimm, Vera; Arakaki, Adrián K.; Skolnick, Jeffrey

    2005-06-01

    Many essential cellular processes such as signal transduction, transport, cellular motion and most regulatory mechanisms are mediated by protein-protein interactions. In recent years, new experimental techniques have been developed to discover the protein-protein interaction networks of several organisms. However, the accuracy and coverage of these techniques have proven to be limited, and computational approaches remain essential both to assist in the design and validation of experimental studies and for the prediction of interaction partners and detailed structures of protein complexes. Here, we provide a critical overview of existing structure-independent and structure-based computational methods. Although these techniques have significantly advanced in the past few years, we find that most of them are still in their infancy. We also provide an overview of experimental techniques for the detection of protein-protein interactions. Although the developments are promising, false positive and false negative results are common, and reliable detection is possible only by taking a consensus of different experimental approaches. The shortcomings of experimental techniques affect both the further development and the fair evaluation of computational prediction methods. For an adequate comparative evaluation of prediction and high-throughput experimental methods, an appropriately large benchmark set of biophysically characterized protein complexes would be needed, but is sorely lacking.

  10. Two-phase flow characterization based on advanced instrumentation, neural networks, and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Mi, Ye

    1998-12-01

    The major objective of this thesis is focused on theoretical and experimental investigations of identifying and characterizing vertical and horizontal flow regimes in two-phase flows. A methodology of flow regime identification with impedance-based neural network systems and a comprehensive model of vertical slug flow have been developed. Vertical slug flow has been extensively investigated and characterized with geometric, kinematic and hydrodynamic parameters. A multi-sensor impedance void-meter and a multi-sensor magnetic flowmeter were developed. The impedance void-meter was cross-calibrated with other reliable techniques for void fraction measurements. The performance of the impedance void-meter to measure the void propagation velocity was evaluated by the drift flux model. It was proved that the magnetic flowmeter was applicable to vertical slug flow measurements. Separable signals from these instruments allow us to unearth most characteristics of vertical slug flow. A methodology of vertical flow regime identification was developed. Supervised neural network and self-organizing neural network systems were employed. First, they were trained with results from an idealized simulation of impedance in a two-phase mixture. The simulation was mainly based on Mishima and Ishii's flow regime map, the drift flux model, and the newly developed model of slug flow. Then, these trained systems were tested with impedance signals. The results showed that the neural network systems were appropriate classifiers of vertical flow regimes. The theoretical models and experimental databases used in the simulation were reliable. Furthermore, this approach was applied successfully to horizontal flow identification. A comprehensive model was developed to predict important characteristics of vertical slug flow. It was realized that the void fraction of the liquid slug is determined by the relative liquid motion between the Taylor bubble tail and the Taylor bubble wake. Relying on this understanding and experimental results, a special relationship was built for the void fraction of the liquid slug. The prediction of the void fraction of the liquid slug was considerably improved. Experimental characterization of vertical slug flows was performed extensively with the impedance void-meter and the magnetic flowmeter. The theoretical predictions were compared with the experimental results. The agreements between them are very satisfactory.

  11. Mathematical modelling of tissue formation in chondrocyte filter cultures.

    PubMed

    Catt, C J; Schuurman, W; Sengers, B G; van Weeren, P R; Dhert, W J A; Please, C P; Malda, J

    2011-12-17

    In the field of cartilage tissue engineering, filter cultures are a frequently used three-dimensional differentiation model. However, understanding of the governing processes of in vitro growth and development of tissue in these models is limited. Therefore, this study aimed to further characterise these processes by means of an approach combining both experimental and applied mathematical methods. A mathematical model was constructed, consisting of partial differential equations predicting the distribution of cells and glycosaminoglycans (GAGs), as well as the overall thickness of the tissue. Experimental data was collected to allow comparison with the predictions of the simulation and refinement of the initial models. Healthy mature equine chondrocytes were expanded and subsequently seeded on collagen-coated filters and cultured for up to 7 weeks. Resulting samples were characterised biochemically, as well as histologically. The simulations showed a good representation of the experimentally obtained cell and matrix distribution within the cultures. The mathematical results indicate that the experimental GAG and cell distribution is critically dependent on the rate at which the cell differentiation process takes place, which has important implications for interpreting experimental results. This study demonstrates that large regions of the tissue are inactive in terms of proliferation and growth of the layer. In particular, this would imply that higher seeding densities will not significantly affect the growth rate. A simple mathematical model was developed to predict the observed experimental data and enable interpretation of the principal underlying mechanisms controlling growth-related changes in tissue composition.

  12. Design and experimental results of the 1-T Bitter Electromagnet Testing Apparatus (BETA)

    NASA Astrophysics Data System (ADS)

    Bates, E. M.; Birmingham, W. J.; Romero-Talamás, C. A.

    2018-05-01

    The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) technical prototype of the 10 T Adjustable Long Pulsed High-Field Apparatus. BETA's final design specifications are highlighted in this paper which include electromagnetic, thermal, and stress analyses. We discuss here the design and fabrication of BETA's core, vessel, cooling, and electrical subsystems. The electrical system of BETA is composed of a scalable solid-state DC breaker circuit. Experimental results display the stable operation of BETA at 1 T. These results are compared to both analytical design and finite element calculations. Experimental results validate analytical magnet designing methods developed at the Dusty Plasma Laboratory. The theoretical steady state maxima and the limits of BETA's design are explored in this paper.

  13. Design and experimental results of the 1-T Bitter Electromagnet Testing Apparatus (BETA).

    PubMed

    Bates, E M; Birmingham, W J; Romero-Talamás, C A

    2018-05-01

    The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) technical prototype of the 10 T Adjustable Long Pulsed High-Field Apparatus. BETA's final design specifications are highlighted in this paper which include electromagnetic, thermal, and stress analyses. We discuss here the design and fabrication of BETA's core, vessel, cooling, and electrical subsystems. The electrical system of BETA is composed of a scalable solid-state DC breaker circuit. Experimental results display the stable operation of BETA at 1 T. These results are compared to both analytical design and finite element calculations. Experimental results validate analytical magnet designing methods developed at the Dusty Plasma Laboratory. The theoretical steady state maxima and the limits of BETA's design are explored in this paper.

  14. Magnetoacoustic imaging of human liver tumor with magnetic induction

    NASA Astrophysics Data System (ADS)

    Hu, Gang; Cressman, Erik; He, Bin

    2011-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging technique under development to achieve imaging of electrical impedance contrast in biological tissues with spatial resolution close to ultrasound imaging. However, previously reported MAT-MI experimental results are obtained either from low salinity gel phantoms, or from normal animal tissue samples. In this study, we report the experimental study on the performance of the MAT-MI imaging method for imaging in vitro human liver tumor tissue. The present promising experimental results suggest the feasibility of MAT-MI to image electrical impedance contrast between the cancerous tissue and its surrounding normal tissues.

  15. Robotic follower experimentation results: ready for FCS increment I

    NASA Astrophysics Data System (ADS)

    Jaczkowski, Jeffrey J.

    2003-09-01

    Robotics is a fundamental enabling technology required to meet the U.S. Army's vision to be a strategically responsive force capable of domination across the entire spectrum of conflict. The U. S. Army Research, Development and Engineering Command (RDECOM) Tank Automotive Research, Development & Engineering Center (TARDEC), in partnership with the U.S. Army Research Laboratory, is developing a leader-follower capability for Future Combat Systems. The Robotic Follower Advanced Technology Demonstration (ATD) utilizes a manned leader to provide a highlevel proofing of the follower's path, which operates with minimal user intervention. This paper will give a programmatic overview and discuss both the technical approach and operational experimentation results obtained during testing conducted at Ft. Bliss, New Mexico in February-March 2003.

  16. Experimental Evaluation of Family Curriculum Materials for High School Students.

    ERIC Educational Resources Information Center

    Angrist, Shirley S.; And Others

    This paper describes two new family life curriculum development projects at Carnegie-Mellon University and presents the results of an evaluation of two mini-courses using a modified Solomon four-group experimental design. Based on historical, sociological, anthropological, and psychological research, the first unit presents family life in Japan…

  17. Control of Boundary Layers for Aero-optical Applications

    DTIC Science & Technology

    2015-06-23

    range of subsonic and supersonic Mach numbers was developed and shown to correctly predict experimentally-observed reductions. Heating the wall allows...40 3.3 Extension to supersonic speeds...boundary layers at supersonic speeds. Comparing the model prediction to the experimental results, it was speculated that while the pressure effects can

  18. Computerized Planning of Cryosurgery Using Bubble Packing: An Experimental Validation on a Phantom Material

    PubMed Central

    Rossi, Michael R.; Tanaka, Daigo; Shimada, Kenji; Rabin, Yoed

    2009-01-01

    The current study focuses on experimentally validating a planning scheme based on the so-called bubble-packing method. This study is a part of an ongoing effort to develop computerized planning tools for cryosurgery, where bubble packing has been previously developed as a means to find an initial, uniform distribution of cryoprobes within a given domain; the so-called force-field analogy was then used to move cryoprobes to their optimum layout. However, due to the high quality of the cryoprobes’ distribution, suggested by bubble packing and its low computational cost, it has been argued that a planning scheme based solely on bubble packing may be more clinically relevant. To test this argument, an experimental validation is performed on a simulated cross-section of the prostate, using gelatin solution as a phantom material, proprietary liquid-nitrogen based cryoprobes, and a cryoheater to simulate urethral warming. Experimental results are compared with numerically simulated temperature histories resulting from planning. Results indicate an average disagreement of 0.8 mm in identifying the freezing front location, which is an acceptable level of uncertainty in the context of prostate cryosurgery imaging. PMID:19885373

  19. Perspectives on the simulation of protein–surface interactions using empirical force field methods

    PubMed Central

    Latour, Robert A.

    2014-01-01

    Protein–surface interactions are of fundamental importance for a broad range of applications in the fields of biomaterials and biotechnology. Present experimental methods are limited in their ability to provide a comprehensive depiction of these interactions at the atomistic level. In contrast, empirical force field based simulation methods inherently provide the ability to predict and visualize protein–surface interactions with full atomistic detail. These methods, however, must be carefully developed, validated, and properly applied before confidence can be placed in results from the simulations. In this perspectives paper, I provide an overview of the critical aspects that I consider being of greatest importance for the development of these methods, with a focus on the research that my combined experimental and molecular simulation groups have conducted over the past decade to address these issues. These critical issues include the tuning of interfacial force field parameters to accurately represent the thermodynamics of interfacial behavior, adequate sampling of these types of complex molecular systems to generate results that can be comparable with experimental data, and the generation of experimental data that can be used for simulation results evaluation and validation. PMID:25028242

  20. A Study of Wake Development and Structure in Constant Pressure Gradients

    NASA Technical Reports Server (NTRS)

    Thomas, Flint O.; Nelson, R. C.; Liu, Xiaofeng

    2000-01-01

    Motivated by the application to high-lift aerodynamics for commercial transport aircraft, a systematic investigation into the response of symmetric/asymmetric planar turbulent wake development to constant adverse, zero, and favorable pressure gradients has been conducted. The experiments are performed at a Reynolds number of 2.4 million based on the chord of the wake generator. A unique feature of this wake study is that the pressure gradients imposed on the wake flow field are held constant. The experimental measurements involve both conventional LDV and hot wire flow field surveys of mean and turbulent quantities including the turbulent kinetic energy budget. In addition, similarity analysis and numerical simulation have also been conducted for this wake study. A focus of the research has been to isolate the effects of both pressure gradient and initial wake asymmetry on the wake development. Experimental results reveal that the pressure gradient has a tremendous influence on the wake development, despite the relatively modest pressure gradients imposed. For a given pressure gradient, the development of an initially asymmetric wake is different from the initially symmetric wake. An explicit similarity solution for the shape parameters of the symmetric wake is obtained and agrees with the experimental results. The turbulent kinetic energy budget measurements of the symmetric wake demonstrate that except for the convection term, the imposed pressure gradient does not change the fundamental flow physics of turbulent kinetic energy transport. Based on the turbulent kinetic energy budget measurements, an approach to correct the bias error associated with the notoriously difficult dissipation estimate is proposed and validated through the comparison of the experimental estimate with a direct numerical simulation result.

  1. Development and Validation of Computational Fluid Dynamics Models for Prediction of Heat Transfer and Thermal Microenvironments of Corals

    PubMed Central

    Ong, Robert H.; King, Andrew J. C.; Mullins, Benjamin J.; Cooper, Timothy F.; Caley, M. Julian

    2012-01-01

    We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching. PMID:22701582

  2. Experimental studies on twin PTCs driven by dual piston head linear compressor

    NASA Astrophysics Data System (ADS)

    Gour, Abhay S.; Joy, Joewin; Sagar, Pankaj; Sudharshan, H.; Mallappa, A.; Karunanithi, R.; Jacob, S.

    2017-02-01

    An experimental study on pulse tube cryocooler is presented with a twin pulse tube configuration. The study is conducted with a dual piston head linear compressor design which is developed indigenously. The two identical pulse tube cryocoolers are operated by a single linear motor which generates 1800 out of phase dual pressure waves. The advantages of the configuration being the reduction in fabrication cost and the increased cooling power. The compressor is driven at a frequency of 48 Hz using indigenously developed PWM based power supply. The CFD study of pulse tube cryocooler is discussed along with the experimental cool down results. A detailed experimental and FEM based studies on the fabrication procedure of heat exchangers is conducted to ensure better heat transfer in the same.

  3. Off-design performance loss model for radial turbines with pivoting, variable-area stators

    NASA Technical Reports Server (NTRS)

    Meitner, P. L.; Glassman, A. J.

    1980-01-01

    An off-design performance loss model was developed for variable stator (pivoted vane), radial turbines through analytical modeling and experimental data analysis. Stator loss is determined by a viscous loss model; stator vane end-clearance leakage effects are determined by a clearance flow model. Rotor loss coefficient were obtained by analyzing the experimental data from a turbine rotor previously tested with six stators having throat areas from 20 to 144 percent of design area and were correlated with stator-to-rotor throat area ratio. An incidence loss model was selected to obtain best agreement with experimental results. Predicted turbine performance is compared with experimental results for the design rotor as well as with results for extended and cutback versions of the rotor. Sample calculations were made to show the effects of stator vane end-clearance leakage.

  4. The momentum transfer of incompressible turbulent separated flow due to cavities with steps

    NASA Technical Reports Server (NTRS)

    White, R. E.; Norton, D. J.

    1977-01-01

    An experimental study was conducted using a plate test bed having a turbulent boundary layer to determine the momentum transfer to the faces of step/cavity combinations on the plate. Experimental data were obtained from configurations including an isolated configuration and an array of blocks in tile patterns. A momentum transfer correlation model of pressure forces on an isolated step/cavity was developed with experimental results to relate flow and geometry parameters. Results of the experiments reveal that isolated step/cavity excrecences do not have a unique and unifying parameter group due in part to cavity depth effects and in part to width parameter scale effects. Drag predictions for tile patterns by a kinetic pressure empirical method predict experimental results well. Trends were not, however, predicted by a method of variable roughness density phenomenology.

  5. Experimental investigation on stability and dielectric break down strength of transformer oil based nanofluids

    NASA Astrophysics Data System (ADS)

    Ravi Babu, S.; Sambasiva Rao, G.

    2018-04-01

    The main objective of this study is to investigate the stability and dielectric breakdown strength of alumina-transformer oil nanofluids as stability issue is the major concern when it is used for practical applications. UV-Vis spectrophotometer and Oil tester were used to measure absorbance and breakdown voltage of nanofluids respectively. As per the experimental results, correlations were developed using regression analysis. Experimental results were compared with the predicted values of BDVE and absorbance and presented. The maximum errors obtained by comparing the experimental and predicted results for BDVE and absorbance are -2.913% and 4.89% respectively. It is also observed that there is a decrement in both BDVE and absorbance for nanofluids of aged 1 day compared to fresh ones. This decrement is due to the sedimentation of nanoparticles.

  6. Zebrafish as a Model System for Environmental Health Studies in the Grade 9–12 Classroom

    PubMed Central

    Hesselbach, Renee; Carvan, Michael John; Goldberg, Barbara; Berg, Craig A.; Petering, David H.

    2014-01-01

    Abstract Developing zebrafish embryos were used as a model system for high school students to conduct scientific investigations that reveal features of normal development and to test how different environmental toxicants impact the developmental process. The primary goal of the module was to engage students from a wide range of socio-economic backgrounds, with particular focus on underserved inner-city high schools, in inquiry-based learning and hands-on experimentation. In addition, the module served as a platform for both teachers and students to design additional inquiry-based experiments. In this module, students spawned adult zebrafish to generate developing embryos, exposed the embryos to various toxicants, then gathered, and analyzed data obtained from control and experimental embryos. The module provided a flexible, experimental framework for students to test the effects of numerous environmental toxicants, such as ethanol, caffeine, and nicotine, on the development of a model vertebrate organism. Students also observed the effects of dose on experimental outcomes. From observations of the effects of the chemical agents on vertebrate embryos, students drew conclusions on how these chemicals could impact human development and health. Results of pre-tests and post-tests completed by participating students indicate statistically significant changes in awareness of the impact of environmental agents on fish and human beings In addition, the program's evaluator concluded that participation in the module resulted in significant changes in the attitude of students and teachers toward science in general and environmental health in particular. PMID:24941301

  7. Computer-based visual communication in aphasia.

    PubMed

    Steele, R D; Weinrich, M; Wertz, R T; Kleczewska, M K; Carlson, G S

    1989-01-01

    The authors describe their recently developed Computer-aided VIsual Communication (C-VIC) system, and report results of single-subject experimental designs probing its use with five chronic, severely impaired aphasic individuals. Studies replicate earlier results obtained with a non-computerized system, demonstrate patient competence with the computer implementation, extend the system's utility, and identify promising areas of application. Results of the single-subject experimental designs clarify patients' learning, generalization, and retention patterns, and highlight areas of performance difficulties. Future directions for the project are indicated.

  8. Large-area sheet task advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.

    1983-01-01

    The thermal stress models were used to test the effect of melt level on stress generation and growth velocity. The results indicate that melt level has only small effects on stresses but significant effects on growth velocity. These results are consistent with experimental growth from measured melt levels. A new low-stress design concept is being evaluated with the models. A width-limiting version of the low-stress J460 configuration was tested experimentally with results consistent with the design goals.

  9. Rate-equation modelling and ensemble approach to extraction of parameters for viral infection-induced cell apoptosis and necrosis

    NASA Astrophysics Data System (ADS)

    Domanskyi, Sergii; Schilling, Joshua E.; Gorshkov, Vyacheslav; Libert, Sergiy; Privman, Vladimir

    2016-09-01

    We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model we describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of "stiff" equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.

  10. Rate-equation modelling and ensemble approach to extraction of parameters for viral infection-induced cell apoptosis and necrosis

    NASA Astrophysics Data System (ADS)

    Domanskyi, Sergii; Schilling, Joshua; Gorshkov, Vyacheslav; Libert, Sergiy; Privman, Vladimir

    We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model we describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of ``stiff'' equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.

  11. Numerical validation of selected computer programs in nonlinear analysis of steel frame exposed to fire

    NASA Astrophysics Data System (ADS)

    Maślak, Mariusz; Pazdanowski, Michał; Woźniczka, Piotr

    2018-01-01

    Validation of fire resistance for the same steel frame bearing structure is performed here using three different numerical models, i.e. a bar one prepared in the SAFIR environment, and two 3D models developed within the framework of Autodesk Simulation Mechanical (ASM) and an alternative one developed in the environment of the Abaqus code. The results of the computer simulations performed are compared with the experimental results obtained previously, in a laboratory fire test, on a structure having the same characteristics and subjected to the same heating regimen. Comparison of the experimental and numerically determined displacement evolution paths for selected nodes of the considered frame during the simulated fire exposure constitutes the basic criterion applied to evaluate the validity of the numerical results obtained. The experimental and numerically determined estimates of critical temperature specific to the considered frame and related to the limit state of bearing capacity in fire have been verified as well.

  12. Development of lead-acid battery thermal management systems

    NASA Astrophysics Data System (ADS)

    Delaney, W. C.; McKinney, B. L.; Mrotek, E. N.; Weinlein, C. E.

    The design and construction of thermal management systems developed for battery packs supplied for field service units are discussed. Thermal management on the module and pack levels is addressed, describing experimental results. A recently developed thermal management system is described.

  13. International Space Station Bus Regulation With NASA Glenn Research Center Flywheel Energy Storage System Development Unit

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E.; Kenny, Barbara H.; Dever, Timothy P.; Santiago, Walter; Jansen, Ralph H.

    2001-01-01

    An experimental flywheel energy storage system is described. This system is being used to develop a flywheel based replacement for the batteries on the International Space Station (ISS). Motor control algorithms which allow the flywheel to interface with a simplified model of the ISS power bus, and function similarly to the existing ISS battery system, are described. Results of controller experimental verification on a 300 W-hr flywheel are presented.

  14. Transient and steady state viscoelastic rolling contact

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Paramadilok, O.

    1985-01-01

    Based on moving total Lagrangian coordinates, a so-called traveling Hughes type contact strategy is developed. Employing the modified contact scheme in conjunction with a traveling finite element strategy, an overall solution methodology is developed to handle transient and steady viscoelastic rolling contact. To verify the scheme, the results of both experimental and analytical benchmarking is presented. The experimental benchmarking includes the handling of rolling tires up to their upper bound behavior, namely the standing wave response.

  15. A Strain-Based Method to Detect Tires' Loss of Grip and Estimate Lateral Friction Coefficient from Experimental Data by Fuzzy Logic for Intelligent Tire Development.

    PubMed

    Yunta, Jorge; Garcia-Pozuelo, Daniel; Diaz, Vicente; Olatunbosun, Oluremi

    2018-02-06

    Tires are a key sub-system of vehicles that have a big responsibility for comfort, fuel consumption and traffic safety. However, current tires are just passive rubber elements which do not contribute actively to improve the driving experience or vehicle safety. The lack of information from the tire during driving gives cause for developing an intelligent tire. Therefore, the aim of the intelligent tire is to monitor tire working conditions in real-time, providing useful information to other systems and becoming an active system. In this paper, tire tread deformation is measured to provide a strong experimental base with different experiments and test results by means of a tire fitted with sensors. Tests under different working conditions such as vertical load or slip angle have been carried out with an indoor tire test rig. The experimental data analysis shows the strong relation that exists between lateral force and the maximum tensile and compressive strain peaks when the tire is not working at the limit of grip. In the last section, an estimation system from experimental data has been developed and implemented in Simulink to show the potential of strain sensors for developing intelligent tire systems, obtaining as major results a signal to detect tire's loss of grip and estimations of the lateral friction coefficient.

  16. A Strain-Based Method to Detect Tires’ Loss of Grip and Estimate Lateral Friction Coefficient from Experimental Data by Fuzzy Logic for Intelligent Tire Development

    PubMed Central

    Garcia-Pozuelo, Daniel; Diaz, Vicente; Olatunbosun, Oluremi

    2018-01-01

    Tires are a key sub-system of vehicles that have a big responsibility for comfort, fuel consumption and traffic safety. However, current tires are just passive rubber elements which do not contribute actively to improve the driving experience or vehicle safety. The lack of information from the tire during driving gives cause for developing an intelligent tire. Therefore, the aim of the intelligent tire is to monitor tire working conditions in real-time, providing useful information to other systems and becoming an active system. In this paper, tire tread deformation is measured to provide a strong experimental base with different experiments and test results by means of a tire fitted with sensors. Tests under different working conditions such as vertical load or slip angle have been carried out with an indoor tire test rig. The experimental data analysis shows the strong relation that exists between lateral force and the maximum tensile and compressive strain peaks when the tire is not working at the limit of grip. In the last section, an estimation system from experimental data has been developed and implemented in Simulink to show the potential of strain sensors for developing intelligent tire systems, obtaining as major results a signal to detect tire’s loss of grip and estimations of the lateral friction coefficient. PMID:29415513

  17. The acoustic impedance of a circular orifice in grazing mean flow: comparison with theory.

    PubMed

    Peat, Keith S; Ih, Jeong-Guon; Lee, Seong-Hyun

    2003-12-01

    It is well known that the presence of a grazing mean flow affects the acoustic impedance of an aperture, but the detailed nature and understanding of the influence is still unknown. In this paper, results from a recent theoretical analysis of the problem are compared with a new set of experimental results. The purpose is twofold. First, the experimental results are used to validate the theory. It is found that the theory predicts the resistance quite well, but not the reactance. Second, the theory is used to try and give some physical understanding to the experimental results. In particular, some scaling laws are confirmed, and it is also shown that measured negative resistance values are to be expected. They are not erroneous, as previously thought. Former sets of experimental data for this problem are notable for the amount of variation that they display. Thus, both the theory and the new experimental results are also compared with those earlier detailed results that most closely conform to the conditions assumed here, namely fully developed turbulent pipe flow of low Mach number past circular orifices. The main field of application is in flow ducts, in particular, flow through perforated tubes in exhaust mufflers.

  18. Creative Digital Worksheet Base on Mobile Learning

    NASA Astrophysics Data System (ADS)

    Wibawa, S. C.; Cholifah, R.; Utami, A. W.; Nurhidayat, A. I.

    2018-01-01

    The student is required to understand and act in the classroom and it is very important for selecting the media learning to determine the learning outcome. An instructional media is needed to help students achieve the best learning outcome. The objectives of this study are (1) to make Android-based student worksheet, (2) to know the students’ response on Android-based student worksheet in multimedia subject, (3) to determine the student result using Android-based student worksheet. The method used was Research and Development (R&D) using post-test-only in controlled quasi-experimental group design. The subjects of the study were 2 classes, a control class and an experimental class. The results showed (1) Android-based student worksheet was categorized very good as percentage of 85%; (2) the students’ responses was categorized very good as percentage of 86.42%; (3) the experimental class results were better than control class. The average result on cognitive tests on the experimental class was 89.97 and on control class was 78.31; whether the average result on psychomotor test on the experimental class was 89.90 and on the control class was 79.83. In conclusion, student result using Android-based student worksheet was better than those without it.

  19. Effects of Individual Development Accounts (IDAs) on Household Wealth and Saving Taste

    ERIC Educational Resources Information Center

    Huang, Jin

    2010-01-01

    This study examines effects of individual development accounts (IDAs) on household wealth of low-income participants. Methods: This study uses longitudinal survey data from the American Dream Demonstration (ADD) involving experimental design (treatment group = 537, control group = 566). Results: Results from quantile regression analysis indicate…

  20. [Theoretical and methodological bases for formation of future drivers 'readiness to application of physical-rehabilitation technologies].

    PubMed

    Yemets, Anatoliy V; Donchenko, Viktoriya I; Scrinick, Eugenia O

    2018-01-01

    Introduction: Experimental work is aimed at introducing theoretical and methodological foundations for the professional training of the future doctor. The aim: Identify the dynamics of quantitative and qualitative indicators of the readiness of a specialist in medicine. Materials and methods: The article presents the course and results of the experimental work of the conditions of forming the readiness of future specialists in medicine. Results: Our methodical bases for studying the disciplines of the general practice and specialized professional stage of experimental training of future physicians have been worked out. Conclusions: It is developed taking into account the peculiarities of future physician training of materials for various stages of experimental implementation in the educational process of higher medical educational institutions.

  1. Issues on machine learning for prediction of classes among molecular sequences of plants and animals

    NASA Astrophysics Data System (ADS)

    Stehlik, Milan; Pant, Bhasker; Pant, Kumud; Pardasani, K. R.

    2012-09-01

    Nowadays major laboratories of the world are turning towards in-silico experimentation due to their ease, reproducibility and accuracy. The ethical issues concerning wet lab experimentations are also minimal in in-silico experimentations. But before we turn fully towards dry lab simulations it is necessary to understand the discrepancies and bottle necks involved with dry lab experimentations. It is necessary before reporting any result using dry lab simulations to perform in-depth statistical analysis of the data. Keeping same in mind here we are presenting a collaborative effort to correlate findings and results of various machine learning algorithms and checking underlying regressions and mutual dependencies so as to develop an optimal classifier and predictors.

  2. Development of a Spherical Combustion Chamber for Measuring Laminar Flame Speeds in Navy Bulk Fuels and Biofuel Blends

    DTIC Science & Technology

    2011-12-01

    determine laminar flame speeds using the spherical flame method. An experimental combustion chamber, based on the constant-volume bomb method, was...INTENTIONALLY LEFT BLANK v ABSTRACT This thesis presents the results of an experimental study to determine laminar flame speeds using the spherical...for ethane/air flames at various pressures reproduced from [6]....................8 Figure 4. Experimentally determined laminar flame speed as a

  3. Rotorcraft aeroelastic stability

    NASA Technical Reports Server (NTRS)

    Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.

    1988-01-01

    Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low-frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability in hover and forward flight, and analysis of tilt-rotor dynamic stability are considered. Results of parametric investigations of system behavior are presented, and correlation between theoretical results and experimental data from small and large scale wind tunnel and flight testing are discussed.

  4. Carbon-13 and proton nuclear magnetic resonance analysis of shale-derived refinery products and jet fuels and of experimental referee broadened-specification jet fuels

    NASA Technical Reports Server (NTRS)

    Dalling, D. K.; Bailey, B. K.; Pugmire, R. J.

    1984-01-01

    A proton and carbon-13 nuclear magnetic resonance (NMR) study was conducted of Ashland shale oil refinery products, experimental referee broadened-specification jet fuels, and of related isoprenoid model compounds. Supercritical fluid chromatography techniques using carbon dioxide were developed on a preparative scale, so that samples could be quantitatively separated into saturates and aromatic fractions for study by NMR. An optimized average parameter treatment was developed, and the NMR results were analyzed in terms of the resulting average parameters; formulation of model mixtures was demonstrated. Application of novel spectroscopic techniques to fuel samples was investigated.

  5. A viscous flow study of shock-boundary layer interaction, radial transport, and wake development in a transonic compressor

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Reid, Lonnie

    1991-01-01

    A numerical study based on the 3D Reynolds-averaged Navier-Stokes equation has been conducted to investigate the detailed flow physics inside a transonic compressor. 3D shock structure, shock-boundary layer interaction, flow separation, radial mixing, and wake development are all investigated at design and off-design conditions. Experimental data based on laser anemometer measurements are used to assess the overall quality of the numerical solution. An additional experimental study to investigate end-wall flow with a hot-film was conducted, and these results are compared with the numerical results. Detailed comparison with experimental data indicates that the overall features of the 3D shock structure, the shock-boundary layer interaction, and the wake development are all calculated very well in the numerical solution. The numerical results are further analyzed to examine the radial mixing phenomena in the transonic compressor. A thin sheet of particles is injected in the numerical solution upstream of the compressor. The movement of particles is traced with a 3D plotting package. This numerical survey of tracer concentration reveals the fundamental mechanisms of radial transport in this transonic compressor.

  6. A comparative study of the constitutive models for silicon carbide

    NASA Astrophysics Data System (ADS)

    Ding, Jow-Lian; Dwivedi, Sunil; Gupta, Yogendra

    2001-06-01

    Most of the constitutive models for polycrystalline silicon carbide were developed and evaluated using data from either normal plate impact or Hopkinson bar experiments. At ISP, extensive efforts have been made to gain detailed insight into the shocked state of the silicon carbide (SiC) using innovative experimental methods, viz., lateral stress measurements, in-material unloading measurements, and combined compression shear experiments. The data obtained from these experiments provide some unique information for both developing and evaluating material models. In this study, these data for SiC were first used to evaluate some of the existing models to identify their strength and possible deficiencies. Motivated by both the results of this comparative study and the experimental observations, an improved phenomenological model was developed. The model incorporates pressure dependence of strength, rate sensitivity, damage evolution under both tension and compression, pressure confinement effect on damage evolution, stiffness degradation due to damage, and pressure dependence of stiffness. The model developments are able to capture most of the material features observed experimentally, but more work is needed to better match the experimental data quantitatively.

  7. Characterization of lipids and antioxidant capacity of novel nutraceutical egg products developed with omega-3-rich oils.

    PubMed

    Kassis, Nissan M; Gigliotti, Joseph C; Beamer, Sarah K; Tou, Janet C; Jaczynski, Jacek

    2012-01-15

    Cardiovascular disease has had an unquestioned status of the number one cause of death in the US since 1921. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have cardio-protective benefits. However, egg is typically a poor source of ω-3 PUFAs and, in general, the American diet is low in these cardio-protective fatty acids. Novel, nutritionally enhanced egg products were developed by substituting yolk with ω-3 PUFA-rich flaxseed, menhaden, algae, or krill oil. Experimental egg products matched composition of hen egg (whole egg). The experimental egg products, mixed whole egg, and a liquid egg product (Egg Beaters) were microwave-cooked and compared. Although fat, protein, and moisture contents of experimental egg products matched (P > 0.05) mixed whole egg, experimental egg products had more (P < 0.05) ω-3 PUFAs, lower (P < 0.05) ω-6/ω-3 ratio, and depending on oil added, a higher (P < 0.05) unsaturated/saturated fatty acids ratio compared to mixed whole egg. Triglycerides were the main lipid class in all experimental egg products except those developed with krill oil, which had even more phospholipids than mixed whole egg. Analysis of thiobarbituric acid reactive substances showed that lipid oxidation of experimental egg products was lower (P < 0.05) or similar (P > 0.05) to mixed whole egg, except for experimental egg products with krill oil. However, peroxide value showed that all egg samples had minimal oxidation. Experimental egg products developed with menhaden or flaxseed oil had the highest (P < 0.05) concentration of the antioxidant, ethyoxquin compared to all other egg samples. However, experimental egg products with krill oil likely contained a natural antioxidant, astaxanthin. This study demonstrated an alternative approach to developing novel, nutraceutical egg products. Instead of dietary modification of chicken feed, yolk substitution with ω-3 PUFAs oils resulted in enhancement of ω-3 PUFAs beyond levels possible to achieve by modifying chicken feed. Copyright © 2011 Society of Chemical Industry.

  8. Laser photoactivation gibberellin molecules in the surface tissues of plants

    NASA Astrophysics Data System (ADS)

    Grishkanich, Alexander; Zhevlakov, Alexander; Kascheev, Sergey; Sidorov, Igor; Ruzankina, Julia; Yakovlev, Alexey; Mak, Andrey

    2016-03-01

    The experimental results presented in this study are the early studies of germination on the example of Picea abies and were aimed at testing the germination of seeds and the development of morphology, caused a therapeutic effect on the laser radiation field in the early stages of development under the action of ultraviolet and red light in the spectral range of 405 nm and 640 nm. A set of seeds irradiated at various energy doses within the same time. The experimental results analyzed in parallel with control group. In all analyzed seeds were studied the germination and growth of seedlings. The results showed that the percentage of germination higher than control group Samanids all of the recurrence options.

  9. Ontology for Life-Cycle Modeling of Water Distribution Systems: Model View Definition

    DTIC Science & Technology

    2013-06-01

    Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) to develop a life-cycle building model have resulted in the...Laboratory (ERDC-CERL) to develop a life-cycle building model have resulted in the definition of a “core” building information model that contains...developed experimental BIM models us- ing commercial off-the-shelf (COTS) software. Those models represent three types of typical low-rise Army

  10. Combinatorial and high-throughput screening of materials libraries: review of state of the art.

    PubMed

    Potyrailo, Radislav; Rajan, Krishna; Stoewe, Klaus; Takeuchi, Ichiro; Chisholm, Bret; Lam, Hubert

    2011-11-14

    Rational materials design based on prior knowledge is attractive because it promises to avoid time-consuming synthesis and testing of numerous materials candidates. However with the increase of complexity of materials, the scientific ability for the rational materials design becomes progressively limited. As a result of this complexity, combinatorial and high-throughput (CHT) experimentation in materials science has been recognized as a new scientific approach to generate new knowledge. This review demonstrates the broad applicability of CHT experimentation technologies in discovery and optimization of new materials. We discuss general principles of CHT materials screening, followed by the detailed discussion of high-throughput materials characterization approaches, advances in data analysis/mining, and new materials developments facilitated by CHT experimentation. We critically analyze results of materials development in the areas most impacted by the CHT approaches, such as catalysis, electronic and functional materials, polymer-based industrial coatings, sensing materials, and biomaterials.

  11. Experimental aerothermodynamic research of hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Cleary, Joseph W.

    1987-01-01

    The 2-D and 3-D advance computer codes being developed for use in the design of such hypersonic aircraft as the National Aero-Space Plane require comparison of the computational results with a broad spectrum of experimental data to fully assess the validity of the codes. This is particularly true for complex flow fields with control surfaces present and for flows with separation, such as leeside flow. Therefore, the objective is to provide a hypersonic experimental data base required for validation of advanced computational fluid dynamics (CFD) computer codes and for development of more thorough understanding of the flow physics necessary for these codes. This is being done by implementing a comprehensive test program for a generic all-body hypersonic aircraft model in the NASA/Ames 3.5 foot Hypersonic Wind Tunnel over a broad range of test conditions to obtain pertinent surface and flowfield data. Results from the flow visualization portion of the investigation are presented.

  12. Development status of a high cooling capacity single stage pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Hirayama, T.; Li, R.; Y Xu, M.; Zhu, S. W.

    2017-12-01

    High temperature superconducting (HTS) applications require high-capacity and high-reliability cooling solutions to keep HTS materials at temperatures of approximately 80 K. In order to meet such requirements, Sumitomo Heavy Industries, Ltd.(SHI) has been developing high cooling capacity GM-type active-buffer pulse tube cryocooler. An experimental unit was designed, built and tested. A cooling capacity of 390.5 W at 80 K, COP 0.042 was achieved with an input power of approximately 9 kW. The cold stage usually reaches a stable temperature of about 25 K within one hour starting at room temperature. Also, a simplified analysis was carried out to better understand the experimental unit. In the analysis, the regenerator, thermal conduction, heat exchanger and radiation losses were calculated. The net cooling capacity was about 80% of the PV work. The experimental results, the analysis method and results are reported in this paper.

  13. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation.

    PubMed

    Bunker, Alex; Magarkar, Aniket; Viitala, Tapani

    2016-10-01

    Combined experimental and computational studies of lipid membranes and liposomes, with the aim to attain mechanistic understanding, result in a synergy that makes possible the rational design of liposomal drug delivery system (LDS) based therapies. The LDS is the leading form of nanoscale drug delivery platform, an avenue in drug research, known as "nanomedicine", that holds the promise to transcend the current paradigm of drug development that has led to diminishing returns. Unfortunately this field of research has, so far, been far more successful in generating publications than new drug therapies. This partly results from the trial and error based methodologies used. We discuss experimental techniques capable of obtaining mechanistic insight into LDS structure and behavior. Insight obtained purely experimentally is, however, limited; computational modeling using molecular dynamics simulation can provide insight not otherwise available. We review computational research, that makes use of the multiscale modeling paradigm, simulating the phospholipid membrane with all atom resolution and the entire liposome with coarse grained models. We discuss in greater detail the computational modeling of liposome PEGylation. Overall, we wish to convey the power that lies in the combined use of experimental and computational methodologies; we hope to provide a roadmap for the rational design of LDS based therapies. Computational modeling is able to provide mechanistic insight that explains the context of experimental results and can also take the lead and inspire new directions for experimental research into LDS development. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A Review of the Experimental and Modeling Development of a Water Phase Change Heat Exchanger for Future Exploration Support Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas; Leimkuehler, Thomas; Ramaswamy, Balasubramaniam; Nayagam, Vedha; Hasan, Mohammad; Stephan, Ryan

    2011-01-01

    Water affords manifold benefits for human space exploration. Its properties make it useful for the storage of thermal energy as a Phase Change Material (PCM) in thermal control systems, in radiation shielding against Solar Particle Events (SPE) for the protection of crew members, and it is indisputably necessary for human life support. This paper envisions a single application for water which addresses these benefits for future exploration support vehicles and it describes recent experimental and modeling work that has been performed in order to arrive at a description of the thermal behavior of such a system. Experimental units have been developed and tested which permit the evaluation of the many parameters of design for such a system with emphasis on the latent energy content, temperature rise, mass, and interstitial material geometry. The experimental results are used to develop a robust and well correlated model which is intended to guide future design efforts toward the multi-purposed water PCM heat exchanger envisioned.

  15. Development of a sensitive setup for laser spectroscopy studies of very exotic calcium isotopes

    NASA Astrophysics Data System (ADS)

    Garcia Ruiz, R. F.; Gorges, C.; Bissell, M.; Blaum, K.; Gins, W.; Heylen, H.; Koenig, K.; Kaufmann, S.; Kowalska, M.; Krämer, J.; Lievens, P.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Yordanov, D. T.; Yang, X. F.

    2017-04-01

    An experimental setup for sensitive high-resolution measurements of hyperfine structure spectra of exotic calcium isotopes has been developed and commissioned at the COLLAPS beam line at ISOLDE, CERN. The technique is based on the radioactive detection of decaying isotopes after optical pumping and state selective neutralization (ROC) (Vermeeren et al 1992 Phys. Rev. Lett. 68 1679). The improvements and developments necessary to extend the applicability of the experimental technique to calcium isotopes produced at rates as low as few ions s-1 are discussed. Numerical calculations of laser-ion interaction and ion-beam simulations were explored to obtain the optimum performance of the experimental setup. Among the implemented features are a multi-step optical pumping region for sensitive measurements of isotopes with hyperfine splitting, a high-voltage platform for adequate control of low-energy ion beams and simultaneous β-detection of neutralized and remaining ions. The commissioning of the experimental setup, and the first online results on neutron-rich calcium isotopes are presented.

  16. Preliminary Design of Winged Experimental Rocket by University Consortium

    NASA Astrophysics Data System (ADS)

    Wakita, Masashi; Yonemoto, Koichi; Akiyama, Tomoki; Aso, Shigeru; Kohsetsu, Yuji; Nagata, Harunori

    The project of Winged Experimental Rocket described here is a proposal by the alliance of universities (University Consortium) expanding and integrating the research activities of reusable space transportation system performed by individual universities, and is the proposal that aims at flight proof of the results of advanced research conducted by the universities and JAXA using the university-centered experimental launch systems. This paper verifies the validity of the winged experimental rocket by surveying the technical issues that should be demonstrated and by estimating the airframe scale, weight and finally the total cost. The development schedule of this project was set to five years, where two airframes of different scales will be developed to minimize the risks. A 1.5-meter-long airframe will be first manufactured and conduct flight tests in the third year to verify the design issues. Then, a 2.5-meter-long airframe will be finally developed and conduct a complete flight demonstration of various research issues in the fifth year.

  17. The emergence and development of Bekhterev's psychoreflexology in relation to Wundt's experimental psychology.

    PubMed

    de Freitas Araujo, Saulo

    2014-01-01

    After its foundation, the Laboratory for Experimental Psychology at Leipzig University became an international center for psychological research, attracting students from all over the world. The Russian physiologist and psychiatrist Vladimir Bekhterev (1857-1927) was one of Wilhelm Wundt's students in 1885, and after returning to Russia he continued enthusiastically his experimental research on mental phenomena. However, he gradually distanced himself from Wundt's psychological project and developed a new concept of psychology: the so-called Objective Psychology or Psychoreflexology. The goal of this paper is to analyze Bekhterev's position in relation to Wundt's experimental psychology, by showing how the former came to reject the latter's conception of psychology. The results indicate that Bekhterev's development of a philosophical program, including his growing interest in establishing a new Weltanschauung is the main reason behind his divergence with Wundt, which is reflected in his conception of scientific psychology. Despite this, Wundt remained alive in Bekhterev's mind as an ideal counterpoint. © 2014 Wiley Periodicals, Inc.

  18. Studies of the Codeposition of Cobalt Hydroxide and Nickel Hydroxide

    NASA Technical Reports Server (NTRS)

    Ho, C. H.; Murthy, M.; VanZee, J. W.

    1997-01-01

    Topics considered include: chemistry, experimental measurements, planar film model development, impregnation model development, results and conclusion. Also included: effect of cobalt concentration on deposition/loading; effect of current density on loading distribution.

  19. Artificial Neural Network Approach in Laboratory Test Reporting:  Learning Algorithms.

    PubMed

    Demirci, Ferhat; Akan, Pinar; Kume, Tuncay; Sisman, Ali Riza; Erbayraktar, Zubeyde; Sevinc, Suleyman

    2016-08-01

    In the field of laboratory medicine, minimizing errors and establishing standardization is only possible by predefined processes. The aim of this study was to build an experimental decision algorithm model open to improvement that would efficiently and rapidly evaluate the results of biochemical tests with critical values by evaluating multiple factors concurrently. The experimental model was built by Weka software (Weka, Waikato, New Zealand) based on the artificial neural network method. Data were received from Dokuz Eylül University Central Laboratory. "Training sets" were developed for our experimental model to teach the evaluation criteria. After training the system, "test sets" developed for different conditions were used to statistically assess the validity of the model. After developing the decision algorithm with three iterations of training, no result was verified that was refused by the laboratory specialist. The sensitivity of the model was 91% and specificity was 100%. The estimated κ score was 0.950. This is the first study based on an artificial neural network to build an experimental assessment and decision algorithm model. By integrating our trained algorithm model into a laboratory information system, it may be possible to reduce employees' workload without compromising patient safety. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Effect of mixing time and speed on experimental baking and dough testing with a 200g pin-mixer

    USDA-ARS?s Scientific Manuscript database

    Under mixing or over mixing the dough results in varied experimental loaf volumes. Bread preparation requires a trained baker to evaluate dough development and determine stop points of mixer. Instrumentation and electronic control of the dough mixer would allow for automatic mixing. This study us...

  1. Applications of Small Area Estimation to Generalization with Subclassification by Propensity Scores

    ERIC Educational Resources Information Center

    Chan, Wendy

    2018-01-01

    Policymakers have grown increasingly interested in how experimental results may generalize to a larger population. However, recently developed propensity score-based methods are limited by small sample sizes, where the experimental study is generalized to a population that is at least 20 times larger. This is particularly problematic for methods…

  2. Waterhammer Transient Simulation and Model Anchoring for the Robotic Lunar Lander Propulsion System

    NASA Technical Reports Server (NTRS)

    Stein, William B.; Trinh, Huu P.; Reynolds, Michael E.; Sharp, David J.

    2011-01-01

    Waterhammer transients have the potential to adversely impact propulsion system design if not properly addressed. Waterhammer can potentially lead to system plumbing, and component damage. Multi-thruster propulsion systems also develop constructive/destructive wave interference which becomes difficult to predict without detailed models. Therefore, it is important to sufficiently characterize propulsion system waterhammer in order to develop a robust design with minimal impact to other systems. A risk reduction activity was performed at Marshall Space Flight Center to develop a tool for estimating waterhammer through the use of anchored simulation for the Robotic Lunar Lander (RLL) propulsion system design. Testing was performed to simulate waterhammer surges due to rapid valve closure and consisted of twenty-two series of waterhammer tests, resulting in more than 300 valve actuations. These tests were performed using different valve actuation schemes and three system pressures. Data from the valve characterization tests were used to anchor the models that employed MSCSoftware.EASY5 v.2010 to model transient fluid phenomena by using transient forms of mass and energy conservation. The anchoring process was performed by comparing initial model results to experimental data and then iterating the model input to match the simulation results with the experimental data. The models provide good correlation with experimental results, supporting the use of EASY5 as a tool to model fluid transients and provide a baseline for future RLL system modeling. This paper addresses tasks performed during the waterhammer risk reduction activity for the RLL propulsion system. The problem of waterhammer simulation anchoring as applied to the RLL system is discussed with results from the corresponding experimental valve tests. Important factors for waterhammer mitigation are discussed along with potential design impacts to the RLL propulsion system.

  3. The Effects of Blade Count on Boundary Layer Development in a Low-Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Flitan, Horia C.; Ashpis, David E.; Solomon, William J.

    2000-01-01

    Experimental data from jet-engine tests have indicated that turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Recent studies have shown that Reynolds number effects contribute to the lower efficiencies at cruise conditions. In the current study numerical simulations have been performed to study the boundary layer development in a two-stage low-pressure turbine, and to evaluate the models available for low Reynolds number flows in turbomachinery. In a previous study using the same geometry the predicted time-averaged boundary layer quantities showed excellent agreement with the experimental data, but the predicted unsteady results showed only fair agreement with the experimental data. It was surmised that the blade count approximation used in the numerical simulations generated more unsteadiness than was observed in the experiments. In this study a more accurate blade approximation has been used to model the turbine, and the method of post-processing the boundary layer information has been modified to more closely resemble the process used in the experiments. The predicted results show improved agreement with the unsteady experimental data.

  4. Physical modeling in geomorphology: are boundary conditions necessary?

    NASA Astrophysics Data System (ADS)

    Cantelli, A.

    2012-12-01

    Referring to the physical experimental design in geomorphology, boundary conditions are key elements that determine the quality of the results and therefore the study development. For years engineers have modeled structures, such as dams and bridges, with high precision and excellent results. Until the last decade, a great part of the physical experimental work in geomorphology has been developed with an engineer-like approach, requiring an accurate scaling analysis to determine inflow parameters and initial geometrical conditions. However, during the last decade, the way we have been approaching physical experiments has significantly changed. In particular, boundary conditions and initial conditions are considered unknown factors that need to be discovered during the experiment. This new philosophy leads to a more demanding data acquisition process but relaxes the obligation to a priori know the appropriate input and initial conditions and provides the flexibility to discover those data. Here I am going to present some practical examples of this experimental approach in deepwater geomorphology; some questions about scaling of turbidity currents and a new large experimental facility built at the Universidade Federal do Rio Grande do Sul, Brasil.

  5. Chemical kinetic modeling of benzene and toluene oxidation behind shock waves

    NASA Technical Reports Server (NTRS)

    Mclain, A. G.; Jachimowski, C. J.; Wilson, C. H.

    1979-01-01

    The oxidation of stoichiometric mixtures of benzene and toluene behind incident shock waves was studied for a temperature range from 1700 to 2800 K and a pressure range from 1.1 to 1.7 atm. The concentration of CO and CO2 produced were measured as well as the product of the oxygen atom and carbon monoxide concentrations. Comparisons between the benzene experimental data and results calculated by use of a reaction mechanism published in the open literature were carried out. With some additional reactions and changes in rate constants to reflect the pressure-temperature range of the experimental data, a good agreement was achieved between computed and experimental results. A reaction mechanism was developed for toluene oxidation based on analogous rate steps from the benzene mechanism. Measurements of NOx levels in an actual flame device, a jet-stirred combustor, were reproduced successfully by use of the reaction mechanism developed from the shock-tube experiments on toluene. These experimental measurements of NOx levels were reproduced from a computer simulation of a jet-stirred combustor.

  6. LASERS: Ultimate energy parameters of the radiation emitted from neodymium-glass laser systems

    NASA Astrophysics Data System (ADS)

    Eshmemet'eva, E. V.; Korolev, V. I.; Mesnyankin, E. P.; Serebryakov, V. A.; Shashkin, V. V.; Yashin, V. E.

    1992-09-01

    An experimental investigation was made of the energy conversion efficiency and of the effects of stimulated Brillouin scattering and of optical breakdown, limiting the maximum energy density obtained from several phosphate and silicate neodymium glasses when the duration of the output pulses was 50-150 ns. The experimental results were used to develop a numerical model for calculation of the gain allowing for these processes. A design was developed for an amplifier with ultimate radiation characteristics.

  7. Effect of Static Strains on Diffusion

    NASA Technical Reports Server (NTRS)

    Girifalco, L. A.; Grimes, H. H.

    1961-01-01

    A theory is developed that gives the diffusion coefficient in strained systems as an exponential function of the strain. This theory starts with the statistical theory of the atomic jump frequency as developed by Vineyard. The parameter determining the effect of strain on diffusion is related to the changes in the inter-atomic forces with strain. Comparison of the theory with published experimental results for the effect of pressure on diffusion shows that the experiments agree with the form of the theoretical equation in all cases within experimental error.

  8. Computational Modeling of Micrometastatic Breast Cancer Radiation Dose Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Daniel L.; Debeb, Bisrat G.; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas

    Purpose: Prophylactic cranial irradiation (PCI) involves giving radiation to the entire brain with the goals of reducing the incidence of brain metastasis and improving overall survival. Experimentally, we have demonstrated that PCI prevents brain metastases in a breast cancer mouse model. We developed a computational model to expand on and aid in the interpretation of our experimental results. Methods and Materials: MATLAB was used to develop a computational model of brain metastasis and PCI in mice. Model input parameters were optimized such that the model output would match the experimental number of metastases per mouse from the unirradiated group. Anmore » independent in vivo–limiting dilution experiment was performed to validate the model. The effect of whole brain irradiation at different measurement points after tumor cells were injected was evaluated in terms of the incidence, number of metastases, and tumor burden and was then compared with the corresponding experimental data. Results: In the optimized model, the correlation between the number of metastases per mouse and the experimental fits was >95. Our attempt to validate the model with a limiting dilution assay produced 99.9% correlation with respect to the incidence of metastases. The model accurately predicted the effect of whole-brain irradiation given 3 weeks after cell injection but substantially underestimated its effect when delivered 5 days after cell injection. The model further demonstrated that delaying whole-brain irradiation until the development of gross disease introduces a dose threshold that must be reached before a reduction in incidence can be realized. Conclusions: Our computational model of mouse brain metastasis and PCI correlated strongly with our experiments with unirradiated mice. The results further suggest that early treatment of subclinical disease is more effective than irradiating established disease.« less

  9. Innovative solutions in monitoring systems in flood protection

    NASA Astrophysics Data System (ADS)

    Sekuła, Klaudia; Połeć, Marzena; Borecka, Aleksandra

    2018-02-01

    The article presents the possibilities of ISMOP - IT System of Levee Monitoring. This system is able to collecting data from the reference and experimental control and measurement network. The experimental levee is build in a 1:1 scale and located in the village of Czernichow, near Cracow. The innovation is the utilization of a series of sensors monitoring the changes in the body of levee. It can be done by comparing the results of numerical simulations with results from installed two groups of sensors: reference sensors and experimental sensors. The reference control and measurement sensors create network based on pore pressure and temperature sensors. Additionally, it contains the fiber-optic technology. The second network include design experimental sensors, constructed for the development of solutions that can be used in existing flood embankments. The results are important to create the comprehensive and inexpensive monitoring system, which could be helpful for state authorities and local governments in flood protection.

  10. A Computational-Experimental Development of Vortex Generator Use for a Transitioning S-Diffuser

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Dudek, Julianne C.

    1996-01-01

    The development of an effective design strategy for surface-mounted vortex generator arrays in a subsonic diffuser is described in this report. This strategy uses the strengths of both computational and experimental analyses to determine beneficial vortex generator locations and sizes. A parabolized Navier-Stokes solver, RNS3D, was used to establish proper placement of the vortex generators for reduction in circumferential total pressure distortion. Experimental measurements were used to determine proper vortex generator sizing to minimize total pressure recovery losses associated with vortex generator device drag. The best result achieved a 59% reduction in the distortion index DC60, with a 0.3% reduction in total pressure recovery.

  11. Model-Based Experimental Development of Passive Compliant Robot Legs from Fiberglass Composites

    PubMed Central

    Lin, Shang-Chang; Hu, Chia-Jui; Lin, Pei-Chun

    2015-01-01

    We report on the methodology of developing compliant, half-circular, and composite robot legs with designable stiffness. First, force-displacement experiments on flat cantilever composites made by one or multifiberglass cloths are executed. By mapping the cantilever mechanics to the virtual spring model, the equivalent elastic moduli of the composites can be derived. Next, by using the model that links the curved beam mechanics back to the virtual spring, the resultant stiffness of the composite in a half-circular shape can be estimated without going through intensive experimental tryouts. The overall methodology has been experimentally validated, and the fabricated composites were used on a hexapod robot to perform walking and leaping behaviors. PMID:27065748

  12. Plant growth modeling at the JSC variable pressure growth chamber - An application of experimental design

    NASA Technical Reports Server (NTRS)

    Miller, Adam M.; Edeen, Marybeth; Sirko, Robert J.

    1992-01-01

    This paper describes the approach and results of an effort to characterize plant growth under various environmental conditions at the Johnson Space Center variable pressure growth chamber. Using a field of applied mathematics and statistics known as design of experiments (DOE), we developed a test plan for varying environmental parameters during a lettuce growth experiment. The test plan was developed using a Box-Behnken approach to DOE. As a result of the experimental runs, we have developed empirical models of both the transpiration process and carbon dioxide assimilation for Waldman's Green lettuce over specified ranges of environmental parameters including carbon dioxide concentration, light intensity, dew-point temperature, and air velocity. This model also predicts transpiration and carbon dioxide assimilation for different ages of the plant canopy.

  13. Scientific Knowledge and Technology, Animal Experimentation, and Pharmaceutical Development.

    PubMed

    Kinter, Lewis B; DeGeorge, Joseph J

    2016-12-01

    Human discovery of pharmacologically active substances is arguably the oldest of the biomedical sciences with origins >3500 years ago. Since ancient times, four major transformations have dramatically impacted pharmaceutical development, each driven by advances in scientific knowledge, technology, and/or regulation: (1) anesthesia, analgesia, and antisepsis; (2) medicinal chemistry; (3) regulatory toxicology; and (4) targeted drug discovery. Animal experimentation in pharmaceutical development is a modern phenomenon dating from the 20th century and enabling several of the four transformations. While each transformation resulted in more effective and/or safer pharmaceuticals, overall attrition, cycle time, cost, numbers of animals used, and low probability of success for new products remain concerns, and pharmaceutical development remains a very high risk business proposition. In this manuscript we review pharmaceutical development since ancient times, describe its coevolution with animal experimentation, and attempt to predict the characteristics of future transformations. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. MELCOR model for an experimental 17x17 spent fuel PWR assembly.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoni, Jeffrey

    2010-11-01

    A MELCOR model has been developed to simulate a pressurized water reactor (PWR) 17 x 17 assembly in a spent fuel pool rack cell undergoing severe accident conditions. To the extent possible, the MELCOR model reflects the actual geometry, materials, and masses present in the experimental arrangement for the Sandia Fuel Project (SFP). The report presents an overview of the SFP experimental arrangement, the MELCOR model specifications, demonstration calculation results, and the input model listing.

  15. Prediction of sonic boom from experimental near-field overpressure data. Volume 1: Method and results

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Hague, D. S.; Reiners, S. J.

    1975-01-01

    A computerized procedure for predicting sonic boom from experimental near-field overpressure data has been developed. The procedure extrapolates near-field pressure signatures for a specified flight condition to the ground by the Thomas method. Near-field pressure signatures are interpolated from a data base of experimental pressure signatures. The program is an independently operated ODIN (Optimal Design Integration) program which obtains flight path information from other ODIN programs or from input.

  16. The Effect of Guided-Inquiry Instruction on 6th Grade Turkish Students' Achievement, Science Process Skills, and Attitudes Toward Science

    NASA Astrophysics Data System (ADS)

    Koksal, Ela Ayse; Berberoglu, Giray

    2014-01-01

    The purpose of this study is to investigate the effectiveness of guided-inquiry approach in science classes over existing science and technology curriculum in developing content-based science achievement, science process skills, and attitude toward science of grade level 6 students in Turkey. Non-equivalent control group quasi-experimental design was used to investigate the treatment effect. There were 162 students in the experimental group and 142 students in the control group. Both the experimental and control group students took the Achievement Test in Reproduction, Development, and Growth in Living Things (RDGLT), Science Process Skills Test, and Attitudes Toward Science Questionnaire, as pre-test and post-test. Repeated analysis of variance design was used in analyzing the data. Both the experimental and control group students were taught in RDGLT units for 22 class hours. The results indicated the positive effect of guided-inquiry approach on the Turkish students' cognitive as well as affective characteristics. The guided inquiry enhanced the experimental group students' understandings of the science concepts as well as the inquiry skills more than the control group students. Similarly, the experimental group students improved their attitudes toward science more than the control group students as a result of treatment. The guided inquiry seems a transition between traditional teaching method and student-centred activities in the Turkish schools.

  17. The Effects of Magnetic Nozzle Configurations on Plasma Thrusters

    NASA Technical Reports Server (NTRS)

    Turchi, P. J.

    1997-01-01

    Over the course of eight years, the Ohio State University has performed research in support of electric propulsion development efforts at the NASA Lewis Research Center, Cleveland, OH. This research has been largely devoted to plasma propulsion systems including MagnetoPlasmaDynamic (MPD) thrusters with externally-applied, solenoidal magnetic fields, hollow cathodes, and Pulsed Plasma Microthrusters (PPT's). Both experimental and theoretical work has been performed, as documented in four master's theses, two doctoral dissertations, and numerous technical papers. The present document is the final report for the grant period 5 December 1987 to 31 December 1995, and summarizes all activities. Detailed discussions of each area of activity are provided in appendices: Appendix 1 - Experimental studies of magnetic nozzle effects on plasma thrusters; Appendix 2 - Numerical modeling of applied-field MPD thrusters; Appendix 3 - Theoretical and experimental studies of hollow cathodes; and Appendix 4 -Theoretical, numerical and experimental studies of pulsed plasma thrusters. Especially notable results include the efficacy of using a solenoidal magnetic field downstream of a plasma thruster to collimate the exhaust flow, the development of a new understanding of applied-field MPD thrusters (based on experimentally-validated results from state-of-the art, numerical simulation) leading to predictions of improved performance, an experimentally-validated, first-principles model for orificed, hollow-cathode behavior, and the first time-dependent, two-dimensional calculations of ablation-fed, pulsed plasma thrusters.

  18. Global dynamic modeling of a transmission system

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Qian, W.

    1993-01-01

    The work performed on global dynamic simulation and noise correlation of gear transmission systems at the University of Akron is outlined. The objective is to develop a comprehensive procedure to simulate the dynamics of the gear transmission system coupled with the effects of gear box vibrations. The developed numerical model is benchmarked with results from experimental tests at NASA Lewis Research Center. The modal synthesis approach is used to develop the global transient vibration analysis procedure used in the model. Modal dynamic characteristics of the rotor-gear-bearing system are calculated by the matrix transfer method while those of the gear box are evaluated by the finite element method (NASTRAN). A three-dimensional, axial-lateral coupled bearing model is used to couple the rotor vibrations with the gear box motion. The vibrations between the individual rotor systems are coupled through the nonlinear gear mesh interactions. The global equations of motion are solved in modal coordinates and the transient vibration of the system is evaluated by a variable time-stepping integration scheme. The relationship between housing vibration and resulting noise of the gear transmission system is generated by linear transfer functions using experimental data. A nonlinear relationship of the noise components to the fundamental mesh frequency is developed using the hypercoherence function. The numerically simulated vibrations and predicted noise of the gear transmission system are compared with the experimental results from the gear noise test rig at NASA Lewis Research Center. Results of the comparison indicate that the global dynamic model developed can accurately simulate the dynamics of a gear transmission system.

  19. Character Development in Adolescents.

    ERIC Educational Resources Information Center

    Kessler, Glenn R.; And Others

    1986-01-01

    Explored the effects of a program consisting of communication and counseling skills, assertiveness training and moral dilemmas on the character development of high school students. The results demonstrated that the character development of the students in the experimental treatment group was affected significantly over time by the program.…

  20. Microwave selective thermal development of latent fingerprints on porous surfaces: potentialities of the method and preliminary experimental results.

    PubMed

    Rosa, Roberto; Veronesi, Paolo; Leonelli, Cristina

    2013-09-01

    The thermal development of latent fingerprints on paper surfaces is a simple, safe, and chemicals-free method, based on the faster heating of the substrate underlying the print residue. Microwave heating is proposed for the first time for the development of latent fingerprints on cellulose-based substrate, in order to add to the thermal development mechanism the further characteristic of being able to heat the fingerprint residues to a different extent with respect to the substrate, due to the intrinsic difference in their dielectric properties. Numerical simulation was performed to confirm and highlight the selectivity of microwaves, and preliminary experimental results point out the great potentialities of this technique, which allowed developing both latent sebaceous-rich and latent eccrine-rich fingerprints on different porous surfaces, in less than 30 sec time with an applied output power of 500 W. Microwaves demonstrated more effectiveness in the development of eccrine-rich residues, aged up to 12 weeks. © 2013 American Academy of Forensic Sciences.

  1. The effects of platelet lysate on maturation, fertilization and embryo development of NMRI mouse oocytes at germinal vesicle stage.

    PubMed

    Pazoki, Hassan; Eimani, Hussein; Farokhi, Farah; Shahverdi, Abdol-Hossein; Tahaei, Leila Sadat

    2016-04-01

    Improving in vitro maturation could increase the rate of pregnancy from oocytes matured in vitro. Consequently, patients will be prevented from using gonadotropin with its related side effects. In this study, the maturation medium was enriched by platelet lysate (PL), then maturation and subsequent developments were monitored. Oocytes at germinal vesicle stage with cumulus cells (cumulus-oocyte complex) and without cumulus cells (denuded oocytes) were obtained from mature female mice. The maturation medium was enriched by 5 and 10 % PL and 5 % PL + 5 % fetal bovine serum (FBS) as experimental groups; the control groups' media consisted of 5 and 10 % FBS. After 18 h, the matured oocytes were collected and, after fertilization, subsequent development was monitored. The rates of maturation, fertilization and 2-cell embryo development for the denuded oocyte groups in experimental media 5 % PL and 5 % PL + 5 % FBS were significantly higher than those of the control groups ( P < 0.05), while the results for the cumulus-oocyte complex groups were similar between the experimental groups and control groups. The results of this study indicated that platelet lysate could improve the maturation rate in the absence of granulosa cells compared to media with FBS. This extract also had positive effects on fertilization and embryo development.

  2. Housekeeping gene expression during fetal brain development in the rat-validation by semi-quantitative RT-PCR.

    PubMed

    Al-Bader, Maie Dawoud; Al-Sarraf, Hameed Ali

    2005-04-21

    Mammalian gene expression is usually carried out at the level of mRNA where the amount of mRNA of interest is measured under different conditions such as growth and development. It is therefore important to use a "housekeeping gene", that does not change in relative abundance during the experimental conditions, as a standard or internal control. However, recent data suggest that expression of some housekeeping genes may vary with the extent of cell proliferation, differentiation and under various experimental conditions. In this study, the expression of various housekeeping genes (18S rRNA [18S], glyceraldehydes-3-phosphate dehydrogenase [G3PDH], beta-glucuronidase [BGLU], histone H4 [HH4], ribosomal protein L19 [RPL19] and cyclophilin [CY]) was investigated during fetal rat brain development using semi-quantitative RT-PCR at 16, 19 and 21 days gestation. It was found that all genes studied, with exception to G3PDH, did not show any change in their expression levels during development. G3PDH, on the other hand, showed increased expression with development. These results suggest that the choice of a housekeeping gene is critical to the interpretation of experimental results and should be modified according to the nature of the study.

  3. Practical implementation of the concept of converted electric vehicle with advanced traction and dynamic performance and environmental safety indicators

    NASA Astrophysics Data System (ADS)

    Sidorov, K. M.; Yutt, V. E.; Grishchenko, A. G.; Golubchik, T. V.

    2018-02-01

    The objective of the work presented in this paper is to describe the implementation of the technical solutions have been developed, with regard to structure, composition, and characteristics, for an experimental prototype of an electric vehicle which has been converted from a conventional vehicle. The methodology of the study results is based on the practical implementation of the developed concept of the conversion of conventional vehicles into electric vehicles. The main components of electric propulsion system of the experimental prototype of electric vehicle are developed and manufactured on the basis of computational researches, taking into account the criteria and principles of conversion within the framework of presented work. The article describes a schematic and a design of power conversion and commutation electrical equipment, traction battery, electromechanical transmission. These results can serve as guidance material in the design and implementation of electric propulsion system (EPS) components of electric vehicles, facilitate the development of optimal technical solutions in the development and manufacture of vehicles, including those aimed at autonomy of operation and the use of perspective driver assistance systems. As part of this work, was suggested a rational structure for an electric vehicle experimental prototype, including technical performance characteristics of the components of EPS.

  4. Damage assessment in PRC and RC beams by dynamic tests

    NASA Astrophysics Data System (ADS)

    Capozucca, R.

    2011-07-01

    The present paper reports on damaged prestressed reinforced concrete (PRC) beams and reinforced concrete (RC) beams experimentally investigated through dynamic testing in order to verify damage degree due to reinforcement corrosion or cracking correlated to loading. The experimental program foresaw that PRC beams were subjected to artificial reinforcement corrosion and static loading while RC beams were damaged by increasing applied loads to produce bending cracking. Dynamic investigation was developed both on undamaged and damaged PRC and RC beams measuring natural frequencies and evaluating vibration mode shapes. Dynamic testing allowed the recording of frequency response variations at different vibration modes. The experimental results are compared with theoretical results and discussed.

  5. Investigation of culvert hydraulics related to juvenile fish passage. Final research report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, M.E.; Downs, R.C.

    1996-01-01

    Culverts often create barriers to the upstream migration of juvenile fish. The objective of this study was to determine hydraulic characteristics of culverts with different flow conditions. Methods of predicting flow profiles were developed by both Chiu and Mountjoy. Two equations were compared to experimental results. An area of flow corresponding to a predetermined allowable velocity can be calculated using Mountjoy equation. This can then be used in the design of culverts as fish passage guidelines. The report contains a summary of background information, experimental methodology, the results of experimental tests, and an analysis of both the Chiu and Mountjoymore » equations.« less

  6. Development of methods for analysis of knee articular cartilage degeneration by magnetic resonance imaging data

    NASA Astrophysics Data System (ADS)

    Suponenkovs, Artjoms; Glazs, Aleksandrs; Platkajis, Ardis

    2017-03-01

    The aim of this paper is to describe the new methods for analyzing knee articular cartilage degeneration. The most important aspects regarding research about magnetic resonance imaging, knee joint anatomy, stages of knee osteoarthritis, medical image segmentation and relaxation times calculation. This paper proposes new methods for relaxation times calculation and medical image segmentation. The experimental part describes the most important aspect regarding analysing of articular cartilage relaxation times changing. This part contains experimental results, which show the codependence between relaxation times and organic structure. These experimental results and proposed methods can be helpful for early osteoarthritis diagnostics.

  7. An experimental and theoretical study of structural damping in compliant foil bearings

    NASA Technical Reports Server (NTRS)

    Ku, C.-P. Roger

    1994-01-01

    This paper describes an experimental investigation into the dynamic characteristics of corrugated foil (bump foil) strips used in compliant surface foil bearings. This study provided and opportunity to quantify the structural damping of bump foil strips. The experimental data were compared to results obtained by a theoretical model developed earlier. The effects of bearing design parameters, such as static loads, dynamic displacement amplitudes, bump configurations, pivot locations, surface coatings, and lubricant were also evaluated. An understanding of the dynamic characteristics of bump foil strips resulting from this work offers designers a means for enhancing the design of high-performance compliant foil bearings.

  8. The Bigfoot Drive; Experimental Results

    NASA Astrophysics Data System (ADS)

    Baker, Kevin; Thomas, Cliff; Khan, Shahab; Casey, Daniel; Spears, Brian; Nora, Ryan; Munro, Davis; Eder, David; Milovich, Jose; Berger, Dick; Strozzi, David; Goyon, Clement; Turnbull, David; Ma, Tammy; Izumi, Nobuhiko; Benedetti, Robin; Millot, Marius; Celliers, Peter; Yeamans, Charles; Hatarik, Robert; Landen, Nino; Hurricane, Omar; Callahan, Debbie

    2016-10-01

    The Bigfoot platform was developed on the National Ignition Facility to investigate low convergence, high adiabat, high rhoR hotspot implosions. This platform was designed to be less susceptible to wall motion, LPI and CBET and to be more robust against capsule hydrodynamic instabilities. To date experimental studies have been carried out at two hohlraum scales, a 5.75 and 5.4 mm diameter hohlraum. We will present experimental results from these tuning campaigns including the shape vs. cone fraction, surrogacy comparisons of self-emission from the capsules vs. radiography of the imploding capsule and doped vs. undoped capsules. Prepared by LLNL under Contract DE-AC52-07NA27344.

  9. Crack propagation and arrest in CFRP materials with strain softening regions

    NASA Astrophysics Data System (ADS)

    Dilligan, Matthew Anthony

    Understanding the growth and arrest of cracks in composite materials is critical for their effective utilization in fatigue-sensitive and damage susceptible applications such as primary aircraft structures. Local tailoring of the laminate stack to provide crack arrest capacity intermediate to major structural components has been investigated and demonstrated since some of the earliest efforts in composite aerostructural design, but to date no rigorous model of the crack arrest mechanism has been developed to allow effective sizing of these features. To address this shortcoming, the previous work in the field is reviewed, with particular attention to the analysis methodologies proposed for similar arrest features. The damage and arrest processes active in such features are investigated, and various models of these processes are discussed and evaluated. Governing equations are derived based on a proposed mechanistic model of the crack arrest process. The derived governing equations are implemented in a numerical model, and a series of simulations are performed to ascertain the general characteristics of the proposed model and allow qualitative comparison to existing experimental results. The sensitivity of the model and the arrest process to various parameters is investigated, and preliminary conclusions regarding the optimal feature configuration are developed. To address deficiencies in the available material and experimental data, a series of coupon tests are developed and conducted covering a range of arrest zone configurations. Test results are discussed and analyzed, with a particular focus on identification of the proposed failure and arrest mechanisms. Utilizing the experimentally derived material properties, the tests are reproduced with both the developed numerical tool as well as a FEA-based implementation of the arrest model. Correlation between the simulated and experimental results is analyzed, and future avenues of investigation are identified. Utilizing the developed model, a sensitivity study is conducted to assess the current proposed arrest configuration. Optimum distribution and sizing of the arrest zones is investigated, and general design guidelines are developed.

  10. Development of a proof of concept low temperature 4He Superfluid Magnetic Pump

    NASA Astrophysics Data System (ADS)

    Jahromi, Amir E.; Miller, Franklin K.

    2017-03-01

    We describe the development and experimental results of a proof of concept Superfluid Magnetic Pump in this work. This novel low temperature, no moving part pump can replace the existing bellows-piston driven 4He or 3He-4He mixture compressor/circulators used in various sub Kelvin refrigeration systems such as dilution, Superfluid pulse tube, Stirling, or active magnetic regenerative refrigerators. Due to the superior thermal transport properties of sub-Lambda 4He this pump can also be used as a simple circulator to distribute cooling over large surface areas. Our pump was experimentally shown to produce a maximum flow rate of 440 mg/s (averaged over cycle), 665 mg/s (peak) and produced a maximum pressure difference of 2323 Pa using only the more common isotope of helium, 4He. This pump worked in an ;ideal; thermodynamic state: The experimental results matched with the theoretical values predicted by a computer model. Pump curves were developed to map the performance of this pump. This successful demonstration will enable this novel pump to be implemented in suitable sub Kelvin refrigeration systems.

  11. A collaborative environment for developing and validating predictive tools for protein biophysical characteristics

    NASA Astrophysics Data System (ADS)

    Johnston, Michael A.; Farrell, Damien; Nielsen, Jens Erik

    2012-04-01

    The exchange of information between experimentalists and theoreticians is crucial to improving the predictive ability of theoretical methods and hence our understanding of the related biology. However many barriers exist which prevent the flow of information between the two disciplines. Enabling effective collaboration requires that experimentalists can easily apply computational tools to their data, share their data with theoreticians, and that both the experimental data and computational results are accessible to the wider community. We present a prototype collaborative environment for developing and validating predictive tools for protein biophysical characteristics. The environment is built on two central components; a new python-based integration module which allows theoreticians to provide and manage remote access to their programs; and PEATDB, a program for storing and sharing experimental data from protein biophysical characterisation studies. We demonstrate our approach by integrating PEATSA, a web-based service for predicting changes in protein biophysical characteristics, into PEATDB. Furthermore, we illustrate how the resulting environment aids method development using the Potapov dataset of experimentally measured ΔΔGfold values, previously employed to validate and train protein stability prediction algorithms.

  12. Initial development of the two-dimensional ejector shear layer - Experimental results

    NASA Technical Reports Server (NTRS)

    Benjamin, M. A.; Dufflocq, M.; Roan, V. P.

    1993-01-01

    An experimental investigation designed to study the development of shear layers in a two-dimensional single-nozzle ejector has been completed. In this study, combinations of air/air, argon/air, helium/air, and air/helium were used as the supersonic primary and subsonic secondary, respectively. Mixing of the gases occurred in a constant-area tube 39.1 mm high by 25.4 mm wide, where the inlet static pressure was maintained at 35 kPa. The cases studied resulted in convective Mach numbers between 0.058 and 1.64, density ratios between 0.102 and 3.49, and velocity ratios between 0.065 and 0.811. The resulting data shows the differences in the shear-layer development for the various combinations of independent variables utilized in the investigation. The normalized growth-rates in the near-field were found to be similar to two-dimensional mixing layers. These results have enhanced the ability to analyze and design ejector systems as well as providing a better understanding of the physics.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilkey, Lindsay

    This milestone presents a demonstration of the High-to-Low (Hi2Lo) process in the VVI focus area. Validation and additional calculations with the commercial computational fluid dynamics code, STAR-CCM+, were performed using a 5x5 fuel assembly with non-mixing geometry and spacer grids. This geometry was based on the benchmark experiment provided by Westinghouse. Results from the simulations were compared to existing experimental data and to the subchannel thermal-hydraulics code COBRA-TF (CTF). An uncertainty quantification (UQ) process was developed for the STAR-CCM+ model and results of the STAR UQ were communicated to CTF. Results from STAR-CCM+ simulations were used as experimental design pointsmore » in CTF to calibrate the mixing parameter β and compared to results obtained using experimental data points. This demonstrated that CTF’s β parameter can be calibrated to match existing experimental data more closely. The Hi2Lo process for the STAR-CCM+/CTF code coupling was documented in this milestone and closely linked L3:VVI.H2LP15.01 milestone report.« less

  14. Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications

    NASA Technical Reports Server (NTRS)

    Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.

    2012-01-01

    Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.

  15. The development, design and test of a 66 W/kg (30-W/lb) roll-up solar array

    NASA Technical Reports Server (NTRS)

    Hasbach, W. A.; Ross, R. G., Jr.

    1972-01-01

    A program to develop a 250 square foot roll-up solar array with a power-to-weight ratio exceeding 30 watts per pound is described. The system design and fabrication of a full scale engineering development model are discussed. The system and development test program results are presented. Special test equipment and test procedures are included, together with comparisons of experimental and analytical results.

  16. Finite Element Vibration Modeling and Experimental Validation for an Aircraft Engine Casing

    NASA Astrophysics Data System (ADS)

    Rabbitt, Christopher

    This thesis presents a procedure for the development and validation of a theoretical vibration model, applies this procedure to a pair of aircraft engine casings, and compares select parameters from experimental testing of those casings to those from a theoretical model using the Modal Assurance Criterion (MAC) and linear regression coefficients. A novel method of determining the optimal MAC between axisymmetric results is developed and employed. It is concluded that the dynamic finite element models developed as part of this research are fully capable of modelling the modal parameters within the frequency range of interest. Confidence intervals calculated in this research for correlation coefficients provide important information regarding the reliability of predictions, and it is recommended that these intervals be calculated for all comparable coefficients. The procedure outlined for aligning mode shapes around an axis of symmetry proved useful, and the results are promising for the development of further optimization techniques.

  17. School Context and Educational Outcomes: Results from a Quasi-Experimental Study

    PubMed Central

    Casciano, Rebecca; Massey, Douglas S.

    2013-01-01

    In this study we draw on data from a quasi-experimental study to test whether moving into a subsidized housing development in an affluent suburb yields educational benefits to the children of residents, compared to the educations they would have received had they not moved into the development. Results suggest that resident children experienced a significant improvement in school quality compared with a comparison group of students whose parents also had applied for residence. Parents who were residents of the development also displayed higher levels of school involvement compared with the comparison group of non-resident parents, and their children were exposed to significantly lower levels of school disorder and violence within school and spent more time reading outside of school. Living in the development did not influence GPA directly, but did indirectly increase GPA by increasing the time residents spent reading outside of school. PMID:25342878

  18. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  19. [A new teaching mode improves the effect of comprehensive experimental teaching of genetics].

    PubMed

    Fenghua, He; Jieqiang, Li; Biyan, Zhu; Feng, Gao

    2015-04-01

    To improve the research atmosphere in genetics experimental teaching and develop students' creativity in research, we carried out a reform in comprehensive experimental teaching which is one of important modules for genetics practice. In our new student-centered teaching mode, they chose research topics, performed experiments and took innovative approaches independently. With the open laboratory and technical platform in our experimental teaching center, students finished their experiments and were required to write a mini-research article. Comprehensive experimental teaching is a scientific research practice before they complete their thesis. Through this teaching practice, students' research skills in experimental design and operation, data analysis and results presentation, as well as their collaboration spirit and innovation consciousness are strengthened.

  20. Prediction and experimental observation of damage dependent damping in laminated composite beams

    NASA Technical Reports Server (NTRS)

    Allen, D. H.; Harris, C. E.; Highsmith, A. L.

    1987-01-01

    The equations of motion are developed for laminated composite beams with load-induced matrix cracking. The damage is accounted for by utilizing internal state variables. The net result of these variables on the field equations is the introduction of both enhanced damping, and degraded stiffness. Both quantities are history dependent and spatially variable, thus resulting in nonlinear equations of motion. It is explained briefly how these equations may be quasi-linearized for laminated polymeric composites under certain types of structural loading. The coupled heat conduction equation is developed, and it is shown that an enhanced Zener damping effect is produced by the introduction of microstructural damage. The resulting equations are utilized to demonstrate how damage dependent material properties may be obtained from dynamic experiments. Finaly, experimental results are compared to model predictions for several composite layups.

  1. Functional analysis and treatment of problem behavior in early education classrooms.

    PubMed

    Greer, Brian D; Neidert, Pamela L; Dozier, Claudia L; Payne, Steven W; Zonneveld, Kimberley L M; Harper, Amy M

    2013-01-01

    We conducted functional analyses (FA) with 4 typically developing preschool children during ongoing classroom activities and evaluated treatments that were based on FA results. Results of each child's FA suggested social-positive reinforcement functions, and differential reinforcement of alternative behavior plus time-out was effective in decreasing problem behavior and increasing appropriate behavior. We discuss the utility of classroom-based FAs and potential compromises to experimental control. © Society for the Experimental Analysis of Behavior.

  2. A processing centre for the CNES CE-GPS experimentation

    NASA Technical Reports Server (NTRS)

    Suard, Norbert; Durand, Jean-Claude

    1994-01-01

    CNES is involved in a GPS (Global Positioning System) geostationary overlay experimentation. The purpose of this experimentation is to test various new techniques in order to select the optimal station synchronization method, as well as the geostationary spacecraft orbitography method. These new techniques are needed to develop the Ranging GPS Integrity Channel services. The CNES experimentation includes three transmitting/receiving ground stations (manufactured by IN-SNEC), one INMARSAT 2 C/L band transponder and a processing center named STE (Station de Traitements de l'Experimentation). Not all the techniques to be tested are implemented, but the experimental system has to include several functions; part of the future system simulation functions, such as a servo-loop function, and in particular a data collection function providing for rapid monitoring of system operation, analysis of existing ground station processes, and several weeks of data coverage for other scientific studies. This paper discusses system architecture and some criteria used in its design, as well as the monitoring function, the approach used to develop a low-cost and short-life processing center in collaboration with a CNES sub-contractor (ATTDATAID), and some results.

  3. An integrated experimental and first-principles computational study of carbon dioxide mineral carbonation reactions in olivine and serpentine

    NASA Astrophysics Data System (ADS)

    Gormley, Deirdre Marie

    This dissertation is a unique integration of experimental and theoretical methods. The central issue that is being addressed is to find a long term and economically viable solution to the disposal of carbon dioxide gas from coal power plants. Mineral carbonation reactions have emerged as a permanent solution to the well-known "Greenhouse Gas" issue. Our group here at ASU along with groups at Los Alamos National Laboratory (LANL), National Energy Technology Laboratory (NETL), Pennsylvania State in Utah (SAIC), and the Albany Research Center (ARC) comprise the working group managed by the US Department of Energy (DOE). We have been collaborating to develop a fundamental understanding of the carbonation reactions of candidate minerals which will ultimately be used to develop a pilot plant process. Two of the candidate minerals used in mineral sequestration processes are forsterite (olivine) and lizardite (serpentine). Both candidates require pre-treatment prior to reaction with carbon dioxide. Forsterite requires attrition (grinding), while lizardite requires a pre-heat treatment (dehydroxylation) step which removes chemically bound water. In Chapter 3 of this thesis, the thermodynamic properties of seven primary oxides involved in reactions with forsterite and lizardite are compared. A novel method was developed using a theoretical molecular quantum physics approach which reproduced experimental results with great accuracy. This method can now be used for other systems where experimental thermodynamic data is unavailable. In Chapters 4 and 5, the dehydroxylation mechanism for lizardite is studied using theoretical models in conjunction with experimental results. A possible mechanism for the dehydroxylation pathway is suggested. This long-awaited result may provide new insight regarding carbonation reactions in lizardite. Chapters 6 and 7 explore the carbonation reactions in forsterite. With the help of high resolution electron microscopy images and extremely large, 10,000 atom models, we have gained new understanding of the reaction layer on the surface of the forsterite crystal. Several computer codes were tested for calculations of electron energy loss near edge spectra, as comparison with experimental electron energy loss spectra, and a reliable strategy for calculation has been suggested. The electron energy loss results have enhanced our knowledge of the forsterite reaction layer.

  4. Non-degenerate two-photon absorption in silicon waveguides. Analytical and experimental study

    DOE PAGES

    Zhang, Yanbing; Husko, Chad; Lefrancois, Simon; ...

    2015-06-22

    We theoretically and experimentally investigate the nonlinear evolution of two optical pulses in a silicon waveguide. We provide an analytic solution for the weak probe wave undergoing non-degenerate two-photon absorption (TPA) from the strong pump. At larger pump intensities, we employ a numerical solution to study the interplay between TPA and photo-generated free carriers. We develop a simple and powerful approach to extract and separate out the distinct loss contributions of TPA and free-carrier absorption from readily available experimental data. Our analysis accounts accurately for experimental results in silicon photonic crystal waveguides.

  5. A Comprehensive Validation Methodology for Sparse Experimental Data

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Blattnig, Steve R.

    2010-01-01

    A comprehensive program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as models are developed over time. The models are placed under configuration control, and automated validation tests are used so that comparisons can readily be made as models are improved. Though direct comparisons between theoretical results and experimental data are desired for validation purposes, such comparisons are not always possible due to lack of data. In this work, two uncertainty metrics are introduced that are suitable for validating theoretical models against sparse experimental databases. The nuclear physics models, NUCFRG2 and QMSFRG, are compared to an experimental database consisting of over 3600 experimental cross sections to demonstrate the applicability of the metrics. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by analyzing subsets of the model parameter space.

  6. The Pathophysiology of Repetitive Concussive Traumatic Brain Injury in Experimental Models; New Developments and Open Questions

    PubMed Central

    Brody, David L; Benetatos, Joseph; Bennett, Rachel E; Klemenhagen, Kristen C; Donald, Christine L Mac

    2015-01-01

    In recent years, there has been an increasing interest in the pathophysiology of repetitive concussive traumatic brain injury (rcTBI) in large part due to the association with dramatic cases of progressive neurological deterioration in professional athletes, military personnel, and others. However, our understanding of the pathophysiology of rcTBI is less advanced than for more severe brain injuries. Most prominently, the mechanisms underlying traumatic axonal injury, microglial activation, amyloid-beta accumulation, and progressive tau pathology are not yet known. In addition, the role of injury to dendritic spine cytoskeletal structures, vascular reactivity impairments, and microthrombi are intriguing and subjects of ongoing inquiry. Methods for quantitative analysis of axonal injury, dendritic injury, and synaptic loss need to be refined for the field to move forward in a rigorous fashion. We and others are attempting to develop translational approaches to assess these specific pathophysiological events in both animals and humans to facilitate clinically relevant pharmacodynamic assessments of candidate therapeutics. In this article, we review and discuss several of the recent experimental results from our lab and others. We include new initial data describing the difficulty in modeling progressive tau pathology in experimental rcTBI, and results demonstrating that sertraline can alleviate social interaction deficits and depressive-like behaviors following experimental rcTBI plus foot shock stress. Furthermore, we propose a discrete set of open, experimentally tractable questions that may serve as a framework for future investigations. In addition, we also raise several important questions that are less experimentally tractable at this time, in hopes that they may stimulate future methodological developments to address them. PMID:25684677

  7. [Reducing stress levels and anxiety in primary-care physicians through training and practice of a mindfulness meditation technique].

    PubMed

    Franco Justo, Clemente

    2010-11-01

    To check the effectiveness of a mindfulness development meditation technique on stress and anxiety in a group of primary-care physicians. Quasi-experimental with pretest/posttest/follow-up measurements in a control group and an experimental group. SITE: University of Almeria. 38 primary-care physicians enrolled in a Teaching Aptitude Course (CAP). An experimental group and a control group were formed with 19 participants in each. The experimental group took a psycho-educational meditation program for training and practice in mindfulness. The Perceived Stress Scale (PSS), the Strain Questionnaire and the State-Trait Anxiety Questionnaire were used to measure stress and anxiety levels. A comparative statistical analysis was performed using the Mann-Whitney non-parametric U test, finding a significant reduction in all the primary-care physician stress and anxiety variables in the experimental group compared to the control group in pretest-posttest and follow-up tests. The results of this study support the effectiveness of mindfulness development meditation techniques in decreasing stress and anxiety in primary-care physicians. Nevertheless, the study shows various limitations that would have to be corrected in successive studies to bring more validity to the results. Copyright © 2009 Elsevier España, S.L. All rights reserved.

  8. Experimental identification of the behaviour of and lateral forces from freely-walking pedestrians on laterally oscillating structures in a virtual reality environment.

    PubMed

    Bocian, Mateusz; Macdonald, John H G; Burn, Jeremy F; Redmill, David

    2015-12-15

    Modelling pedestrian loading on lively structures such as bridges remains a challenge. This is because pedestrians have the capacity to interact with vibrating structures which can lead to amplification of the structural response. Current design guidelines are often inaccurate and limiting as they do not sufficiently acknowledge this effect. This originates in scarcity of data on pedestrian behaviour on vibrating ground and uncertainty as to the accuracy of results from previous experimental campaigns aiming to quantify pedestrian behaviour in this case. To this end, this paper presents a novel experimental setup developed to evaluate pedestrian actions on laterally oscillating ground in the laboratory environment while avoiding the implications of artificiality and allowing for unconstrained gait. A biologically-inspired approach was adopted in its development, relying on appreciation of operational complexities of biological systems, in particular their adaptability and control requirements. In determination of pedestrian forces to the structure consideration was given to signal processing issues which have been neglected in past studies. The results from tests conducted on the setup are related to results from previous experimental investigations and outputs of the inverted pendulum pedestrian model for walking on laterally oscillating ground, which is capable of generating self-excited forces.

  9. An experimental investigation of hollow cathode-based plasma contactors. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Williams, John D.

    1991-01-01

    Experimental results are presented which describe operation of the plasma environment associated with a hollow cathod-based plasma contactor collecting electrons from or emitting them to an ambient, low density Maxwellian plasma. A one-dimensional, phenomenological model of the near-field electron collection process, which was formulated from experimental observations, is presented. It considers three regions, namely, a plasma cloud adjacent to the contactor, an ambient plasma from which electrons are collected, and a double layer region that develops between the contactor plasma cloud and the ambient plasma regions. Results of the electron emission experiments are also presented. An important observation is made using a retarding potential analyzer (RPA) which shows that high energy ions generally stream from a contactor along with the electrons being emitted. A mechanism for this phenomenon is presented and it involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice. This can result in the development of a region of high positive potential. Langmuir and RPA probe data suggest that both electrons and ions expand spherically from this hill region. In addition to experimental observations, a one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and shown to agree qualitatively with these observations.

  10. Analytical Modeling of Pressure Wall Hole Size and Maximum Tip-to-Tip Crack Length for Perforating Normal and Oblique Orbital Debris Impacts

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Mohamed, Essam

    1997-01-01

    This report presents the results of a study whose objective was to develop first-principles-based models of hole size and maximum tip-to-tip crack length for a spacecraft module pressure wall that has been perforated in an orbital debris particle impact. The hole size and crack length models are developed by sequentially characterizing the phenomena comprising the orbital debris impact event, including the initial impact, the creation and motion of a debris cloud within the dual-wall system, the impact of the debris cloud on the pressure wall, the deformation of the pressure wall due to debris cloud impact loading prior to crack formation, pressure wall crack initiation, propagation, and arrest, and finally pressure wall deformation following crack initiation and growth. The model development has been accomplished through the application of elementary shock physics and thermodynamic theory, as well as the principles of mass, momentum, and energy conservation. The predictions of the model developed herein are compared against the predictions of empirically-based equations for hole diameters and maximum tip-to-tip crack length for three International Space Station wall configurations. The ISS wall systems considered are the baseline U.S. Lab Cylinder, the enhanced U.S. Lab Cylinder, and the U.S. Lab Endcone. The empirical predictor equations were derived from experimentally obtained hole diameters and crack length data. The original model predictions did not compare favorably with the experimental data, especially for cases in which pressure wall petalling did not occur. Several modifications were made to the original model to bring its predictions closer in line with the experimental results. Following the adjustment of several empirical constants, the predictions of the modified analytical model were in much closer agreement with the experimental results.

  11. Real-time estimation of helicopter rotor blade kinematics through measurement of rotation induced acceleration

    NASA Astrophysics Data System (ADS)

    Allred, C. Jeff; Churchill, David; Buckner, Gregory D.

    2017-07-01

    This paper presents a novel approach to monitoring rotor blade flap, lead-lag and pitch using an embedded gyroscope and symmetrically mounted MEMS accelerometers. The central hypothesis is that differential accelerometer measurements are proportional only to blade motion; fuselage acceleration and blade bending are inherently compensated for. The inverse kinematic relationships (from blade position to acceleration and angular rate) are derived and simulated to validate this hypothesis. An algorithm to solve the forward kinematic relationships (from sensor measurement to blade position) is developed using these simulation results. This algorithm is experimentally validated using a prototype device. The experimental results justify continued development of this kinematic estimation approach.

  12. Cathode surface effects and H.F.-behaviour of vacuum arcs

    NASA Astrophysics Data System (ADS)

    Fu, Yan Hong

    To gain a better understanding of the essential processes occurring during a vacuum arc interruption for the further development of the vacuum arc circuit breaker, cathode spot behavior, current interruption, dielectrical recovery and overvoltage generation are investigated. An experimental study on cathode spot behavior of the DC vacuum arc in relation to cathode surface roughness and a qualitative physical model to interpret the results are reported. An experimental investigation on the High Frequency (HF) current interruption, multiple recognitions and voltage escalation phenomena is reported. A calculation program to predict the level of overvoltages generated by the operation of a vacuum breaker in a realistic single phase circuit is developed. Detailed results are summarized.

  13. "I Am Not a Big Man": Evaluation of the Issue Investigation Program

    ERIC Educational Resources Information Center

    Cincera, Jan; Simonova, Petra

    2017-01-01

    The article evaluates a Czech environmental education program focused on developing competence in issue investigation. In the evaluation, a simple quasi-experimental design with experimental (N = 200) and control groups was used. The results suggest that the program had a greater impact on girls than on boys, and that it increased their internal…

  14. Note: Tesla based pulse generator for electrical breakdown study of liquid dielectrics

    NASA Astrophysics Data System (ADS)

    Veda Prakash, G.; Kumar, R.; Patel, J.; Saurabh, K.; Shyam, A.

    2013-12-01

    In the process of studying charge holding capability and delay time for breakdown in liquids under nanosecond (ns) time scales, a Tesla based pulse generator has been developed. Pulse generator is a combination of Tesla transformer, pulse forming line, a fast closing switch, and test chamber. Use of Tesla transformer over conventional Marx generators makes the pulse generator very compact, cost effective, and requires less maintenance. The system has been designed and developed to deliver maximum output voltage of 300 kV and rise time of the order of tens of nanoseconds. The paper deals with the system design parameters, breakdown test procedure, and various experimental results. To validate the pulse generator performance, experimental results have been compared with PSPICE simulation software and are in good agreement with simulation results.

  15. Zbrowse: An interactive GWAS results browser

    USDA-ARS?s Scientific Manuscript database

    The growing number of genotyped populations, the advent of high-throughput phenotyping techniques and the development of GWAS analysis software has rapidly accelerated the number of GWAS experimental results. Candidate gene discovery from these results files is often tedious, involving many manual s...

  16. The mzTab data exchange format: communicating mass-spectrometry-based proteomics and metabolomics experimental results to a wider audience.

    PubMed

    Griss, Johannes; Jones, Andrew R; Sachsenberg, Timo; Walzer, Mathias; Gatto, Laurent; Hartler, Jürgen; Thallinger, Gerhard G; Salek, Reza M; Steinbeck, Christoph; Neuhauser, Nadin; Cox, Jürgen; Neumann, Steffen; Fan, Jun; Reisinger, Florian; Xu, Qing-Wei; Del Toro, Noemi; Pérez-Riverol, Yasset; Ghali, Fawaz; Bandeira, Nuno; Xenarios, Ioannis; Kohlbacher, Oliver; Vizcaíno, Juan Antonio; Hermjakob, Henning

    2014-10-01

    The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R. We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. The mzTab Data Exchange Format: Communicating Mass-spectrometry-based Proteomics and Metabolomics Experimental Results to a Wider Audience*

    PubMed Central

    Griss, Johannes; Jones, Andrew R.; Sachsenberg, Timo; Walzer, Mathias; Gatto, Laurent; Hartler, Jürgen; Thallinger, Gerhard G.; Salek, Reza M.; Steinbeck, Christoph; Neuhauser, Nadin; Cox, Jürgen; Neumann, Steffen; Fan, Jun; Reisinger, Florian; Xu, Qing-Wei; del Toro, Noemi; Pérez-Riverol, Yasset; Ghali, Fawaz; Bandeira, Nuno; Xenarios, Ioannis; Kohlbacher, Oliver; Vizcaíno, Juan Antonio; Hermjakob, Henning

    2014-01-01

    The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R. We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online. PMID:24980485

  18. Propagation effects for land mobile satellite systems: Overview of experimental and modeling results

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1992-01-01

    Models developed and experiments performed to characterize the propagation environment associated with land mobile communication using satellites are discussed. Experiments were carried out with transmitters on stratospheric balloons, remotely piloted aircraft, helicopters, and geostationary satellites. This text is comprised of compiled experimental results for the expressed use of communications engineers, designers of planned Land Mobile Satellite Systems (LMSS), and modelers of propagation effects. The results presented here are mostly derived from systematic studies of propagation effects for LMSS geometries in the United States associated with rural and suburban regions. Where applicable, the authors also draw liberally from the results of other related investigations in Canada, Europe, and Australia. Frequencies near 1500 MHz are emphasized to coincide with frequency bands allocated for LMSS by the International Telecommunication Union, although earlier experimental work at 870 MHz is also included.

  19. Experimental studies of MOS inversion and accumulation layers: Quantum mechanical effects and mobility

    NASA Astrophysics Data System (ADS)

    Chindalore, Gowrishankar L.

    The development of fast, multi-functional, and energy efficient integrated circuits, is made possible by aggressively scaling the gate lengths of the MOS devices into the sub-quarter micron regime. However, with the increasing cost of fabrication, there is a strong need for the development of reliable and accurate device simulation capabilities. The development of the theoretical models for simulators is guided by extensive experimental data, which enable an experimental verification of the models, and lead to a better understanding of the underlying physics. This dissertation presents the methodology and the results for one such experimental effort, where two important physical effects in the inversion layer and the accumulation layer of a MOS device, namely, the quantum mechanical (QM) effects and the carrier mobility are investigated. Accordingly, this dissertation has been divided into two parts, with the first part discussing the increase in the threshold voltage and the accumulation electrical oxide thickness due to QM effects. The second part discusses the methodology and the experimental results for the extraction of the majority carrier mobilities in the accumulation layers of a MOSFET. The continued scaling of the MOS gate length requires decreased gate oxide thickness (tox) and increased channel doping (NB) in order to improve device performance while suppressing the short- channel effects. The combination of the two result in large enough transverse electric fields to cause significant quantization of the carriers in the potential well at the Si/SiO2 interface. Hence, compared to the classical calculations (where the QM effects are ignored), the QM effects are found to lead to an increase in the experimental threshold voltage by approximately 100mV, and an overestimation of the physical oxide thickness by approximately 3-4A, in MOSFET devices with a gate oxide thickness and the doping level anticipated for technologies with sub-quarter micron gate lengths. Thus, the experimental results indicate the need for using accurate QM models for simulating sub-quarter micron devices. Carrier mobility is a fundamental semiconductor device transport parameter that has been extensively characterized for both electrons and holes in the silicon bulk and MOS inversion layers. Accumulation layer mobility (μacc) has become increasingly important as the MOS devices have scaled to deep submicron gate lengths, and much effort has been required to achieve increased drive current. However, very little experimental data has been reported for carrier mobility in the MOS accumulation layers (Sun80, Man89). Hence, in this research work, the accumulation layer mobilities were extracted using buried-channel MOSFETs for both the electrons and holes, and for a wide range of doping levels at temperatures ranging from 25C to 150C. The experimental μacc is found to be greater than the corresponding bulk and the inversion layer mobilities, at low to moderate effective fields. However, at very high effective fields, where phonon and surface roughness scattering are dominant, the mobility behavior is found to be very similar to that of the inversion carriers. The extensive set of experimental data will enable the development of accurate local accumulation mobility models for inclusion in 2-D device simulators.

  20. Rate-equation modelling and ensemble approach to extraction of parameters for viral infection-induced cell apoptosis and necrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domanskyi, Sergii; Schilling, Joshua E.; Privman, Vladimir, E-mail: privman@clarkson.edu

    We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model wemore » describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of “stiff” equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.« less

  1. Centrifugal slurry pump wear and hydraulic studies. Phase II report. Experimental studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistry, D.; Cooper, P.; Biswas, C.

    1983-01-01

    This report describes the work performed by Ingersoll-Rand Research, Inc., under Phase II, Experimental Studies for the contract entitled, Centrifugal Slurry Pump Wear and Hydraulic Studies. This work was carried out for the US Department of Energy under Contract No. DE-AC-82PC50035. The basic development approach pursued this phase is presented, followed by a discussion on wear relationships. The analysis, which resulted in the development of a mathematical wear model relating pump life to some of the key design and operating parameters, is presented. The results, observations, and conclusions of the experimental investigation on small scale pumps that led to themore » selected design features for the prototype pump are discussed. The material investigation was performed at IRRI, ORNL and Battelle. The rationale for selecting the materials for testing, the test methods and apparatus used, and the results obtained are presented followed by a discussion on materials for a prototype pump. In addition, the prototype pump test facility description, as well as the related design and equipment details, are presented. 20 references, 53 figures, 13 tables.« less

  2. Feb 2008 - Feb 2009 Progress Report and Final Report for NA26215: Experimental Studies of High-Energy Processing of Proto-Planetary and Planetary Materials in the Early Solar System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, Stein B.

    2009-05-28

    The results of this project are the first experimental data on the behavior of metal-silicate mixtures under very high pressures and temperatures comparable to those of the putative Moon-forming impact experienced by Earth in its early history. Probably the most important outcome of this project was the discovery that metal-silicate interaction and equilibration during highly energetic transient events like impacts may be extremely fast and effective on relatively large scale that was not appreciated before. During the course of this project we have developed a technique for trapping supercritical melts produced in our experiments that allows studying chemical phenomena takingmore » place on a nanosecond timescales. Our results shed new light on the processes and conditions existed in the early Earth history, a subject of perennial interest of the humankind. The results of this project also provide important experimental constraints essential for development of the strategy and technology to mitigate imminent asteroid hazard.« less

  3. Thermal barrier coating life prediction model development, phase 1

    NASA Technical Reports Server (NTRS)

    Demasi, Jeanine T.; Ortiz, Milton

    1989-01-01

    The objective of this program was to establish a methodology to predict thermal barrier coating (TBC) life on gas turbine engine components. The approach involved experimental life measurement coupled with analytical modeling of relevant degradation modes. Evaluation of experimental and flight service components indicate the predominant failure mode to be thermomechanical spallation of the ceramic coating layer resulting from propagation of a dominant near interface crack. Examination of fractionally exposed specimens indicated that dominant crack formation results from progressive structural damage in the form of subcritical microcrack link-up. Tests conducted to isolate important life drivers have shown MCrAlY oxidation to significantly affect the rate of damage accumulation. Mechanical property testing has shown the plasma deposited ceramic to exhibit a non-linear stress-strain response, creep and fatigue. The fatigue based life prediction model developed accounts for the unusual ceramic behavior and also incorporates an experimentally determined oxide rate model. The model predicts the growth of this oxide scale to influence the intensity of the mechanic driving force, resulting from cyclic strains and stresses caused by thermally induced and externally imposed mechanical loads.

  4. Computer-aided design and experimental investigation of a hydrodynamic device: the microwire electrode

    PubMed

    Fulian; Gooch; Fisher; Stevens; Compton

    2000-08-01

    The development and application of a new electrochemical device using a computer-aided design strategy is reported. This novel design is based on the flow of electrolyte solution past a microwire electrode situated centrally within a large duct. In the design stage, finite element simulations were employed to evaluate feasible working geometries and mass transport rates. The computer-optimized designs were then exploited to construct experimental devices. Steady-state voltammetric measurements were performed for a reversible one-electron-transfer reaction to establish the experimental relationship between electrolysis current and solution velocity. The experimental results are compared to those predicted numerically, and good agreement is found. The numerical studies are also used to establish an empirical relationship between the mass transport limited current and the volume flow rate, providing a simple and quantitative alternative for workers who would prefer to exploit this device without the need to develop the numerical aspects.

  5. Epistemology and expectations survey about experimental physics: Development and initial results

    NASA Astrophysics Data System (ADS)

    Zwickl, Benjamin M.; Hirokawa, Takako; Finkelstein, Noah; Lewandowski, H. J.

    2014-06-01

    In response to national calls to better align physics laboratory courses with the way physicists engage in research, we have developed an epistemology and expectations survey to assess how students perceive the nature of physics experiments in the contexts of laboratory courses and the professional research laboratory. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) evaluates students' epistemology at the beginning and end of a semester. Students respond to paired questions about how they personally perceive doing experiments in laboratory courses and how they perceive an experimental physicist might respond regarding their research. Also, at the end of the semester, the E-CLASS assesses a third dimension of laboratory instruction, students' reflections on their course's expectations for earning a good grade. By basing survey statements on widely embraced learning goals and common critiques of teaching labs, the E-CLASS serves as an assessment tool for lab courses across the undergraduate curriculum and as a tool for physics education research. We present the development, evidence of validation, and initial formative assessment results from a sample that includes 45 classes at 20 institutions. We also discuss feedback from instructors and reflect on the challenges of large-scale online administration and distribution of results.

  6. FUN3D Analyses in Support of the First Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Heeg, Jennifer; Wieseman, Carol D.; Florance, Jennifer P.

    2013-01-01

    This paper presents the computational aeroelastic results generated in support of the first Aeroelastic Prediction Workshop for the Benchmark Supercritical Wing (BSCW) and the HIgh REynolds Number AeroStructural Dynamics (HIRENASD) configurations and compares them to the experimental data. The computational results are obtained using FUN3D, an unstructured grid Reynolds-averaged Navier-Stokes solver developed at NASA Langley Research Center. The analysis results for both configurations include aerodynamic coefficients and surface pressures obtained for steady-state or static aeroelastic equilibrium (BSCW and HIRENASD, respectively) and for unsteady flow due to a pitching wing (BSCW) or modally-excited wing (HIRENASD). Frequency response functions of the pressure coefficients with respect to displacement are computed and compared with the experimental data. For the BSCW, the shock location is computed aft of the experimentally-located shock position. The pressure distribution upstream of this shock is in excellent agreement with the experimental data, but the pressure downstream of the shock in the separated flow region does not match as well. For HIRENASD, very good agreement between the numerical results and the experimental data is observed at the mid-span wing locations.

  7. Using experimental human influenza infections to validate a viral dynamic model and the implications for prediction.

    PubMed

    Chen, S C; You, S H; Liu, C Y; Chio, C P; Liao, C M

    2012-09-01

    The aim of this work was to use experimental infection data of human influenza to assess a simple viral dynamics model in epithelial cells and better understand the underlying complex factors governing the infection process. The developed study model expands on previous reports of a target cell-limited model with delayed virus production. Data from 10 published experimental infection studies of human influenza was used to validate the model. Our results elucidate, mechanistically, the associations between epithelial cells, human immune responses, and viral titres and were supported by the experimental infection data. We report that the maximum total number of free virions following infection is 10(3)-fold higher than the initial introduced titre. Our results indicated that the infection rates of unprotected epithelial cells probably play an important role in affecting viral dynamics. By simulating an advanced model of viral dynamics and applying it to experimental infection data of human influenza, we obtained important estimates of the infection rate. This work provides epidemiologically meaningful results, meriting further efforts to understand the causes and consequences of influenza A infection.

  8. Reduced-Order Modeling: Cooperative Research and Development at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Beran, Philip S.; Cesnik, Carlos E. S.; Guendel, Randal E.; Kurdila, Andrew; Prazenica, Richard J.; Librescu, Liviu; Marzocca, Piergiovanni; Raveh, Daniella E.

    2001-01-01

    Cooperative research and development activities at the NASA Langley Research Center (LaRC) involving reduced-order modeling (ROM) techniques are presented. Emphasis is given to reduced-order methods and analyses based on Volterra series representations, although some recent results using Proper Orthogonal Deco in position (POD) are discussed as well. Results are reported for a variety of computational and experimental nonlinear systems to provide clear examples of the use of reduced-order models, particularly within the field of computational aeroelasticity. The need for and the relative performance (speed, accuracy, and robustness) of reduced-order modeling strategies is documented. The development of unsteady aerodynamic state-space models directly from computational fluid dynamics analyses is presented in addition to analytical and experimental identifications of Volterra kernels. Finally, future directions for this research activity are summarized.

  9. Development of an algorithm to model an aircraft equipped with a generic CDTI display

    NASA Technical Reports Server (NTRS)

    Driscoll, W. C.; Houck, J. A.

    1986-01-01

    A model of human pilot performance of a tracking task using a generic Cockpit Display of Traffic Information (CDTI) display is developed from experimental data. The tracking task is to use CDTI in tracking a leading aircraft at a nominal separation of three nautical miles over a prescribed trajectory in space. The analysis of the data resulting from a factorial design of experiments reveals that the tracking task performance depends on the pilot and his experience at performing the task. Performance was not strongly affected by the type of control system used (velocity vector control wheel steering versus 3D automatic flight path guidance and control). The model that is developed and verified results in state trajectories whose difference from the experimental state trajectories is small compared to the variation due to the pilot and experience factors.

  10. A multiscale strength model for tantalum over an extended range of strain rates

    NASA Astrophysics Data System (ADS)

    Barton, N. R.; Rhee, M.

    2013-09-01

    A strength model for tantalum is developed and exercised across a range of conditions relevant to various types of experimental observations. The model is based on previous multiscale modeling work combined with experimental observations. As such, the model's parameterization includes a hybrid of quantities that arise directly from predictive sub-scale physics models and quantities that are adjusted to align the model with experimental observations. Given current computing and experimental limitations, the response regions for sub-scale physics simulations and detailed experimental observations have been largely disjoint. In formulating the new model and presenting results here, attention is paid to integrated experimental observations that probe strength response at the elevated strain rates where a previous version of the model has generally been successful in predicting experimental data [Barton et al., J. Appl. Phys. 109(7), 073501 (2011)].

  11. Expanding a dynamic flux balance model of yeast fermentation to genome-scale

    PubMed Central

    2011-01-01

    Background Yeast is considered to be a workhorse of the biotechnology industry for the production of many value-added chemicals, alcoholic beverages and biofuels. Optimization of the fermentation is a challenging task that greatly benefits from dynamic models able to accurately describe and predict the fermentation profile and resulting products under different genetic and environmental conditions. In this article, we developed and validated a genome-scale dynamic flux balance model, using experimentally determined kinetic constraints. Results Appropriate equations for maintenance, biomass composition, anaerobic metabolism and nutrient uptake are key to improve model performance, especially for predicting glycerol and ethanol synthesis. Prediction profiles of synthesis and consumption of the main metabolites involved in alcoholic fermentation closely agreed with experimental data obtained from numerous lab and industrial fermentations under different environmental conditions. Finally, fermentation simulations of genetically engineered yeasts closely reproduced previously reported experimental results regarding final concentrations of the main fermentation products such as ethanol and glycerol. Conclusion A useful tool to describe, understand and predict metabolite production in batch yeast cultures was developed. The resulting model, if used wisely, could help to search for new metabolic engineering strategies to manage ethanol content in batch fermentations. PMID:21595919

  12. Analysis and Testing of High Temperature Fibrous Insulation for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    1999-01-01

    Analytical models were developed to model the heat transfer through high-temperature fibrous insulation used in metallic thermal protection systems on reusable launch vehicles. The optically thick approximation was used to simulate radiation heat transfer through the insulation. Different models for gaseous conduction and solid conduction in the fibers, and for combining the various modes of heat transfer into a local, volume-averaged, thermal conductivity were considered. The governing heat transfer equations were solved numerically, and effective thermal conductivities were calculated from the steady-state results. An experimental apparatus was developed to measure the apparent thermal conductivity of insulation subjected to pressures, temperatures and temperature gradients representative of re-entry conditions for launch vehicles. The apparent thermal conductivity of an alumina fiber insulation was measured at nominal densities of 24, 48 and 96 kg/cu m. Data were obtained at environmental pressures from 10(exp 4) to 760 torr, with the insulation cold side maintained at room temperature and its hot side temperature varying up to 1000 C. The experimental results were used to evaluate the analytical models. The best analytical model resulted in effective thermal conductivity predictions that were within 8% of experimental results.

  13. Frost formation on an airfoil: A mathematical model 1

    NASA Technical Reports Server (NTRS)

    Dietenberger, M.; Kumar, P.; Luers, J.

    1979-01-01

    A computer model to predict the frost formation process on a flat plate was developed for application to most environmental conditions under which frost occurs. The model was analytically based on a generalized frost thermal conductivity expression, on frost density and thickness rate equations, and on modified heat and mass transfer coefficients designed to fit the available experimental data. The broad experimental ranges reflected by the extremes in ambient humidities, wall temperatures, and convective flow properties in the various publications which were examined served to severely test the flexibility of the model. An efficient numerical integration scheme was developed to solve for the frost surface temperature, density, and thickness under the changing environmental conditions. The comparison of results with experimental data was very encouraging.

  14. Numerical and experimental evaluations of the flow past nested chevrons

    NASA Technical Reports Server (NTRS)

    Foss, J. F.; Foss, J. K.; Spalart, P. R.

    1989-01-01

    An effort is made to contribute to the development of CFD by relating the successful use of vortex dynamics in the computation of the pressure drop past a planar array of chevron-shaped obstructions. An ensemble of results was used to compute the loss coefficient k, stimulating an experimental program for the assessment of the measured loss coefficient for the same geometry. The most provocative result of this study has been the representation of kinetic energy production in terms of vorticity source terms.

  15. Experimental and Theoretical Results in Output Trajectory Redesign for Flexible Structures

    NASA Technical Reports Server (NTRS)

    Dewey, J. S.; Leang, K.; Devasia, S.

    1998-01-01

    In this paper we study the optimal redesign of output trajectories for linear invertible systems. This is particularly important for tracking control of flexible structures because the input-state trajectores, that achieve tracking of the required output may cause excessive vibrations in the structure. We pose and solve this problem, in the context of linear systems, as the minimization of a quadratic cost function. The theory is developed and applied to the output tracking of a flexible structure and experimental results are presented.

  16. Study of the homogeneity of the current distribution in a dielectric barrier discharge in air by means of a segmented electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malashin, M. V., E-mail: m-malashin@mail.ru; Moshkunov, S. I.; Khomich, V. Yu.

    2016-02-15

    The current distribution in a dielectric barrier discharge in atmospheric-pressure air at a natural humidity of 40–60% was studied experimentally with a time resolution of 200 ps. The experimental results are interpreted by means of numerically simulating the discharge electric circuit. The obtained results indicate that the discharge operating in the volumetric mode develops simultaneously over the entire transverse cross section of the discharge gap.

  17. Controls-structures interaction guest investigator program: Overview and phase 1 experimental results and future plans

    NASA Technical Reports Server (NTRS)

    Smith-Taylor, Rudeen; Tanner, Sharon E.

    1993-01-01

    The NASA Controls-Structures Interaction (CSI) Guest Investigator program is described in terms of its support of the development of CSI technologies. The program is based on the introduction of CSI researchers from industry and academia to available test facilities for experimental validation of technologies and methods. Phase 1 experimental results are reviewed with attention given to their use of the Mini-MAST test facility and the facility for the Advance Control Evaluation of Structures. Experiments were conducted regarding the following topics: collocated/noncollocated controllers, nonlinear math modeling, controller design, passive/active suspension systems design, and system identification and fault isolation. The results demonstrate that significantly enhanced performance from the control techniques can be achieved by integrating knowledge of the structural dynamics under consideration into the approaches.

  18. Study into penetration speed during laser cutting of brain tissues.

    PubMed

    Yilbas, Z; Sami, M; Patiroglu, T

    1998-01-01

    The applications of CO2 continuous-wave lasers in neurosurgery have become important in recent years. Theoretical considerations of laser applicability in medicine are subsequently confirmed experimentally. To obtain precision operation in the laser cutting process, further theoretical developments and experimental studies need to be conducted. Consequently, in the present study, the heat transfer mechanism taking place during laser-tissue interaction is introduced using Fourier theory. The results obtained from the theoretical model are compared with the experimental results. In connection with this, an experiment is designed to measure the penetration speed during the laser cutting process. The measurement is carried out using an optical method. It is found that both results for the penetration speed obtained from the theory and experiment are in a good agreement.

  19. An Experimental Investigation of Hypergolic Ignition Delay of Hydrogen Peroxide with Fuel Mixtures

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Gostowski, Rudy; Chianese, Silvio

    2003-01-01

    An experimental investigation of hypergolicity and ignition delay of fuel mixtures with hydrogen peroxide is presented. Example results of high speed photography and schleiren from drop tests are shown. Also, a discussion of the sensitivity to experimental parameters such as drop size and subsequent uncertainty considerations of ignition delay results is presented. It is shown that using the described setup on the mixtures presented, the precision uncertainty is on the order of 6% of average ignition delay and 5% of average decomposition delay. This represents sufficient repeatability for first order discrimination of ignition delay for propellant development and screening. Two mixtures, each using commonly available amines and transition metal compounds, are presented as examples that result in ignition delays on the order of 10 milliseconds.

  20. Detached Eddy Simulation of Flap Side-Edge Flow

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Shankar K.; Shariff, Karim R.

    2016-01-01

    Detached Eddy Simulation (DES) of flap side-edge flow was performed with a wing and half-span flap configuration used in previous experimental and numerical studies. The focus of the study is the unsteady flow features responsible for the production of far-field noise. The simulation was performed at a Reynolds number (based on the main wing chord) of 3.7 million. Reynolds Averaged Navier-Stokes (RANS) simulations were performed as a precursor to the DES. The results of these precursor simulations match previous experimental and RANS results closely. Although the present DES simulations have not reached statistical stationary yet, some unsteady features of the developing flap side-edge flowfield are presented. In the final paper it is expected that statistically stationary results will be presented including comparisons of surface pressure spectra with experimental data.

  1. Comparison of thermal analytic model with experimental test results for 30-sentimeter-diameter engineering model mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Oglebay, J. C.

    1977-01-01

    A thermal analytic model for a 30-cm engineering model mercury-ion thruster was developed and calibrated using the experimental test results of tests of a pre-engineering model 30-cm thruster. A series of tests, performed later, simulated a wide range of thermal environments on an operating 30-cm engineering model thruster, which was instrumented to measure the temperature distribution within it. The modified analytic model is described and analytic and experimental results compared for various operating conditions. Based on the comparisons, it is concluded that the analytic model can be used as a preliminary design tool to predict thruster steady-state temperature distributions for stage and mission studies and to define the thermal interface bewteen the thruster and other elements of a spacecraft.

  2. Experimental human influenza: observations from studies of influenza antivirals.

    PubMed

    Hayden, Frederick G

    2012-01-01

    Randomized, placebo-controlled trials have been conducted for nearly five decades in experimentally induced human influenza infections to assess the effectiveness, tolerability and pharmacological properties of influenza antivirals. The results of such studies have not only provided key proof-of-concept data to facilitate drug development but also contributed to our understanding of influenza pathogenesis and transmission. The lack of availability of contemporary, safety-tested virus inoculation pools in recent years needs to be resolved in order to avoid hindering the development of new drugs and vaccines.

  3. Design and development of radioactive xenon gas purification and analysis system based on molecular sieves.

    PubMed

    Sabzian, M; Nasrabadi, M N; Haji-Hosseini, M

    2018-10-01

    The dynamic adsorption of xenon on molecular sieve packed columns was investigated. The modified Wheeler-Jonas equation was used to describe adsorption parameters such as adsorption capacity and adsorption rate coefficient. Different experimental conditions were accomplished to study their effects and to touch appropriate adsorbing circumstances. Respectable consistency was reached between experimental and modeled values. A purification and analysis setup was developed for radioactive xenon gas determination. Standard sample analysis results approved acceptable quantification accuracy. Copyright © 2018. Published by Elsevier Ltd.

  4. Frequency Response of Pressure Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Winslow, Neal A.; Carroll, Bruce F.; Setzer, Fred M.

    1996-01-01

    An experimental method for measuring the frequency response of Pressure Sensitive Paints (PSP) is presented. These results lead to the development of a dynamic correction technique for PSP measurements which is of great importance to the advancement of PSP as a measurement technique. The ability to design such a dynamic corrector is most easily formed from the frequency response of the given system. An example of this correction technique is shown. In addition to the experimental data, an analytical model for the frequency response is developed from the one dimensional mass diffusion equation.

  5. Suzuki-Miyaura Cross-Coupling Reactions of Primary Alkyltrifluoroborates with Aryl Chlorides

    PubMed Central

    Dreher, Spencer D.; Lim, Siang-Ee; Sandrock, Deidre L.; Molander, Gary A.

    2009-01-01

    Parallel microscale experimentation was used to develop general conditions for the Suzuki-Miyaura cross-coupling of diversely functionalized primary alkyltrifluoroborates with a variety of aryl chlorides. These conditions were found to be amenable to coupling with aryl bromides, iodides, and triflates as well. The conditions that were previously identified through similar techniques to promote the cross-coupling of secondary alkyltrifluoroborates with aryl chlorides were not optimal for the primary alkyltrifluoroborates, thus demonstrating the value of parallel experimentation to develop novel, substrate specific results. PMID:19271726

  6. Reproducible model development in the cardiac electrophysiology Web Lab.

    PubMed

    Daly, Aidan C; Clerx, Michael; Beattie, Kylie A; Cooper, Jonathan; Gavaghan, David J; Mirams, Gary R

    2018-05-26

    The modelling of the electrophysiology of cardiac cells is one of the most mature areas of systems biology. This extended concentration of research effort brings with it new challenges, foremost among which is that of choosing which of these models is most suitable for addressing a particular scientific question. In a previous paper, we presented our initial work in developing an online resource for the characterisation and comparison of electrophysiological cell models in a wide range of experimental scenarios. In that work, we described how we had developed a novel protocol language that allowed us to separate the details of the mathematical model (the majority of cardiac cell models take the form of ordinary differential equations) from the experimental protocol being simulated. We developed a fully-open online repository (which we termed the Cardiac Electrophysiology Web Lab) which allows users to store and compare the results of applying the same experimental protocol to competing models. In the current paper we describe the most recent and planned extensions of this work, focused on supporting the process of model building from experimental data. We outline the necessary work to develop a machine-readable language to describe the process of inferring parameters from wet lab datasets, and illustrate our approach through a detailed example of fitting a model of the hERG channel using experimental data. We conclude by discussing the future challenges in making further progress in this domain towards our goal of facilitating a fully reproducible approach to the development of cardiac cell models. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Improving knowledge of garlic paste greening through the design of an experimental strategy.

    PubMed

    Aguilar, Miguel; Rincón, Francisco

    2007-12-12

    The furthering of scientific knowledge depends in part upon the reproducibility of experimental results. When experimental conditions are not set with sufficient precision, the resulting background noise often leads to poorly reproduced and even faulty experiments. An example of the catastrophic consequences of this background noise can be found in the design of strategies for the development of solutions aimed at preventing garlic paste greening, where reported results are contradictory. To avoid such consequences, this paper presents a two-step strategy based on the concept of experimental design. In the first step, the critical factors inherent to the problem are identified, using a 2(III)(7-4) Plackett-Burman experimental design, from a list of seven apparent critical factors (ACF); subsequently, the critical factors thus identified are considered as the factors to be optimized (FO), and optimization is performed using a Box and Wilson experimental design to identify the stationary point of the system. Optimal conditions for preventing garlic greening are examined after analysis of the complex process of green-pigment development, which involves both chemical and enzymatic reactions and is strongly influenced by pH, with an overall pH optimum of 4.5. The critical step in the greening process is the synthesis of thiosulfinates (allicin) from cysteine sulfoxides (alliin). Cysteine inhibits the greening process at this critical stage; no greening precursors are formed in the presence of around 1% cysteine. However, the optimal conditions for greening prevention are very sensitive both to the type of garlic and to manufacturing conditions. This suggests that optimal solutions for garlic greening prevention should be sought on a case-by-case basis, using the strategy presented here.

  8. Development of a Priest interferometer for measurement of the thermal expansion of a graphite epoxy in the temperature range 116-366 K

    NASA Technical Reports Server (NTRS)

    Short, J. S.; Hyer, M. W.; Bowles, D. E.; Tompkins, S. S.

    1982-01-01

    The thermal expansion behavior of graphite epoxy laminates between 116 and 366 degrees Kelvin was investigated using as implementation of the Priest interferometer concept. The design, construction and use of the interferometer along with the experimental results it was used to generate are described. The experimental program consisted of 25 tests on 25.4 mm and 6.35 mm wide, 8 ply pi/4 quasi-isotropic T300-5208 graphite/epoxy specimens and 3 tests on a 25.4 mm wide unidirectional specimen. Experimental results are presented for all tests along with a discussion of the interferometer's limitations and some possible improvements in its design.

  9. Bed inventory overturn in a circulating fluid bed riser with pant-leg structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jinjing Li; Wei Wang; Hairui Yang

    2009-05-15

    The special phenomenon, nominated as bed inventory overturn, in circulating fluid bed (CFB) riser with pant-leg structure was studied with model calculation and experimental work. A compounded pressure drop mathematic model was developed and validated with the experimental data in a cold experimental test rig. The model calculation results agree well with the measured data. In addition, the intensity of bed inventory overturn is directly proportional to the fluidizing velocity and is inversely proportional to the branch point height. The results in the present study provide significant information for the design and operation of a CFB boiler with pant-leg structure.more » 15 refs., 10 figs., 1 tab.« less

  10. Chromosomes and plant cell division in space

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1988-01-01

    The objectives were: examination of chromosomal aberrations; development of an experimental system; and engineering design units (EDUs) evaluation. Evaluation criteria are presented. Procedures were developed for shuttle-based investigations which result in the procurement of plant root tips for subsequent cytological examination.

  11. Mobile SATCOM Antenna Developments and Experimental Results of Land- and Aeronautical -Mobile Field Trials

    NASA Technical Reports Server (NTRS)

    Densmore, A. C.; Huang, J.

    1996-01-01

    This paper discusses several mobile satcom antenna systems that the Jet Propulsion Laboratory (JPL) has developed and demonstrated during the last ten years for land -and aeronautical mobile digital audio/data/video satellite communication.

  12. Determination of heat capacity of ionic liquid based nanofluids using group method of data handling technique

    NASA Astrophysics Data System (ADS)

    Sadi, Maryam

    2018-01-01

    In this study a group method of data handling model has been successfully developed to predict heat capacity of ionic liquid based nanofluids by considering reduced temperature, acentric factor and molecular weight of ionic liquids, and nanoparticle concentration as input parameters. In order to accomplish modeling, 528 experimental data points extracted from the literature have been divided into training and testing subsets. The training set has been used to predict model coefficients and the testing set has been applied for model validation. The ability and accuracy of developed model, has been evaluated by comparison of model predictions with experimental values using different statistical parameters such as coefficient of determination, mean square error and mean absolute percentage error. The mean absolute percentage error of developed model for training and testing sets are 1.38% and 1.66%, respectively, which indicate excellent agreement between model predictions and experimental data. Also, the results estimated by the developed GMDH model exhibit a higher accuracy when compared to the available theoretical correlations.

  13. Impact of the Project P.A.T.H.S. in the junior secondary school years: objective outcome evaluation based on eight waves of longitudinal data.

    PubMed

    Shek, Daniel T L; Ma, Cecilia M S

    2012-01-01

    To assess the effectiveness of the Tier 1 Program of the Project P.A.T.H.S., a randomized group trial with eight waves of data collected was carried out. At the fifth year of data collection, 19 experimental schools (n = 2, 662 students) and 24 control schools (n = 3, 272 students) participated in the study. Analyses based on individual growth curve modeling showed that participants in the experimental schools displayed better positive youth development than did participants in the control schools in terms of different indicators derived from the Chinese Positive Youth Development Scale, including moral competence and behavioral competence and cognitive behavioral competencies. Significant results were also found when examining the trajectories of psychological development among control and experimental participants who perceived the program to be beneficial. Findings based on longitudinal objective outcome evaluation strongly suggest that the Project P.A.T.H.S. is effective in promoting positive development in Hong Kong secondary school students.

  14. THE INFLUENCE OF INTRAVENOUSLY ADMINISTERED SURFACE-ACTIVE AGENTS ON THE DEVELOPMENT OF EXPERIMENTAL ATHEROSCLEROSIS IN RABBITS

    PubMed Central

    Kellner, Aaron; Correll, James W.; Ladd, Anthony T.

    1951-01-01

    A study was made of the relationship of blood lipids to the development of experimental atherosclerosis. Rabbits fed a diet containing cholesterol were found to develop hyperlipemia characterized by a great increase in blood cholesterol and a much lesser increase in blood phospholipids; after several weeks they manifested conspicuous atherosclerosis of the aorta, as has often been observed by others. Comparable rabbits fed the same diets containing added cholesterol were given in addition repeated intravenous injections of the surface-active agents Tween 80 and Triton A20; these animals developed hyperlipemia which was characterized by a great increase in blood cholesterol and an equivalent or even greater increase in phospholipids, and they had much less atherosclerosis than did the control rabbits fed cholesterol alone. In further experiments it was observed that repeated intravenous injections of Tween 80 did not result in resorption of previously induced atherosclerosis in rabbits. The findings are discussed in relation to the pathogenesis of natural and experimental atherosclerosis. PMID:14824410

  15. Computational fluid dynamic modeling of a medium-sized surface mine blasthole drill shroud

    PubMed Central

    Zheng, Y.; Reed, W.R.; Zhou, L.; Rider, J.P.

    2016-01-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) recently developed a series of models using computational fluid dynamics (CFD) to study airflows and respirable dust distribution associated with a medium-sized surface blasthole drill shroud with a dry dust collector system. Previously run experiments conducted in NIOSH’s full-scale drill shroud laboratory were used to validate the models. The setup values in the CFD models were calculated from experimental data obtained from the drill shroud laboratory and measurements of test material particle size. Subsequent simulation results were compared with the experimental data for several test scenarios, including 0.14 m3/s (300 cfm) and 0.24 m3/s (500 cfm) bailing airflow with 2:1, 3:1 and 4:1 dust collector-to-bailing airflow ratios. For the 2:1 and 3:1 ratios, the calculated dust concentrations from the CFD models were within the 95 percent confidence intervals of the experimental data. This paper describes the methodology used to develop the CFD models, to calculate the model input and to validate the models based on the experimental data. Problem regions were identified and revealed by the study. The simulation results could be used for future development of dust control methods for a surface mine blasthole drill shroud. PMID:27932851

  16. The techniques of quality operations computational and experimental researches of the launch vehicles in the drawing-board stage

    NASA Astrophysics Data System (ADS)

    Rozhaeva, K.

    2018-01-01

    The aim of the researchis the quality operations of the design process at the stage of research works on the development of active on-Board system of the launch vehicles spent stages descent with liquid propellant rocket engines by simulating the gasification process of undeveloped residues of fuel in the tanks. The design techniques of the gasification process of liquid rocket propellant components residues in the tank to the expense of finding and fixing errors in the algorithm calculation to increase the accuracy of calculation results is proposed. Experimental modelling of the model liquid evaporation in a limited reservoir of the experimental stand, allowing due to the false measurements rejection based on given criteria and detected faults to enhance the results reliability of the experimental studies; to reduce the experiments cost.

  17. A strain-mediated corrosion model for bioabsorbable metallic stents.

    PubMed

    Galvin, E; O'Brien, D; Cummins, C; Mac Donald, B J; Lally, C

    2017-06-01

    This paper presents a strain-mediated phenomenological corrosion model, based on the discrete finite element modelling method which was developed for use with the ANSYS Implicit finite element code. The corrosion model was calibrated from experimental data and used to simulate the corrosion performance of a WE43 magnesium alloy stent. The model was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile. The non-linear plastic strain model, extrapolated from the experimental data, was also found to adequately capture the corrosion-induced reduction in the radial stiffness of the stent over time. The model developed will help direct future design efforts towards the minimisation of plastic strain during device manufacture, deployment and in-service, in order to reduce corrosion rates and prolong the mechanical integrity of magnesium devices. The need for corrosion models that explore the interaction of strain with corrosion damage has been recognised as one of the current challenges in degradable material modelling (Gastaldi et al., 2011). A finite element based plastic strain-mediated phenomenological corrosion model was developed in this work and was calibrated based on the results of the corrosion experiments. It was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile and the corrosion-induced reduction in the radial stiffness of the stent over time. To the author's knowledge, the results presented here represent the first experimental calibration of a plastic strain-mediated corrosion model of a corroding magnesium stent. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Experimental Results from the Thermal Energy Storage-1 (TES-1) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Tolbert, Carol; Jacqmin, David

    1995-01-01

    The Thermal Energy Storage-1 (TES-1) is a flight experiment that flew on the Space Shuttle Columbia (STS-62), in March 1994, as part of the OAST-2 mission. TES-1 is the first experiment in a four experiment suite designed to provide data for understanding the long duration microgravity behavior of thermal energy storage fluoride salts that undergo repeated melting and freezing. Such data have never been obtained before and have direct application for the development of space-based solar dynamic (SD) power systems. These power systems will store solar energy in a thermal energy salt such as lithium fluoride or calcium fluoride. The stored energy is extracted during the shade portion of the orbit. This enables the solar dynamic power system to provide constant electrical power over the entire orbit. Analytical computer codes have been developed for predicting performance of a spaced-based solar dynamic power system. Experimental verification of the analytical predictions is needed prior to using the analytical results for future space power design applications. The four TES flight experiments will be used to obtain the needed experimental data. This paper will focus on the flight results from the first experiment, TES-1, in comparison to the predicted results from the Thermal Energy Storage Simulation (TESSIM) analytical computer code. The TES-1 conceptual development, hardware design, final development, and system verification testing were accomplished at the NASA lewis Research Center (LeRC). TES-1 was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).

  19. A Comparison of Experimental and Theoretical Results for Labyrinth Gas Seals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Scharrer, Joseph Kirk

    1987-01-01

    The basic equations are derived for a two control volume model for compressible flow in a labyrinth seal. The flow is assumed to be completely turbulent and isoenergetic. The wall friction factors are determined using the Blasius formula. Jet flow theory is used for the calculation of the recirculation velocity in the cavity. Linearized zeroth and first order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth order pressure distribution is found by satisfying the leakage equation. The circumferential velocity distribution is determined by satisfying the momentum equations. The first order equations are solved by a separation of variable solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are compared to experimental test results.

  20. SCES2016 Summary: Experiment

    DOE PAGES

    Thompson, Joe David

    2016-08-03

    Experimental results presented during the 2016 International Conference on Strongly Correlated Electron Systems (SECS2016) not only reflect the breadth of topics being explored in the field of strongly correlated systems but also the remarkable progress in discovery and understanding that is being made from their study. Lastly, this brief summary highlights just a few of the exciting experimental developments discussed at SCES2016.

  1. Forest Service Experimental Forests and long-term data sets: stories of their meaning to station directors

    Treesearch

    A.E. Lugo; B. Eav; G.S. Foster; M. Rains; J. Reaves; D.J. Stouder

    2014-01-01

    As Forest Service Research and Development worked to prepare this book reporting important results from long-term research conducted on U.S. Department of Agriculture Forest Service Experimental Forests and Ranges, the station directors added a chapter to highlight addditional accounts of long-term research, its benefits to land managers and policy makers, and lessons...

  2. A framework for accelerated phototrophic bioprocess development: integration of parallelized microscale cultivation, laboratory automation and Kriging-assisted experimental design.

    PubMed

    Morschett, Holger; Freier, Lars; Rohde, Jannis; Wiechert, Wolfgang; von Lieres, Eric; Oldiges, Marco

    2017-01-01

    Even though microalgae-derived biodiesel has regained interest within the last decade, industrial production is still challenging for economic reasons. Besides reactor design, as well as value chain and strain engineering, laborious and slow early-stage parameter optimization represents a major drawback. The present study introduces a framework for the accelerated development of phototrophic bioprocesses. A state-of-the-art micro-photobioreactor supported by a liquid-handling robot for automated medium preparation and product quantification was used. To take full advantage of the technology's experimental capacity, Kriging-assisted experimental design was integrated to enable highly efficient execution of screening applications. The resulting platform was used for medium optimization of a lipid production process using Chlorella vulgaris toward maximum volumetric productivity. Within only four experimental rounds, lipid production was increased approximately threefold to 212 ± 11 mg L -1  d -1 . Besides nitrogen availability as a key parameter, magnesium, calcium and various trace elements were shown to be of crucial importance. Here, synergistic multi-parameter interactions as revealed by the experimental design introduced significant further optimization potential. The integration of parallelized microscale cultivation, laboratory automation and Kriging-assisted experimental design proved to be a fruitful tool for the accelerated development of phototrophic bioprocesses. By means of the proposed technology, the targeted optimization task was conducted in a very timely and material-efficient manner.

  3. Development of a Model for Measuring Scientific Processing Skills Based on Brain-Imaging Technology: Focused on the Experimental Design Process

    ERIC Educational Resources Information Center

    Lee, Il-Sun; Byeon, Jung-Ho; Kim, Young-shin; Kwon, Yong-Ju

    2014-01-01

    The purpose of this study was to develop a model for measuring experimental design ability based on functional magnetic resonance imaging (fMRI) during biological inquiry. More specifically, the researchers developed an experimental design task that measures experimental design ability. Using the developed experimental design task, they measured…

  4. Theoretical analysis, design and development of a 27-MHz folded loop antenna as a potential applicator in hyperthermia treatment.

    PubMed

    Kouloulias, Vassilis; Karanasiou, Irene; Giamalaki, Melina; Matsopoulos, George; Kouvaris, John; Kelekis, Nikolaos; Uzunoglu, Nikolaos

    2015-02-01

    A hyperthermia system using a folded loop antenna applicator at 27 MHz for soft tissue treatment was investigated both theoretically and experimentally to evaluate its clinical value. The electromagnetic analysis of a 27-MHz folded loop antenna for use in human tissue was based on a customised software tool and led to the design and development of the proposed hyperthermia system. The system was experimentally validated using specific absorption rate (SAR) distribution estimations through temperature distribution measurements of a muscle tissue phantom after electromagnetic exposure. Various scenarios for optimal antenna positioning were also performed. Comparison of the theoretical and experimental analysis results shows satisfactory agreement. The SAR level of 50% reaches 8 cm depth in the tissue phantom. Thus, based on the maximum observed SAR values that were of the order of 100 W/kg, the antenna specified is suitable for deep tumour heating. Theoretical and experimental SAR distribution results as derived from this study are in agreement. The proposed folded loop antenna seems appropriate for use in hyperthermia treatment, achieving proper planning and local treatment of deeply seated affected areas and lesions.

  5. Differential Angiogenic Regulation of Experimental Colitis

    PubMed Central

    Chidlow, John H.; Langston, Will; Greer, James J.M.; Ostanin, Dmitry; Abdelbaqi, Maisoun; Houghton, Jeffery; Senthilkumar, Annamalai; Shukla, Deepti; Mazar, Andrew P.; Grisham, Matthew B.; Kevil, Christopher G.

    2006-01-01

    Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders of the intestinal tract with unknown multifactorial etiology that, among other things, result in alteration and dysfunction of the intestinal microvasculature. Clinical observations of increased colon microvascular density during IBD have been made. However, there have been no reports investigating the physiological or pathological importance of angiogenic stimulation during the development of intestinal inflammation. Here we report that the dextran sodium sulfate and CD4+CD45RBhigh T-cell transfer models of colitis stimulate angiogenesis that results in increased blood vessel density concomitant with increased histopathology, suggesting that the neovasculature contributes to tissue damage during colitis. We also show that leukocyte infiltration is an obligatory requirement for the stimulation of angiogenesis. The angiogenic response during experimental colitis was differentially regulated in that the production of various angiogenic mediators was diverse between the two models with only a small group of molecules being similarly controlled. Importantly, treatment with the anti-angiogenic agent thalidomide or ATN-161 significantly reduced angiogenic activity and associated tissue histopathology during experimental colitis. Our findings identify a direct pathological link between angiogenesis and the development of experimental colitis, representing a novel therapeutic target for IBD. PMID:17148665

  6. Scientific reasoning in early and middle childhood: the development of domain-general evidence evaluation, experimentation, and hypothesis generation skills.

    PubMed

    Piekny, Jeanette; Maehler, Claudia

    2013-06-01

    According to Klahr's (2000, 2005; Klahr & Dunbar, 1988) Scientific Discovery as Dual Search model, inquiry processes require three cognitive components: hypothesis generation, experimentation, and evidence evaluation. The aim of the present study was to investigate (a) when the ability to evaluate perfect covariation, imperfect covariation, and non-covariation evidence emerges, (b) when experimentation emerges, (c) when hypothesis generation skills emerge, and (d), whether these abilities develop synchronously during childhood. We administered three scientific reasoning tasks referring to the three components to 223 children of five age groups (from age 4.0 to 13.5 years). Our results show that the three cognitive components of domain-general scientific reasoning emerge asynchronously. The development of domain-general scientific reasoning begins with the ability to handle unambiguous data, progresses to the interpretation of ambiguous data, and leads to a flexible adaptation of hypotheses according to the sufficiency of evidence. When children understand the relation between the level of ambiguity of evidence and the level of confidence in hypotheses, the ability to differentiate conclusive from inconclusive experiments accompanies this development. Implications of these results for designing science education concepts for young children are briefly discussed. © 2012 The British Psychological Society.

  7. Trial Development of a Mobile Feeding Assistive Robotic Arm for People with Physical Disabilities of the Extremities

    NASA Astrophysics Data System (ADS)

    Uehara, Hideyuki; Higa, Hiroki; Soken, Takashi; Namihira, Yoshinori

    A mobile feeding assistive robotic arm for people with physical disabilities of the extremities has been developed in this paper. This system is composed of a robotic arm, microcontroller, and its interface. The main unit of the robotic arm can be contained in a laptop computer's briefcase. Its weight is 5kg, including two 12-V lead acid rechargeable batteries. This robotic arm can be also mounted on a wheelchair. To verify performance of the mobile robotic arm system, drinking tea task was experimentally performed by two able-bodied subjects as well as three persons suffering from muscular dystrophy. From the experimental results, it was clear that they could smoothly carry out the drinking task, and that the robotic arm could firmly grasp a commercially available 500-ml plastic bottle. The eating task was also performed by the two able-bodied subjects. The experimental results showed that they could eat porridge by using a spoon without any difficulty.

  8. Experimental identification of closely spaced modes using NExT-ERA

    NASA Astrophysics Data System (ADS)

    Hosseini Kordkheili, S. A.; Momeni Massouleh, S. H.; Hajirezayi, S.; Bahai, H.

    2018-01-01

    This article presents a study on the capability of the time domain OMA method, NExT-ERA, to identify closely spaced structural dynamic modes. A survey in the literature reveals that few experimental studies have been conducted on the effectiveness of the NExT-ERA methodology in case of closely spaced modes specifically. In this paper we present the formulation for NExT-ERA. This formulation is then implemented in an algorithm and a code, developed in house to identify the modal parameters of different systems using their generated time history data. Some numerical models are firstly investigated to validate the code. Two different case studies involving a plate with closely spaced modes and a pulley ring with greater extent of closeness in repeated modes are presented. Both structures are excited by random impulses under the laboratory condition. The resulting time response acceleration data are then used as input in the developed code to extract modal parameters of the structures. The accuracy of the results is checked against those obtained from experimental tests.

  9. Development and prototype testing of MgCl 2 /graphite foam latent heat thermal energy storage system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Dileep; Yu, Wenhua; Zhao, Weihuan

    Composites of graphite foam infiltrated with a magnesium chloride phase-change material have been developed as high-temperature thermal energy storage media for concentrated solar power applications. This storage medium provides a high thermal energy storage density, a narrow operating temperature range, and excellent heat transfer characteristics. In this study, experimental investigations were conducted on laboratory-scale prototypes with magnesium chloride/graphite foam composite as the latent heat thermal energy storage system. Prototypes were designed and built to monitor the melt front movement during the charging/discharging tests. A test loop was built to ensure the charging/discharging of the prototypes at temperatures > 700 degreesmore » C. Repeated thermal cycling experiments were carried out on the fabricated prototypes, and the experimental temperature profiles were compared to the predicted results from numerical simulations using COMSOL Multiphysics software. Experimental results were found to be in good agreement with the simulations to validate the thermal models.« less

  10. Analyzing and Modelling the Corrosion Behavior of Ni/Al2O3, Ni/SiC, Ni/ZrO2 and Ni/Graphene Nanocomposite Coatings

    PubMed Central

    Saeed, Adil; Braun, Wolfgang; Bajwa, Rizwan; Rafique, Saqib

    2017-01-01

    A study has been presented on the effects of intrinsic mechanical parameters, such as surface stress, surface elastic modulus, surface porosity, permeability and grain size on the corrosion failure of nanocomposite coatings. A set of mechano-electrochemical equations was developed by combining the popular Butler–Volmer and Duhem expressions to analyze the direct influence of mechanical parameters on the electrochemical reactions in nanocomposite coatings. Nanocomposite coatings of Ni with Al2O3, SiC, ZrO2 and Graphene nanoparticles were studied as examples. The predictions showed that the corrosion rate of the nanocoatings increased with increasing grain size due to increase in surface stress, surface porosity and permeability of nanocoatings. A detailed experimental study was performed in which the nanocomposite coatings were subjected to an accelerated corrosion testing. The experimental results helped to develop and validate the equations by qualitative comparison between the experimental and predicted results showing good agreement between the two. PMID:29068395

  11. Comparative Evaluation of Enalapril and Losartan in Pharmacological Correction of Experimental Osteoporosis and Fractures of Its Background

    PubMed Central

    Rajkumar, D. S. R.; Faitelson, A. V.; Gudyrev, O. S.; Dubrovin, G. M.; Pokrovski, M. V.; Ivanov, A. V.

    2013-01-01

    In the experiment on the white Wistar female rats (222 animals), the osteoprotective effect of enalapril and losartan was studied on experimental models of osteoporosis and osteoporotic fractures. It was revealed that in rats after ovariectomy, the endothelial dysfunction of microcirculation vessels of osteal tissue develops, resulting in occurrence of osteoporosis and delay of consolidation of experimental fractures. Enalapril and losartan prevented the reduction of microcirculation in bone, which was reflected in slowing the thinning of bone trabeculae and in preventing the occurrence of these microfractures, as well as increasing quality of experimental fractures healing. PMID:23401845

  12. A comparison of experimental and theoretical results for rotordynamic coefficients of four annular gas seals

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Nelson, C. C.; Elrod, D.; Nicks, C.

    1985-01-01

    The test facility and initial test program developed to experimentally measure the fluid forces induced by annular gas seals is described. A comparison of theoretically predicted and experimentally obtained data for smooth and honeycomb seals is provided. And a comparison of experimental data from the tests of three smooth-rotor/smooth-stator seals is provided. The leakage of the working fluid through the seal, the pressure gradient along the seal length, entrance pressure-loss data, and rotordynamic coefficients provide a basis for comparison. A short discussion on seal theory is included, and various rotordynamic coefficient identification schemes are described.

  13. Feature Selection and Effective Classifiers.

    ERIC Educational Resources Information Center

    Deogun, Jitender S.; Choubey, Suresh K.; Raghavan, Vijay V.; Sever, Hayri

    1998-01-01

    Develops and analyzes four algorithms for feature selection in the context of rough set methodology. Experimental results confirm the expected relationship between the time complexity of these algorithms and the classification accuracy of the resulting upper classifiers. When compared, results of upper classifiers perform better than lower…

  14. An assessment of the effect of an experimental environmental education programme (Man and Nutrition) on Kuwaiti primary school pupils (Grade Four)

    NASA Astrophysics Data System (ADS)

    Esmaeel, Yaqoub Y. R.

    The educational system in Kuwait is undergoing some fundamental changes, and the need for reform of environmental education has become urgent as a result of the concerns of both the government and the public over environmental issues. It is in such a context that this research was conducted. The research was intended to develop, implement, and evaluate an experimental programme Man and Nutrition for Kuwaiti primary school pupils, aimed at developing a positive environmental achievement, Information about the present status of environmental concepts and environmental education in Kuwait was obtained from preliminary study such as interviews and curriculum analysis. Interviews were conducted in ten different primary schools in four districts in Kuwait, which involved 31 pupils in total, hi addition, information was obtained by analysis of the science curriculum for fourth grade primary schools. The preliminary study was carried out during the period April to October 1998. The results of the preliminary study served to aid the development of an experimental teaching programme. The experimental programme Man and Nutrition consisted of eight lessons printed in two booklets, a teacher's guide and pupil's textbook. The research included a review of the relevant literature examining the development of environmental programmes and activities in a number of countries, which were selected because of their environmental education approaches, and the variety of their environmental conditions. Pilot testing of the teaching programmes was carried out to ascertain the appropriateness of the materials and the data collecting instruments used for the evaluation of the main experimental study. The main study group included 115 pupils in four primary schools and four teachers selected in Kuwait. Data collecting included pre and post-tests and the course evaluation by teachers using semi-structured interviews. Statistical analysis of data obtained was carried out using the SPSS/PC+ computer programme. The major results of this study indicated that: (1) The present science programme of the fourth grade does not sufficiently cover the concepts identified as environmental concepts. (2) The experimental programme was significantly effective in increasing the pupils' knowledge regarding the environmental programme Man and Nutrition. (3) A significant difference in the mean scores was found between boys and girls in the post-achievement test. (4) There was a significant difference in the pupils' mean scores between the educational districts in the post-achievement test. (5) The experimental programme had similar influences on pupils' overall achievement by parents' education. Based upon the above major research results, the study puts forward some practical recommendations regarding the development of a school environmental education programme. Since the study is one of the first of its kind in Kuwait, it also suggests a few possible areas for future research. It is hoped that the research will lead to a worthwhile primary school environmental education.

  15. Progress on Developing Sonic Infrared Imaging for Defect Detection in Composite Structures

    NASA Astrophysics Data System (ADS)

    Han, Xiaoyan; He, Qi; Li, Wei; Newaz, Golam; Favro, Lawrence D.; Thomas, Robert L.

    2010-02-01

    At last year's QNDE conference, we presented our development of Sonic IR imaging technology in metal structures, with results from both experimental studies and theoretical computing. In the latest aircraft designs, such as the B787 from Boeing, composites have become the major materials in structures such as the fuselage and wings. This is in contrast to composites' use only in auxiliary components such as flaps and spoilers in the past. With today's advanced technology of fabrication, it is expected the new materials can be put in use in even more aircraft structures due to its light weight and high strength (high strength-to-weight ratio), high specific stiffness, tailorability of properties, design flexibility etc. Especially, with increases in fuel cost, reducing the aircraft's body weight becomes more and more appealing. In this presentation, we describe the progress on our development of Sonic IR imaging for aircraft composite structures. In particular, we describe the some unexpected results discovered while modeling delaminations. These results were later experimentally verified with an engineered delamination.

  16. Unified Approach to the Biomechanics of Dental Implantology

    NASA Technical Reports Server (NTRS)

    Grenoble, D. E.; Knoell, A. C.

    1973-01-01

    The human need for safe and effective dental implants is well-recognized. Although many implant designs have been tested and are in use today, a large number have resulted in clinical failure. These failures appear to be due to biomechanical effects, as well as biocompatibility and surgical factors. A unified approach is proposed using multidisciplinary systems technology, for the study of the biomechanical interactions between dental implants and host tissues. The approach progresses from biomechanical modeling and analysis, supported by experimental investigations, through implant design development, clinical verification, and education of the dental practitioner. The result of the biomechanical modeling, analysis, and experimental phases would be the development of scientific design criteria for implants. Implant designs meeting these criteria would be generated, fabricated, and tested in animals. After design acceptance, these implants would be tested in humans, using efficient and safe surgical and restorative procedures. Finally, educational media and instructional courses would be developed for training dental practitioners in the use of the resulting implants.

  17. Benchmark tests for a Formula SAE Student car prototyping

    NASA Astrophysics Data System (ADS)

    Mariasiu, Florin

    2011-12-01

    Aerodynamic characteristics of a vehicle are important elements in its design and construction. A low drag coefficient brings significant fuel savings and increased engine power efficiency. In designing and developing vehicles trough computer simulation process to determine the vehicles aerodynamic characteristics are using dedicated CFD (Computer Fluid Dynamics) software packages. However, the results obtained by this faster and cheaper method, are validated by experiments in wind tunnels tests, which are expensive and were complex testing equipment are used in relatively high costs. Therefore, the emergence and development of new low-cost testing methods to validate CFD simulation results would bring great economic benefits for auto vehicles prototyping process. This paper presents the initial development process of a Formula SAE Student race-car prototype using CFD simulation and also present a measurement system based on low-cost sensors through which CFD simulation results were experimentally validated. CFD software package used for simulation was Solid Works with the FloXpress add-on and experimental measurement system was built using four piezoresistive force sensors FlexiForce type.

  18. Development and demonstration of a flutter-suppression system using active controls. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Abel, I.; Gray, D. L.

    1975-01-01

    The application of active control technology to suppress flutter was demonstrated successfully in the transonic dynamics tunnel with a delta-wing model. The model was a simplified version of a proposed supersonic transport wing design. An active flutter suppression method based on an aerodynamic energy criterion was verified by using three different control laws. The first two control laws utilized both leading-edge and trailing-edge active control surfaces, whereas the third control law required only a single trailing-edge active control surface. At a Mach number of 0.9 the experimental results demonstrated increases in the flutter dynamic pressure from 12.5 percent to 30 percent with active controls. Analytical methods were developed to predict both open-loop and closed-loop stability, and the results agreed reasonably well with the experimental results.

  19. Investigations on Thermal Conductivities of Jute and Banana Fiber Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Pujari, Satish; Ramakrishna, Avasarala; Balaram Padal, Korabu Tulasi

    2017-04-01

    The Jute and Banana fibers are used as reinforcement in epoxy resin matrix for making partially green biodegradable material composite via hand lay-up technique. The thermal conductivity of the jute fiber epoxy composites and banana fiber epoxy composites at different volume fraction of the fiber is determined experimentally by using guarded heat flow meter method. The experimental results had shown that thermal conductivity of the composites decrease with an increase in the fiber content. Experimental results are compared with theoretical models (Series model, Hashin model and Maxwell model) to describe the variation of the thermal conductivity versus the volume fraction of the fiber. Good agreement between theoretical and experimental results is observed. Thermal conductivity of Banana fiber composite is less when compared to that of Jute composite which indicates banana is a good insulator and also the developed composites can be used as insulating materials in building, automotive industry and in steam pipes to save energy by reducing rate of heat transfer.

  20. Experimental and numerical investigation of the nonlinear dynamics of compliant mechanisms for deployable structures

    NASA Astrophysics Data System (ADS)

    Dewalque, Florence; Schwartz, Cédric; Denoël, Vincent; Croisier, Jean-Louis; Forthomme, Bénédicte; Brüls, Olivier

    2018-02-01

    This paper studies the dynamics of tape springs which are characterised by a highly geometrical nonlinear behaviour including buckling, the formation of folds and hysteresis. An experimental set-up is designed to capture these complex nonlinear phenomena. The experimental data are acquired by the means of a 3D motion analysis system combined with a synchronised force plate. Deployment tests show that the motion can be divided into three phases characterised by different types of folds, frequencies of oscillation and damping behaviours. Furthermore, the reproducibility quality of the dynamic and quasi-static results is validated by performing a large number of tests. In parallel, a nonlinear finite element model is developed. The required model parameters are identified based on simple experimental tests such as static deformed configurations and small amplitude vibration tests. In the end, the model proves to be well correlated with the experimental results in opposite sense bending, while in equal sense, both the experimental set-up and the numerical model are particularly sensitive to the initial conditions.

  1. Development of Experimental Icing Simulation Capability for Full-Scale Swept Wings: Hybrid Design Process, Years 1 and 2

    NASA Technical Reports Server (NTRS)

    Fujiwara, Gustavo; Bragg, Mike; Triphahn, Chris; Wiberg, Brock; Woodard, Brian; Loth, Eric; Malone, Adam; Paul, Bernard; Pitera, David; Wilcox, Pete; hide

    2017-01-01

    This report presents the key results from the first two years of a program to develop experimental icing simulation capabilities for full-scale swept wings. This investigation was undertaken as a part of a larger collaborative research effort on ice accretion and aerodynamics for large-scale swept wings. Ice accretion and the resulting aerodynamic effect on large-scale swept wings presents a significant airplane design and certification challenge to air frame manufacturers, certification authorities, and research organizations alike. While the effect of ice accretion on straight wings has been studied in detail for many years, the available data on swept-wing icing are much more limited, especially for larger scales.

  2. Evaluation of laser ablation crater relief by white light micro interferometer

    NASA Astrophysics Data System (ADS)

    Gurov, Igor; Volkov, Mikhail; Zhukova, Ekaterina; Ivanov, Nikita; Margaryants, Nikita; Potemkin, Andrey; Samokhvalov, Andrey; Shelygina, Svetlana

    2017-06-01

    A multi-view scanning method is suggested to assess a complicated surface relief by white light interferometer. Peculiarities of the method are demonstrated on a special object in the form of quadrangular pyramid cavity, which is formed at measurement of micro-hardness of materials using a hardness gauge. An algorithm of the joint processing of multi-view scanning results is developed that allows recovering correct relief values. Laser ablation craters were studied experimentally, and their relief was recovered using the developed method. It is shown that the multi-view scanning reduces ambiguity when determining the local depth of the laser ablation craters micro relief. Results of experimental studies of the multi-view scanning method and data processing algorithm are presented.

  3. Surface acoustic wave devices for harsh environment wireless sensing

    DOE PAGES

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; ...

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensormore » with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.« less

  4. Theoretical and Experimental Studies of the Transonic Flow Field and Associated Boundary Conditions near a Longitudinally-Slotted Wind-Tunnel Wall. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Everhart, Joel Lee

    1988-01-01

    A theoretical examination of the slotted-wall flow field is conducted to determine the appropriate wall pressure drop (or boundary condition) equation. This analysis improves the understanding of the fluid physics of these types of flow fields and helps in evaluating the uncertainties and limitations existing in previous mathematical developments. It is shown that the resulting slotted-wall boundary condition contains contributions from the airfoil-induced streamline curvature and the non-linear, quadratic, slot crossflow in addition to an often neglected linear term which results from viscous shearing in the slot. Existing and newly acquired experimental data are examined in the light of this formulation and theoretical developments.

  5. Development of large wind energy power generation system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The background and development of an experimental 100 kW wind-energy generation system are described, and the results of current field tests are presented. The experimental wind turbine is a two-bladed down-wind horizontal axis propeller type with a 29.4 m diameter rotor and a tower 28 m in height. The plant was completed in March, 1983, and has been undergoing trouble-free tests since then. The present program calls for field tests during two years from fiscal 1983 to 1984. The development of technologies relating to the linkage and operation of wind-energy power generation system networks is planned along with the acquisition of basic data for the development of a large-scale wind energy power generation system.

  6. Geometrical quality evaluation in laser cutting of Inconel-718 sheet by using Taguchi based regression analysis and particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Shrivastava, Prashant Kumar; Pandey, Arun Kumar

    2018-03-01

    The Inconel-718 is one of the most demanding advanced engineering materials because of its superior quality. The conventional machining techniques are facing many problems to cut intricate profiles on these materials due to its minimum thermal conductivity, minimum elastic property and maximum chemical affinity at magnified temperature. The laser beam cutting is one of the advanced cutting method that may be used to achieve the geometrical accuracy with more precision by the suitable management of input process parameters. In this research work, the experimental investigation during the pulsed Nd:YAG laser cutting of Inconel-718 has been carried out. The experiments have been conducted by using the well planned orthogonal array L27. The experimentally measured values of different quality characteristics have been used for developing the second order regression models of bottom kerf deviation (KD), bottom kerf width (KW) and kerf taper (KT). The developed models of different quality characteristics have been utilized as a quality function for single-objective optimization by using particle swarm optimization (PSO) method. The optimum results obtained by the proposed hybrid methodology have been compared with experimental results. The comparison of optimized results with the experimental results shows that an individual improvement of 75%, 12.67% and 33.70% in bottom kerf deviation, bottom kerf width, and kerf taper has been observed. The parametric effects of different most significant input process parameters on quality characteristics have also been discussed.

  7. Computational Modelling of Patella Femoral Kinematics During Gait Cycle and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Maiti, Raman

    2016-06-01

    The effect of loading and boundary conditions on patellar mechanics is significant due to the complications arising in patella femoral joints during total knee replacements. To understand the patellar mechanics with respect to loading and motion, a computational model representing the patella femoral joint was developed and validated against experimental results. The computational model was created in IDEAS NX and simulated in MSC ADAMS/VIEW software. The results obtained in the form of internal external rotations and anterior posterior displacements for a new and experimentally simulated specimen for patella femoral joint under standard gait condition were compared with experimental measurements performed on the Leeds ProSim knee simulator. A good overall agreement between the computational prediction and the experimental data was obtained for patella femoral kinematics. Good agreement between the model and the past studies was observed when the ligament load was removed and the medial lateral displacement was constrained. The model is sensitive to ±5 % change in kinematics, frictional, force and stiffness coefficients and insensitive to time step.

  8. Experimental study and empirical prediction of fuel flow parameters under air evolution conditions

    NASA Astrophysics Data System (ADS)

    Kitanina, E. E.; Kitanin, E. L.; Bondarenko, D. A.; Kravtsov, P. A.; Peganova, M. M.; Stepanov, S. G.; Zherebzov, V. L.

    2017-11-01

    Air evolution in kerosene under the effect of gravity flow with various hydraulic resistances in the pipeline was studied experimentally. The study was conducted at pressure ranging from 0.2 to 1.0 bar and temperature varying between -20°C and +20°C. Through these experiments, the oversaturation limit beyond which dissolved air starts evolving intensively from the fuel was established and the correlations for the calculation of pressure losses and air evolution on local loss elements were obtained. A method of calculating two-phase flow behaviour in a titled pipeline segment with very low mass flow quality and fairly high volume flow quality was developed. The complete set of empirical correlations obtained by experimental analysis was implemented in the engineering code. The software simulation results were repeatedly verified against our experimental findings and Airbus test data to show that the two-phase flow simulation agrees quite well with the experimental results obtained in the complex branched pipelines.

  9. Computational Modelling of Patella Femoral Kinematics During Gait Cycle and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Maiti, Raman

    2018-06-01

    The effect of loading and boundary conditions on patellar mechanics is significant due to the complications arising in patella femoral joints during total knee replacements. To understand the patellar mechanics with respect to loading and motion, a computational model representing the patella femoral joint was developed and validated against experimental results. The computational model was created in IDEAS NX and simulated in MSC ADAMS/VIEW software. The results obtained in the form of internal external rotations and anterior posterior displacements for a new and experimentally simulated specimen for patella femoral joint under standard gait condition were compared with experimental measurements performed on the Leeds ProSim knee simulator. A good overall agreement between the computational prediction and the experimental data was obtained for patella femoral kinematics. Good agreement between the model and the past studies was observed when the ligament load was removed and the medial lateral displacement was constrained. The model is sensitive to ±5 % change in kinematics, frictional, force and stiffness coefficients and insensitive to time step.

  10. An experimental and modeling study of isothermal charge/discharge behavior of commercial Ni-MH cells

    NASA Astrophysics Data System (ADS)

    Pan, Y. H.; Srinivasan, V.; Wang, C. Y.

    In this study, a previously developed nickel-metal hydride (Ni-MH) battery model is applied in conjunction with experimental characterization. Important geometric parameters, including the active surface area and micro-diffusion length for both electrodes, are measured and incorporated in the model. The kinetic parameters of the oxygen evolution reaction are also characterized using constant potential experiments. Two separate equilibrium equations for the Ni electrode, one for charge and the other for discharge, are determined to provide a better description of the electrode hysteresis effect, and their use results in better agreement of simulation results with experimental data on both charge and discharge. The Ni electrode kinetic parameters are re-calibrated for the battery studied. The Ni-MH cell model coupled with the updated electrochemical properties is then used to simulate a wide range of experimental discharge and charge curves with satisfactory agreement. The experimentally validated model is used to predict and compare various charge algorithms so as to provide guidelines for application-specific optimization.

  11. A Study of Collaborative Software Development Using Groupware Tools

    ERIC Educational Resources Information Center

    Defranco-Tommarello, Joanna; Deek, Fadi P.

    2005-01-01

    The experimental results of a collaborative problem solving and program development model that takes into consideration the cognitive and social activities that occur during software development is presented in this paper. This collaborative model is based on the Dual Common Model that focuses on individual cognitive aspects of problem solving and…

  12. A school-based health promotion program for stressed nursing students in Taiwan.

    PubMed

    Hsieh, Pei-Lin

    2011-09-01

    : Nursing students face both clinical and academic stress. Extensive theoretical and research literature suggests that peer support and regular exercise are critically important and can efficiently manage stress for nursing students. : The purpose of this study was to investigate the effect of a school-based health promotion program in a group physical activity intervention and peer support program for stressed nursing students. : This study used a quasi-experimental design to collect information and collected data from a stress questionnaire, semistructured questionnaire, and group discussion. Participants included 77 nursing students at an institute of technology in northern Taiwan. Participants were randomly assigned into experimental (n = 37) and control (n = 40) groups. Program duration was 16 weeks. Participants were selected based on their assessment results as having moderate or severe levels of stress. All participants in the experimental group took part in a group physical activity for 30 minutes three times a week. Eight weeks later, the researcher invited each group to discuss their feelings and stress coping strategies. Both groups completed pretest and posttest stress questionnaires. Quantitative data were analyzed using SPSS 14.0 Statistical Package for Windows, and qualitative data from each group discussion were analyzed using content analysis. : Results revealed that level of stress was statistically decreased in the experimental group. Posttest stress levels were significantly different in experimental and control groups. The results suggested that students who participated in the intervention had less stress than did those in the control group after the intervention. Those in the experimental group held positive views of peer support and physical activity. : The results of this study confirmed the efficacy of school-based health promotion programs in reducing stress in nursing students. Findings may provide educators with information to assist their developing effective health promotion programs to manage stress for their students. This study can also help students develop personal coping strategies through physical activity and peer support.

  13. Mechanisms of carbon dimer formation in colliding laser-produced carbon plasmas

    NASA Astrophysics Data System (ADS)

    Sizyuk, Tatyana; Oliver, John; Diwakar, Prasoon K.

    2017-07-01

    It has been demonstrated that the hot stagnation region formed during the collision of laser-produced carbon plasmas is rich with carbon dimers which have been shown to be synthesized into large carbon macromolecules such as carbon fullerene onions and nanotubes. In this study, we developed and integrated experimental and multidimensional modeling techniques to access the temporal and spatial resolution of colliding plasma characteristics that elucidated the mechanism for early carbon dimer formation. Plume evolution imaging, monochromatic imaging, and optical emission spectroscopy of graphite-produced, carbon plasmas were performed. Experimental results were compared with the results of the 3D comprehensive modeling using our HEIGHTS simulation package. The results are explained based on a fundamental analysis of plasma evolution, colliding layer formation, stagnation, and expansion. The precise mechanisms of the plasma collision, plume propagation, and particle formation are discussed based on the experimental and modeling results.

  14. Evaluation of substrate noise suppression method to mitigate crosstalk among trough-silicon vias

    NASA Astrophysics Data System (ADS)

    Araga, Yuuki; Kikuchi, Katsuya; Aoyagi, Masahiro

    2018-04-01

    Substrate noise from a single through-silicon via (TSV) and the noise attenuation by a substrate tap and a guard ring are clarified. A CMOS test vehicle is designed, and 6-µm-diameter TSVs are manufactured on a 20-µm-thick silicon substrate by the via-last method. An on-chip waveform-capturing circuitry is embedded in the test vehicle to capture transient waveforms of substrate noise. The embedded waveform-capturing circuitry demonstrates small and local noise propagation. Experimental results show increased substrate noise level induced by TSVs and the effectiveness of the substrate tap and guard ring for mitigating the crosstalk among TSVs. An analytical model to explain substrate noise propagation is developed to validate experimental results. Results obtained using the substrate model with a multilayer mesh shows good consistency with experimental results, indicating that the model can be used for examination of noise suppression methods.

  15. Experimental comparisons between McKibben type artificial muscles and straight fibers type artificial muscles

    NASA Astrophysics Data System (ADS)

    Nakamura, Taro

    2007-01-01

    This paper describes experimental comparison between a conventional McKibben type artificial muscle and a straight fibers type artificial muscle developed by the authors. A wearable device and a rehabilitation robot which assists a human muscle should have characteristics similar to those of human muscle. In addition, because the wearable device and the rehabilitation robot should be light, an actuator with a high power/weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Further, the heat and mechanical loss of this actuator are large because of the friction caused by the expansion and contraction of the sleeve. Therefore, the authors have developed an artificial muscle tube in which high strength glass fibers have been built into the tube made from natural latex rubber. As results, experimental results demonstrated that the developed artificial muscle is more effective regarding its fundamental characteristics than that of the McKibben type; the straight fibers types of artificial muscle have more contraction ratio and power, longer lifetime than the McKibben types. And it has almost same characteristics of human muscle for isotonic and isometric that evaluate it dynamically.

  16. Experimental Characterization of Piezoelectric Radial Field Diaphragms for Fluidic Control

    NASA Technical Reports Server (NTRS)

    Bryant, R. G.; Kavli, S. E.; Thomas, R. A., Jr.; Darji, K. J.; Mossi, K. M.

    2004-01-01

    NASA has recently developed a new piezoelectric actuator, the Radial Field Diaphragm or RFD. This actuator uses a radially-directed electric field to generate concentric out-of-plane (Z-axis) motion that allows this packaged device to be used as a pump or valve diaphragm. In order to efficiently use this new active device, experimental determination of pressure, flow rate, mechanical work, power consumption and overall efficiency needs to be determined by actually building a pump. However, without an optimized pump design, it is difficult to assess the quality of the data, as these results are inherent to the actual pump. Hence, separate experiments must be conducted in order to generate independent results to help guide the design criteria and pump quality. This paper focuses on the experiments used to generate the RFD's operational parameters and then compares these results to the experimentally determined results of several types of ball pumps. Also discussed are how errors are inherently introduced into the experiments, the pump design, experimental hardware and their effects on the overall system efficiency.

  17. Simulation and experimental research of 1MWe solar tower power plant in China

    NASA Astrophysics Data System (ADS)

    Yu, Qiang; Wang, Zhifeng; Xu, Ershu

    2016-05-01

    The establishment of a reliable simulation system for a solar tower power plant can greatly increase the economic and safety performance of the whole system. In this paper, a dynamic model of the 1MWe Solar Tower Power Plant at Badaling in Beijing is developed based on the "STAR-90" simulation platform, including the heliostat field, the central receiver system (water/steam), etc. The dynamic behavior of the global CSP plant can be simulated. In order to verify the validity of simulation system, a complete experimental process was synchronously simulated by repeating the same operating steps based on the simulation platform, including the locations and number of heliostats, the mass flow of the feed water, etc. According to the simulation and experimental results, some important parameters are taken out to make a deep comparison. The results show that there is good alignment between the simulations and the experimental results and that the error range can be acceptable considering the error of the models. In the end, a comprehensive and deep analysis on the error source is carried out according to the comparative results.

  18. Experimental endometriosis: the nude mouse as a xenographic host.

    PubMed

    Bruner-Tran, Kaylon L; Webster-Clair, Deborah; Osteen, Kevin G

    2002-03-01

    Endometriosis is a complex disease that can develop as a consequence of retrograde menstruation, occurring in association with the cyclic loss of endometrial tissue in primates and humans. In addition, progression of disease parallels a woman's exposure to ovarian steroids, rarely occurring prior to menarche and generally resolving following menopause. Because of the cost of developing primate models to study endometriosis, numerous small animal models have been established to approach various elements related to the pathophysiology of this disease. Our laboratory has developed an experimental endometriosis model using nude mice as a xenographic host for human tissues. Our goal is to approach the basic cellular mechanisms of estrogen and progesterone action that link these hormones to the development or prevention of endometriosis. In our initial studies, we have sought to understand steroid-associated regulation of matrix metalloproteinases (MMPs) with regard to the development of experimental endometriosis. Using both short-term organ cultures and nude mice as xenographic hosts of human tissue, we have demonstrated a critical role of progesterone and progesterone-associated cytokines in preventing the initial establishment of experimental disease. Women with endometriosis appear to lack normal endometrial responsiveness to progesterone, resulting in altered expression of several MMPs and an enhanced ability of these tissues to establish ectopic lesions in nude mice. Developing a better understanding of the impairments in the normal endometrial physiology of women with endometriosis should aid in the development of better treatment or diagnostic strategies.

  19. Developing Seventh Grade Students' Understanding of Complex Environmental Problems with Systems Tools and Representations: a Quasi-experimental Study

    NASA Astrophysics Data System (ADS)

    Doganca Kucuk, Zerrin; Saysel, Ali Kerem

    2017-03-01

    A systems-based classroom intervention on environmental education was designed for seventh grade students; the results were evaluated to see its impact on the development of systems thinking skills and standard science achievement and whether the systems approach is a more effective way to teach environmental issues that are dynamic and complex. A quasi-experimental methodology was used to compare performances of the participants in various dimensions, including systems thinking skills, competence in dynamic environmental problem solving and success in science achievement tests. The same pre-, post- and delayed tests were used with both the comparison and experimental groups in the same public middle school in Istanbul. Classroom activities designed for the comparison group (N = 20) followed the directives of the Science and Technology Curriculum, while the experimental group (N = 22) covered the same subject matter through activities benefiting from systems tools and representations such as behaviour over time graphs, causal loop diagrams, stock-flow structures and hands-on dynamic modelling. After a one-month systems-based instruction, the experimental group demonstrated significantly better systems thinking and dynamic environmental problem solving skills. Achievement in dynamic problem solving was found to be relatively stable over time. However, standard science achievement did not improve at all. This paper focuses on the quantitative analysis of the results, the weaknesses of the curriculum and educational implications.

  20. [Characteristics of growth and development in children from families at social risk].

    PubMed

    Stojadinović, A

    2001-01-01

    Body height and weight are important indicators of children's health status. There are many evidences that children from disadvantaged families have lower height and weight than children of the same age from families without social risk. The aim of this study was to investigate characteristics of growth and development of children from economically disadvantaged families. The study was partly retrospective and partly prospective. The retrospective study included 509 children from disadvantaged families hospitalized at the Institute of Child and Adolescent Health Care in Novi Sad, during a five-year period. The prospective study included 90 children from disadvantaged families (experimental group) and 132 children from families without social risk (control group) hospitalized at the Institute during a six month period. Height/length, weight, head circumference, and psychomotor/intellectual development have been examined. In the retrospective study results were compared with theoretically expected values, whereas the prospective study results of experimental and control group were compared. In the retrospective study that included only children from disadvantaged families, 136 (26.7%) children had height/length, 173 (34%) had weight, and 86 (16.9%) children had head circumference below 10th percentile. Delay in psychomotor/intellectual development was established in 177 (34.8%) children. Children from families with social risk have significantly more often height/length, weight, head circumference and developmental delay than theoretically expected. In the prospective study 40 (44.4%) children from experimental group had height/length, 29 (32.2%) had weight, 20 (22.2%) children had head circumference below 10th percentile, and 17 (26.2%) had delay in psychomotor/intellectual development. Children from disadvantaged families (experimental group) significantly more often had delay in growth and development comparing with children from families without social risk (control group). Children from disadvantaged families significantly more often exhibit delay in growth and development, comparing with children of the same age from families without social risk. Therefore, pediatricians should consider social risk factors whenever treating children with growth or developmental delay.

  1. Development of an Experiment High Performance Nozzle Research Program

    NASA Technical Reports Server (NTRS)

    2004-01-01

    As proposed in the above OAI/NASA Glenn Research Center (GRC) Co-Operative Agreement the objective of the work was to provide consultation and assistance to the NASA GRC GTX Rocket Based Combined Cycle (RBCC) Program Team in planning and developing requirements, scale model concepts, and plans for an experimental nozzle research program. The GTX was one of the launch vehicle concepts being studied as a possible future replacement for the aging NASA Space Shuttle, and was one RBCC element in the ongoing NASA Access to Space R&D Program (Reference 1). The ultimate program objective was the development of an appropriate experimental research program to evaluate and validate proposed nozzle concepts, and thereby result in the optimization of a high performance nozzle for the GTX launch vehicle. Included in this task were the identification of appropriate existing test facilities, development of requirements for new non-existent test rigs and fixtures, develop scale nozzle model concepts, and propose corresponding test plans. Also included were the evaluation of originally proposed and alternate nozzle designs (in-house and contractor), evaluation of Computational Fluid Dynamics (CFD) study results, and make recommendations for geometric changes to result in improved nozzle thrust coefficient performance (Cfg).

  2. Experimental studies on thermodynamic effects of developed cavitation

    NASA Technical Reports Server (NTRS)

    Ruggeri, R. S.

    1974-01-01

    A method for predicting thermodynamic effects of cavitation (changes in cavity pressure relative to stream vapor pressure) is presented. The prediction method accounts for changes in liquid, liquid temperature, flow velocity, and body scale. Both theoretical and experimental studies used in formulating the method are discussed. The prediction method provided good agreement between predicted and experimental results for geometrically scaled venturis handling four different liquids of widely diverse physical properties. Use of the method requires geometric similarity of the body and cavitated region and a known reference cavity-pressure depression at one operating condition.

  3. Experimental studies of two-stage centrifugal dust concentrator

    NASA Astrophysics Data System (ADS)

    Vechkanova, M. V.; Fadin, Yu M.; Ovsyannikov, Yu G.

    2018-03-01

    The article presents data of experimental results of two-stage centrifugal dust concentrator, describes its design, and shows the development of a method of engineering calculation and laboratory investigations. For the experiments, the authors used quartz, ceramic dust and slag. Experimental dispersion analysis of dust particles was obtained by sedimentation method. To build a mathematical model of the process, dust collection was built using central composite rotatable design of the four factorial experiment. A sequence of experiments was conducted in accordance with the table of random numbers. Conclusion were made.

  4. Experimental study of uncentralized squeeze film dampers

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.

    1983-01-01

    The vibration response of a rotor system supported by a squeeze film damper (SFD) was experimentally investigated in order to provide experimental data in support of the Rotor/Stator Interactive Finite Element theoretical development. Part of the investigation required the designing and building of a rotor/SFD system that could operate with or without end seals in order to accommodate different SFD lengths. SFD variables investigated included clearance, eccentricity mass, fluid pressure, and viscosity and temperature. The results show inlet pressure, viscosity and clearance have significant influence on the damper performance and accompanying rotor response.

  5. Experimental investigation of powerful pulse current generators based on capacitive storage and explosive magnetic generators

    NASA Astrophysics Data System (ADS)

    Shurupov, A. V.; Zavalova, V. E.; Kozlov, A. V.; Shurupov, M. A.; Povareshkin, M. N.; Kozlov, A. A.; Shurupova, N. P.

    2018-01-01

    Experimental models of microsecond duration powerful generators of current pulses on the basis of explosive magnetic generators and voltage impulse generator have been developed for the electromagnetic pulse effects on energy facilities to verify their stability. Exacerbation of voltage pulse carried out through the use of electro explosive current interrupter made of copper wires with diameters of 80 and 120 μm. Experimental results of these models investigation are represented. Voltage fronts about 100 ns and the electric field strength of 800 kV/m are registered.

  6. Models for Total-Dose Radiation Effects in Non-Volatile Memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Philip Montgomery; Wix, Steven D.

    The objective of this work is to develop models to predict radiation effects in non- volatile memory: flash memory and ferroelectric RAM. In flash memory experiments have found that the internal high-voltage generators (charge pumps) are the most sensitive to radiation damage. Models are presented for radiation effects in charge pumps that demonstrate the experimental results. Floating gate models are developed for the memory cell in two types of flash memory devices by Intel and Samsung. These models utilize Fowler-Nordheim tunneling and hot electron injection to charge and erase the floating gate. Erase times are calculated from the models andmore » compared with experimental results for different radiation doses. FRAM is less sensitive to radiation than flash memory, but measurements show that above 100 Krad FRAM suffers from a large increase in leakage current. A model for this effect is developed which compares closely with the measurements.« less

  7. Research subjects for analytical estimation of core degradation at Fukushima-Daiichi nuclear power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagase, F.; Ishikawa, J.; Kurata, M.

    2013-07-01

    Estimation of the accident progress and status inside the pressure vessels (RPV) and primary containment vessels (PCV) is required for appropriate conductance of decommissioning in the Fukushima-Daiichi NPP. For that, it is necessary to obtain additional experimental data and revised models for the estimation using computer codes with increased accuracies. The Japan Atomic Energy Agency (JAEA) has selected phenomena to be reviewed and developed, considering previously obtained information, conditions specific to the Fukushima-Daiichi NPP accident, and recent progress of experimental and analytical technologies. As a result, research and development items have been picked up in terms of thermal-hydraulic behavior inmore » the RPV and PCV, progression of fuel bundle degradation, failure of the lower head of RPV, and analysis of the accident. This paper introduces the selected phenomena to be reviewed and developed, research plans and recent results from the JAEA's corresponding research programs. (authors)« less

  8. Detailed results of ASTP experiment MA-011. [biological processing facility in space

    NASA Technical Reports Server (NTRS)

    Seaman, G. V. F.; Allen, R. E.; Barlow, G. H.; Bier, M.

    1976-01-01

    This experiment was developed in order to conduct engineering and operational tests of electrokinetic equipment in a micro-gravity environment. The experimental hardware in general functioned as planned and electrophoretic separations were obtained in space. The results indicated the development of satisfactory sample collection, return, and preservation techniques. The application of a near-zero zeta potential interior wall coating to the experimental columns, confirmation of biocompatibility of all appropriate hardware components, and use of a sterile operating environment provided a significant step forward in the development of a biological processing facility in space. A separation of a test of aldehyde-fixed rabbit, human, and horse red blood cells was obtained. Human kidney cells were separated into several components and viable cells returned to earth. The isotachophoretic separation of red cells was also demonstrated. Problems associated with the hardware led to a lack of success in the attempt to separate subpopulations of human lymphocytes.

  9. Biomass viability: An experimental study and the development of an empirical mathematical model for submerged membrane bioreactor.

    PubMed

    Zuthi, M F R; Ngo, H H; Guo, W S; Nghiem, L D; Hai, F I; Xia, S Q; Zhang, Z Q; Li, J X

    2015-08-01

    This study investigates the influence of key biomass parameters on specific oxygen uptake rate (SOUR) in a sponge submerged membrane bioreactor (SSMBR) to develop mathematical models of biomass viability. Extra-cellular polymeric substances (EPS) were considered as a lumped parameter of bound EPS (bEPS) and soluble microbial products (SMP). Statistical analyses of experimental results indicate that the bEPS, SMP, mixed liquor suspended solids and volatile suspended solids (MLSS and MLVSS) have functional relationships with SOUR and their relative influence on SOUR was in the order of EPS>bEPS>SMP>MLVSS/MLSS. Based on correlations among biomass parameters and SOUR, two independent empirical models of biomass viability were developed. The models were validated using results of the SSMBR. However, further validation of the models for different operating conditions is suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels

    NASA Astrophysics Data System (ADS)

    Bhargava, M.; Shanta, C.; Asim, T.; Sushil, M.

    2015-04-01

    Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path.

  11. Moving belt radiator development status

    NASA Technical Reports Server (NTRS)

    White, K. Alan

    1988-01-01

    Development of the Moving Belt Radiator (MBR) as an advanced space radiator concept is discussed. The ralative merits of Solid Belt (SBR), Liquid Belt (LBR), and Hybrid Belt (HBR) Radiators are described. Analytical and experimental efforts related to the dynamics of a rotating belt in microgravity are reviewed. The development of methods for transferring heat to the moving belt is discussed, and the results from several experimental investigations are summarized. Limited efforts related to the belt deployment and stowage, and to fabrication of a hybrid belt, are also discussed. Life limiting factors such as seal wear and micrometeroid resistance are identified. The results from various MBR point design studies for several power levels are compared with advanced Heat Pipe Radiator technology. MBR designs are shown to compare favorable at both 300 and 1000 K temperature levels. However, additional effort will be required to resolve critical technology issues and to demonstrate the advantage of MBR systems.

  12. Trade-offs in experimental designs for estimating post-release mortality in containment studies

    USGS Publications Warehouse

    Rogers, Mark W.; Barbour, Andrew B; Wilson, Kyle L

    2014-01-01

    Estimates of post-release mortality (PRM) facilitate accounting for unintended deaths from fishery activities and contribute to development of fishery regulations and harvest quotas. The most popular method for estimating PRM employs containers for comparing control and treatment fish, yet guidance for experimental design of PRM studies with containers is lacking. We used simulations to evaluate trade-offs in the number of containers (replicates) employed versus the number of fish-per container when estimating tagging mortality. We also investigated effects of control fish survival and how among container variation in survival affects the ability to detect additive mortality. Simulations revealed that high experimental effort was required when: (1) additive treatment mortality was small, (2) control fish mortality was non-negligible, and (3) among container variability in control fish mortality exceeded 10% of the mean. We provided programming code to allow investigators to compare alternative designs for their individual scenarios and expose trade-offs among experimental design options. Results from our simulations and simulation code will help investigators develop efficient PRM experimental designs for precise mortality assessment.

  13. A Hybrid Actuation System Demonstrating Significantly Enhanced Electromechanical Performance

    NASA Technical Reports Server (NTRS)

    Su, Ji; Xu, Tian-Bing; Zhang, Shujun; Shrout, Thomas R.; Zhang, Qiming

    2004-01-01

    A hybrid actuation system (HYBAS) utilizing advantages of a combination of electromechanical responses of an electroactive polymer (EAP), an electrostrictive copolymer, and an electroactive ceramic single crystal, PZN-PT single crystal, has been developed. The system employs the contribution of the actuation elements cooperatively and exhibits a significantly enhanced electromechanical performance compared to the performances of the device made of each constituting material, the electroactive polymer or the ceramic single crystal, individually. The theoretical modeling of the performances of the HYBAS is in good agreement with experimental observation. The consistence between the theoretical modeling and experimental test make the design concept an effective route for the development of high performance actuating devices for many applications. The theoretical modeling, fabrication of the HYBAS and the initial experimental results will be presented and discussed.

  14. Determination of excitation profile and dielectric function spatial nonuniformity in porous silicon by using WKB approach.

    PubMed

    He, Wei; Yurkevich, Igor V; Canham, Leigh T; Loni, Armando; Kaplan, Andrey

    2014-11-03

    We develop an analytical model based on the WKB approach to evaluate the experimental results of the femtosecond pump-probe measurements of the transmittance and reflectance obtained on thin membranes of porous silicon. The model allows us to retrieve a pump-induced nonuniform complex dielectric function change along the membrane depth. We show that the model fitting to the experimental data requires a minimal number of fitting parameters while still complying with the restriction imposed by the Kramers-Kronig relation. The developed model has a broad range of applications for experimental data analysis and practical implementation in the design of devices involving a spatially nonuniform dielectric function, such as in biosensing, wave-guiding, solar energy harvesting, photonics and electro-optical devices.

  15. Experimental validation of an ultrasonic flowmeter for unsteady flows

    NASA Astrophysics Data System (ADS)

    Leontidis, V.; Cuvier, C.; Caignaert, G.; Dupont, P.; Roussette, O.; Fammery, S.; Nivet, P.; Dazin, A.

    2018-04-01

    An ultrasonic flowmeter was developed for further applications in cryogenic conditions and for measuring flow rate fluctuations in the range of 0 to 70 Hz. The prototype was installed in a flow test rig, and was validated experimentally both in steady and unsteady water flow conditions. A Coriolis flowmeter was used for the calibration under steady state conditions, whereas in the unsteady case the validation was done simultaneously against two methods: particle image velocimetry (PIV), and with pressure transducers installed flush on the wall of the pipe. The results show that the developed flowmeter and the proposed methodology can accurately measure the frequency and amplitude of unsteady fluctuations in the experimental range of 0-9 l s-1 of the mean main flow rate and 0-70 Hz of the imposed disturbances.

  16. A Single-Vector Force Calibration Method Featuring the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; Morton, M.; Draper, N.; Line, W.

    2001-01-01

    This paper proposes a new concept in force balance calibration. An overview of the state-of-the-art in force balance calibration is provided with emphasis on both the load application system and the experimental design philosophy. Limitations of current systems are detailed in the areas of data quality and productivity. A unique calibration loading system integrated with formal experimental design techniques has been developed and designated as the Single-Vector Balance Calibration System (SVS). This new concept addresses the limitations of current systems. The development of a quadratic and cubic calibration design is presented. Results from experimental testing are compared and contrasted with conventional calibration systems. Analyses of data are provided that demonstrate the feasibility of this concept and provide new insights into balance calibration.

  17. Development of Sorting System for Fishes by Feed-forward Neural Networks Using Rotation Invariant Features

    NASA Astrophysics Data System (ADS)

    Shiraishi, Yuhki; Takeda, Fumiaki

    In this research, we have developed a sorting system for fishes, which is comprised of a conveyance part, a capturing image part, and a sorting part. In the conveyance part, we have developed an independent conveyance system in order to separate one fish from an intertwined group of fishes. After the image of the separated fish is captured in the capturing part, a rotation invariant feature is extracted using two-dimensional fast Fourier transform, which is the mean value of the power spectrum with the same distance from the origin in the spectrum field. After that, the fishes are classified by three-layered feed-forward neural networks. The experimental results show that the developed system classifies three kinds of fishes captured in various angles with the classification ratio of 98.95% for 1044 captured images of five fishes. The other experimental results show the classification ratio of 90.7% for 300 fishes by 10-fold cross validation method.

  18. Modal simulation of gearbox vibration with experimental correlation

    NASA Technical Reports Server (NTRS)

    Choy, Fred K.; Ruan, Yeefeng F.; Zakrajsek, James J.; Oswald, Fred B.

    1992-01-01

    A newly developed global dynamic model was used to simulate the dynamics of a gear noise rig at NASA Lewis Research Center. Experimental results from the test rig were used to verify the analytical model. In this global dynamic model, the number of degrees of freedom of the system are reduced by transforming the system equations of motion into modal coordinates. The vibration of the individual gear-shaft system are coupled through the gear mesh forces. A three-dimensional, axial-lateral coupled, bearing model was used to couple the casing structural vibration to the gear-rotor dynamics. The coupled system of modal equations is solved to predict the resulting vibration at several locations on the test rig. Experimental vibration data was compared to the predictions of the global dynamic model. There is excellent agreement between the vibration results from analysis and experiment.

  19. Numerical Modeling of Active Flow Control in a Boundary Layer Ingesting Offset Inlet

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R.; Berrier, Bobby L.

    2004-01-01

    This investigation evaluates the numerical prediction of flow distortion and pressure recovery for a boundary layer ingesting offset inlet with active flow control devices. The numerical simulations are computed using a Reynolds averaged Navier-Stokes code developed at NASA. The numerical results are validated by comparison to experimental wind tunnel tests conducted at NASA Langley Research Center at both low and high Mach numbers. Baseline comparisons showed good agreement between numerical and experimental results. Numerical simulations for the inlet with passive and active flow control also showed good agreement at low Mach numbers where experimental data has already been acquired. Numerical simulations of the inlet at high Mach numbers with flow control jets showed an improvement of the flow distortion. Studies on the location of the jet actuators, for the high Mach number case, were conducted to provide guidance for the design of a future experimental wind tunnel test.

  20. Experimental and theoretical characterization of deep penetration welding threshold induced by 1-μm laser

    NASA Astrophysics Data System (ADS)

    Zou, J. L.; He, Y.; Wu, S. K.; Huang, T.; Xiao, R. S.

    2015-12-01

    The deep penetration-welding threshold (DPWT) is the critical value that describes the welding mode transition from the thermal conduction to the deep penetration. The objective of this research is to clarify the DPWT induced by the lasers with wavelength of 1 μm (1-μm laser), based on experimental observation and theoretical analysis. The experimental results indicated that the DPWT was the ratio between laser power and laser spot diameter (P/d) rather than laser power density (P/S). The evaporation threshold was smaller than the DPWT, while the jump threshold of the evaporated mass flux in the molten pool surface was consistent with the DPWT. Based on the force balance between the evaporation recoil pressure and the surface tension pressure at the gas-liquid interface of the molten pool as well as the temperature field, we developed a self-focusing model, which further confirmed the experimental results.

  1. The isobaric heat capacity of liquid water at low temperatures and high pressures

    NASA Astrophysics Data System (ADS)

    Troncoso, Jacobo

    2017-08-01

    Isobaric heat capacity for water shows a rather strong anomalous behavior, especially at low temperature. However, almost all experimental studies supporting this statement have been carried out at low pressure; very few experimental data were reported above 100 MPa. In order to explore the behavior of this magnitude for water up to 500 MPa, a new heat flux calorimeter was developed. With the aim of testing the experimental methodology and comparing with water results, isobaric heat capacity was also measured for methanol and hexane. Good agreement with indirect heat capacity estimations from the literature was obtained for the three liquids. Experimental results show large anomalies in water heat capacity. This is especially true as regards its temperature dependence, qualitatively different from that observed for other liquids. Heat capacity versus temperature curves show minima for most studied isobars, whose location decreases with the pressure up to around 100 MPa but increases at higher pressures.

  2. Construction of living cellular automata using the Physarum plasmodium

    NASA Astrophysics Data System (ADS)

    Shirakawa, Tomohiro; Sato, Hiroshi; Ishiguro, Shinji

    2015-04-01

    The plasmodium of Physarum polycephalum is a unicellular and multinuclear giant amoeba that has an amorphous cell body. To clearly observe how the plasmodium makes decisions in its motile and exploratory behaviours, we developed a new experimental system to pseudo-discretize the motility of the organism. In our experimental space that has agar surfaces arranged in a two-dimensional lattice, the continuous and omnidirectional movement of the plasmodium was limited to the stepwise one, and the direction of the locomotion was also limited to four neighbours. In such an experimental system, a cellular automata-like system was constructed using the living cell. We further analysed the exploratory behaviours of the plasmodium by duplicating the experimental results in the simulation models of cellular automata. As a result, it was revealed that the behaviours of the plasmodium are not reproduced by only local state transition rules; and for the reproduction, a kind of historical rule setting is needed.

  3. Learning in a Gene Technology Laboratory with Educational Focus: Results of a Teaching Unit with Authentic Experiments

    ERIC Educational Resources Information Center

    Scharfenberg, Franz-Josef; Bogner, Franz X.; Klautke, Siegfried

    2007-01-01

    In an effort to overcome deficiencies in teaching molecular biology at school, a workshop in an out-of-school laboratory including only authentic experiments was developed. Evaluation of 337 A-level 12th graders followed a quasi-experimental design, with one hands-on group, two non-experimental control groups (at school/in the laboratory), and one…

  4. Effect of Porous Media and Fluid Properties on Dense Non-Aqueous Phase Liquid Migration and Dilution Mass Flux

    DTIC Science & Technology

    2005-08-01

    Research and iii Development Program, Department of Defense, who in part funded this research (CU- 1295: Impacts of DNAPL Source Zone Treatment : Experimental...Trichlorosilane Treatment and Retardation Factor ....................... 46 Results and D iscussion... treatments . Water entry rates were then experimentally measured for various media treatments altering contact angle. With all other data known, contact

  5. Conceptual and Preliminary Design of a Low-Cost Precision Aerial Delivery System

    DTIC Science & Technology

    2016-06-01

    test results. It includes an analysis of the failure modes encountered during flight experimentation , methodology used for conducting coordinate...and experimentation . Additionally, the current and desired end state of the research is addressed. Finally, this chapter outlines the methodology ...preliminary design phases are utilized to investigate and develop a potentially low-cost alternative to existing systems. Using an Agile methodology

  6. Deep Water Acoustics

    DTIC Science & Technology

    2016-06-28

    Sea, the results of which will support all of the objectives listed above. APPROACH APL-UW employed a combination of experimental measurements, data...APPROACH APL-UW employs a combination of experimental measurements, data analysis, simulations, and theoretical development to address the objectives...RD cases, respectively). In the RI case, the UTP moves back and forth along a curve. In the RD case, the UTP traces out an ellipse. The same is true

  7. [Development of a continuous blood pressure monitoring and recording system].

    PubMed

    Zhang, Yang; Li, Yong; Gao, Shumei; Song, Yilin

    2012-09-01

    A small experimental system is constructed with working principle of continuous blood pressure monitoring based on the volume compensation method. The preliminary experimental results show that the system can collect blood pressure signals at the radial artery effectively. The digital PID algorithm can track the variation of blood pressure. And the accuracy of continuous blood pressure detecting achieve the level of same kind of product.

  8. Preliminary investigation of power flow and electrode phenomena in a multi-megawatt coaxial plasma thruster

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt; Gerwin, Richard; Henins, Ivars; Mayo, Robert; Scheuer, Jay; Nurden, Glen

    1993-01-01

    This paper summarizes preliminary experimental and theoretical research that was directed towards the study of quasisteady-state power flow in a large, un-optimized, multi-megawatt coaxial plasma thruster. The report addresses large coaxial thruster operation and includes evaluation and interpretation of the experimental results with a view to the development of efficient, steady-state megawatt-class magnetoplasmadynamic (MPD) thrusters.

  9. Hydrodynamic Noise from Flexible Roughness Elements

    DTIC Science & Technology

    2015-06-29

    Virginia Tech (Dr. William Devenport and graduate student Ian Clark) continue to carry out experimental work to test the developed trailing-edge and...work to take into account dynamic motions of the fiber and finite distances between fibers for more realistic aeroacoustic models of its turbulence...pressure levels which result from introduction of the fabric covering. First, Fig. 5 plots the decibel reduction in the experimental surface pressure

  10. Development of Experience-based Visible-type Electromagnetic Teaching Materials

    NASA Astrophysics Data System (ADS)

    Suzuki, Masayoshi; Shima, Kenzou

    Electromagnetism is the base of electrical engineering, however, it is one of the most difficult subjects to learn. The small experiments which show the principles of electricity visibly are useful technique to promote these comprehension. For classroom experimental materials to learn basic electromagnetism, we developed rotating magnetic field visualizer, gravity-use generators, simple motors, and electric-field visualizer. We report how we visualized the principles of motors and generators in classroom experiments. In particular, we discuss in detail how to visualize the mechanism of very simple motors. We have been demonstrating the motors in children science classes conducted all over Japan. We developed these experimental materials, and we achieved remarkable results using these materials in the electromagnetism class.

  11. Experimental Behavior of Fatigued Single Stiffener PRSEUS Specimens

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    2009-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression in fatigue and to failure.

  12. The development of methods for predicting and measuring distribution patterns of aerial sprays. [Langley Vortex Research Facility

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Bragg, M. B.; Maughmer, M. D.

    1981-01-01

    A set of relationships used to scale small sized dispersion studies to full size results are experimentally verified and, with some qualifications, basic deposition patterns are presented. In the process of validating these scaling laws, the basic experimental techniques used in conducting such studies both with and without an operational propeller were developed. The procedures that evolved are outlined in some detail. The envelope of test conditions that can be accommodated in the Langley Vortex Research Facility, which were developed theoretically, are verified using a series of vortex trajectory experiments that help to define the limitations due to wall interference effects for models of different sizes.

  13. New techniques in neutron data measurements above 30 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, P.W.; Haight, R.C.

    1991-01-01

    Recent developments in experimental facilities have enabled new techniques for measurements of neutron interactions above 30 MeV. Foremost is the development of both monoenergetic and continuous neutron sources using accelerators in the medium energy region between 100 and 800 MeV. Measurements of the reaction products have been advanced by the continuous improvement in detector systems, electronics and computers. Corresponding developments in particle transport codes and in the theory of nuclear reactions at these energies have allowed more precise design of neutron sources, experimental shielding and detector response. As a result of these improvements, many new measurements are possible and themore » data base in this energy range is expanding quickly.« less

  14. Application of Plackett-Burman experimental design in the development of muffin using adlay flour

    NASA Astrophysics Data System (ADS)

    Valmorida, J. S.; Castillo-Israel, K. A. T.

    2018-01-01

    The application of Plackett-Burman experimental design was made to identify significant formulation and process variables in the development of muffin using adlay flour. Out of the seven screened variables, levels of sugar, levels of butter and baking temperature had the most significant influence on the product model in terms of physicochemical and sensory acceptability. Results of the experiment further demonstrate the effectiveness of Plackett-Burman design in choosing the best adlay variety for muffin production. Hence, the statistical method used in the study permits an efficient selection of important variables needed in the development of muffin from adlay which can be optimized using response surface methodology.

  15. The analysis of scientific communications and students’ character development through guided inquiry learning

    NASA Astrophysics Data System (ADS)

    Sarwi, S.; Fauziah, N.; Astuti, B.

    2018-03-01

    This research is setting by the condition of students who have difficulty in ideas delivery, written scientific communication, and still need the development of student character. The objectives of the research are to determine the improvement of concept understanding, to analyze scientific communication skills and to develop the character of the students through guided inquiry learning. The design in this research is quasi experimental control group preposttest, with research subject of two group of grade X Senior High School in Semarang. One group of controller uses non tutorial and treatment group using tutorial in guided inquiry. Based on result of gain test analysis, obtained = 0.71 for treatment and control group = 0.60. The t-test result of mean mastery of concept of quantity and unit using t-test of right side is t count = 2.37 (p=0.003) while t table = 1.67 (α = 5%), which means that the results of the study differed significantly. The results of the students' scientific communication skills analysis showed that the experimental group was higher than the control, with an average of 69% and 63% scientific communication skills. The character values are effective developed through guided inquiry learning. The conclusion of the study is guided inquiry learning tutorial better than guided inquiry non tutorial learning in aspect understanding concept, scientific communication skills; but the character development result is almost the same.

  16. An experimental and theoretical investigation of a fuel system tuner for the suppression of combustion driven oscillations

    NASA Astrophysics Data System (ADS)

    Scarborough, David E.

    Manufacturers of commercial, power-generating, gas turbine engines continue to develop combustors that produce lower emissions of nitrogen oxides (NO x) in order to meet the environmental standards of governments around the world. Lean, premixed combustion technology is one technique used to reduce NOx emissions in many current power and energy generating systems. However, lean, premixed combustors are susceptible to thermo-acoustic oscillations, which are pressure and heat-release fluctuations that occur because of a coupling between the combustion process and the natural acoustic modes of the system. These pressure oscillations lead to premature failure of system components, resulting in very costly maintenance and downtime. Therefore, a great deal of work has gone into developing methods to prevent or eliminate these combustion instabilities. This dissertation presents the results of a theoretical and experimental investigation of a novel Fuel System Tuner (FST) used to damp detrimental combustion oscillations in a gas turbine combustor by changing the fuel supply system impedance, which controls the amplitude and phase of the fuel flowrate. When the FST is properly tuned, the heat release oscillations resulting from the fuel-air ratio oscillations damp, rather than drive, the combustor acoustic pressure oscillations. A feasibility study was conducted to prove the validity of the basic idea and to develop some basic guidelines for designing the FST. Acoustic models for the subcomponents of the FST were developed, and these models were experimentally verified using a two-microphone impedance tube. Models useful for designing, analyzing, and predicting the performance of the FST were developed and used to demonstrate the effectiveness of the FST. Experimental tests showed that the FST reduced the acoustic pressure amplitude of an unstable, model, gas-turbine combustor over a wide range of operating conditions and combustor configurations. Finally, combustor acoustic pressure amplitude measurements made in using the model combustor were used in conjunction with model predicted fuel system impedances to verify the developed design rules. The FST concept and design methodology presented in this dissertation can be used to design fuel system tuners for new and existing gas turbine combustors to reduce, or eliminate altogether, thermo-acoustic oscillations.

  17. Shuttle Return To Flight Experimental Results: Cavity Effects on Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Horvath, Thomas J.; Berry, Scott A.

    2006-01-01

    The effect of an isolated rectangular cavity on hypersonic boundary layer transition of the windward surface of the Shuttle Orbiter has been experimentally examined in the Langley Aerothermodynamics Laboratory in support of an agency-wide effort to prepare the Shuttle Orbiter for return to flight. This experimental study was initiated to provide a cavity effects database for developing hypersonic transition criteria to support on-orbit decisions to repair a damaged thermal protection system. Boundary layer transition results were obtained using 0.0075-scale Orbiter models with simulated tile damage (rectangular cavities) of varying length, width, and depth. The database contained within this report will be used to formulate cavity-induced transition correlations using predicted boundary layer edge parameters.

  18. [Experimental-morphologic study of bone tissue reaction to carbon-containing material implantation with initiated X-ray contrast property].

    PubMed

    Grigorian, A S; Nabiev, F Kh; Golovin, R V

    2005-01-01

    In experimental study on 15 rabbits (chinchilla) influence of titanium plates implanted lapped on adjacent tissues in the region of the lower jaw body (comparison group) and carbon material with added boron in the concentrations of 8 and 15% (the study group) was studied. Results of the experimental-morphological investigation show that carbon-based materials with boron addition (with its content 8 and 15%) did not impede adaptive rebuilding of bone tissues and in particular bone structure regeneration in the process of reactive rebuilding of the "maternal" bone. Moreover, as the result of reactive processes developing in osseous tissues after implantation of the tested materials their successful integration in surrounding tissue structures was detected.

  19. Design and experiment of a cross-shaped mode converter for high-power microwave applications.

    PubMed

    Peng, Shengren; Yuan, Chengwei; Zhong, Huihuang; Fan, Yuwei

    2013-12-01

    A compact mode converter, which is capable of converting a TM01 mode into a circularly polarized TE11 mode, was developed and experimentally studied with high-power microwaves. The converter, consisting of two turnstile junctions, is very short along the wave propagation direction, and therefore is suitable for designing compact and axially aligned high-power microwave radiation systems. In this paper, the principle of a converter working at 1.75 GHz is demonstrated, as well as the experimental results. The experimental and simulation results are in good agreement. At the center frequency, the conversion efficiency is more than 95%, the measured axial ratio is about 0.4 dB, and the power-handing capacity is excess of 1.9 GW.

  20. Basic performance of a multilayer insulation system containing 20 to 160 layers. [thermal effectiveness of aluminized Mylar-silk net system

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.

    1974-01-01

    An experimental investigation was conducted to determine the thermal effectiveness of an aluminized Mylar-silk net insulation system containing up to 160 layers. The experimentally measured heat flux was compared with results predicted by using (1) a previously developed semi-empirical equation and (2) an effective-thermal-conductivity value. All tests were conducted at a nominal hot-boundary temperature of 294 K (530 R) with liquid hydrogen as the heat sink. The experimental results show that the insulation performed as expected and that both the semi-empirical equation and effective thermal conductivity of a small number of layers were adequate in predicting the thermal performance of a large number of layers of insulation.

  1. Experimental investigation of the effect of pump incoherence on nonlinear pump spectral broadening and continuous-wave supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Martin-Lopez, S.; Carrasco-Sanz, A.; Corredera, P.; Abrardi, L.; Hernanz, M. L.; Gonzalez-Herraez, M.

    2006-12-01

    The development of high-power cw fiber lasers has triggered a great interest in the phenomena of nonlinear pump spectral broadening and cw supercontinuum generation. These effects have very convenient applications in Raman amplification, optical fiber metrology, and fiber sensing. In particular, it was recently shown that pump incoherence has a strong impact in these processes. We study experimentally the effect of pump incoherence in nonlinear pump spectral broadening and cw supercontinuum generation in optical fibers. We show that under certain experimental conditions an optimum degree of pump incoherence yields the best performance in the broadening process. We qualitatively explain these results, and we point out that these results may have important implications in cw supercontinuum optimization.

  2. Ultrasonic Vibration Assisted Grinding of Bio-ceramic Materials: Modeling, Simulation, and Experimental Investigations on Edge Chipping

    NASA Astrophysics Data System (ADS)

    Tesfay, Hayelom D.

    Bio-ceramics are those engineered materials that find their applications in the field of biomedical engineering or medicine. They have been widely used in dental restorations, repairing bones, joint replacements, pacemakers, kidney dialysis machines, and respirators. etc. due to their physico-chemical properties, such as excellent corrosion resistance, good biocompatibility, high strength and high wear resistance. Because of their inherent brittleness and hardness nature they are difficult to machine to exact sizes and dimensions. Abrasive machining processes such as grinding is one of the most widely used manufacturing processes for bioceramics. However, the principal technical challenge resulted from these machining is edge chipping. Edge chipping is a common edge failure commonly observed during the machining of bio-ceramic materials. The presence of edge chipping on bio-ceramic products affects dimensional accuracy, increases manufacturing cost, hider their industrial applications and causes potential failure during service. To overcome these technological challenges, a new ultrasonic vibration-assisted grinding (UVAG) manufacturing method has been developed and employed in this research. The ultimate aim of this study is to develop a new cost-effective manufacturing process relevant to eliminate edge chippings in grinding of bio-ceramic materials. In this dissertation, comprehensive investigations will be carried out using experimental, theoretical, and numerical approaches to evaluate the effect of ultrasonic vibrations on edge chipping of bioceramics. Moreover, effects of nine input variables (static load, vibration frequency, grinding depth, spindle speed, grinding distance, tool speed, grain size, grain number, and vibration amplitude) on edge chipping will be studied based on the developed models. Following a description of previous research and existing approaches, a series of experimental tests on three bio-ceramic materials (Lava, partially fired Lava, and Alumina) were conducted. Based on the experimental results, analytical models for UVAG and CG (conventional grinding without ultrasonic vibration) processes were developed. As for the numerical study, an extended finite element method (XFEM) based on Virtual Crack Closure Technique (VCCT) in ABAQUS was used to model the formation of edge chippings both for UVAG and CG processes. The experimental results are compared against the numerical FEA and the analytical models. The experimental, theoretical, and computational simulation results revealed that the edge chipping size of bioceramics can be significantly reduced with the assistance of ultrasonic vibration. The investigation procedures and the results obtained in this dissertation would be used as a reference and practical guidance for choosing reasonable process variables as well as designing mathematical (analytical and numerical) models in manufacturing industries and academic institutions when the edge chippings of brittle materials are expected to be controlled.

  3. Development of using experimenter-given cues in infant chimpanzees: longitudinal changes in behavior and cognitive development.

    PubMed

    Okamoto-Barth, Sanae; Tomonaga, Masaki; Tanaka, Masayuki; Matsuzawa, Tetsuro

    2008-01-01

    The use of gaze shifts as social cues has various evolutionary advantages. To investigate the developmental processes of this ability, we conducted an object-choice task by using longitudinal methods with infant chimpanzees tested from 8 months old until 3 years old. The experimenter used one of six gestures towards a cup concealing food; tapping, touching, whole-hand pointing, gazing plus close-pointing, distant-pointing, close-gazing, and distant-gazing. Unlike any other previous study, we analyzed the behavioral changes that occurred before and after choosing the cup. We assumed that pre-choice behavior indicates the development of an attentional and spatial connection between a pointing cue and an object (e.g. Woodward, 2005); and post-choice behavior indicates the emergence of object permanence (e.g. Piaget, 1954). Our study demonstrated that infant chimpanzees begin to use experimenter-given cues with age (after 11 months of age). Moreover, the results from the behavioral analysis showed that the infants gradually developed the spatial link between the pointing as an object-directed action and the object. Moreover, when they were 11 months old, the infants began to inspect the inside of the cup, suggesting the onset of object permanence. Overall, our results imply that the ability to use the cues is developing and mutually related with other cognitive developments. The present study also suggests what the standard object-choice task actually measures by breaking the task down into the developmental trajectories of its component parts, and describes for the first time the social-physical cognitive development during the task with a longitudinal method.

  4. Combining existing numerical models with data assimilation using weighted least-squares finite element methods.

    PubMed

    Rajaraman, Prathish K; Manteuffel, T A; Belohlavek, M; Heys, Jeffrey J

    2017-01-01

    A new approach has been developed for combining and enhancing the results from an existing computational fluid dynamics model with experimental data using the weighted least-squares finite element method (WLSFEM). Development of the approach was motivated by the existence of both limited experimental blood velocity in the left ventricle and inexact numerical models of the same flow. Limitations of the experimental data include measurement noise and having data only along a two-dimensional plane. Most numerical modeling approaches do not provide the flexibility to assimilate noisy experimental data. We previously developed an approach that could assimilate experimental data into the process of numerically solving the Navier-Stokes equations, but the approach was limited because it required the use of specific finite element methods for solving all model equations and did not support alternative numerical approximation methods. The new approach presented here allows virtually any numerical method to be used for approximately solving the Navier-Stokes equations, and then the WLSFEM is used to combine the experimental data with the numerical solution of the model equations in a final step. The approach dynamically adjusts the influence of the experimental data on the numerical solution so that more accurate data are more closely matched by the final solution and less accurate data are not closely matched. The new approach is demonstrated on different test problems and provides significantly reduced computational costs compared with many previous methods for data assimilation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. More than a Picture: Helping Undergraduates Learn to Communicate through Scientific Images

    ERIC Educational Resources Information Center

    Watson, Fiona L.; Lom, Barbara

    2008-01-01

    Images are powerful means of communicating scientific results; a strong image can underscore an experimental result more effectively than any words, whereas a poor image can readily undermine a result or conclusion. Developmental biologists rely extensively on images to compare normal versus abnormal development and communicate their results. Most…

  6. Simulations of DNA stretching by flow field in microchannels with complex geometry.

    PubMed

    Huang, Chiou-De; Kang, Dun-Yen; Hsieh, Chih-Chen

    2014-01-01

    Recently, we have reported the experimental results of DNA stretching by flow field in three microchannels (C. H. Lee and C. C. Hsieh, Biomicrofluidics 7(1), 014109 (2013)) designed specifically for the purpose of preconditioning DNA conformation for easier stretching. The experimental results do not only demonstrate the superiority of the new devices but also provides detailed observation of DNA behavior in complex flow field that was not available before. In this study, we use Brownian dynamics-finite element method (BD-FEM) to simulate DNA behavior in these microchannels, and compare the results against the experiments. Although the hydrodynamic interaction (HI) between DNA segments and between DNA and the device boundaries was not included in the simulations, the simulation results are in fairly good agreement with the experimental data from either the aspect of the single molecule behavior or from the aspect of ensemble averaged properties. The discrepancy between the simulation and the experimental results can be explained by the neglect of HI effect in the simulations. Considering the huge savings on the computational cost from neglecting HI, we conclude that BD-FEM can be used as an efficient and economic designing tool for developing new microfluidic device for DNA manipulation.

  7. The Research on the High-Protein Low-Calorie Food Recipe for Teenager Gymnastics Athletes.

    PubMed

    Wei, Cong

    2015-01-01

    In order to prevent teenager gymnastics athletes getting fat deposition, weight gain, they should supply a rational food. This paper considers the normal growth and development of athletes, body fat deposition proteins and hunger feel, configured high-protein low-calorie food recipe. Then analysis the composition and the essential amino acids of the recipe. In the final choiced 18 adolescent gymnastics athletes as subjects, to verify the validity of the formula. And analysis the experimental results. The experimental results analysis shows that this recipe basically meets the design requirements.

  8. Strain measurements in a rotary engine housing

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Bond, T. H.; Addy, H. E.; Chun, K. S.; Lu, C. Y.

    1989-01-01

    The development of structural design tools for Rotary Combustion Engines (RCE) using Finite Element Modeling (FEM) requires knowledge about the response of engine materials to various service conditions. This paper describes experimental work that studied housing deformation as a result of thermal, pressure and mechanical loads. The measurement of thermal loads, clamping pressure, and deformation was accomplished by use of high-temperature strain gauges, thermocouples, and a high speed data acquisition system. FEM models for heat transfer stress analysis of the rotor housing will be verified and refined based on these experimental results.

  9. Calculation of the Effective Cross Sections of the Reaction X(n,p)Y with Neutrons in the Energy Range 2-5 Mev; CALCULO DE SECCIONES EFICACES X(n,p)Y CON NEUTRONES DE ENERGIAS ENTRE 2-5 Mev

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapaport, J.; Trier, A.

    1960-05-01

    Parallel with experimental work to measure the ic neutrons between 2 and 3.6 Mev, it was necessary to estimate the theoretical behavior of these cross sections. The statistical theory of Blatt and Weisskopf was used in the calculation. The theoretical results obtained for squarewell and diffuse-well development are compared with the experimental results. (J.S.R.)

  10. Experimental and Theoretical Results in Output-Trajectory Redesign for Flexible Structures

    NASA Technical Reports Server (NTRS)

    Dewey, J. S.; Devasia, Santosh

    1996-01-01

    In this paper we study the optimal redesign of output trajectory for linear invertible systems. This is particularly important for tracking control of flexible structures because the input-state trajectories that achieve the required output may cause excessive vibrations in the structure. A trade-off is then required between tracking and vibrations reduction. We pose and solve this problem as the minimization of a quadratic cost function. The theory is developed and applied to the output tracking of a flexible structure and experimental results are presented.

  11. A model for a continuous-wave iodine laser

    NASA Technical Reports Server (NTRS)

    Hwang, In H.; Tabibi, Bagher M.

    1990-01-01

    A model for a continuous-wave (CW) iodine laser has been developed and compared with the experimental results obtained from a solar-simulator-pumped CW iodine laser. The agreement between the calculated laser power output and the experimental results is generally good for various laser parameters even when the model includes only prominent rate coefficients. The flow velocity dependence of the output power shows that the CW iodine laser cannot be achieved with a flow velocity below 1 m/s for the present solar-simulator-pumped CW iodine laser system.

  12. Development and experimental qualification of a calculation scheme for the evaluation of gamma heating in experimental reactors. Application to MARIA and Jules Horowitz (JHR) MTR Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarchalski, M.; Pytel, K.; Wroblewska, M.

    2015-07-01

    Precise computational determination of nuclear heating which consists predominantly of gamma heating (more than 80 %) is one of the challenges in material testing reactor exploitation. Due to sophisticated construction and conditions of experimental programs planned in JHR it became essential to use most accurate and precise gamma heating model. Before the JHR starts to operate, gamma heating evaluation methods need to be developed and qualified in other experimental reactor facilities. This is done inter alia using OSIRIS, MINERVE or EOLE research reactors in France. Furthermore, MARIA - Polish material testing reactor - has been chosen to contribute to themore » qualification of gamma heating calculation schemes/tools. This reactor has some characteristics close to those of JHR (beryllium usage, fuel element geometry). To evaluate gamma heating in JHR and MARIA reactors, both simulation tools and experimental program have been developed and performed. For gamma heating simulation, new calculation scheme and gamma heating model of MARIA have been carried out using TRIPOLI4 and APOLLO2 codes. Calculation outcome has been verified by comparison to experimental measurements in MARIA reactor. To have more precise calculation results, model of MARIA in TRIPOLI4 has been made using the whole geometry of the core. This has been done for the first time in the history of MARIA reactor and was complex due to cut cone shape of all its elements. Material composition of burnt fuel elements has been implemented from APOLLO2 calculations. An experiment for nuclear heating measurements and calculation verification has been done in September 2014. This involved neutron, photon and nuclear heating measurements at selected locations in MARIA reactor using in particular Rh SPND, Ag SPND, Ionization Chamber (all three from CEA), KAROLINA calorimeter (NCBJ) and Gamma Thermometer (CEA/SCK CEN). Measurements were done in forty points using four channels. Maximal nuclear heating evaluated from measurements is of the order of 2.5 W/g at half of the possible MARIA power - 15 MW. The approach and the detailed program for experimental verification of calculations will be presented. The following points will be discussed: - Development of a gamma heating model of MARIA reactor with TRIPOLI 4 (coupled neutron-photon mode) and APOLLO2 model taking into account the key parameters like: configuration of the core, experimental loading, control rod location, reactor power, fuel depletion); - Design of specific measurement tools for MARIA experiments including for instance a new single-cell calorimeter called KAROLINA calorimeter; - MARIA experimental program description and a preliminary analysis of results; - Comparison of calculations for JHR and MARIA cores with experimental verification analysis, calculation behavior and n-γ 'environments'. (authors)« less

  13. Acoustic emission from a growing crack

    NASA Technical Reports Server (NTRS)

    Jacobs, Laurence J.

    1989-01-01

    An analytical method is being developed to determine the signature of an acoustic emission waveform from a growing crack and the results of this analysis are compared to experimentally obtained values. Within the assumptions of linear elastic fracture mechanics, a two dimensional model is developed to examine a semi-infinite crack that, after propagating with a constant velocity, suddenly stops. The analytical model employs an integral equation method for the analysis of problems of dynamic fracture mechanics. The experimental procedure uses an interferometric apparatus that makes very localized absolute measurements with very high fidelity and without acoustically loading the specimen.

  14. Mechanics of plant fruit hooks

    PubMed Central

    Chen, Qiang; Gorb, Stanislav N.; Gorb, Elena; Pugno, Nicola

    2013-01-01

    Hook-like surface structures, observed in some plant species, play an important role in the process of plant growth and seed dispersal. In this study, we developed an elastic model and further used it to investigate the mechanical behaviour of fruit hooks in four plant species, previously measured in an experimental study. Based on Euler–Bernoulli beam theory, the force–displacement relationship is derived, and its Young's modulus is obtained. The result agrees well with the experimental data. The model aids in understanding the mechanics of hooks, and could be used in the development of new bioinspired Velcro-like materials. PMID:23365190

  15. Modeling of circulating fluised beds for post-combustion carbon capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.; Shadle, L.; Miller, D.

    2011-01-01

    A compartment based model for a circulating fluidized bed reactor has been developed based on experimental observations of riser hydrodynamics. The model uses a cluster based approach to describe the two-phase behavior of circulating fluidized beds. Fundamental mass balance equations have been derived to describe the movement of both gas and solids though the system. Additional work is being performed to develop the correlations required to describe the hydrodynamics of the system. Initial testing of the model with experimental data shows promising results and highlights the importance of including end effects within the model.

  16. 30 cm Engineering Model thruster design and qualification tests

    NASA Technical Reports Server (NTRS)

    Schnelker, D. E.; Collett, C. R.

    1975-01-01

    Development of a 30-cm mercury electron bombardment Engineering Model ion thruster has successfully brought the thruster from the status of a laboratory experimental device to a point approaching flight readiness. This paper describes the development progress of the Engineering Model (EM) thruster in four areas: (1) design features and fabrication approaches, (2) performance verification and thruster to thruster variations, (3) structural integrity, and (4) interface definition. The design of major subassemblies, including the cathode-isolator-vaporizer (CIV), main isolator-vaporizer (MIV), neutralizer isolator-vaporizer (NIV), ion optical system, and discharge chamber/outer housing is discussed along with experimental results.

  17. Experimental evidence for the sensitivity of the air-shower radio signal to the longitudinal shower development

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.

    2012-04-01

    We observe a correlation between the slope of radio lateral distributions and the mean muon pseudorapidity of 59 individual cosmic-ray-air-shower events. The radio lateral distributions are measured with LOPES, a digital radio interferometer colocated with the multidetector-air-shower array KASCADE-Grande, which includes a muon-tracking detector. The result proves experimentally that radio measurements are sensitive to the longitudinal development of cosmic-ray air showers. This is one of the main prerequisites for using radio arrays for ultra-high-energy particle physics and astrophysics.

  18. An Integrated Study on a Novel High Temperature High Entropy Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shizhong

    2016-12-31

    This report summarizes our recent works of theoretical modeling, simulation, and experimental validation of the simulation results on the new refractory high entropy alloy (HEA) design and oxide doped refractory HEA research. The simulation of the stability and thermal dynamics simulation on potential thermal stable candidates were performed and related HEA with oxide doped samples were synthesized and characterized. The HEA ab initio density functional theory and molecular dynamics physical property simulation methods and experimental texture validation techniques development, achievements already reached, course work development, students and postdoc training, and future improvement research directions are briefly introduced.

  19. Experimental Investigation and Demonstration of Rotary-Wing Technologies for Flight in the Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Young, L. A.; Derby, M. R.; Demblewski, R.; Navarrete, J.

    2002-01-01

    This paper details ongoing work at NASA Ames Research Center as to experimental investigations and demonstrations related to rotary-wing technologies that might be applied to flight in the atmosphere of Mars. Such Mars rotorcraft would provide a 'three-dimensional mobility' to the exploration of the Red Planet. Preliminary results from isolated rotor testing in Mars-representative atmospheric densities, as well as progress towards coaxial test stand development are discussed. Additionally, work towards the development and use of surrogate flight vehicles -- in the terrestrial environment -- to demonstrate key technologies is also summarized.

  20. Development of an experimental setup for testing the properties of γ/γ' superalloys

    NASA Astrophysics Data System (ADS)

    Christophe, Siret; Bernard, Viguier; Claude, Salabura Jean; Eric, Andrieu; Sandrine, Lesterlin

    2010-07-01

    Certification tests on turboshaft engines for helicopters can expose components as high pressure turbine blades to very high temperature during short time periods. To simulate these complex temperature and mechanical stress loadings and to study dimensional and microstructural stability under severe testing conditions, an experimental set-up has been recently developed. In this paper, we first present this new device and describe its performances. Then, the device is used to study the effect of heating procedure on creep results at 1200°C and rafting during primary creep on the single crystal nickel-based superalloy MC2.

  1. Self-injection-locking linewidth narrowing in a semiconductor laser coupled to an external fiber-optic ring resonator

    NASA Astrophysics Data System (ADS)

    Korobko, Dmitry A.; Zolotovskii, Igor O.; Panajotov, Krassimir; Spirin, Vasily V.; Fotiadi, Andrei A.

    2017-12-01

    We develop a theoretical framework for modeling of semiconductor laser coupled to an external fiber-optic ring resonator. The developed approach has shown good qualitative agreement between theoretical predictions and experimental results for particular configuration of a self-injection locked DFB laser delivering narrow-band radiation. The model is capable of describing the main features of the experimentally measured laser outputs such as laser line narrowing, spectral shape of generated radiation, mode-hoping instabilities and makes possible exploring the key physical mechanisms responsible for the laser operation stability.

  2. Hypersonic research engine/aerothermodynamic integration model: Experimental results. Volume 3: Mach 7 component integration and performance

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Mackley, E. A.

    1976-01-01

    The NASA Hypersonic Research Engine Project was undertaken to design, develop, and construct a hypersonic research ramjet engine for high performance and to flight test the developed concept on the X-15-2A airplane over the speed range from Mach 3 to 8. Computer program results are presented here for the Mach 7 component integration and performance tests.

  3. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.

    2007-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a representative lunar surface reactor shield design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to anchor a CFD model. Performance of a water shield on the lunar surface is then predicted by CFD models anchored to test data. The accompanying viewgraph presentation includes the following topics: 1) Testbed Configuration; 2) Core Heater Placement and Instrumentation; 3) Thermocouple Placement; 4) Core Thermocouple Placement; 5) Outer Tank Thermocouple Placement; 6) Integrated Testbed; 7) Methodology; 8) Experimental Results: Core Temperatures; 9) Experimental Results; Outer Tank Temperatures; 10) CFD Modeling; 11) CFD Model: Anchored to Experimental Results (1-g); 12) CFD MOdel: Prediction for 1/6-g; and 13) CFD Model: Comparison of 1-g to 1/6-g.

  4. Model of rotary-actuated flexible beam with notch filter vibration suppression controller and torque feedforward load compensation controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bills, K.C.; Kress, R.L.; Kwon, D.S.

    1994-12-31

    This paper describes ORNL`s development of an environment for the simulation of robotic manipulators. Simulation includes the modeling of kinematics, dynamics, sensors, actuators, control systems, operators, and environments. Models will be used for manipulator design, proposal evaluation, control system design and analysis, graphical preview of proposed motions, safety system development, and training. Of particular interest is the development of models for robotic manipulators having at least one flexible link. As a first application, models have been developed for the Pacific Northwest Laboratory`s Flexible Beam Test Bed (PNL FBTB), which is a 1-Degree-of-Freedom, flexible arm with a hydraulic base actuator. ORNLmore » transferred control algorithms developed for the PNL FBTB to controlling IGRIP models. A robust notch filter is running in IGRIP controlling a full dynamics model of the PNL test bed. Model results provide a reasonable match to the experimental results (quantitative results are being determined) and can run on ORNL`s Onyx machine in approximately realtime. The flexible beam is modeled as six rigid sections with torsional springs between each segment. The spring constants were adjusted to match the physical response of the flexible beam model to the experimental results. The controller is able to improve performance on the model similar to the improvement seen on the experimental system. Some differences are apparent, most notably because the IGRIP model presently uses a different trajectory planner than the one used by ORNL on the PNL test bed. In the future, the trajectory planner will be modified so that the experiments and models are the same. The successful completion of this work provides the ability to link C code with IGRIP, thus allowing controllers to be developed, tested, and tuned in simulation and then ported directly to hardware systems using the C language.« less

  5. Fluid dynamics and low gravity effects of chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz

    1990-01-01

    Based on the comparison between experimental data and numerical results for the growth of GaAs from TMGa, it was shown that 3D simulations are necessary to simulate rectangular CVD reactors even when operated under subcritical (Ra) conditions. The important points found are summarized in the three attached reprints. The experimental studies of mixed convection in horizontal channels have shown three regimes of high Ra (22,220) number flows. At Re = 18.5, the rolls develop very quickly, significantly modulating the axial velocity even before it reaches the beginning of the hot plate. A few centimeters downstream, the velocities become asymmetric about the vertical centerplane and at x = 12 cm, become unsteady. These asymmetries were predicted theoretically, but experimental evidence has not been published prior to this work. At Re = 36, the axial velocity is only slightly modified at x = 0. Although the flow remains steady and symmetric about the vertical centerplane, there is a small spatial oscillation in the velocities over the length of the channel. The period of this oscillation was around 5 cm. At Re = 54, the longitudinal rolls developed smoothly over a length of 30 cm, with no asymmetries, unsteadiness, or spatial oscillations. Comparison of numerical simulations of these flows to experiments has revealed the importance and difficulty of setting proper thermal boundary conditions on the sidewalls. Calculated flows and experimentally measured flows showed very similar profiles, but at different axial locations, with the rolls developing more rapidly in the experiments. This is directly attributable to partially conducting sidewalls of the apparatus being hotter in the entrance section than the adiabatic walls of the simulations. A thorough comparison of the experimental data and numerical results for a variety of sidewall boundary conditions is in preparation.

  6. Experimental and numerical studies of rotating drum grate furnace

    NASA Astrophysics Data System (ADS)

    Basista, Grzegorz; Szubel, Mateusz; Filipowicz, Mariusz; Tomczyk, Bartosz; Krakowiak, Joanna

    Waste material from the meat industry can be taken into account as a biofuel. Studies confirm, that calorific value is higher and ash content is lower comparing to some conventional fuels. EU directives regulate details of thermal disposal of the waste material from the meat industry - especially in range of the process temperature and time of the particle presence in area of the combustion zone. The paper describes design of the rotating drum grate stove, dedicated to thermal disposal of the meat wastes as well as solid biomass (pellet, small bricket, wood chips) combustion. Device has been developed in frames of cooperation between AGH University of Science and Technology (Krakow, Poland) and producer focused on technologies of energy utilization of biomass in distributed generation. Results of measurements of selected operational parameters performed during startup of the furnace have been presented and discussed. Furthermore, numerical model of the combustion process has been developed to complement experimental results in range of the temperature and oxygen distribution in the area of the combustion chamber. ANSYS CFX solver has been applied to perform simulations including rotational domain related with specifics of operation of the device. Results of numerical modelling and experimental studies have been summarized and compared.

  7. Experimental results of use of triple-energy X-ray beam with K-edge filter in multi-energy imaging

    NASA Astrophysics Data System (ADS)

    Kim, D.; Lee, S.; Jeon, P.-H.

    2016-04-01

    Multi-energy imaging is useful for contrast enhancement of lesions, quantitative analysis of specific materials and material separation in the human body. Generally, dual-energy methods are applied to discriminating two materials, but this method cannot discriminate more than two materials. Photon-counting detectors provide spectral information from polyenergetic X-rays using multiple energy bins. In this work, we developed triple-energy X-ray beams using a filter with K-edge energy and applied them experimentally. The energy spectra of triple-energy X-ray beams were assessed by using a spectrometer. The designed triple-energy X-ray beams were validated by measuring quantitative evaluations with mean energy ratio (MER), contrast variation ratio (CVR) and exposure efficiency (EE). Then, triple-energy X-ray beams were used to extract density map of three materials, iodine (I), aluminum (Al) and polymethyl methacrylate (PMMA). The results of the thickness density maps obtained with the developed triple-energy X-ray beams were compared to those acquired using the photon-counting method. As a result, it was found experimentally that the proposed triple-energy X-ray beam technique can separate the three materials as well as the photon-counting method.

  8. The development of an experimental facility and investigation of rapidly maneuvering Micro-Air-Vehicle wings

    NASA Astrophysics Data System (ADS)

    Wilson, Lee Alexander

    Vertical Takeoff-and-Landing (VTOL) Micro Air Vehicles (MAVs) provide a versatile operational platform which combines the capabilities of fixed wing and rotary wing MAVs. In order to improve performance of these vehicles, a better understanding of the rapid transition between horizontal and vertical flight is required. This study examines the flow structures around the Mini-Vertigo VTOL MAV using flow visualization techniques. This will gives an understanding of the flow structures which dominate the flight dynamics of rapid pitching maneuvers. This study consists of three objectives: develop an experimental facility, use flow visualization to investigate the flow around the experimental subject during pitching, and analyze the results. The flow around the Mini-Vertigo VTOL MAV is dominated by the slipstream from its propellers. The slipstream delays LE separation and causes drastic deflection in the flow. While the frequency of the vortices shed from the LE and TE varies with flow speed, the non-dimensional frequency does not. It does, however, vary slightly with the pitching rate. These results are applicable across a wide range of flight conditions. The results correlate to previous research done to examine the aerodynamic forces on the MAV.

  9. Head Start Classroom Teachers' and Assistant Teachers' Perceptions of Professional Development Using a Learn Framework

    ERIC Educational Resources Information Center

    Nasser, Ilham; Kidd, Julie K.; Burns, M. Susan; Campbell, Trina

    2015-01-01

    This study investigates early childhood education teachers' and assistant teachers' views about a year-long professional development model that focuses on developing intentional teaching. The study shares the results of interviews conducted with the teachers at the end of the implementation of a one-year experimental professional model in Head…

  10. Modeling of high-strength concrete-filled FRP tube columns under cyclic load

    NASA Astrophysics Data System (ADS)

    Ong, Kee-Yen; Ma, Chau-Khun; Apandi, Nazirah Mohd; Awang, Abdullah Zawawi; Omar, Wahid

    2018-05-01

    The behavior of high-strength concrete (HSC) - filled fiber-reinforced-polymer (FRP) tubes (HSCFFTs) column subjected to cyclic lateral loading is presented in this paper. As the experimental study is costly and time consuming, a finite element analysis (FEA) is chosen for the study. Most of the previous studies have focused on examining the axial load behavior of HSCFFT column instead of seismic behavior. The seismic behavior of HSCFFT columns has been the main interest in the industry. The key objective of this research is to develop a reliable numerical non-linear FEA model to represent the seismic behavior of such column. A FEA model was developed using the Concrete Damaged Plasticity Model (CDPM) available in the finite element software package (ABAQUS). Comparisons between experimental results from previous research and the predicted results were made based on load versus displacement relationships and ultimate strength of the column. The results showed that the column increased in ductility and able to deform to a greater extent with the increase of the FRP confinement ratio. With the increase of confinement ratio, HSCFFT column achieved a higher moment resistance, thus indicated a higher failure strength in the column under cyclic lateral load. It was found that the proposed FEA model can regenerate the experimental results with adequate accuracy.

  11. A fundamental study of suction for Laminar Flow Control (LFC)

    NASA Astrophysics Data System (ADS)

    Watmuff, Jonathan H.

    1992-10-01

    This report covers the period forming the first year of the project. The aim is to experimentally investigate the effects of suction as a technique for Laminar Flow Control. Experiments are to be performed which require substantial modifications to be made to the experimental facility. Considerable effort has been spent developing new high performance constant temperature hot-wire anemometers for general purpose use in the Fluid Mechanics Laboratory. Twenty instruments have been delivered. An important feature of the facility is that it is totally automated under computer control. Unprecedently large quantities of data can be acquired and the results examined using the visualization tools developed specifically for studying the results of numerical simulations on graphics works stations. The experiment must be run for periods of up to a month at a time since the data is collected on a point-by-point basis. Several techniques were implemented to reduce the experimental run-time by a significant factor. Extra probes have been constructed and modifications have been made to the traverse hardware and to the real-time experimental code to enable multiple probes to be used. This will reduce the experimental run-time by the appropriate factor. Hot-wire calibration drift has been a frustrating problem owing to the large range of ambient temperatures experienced in the laboratory. The solution has been to repeat the calibrations at frequent intervals. However the calibration process has consumed up to 40 percent of the run-time. A new method of correcting the drift is very nearly finalized and when implemented it will also lead to a significant reduction in the experimental run-time.

  12. A fundamental study of suction for Laminar Flow Control (LFC)

    NASA Technical Reports Server (NTRS)

    Watmuff, Jonathan H.

    1992-01-01

    This report covers the period forming the first year of the project. The aim is to experimentally investigate the effects of suction as a technique for Laminar Flow Control. Experiments are to be performed which require substantial modifications to be made to the experimental facility. Considerable effort has been spent developing new high performance constant temperature hot-wire anemometers for general purpose use in the Fluid Mechanics Laboratory. Twenty instruments have been delivered. An important feature of the facility is that it is totally automated under computer control. Unprecedently large quantities of data can be acquired and the results examined using the visualization tools developed specifically for studying the results of numerical simulations on graphics works stations. The experiment must be run for periods of up to a month at a time since the data is collected on a point-by-point basis. Several techniques were implemented to reduce the experimental run-time by a significant factor. Extra probes have been constructed and modifications have been made to the traverse hardware and to the real-time experimental code to enable multiple probes to be used. This will reduce the experimental run-time by the appropriate factor. Hot-wire calibration drift has been a frustrating problem owing to the large range of ambient temperatures experienced in the laboratory. The solution has been to repeat the calibrations at frequent intervals. However the calibration process has consumed up to 40 percent of the run-time. A new method of correcting the drift is very nearly finalized and when implemented it will also lead to a significant reduction in the experimental run-time.

  13. Pre-Test CFD for the Design and Execution of the Enhanced Injection and Mixing Project at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Axdahl, Erik L.; Cabell, Karen F.

    2014-01-01

    With the increasing costs of physics experiments and simultaneous increase in availability and maturity of computational tools it is not surprising that computational fluid dynamics (CFD) is playing an increasingly important role, not only in post-test investigations, but also in the early stages of experimental planning. This paper describes a CFD-based effort executed in close collaboration between computational fluid dynamicists and experimentalists to develop a virtual experiment during the early planning stages of the Enhanced Injection and Mixing project at NASA Langley Research Center. This projects aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships relevant to flight Mach numbers greater than 8. The purpose of the virtual experiment was to provide flow field data to aid in the design of the experimental apparatus and the in-stream rake probes, to verify the nonintrusive measurements based on NO-PLIF, and to perform pre-test analysis of quantities obtainable from the experiment and CFD. The approach also allowed for the joint team to develop common data processing and analysis tools, and to test research ideas. The virtual experiment consisted of a series of Reynolds-averaged simulations (RAS). These simulations included the facility nozzle, the experimental apparatus with a baseline strut injector, and the test cabin. Pure helium and helium-air mixtures were used to determine the efficacy of different inert gases to model hydrogen injection. The results of the simulations were analyzed by computing mixing efficiency, total pressure recovery, and stream thrust potential. As the experimental effort progresses, the simulation results will be compared with the experimental data to calibrate the modeling constants present in the CFD and validate simulation fidelity. CFD will also be used to investigate different injector concepts, improve understanding of the flow structure and flow physics, and develop functional relationships. Both RAS and large eddy simulations (LES) are planned for post-test analysis of the experimental data.

  14. Development of a pore network simulation model to study nonaqueous phase liquid dissolution

    USGS Publications Warehouse

    Dillard, Leslie A.; Blunt, Martin J.

    2000-01-01

    A pore network simulation model was developed to investigate the fundamental physics of nonequilibrium nonaqueous phase liquid (NAPL) dissolution. The network model is a lattice of cubic chambers and rectangular tubes that represent pore bodies and pore throats, respectively. Experimental data obtained by Powers [1992] were used to develop and validate the model. To ensure the network model was representative of a real porous medium, the pore size distribution of the network was calibrated by matching simulated and experimental drainage and imbibition capillary pressure‐saturation curves. The predicted network residual styrene blob‐size distribution was nearly identical to the observed distribution. The network model reproduced the observed hydraulic conductivity and produced relative permeability curves that were representative of a poorly consolidated sand. Aqueous‐phase transport was represented by applying the equation for solute flux to the network tubes and solving for solute concentrations in the network chambers. Complete mixing was found to be an appropriate approximation for calculation of chamber concentrations. Mass transfer from NAPL blobs was represented using a corner diffusion model. Predicted results of solute concentration versus Peclet number and of modified Sherwood number versus Peclet number for the network model compare favorably with experimental data for the case in which NAPL blob dissolution was negligible. Predicted results of normalized effluent concentration versus pore volume for the network were similar to the experimental data for the case in which NAPL blob dissolution occurred with time.

  15. Statistical Analysis for Collision-free Boson Sampling.

    PubMed

    Huang, He-Liang; Zhong, Han-Sen; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su

    2017-11-10

    Boson sampling is strongly believed to be intractable for classical computers but solvable with photons in linear optics, which raises widespread concern as a rapid way to demonstrate the quantum supremacy. However, due to its solution is mathematically unverifiable, how to certify the experimental results becomes a major difficulty in the boson sampling experiment. Here, we develop a statistical analysis scheme to experimentally certify the collision-free boson sampling. Numerical simulations are performed to show the feasibility and practicability of our scheme, and the effects of realistic experimental conditions are also considered, demonstrating that our proposed scheme is experimentally friendly. Moreover, our broad approach is expected to be generally applied to investigate multi-particle coherent dynamics beyond the boson sampling.

  16. Determination of Material Constitutive Laws for Inconel 718 Superalloy Under Different Strain Rates and Working Temperatures

    NASA Astrophysics Data System (ADS)

    Grzesik, W.; Niesłony, P.; Laskowski, P.

    2017-12-01

    In this paper, a special procedure for the prediction of parameters of the Johnson-Cook constitutive material models is proposed based on the experimental data and specially developed MATLAB scripts which allow advanced modeling of complex 3D response surfaces. Experimental investigations concern two various strain rates of 10-3 and 101 1/s and the testing temperature ranging from the ambient up to 700 °C. As a result, a set of mathematical equations which fit the experimental data is determined. The applicability of the experimentally derived constitutive models to the FEM modeling of real machining processes of Inconel 718 alloy is verified.

  17. Progress in the development of an H{sup −} ion source for cyclotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etoh, H., E-mail: Hrh-Etoh@shi.co.jp; Aoki, Y.; Mitsubori, H.

    2015-04-08

    A multi-cusp DC H{sup −} ion source has been developed for cyclotrons in medical use. Beam optics of the H{sup −} ion beam is studied using a 2D beam trajectory code. The simulation results are compared with the experimental results obtained in the Mark I source, which has produced up to 16 mA H{sup −} ion beams. The optimum extraction voltages show good agreement between the calculation and the experimental results. A new ion source, Mark II source, is designed to achieve the next goal of producing an H{sup −} beam of 20 mA. The magnetic field configurations and the plasma electrodemore » design are optimized for Cs-seeded operation. Primary electron trajectory simulation shows that primary electrons are confined well and the magnetic filter prevents the primary electrons from entering into the extraction region.« less

  18. An OSI architecture for the deep space network

    NASA Technical Reports Server (NTRS)

    Heuser, W. Randy; Cooper, Lynne P.

    1993-01-01

    The flexibility and robustness of a monitor and control system are a direct result of the underlying inter-processor communications architecture. A new architecture for monitor & Control at the Deep Space Network Communications Complexes has been developed based on the Open System Interconnection (OSI) standards. The suitability of OSI standards for DSN M&C has been proven in the laboratory. The laboratory success has resulted in choosing an OSI-based architecture for DSS-13 M&C. DSS-13 is the DSN experimental station and is not part of the 'operational' DSN; it's role is to provide an environment to test new communications concepts can be tested and conduct unique science experiments. Therefore, DSS-13 must be robust enough to support operational activities, while also being flexible enough to enable experimentation. This paper describes the M&C architecture developed for DSS-13 and the results from system and operational testing.

  19. The Development of Animal Behavior: From Lorenz to Neural Nets

    NASA Astrophysics Data System (ADS)

    Bolhuis, Johan J.

    In the study of behavioral development both causal and functional approaches have been used, and they often overlap. The concept of ontogenetic adaptations suggests that each developmental phase involves unique adaptations to the environment of the developing animal. The functional concept of optimal outbreeding has led to further experimental evidence and theoretical models concerning the role of sexual imprinting in the evolutionary process of sexual selection. From a causal perspective it has been proposed that behavioral ontogeny involves the development of various kinds of perceptual, motor, and central mechanisms and the formation of connections among them. This framework has been tested for a number of complex behavior systems such as hunger and dustbathing. Imprinting is often seen as a model system for behavioral development in general. Recent advances in imprinting research have been the result of an interdisciplinary effort involving ethology, neuroscience, and experimental psychology, with a continual interplay between these approaches. The imprinting results are consistent with Lorenz' early intuitive suggestions and are also reflected in the architecture of recent neural net models.

  20. [The influence of the nutrient supplement for children on the nutrition and health status and intelligence of children of schooling age in the countryside of children of schooling age during 2 years].

    PubMed

    Zhao, Liyun; Yu, Wentao; Jia, Fengmei; Liu, Aidong; Vi, Guoqin; Song, Yi; Gong, Chenrui; Hua, Liming; Zhang, Jiguo; Zhai, Fengying

    2009-11-01

    To analyze the effect of complex nutrients on growth and development, intelligence and nutrition state of 6-12 years old children in two continuous years. According to the rural school's similar condition, such as social economical statement, education condition and proportion of students entering schools, 6 rural schools were respectively selected in Xishui County of Hubei Province as the experimental group and control group. In the former, middle and later periods (2004, 2005, 2006 ), growth and development, nutrition state and intelligence were analyzed and compared. The increase of height and weight in experimental group were higher than those of the control group. In 2 years, height in experimental group increased 12.9 cm, while the control group increased 11.5 cm. Weights increased in experimental group were 6.6 kg, while the control group increased 5.2 kg. Girl's bone density in experimental group increased from 0.236 g/cm in 2004 to 0.280 g/cm in 2006. The hemoglobin contents of 4 age group's children in experimental group increased significantly (P < 0.05) . While the anemia prevalence decreased 25 .8% in 2 years, the control group decreased 7.2%. Moreover, other results showed that the complex nutrients also have some effect on the intelligence in experiment group. The complex nutrients supplement could improve the rural school children's growth and development, bone and intelligence.

  1. Development of an automated experimental setup for the study of ionic-exchange kinetics. Application to the ionic adsorption, equilibrium attainment and dissolution of apatite compounds.

    PubMed

    Thomann, J M; Gasser, P; Bres, E F; Voegel, J C; Gramain, P

    1990-02-01

    An ion-selective electrode and microcomputer-based experimental setup for the study of ionic-exchange kinetics between a powdered solid and the solution is described. The equipment is composed of easily available commercial devices and a data acquisition and regularization computer program is presented. The system, especially developed to investigate the ionic adsorption, equilibrium attainment and dissolution of hard mineralized tissues, provides good reliable results by taking into account the volume changes of the reacting solution and the electrode behaviour under different experimental conditions, and by avoiding carbonation of the solution. A second computer program, using the regularized data and the experimental parameters, calculates the quantities of protons consumed and calcium released in the case of equilibrium attainment and dissolution of apatite-like compounds. Finally, typical examples of ion-exchange and dissolution kinetics under constant pH of enamel and synthetic hydroxyapatite are examined.

  2. Predictive Surface Complexation Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sverjensky, Dimitri A.

    Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO 2 and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall,more » my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.« less

  3. The development of methods for predicting and measuring distribution patterns of aerial sprays

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Bragg, M. B.; Maughmer, M. D.

    1979-01-01

    The capability of conducting scale model experiments which involve the ejection of small particles into the wake of an aircraft close to the ground is developed. A set of relationships used to scale small-sized dispersion studies to full-size results are experimentally verified and, with some qualifications, basic deposition patterns are presented. In the process of validating these scaling laws, the basic experimental techniques used in conducting such studies, both with and without an operational propeller, were developed. The procedures that evolved are outlined. The envelope of test conditions that can be accommodated in the Langley Vortex Research Facility, which were developed theoretically, are verified using a series of vortex trajectory experiments that help to define the limitations due to wall interference effects for models of different sizes.

  4. Three-dimensional inviscid analysis of radial-turbine flow and a limited comparison with experimental data

    NASA Technical Reports Server (NTRS)

    Choo, Y. K.; Civinskas, K. C.

    1985-01-01

    The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor are compared with analytical results obtained by using the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. The computed rotor-exit flow angles are generally underturned relative to the experimental values, which reflect the boundary-layer separation at the trailing edge and the development of wakes downstream of the rotor. The experimental rotor is designed for a higher-than-optimum work factor of 1.126 resulting in a nonoptimum positive incidence and causing a region of rapid flow adjustment and large velocity gradients. For this experimental rotor, the computed radial distribution of rotor-exit to turbine-inlet total pressure ratios are underpredicted due to the errors in the finite-difference approximations in the regions of rapid flow adjustment, and due to using the relatively coarser grids in the middle of the blade region where the flow passage is highly three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed.

  5. Three-dimensional inviscid analysis of radial turbine flow and a limited comparison with experimental data

    NASA Technical Reports Server (NTRS)

    Choo, Y. K.; Civinskas, K. C.

    1985-01-01

    The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor are compared with analytical results obtained by using the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. The computed rotor-exit flow angles are generally underturned relative to the experimental values, which reflect the boundary-layer separation at the trailing edge and the development of wakes downstream of the rotor. The experimental rotor is designed for a higher-than-optimum work factor of 1.126 resulting in a nonoptimum positive incidence and causing a region of rapid flow adjustment and large velocity gradients. For this experimental rotor, the computed radial distribution of rotor-exit to turbine-inlet total pressure ratios are underpredicted due to the errors in the finite-difference approximations in the regions of rapid flow adjustment, and due to using the relatively coarser grids in the middle of the blade region where the flow passage is highly three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed.

  6. Site alteration effects from rocket exhaust impingment during a simulated Viking Mars landing. Part 1: Nozzle development and physical site alternation

    NASA Technical Reports Server (NTRS)

    Romine, G. L.; Reisert, T. D.; Gliozzi, J.

    1973-01-01

    A potential interference problem for the Viking '75 scientific investigation of the Martian surface resulting from retrorocket exhaust plume impingement of the surface was investigated experimentally and analytically. It was discovered that the conventional bell nozzle originally planned for the Viking Lander retrorockets would produce an unacceptably large amount of physical disturbance to the landing site. An experimental program was subsequently undertaken to find and/or develop a nozzle configuration which would significantly reduce the site alteration. A multiple nozzle configuration, consisting of 18 small bell nozzles, was shown to produce a level of disturbance that was considered by the Viking Lander Science Teams to be acceptable on the basis of results from full-scale tests on simulated Martian soils.

  7. Development of high temperature acoustic emission sensing system using fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Pang, Dandan; Sui, Qingmei; Wang, Ming; Guo, Dongmei; Sai, Yaozhang

    2018-03-01

    In some applications in structural health monitoring (SHM), the acoustic emission (AE) detection technology is used in the high temperature environment. In this paper, a high-temperature-resistant AE sensing system is developed based on the fiber Bragg grating (FBG) sensor. A novel high temperature FBG AE sensor is designed with a high signal-to-noise ratio (SNR) compared with the traditional FBG AE sensor. The output responses of the designed sensors with different sensing fiber lengths also are investigated both theoretically and experimentally. Excellent AE detection results are obtained using the proposed FBG AE sensing system over a temperature range from 25 ° to 200 °. The experimental results indicate that this FBG AE sensing system can well meet the application requirement in AE detecting areas at high temperature.

  8. Transient response of a liquid injector to a steep-fronted transverse pressure wave

    NASA Astrophysics Data System (ADS)

    Lim, D.; Heister, S.; Stechmann, D.; Kan, B.

    2017-12-01

    Motivated by the dynamic injection environment posed by unsteady pressure gain combustion processes, an experimental apparatus was developed to visualize the dynamic response of a transparent liquid injector subjected to a single steep-fronted transverse pressure wave. Experiments were conducted at atmospheric pressure with a variety of acrylic injector passage designs using water as the working fluid. High-speed visual observations were made of the injector exit near field, and the extent of backflow and the time to refill the orifice passage were characterized over a range of injection pressures. A companion transient one-dimensional model was developed for interpretation of the results and to elucidate the trends with regard to the strength of the transverse pressure wave. Results from the model were compared with the experimental observations.

  9. Transient response of a liquid injector to a steep-fronted transverse pressure wave

    NASA Astrophysics Data System (ADS)

    Lim, D.; Heister, S.; Stechmann, D.; Kan, B.

    2018-07-01

    Motivated by the dynamic injection environment posed by unsteady pressure gain combustion processes, an experimental apparatus was developed to visualize the dynamic response of a transparent liquid injector subjected to a single steep-fronted transverse pressure wave. Experiments were conducted at atmospheric pressure with a variety of acrylic injector passage designs using water as the working fluid. High-speed visual observations were made of the injector exit near field, and the extent of backflow and the time to refill the orifice passage were characterized over a range of injection pressures. A companion transient one-dimensional model was developed for interpretation of the results and to elucidate the trends with regard to the strength of the transverse pressure wave. Results from the model were compared with the experimental observations.

  10. FUN3D Analyses in Support of the Second Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Heeg, Jennifer

    2016-01-01

    This paper presents the computational aeroelastic results generated in support of the second Aeroelastic Prediction Workshop for the Benchmark Supercritical Wing (BSCW) configurations and compares them to the experimental data. The computational results are obtained using FUN3D, an unstructured grid Reynolds- Averaged Navier-Stokes solver developed at NASA Langley Research Center. The analysis results include aerodynamic coefficients and surface pressures obtained for steady-state, static aeroelastic equilibrium, and unsteady flow due to a pitching wing or flutter prediction. Frequency response functions of the pressure coefficients with respect to the angular displacement are computed and compared with the experimental data. The effects of spatial and temporal convergence on the computational results are examined.

  11. Qualitative analysis of anatomopathological changes of gastric mucosa due to long term therapy with proton pump inhibitors: experimental studies x clinical studies.

    PubMed

    de Souza, Iure Kalinine Ferraz; da Silva, Alcino Lázaro; de Araújo, Alex; Santos, Fernanda Carolina Barbosa; Mendonça, Bernardo Pinto Coelho Keuffer

    2013-01-01

    For a few decades the long-term use of proton pump inhibitors has had wide application in the treatment of several gastrointestinal diseases. Since then, however, several studies have called attention to the possible development of anatomical and pathological changes of gastric mucosa, resulting from the long term use of this therapeutic modality. Recent experimental and clinical studies suggest that these changes have connection not only to the development of precancerous lesions, but also of gastric tumors. To present a qualitative analysis of anatomical and pathological changes of gastric mucosa resulting from the long-term use of proton pump inhibitors. The headings used were: proton pump inhibitors, precancerous lesions and gastric neoplasms for a non systematic review of the literature, based on Medline, Lillacs and Scielo. Twelve articles were selected from clinical (9) and experimental (3) studies, for qualitative analysis of the results. The gastric acid suppression by high doses of proton pump inhibitors induces hypergastrinemia and the consequent emergence of neuroendocrine tumors in animal models. Morphological changes most often found in these experimental studies were: enterochromaffin-like cell hyperplasia, neuroendocrine tumor, atrophy, metaplasia and adenocarcinoma. In the studies in humans, however, despite enterochromaffin-like cell hyperplasia, the other effects, neuroendocrine tumor and gastric atrophy, gastric metaplasia and or adenocarcinoma, were not identified. Although it is not possible to say that the long-term treatment with proton pump inhibitors induces the appearance or accelerates the development of gastric cancer in humans, several authors have suggested that prolonged administration of this drug could provoke the development of gastric cancer. Thus, the evidence demonstrated in the animal model as well as the large number of patients who do or will do a long-term treatment with proton pump inhibitors, justifies the maintenance of this important line of research.

  12. Electric rail gun projectile acceleration to high velocity

    NASA Technical Reports Server (NTRS)

    Bauer, D. P.; Mccormick, T. J.; Barber, J. P.

    1982-01-01

    Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.

  13. Software aspects of the Geant4 validation repository

    NASA Astrophysics Data System (ADS)

    Dotti, Andrea; Wenzel, Hans; Elvira, Daniel; Genser, Krzysztof; Yarba, Julia; Carminati, Federico; Folger, Gunter; Konstantinov, Dmitri; Pokorski, Witold; Ribon, Alberto

    2017-10-01

    The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientific Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER is easily accessible via a web application. In addition, a web service allows for programmatic access to the repository to extract records in JSON or XML exchange formats. In this article, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made.

  14. Software Aspects of the Geant4 Validation Repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dotti, Andrea; Wenzel, Hans; Elvira, Daniel

    2016-01-01

    The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientic Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER is easily accessible via a web application. In addition, a web service allows for programmatic access to the repository to extract records in JSON or XML exchange formats. In this article, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made.

  15. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Sholes, T.; Sholes, J. E.

    1975-01-01

    The preliminary results of two projects in the development phase of reliable wind turbines designed to supply cost-competitive electrical energy were discussed. An experimental 100 kW wind turbine design and its status are first reviewed. The results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs are also discussed. These studies predict wind energy costs of 1.5 to 7 cents per kW-h for wind turbines produced in quantities of 100 to 1000 per year and located at sites having average winds of 12 to 18 mph.

  16. Fast-axial turbulent flow CO2 laser output characteristics and scaling parameters

    NASA Astrophysics Data System (ADS)

    Dembovetsky, V. V.; Zavalova, Valentina Y.; Zavalov, Yuri N.

    1996-04-01

    The paper presents the experimental results of evaluating the output characteristics of TLA- 600 carbon-dioxide laser with axial turbulent gas flow, as well as the results of numerical modeling. The output characteristic and spatial distribution of laser beam were measured with regard to specific energy input, working mixture pressure, active media length and output mirror reflection. The paper presents the results of experimental and theoretical study and design decisions on a succession of similar type industrial carbon-dioxide lasers with fast-axial gas-flow and dc discharge excitation of active medium developed at NICTL RAN. As an illustration, characteristics of the TLA-600 laser are cited.

  17. Reversible Data Hiding Based on DNA Computing

    PubMed Central

    Xie, Yingjie

    2017-01-01

    Biocomputing, especially DNA, computing has got great development. It is widely used in information security. In this paper, a novel algorithm of reversible data hiding based on DNA computing is proposed. Inspired by the algorithm of histogram modification, which is a classical algorithm for reversible data hiding, we combine it with DNA computing to realize this algorithm based on biological technology. Compared with previous results, our experimental results have significantly improved the ER (Embedding Rate). Furthermore, some PSNR (peak signal-to-noise ratios) of test images are also improved. Experimental results show that it is suitable for protecting the copyright of cover image in DNA-based information security. PMID:28280504

  18. Development of a new experimental device for long-duration magnetic reconnection in weakly ionized plasma

    NASA Astrophysics Data System (ADS)

    Yanai, Ryoma; Kaminou, Yasuhiro; Nishida, Kento; Inomoto, Michiaki

    2016-10-01

    Magnetic reconnection is a universal phenomenon which determines global structure and energy conversion in magnetized plasmas. Many experimental studies have been carried out to explore the physics of magnetic reconnection in fully ionized condition. However, it is predicted that the behavior of magnetic reconnection in weakly ionized plasmas such as solar chromosphere plasma will show different behavior such as ambipolar diffusion caused by interaction with neutral particles. In this research, we are developing a new experimental device to uncover the importance of ambipolar diffusion during magnetic reconnection in weakly ionized plasmas. We employ an inverter-driven rotating magnetic fields technique, which is used for generating steady azimuthal plasma current, to establish long-duration ( 1 ms) anti-parallel reconnection with magnetic field of 5 mT in weakly ionized plasma. We will present development status and initial results from the new experimental setup. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus'', Giant-in Aid for Scientific Research (KAKENHI) 15H05750, 15K14279, 26287143 and the NIFS Collaboration Research program (NIFS14KNWP004).

  19. Immunogene and viral transcript dynamics during parasitic Varroa destructor mite infection of developing honey bee (Apis mellifera) pupae.

    PubMed

    Kuster, Ryan D; Boncristiani, Humberto F; Rueppell, Olav

    2014-05-15

    The ectoparasitic Varroa destructor mite is a major contributor to the ongoing honey bee health crisis. Varroa interacts with honey bee viruses, exacerbating their pathogenicity. In addition to vectoring viruses, immunosuppression of the developing honey bee hosts by Varroa has been proposed to explain the synergy between viruses and mites. However, the evidence for honey bee immune suppression by V. destructor is contentious. We systematically studied the quantitative effects of experimentally introduced V. destructor mites on immune gene expression at five specific time points during the development of the honey bee hosts. Mites reproduced normally and were associated with increased titers of deformed wing virus in the developing bees. Our data on different immune genes show little evidence for immunosuppression of honey bees by V. destructor. Experimental wounding of developing bees increases relative immune gene expression and deformed wing virus titers. Combined, these results suggest that mite feeding activity itself and not immunosuppression may contribute to the synergy between viruses and mites. However, our results also suggest that increased expression of honey bee immune genes decreases mite reproductive success, which may be explored to enhance mite control strategies. Finally, our expression data for multiple immune genes across developmental time and different experimental treatments indicates co-regulation of several of these genes and thus improves our understanding of the understudied honey bee immune system. © 2014. Published by The Company of Biologists Ltd.

  20. Scaling Studies for Advanced High Temperature Reactor Concepts, Final Technical Report: October 2014—December 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Brian; Gutowska, Izabela; Chiger, Howard

    Computer simulations of nuclear reactor thermal-hydraulic phenomena are often used in the design and licensing of nuclear reactor systems. In order to assess the accuracy of these computer simulations, computer codes and methods are often validated against experimental data. This experimental data must be of sufficiently high quality in order to conduct a robust validation exercise. In addition, this experimental data is generally collected at experimental facilities that are of a smaller scale than the reactor systems that are being simulated due to cost considerations. Therefore, smaller scale test facilities must be designed and constructed in such a fashion tomore » ensure that the prototypical behavior of a particular nuclear reactor system is preserved. The work completed through this project has resulted in scaling analyses and conceptual design development for a test facility capable of collecting code validation data for the following high temperature gas reactor systems and events— 1. Passive natural circulation core cooling system, 2. pebble bed gas reactor concept, 3. General Atomics Energy Multiplier Module reactor, and 4. prismatic block design steam-water ingress event. In the event that code validation data for these systems or events is needed in the future, significant progress in the design of an appropriate integral-type test facility has already been completed as a result of this project. Where applicable, the next step would be to begin the detailed design development and material procurement. As part of this project applicable scaling analyses were completed and test facility design requirements developed. Conceptual designs were developed for the implementation of these design requirements at the Oregon State University (OSU) High Temperature Test Facility (HTTF). The original HTTF is based on a ¼-scale model of a high temperature gas reactor concept with the capability for both forced and natural circulation flow through a prismatic core with an electrical heat source. The peak core region temperature capability is 1400°C. As part of this project, an inventory of test facilities that could be used for these experimental programs was completed. Several of these facilities showed some promise, however, upon further investigation it became clear that only the OSU HTTF had the power and/or peak temperature limits that would allow for the experimental programs envisioned herein. Thus the conceptual design and feasibility study development focused on examining the feasibility of configuring the current HTTF to collect validation data for these experimental programs. In addition to the scaling analyses and conceptual design development, a test plan was developed for the envisioned modified test facility. This test plan included a discussion on an appropriate shakedown test program as well as the specific matrix tests. Finally, a feasibility study was completed to determine the cost and schedule considerations that would be important to any test program developed to investigate these designs and events.« less

  1. Electrochemical carbon dioxide concentrator: Math model

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Schubert, F. H.; Carlson, J. N.

    1973-01-01

    A steady state computer simulation model of an Electrochemical Depolarized Carbon Dioxide Concentrator (EDC) has been developed. The mathematical model combines EDC heat and mass balance equations with empirical correlations derived from experimental data to describe EDC performance as a function of the operating parameters involved. The model is capable of accurately predicting performance over EDC operating ranges. Model simulation results agree with the experimental data obtained over the prediction range.

  2. Identifying Misconceptions Related to Chemical Bonding Concepts in the Slovak School System Using the Bonding Representations Inventory as a Diagnostic Tool

    ERIC Educational Resources Information Center

    Vrabec, Michal; Prokša, Miroslav

    2016-01-01

    In this article we present the results of a study in which we tested the use of the experimental inventory BRI (Bonding Representations Inventory), developed by Cynthia J. Luxford and Stacey Lowery Bretz. The aim of our study was to test the usability of the experimental instrument in the Slovak educational system and to identify concrete…

  3. The Evolution of a Connectionist Model of Situated Human Language Understanding

    NASA Astrophysics Data System (ADS)

    Mayberry, Marshall R.; Crocker, Matthew W.

    The Adaptive Mechanisms in Human Language Processing (ALPHA) project features both experimental and computational tracks designed to complement each other in the investigation of the cognitive mechanisms that underlie situated human utterance processing. The models developed in the computational track replicate results obtained in the experimental track and, in turn, suggest further experiments by virtue of behavior that arises as a by-product of their operation.

  4. Tranpsort phenomena in solidification processing of functionally graded materials

    NASA Astrophysics Data System (ADS)

    Gao, Juwen

    A combined numerical and experimental study of the transport phenomena during solidification processing of metal matrix composite functionally graded materials (FGMs) is conducted in this work. A multiphase transport model for the solidification of metal-matrix composite FGMs has been developed that accounts for macroscopic particle segregation due to liquid-particle flow and particle-solid interactions. An experimental study has also been conducted to gain physical insight as well as to validate the model. A novel method to in-situ measure the particle volume fraction using fiber optic probes is developed for transparent analogue solidification systems. The model is first applied to one-dimensional pure matrix FGM solidification under gravity or centrifugal field and is extensively validated against the experimental results. The mechanisms for the formation of particle concentration gradient are identified. Two-dimensional solidification of pure matrix FGM with convection is then studied using the model as well as experiments. The interaction among convection flow, solidification process and the particle transport is demonstrated. The results show the importance of convection in the particle concentration gradient formation. Then, simulations for alloy FGM solidification are carried out for unidirectional solidification as well as two-dimensional solidification with convection. The interplay among heat and species transport, convection and particle motion is investigated. Finally, future theoretical and experimental work is outlined.

  5. Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature

    DOE PAGES

    Ladshaw, Austin P.; Wiechert, Alexander I.; Das, Sadananda; ...

    2017-11-04

    Recovering uranium from seawater has been the subject of many studies for decades, and has recently seen significant progress in materials development since the U.S. Department of Energy (DOE) has become involved. With DOE direction, the uranium uptake for amidoxime-based polymer adsorbents has more than tripled in capacity. In an effort to better understand how these new adsorbent materials behave under different environmental stimuli, several experimental and modeling based studies have been employed to investigate impacts of competing ions, salinity, pH, and other factors on uranium uptake. For this study, the effect of temperature and type of comonomer on uraniummore » adsorption by three different amidoxime adsorbents (AF1, 38H, AI8) was examined. Experimental measurements of uranium uptake were taken in 1–L batch reactors from 10 to 40 °C. A chemisorption model was developed and applied in order to estimate unknown system parameters through optimization. Experimental results demonstrated that the overall uranium chemisorption process for all three materials is endothermic, which was also mirrored in the model results. Model simulations show very good agreement with the data and were able to predict the temperature effect on uranium adsorption as experimental conditions changed. Here, this model may be used for predicting uranium uptake by other amidoxime materials.« less

  6. Utilizing Metalized Fabrics for Liquid and Rip Detection and Localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Stephen; Mahan, Cody; Kuhn, Michael J

    2013-01-01

    This paper proposes a novel technique for utilizing conductive textiles as a distributed sensor for detecting and localizing liquids (e.g., blood), rips (e.g., bullet holes), and potentially biosignals. The proposed technique is verified through both simulation and experimental measurements. Circuit theory is utilized to depict conductive fabric as a bounded, near-infinite grid of resistors. Solutions to the well-known infinite resistance grid problem are used to confirm the accuracy and validity of this modeling approach. Simulations allow for discontinuities to be placed within the resistor matrix to illustrate the effects of bullet holes within the fabric. A real-time experimental system wasmore » developed that uses a multiplexed Wheatstone bridge approach to reconstruct the resistor grid across the conductive fabric and detect liquids and rips. The resistor grid model is validated through a comparison of simulated and experimental results. Results suggest accuracy proportional to the electrode spacing in determining the presence and location of discontinuities in conductive fabric samples. Future work is focused on refining the experimental system to provide more accuracy in detecting and localizing events as well as developing a complete prototype that can be deployed for field testing. Potential applications include intelligent clothing, flexible, lightweight sensing systems, and combat wound detection.« less

  7. Identification of differences between finite element analysis and experimental vibration data

    NASA Technical Reports Server (NTRS)

    Lawrence, C.

    1986-01-01

    An important problem that has emerged from combined analytical/experimental investigations is the task of identifying and quantifying the differences between results predicted by F.E. analysis and results obtained from experiment. The objective of this study is to extend and evaluate the procedure developed by Sidhu for correlation of linear F.E. and modal test data to include structures with viscous damping. The desirability of developing this procedure is that the differences are identified in terms of physical mass, damping, and stiffness parameters instead of in terms of frequencies and modes shapes. Since the differences are computed in terms of physical parameters, locations of modeling problems can be directly identified in the F.E. model. From simulated data it was determined that the accuracy of the computed differences increases as the number of experimentally measured modes included in the calculations is increased. When the number of experimental modes is at least equal to the number of translational degrees of freedom in the F.E. model both the location and magnitude of the differences can be computed very accurately. When the number of modes is less than this amount the location of the differences may be determined even though their magnitudes will be under estimated.

  8. Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladshaw, Austin P.; Wiechert, Alexander I.; Das, Sadananda

    Recovering uranium from seawater has been the subject of many studies for decades, and has recently seen significant progress in materials development since the U.S. Department of Energy (DOE) has become involved. With DOE direction, the uranium uptake for amidoxime-based polymer adsorbents has more than tripled in capacity. In an effort to better understand how these new adsorbent materials behave under different environmental stimuli, several experimental and modeling based studies have been employed to investigate impacts of competing ions, salinity, pH, and other factors on uranium uptake. For this study, the effect of temperature and type of comonomer on uraniummore » adsorption by three different amidoxime adsorbents (AF1, 38H, AI8) was examined. Experimental measurements of uranium uptake were taken in 1–L batch reactors from 10 to 40 °C. A chemisorption model was developed and applied in order to estimate unknown system parameters through optimization. Experimental results demonstrated that the overall uranium chemisorption process for all three materials is endothermic, which was also mirrored in the model results. Model simulations show very good agreement with the data and were able to predict the temperature effect on uranium adsorption as experimental conditions changed. Here, this model may be used for predicting uranium uptake by other amidoxime materials.« less

  9. A quasi-experimental feasibility study to determine the effect of a systematic treatment programme on the scores of the Nottingham Adjustment Scale of individuals with visual field deficits following stroke.

    PubMed

    Taylor, Lisa; Poland, Fiona; Harrison, Peter; Stephenson, Richard

    2011-01-01

    To evaluate a systematic treatment programme developed by the researcher that targeted aspects of visual functioning affected by visual field deficits following stroke. The study design was a non-equivalent control (conventional) group pretest-posttest quasi-experimental feasibility design, using multisite data collection methods at specified stages. The study was undertaken within three acute hospital settings as outpatient follow-up sessions. Individuals who had visual field deficits three months post stroke were studied. A treatment group received routine occupational therapy and an experimental group received, in addition, a systematic treatment programme. The treatment phase of both groups lasted six weeks. The Nottingham Adjustment Scale, a measure developed specifically for visual impairment, was used as the primary outcome measure. The change in Nottingham Adjustment Scale score was compared between the experimental (n = 7) and conventional (n = 8) treatment groups using the Wilcoxon signed ranks test. The result of Z = -2.028 (P = 0.043) showed that there was a statistically significant difference between the change in Nottingham Adjustment Scale score between both groups. The introduction of the systematic treatment programme resulted in a statistically significant change in the scores of the Nottingham Adjustment Scale.

  10. Using tablet technology and instructional videos to enhance preclinical dental laboratory learning.

    PubMed

    Gadbury-Amyot, Cynthia C; Purk, John H; Williams, Brian Joseph; Van Ness, Christopher J

    2014-02-01

    The purpose of this pilot study was to examine if tablet technology with accompanying instructional videos enhanced the teaching and learning outcomes in a preclinical dental laboratory setting. Two procedures deemed most challenging in Operative Dentistry II were chosen for the development of instructional videos. A random sample of thirty students was chosen to participate in the pilot. Comparison of faculty evaluations of the procedures between the experimental (tablet) and control (no tablet) groups resulted in no significant differences; however, there was a trend toward fewer failures in the experimental group. Examination of the ability to accurately self-assess was compared by exploring correlations between faculty and student evaluations. While correlations were stronger in the experimental group, the control group had significant correlations for all three procedures, while the experimental group had significant correlations on only two of the procedures. Students strongly perceived that the tablets and videos helped them perform better and more accurately self-assess their work products. Students did not support requiring that they purchase/obtain a specific brand of technology. As a result of this pilot study, further development of ideal and non-ideal videos are in progress, and the school will be implementing a "Bring Your Own Device" policy with incoming students.

  11. Development of TIF based figuring algorithm for deterministic pitch tool polishing

    NASA Astrophysics Data System (ADS)

    Yi, Hyun-Su; Kim, Sug-Whan; Yang, Ho-Soon; Lee, Yun-Woo

    2007-12-01

    Pitch is perhaps the oldest material used for optical polishing, leaving superior surface texture, and has been used widely in the optics shop floor. However, for its unpredictable controllability of removal characteristics, the pitch tool polishing has been rarely analysed quantitatively and many optics shops rely heavily on optician's "feel" even today. In order to bring a degree of process controllability to the pitch tool polishing, we added motorized tool motions to the conventional Draper type polishing machine and modelled the tool path in the absolute machine coordinate. We then produced a number of Tool Influence Function (TIF) both from an analytical model and a series of experimental polishing runs using the pitch tool. The theoretical TIFs agreed well with the experimental TIFs to the profile accuracy of 79 % in terms of its shape. The surface figuring algorithm was then developed in-house utilizing both theoretical and experimental TIFs. We are currently undertaking a series of trial figuring experiments to prove the performance of the polishing algorithm, and the early results indicate that the highly deterministic material removal control with the pitch tool can be achieved to a certain level of form error. The machine renovation, TIF theory and experimental confirmation, figuring simulation results are reported together with implications to deterministic polishing.

  12. Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature

    PubMed Central

    Wiechert, Alexander I.; Das, Sadananda; Yiacoumi, Sotira

    2017-01-01

    Recovering uranium from seawater has been the subject of many studies for decades, and has recently seen significant progress in materials development since the U.S. Department of Energy (DOE) has become involved. With DOE direction, the uranium uptake for amidoxime-based polymer adsorbents has more than tripled in capacity. In an effort to better understand how these new adsorbent materials behave under different environmental stimuli, several experimental and modeling based studies have been employed to investigate impacts of competing ions, salinity, pH, and other factors on uranium uptake. For this study, the effect of temperature and type of comonomer on uranium adsorption by three different amidoxime adsorbents (AF1, 38H, AI8) was examined. Experimental measurements of uranium uptake were taken in 1−L batch reactors from 10 to 40 °C. A chemisorption model was developed and applied in order to estimate unknown system parameters through optimization. Experimental results demonstrated that the overall uranium chemisorption process for all three materials is endothermic, which was also mirrored in the model results. Model simulations show very good agreement with the data and were able to predict the temperature effect on uranium adsorption as experimental conditions changed. This model may be used for predicting uranium uptake by other amidoxime materials. PMID:29113060

  13. Acoustic characterization of ultrasound contrast microbubbles and echogenic liposomes: Applications to imaging and drug-delivery

    NASA Astrophysics Data System (ADS)

    Paul, Shirshendu

    Micron- to nanometer - sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes (ELIPs), are being actively developed for possible clinical implementations in diagnostic imaging and ultrasound mediated drug/gene delivery. The primary objective of this thesis is to characterize the acoustic behavior of and the ultrasound-mediated contents release from these contrast agents for developing multi-functional ultrasound contrast agents. Subharmonic imaging using contrast microbubbles can improve image quality by providing a higher signal to noise ratio. However, the design and development of contrast microbubbles with favorable subharmonic behavior requires accurate mathematical models capable of predicting their nonlinear dynamics. To this goal, 'strain-softening' viscoelastic interfacial models of the encapsulation were developed and subsequently utilized to simulate the dynamics of encapsulated microbubbles. A hierarchical two-pronged approach of modeling --- a model is applied to one set of experimental data to obtain the model parameters (material characterization), and then the model is validated against a second independent experiment --- is demonstrated in this thesis for two lipid coated (SonazoidRTM and DefinityRTM) and a few polymer (polylactide) encapsulated microbubbles. The proposed models were successful in predicting several experimentally observed behaviors e.g., low subharmonic thresholds and "compression-only" radial oscillations. Results indicate that neglecting the polydisperse size distribution of contrast agent suspensions, a common practice in the literature, can lead to inaccurate results. In vitro experimental investigation of the dependence of subharmonic response from these microbubbles on the ambient pressure is also in conformity with the recent numerical investigations, showing both increase or decrease under appropriate excitation conditions. Experimental characterization of the ELIPs and polymersomes was performed with the goal of demonstrating their potential as ultrasound agents with simultaneous imaging and drug/gene delivery applications --- 'dual-purpose' contrast agents. Both in vitro acoustic studies and ultrasound imaging (performed in NDSU by our collaborators) showed the echogenicity of the various formulations studied. We believe that this echogenicity results from the larger diameter liposomes present in the polydisperse suspension obtained after reconstitution of the lyophilized powders. Although, ultrasound excitation (< 5 MHz) alone was incapable of causing optimal release of contents, a dual-triggering strategy (with enzymes or redox) proved successful, resulting in a total release of up to 80-90%. Considering these experimental results, it can be concluded that these novel formulations hold the potential of providing powerful treatment strategies for many diseases, including cardiovascular ones and various cancers.

  14. Numerical Investigation of Dual-Mode Scramjet Combustor with Large Upstream Interaction

    NASA Technical Reports Server (NTRS)

    Mohieldin, T. O.; Tiwari, S. N.; Reubush, David E. (Technical Monitor)

    2004-01-01

    Dual-mode scramjet combustor configuration with significant upstream interaction is investigated numerically, The possibility of scaling the domain to accelerate the convergence and reduce the computational time is explored. The supersonic combustor configuration was selected to provide an understanding of key features of upstream interaction and to identify physical and numerical issues relating to modeling of dual-mode configurations. The numerical analysis was performed with vitiated air at freestream Math number of 2.5 using hydrogen as the sonic injectant. Results are presented for two-dimensional models and a three-dimensional jet-to-jet symmetric geometry. Comparisons are made with experimental results. Two-dimensional and three-dimensional results show substantial oblique shock train reaching upstream of the fuel injectors. Flow characteristics slow numerical convergence, while the upstream interaction slowly increases with further iterations. As the flow field develops, the symmetric assumption breaks down. A large separation zone develops and extends further upstream of the step. This asymmetric flow structure is not seen in the experimental data. Results obtained using a sub-scale domain (both two-dimensional and three-dimensional) qualitatively recover the flow physics obtained from full-scale simulations. All results show that numerical modeling using a scaled geometry provides good agreement with full-scale numerical results and experimental results for this configuration. This study supports the argument that numerical scaling is useful in simulating dual-mode scramjet combustor flowfields and could provide an excellent convergence acceleration technique for dual-mode simulations.

  15. Modeling flows of heterogeneous media in pipelines when substantiating operating conditions of hydrocarbon field transportation systems

    NASA Astrophysics Data System (ADS)

    Dudin, S. M.; Novitskiy, D. V.

    2018-05-01

    The works of researchers at VNIIgaz, Giprovostokneft, Kuibyshev NIINP, Grozny Petroleum Institute, etc., are devoted to modeling heterogeneous medium flows in pipelines under laboratory conditions. In objective consideration, the empirical relationships obtained and the calculation procedures for pipelines transporting multiphase products are a bank of experimental data on the problem of pipeline transportation of multiphase systems. Based on the analysis of the published works, the main design requirements for experimental installations designed to study the flow regimes of gas-liquid flows in pipelines were formulated, which were taken into account by the authors when creating the experimental stand. The article describes the results of experimental studies of the flow regimes of a gas-liquid mixture in a pipeline, and also gives a methodological description of the experimental installation. Also the article describes the software of the experimental scientific and educational stand developed with the participation of the authors.

  16. The flaws and human harms of animal experimentation.

    PubMed

    Akhtar, Aysha

    2015-10-01

    Nonhuman animal ("animal") experimentation is typically defended by arguments that it is reliable, that animals provide sufficiently good models of human biology and diseases to yield relevant information, and that, consequently, its use provides major human health benefits. I demonstrate that a growing body of scientific literature critically assessing the validity of animal experimentation generally (and animal modeling specifically) raises important concerns about its reliability and predictive value for human outcomes and for understanding human physiology. The unreliability of animal experimentation across a wide range of areas undermines scientific arguments in favor of the practice. Additionally, I show how animal experimentation often significantly harms humans through misleading safety studies, potential abandonment of effective therapeutics, and direction of resources away from more effective testing methods. The resulting evidence suggests that the collective harms and costs to humans from animal experimentation outweigh potential benefits and that resources would be better invested in developing human-based testing methods.

  17. Tau lepton production and decays: perspective of multi-dimensional distributions and Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Was, Z.

    2017-06-01

    Status of τ lepton decay Monte Carlo generator TAUOLA, its main applications and recent developments are reviewed. It is underlined, that in recent efforts on development of new hadronic currents, the multi-dimensional nature of distributions of the experimental data must be taken with a great care: lesson from comparison and fits to the BaBar and Belle data is recalled. It was found, that as in the past at a time of comparisons with CLEO and ALEPH data, proper fitting, to as detailed as possible representation of the experimental data, is essential for appropriate developments of models of τ decay dynamic. This multi-dimensional nature of distributions is also important for observables where τ leptons are used to constrain experimental data. In later part of the presentation, use of the TAUOLA program for phenomenology of W, Z, H decays at LHC is addressed, in particular in the context of the Higgs boson parity measurements. Some new results, relevant for QED lepton pair emission are mentioned as well.

  18. Inflammation-induced preterm lung maturation: lessons from animal experimentation.

    PubMed

    Moss, Timothy J M; Westover, Alana J

    2017-06-01

    Intrauterine inflammation, or chorioamnionitis, is a major contributor to preterm birth. Prematurity per se is associated with considerable morbidity and mortality resulting from lung immaturity but exposure to chorioamnionitis reduces the risk of neonatal respiratory distress syndrome (RDS) in preterm infants. Animal experiments have identified that an increase in pulmonary surfactant production by the preterm lungs likely underlies this decreased risk of RDS in infants exposed to chorioamnionitis. Further animal experimentation has shown that infectious or inflammatory agents in amniotic fluid exert their effects on lung development by direct effects within the developing respiratory tract, and probably not by systemic pathways. Differences in the effects of intrauterine inflammation and glucocorticoids demonstrate that canonical glucocorticoid-mediated lung maturation is not responsible for inflammation-induced changes in lung development. Animal experimentation is identifying alternative lung maturational pathways, and transgenic animals and cell culture techniques will allow identification of novel mechanisms of lung maturation that may lead to new treatments for the prevention of RDS. Copyright © 2016. Published by Elsevier Ltd.

  19. A novel algorithm for solving the true coincident counting issues in Monte Carlo simulations for radiation spectroscopy.

    PubMed

    Guan, Fada; Johns, Jesse M; Vasudevan, Latha; Zhang, Guoqing; Tang, Xiaobin; Poston, John W; Braby, Leslie A

    2015-06-01

    Coincident counts can be observed in experimental radiation spectroscopy. Accurate quantification of the radiation source requires the detection efficiency of the spectrometer, which is often experimentally determined. However, Monte Carlo analysis can be used to supplement experimental approaches to determine the detection efficiency a priori. The traditional Monte Carlo method overestimates the detection efficiency as a result of omitting coincident counts caused mainly by multiple cascade source particles. In this study, a novel "multi-primary coincident counting" algorithm was developed using the Geant4 Monte Carlo simulation toolkit. A high-purity Germanium detector for ⁶⁰Co gamma-ray spectroscopy problems was accurately modeled to validate the developed algorithm. The simulated pulse height spectrum agreed well qualitatively with the measured spectrum obtained using the high-purity Germanium detector. The developed algorithm can be extended to other applications, with a particular emphasis on challenging radiation fields, such as counting multiple types of coincident radiations released from nuclear fission or used nuclear fuel.

  20. Student Publications Enhance Teaching: Experimental Psychology and Research Methods Courses.

    ERIC Educational Resources Information Center

    Ware, Mark E.; Davis, Stephen F.

    Recent years have witnessed an increased emphasis on the professional development of undergraduate psychology students. One major thrust of this professional development has been on research that results in a convention presentation or journal publication. Research leading to journal publication is becoming a requirement for admission to many…

  1. Improving Primary Teachers' Attitudes toward Science by Attitude-Focused Professional Development

    ERIC Educational Resources Information Center

    van Aalderen-Smeets, Sandra I.; van der Molen, Juliette H. Walma

    2015-01-01

    This article provides a description of a novel, attitude-focused, professional development intervention, and presents the results of an experimental pretest-posttest control group study investigating the effects of this intervention on primary teachers' personal attitudes toward science, attitudes toward teaching science, and their science…

  2. A Student-Centered First-Semester Introductory Organic Laboratory Curriculum Facilitated by Microwave-Assisted Synthesis (MAOS)

    ERIC Educational Resources Information Center

    Russell, Cianán B.; Mason, Jeremy D.; Bean, Theodore G.; Murphree, S. Shaun

    2014-01-01

    An instructional laboratory curriculum for a first-semester introductory organic chemistry course has been developed using microwave-assisted organic synthesis (MAOS). Taking advantage of short reaction times, materials were developed to facilitate collaborative experimental design, analysis, and debriefing of results during the normal laboratory…

  3. EFFECTS OF FLOW REGIME ON THE ECOLOGY OF EXPERIMENTAL CHANNELS SIMULATING PRE-DEVELOPMENT AND MANAGED POST-DEVELOPMENT CONDITIONS

    EPA Science Inventory

    Best management practices (BMPs) are placed in streams or watersheds to mitigate the effects of hydrological, chemical, or physical stressors resulting from anthropogenic activities. However, assessments of BMP effectiveness rarely consider the effects of BMP implementation on th...

  4. A study of the Coriolis effect on the fluid flow profile in a centrifugal bioreactor.

    PubMed

    Detzel, Christopher J; Thorson, Michael R; Van Wie, Bernard J; Ivory, Cornelius F

    2009-01-01

    Increasing demand for tissues, proteins, and antibodies derived from cell culture is necessitating the development and implementation of high cell density bioreactors. A system for studying high density culture is the centrifugal bioreactor (CCBR), which retains cells by increasing settling velocities through system rotation, thereby eliminating diffusional limitations associated with mechanical cell retention devices. This article focuses on the fluid mechanics of the CCBR system by considering Coriolis effects. Such considerations for centrifugal bioprocessing have heretofore been ignored; therefore, a simpler analysis of an empty chamber will be performed. Comparisons are made between numerical simulations and bromophenol blue dye injection experiments. For the non-rotating bioreactor with an inlet velocity of 4.3 cm/s, both the numerical and experimental results show the formation of a teardrop shaped plume of dye following streamlines through the reactor. However, as the reactor is rotated, the simulation predicts the development of vortices and a flow profile dominated by Coriolis forces resulting in the majority of flow up the leading wall of the reactor as dye initially enters the chamber, results are confirmed by experimental observations. As the reactor continues to fill with dye, the simulation predicts dye movement up both walls while experimental observations show the reactor fills with dye from the exit to the inlet. Differences between the simulation and experimental observations can be explained by excessive diffusion required for simulation convergence, and a slight density difference between dyed and un-dyed solutions. Implications of the results on practical bioreactor use are also discussed. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  5. A Study of the Coriolis Effect on the Fluid Flow Profile in a Centrifugal Bioreactor

    PubMed Central

    Detzel, Christopher J.; Thorson, Michael R.; Van Wie, Bernard J.; Ivory, Cornelius F.

    2011-01-01

    Increasing demand for tissues, proteins, and antibodies derived from cell culture is necessitating the development and implementation of high cell density bioreactors. A system for studying high density culture is the centrifugal bioreactor (CCBR) which retains cells by increasing settling velocities through system rotation, thereby eliminating diffusional limitations associated with mechanical cell retention devices. This paper focuses on the fluid mechanics of the CCBR system by considering Coriolis effects. Such considerations for centrifugal bioprocessing have heretofore been ignored; therefore a simpler analysis of an empty chamber will be performed. Comparisons are made between numerical simulations and bromophenol blue dye injection experiments. For the non-rotating bioreactor with an inlet velocity of 4.3 cm/s, both the numerical and experimental results show the formation of a teardrop shaped plume of dye following streamlines through the reactor. However, as the reactor is rotated the simulation predicts the development of vortices and a flow profile dominated by Coriolis forces resulting in the majority of flow up the leading wall of the reactor as dye initially enters the chamber, results confirmed by experimental observations. As the reactor continues to fill with dye, the simulation predicts dye movement up both walls while experimental observations show the reactor fills with dye from the exit to the inlet. Differences between the simulation and experimental observations can be explained by excessive diffusion required for simulation convergence, and a slight density difference between dyed and un-dyed solutions. Implications of the results on practical bioreactor use are also discussed. PMID:19455639

  6. Quasi-experimental study designs series-paper 1: introduction: two historical lineages.

    PubMed

    Bärnighausen, Till; Røttingen, John-Arne; Rockers, Peter; Shemilt, Ian; Tugwell, Peter

    2017-09-01

    The objective of this study was to contrast the historical development of experiments and quasi-experiments and provide the motivation for a journal series on quasi-experimental designs in health research. A short historical narrative, with concrete examples, and arguments based on an understanding of the practice of health research and evidence synthesis. Health research has played a key role in developing today's gold standard for causal inference-the randomized controlled multiply blinded trial. Historically, allocation approaches developed from convenience and purposive allocation to alternate and, finally, to random allocation. This development was motivated both by concerns for manipulation in allocation as well as statistical and theoretical developments demonstrating the power of randomization in creating counterfactuals for causal inference. In contrast to the sequential development of experiments, quasi-experiments originated at very different points in time, from very different scientific perspectives, and with frequent and long interruptions in their methodological development. Health researchers have only recently started to recognize the value of quasi-experiments for generating novel insights on causal relationships. While quasi-experiments are unlikely to replace experiments in generating the efficacy and safety evidence required for clinical guidelines and regulatory approval of medical technologies, quasi-experiments can play an important role in establishing the effectiveness of health care practice, programs, and policies. The papers in this series describe and discuss a range of important issues in utilizing quasi-experimental designs for primary research and quasi-experimental results for evidence synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Investigation of effective strategies for developing creative science thinking

    NASA Astrophysics Data System (ADS)

    Yang, Kuay-Keng; Lee, Ling; Hong, Zuway-R.; Lin, Huann-shyang

    2016-09-01

    The purpose of this study was to explore the effectiveness of the creative inquiry-based science teaching on students' creative science thinking and science inquiry performance. A quasi-experimental design consisting one experimental group (N = 20) and one comparison group (N = 24) with pretest and post-test was conducted. The framework of the intervention focused on potential strategies such as promoting divergent and convergent thinking and providing an open, inquiry-based learning environment that are recommended by the literature. Results revealed that the experimental group students outperformed their counterparts in the comparison group on the performances of science inquiry and convergent thinking. Additional qualitative data analyses from classroom observations and case teacher interviews identified supportive teaching strategies (e.g. facilitating associative thinking, sharing impressive ideas, encouraging evidence-based conclusions, and reviewing and commenting on group presentations) for developing students' creative science thinking.

  8. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Piascik, Robert S.; Newman, James C., Jr.

    1999-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  9. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Piascik, R. S.; Newman, J. C., Jr.

    2000-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  10. Recovery, growth, and development of Acanthoparyphium tyosenense (Digenea: Echinostomatidae) in experimental chicks.

    PubMed

    Han, E T; Kim, J L; Chai, J Y

    2003-02-01

    Chicks were experimentally infected with Acanthoparyphium tyosenense (Digenea: Echinostomatidae) metacercariae per os, and the growth and development of worms in this host were observed from days I to 38 postinfection (PI). The worms grew rapidly and matured sexually in the small intestine (chiefly in the jejunum) of chicks by day 5 PI. and survived at least up to day 38 Pi, although worm recovery decreased after day 5 PI. Both parenchymal and reproductive organs increased greatly in size from day 2 to day 10 PI and then continued to increase gradually in size up to day 38 PI. The number of uterine eggs reached a peak on days 10 and 15 PI and then decreased gradually. The results suggest that chicks are a fairly suitable definitive host for experimental infection with A. tyosenense.

  11. V&V framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hills, Richard G.; Maniaci, David Charles; Naughton, Jonathan W.

    2015-09-01

    A Verification and Validation (V&V) framework is presented for the development and execution of coordinated modeling and experimental program s to assess the predictive capability of computational models of complex systems through focused, well structured, and formal processes.The elements of the framework are based on established V&V methodology developed by various organizations including the Department of Energy, National Aeronautics and Space Administration, the American Institute of Aeronautics and Astronautics, and the American Society of Mechanical Engineers. Four main topics are addressed: 1) Program planning based on expert elicitation of the modeling physics requirements, 2) experimental design for model assessment, 3)more » uncertainty quantification for experimental observations and computational model simulations, and 4) assessment of the model predictive capability. The audience for this document includes program planners, modelers, experimentalist, V &V specialist, and customers of the modeling results.« less

  12. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  13. Experimental Lithium-Ion Battery Developed for Demonstration at the 2007 NASA Desert Research and Technology Studies (D-RATS) Program

    NASA Technical Reports Server (NTRS)

    Bennett, William R.; Baldwin, Richard S.

    2010-01-01

    The NASA Glenn Research Center (GRC) Electrochemistry Branch designed and built five lithium-ion battery packs for demonstration in spacesuit simulators as a part of the 2007 Desert Research and Technology Studies (D-RATS) activity at Cinder Lake, Arizona. The experimental batteries incorporated advanced, NASA-developed electrolytes and included internal protection against over-current, overdischarge and over-temperature. The 500-g experimental batteries were designed to deliver a constant power of 22 W for 2.5 hr with a minimum voltage of 13 V. When discharged at the maximum expected power output of 38.5 W, the batteries operated for 103 min of discharge time, achieving a specific energy of 130 Wh/kg. This report summarizes design details and safety considerations. Results for field trials and laboratory testing are summarized.

  14. PSO-based PID Speed Control of Traveling Wave Ultrasonic Motor under Temperature Disturbance

    NASA Astrophysics Data System (ADS)

    Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Azmi, Nur Iffah Mohamed; Romlay, Fadhlur Rahman Mohd

    2018-03-01

    Traveling wave ultrasonic motors (TWUSMs) have a time varying dynamics characteristics. Temperature rise in TWUSMs remains a problem particularly in sustaining optimum speed performance. In this study, a PID controller is used to control the speed of TWUSM under temperature disturbance. Prior to developing the controller, a linear approximation model which relates the speed to the temperature is developed based on the experimental data. Two tuning methods are used to determine PID parameters: conventional Ziegler-Nichols(ZN) and particle swarm optimization (PSO). The comparison of speed control performance between PSO-PID and ZN-PID is presented. Modelling, simulation and experimental work is carried out utilizing Fukoku-Shinsei USR60 as the chosen TWUSM. The results of the analyses and experimental work reveal that PID tuning using PSO-based optimization has the advantage over the conventional Ziegler-Nichols method.

  15. Experimental and theoretical studies of near-ground acoustic radiation propagation in the atmosphere

    NASA Astrophysics Data System (ADS)

    Belov, Vladimir V.; Burkatovskaya, Yuliya B.; Krasnenko, Nikolai P.; Rakov, Aleksandr S.; Rakov, Denis S.; Shamanaeva, Liudmila G.

    2017-11-01

    Results of experimental and theoretical studies of the process of near-ground propagation of monochromatic acoustic radiation on atmospheric paths from a source to a receiver taking into account the contribution of multiple scattering on fluctuations of atmospheric temperature and wind velocity, refraction of sound on the wind velocity and temperature gradients, and its reflection by the underlying surface for different models of the atmosphere depending the sound frequency, coefficient of reflection from the underlying surface, propagation distance, and source and receiver altitudes are presented. Calculations were performed by the Monte Carlo method using the local estimation algorithm by the computer program developed by the authors. Results of experimental investigations under controllable conditions are compared with theoretical estimates and results of analytical calculations for the Delany-Bazley impedance model. Satisfactory agreement of the data obtained confirms the correctness of the suggested computer program.

  16. Broadband Trailing Edge Noise Predictions in the Time Domain. Revised

    NASA Technical Reports Server (NTRS)

    Casper, Jay; Farassat, Fereidoun

    2003-01-01

    A recently developed analytic result in acoustics, "Formulation 1B," is used to compute broadband trailing edge noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Willliams-Hawkings equation with the loading source term, and has been shown in previous research to provide time domain predictions of broadband noise that are in excellent agreement with experimental results. Furthermore, this formulation lends itself readily to rotating reference frames and statistical analysis of broadband trailing edge noise. Formulation 1B is used to calculate the far field noise radiated from the trailing edge of a NACA 0012 airfoil in low Mach number flows, by using both analytical and experimental data on the airfoil surface. The acoustic predictions are compared with analytical results and experimental measurements that are available in the literature. Good agreement between predictions and measurements is obtained.

  17. Femtosecond laser melting of silver nanoparticles: comparison of model simulations and experimental results

    NASA Astrophysics Data System (ADS)

    Cheng, Chung-Wei; Chang, Chin-Lun; Chen, Jinn-Kuen; Wang, Ben

    2018-05-01

    Ultrafast laser-induced melting of silver nanoparticles (NPs) using a femtosecond laser pulse is investigated both theoretically and experimentally. The sintered Ag structure fabricated from printed Ag NP ink using femtosecond laser (1064 nm, 300 fs) irradiation is experimentally studied. A two-temperature model with dynamic optical properties and particle size effects on the melting temperature of Ag NPs is considered. The rapid phase change model is incorporated to simulate the Ag NPs' ultrafast laser-induced melting process, and a multi-shot melting threshold fluence predicted from the simulated single-shot melting threshold is developed.

  18. Local Charge Injection and Extraction on Surface-Modified Al2O3 Nanoparticles in LDPE.

    PubMed

    Borgani, Riccardo; Pallon, Love K H; Hedenqvist, Mikael S; Gedde, Ulf W; Haviland, David B

    2016-09-14

    We use a recently developed scanning probe technique to image with high spatial resolution the injection and extraction of charge around individual surface-modified aluminum oxide nanoparticles embedded in a low-density polyethylene (LDPE) matrix. We find that the experimental results are consistent with a simple band structure model where localized electronic states are available in the band gap (trap states) in the vicinity of the nanoparticles. This work offers experimental support to a previously proposed mechanism for enhanced insulating properties of nanocomposite LDPE and provides a powerful experimental tool to further investigate such properties.

  19. Design Criteria for Deflection Capacity of conventionally Reinforced Concrete Slabs. Phase I. State-of-the-Art Report.

    DTIC Science & Technology

    1980-10-01

    Previous Investigations 9 3.2 Ockleston’s Work 9 3.3 Wood’s Work 11 3.3.1 Experimental Investigation 11 3.3.2 Analytical investigation 13 3.3.3 Load...Deflection Relationship 16 3.4 Sawczuck’s Work 17 3.5 Park’s Work on Compressive Membrane Action 19 3.5.1 Experimental Investigation 19 3.5.2 Analysis of...DEFLECTION CAPACITY 104 8.1 Idealized Load-Deflection Behavior of a Restrained Strip 104 8.2 A Comparison with Experimental Results 110 9. DEVELOPMENT OF

  20. Numerical and experimental study of a hydrodynamic cavitation tube

    NASA Astrophysics Data System (ADS)

    Hu, H.; Finch, J. A.; Zhou, Z.; Xu, Z.

    1998-08-01

    A numerical analysis of hydrodynamics in a cavitation tube used for activating fine particle flotation is described. Using numerical procedures developed for solving the turbulent k-ɛ model with boundary fitted coordinates, the stream function, vorticity, velocity, and pressure distributions in a cavitation tube were calculated. The calculated pressure distribution was found to be in excellent agreement with experimental results. The requirement of a pressure drop below approximately 10 m water for cavitation to occur was observed experimentally and confirmed by the model. The use of the numerical procedures for cavitation tube design is discussed briefly.

  1. Sandia National Laboratories: Pulsed-Power Science and Technology

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New and diagnostic tools to analyze results from Z and other experimental platforms. The results also

  2. Systemic Immunization with Papillomavirus L1 Protein Completely Prevents the Development of Viral Mucosal Papillomas

    NASA Astrophysics Data System (ADS)

    Suzich, Joann A.; Ghim, Shin-Je; Palmer-Hill, Frances J.; White, Wendy I.; Tamura, James K.; Bell, Judith A.; Newsome, Joseph A.; Bennett Jenson, A.; Schlegel, Richard

    1995-12-01

    Infection of mucosal epithelium by papillomaviruses is responsible for the induction of genital and oral warts and plays a critical role in the development of human cervical and oropharyngeal cancer. We have employed a canine model to develop a systemic vaccine that completely protects against experimentally induced oral mucosal papillomas. The major capsid protein, L1, of canine oral papillomavirus (COPV) was expressed in Sf9 insect cells in native conformation. L1 protein, which self-assembled into virus-like particles, was purified on CsCl gradients and injected intradermally into the foot pad of beagles. Vaccinated animals developed circulating antibodies against COPV and became completely resistant to experimental challenge with COPV. Successful immunization was strictly dependent upon native L1 protein conformation and L1 type. Partial protection was achieved with as little as 0.125 ng of L1 protein, and adjuvants appeared useful for prolonging the host immune response. Serum immunoglobulins passively transferred from COPV L1-immunized beagles to naive beagles conferred protection from experimental infection with COPV. Our results indicate the feasibility of developing a human vaccine to prevent mucosal papillomas, which can progress to malignancy.

  3. Pre-existing periodontitis exacerbates experimental arthritis in a mouse model.

    PubMed

    Cantley, Melissa D; Haynes, David R; Marino, Victor; Bartold, P Mark

    2011-06-01

    Previous studies have shown a higher incidence of alveolar bone loss in patients with rheumatoid arthritis (RA) and that patients with periodontitis are at a greater risk of developing RA. The aim of this study was to develop an animal model to assess the relationship between pre-existing periodontitis and experimental arthritis (EA). Periodontitis was first induced in mice by oral gavage with Porphyromonas gingivalis followed by EA using the collagen antibody-induced arthritis model. These animals were compared with animals with periodontitis alone, EA alone and no disease (controls). Visual changes in paw swelling were assessed to determine clinical development of EA. Alveolar bone and joint changes were assessed using micro-CT, histological analyses and immunohistochemistry. Serum levels of C-reactive protein were used to monitor systemic inflammation. Mice with pre-existing periodontitis developed more severe arthritis, which developed at a faster rate. Mice with periodontitis only also showed evidence of loss of bone within the radiocarpal joint. There was also evidence of alveolar bone loss in mice with EA alone. The results of this study indicate that pre-existing periodontitis exacerbated experimental arthritis in a mouse model. © 2011 John Wiley & Sons A/S.

  4. Influence of bulk turbulence and entrance boundary layer thickness on the curved duct flow field

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.

    1988-01-01

    The influence of bulk turbulence and boundary layer thickness on the secondary flow development in a square, 90 degree turning duct was investigated. A three-dimensional laser velocimetry system was utilized to measure the mean and fluctuating components of velocity at six cross-planes in the duct. The results from this investigation, with entrance boundary layer thickness of 20 percent, were compared with the thin boundary layer results documented in NASA CR-174811. The axial velocity profiles, cross-flow velocities, and turbulence intensities were compared and evaluated with regard to the influence of bulk turbulence intensity and boundary layer thickness, and the influence was significant. The results of this investigation expand the 90 degree curved duct experimental data base to higher turbulence levels and thicker entrance boundary layers. The experimental results provide a challenging benchmark data base for computational fluid dynamics code development and validation. The variation of inlet bulk turbulence intensity provides additional information to aid in turbulence model evaluation.

  5. NOEC and LOEC as merely concessive expedients: two unambiguous alternatives and some criteria to maximize the efficiency of dose-response experimental designs.

    PubMed

    Murado, M A; Prieto, M A

    2013-09-01

    NOEC and LOEC (no and lowest observed effect concentrations, respectively) are toxicological concepts derived from analysis of variance (ANOVA), a not very sensitive method that produces ambiguous results and does not provide confidence intervals (CI) of its estimates. For a long time, despite the abundant criticism that such concepts have raised, the field of the ecotoxicology is reticent to abandon them (two possible reasons will be discussed), adducing the difficulty of clear alternatives. However, this work proves that a debugged dose-response (DR) modeling, through explicit algebraic equations, enables two simple options to accurately calculate the CI of substantially lower doses than NOEC. Both ANOVA and DR analyses are affected by the experimental error, response profile, number of observations and experimental design. The study of these effects--analytically complex and experimentally unfeasible--was carried out using systematic simulations with realistic data, including different error levels. Results revealed the weakness of NOEC and LOEC notions, confirmed the feasibility of the proposed alternatives and allowed to discuss the--often violated--conditions that minimize the CI of the parametric estimates from DR assays. In addition, a table was developed providing the experimental design that minimizes the parametric CI for a given set of working conditions. This makes possible to reduce the experimental effort and to avoid the inconclusive results that are frequently obtained from intuitive experimental plans. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Research and development of a dedicated collimator for 14.2 MeV fast neutrons for imaging using a D-T generator

    NASA Astrophysics Data System (ADS)

    Sabo-Napadensky, I.; Weiss-Babai, R.; Gayer, A.; Vartsky, D.; Bar, D.; Mor, I.; Chacham-Zada, R.; Cohen, M.; Tamim, N.

    2012-06-01

    One of the main problems in neutron imaging is the scattered radiation that accompanies the direct neutrons that reach the imaging detectors and affect the image quality. We have developed a dedicated collimator for 14.2 MeV fast neutrons. The collimator optimizes the amount of scattered radiation to primary neutrons that arrive at the imaging plane. We have used different materials within the collimator in order to lower the scattered radiation that arrives at the scanned object. The image quality and the signal to noise ratios that are measured show that a mixture of BORAX (Na2B4O7ṡ10H2O) and water in the experimental beam collimator give the best results. We have used GEANT4 to simulate the collimator performance, the simulations predict the optimized material looking on the ratios of the scattered to primary neutrons that contribute in the detector. We present our experimental setup, report the results of the experimental and related simulation studies with neutrons beam generated by a 14.2 MeV D-T neutron generator.

  7. Boric acid permeation in forward osmosis membrane processes: modeling, experiments, and implications.

    PubMed

    Jin, Xue; Tang, Chuyang Y; Gu, Yangshuo; She, Qianhong; Qi, Saren

    2011-03-15

    Forward osmosis (FO) is attracting increasing interest for its potential applications in desalination. In FO, permeation of contaminants from feed solution into draw solution through the semipermeable membrane can take place simultaneously with water diffusion. Understanding the contaminants transport through and rejection by FO membrane has significant technical implications in the way to separate clean water from the diluted draw solution. In this study, a model was developed to predict boron flux in FO operation. A strong agreement between modeling results and experimental data indicates that the model developed in this study can accurately predict the boron transport through FO membranes. Furthermore, the model can guide the fabrication of improved FO membranes with decreased boron permeability and structural parameter to minimize boron flux. Both theoretical model and experimental results demonstrated that when membrane active layer was facing draw solution, boron flux was substantially greater compared to the other membrane orientation due to more severe internal concentration polarization. In this investigation, for the first time, rejection of contaminants was defined in FO processes. This is critical to compare the membrane performance between different membranes and experimental conditions.

  8. Experimental and Numerical Studies on the Formability of Materials in Hot Stamping and Cold Die Quenching Processes

    NASA Astrophysics Data System (ADS)

    Li, N.; Mohamed, M. S.; Cai, J.; Lin, J.; Balint, D.; Dean, T. A.

    2011-05-01

    Formability of steel and aluminium alloys in hot stamping and cold die quenching processes is studied in this research. Viscoplastic-damage constitutive equations are developed and determined from experimental data for the prediction of viscoplastic flow and ductility of the materials. The determined unified constitutive equations are then implemented into the commercial Finite Element code Abaqus/Explicit via a user defined subroutine, VUMAT. An FE process simulation model and numerical procedures are established for the modeling of hot stamping processes for a spherical part with a central hole. Different failure modes (failure takes place either near the central hole or in the mid span of the part) are obtained. To validate the simulation results, a test programme is developed, a test die set has been designed and manufactured, and tests have been carried out for the materials with different forming rates. It has been found that very close agreements between experimental and numerical process simulation results are obtained for the ranges of temperatures and forming rates carried out.

  9. Glazed clay pottery and lead exposure in Mexico: Current experimental evidence.

    PubMed

    Diaz-Ruiz, Araceli; Tristán-López, Luis Antonio; Medrano-Gómez, Karen Itzel; Torres-Domínguez, Juan Alejandro; Ríos, Camilo; Montes, Sergio

    2017-11-01

    Lead exposure remains a significant environmental problem; lead is neurotoxic, especially in developing humans. In Mexico, lead in human blood is still a concern. Historically, much of the lead exposure is attributed to the use of handcrafted clay pottery for cooking, storing and serving food. However, experimental cause-and-effect demonstration is lacking. The present study explores this issue with a prospective experimental approach. We used handcrafted clay containers to prepare and store lemonade, which was supplied as drinking water to pregnant rats throughout the gestational period. We found that clay pots, jars, and mugs leached on average 200 µg/l lead, and exposure to the lemonade resulted in 2.5 µg/dl of lead in the pregnant rats' blood. Neonates also showed increased lead content in the hippocampus and cerebellum. Caspase-3 activity was found to be statistically increased in the hippocampus in prenatally exposed neonates, suggesting increased apoptosis in that brain region. Glazed ceramics are still an important source of lead exposure in Mexico, and our results confirm that pregnancy is a vulnerable period for brain development.

  10. Estimation of the Reactive Flow Model Parameters for an Ammonium Nitrate-Based Emulsion Explosive Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. B.; Silva, C.; Mendes, R.

    2010-10-01

    A real coded genetic algorithm methodology that has been developed for the estimation of the parameters of the reaction rate equation of the Lee-Tarver reactive flow model is described in detail. This methodology allows, in a single optimization procedure, using only one experimental result and, without the need of any starting solution, to seek the 15 parameters of the reaction rate equation that fit the numerical to the experimental results. Mass averaging and the plate-gap model have been used for the determination of the shock data used in the unreacted explosive JWL equation of state (EOS) assessment and the thermochemical code THOR retrieved the data used in the detonation products' JWL EOS assessments. The developed methodology was applied for the estimation of the referred parameters for an ammonium nitrate-based emulsion explosive using poly(methyl methacrylate) (PMMA)-embedded manganin gauge pressure-time data. The obtained parameters allow a reasonably good description of the experimental data and show some peculiarities arising from the intrinsic nature of this kind of composite explosive.

  11. Some recent developments in the Wind River Douglas-fir plantation spacing tests.

    Treesearch

    Donald L. Reukema

    1959-01-01

    The effect of spacing on stand development is a subject that has been widely discussed. To test spacings ranging from 4x4 feet to 12x12 feet, a Douglas-fir plantation was established in 1925 at the Wind River Experimental Forest near Carson, Wash. This paper reports some results of a remeasurement made in 1957 (table 1) and compares these results with those of previous...

  12. Spacecraft sanitation agent development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of an effective sanitizing agent that is compatible with the spacecraft environment and the human occupant is discussed. Experimental results show that two sanitation agents must be used to satisfy mission requirements: one agent for personal hygiene and one for equipment maintenance. It was also recommended that a water rinse be used with the agents for best results, and that consideration be given to using the agents pressure packed or in aerosol formulations.

  13. Radiation induced dissolution of UO 2 based nuclear fuel - A critical review of predictive modelling approaches

    NASA Astrophysics Data System (ADS)

    Eriksen, Trygve E.; Shoesmith, David W.; Jonsson, Mats

    2012-01-01

    Radiation induced dissolution of uranium dioxide (UO 2) nuclear fuel and the consequent release of radionuclides to intruding groundwater are key-processes in the safety analysis of future deep geological repositories for spent nuclear fuel. For several decades, these processes have been studied experimentally using both spent fuel and various types of simulated spent fuels. The latter have been employed since it is difficult to draw mechanistic conclusions from real spent nuclear fuel experiments. Several predictive modelling approaches have been developed over the last two decades. These models are largely based on experimental observations. In this work we have performed a critical review of the modelling approaches developed based on the large body of chemical and electrochemical experimental data. The main conclusions are: (1) the use of measured interfacial rate constants give results in generally good agreement with experimental results compared to simulations where homogeneous rate constants are used; (2) the use of spatial dose rate distributions is particularly important when simulating the behaviour over short time periods; and (3) the steady-state approach (the rate of oxidant consumption is equal to the rate of oxidant production) provides a simple but fairly accurate alternative, but errors in the reaction mechanism and in the kinetic parameters used may not be revealed by simple benchmarking. It is essential to use experimentally determined rate constants and verified reaction mechanisms, irrespective of whether the approach is chemical or electrochemical.

  14. PIC simulations of conical magnetically insulated transmission line with LTD generator: Transition from self-limited to load-limited flow

    NASA Astrophysics Data System (ADS)

    Liu, Laqun; Wang, Huihui; Guo, Fan; Zou, Wenkang; Liu, Dagang

    2017-04-01

    Based on the 3-dimensional Particle-In-Cell (PIC) code CHIPIC3D, with a new circuit boundary algorithm we developed, a conical magnetically insulated transmission line (MITL) with a 1.0-MV linear transformer driver (LTD) is explored numerically. The values of switch jitter time of LTD are critical parameters for the system, which are difficult to be measured experimentally. In this paper, these values are obtained by comparing the PIC results with experimental data of large diode-gap MITL. By decreasing the diode gap, we find that all PIC results agree well with experimental data only if MITL works on self-limited flow no matter how large the diode gap is. However, when the diode gap decreases to a threshold, the self-limited flow would transfer to a load-limited flow. In this situation, PIC results no longer agree with experimental data anymore due to the anode plasma expansion in the diode load. This disagreement is used to estimate the plasma expansion speed.

  15. Numerical Calculation of Internal Human Body Resistances at Power Frequency, and Comparison of them with Experimental Ones

    NASA Astrophysics Data System (ADS)

    Tarao, Hiroo; Hayashi, Noriyuki; Hamamoto, Isao; Isaka, Katsuo

    A numerical method, which is newly developed here, is used in order to calculate internal body resistances in a voxelized biological model. By using this method, the internal resistances of an anatomical human model were calculated for the two current paths: 1400 Ω for a hand to foot, and 1500 Ω for a hand to hand. They are compared with experimental ones (500 ∼ 600 Ω for the hand to foot and 500 ∼ 700 Ω for the hand to hand), resulting in the conclusion that the numerical values of the internal resistance are twice or three times higher than the experimental ones. While there is the discrepancy between the calculated and measured results in the absolute values, the profiles of their relative values along the current paths showed good agreement. This implies that the factors such as the anisotropy of muscle conductivity and the difference between in vivo and in vitro conductivities need to be considered. In fact, in consideration of those factors, the calculated results approached the experimental ones.

  16. Cardiorespiratory adaptation to breath-holding in air: Analysis via a cardiopulmonary simulation model.

    PubMed

    Albanese, Antonio; Limei Cheng; Ursino, Mauro; Chbat, Nicolas W

    2015-01-01

    Apnea via breath-holding (BH) in air induces cardiorespiratory adaptation that involves the activation of several reflex mechanisms and their complex interactions. Hence, the effects of BH in air on cardiorespiratory function can become hardly predictable and difficult to be interpreted. Particularly, the effect on heart rate is not yet completely understood because of the contradicting results of different physiological studies. In this paper we apply our previously developed cardiopulmonary model (CP Model) to a scenario of BH with a twofold intent: (1) further validating the CP Model via comparison against experimental data; (2) gaining insights into the physiological reasoning for such contradicting experimental results. Model predictions agreed with published experimental animal and human data and indicated that heart rate increases during BH in air. Changes in the balance between sympathetic and vagal effects on heart rate within the model proved to be effective in inverting directions of the heart rate changes during BH. Hence, the model suggests that intra-subject differences in such sympatho-vagal balance may be one of the reasons for the contradicting experimental results.

  17. Modular Biopower System Providing Combined Heat and Power for DoD Installations

    DTIC Science & Technology

    2013-12-01

    Cycle Cost evaluation using the experimental results of the 6-month field demonstration and the system’s projected cost and performance for the...34 5.6 SAMPLING RESULTS ...premises, which resulted in a significant program delay. After a short period of operation, the custom-designed engine developed mechanical

  18. [Effect of melaxen and valdoxan on free radical processes intensity, aconitate hydratase activity and citrate content in rats tissues under hyperthyroidism].

    PubMed

    Gorbenko, M V; Popova, T N; Shul'gin, K K; Popov, S S; Agarkov, A A

    2014-01-01

    The influence of melaxen and valdoxan on the biochemiluminescence parameters, aconitate hydratase activity and citrate level in rats heart and liver during development of experimental hyperthyroidism has been investigated. Administration of these substances promoted a decrease of biochemiluminescence parameters, which had been increased in tissues of rats in response to the development of oxidative stress under hyperthyroidism. Aconitate hydratase activity and citrate concentration in rats liver and heart, growing at pathological conditions, changed towards control value after administration of the drugs correcting melatonin level. The results indicate the positive effect of valdoxan and melaxen on oxidative status of the organism under the development of experimental hyperthyroidism that is associated with antioxidant action of melatonin.

  19. Simulation of high SNR photodetector with L-C coupling and transimpedance amplifier circuit and its verification

    NASA Astrophysics Data System (ADS)

    Wang, Shaofeng; Xiang, Xiao; Zhou, Conghua; Zhai, Yiwei; Quan, Runai; Wang, Mengmeng; Hou, Feiyan; Zhang, Shougang; Dong, Ruifang; Liu, Tao

    2017-01-01

    In this paper, a model for simulating the optical response and noise performances of photodetectors with L-C coupling and transimpedance amplification circuit is presented. To verify the simulation, two kinds of photodetectors, which are based on the same printed-circuit-board (PCB) designing and PIN photodiode but different operational amplifiers, are developed and experimentally investigated. Through the comparisons between the numerical simulation results and the experimentally obtained data, excellent agreements are achieved, which show that the model provides a highly efficient guide for the development of a high signal to noise ratio photodetector. Furthermore, the parasite capacitances on the developed PCB, which are always hardly measured but play a non-negligible influence on the photodetectors' performances, are estimated.

  20. Simulation of high SNR photodetector with L-C coupling and transimpedance amplifier circuit and its verification.

    PubMed

    Wang, Shaofeng; Xiang, Xiao; Zhou, Conghua; Zhai, Yiwei; Quan, Runai; Wang, Mengmeng; Hou, Feiyan; Zhang, Shougang; Dong, Ruifang; Liu, Tao

    2017-01-01

    In this paper, a model for simulating the optical response and noise performances of photodetectors with L-C coupling and transimpedance amplification circuit is presented. To verify the simulation, two kinds of photodetectors, which are based on the same printed-circuit-board (PCB) designing and PIN photodiode but different operational amplifiers, are developed and experimentally investigated. Through the comparisons between the numerical simulation results and the experimentally obtained data, excellent agreements are achieved, which show that the model provides a highly efficient guide for the development of a high signal to noise ratio photodetector. Furthermore, the parasite capacitances on the developed PCB, which are always hardly measured but play a non-negligible influence on the photodetectors' performances, are estimated.

  1. Chemical reacting flows

    NASA Astrophysics Data System (ADS)

    Lezberg, Erwin A.; Mularz, Edward J.; Liou, Meng-Sing

    1991-03-01

    The objectives and accomplishments of research in chemical reacting flows, including both experimental and computational problems are described. The experimental research emphasizes the acquisition of reliable reacting-flow data for code validation, the development of chemical kinetics mechanisms, and the understanding of two-phase flow dynamics. Typical results from two nonreacting spray studies are presented. The computational fluid dynamics (CFD) research emphasizes the development of efficient and accurate algorithms and codes, as well as validation of methods and modeling (turbulence and kinetics) for reacting flows. Major developments of the RPLUS code and its application to mixing concepts, the General Electric combustor, and the Government baseline engine for the National Aerospace Plane are detailed. Finally, the turbulence research in the newly established Center for Modeling of Turbulence and Transition (CMOTT) is described.

  2. Finite-element analysis of NiTi wire deflection during orthodontic levelling treatment

    NASA Astrophysics Data System (ADS)

    Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.

    2016-02-01

    Finite-element analysis is an important product development tool in medical devices industry for design and failure analysis of devices. This tool helps device designers to quickly explore various design options, optimizing specific designs and providing a deeper insight how a device is actually performing. In this study, three-dimensional finite-element models of superelastic nickel-titanium arch wire engaged in a three brackets system were developed. The aim was to measure the effect of binding friction developed on wire-bracket interaction towards the remaining recovery force available for tooth movement. Uniaxial and three brackets bending test were modelled and validated against experimental works. The prediction made by the three brackets bending models shows good agreement with the experimental results.

  3. The effectiveness of parent participation in occupational therapy for children with developmental delay

    PubMed Central

    Lin, Chien-Lin; Lin, Chin-Kai; Yu, Jia-Jhen

    2018-01-01

    Introduction This study aims to explore the impact of Parent Participation Program on the development of developmental delay children. Methods Pretest-posttest equivalent-group experimental design study was used in this paper. A total of 30 pairs of developmental delay children aged 0–72 months and their parents participated into this study. They were divided into two groups, namely control group and experimental group, according to parents’ wishes. The objects of study in control group received 16 courses of direct rehabilitation therapy; those in experimental group received 8 courses of direct rehabilitation therapy and 8 courses of instruction and tracking of Parent Participation Program. The duration of the intervention was 8 weeks. All cases should be evaluated before and after the intervention, to analyze the difference before and after intervention and among groups. The statistical methods in this paper included descriptive analysis, Chi-square test, independent sample t-test, pair-sample t-test. Results and conclusion The intervention of Parent Participation Occupational Program has positive impact on the development of developmental delay children in various fields. Among all the intervention results, the progress of the experimental group is 1.895 times more than that of the control group. With parent involvement, Parent Participation Occupational Therapy can promote the cognitive ability, language ability, action ability (gross and fine movement), social competence and self-care ability of children with developmental delay. Finally, the researcher presents suggestions and directions for future research in accordance with the results. PMID:29503546

  4. Absolute cross sections for the ionization-excitation of helium by electron impact

    NASA Astrophysics Data System (ADS)

    Bellm, S.; Lower, J.; Weigold, E.; Bray, I.; Fursa, D. V.; Bartschat, K.; Harris, A. L.; Madison, D. H.

    2008-09-01

    In a recent publication we presented detailed experimental and theoretical results for the electron-impact-induced ionization of ground-state helium atoms. The purpose of that work was to refine theoretical approaches and provide further insight into the Coulomb four-body problem. Cross section ratios were presented for transitions leading to excited states, relative to those leading to the ground state, of the helium ion. We now build on that study by presenting individual relative triple-differential ionization cross sections (TDCSs) for an additional body of experimental data measured at lower values of scattered-electron energies. This has been facilitated through the development of new electron-gun optics which enables us to accurately characterize the spectrometer transmission at low energies. The experimental results are compared to calculations resulting from a number of different approaches. For ionization leading to He+(1s2)1S , cross sections are calculated by the highly accurate convergent close-coupling (CCC) method. The CCC data are used to place the relative experimental data on to an absolute scale. TDCSs describing transitions to the excited states are calculated through three different approaches, namely, through a hybrid distorted- wave+R -matrix (close-coupling) model, through the recently developed four-body distorted-wave model, and by a first Born approximation calculation. Comparison of the first- and second-order theories with experiment allows for the accuracy of the different theoretical approaches to be assessed and gives insight into which physical aspects of the problem are most important to accurately model.

  5. Aircraft engine pollution reduction.

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  6. Linear free-energy relationships and the density functional theory: an analog of the hammett equation.

    PubMed

    Simón-Manso, Yamil

    2005-03-10

    Density functional theory has been applied to describe electronic substituent effects, especially in the pursuit of linear relationships similar to those observed from physical organic chemistry experiments. In particular, analogues for the Hammett equation parameters (sigma, rho) have been developed. Theoretical calculations were performed on several series of organic molecules in order to validate our model and for comparison with experimental results. The trends obtained by Hammett-like relations predicted by the model were found to be in qualitative agreement with the experimental data. The results obtained in this study suggest the applicability of similar correlation analysis based on theoretical methodologies that do not make use of empirical fits to experimental data can be useful in the study of substituent effects in organic chemistry.

  7. Experimental Demonstration of the Einstein-Podolsky-Rosen Steering Game Based on the All-Versus-Nothing Proof

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Xu, Jin-Shi; Ye, Xiang-Jun; Wu, Yu-Chun; Chen, Jing-Ling; Li, Chuan-Feng; Guo, Guang-Can

    2014-10-01

    Einstein-Podolsky-Rosen (EPR) steering, a generalization of the original concept of "steering" proposed by Schrödinger, describes the ability of one system to nonlocally affect another system's states through local measurements. Some experimental efforts to test EPR steering in terms of inequalities have been made, which usually require many measurement settings. Analogy to the "all-versus-nothing" (AVN) proof of Bell's theorem without inequalities, testing steerability without inequalities would be more strong and require less resources. Moreover, the practical meaning of steering implies that it should also be possible to store the state information on the side to be steered, a result that has not yet been experimentally demonstrated. Using a recent AVN criterion for two-qubit entangled states, we experimentally implement a practical steering game using quantum memory. Furthermore, we develop a theoretical method to deal with the noise and finite measurement statistics within the AVN framework and apply it to analyze the experimental data. Our results clearly show the facilitation of the AVN criterion for testing steerability and provide a particularly strong perspective for understanding EPR steering.

  8. Characterizing Adhesion between a Micropatterned Surface and a Soft Synthetic Tissue.

    PubMed

    Kern, Madalyn D; Qi, Yuan; Long, Rong; Rentschler, Mark E

    2017-01-31

    The work of adhesion and work of separation are characteristic properties of a contact interface that describe the amount of energy per unit area required to adhere or separate two contacting substrates, respectively. In this work, the authors present experimental and data analysis procedures that allow the contact interface between a soft synthetic tissue and a smooth or micropatterned poly(dimethylsiloxane) (PDMS) substrate to be characterized in terms of these characteristic parameters. Because of physical geometry limitations, the experimental contact geometry chosen for this study differs from conventional test geometries. Therefore, the authors used finite element modeling to develop correction factors specific to the experimental contact geometry used in this work. A work of adhesion was directly extracted from experimental data while the work of separation was estimated on the basis of experimental results. These values are compared to other theoretical calculations for validation. The results of this work indicate that the micropatterned PDMS substrate significantly decreases both the work of adhesion and work of separation as compared to a smooth PDMS substrate when in contact with a soft synthetic tissue substrate.

  9. Comparing fluid mechanics models with experimental data.

    PubMed Central

    Spedding, G R

    2003-01-01

    The art of modelling the physical world lies in the appropriate simplification and abstraction of the complete problem. In fluid mechanics, the Navier-Stokes equations provide a model that is valid under most circumstances germane to animal locomotion, but the complexity of solutions provides strong incentive for the development of further, more simplified practical models. When the flow organizes itself so that all shearing motions are collected into localized patches, then various mathematical vortex models have been very successful in predicting and furthering the physical understanding of many flows, particularly in aerodynamics. Experimental models have the significant added convenience that the fluid mechanics can be generated by a real fluid, not a model, provided the appropriate dimensionless groups have similar values. Then, analogous problems can be encountered in making intelligible but independent descriptions of the experimental results. Finally, model predictions and experimental results may be compared if, and only if, numerical estimates of the likely variations in the tested quantities are provided. Examples from recent experimental measurements of wakes behind a fixed wing and behind a bird in free flight are used to illustrate these principles. PMID:14561348

  10. Experimental validation of an integrated controls-structures design methodology for a class of flexible space structures

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Gupta, Sandeep; Elliott, Kenny B.; Joshi, Suresh M.; Walz, Joseph E.

    1994-01-01

    This paper describes the first experimental validation of an optimization-based integrated controls-structures design methodology for a class of flexible space structures. The Controls-Structures-Interaction (CSI) Evolutionary Model, a laboratory test bed at Langley, is redesigned based on the integrated design methodology with two different dissipative control strategies. The redesigned structure is fabricated, assembled in the laboratory, and experimentally compared with the original test structure. Design guides are proposed and used in the integrated design process to ensure that the resulting structure can be fabricated. Experimental results indicate that the integrated design requires greater than 60 percent less average control power (by thruster actuators) than the conventional control-optimized design while maintaining the required line-of-sight performance, thereby confirming the analytical findings about the superiority of the integrated design methodology. Amenability of the integrated design structure to other control strategies is considered and evaluated analytically and experimentally. This work also demonstrates the capabilities of the Langley-developed design tool CSI DESIGN which provides a unified environment for structural and control design.

  11. Vaporization dynamics of volatile perfluorocarbon droplets: A theoretical model and in vitro validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doinikov, Alexander A., E-mail: doinikov@bsu.by; Bouakaz, Ayache; Sheeran, Paul S.

    2014-10-15

    Purpose: Perfluorocarbon (PFC) microdroplets, called phase-change contrast agents (PCCAs), are a promising tool in ultrasound imaging and therapy. Interest in PCCAs is motivated by the fact that they can be triggered to transition from the liquid state to the gas state by an externally applied acoustic pulse. This property opens up new approaches to applications in ultrasound medicine. Insight into the physics of vaporization of PFC droplets is vital for effective use of PCCAs and for anticipating bioeffects. PCCAs composed of volatile PFCs (with low boiling point) exhibit complex dynamic behavior: after vaporization by a short acoustic pulse, a PFCmore » droplet turns into a vapor bubble which undergoes overexpansion and damped radial oscillation until settling to a final diameter. This behavior has not been well described theoretically so far. The purpose of our study is to develop an improved theoretical model that describes the vaporization dynamics of volatile PFC droplets and to validate this model by comparison with in vitro experimental data. Methods: The derivation of the model is based on applying the mathematical methods of fluid dynamics and thermodynamics to the process of the acoustic vaporization of PFC droplets. The used approach corrects shortcomings of the existing models. The validation of the model is carried out by comparing simulated results with in vitro experimental data acquired by ultrahigh speed video microscopy for octafluoropropane (OFP) and decafluorobutane (DFB) microdroplets of different sizes. Results: The developed theory allows one to simulate the growth of a vapor bubble inside a PFC droplet until the liquid PFC is completely converted into vapor, and the subsequent overexpansion and damped oscillations of the vapor bubble, including the influence of an externally applied acoustic pulse. To evaluate quantitatively the difference between simulated and experimental results, the L2-norm errors were calculated for all cases where the simulated and experimental results are compared. These errors were found to be in the ranges of 0.043–0.067 and 0.037–0.088 for OFP and DFB droplets, respectively. These values allow one to consider agreement between the simulated and experimental results as good. This agreement is attained by varying only 2 of 16 model parameters which describe the material properties of gaseous and liquid PFCs and the liquid surrounding the PFC droplet. The fitting parameters are the viscosity and the surface tension of the surrounding liquid. All other model parameters are kept invariable. Conclusions: The good agreement between the theoretical and experimental results suggests that the developed model is able to correctly describe the key physical processes underlying the vaporization dynamics of volatile PFC droplets. The necessity of varying the parameters of the surrounding liquid for fitting the experimental curves can be explained by the fact that the parts of the initial phospholipid shell of PFC droplets remain on the surface of vapor bubbles at the oscillatory stage and their presence affects the bubble dynamics.« less

  12. Quantum control and quantum tomography on neutral atom qudits

    NASA Astrophysics Data System (ADS)

    Sosa Martinez, Hector

    Neutral atom systems are an appealing platform for the development and testing of quantum control and measurement techniques. This dissertation presents experimental investigations of control and measurement tools using as a testbed the 16-dimensional hyperfine manifold associated with the electronic ground state of cesium atoms. On the control side, we present an experimental realization of a protocol to implement robust unitary transformations in the presence of static and dynamic perturbations. We also present an experimental realization of inhomogeneous quantum control. Specifically, we demonstrate our ability to perform two different unitary transformations on atoms that see different light shifts from an optical addressing field. On the measurement side, we present experimental realizations of quantum state and process tomography. The state tomography project encompasses a comprehensive evaluation of several measurement strategies and state estimation algorithms. Our experimental results show that in the presence of experimental imperfections, there is a clear tradeoff between accuracy, efficiency and robustness in the reconstruction. The process tomography project involves an experimental demonstration of efficient reconstruction by using a set of intelligent probe states. Experimental results show that we are able to reconstruct unitary maps in Hilbert spaces with dimension ranging from d=4 to d=16. To the best of our knowledge, this is the first time that a unitary process in d=16 is successfully reconstructed in the laboratory.

  13. Supersonic Retro-Propulsion Experimental Design for Computational Fluid Dynamics Model Validation

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Laws, Christopher T.; Kleb, W. L.; Rhode, Matthew N.; Spells, Courtney; McCrea, Andrew C.; Truble, Kerry A.; Schauerhamer, Daniel G.; Oberkampf, William L.

    2011-01-01

    The development of supersonic retro-propulsion, an enabling technology for heavy payload exploration missions to Mars, is the primary focus for the present paper. A new experimental model, intended to provide computational fluid dynamics model validation data, was recently designed for the Langley Research Center Unitary Plan Wind Tunnel Test Section 2. Pre-test computations were instrumental for sizing and refining the model, over the Mach number range of 2.4 to 4.6, such that tunnel blockage and internal flow separation issues would be minimized. A 5-in diameter 70-deg sphere-cone forebody, which accommodates up to four 4:1 area ratio nozzles, followed by a 10-in long cylindrical aftbody was developed for this study based on the computational results. The model was designed to allow for a large number of surface pressure measurements on the forebody and aftbody. Supplemental data included high-speed Schlieren video and internal pressures and temperatures. The run matrix was developed to allow for the quantification of various sources of experimental uncertainty, such as random errors due to run-to-run variations and bias errors due to flow field or model misalignments. Some preliminary results and observations from the test are presented, although detailed analyses of the data and uncertainties are still on going.

  14. Rate equation model of laser induced bias in uranium isotope ratios measured by resonance ionization mass spectrometry

    DOE PAGES

    Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.; ...

    2015-12-07

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the 235U/238U ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equationmore » model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the 235U/ 238U ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. As a result, development of this model has highlighted several important considerations for properly interpreting experimental results.« less

  15. Exploring the Development of Fifth Graders' Practical Epistemologies and Explanation Skills in Inquiry-Based Learning Classrooms

    NASA Astrophysics Data System (ADS)

    Wu, Hsin-Kai; Wu, Chia-Lien

    2011-05-01

    The purposes of this study are to explore fifth graders' epistemological views regarding their own experiences of constructing scientific knowledge through inquiry activities (i.e., practical epistemologies) and to investigate possible interactions between students' practical epistemologies and their inquiry skills to construct scientific explanations (i.e., explanation skills). Quantitative and qualitative data including interview transcripts, classroom video recordings, and pre- and post-tests of explanation skills were collected from 68 fifth graders in two science classes. Analyses of data show that after engaging in 5-week inquiry activities, students developed better inquiry skills to construct scientific explanations. More students realized the existence of experimental errors, viewed experimental data as evidence to support their claims, and had richer understanding about the nature of scientific questions. However, most students' epistemological beliefs were still naïve (the beginning level); they could not differentiate between experimental results and scientific knowledge and believed that the purpose of science is doing experiments or research. The results also show that students who held a more sophisticated epistemology (the intermediate level) tended to develop better inquiry skills than those with naïve beliefs. Analyses of classroom observations suggest possible explanations for how students reflected their epistemological views in their inquiry practices.

  16. Prediction of lipoprotein signal peptides in Gram-negative bacteria.

    PubMed

    Juncker, Agnieszka S; Willenbrock, Hanni; Von Heijne, Gunnar; Brunak, Søren; Nielsen, Henrik; Krogh, Anders

    2003-08-01

    A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor was able to predict 96.8% of the lipoproteins correctly with only 0.3% false positives in a set of SPaseI-cleaved, cytoplasmic, and transmembrane proteins. The results obtained were significantly better than those of previously developed methods. Even though Gram-positive lipoprotein signal peptides differ from Gram-negatives, the HMM was able to identify 92.9% of the lipoproteins included in a Gram-positive test set. A genome search was carried out for 12 Gram-negative genomes and one Gram-positive genome. The results for Escherichia coli K12 were compared with new experimental data, and the predictions by the HMM agree well with the experimentally verified lipoproteins. A neural network-based predictor was developed for comparison, and it gave very similar results. LipoP is available as a Web server at www.cbs.dtu.dk/services/LipoP/.

  17. Prediction of lipoprotein signal peptides in Gram-negative bacteria

    PubMed Central

    Juncker, Agnieszka S.; Willenbrock, Hanni; von Heijne, Gunnar; Brunak, Søren; Nielsen, Henrik; Krogh, Anders

    2003-01-01

    A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor was able to predict 96.8% of the lipoproteins correctly with only 0.3% false positives in a set of SPaseI-cleaved, cytoplasmic, and transmembrane proteins. The results obtained were significantly better than those of previously developed methods. Even though Gram-positive lipoprotein signal peptides differ from Gram-negatives, the HMM was able to identify 92.9% of the lipoproteins included in a Gram-positive test set. A genome search was carried out for 12 Gram-negative genomes and one Gram-positive genome. The results for Escherichia coli K12 were compared with new experimental data, and the predictions by the HMM agree well with the experimentally verified lipoproteins. A neural network-based predictor was developed for comparison, and it gave very similar results. LipoP is available as a Web server at www.cbs.dtu.dk/services/LipoP/. PMID:12876315

  18. Software and mathematical support of Kazakhstani star tracker

    NASA Astrophysics Data System (ADS)

    Akhmedov, D.; Yelubayev, S.; Ten, V.; Bopeyev, T.; Alipbayev, K.; Sukhenko, A.

    2016-10-01

    Currently the specialists of Kazakhstan have been developing the star tracker that is further planned to use on Kazakhstani satellites of various purposes. At the first stage it has been developed the experimental model of star tracker that has following characteristics: field of view 20°, update frequency 2 Hz, exclusion angle 40°, accuracy of attitude determination of optical axis/around optical axis 15/50 arcsec. Software and mathematical support are the most high technology parts of star tracker. The results of software and mathematical support development of experimental model of Kazakhstani star tracker are represented in this article. In particular, there are described the main mathematical models and algorithms that have been used as a basis for program units of preliminary image processing of starry sky, stars identification and star tracker attitude determination. The results of software and mathematical support testing with the help of program simulation complex using various configurations of defects including image sensor noises, point spread function modeling, optical system distortion up to 2% are presented. Analysis of testing results has shown that accuracy of attitude determination of star tracker is within the permissible range

  19. Effectiveness of Student Learning during Experimental Work in Primary School.

    PubMed

    Logar, Ana; Peklaj, Cirila; Ferk Savec, Vesna

    2017-09-01

    The aim of the research was to optimize the effectiveness of student learning based on experimental work in chemistry classes in Slovenian primary schools. To obtain evidence about how experimental work is implemented during regular chemistry classes, experimental work was videotaped during 19 units of chemistry lessons at 12 Slovenian primary schools from the pool of randomly selected schools. Altogether 332 eight-grade students were involved in the investigation, with an average age of 14.2 years. Students were videotaped during chemistry lessons, and their worksheets were collected afterward. The 12 chemistry teachers, who conducted lessons in these schools, were interviewed before the lessons; their teaching plans were also collected. The collected data was analyzed using qualitative methods. The results indicate that many teachers in Slovenian primary schools are not fully aware of the potential of experimental work integrated into chemistry lessons for the development of students' experimental competence. Further research of the value of different kinds of training to support teachers for the use of experimental work in chemistry teaching is needed.

  20. The effect of laughter therapy on radiation dermatitis in patients with breast cancer: a single-blind prospective pilot study

    PubMed Central

    Kong, Moonkyoo; Shin, Sung Hee; Lee, Eunmi; Yun, Eun Kyoung

    2014-01-01

    Background There have not yet been any published studies on the effects of laughter therapy on radiation-induced dermatitis in breast cancer patients treated with radiotherapy (RT). We assessed the effectiveness of laughter therapy in preventing radiation dermatitis in patients with breast cancer. Methods Thirty-seven patients were prospectively enrolled in this study. Eighteen patients were assigned to the experimental group and the other 19 patients were assigned to the control group. The patients who were assigned to the experimental group received laughter therapy during RT. Laughter therapy was started at the onset of RT and was provided twice a week until completion of RT. The patients who were assigned to the control group only received RT without laughter therapy. The grade of radiation dermatitis was scored by a radiation oncologist who was blinded to subject assignment. The patients’ evaluation of pain within the RT field was also assessed. Results In the experimental group, radiation dermatitis of grade 3, 2, and 1 developed in five (33.3%), five (33.3%), and five patients (33.3%), respectively. In comparison, in the control group, radiation dermatitis of grade 3, 2, 1, and 0 developed in seven (36.8%), nine (47.4%), two (10.5%), and one patient (5.3%), respectively. The experimental group exhibited a lower incidence of grade 2 or worse radiation dermatitis than the control group (33.3% versus 47.4%). The mean maximal pain scores in the experimental and control group were 2.53 and 3.95, respectively. The experimental group complained of less severe pain than the control group during RT. However, these differences were not statistically significant. Conclusion The results of this study show that laughter therapy can have a beneficial role in preventing radiation dermatitis in patients with breast cancer. To confirm the results of our study, well-designed randomized studies with large sample sizes are required. PMID:25395864

Top