DOE Office of Scientific and Technical Information (OSTI.GOV)
Neff, Michael M.
This is a final report for Department of Energy Grant No. DE-FG02-08ER15927 entitled “Molecular Genetic Analysis of Activation-Tagged Transcription Factors Thought to be Involved in Photomorphogenesis”. Based on our preliminary photobiological and genetic analysis of the sob1-D mutant, we hypothesized that OBP3 is a transcription factor involved in both phytochrome and cryptochrome-mediated signal transduction. In addition, we hypothesized that OBP3 is involved in auxin signaling and root development. Based on our preliminary photobiological and genetic analysis of the sob2-D mutant, we also hypothesized that a related gene, LEP, is involved in hormone signaling and seedling development.
[Genetics of congenital heart diseases].
Bonnet, Damien
2017-06-01
Developmental genetics of congenital heart diseases has evolved from analysis of serial slices in embryos towards molecular genetics of cardiac morphogenesis with a dynamic view of cardiac development. Genetics of congenital heart diseases has also changed from formal genetic analysis of familial recurrences or population-based analysis to screening for mutations in candidates genes identified in animal models. Close cooperation between molecular embryologists, pathologists involved in heart development and pediatric cardiologists is crucial for further increase of knowledge in the field of cardiac morphogenesis and genetics of cardiac defects. The genetic model for congenital heart disease has to be revised to favor a polygenic origin rather than a monogenic one. The main mechanism is altered genic dosage that can account for heart diseases in chromosomal anomalies as well as in point mutations in syndromic and isolated congenital heart diseases. The use of big data grouping information from cardiac development, interactions between genes and proteins, epigenetic factors such as chromatin remodeling or DNA methylation is the current source for improving our knowledge in the field and to give clues for future therapies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Ritschel, Patricia Silva; Lins, Tulio Cesar de Lima; Tristan, Rodrigo Lourenço; Buso, Gláucia Salles Cortopassi; Buso, José Amauri; Ferreira, Márcio Elias
2004-01-01
Background Despite the great advances in genomic technology observed in several crop species, the availability of molecular tools such as microsatellite markers has been limited in melon (Cucumis melo L.) and cucurbit species. The development of microsatellite markers will have a major impact on genetic analysis and breeding of melon, especially on the generation of marker saturated genetic maps and implementation of marker assisted breeding programs. Genomic microsatellite enriched libraries can be an efficient alternative for marker development in such species. Results Seven hundred clones containing microsatellite sequences from a Tsp-AG/TC microsatellite enriched library were identified and one-hundred and forty-four primer pairs designed and synthesized. When 67 microsatellite markers were tested on a panel of melon and other cucurbit accessions, 65 revealed DNA polymorphisms among the melon accessions. For some cucurbit species, such as Cucumis sativus, up to 50% of the melon microsatellite markers could be readily used for DNA polymophism assessment, representing a significant reduction of marker development costs. A random sample of 25 microsatellite markers was extracted from the new microsatellite marker set and characterized on 40 accessions of melon, generating an allelic frequency database for the species. The average expected heterozygosity was 0.52, varying from 0.45 to 0.70, indicating that a small set of selected markers should be sufficient to solve questions regarding genotype identity and variety protection. Genetic distances based on microsatellite polymorphism were congruent with data obtained from RAPD marker analysis. Mapping analysis was initiated with 55 newly developed markers and most primers showed segregation according to Mendelian expectations. Linkage analysis detected linkage between 56% of the markers, distributed in nine linkage groups. Conclusions Genomic library microsatellite enrichment is an efficient procedure for marker development in melon. One-hundred and forty-four new markers were developed from Tsp-AG/TC genomic library. This is the first reported attempt of successfully using enriched library for microsatellite marker development in the species. A sample of the microsatellite markers tested proved efficient for genetic analysis of melon, including genetic distance estimates and identity tests. Linkage analysis indicated that the markers developed are dispersed throughout the genome and should be very useful for genetic analysis of melon. PMID:15149552
Polyglot Programming in Applications Used for Genetic Data Analysis
Nowak, Robert M.
2014-01-01
Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development. PMID:25197633
Polyglot programming in applications used for genetic data analysis.
Nowak, Robert M
2014-01-01
Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development.
Handler, Alfred M; Beeman, Richard W
2003-01-01
USDA-ARS scientists have made important contributions to the molecular genetic analysis of agriculturally important insects, and have been in the forefront of using this information for the development of new pest management strategies. Advances have been made in the identification and analysis of genetic systems involved in insect development, reproduction and behavior which enable the identification of new targets for control, as well as the development of highly specific insecticidal products. Other studies have been on the leading edge of developing gene transfer technology to better elucidate these biological processes though functional genomics and to develop new transgenic strains for biological control. Important contributions have also been made to the development and use of molecular markers and methodologies to identify and track insect populations. The use of molecular genetic technology and strategies will become increasingly important to pest management as genomic sequencing information becomes available from important pest insects, their targets and other associated organisms.
MetaGenyo: a web tool for meta-analysis of genetic association studies.
Martorell-Marugan, Jordi; Toro-Dominguez, Daniel; Alarcon-Riquelme, Marta E; Carmona-Saez, Pedro
2017-12-16
Genetic association studies (GAS) aims to evaluate the association between genetic variants and phenotypes. In the last few years, the number of this type of study has increased exponentially, but the results are not always reproducible due to experimental designs, low sample sizes and other methodological errors. In this field, meta-analysis techniques are becoming very popular tools to combine results across studies to increase statistical power and to resolve discrepancies in genetic association studies. A meta-analysis summarizes research findings, increases statistical power and enables the identification of genuine associations between genotypes and phenotypes. Meta-analysis techniques are increasingly used in GAS, but it is also increasing the amount of published meta-analysis containing different errors. Although there are several software packages that implement meta-analysis, none of them are specifically designed for genetic association studies and in most cases their use requires advanced programming or scripting expertise. We have developed MetaGenyo, a web tool for meta-analysis in GAS. MetaGenyo implements a complete and comprehensive workflow that can be executed in an easy-to-use environment without programming knowledge. MetaGenyo has been developed to guide users through the main steps of a GAS meta-analysis, covering Hardy-Weinberg test, statistical association for different genetic models, analysis of heterogeneity, testing for publication bias, subgroup analysis and robustness testing of the results. MetaGenyo is a useful tool to conduct comprehensive genetic association meta-analysis. The application is freely available at http://bioinfo.genyo.es/metagenyo/ .
Hu, Chih-Yi; Tsai, You-Zen; Lin, Shun-Fu
2014-12-01
Tea (Camellia sinensis) is an important economic crop in Taiwan. Particularly, two major commercial types of tea (Paochong tea and Oolong tea) which are produced in Taiwan are famous around the world, and they must be manufactured with specific cultivars. Nevertheless, many elite cultivars have been illegally introduced to foreign countries. Because of the lower cost, large amount of "Taiwan-type tea" are produced and imported to Taiwan, causing a dramatic damage in the tea industry. It is very urgent to develop the stable, fast and reliable DNA markers for fingerprinting tea cultivars in Taiwan and protecting intellectual property rights for breeders. Furthermore, genetic diversity and phylogenetic relationship evaluations of tea germplasm in Taiwan are imperative for parental selection in the cross-breeding program and avoidance of genetic vulnerability. Two STS and 37 CAPS markers derived from cytoplasmic genome and ESTs of tea have been developed in this study providing a useful tool for distinguishing all investigated germplasm. For identifying 12 prevailing tea cultivars in Taiwan, five core markers, including each one of mitochondria and chloroplast, and three nuclear markers, were developed. Based on principal coordinate analysis and cluster analysis, 55 tea germplasm in Taiwan were divided into three groups: sinensis type (C. sinensis var. sinensis), assamica type (C. sinensis var. assamica) and Taiwan wild species (C. formosensis). The result of genetic diversity analysis revealed that both sinensis (0.44) and assamica (0.41) types had higher genetic diversity than wild species (0.25). The close genetic distance between the first (Chin-Shin-Oolong) and the third (Shy-Jih-Chuen) prevailing cultivars was found, and many recently released varieties are the descents of Chin-Shin-Oolong. This implies the potential risk of genetic vulnerability for tea cultivation in Taiwan. We have successfully developed a tool for tea germplasm discrimination and genetic diversity analysis, as well as a set of core markers for effective identification of prevailing cultivars in Taiwan. According to the results of phylogenetic analysis on prevailing tea cultivars, it is necessary to broaden genetic diversity from wild species or plant introduction in future breeding programs.
Genetic Analysis of Pathways to Parkinson Disease
Hardy, John
2010-01-01
In this review I outline the arguments as to whether we should consider Parkinson disease one or more than one entity and discuss genetic findings from Mendelian and whole-genome association analysis in that context. I discuss what the demonstration of disease spread implies for our analysis of the genetic and epidemiologic risk factors for disease and outline the surprising fact that we now have genetically identified on the order of half our risk for developing the disease. PMID:20955928
Analysis of genetic diversity of Chinese dairy goats via microsatellite markers.
Wang, G Z; Chen, S S; Chao, T L; Ji, Z B; Hou, L; Qin, Z J; Wang, J M
2017-05-01
In this study, 15 polymorphic microsatellite markers were used to analyze the genetic structure and phylogenetic relationships of 6 dairy goat breeds in China, including 4 native developed breeds and 2 introduced breeds. The results showed that a total of 172 alleles were detected in 347 samples of the dairy goat breeds included in this study. The mean number of effective alleles per locus was 4.92. Except for BMS0812, all of the remaining microsatellite loci were highly polymorphic (polymorphism information content [PIC] > 0.5). The analysis of genetic diversity parameters, including the number of effective alleles, PIC, and heterozygosity, revealed that the native developed dairy goat breeds in China harbored a rich genetic diversity. However, these breeds showed a low breeding degree and a high population intermix degree, with a certain degree of inbreeding and within-subpopulation inbreeding coefficient ( > 0). The analysis of population genetic differentiation and phylogenetic tree topologies showed a moderate state of genetic differentiation among subpopulations of native developed breed dairy goats in China (0.05 < gene fixation coefficient [] < 0.15). The native developed breeds shared a common ancestor, namely, the Saanen dairy goat, originating from Europe. The results showed that there was a close genetic relationship between Wendeng and Laoshan dairy goats while the Guanzhong dairy goat and the Xinong Saanen dairy goat were also found to have a close genetic relationship, which were both in agreement with the formation history and geographical distribution of the breeds. This study revealed that adopting genetic management strategies, such as expanding pedigree source and strengthening multi-trait selection, is useful in maintaining the genetic diversity of native developed breeds and improving the population uniformity of dairy goats.
Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases
Amos, Christopher I.; Bafna, Vineet; Hauser, Elizabeth R.; Hernandez, Ryan D.; Li, Chun; Liberles, David A.; McAllister, Kimberly; Moore, Jason H.; Paltoo, Dina N.; Papanicolaou, George J.; Peng, Bo; Ritchie, Marylyn D.; Rosenfeld, Gabriel; Witte, John S.
2014-01-01
Genetic simulation programs are used to model data under specified assumptions to facilitate the understanding and study of complex genetic systems. Standardized data sets generated using genetic simulation are essential for the development and application of novel analytical tools in genetic epidemiology studies. With continuing advances in high-throughput genomic technologies and generation and analysis of larger, more complex data sets, there is a need for updating current approaches in genetic simulation modeling. To provide a forum to address current and emerging challenges in this area, the National Cancer Institute (NCI) sponsored a workshop, entitled “Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases” at the National Institutes of Health (NIH) in Bethesda, Maryland on March 11-12, 2014. The goals of the workshop were to: (i) identify opportunities, challenges and resource needs for the development and application of genetic simulation models; (ii) improve the integration of tools for modeling and analysis of simulated data; and (iii) foster collaborations to facilitate development and applications of genetic simulation. During the course of the meeting the group identified challenges and opportunities for the science of simulation, software and methods development, and collaboration. This paper summarizes key discussions at the meeting, and highlights important challenges and opportunities to advance the field of genetic simulation. PMID:25371374
Sviatova, G S; Berezina, G M; Abil'dinova, G Zh
2001-12-01
Rural populations neighboring the Semipalatinsk nuclear test site were used as a model to develop and test an integrated population-genetic approach to analysis of the medical genetic situation and environmental conditions in the areas studied. The contributions of individual factors of population dynamics into the formation of the genetic load were also assessed. The informative values of some genetic markers were estimated. Based on these estimates, a mathematical model was constructed that makes it possible to calculate numerical scores for analysis of the genetic loads in populations differing in environmental exposure.
Some Conceptual Deficiencies in "Developmental" Behavior Genetics.
ERIC Educational Resources Information Center
Gottlieb, Gilbert
1995-01-01
Criticizes the application of the statistical procedures of the population-genetic approach within evolutionary biology to the study of psychological development. Argues that the application of the statistical methods of population genetics--primarily the analysis of variance--to the causes of psychological development is bound to result in a…
cDNA microarray analysis of esophageal cancer: discoveries and prospects.
Shimada, Yutaka; Sato, Fumiaki; Shimizu, Kazuharu; Tsujimoto, Gozoh; Tsukada, Kazuhiro
2009-07-01
Recent progress in molecular biology has revealed many genetic and epigenetic alterations that are involved in the development and progression of esophageal cancer. Microarray analysis has also revealed several genetic networks that are involved in esophageal cancer. However, clinical application of microarray techniques and use of microarray data have not yet occurred. In this review, we focus on the recent developments and problems with microarray analysis of esophageal cancer.
Fully automated analysis of multi-resolution four-channel micro-array genotyping data
NASA Astrophysics Data System (ADS)
Abbaspour, Mohsen; Abugharbieh, Rafeef; Podder, Mohua; Tebbutt, Scott J.
2006-03-01
We present a fully-automated and robust microarray image analysis system for handling multi-resolution images (down to 3-micron with sizes up to 80 MBs per channel). The system is developed to provide rapid and accurate data extraction for our recently developed microarray analysis and quality control tool (SNP Chart). Currently available commercial microarray image analysis applications are inefficient, due to the considerable user interaction typically required. Four-channel DNA microarray technology is a robust and accurate tool for determining genotypes of multiple genetic markers in individuals. It plays an important role in the state of the art trend where traditional medical treatments are to be replaced by personalized genetic medicine, i.e. individualized therapy based on the patient's genetic heritage. However, fast, robust, and precise image processing tools are required for the prospective practical use of microarray-based genetic testing for predicting disease susceptibilities and drug effects in clinical practice, which require a turn-around timeline compatible with clinical decision-making. In this paper we have developed a fully-automated image analysis platform for the rapid investigation of hundreds of genetic variations across multiple genes. Validation tests indicate very high accuracy levels for genotyping results. Our method achieves a significant reduction in analysis time, from several hours to just a few minutes, and is completely automated requiring no manual interaction or guidance.
Gareeva, A E; Zakirov, D F; Khusnutdinova, E K
2013-09-01
An analysis of the association of paranoid schizophrenia seeking with polymorphic variants of GRIN2B gene was performed in order to identify genetic risk factors of disease development and genetic markers of the response to therapy by neuroleptics in Russian and Tatar patients from Bashkortostan Republic (BB). In the course of the analysis, we revealed the following: 1) genetic markers of increased risk of developing paranoid schizophrenia in various ethnic groups, including, in Tatars, the GRIN2B* T/*Tgenotype (p = 0.003; OR = 2.33) and GRIN2B*T allele (p = 0.001; OR = 2.36), rs1805247; in Russians, the GRIN2B*T/*T genotype (p = 0.038; OR = 2.12) and GRIN2B* T allele (p = 0.028; OR = 2.03), rs1805247, genotype GRIN2B*A/*A (p = 0.042; OR = 2.12), rs1805476; 2) genetic markers of the reduced risk of developing paranoid schizophrenia; 3) genetic markers of therapy response and the risk of side effects development during neuroleptics (haloperidol) treatment in Bashkortostan. The significant interethnic diversity of genetic factors related to the risk of this disease development was noted.
Yang, Litao; Quan, Sheng; Zhang, Dabing
2017-01-01
Endogenous reference genes (ERG) and their derivate analytical methods are standard requirements for analysis of genetically modified organisms (GMOs). Development and validation of suitable ERGs is the primary step for establishing assays that monitoring the genetically modified (GM) contents in food/feed samples. Herein, we give a review of the ERGs currently used for GM wheat analysis, such as ACC1, PKABA1, ALMT1, and Waxy-D1, as well as their performances in GM wheat analysis. Also, we discussed one model for developing and validating one ideal RG for one plant species based on our previous research work.
Integrative Lifecourse and Genetic Analysis of Military Working Dogs
2014-12-01
Award Number: W81XWH-11-2-0226 TITLE: Integrative Lifecourse and Genetic Analysis of Military Working Dogs PRINCIPAL INVESTIGATOR: Kun Huang...Integrative Lifecourse and Genetic Analysis of Military Working Dogs 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-2-0226 5c. PROGRAM ELEMENT NUMBER...of the military working dog population. There are several critical aspects to meeting the aims of this proposal. 1) development of data driven
[Research progress of molecular genetic analysis in Schistosoma variation].
Zheng, Su-Yue; Li, Fei
2014-02-01
The development of molecular biology techniques makes important contributions to the researches of heritable variation of Schistosoma. In recent years, the molecular genetic analysis in the Schistosoma variation researches mainly includes the restriction fragment length polymorphism (RFLP), random amplified polymorphism technology (RAPD), microsatellite anchored PCR (SSR-PCR), and polymerase reaction single-strand conformation polymorphism (PCR-SSCP). This article reviews the research progress of molecular genetic analysis in Schistosoma variation in recent years.
Greenberg, David A.
2011-01-01
Computer simulation methods are under-used tools in genetic analysis because simulation approaches have been portrayed as inferior to analytic methods. Even when simulation is used, its advantages are not fully exploited. Here, I present SHIMSHON, our package of genetic simulation programs that have been developed, tested, used for research, and used to generated data for Genetic Analysis Workshops (GAW). These simulation programs, now web-accessible, can be used by anyone to answer questions about designing and analyzing genetic disease studies for locus identification. This work has three foci: (1) the historical context of SHIMSHON's development, suggesting why simulation has not been more widely used so far. (2) Advantages of simulation: computer simulation helps us to understand how genetic analysis methods work. It has advantages for understanding disease inheritance and methods for gene searches. Furthermore, simulation methods can be used to answer fundamental questions that either cannot be answered by analytical approaches or cannot even be defined until the problems are identified and studied, using simulation. (3) I argue that, because simulation was not accepted, there was a failure to grasp the meaning of some simulation-based studies of linkage. This may have contributed to perceived weaknesses in linkage analysis; weaknesses that did not, in fact, exist. PMID:22189467
USDA-ARS?s Scientific Manuscript database
In recent years SSR markers have been used widely for the genetic analysis. The objective of present research was to use SSR markers to develop DNA-based genetic identification and analyze genetic relationship of sugarcane cultivars grown in Pakistan either resistant or susceptible to red rot. Twent...
Hadfield, J D; Nakagawa, S
2010-03-01
Although many of the statistical techniques used in comparative biology were originally developed in quantitative genetics, subsequent development of comparative techniques has progressed in relative isolation. Consequently, many of the new and planned developments in comparative analysis already have well-tested solutions in quantitative genetics. In this paper, we take three recent publications that develop phylogenetic meta-analysis, either implicitly or explicitly, and show how they can be considered as quantitative genetic models. We highlight some of the difficulties with the proposed solutions, and demonstrate that standard quantitative genetic theory and software offer solutions. We also show how results from Bayesian quantitative genetics can be used to create efficient Markov chain Monte Carlo algorithms for phylogenetic mixed models, thereby extending their generality to non-Gaussian data. Of particular utility is the development of multinomial models for analysing the evolution of discrete traits, and the development of multi-trait models in which traits can follow different distributions. Meta-analyses often include a nonrandom collection of species for which the full phylogenetic tree has only been partly resolved. Using missing data theory, we show how the presented models can be used to correct for nonrandom sampling and show how taxonomies and phylogenies can be combined to give a flexible framework with which to model dependence.
The historical role of species from the Solanaceae plant family in genetic research.
Gebhardt, Christiane
2016-12-01
This article evaluates the main contributions of tomato, tobacco, petunia, potato, pepper and eggplant to classical and molecular plant genetics and genomics since the beginning of the twentieth century. Species from the Solanaceae family form integral parts of human civilizations as food sources and drugs since thousands of years, and, more recently, as ornamentals. Some Solanaceous species were subjects of classical and molecular genetic research over the last 100 years. The tomato was one of the principal models in twentieth century classical genetics and a pacemaker of genome analysis in plants including molecular linkage maps, positional cloning of disease resistance genes and quantitative trait loci (QTL). Besides that, tomato is the model for the genetics of fruit development and composition. Tobacco was the major model used to establish the principals and methods of plant somatic cell genetics including in vitro propagation of cells and tissues, totipotency of somatic cells, doubled haploid production and genetic transformation. Petunia was a model for elucidating the biochemical and genetic basis of flower color and development. The cultivated potato is the economically most important Solanaceous plant and ranks third after wheat and rice as one of the world's great food crops. Potato is the model for studying the genetic basis of tuber development. Molecular genetics and genomics of potato, in particular association genetics, made valuable contributions to the genetic dissection of complex agronomic traits and the development of diagnostic markers for breeding applications. Pepper and eggplant are horticultural crops of worldwide relevance. Genetic and genomic research in pepper and eggplant mostly followed the tomato model. Comparative genome analysis of tomato, potato, pepper and eggplant contributed to the understanding of plant genome evolution.
[Progress in genetic research of human height].
Chen, Kaixu; Wang, Weilan; Zhang, Fuchun; Zheng, Xiufen
2015-08-01
It is well known that both environmental and genetic factors contribute to adult height variation in general population. However, heritability studies have shown that the variation in height is more affected by genetic factors. Height is a typical polygenic trait which has been studied by traditional linkage analysis and association analysis to identify common DNA sequence variation associated with height, but progress has been slow. More recently, with the development of genotyping and DNA sequencing technologies, tremendous achievements have been made in genetic research of human height. Hundreds of single nucleotide polymorphisms (SNPs) associated with human height have been identified and validated with the application of genome-wide association studies (GWAS) methodology, which deepens our understanding of the genetics of human growth and development and also provides theoretic basis and reference for studying other complex human traits. In this review, we summarize recent progress in genetic research of human height and discuss problems and prospects in this research area which may provide some insights into future genetic studies of human height.
Effectiveness of students worksheet based on mastery learning in genetics subject
NASA Astrophysics Data System (ADS)
Megahati, R. R. P.; Yanti, F.; Susanti, D.
2018-05-01
Genetics is one of the subjects that must be followed by students in Biology education department. Generally, students do not like the genetics subject because of genetics concepts difficult to understand and the unavailability of a practical students worksheet. Consequently, the complete learning process (mastery learning) is not fulfilled and low students learning outcomes. The aim of this study develops student worksheet based on mastery learning that practical in genetics subject. This research is a research and development using 4-D models. The data analysis technique used is the descriptive analysis that describes the results of the practicalities of students worksheets based on mastery learning by students and lecturer of the genetic subject. The result is the student worksheet based on mastery learning on genetics subject are to the criteria of 80,33% and 80,14%, which means that the students worksheet practical used by lecturer and students. Student’s worksheet based on mastery learning effective because it can increase the activity and student learning outcomes.
Development of forward genetics in Toxoplasma gondii
Sibley, L. David
2009-01-01
The development of forward genetics as a functional system in Toxoplasma gondii spanned more than three decades from the mid-1970s until now. The initial demonstration of experimental genetics relied on chemically-induced drug resistant mutants that were crossed by co-infecting cats, collecting oocysts, sporulating and hatching progeny in vitro. To capitalize on this, genetic markers were employed to develop linkage maps by tracking inheritance through experimental crosses. In all, three generations of genetic maps were developed to define the chromosomes, estimate recombination rates, and provide a system for linkage analysis. Ultimately this genetic map would become the foundation for the assembly of the T. gondii genome, which was derived from whole genome shotgun sequencing, into a chromosome-centric view. Finally, application of forward genetics to multigenic biological traits showed the potential to map and identify specific genes that control complex phenotypes including virulence. PMID:19254720
[Genetic tests in oncology: from identification of high risk groups to therapy].
Sgambato, Alessandro; Ripani, Maurizio; Romano Spica, Vincenzo
2010-01-01
The development of genetic epidemiology in oncology has made possible more frequent analysis of high risk groups, allowing the development of promising susceptibility indicators. The main public health implications include screening and new perspectives for pharmacogenetics and nutrigenomics. The study of genetic variants allows the evaluation of individual risk of developing a disease and has important implications in primary and secondary prevention programs. The analysis of somatic mutations present in tumour cells may contribute to selecting the optimal treatment on an individual basis and to reducing the occurrence of adverse effects of chemotherapy. The authors give a summary of the state of the art of this field and analyze the potential applications of genetic tests in oncology, from identification of high risk groups to defining individualized therapies with particular emphasis on implications for prevention.
Briley, Daniel A; Tucker-Drob, Elliot M
2013-09-01
Genes account for increasing proportions of variation in cognitive ability across development, but the mechanisms underlying these increases remain unclear. We conducted a meta-analysis of longitudinal behavioral genetic studies spanning infancy to adolescence. We identified relevant data from 16 articles with 11 unique samples containing a total of 11,500 twin and sibling pairs who were all reared together and measured at least twice between the ages of 6 months and 18 years. Longitudinal behavioral genetic models were used to estimate the extent to which early genetic influences on cognition were amplified over time and the extent to which innovative genetic influences arose with time. Results indicated that in early childhood, innovative genetic influences predominate but that innovation quickly diminishes, and amplified influences account for increasing heritability following age 8 years.
Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Li, Wesley
2009-01-01
Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) to automate analysis and design process by leveraging existing tools to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic, and hypersonic aircraft. This is a promising technology, but faces many challenges in large-scale, real-world application. This report describes current approaches, recent results, and challenges for multidisciplinary design, analysis, and optimization as demonstrated by experience with the Ikhana fire pod design.!
Baker, Nicholas E.; Li, Ke; Quiquand, Manon; Ruggiero, Robert; Wang, Lan-Hsin
2014-01-01
The eye has been one of the most intensively studied organs in Drosophila. The wealth of knowledge about its development, as well as the reagents that have been developed, and the fact that the eye is dispensable for survival, also make the eye suitable for genetic interaction studies and genetic screens. This chapter provides a brief overview of the methods developed to image and probe eye development at multiple developmental stages, including live imaging, immunostaining of fixed tissues, in situ hybridizations, and scanning electron microscopy and color photography of adult eyes. Also summarized are genetic approaches that can be performed in the eye, including mosaic analysis and conditional mutation, gene misexpression and knockdown, and forward genetic and modifier screens. PMID:24784530
Lencina, K H; Konzen, E R; Tsai, S M; Bisognin, D A
2016-12-19
Apuleia leiocarpa (Vogel) J.F. MacBride is a hardwood species native to South America, which is at serious risk of extinction. Therefore, it is of prime importance to examine the genetic diversity of this species, information required for developing conservation, sustainable management, and breeding strategies. Although scarcely used in recent years, random amplified polymorphic DNA markers are useful resources for the analysis of genetic diversity and structure of tree species. This study represents the first genetic analysis based on DNA markers in A. leiocarpa that aimed to investigate the levels of polymorphism and to select markers for the precise characterization of its genetic structure. We adapted the original DNA extraction protocol based on cetyltrimethyl ammonium bromide, and describe a simple procedure that can be used to obtain high-quality samples from leaf tissues of this tree. Eighteen primers were selected, revealing 92 bands, from which 75 were polymorphic and 61 were sufficient to represent the overall genetic structure of the population without compromising the precision of the analysis. Some fragments were conserved among individuals, which can be sequenced and used to analyze nucleotide diversity parameters through a wider set of A. leiocarpa individuals and populations. The individuals were separated into 11 distinct groups with variable levels of genetic diversity, which is important for selecting desirable genotypes and for the development of a conservation and sustainable management program. Our results are of prime importance for further investigations concerning the genetic characterization of this important, but vulnerable species.
Genetic polymorphisms in the ESR1 gene and cerebral infarction risk: a meta-analysis.
Gao, Hong-Hua; Gao, Lian-Bo; Wen, Jia-Mei
2014-09-01
A number of studies have documented that estrogen receptor α (ESR1) may play an important role in the development and progression of cerebral infarction, but many existing studies have yielded inconclusive results. This meta-analysis was performed to evaluate the relationships between ESR1 genetic polymorphisms and cerebral infarction risk. The PubMed, CISCOM, CINAHL, Web of Science, Google Scholar, EBSCO, Cochrane Library, and CBM databases were searched for relevant articles published before October 1, 2013, without any language restrictions. Meta-analysis was conducted using the STATA 12.0 software. Seven case-control studies were included with a total of 1471 patients with cerebral infarction and 4688 healthy control subjects. Two common single-nucleotide polymorphisms (SNPs) in the ESR1 gene (rs2234693 T>C and rs9340799 A>G) were assessed. Our meta-analysis results revealed that ESR1 genetic polymorphisms might increase the risk of cerebral infarction. Subgroup analysis by SNP type indicated that both rs2234693 and rs9340799 polymorphisms in the ESR1 gene were strongly associated with an increased risk of cerebral infarction. Further subgroup analysis by ethnicity showed significant associations between ESR1 genetic polymorphisms and increased risk of cerebral infarction among both Asians and Caucasians. In the stratified subgroup analysis by gender, the results suggested that ESR1 genetic polymorphisms were associated with an increased risk of cerebral infarction in the female population. However, there were no statistically significant associations between ESR1 genetic polymorphisms and cerebral infarction risk in the male population. Meta-regression analyses also confirmed that gender might be a main source of heterogeneity. Our findings indicate that ESR1 genetic polymorphisms may contribute to the development of cerebral infarction, especially in the female population.
DEVELOPMENT OF A DNA ARCHIVE FOR GENETIC MONITORING OF FISH POPULATIONS
Analysis of intraspecific genetic diversity provides a potentially powerful tool to estimate the impacts of environmental stressors on populations. Genetic responses of populations to novel stressors include dramatic shifts in genotype frequencies at loci under selection (i.e. ad...
SimHap GUI: an intuitive graphical user interface for genetic association analysis.
Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J
2008-12-25
Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis.
Integrative Lifecourse and Genetic Analysis of Military Working Dogs
2015-12-01
TITLE AND SUBTITLE Integrative Lifecourse and Genetic Analysis of Military Working Dogs 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-2-0225 5c...developments for realizing the potential of canine models”, with subsection “Epidemiology, longitudinal cohorts, tissue repositories and integrative
Genetics and epidemiology, congenital anomalies and cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, J.M.
1997-03-01
Many of the basic statistical methods used in epidemiology - regression, analysis of variance, and estimation of relative risk, for example - originally were developed for the genetic analysis of biometric data. The familiarity that many geneticists have with this methodology has helped geneticists to understand and accept genetic epidemiology as a scientific discipline. It worth noting, however, that most of the work in genetic epidemiology during the past decade has been devoted to linkage and other family studies, rather than to population-based investigations of the type that characterize much of mainstream epidemiology. 30 refs., 2 tabs.
Genetic analysis of circulating tumor cells in pancreatic cancer patients: A pilot study.
Görner, Karin; Bachmann, Jeannine; Holzhauer, Claudia; Kirchner, Roland; Raba, Katharina; Fischer, Johannes C; Martignoni, Marc E; Schiemann, Matthias; Alunni-Fabbroni, Marianna
2015-07-01
Pancreatic cancer is one of the most aggressive malignant tumors, mainly due to an aggressive metastasis spreading. In recent years, circulating tumor cells became associated to tumor metastasis. Little is known about their expression profiles. The aim of this study was to develop a complete workflow making it possible to isolate circulating tumor cells from patients with pancreatic cancer and their genetic characterization. We show that the proposed workflow offers a technical sensitivity and specificity high enough to detect and isolate single tumor cells. Moreover our approach makes feasible to genetically characterize single CTCs. Our work discloses a complete workflow to detect, count and genetically analyze individual CTCs isolated from blood samples. This method has a central impact on the early detection of metastasis development. The combination of cell quantification and genetic analysis provides the clinicians with a powerful tool not available so far. Copyright © 2015. Published by Elsevier Inc.
Mining disease fingerprints from within genetic pathways.
Nabhan, Ahmed Ragab; Sarkar, Indra Neil
2012-01-01
Mining biological networks can be an effective means to uncover system level knowledge out of micro level associations, such as encapsulated in genetic pathways. Analysis of human disease genetic pathways can lead to the identification of major mechanisms that may underlie disorders at an abstract functional level. The focus of this study was to develop an approach for structural pattern analysis and classification of genetic pathways of diseases. A probabilistic model was developed to capture characteristic components ('fingerprints') of functionally annotated pathways. A probability estimation procedure of this model searched for fingerprints in each disease pathway while improving probability estimates of model parameters. The approach was evaluated on data from the Kyoto Encyclopedia of Genes and Genomes (consisting of 56 pathways across seven disease categories). Based on the achieved average classification accuracy of up to ~77%, the findings suggest that these fingerprints may be used for classification and discovery of genetic pathways.
Mining Disease Fingerprints From Within Genetic Pathways
Nabhan, Ahmed Ragab; Sarkar, Indra Neil
2012-01-01
Mining biological networks can be an effective means to uncover system level knowledge out of micro level associations, such as encapsulated in genetic pathways. Analysis of human disease genetic pathways can lead to the identification of major mechanisms that may underlie disorders at an abstract functional level. The focus of this study was to develop an approach for structural pattern analysis and classification of genetic pathways of diseases. A probabilistic model was developed to capture characteristic components (‘fingerprints’) of functionally annotated pathways. A probability estimation procedure of this model searched for fingerprints in each disease pathway while improving probability estimates of model parameters. The approach was evaluated on data from the Kyoto Encyclopedia of Genes and Genomes (consisting of 56 pathways across seven disease categories). Based on the achieved average classification accuracy of up to ∼77%, the findings suggest that these fingerprints may be used for classification and discovery of genetic pathways. PMID:23304411
Mapping the Schizophrenia Genes by Neuroimaging: The Opportunities and the Challenges
2018-01-01
Schizophrenia (SZ) is a heritable brain disease originating from a complex interaction of genetic and environmental factors. The genes underpinning the neurobiology of SZ are largely unknown but recent data suggest strong evidence for genetic variations, such as single nucleotide polymorphisms, making the brain vulnerable to the risk of SZ. Structural and functional brain mapping of these genetic variations are essential for the development of agents and tools for better diagnosis, treatment and prevention of SZ. Addressing this, neuroimaging methods in combination with genetic analysis have been increasingly used for almost 20 years. So-called imaging genetics, the opportunities of this approach along with its limitations for SZ research will be outlined in this invited paper. While the problems such as reproducibility, genetic effect size, specificity and sensitivity exist, opportunities such as multivariate analysis, development of multisite consortia for large-scale data collection, emergence of non-candidate gene (hypothesis-free) approach of neuroimaging genetics are likely to contribute to a rapid progress for gene discovery besides to gene validation studies that are related to SZ. PMID:29324666
A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans
Shapiro, Rebecca S.; Chavez, Alejandro; Porter, Caroline B. M.; Hamblin, Meagan; Kaas, Christian S.; DiCarlo, James E.; Zeng, Guisheng; Xu, Xiaoli; Revtovich, Alexey V.; Kirienko, Natalia V.; Wang, Yue; Church, George M.; Collins, James J.
2018-01-01
Candida albicans is the leading cause of fungal infections; yet, complex genetic interaction analysis remains cumbersome in this diploid pathogen. Here, we developed a CRISPR-Cas9-based ‘gene drive array’ (GDA) platform to facilitate efficient genetic analysis in C. albicans. In our system, a modified DNA donor molecule acts as a selfish genetic element, replaces the targeted site, and propagates to replace additional wild-type loci. Using mating-competent C. albicans haploids, each carrying a different gene drive disabling a gene of interest, we are able to create diploid strains that are homozygous double-deletion mutants. We generate double-gene deletion libraries to demonstrate this technology, targeting antifungal efflux and biofilm adhesion factors. We screen these libraries to identify virulence regulators and determine how genetic networks shift under diverse conditions. This platform transforms our ability to perform genetic interaction analysis in C. albicans and is readily extended to other fungal pathogens. PMID:29062088
Kohzaki, Hidetsugu
2014-01-01
Since the completion of the Human Genome Project, technology has developed markedly in fields such as medical genetics and genetic counseling in the medical arena. In particular, this technology has advanced the discovery of and ways of understanding various genes responsible for genetic diseases, and genetic polymorphisms thought to be associated with disease. Some have been implicated as factors in common lifestyle diseases and have increased the significance of genetic testing. In Japan, doctors and other health professionals, such as nurse and medical technologists have been engaged in genetic testing and genetic disease treatment. Chromosomal and gene aberrations were detected mainly by medical technologists. However, due to the nature of medical technologists who have to provide various clinical tests, such as blood test, pre-medical technology students are required to cover tremendous knowledge of different academic fields to pass the national exam. Therefore, the time allowed for such students to study chromosomal and gene analysis is quite limited. Moreover, they are forced to enter the medical setting without receiving sufficient training. Among them, only few medical technologists specialize in chromosomal and gene analysis. However, with the advancement of clinical genetics and development of chromosomal and gene analysis, conducting clinical practice is becoming more and more difficult for medical technologists who just passed the national exam. Also, doctors and other health professionals have not been able to keep up with service demands either. This paper attempts to address knowledge and skills gaps (especially clinical genetics, English, and ICT literacy) of medical technologists and we propose educational methods to prepare medical genetics professionals in Japan to meet these gaps.
Commercialising genetically engineered animal biomedical products.
Sullivan, Eddie J; Pommer, Jerry; Robl, James M
2008-01-01
Research over the past two decades has increased the quality and quantity of tools available to produce genetically engineered animals. The number of potentially viable biomedical products from genetically engineered animals is increasing. However, moving from cutting-edge research to development and commercialisation of a biomedical product that is useful and wanted by the public has significant challenges. Even early stage development of genetically engineered animal applications requires consideration of many steps, including quality assurance and quality control, risk management, gap analysis, founder animal establishment, cell banking, sourcing of animals and animal-derived material, animal facilities, product collection facilities and processing facilities. These steps are complicated and expensive. Biomedical applications of genetically engineered animals have had some recent successes and many applications are well into development. As researchers consider applications for their findings, having a realistic understanding of the steps involved in the development and commercialisation of a product, produced in genetically engineered animals, is useful in determining the risk of genetic modification to the animal nu. the potential public benefit of the application.
Variable-number-of-tandem-repeats analysis of genetic diversity in Pasteuria ramosa.
Mouton, L; Ebert, D
2008-05-01
Variable-number-of-tandem-repeats (VNTR) markers are increasingly being used in population genetic studies of bacteria. They were recently developed for Pasteuria ramosa, an endobacterium that infects Daphnia species. In the present study, we genotyped P. ramosa in 18 infected hosts from the United Kingdom, Belgium, and two lakes in the United States using seven VNTR markers. Two Daphnia species were collected: D. magna and D. dentifera. Six loci showed length polymorphism, with as many as five alleles identified for a single locus. Similarity coefficient calculations showed that the extent of genetic variation between pairs of isolates within populations differed according to the population, but it was always less than the genetic distances among populations. Analysis of the genetic distances performed using principal component analysis revealed strong clustering by location of origin, but not by host Daphnia species. Our study demonstrated that the VNTR markers available for P. ramosa are informative in revealing genetic differences within and among populations and may therefore become an important tool for providing detailed analysis of population genetics and epidemiology.
Vendrell, Xavier; Bautista-Llácer, Rosa
2012-12-01
The genetic diagnosis and screening of preimplantation embryos generated by assisted reproduction technology has been consolidated in the prenatal care framework. The rapid evolution of DNA technologies is tending to molecular approaches. Our intention is to present a detailed methodological view, showing different diagnostic strategies based on molecular techniques that are currently applied in preimplantation genetic diagnosis. The amount of DNA from one single, or a few cells, obtained by embryo biopsy is a limiting factor for the molecular analysis. In this sense, genetic laboratories have developed molecular protocols considering this restrictive condition. Nevertheless, the development of whole-genome amplification methods has allowed preimplantation genetic diagnosis for two or more indications simultaneously, like the selection of histocompatible embryos plus detection of monogenic diseases or aneuploidies. Moreover, molecular techniques have permitted preimplantation genetic screening to progress, by implementing microarray-based comparative genome hybridization. Finally, a future view of the embryo-genetics field based on molecular advances is proposed. The normalization, cost-effectiveness analysis, and new technological tools are the next topics for preimplantation genetic diagnosis and screening. Concomitantly, these additions to assisted reproduction technologies could have a positive effect on the schedules of preimplantation studies.
Sim, Sheina B.; Geib, Scott M.
2017-01-01
Genetic sexing strains (GSS) used in sterile insect technique (SIT) programs are textbook examples of how classical Mendelian genetics can be directly implemented in the management of agricultural insect pests. Although the foundation of traditionally developed GSS are single locus, autosomal recessive traits, their genetic basis are largely unknown. With the advent of modern genomic techniques, the genetic basis of sexing traits in GSS can now be further investigated. This study is the first of its kind to integrate traditional genetic techniques with emerging genomics to characterize a GSS using the tephritid fruit fly pest Bactrocera cucurbitae as a model. These techniques include whole-genome sequencing, the development of a mapping population and linkage map, and quantitative trait analysis. The experiment designed to map the genetic sexing trait in B. cucurbitae, white pupae (wp), also enabled the generation of a chromosome-scale genome assembly by integrating the linkage map with the assembly. Quantitative trait loci analysis revealed SNP loci near position 42 MB on chromosome 3 to be tightly linked to wp. Gene annotation and synteny analysis show a near perfect relationship between chromosomes in B. cucurbitae and Muller elements A–E in Drosophila melanogaster. This chromosome-scale genome assembly is complete, has high contiguity, was generated using a minimal input DNA, and will be used to further characterize the genetic mechanisms underlying wp. Knowledge of the genetic basis of genetic sexing traits can be used to improve SIT in this species and expand it to other economically important Diptera. PMID:28450369
Green, J W M; Snoek, L B; Kammenga, J E; Harvey, S C
2013-10-01
In the nematode Caenorhabditis elegans, the appropriate induction of dauer larvae development within growing populations is likely to be a primary determinant of genotypic fitness. The underlying genetic architecture of natural genetic variation in dauer formation has, however, not been thoroughly investigated. Here, we report extensive natural genetic variation in dauer larvae development within growing populations across multiple wild isolates. Moreover, bin mapping of introgression lines (ILs) derived from the genetically divergent isolates N2 and CB4856 reveals 10 quantitative trait loci (QTLs) affecting dauer formation. Comparison of individual ILs to N2 identifies an additional eight QTLs, and sequential IL analysis reveals six more QTLs. Our results also show that a behavioural, laboratory-derived, mutation controlled by the neuropeptide Y receptor homolog npr-1 can affect dauer larvae development in growing populations. These findings illustrate the complex genetic architecture of variation in dauer larvae formation in C. elegans and may help to understand how the control of variation in dauer larvae development has evolved.
Multivariate Methods for Meta-Analysis of Genetic Association Studies.
Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G
2018-01-01
Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.
45 CFR 304.20 - Availability and rate of Federal financial participation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... development of evidence including the use of the polygraph and genetic tests; (C) Pre-trial discovery; (ii... regulations having the effect of law; (iii) Identifying competent laboratories that perform genetic tests as... transporting blood and other samples of genetic material, repeated testing when necessary, analysis of test...
45 CFR 304.20 - Availability and rate of Federal financial participation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... development of evidence including the use of the polygraph and genetic tests; (C) Pre-trial discovery; (ii... regulations having the effect of law; (iii) Identifying competent laboratories that perform genetic tests as... transporting blood and other samples of genetic material, repeated testing when necessary, analysis of test...
45 CFR 304.20 - Availability and rate of Federal financial participation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... development of evidence including the use of the polygraph and genetic tests; (C) Pre-trial discovery; (ii... regulations having the effect of law; (iii) Identifying competent laboratories that perform genetic tests as... transporting blood and other samples of genetic material, repeated testing when necessary, analysis of test...
SimHap GUI: An intuitive graphical user interface for genetic association analysis
Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J
2008-01-01
Background Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. Results We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. Conclusion SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis. PMID:19109877
Multivariate Genetic Analysis of Learning and Early Reading Development
ERIC Educational Resources Information Center
Byrne, Brian; Wadsworth, Sally; Boehme, Kristi; Talk, Andrew C.; Coventry, William L.; Olson, Richard K.; Samuelsson, Stefan; Corley, Robin
2013-01-01
The genetic factor structure of a range of learning measures was explored in twin children, recruited in preschool and followed to Grade 2 ("N"?=?2,084). Measures of orthographic learning and word reading were included in the analyses to determine how these patterned with the learning processes. An exploratory factor analysis of the…
Barboza, Karina; Beretta, Vanesa; Kozub, Perla C; Salinas, Cecilia; Morgenfeld, Mauro M; Galmarini, Claudio R; Cavagnaro, Pablo F
2018-04-28
Allium vegetables, such as garlic and onion, have understudied genomes and limited molecular resources, hindering advances in genetic research and breeding of these species. In this study, we characterized and compared the simple sequence repeats (SSR) landscape in the transcriptomes of garlic and related Allium (A. cepa, A. fistulosum, and A. tuberosum) and non-Allium monocot species. In addition, 110 SSR markers were developed from garlic ESTs, and they were characterized-along with 112 previously developed SSRs-at various levels, including transferability across Alliaceae species, and their usefulness for genetic diversity analysis. Among the Allium species analyzed, garlic ESTs had the highest overall SSR density, the lowest frequency of trinucleotides, and the highest of di- and tetranucleotides. When compared to more distantly related monocots, outside the Asparagales order, it was evident that ESTs of Allium species shared major commonalities with regards to SSR density, frequency distribution, sequence motifs, and GC content. A significant fraction of the SSR markers were successfully transferred across Allium species, including crops for which no SSR markers have been developed yet, such as leek, shallot, chives, and elephant garlic. Diversity analysis of garlic cultivars with selected SSRs revealed 36 alleles, with 2-5 alleles/locus, and PIC = 0.38. Cluster analysis grouped the accessions according to their flowering behavior, botanical variety, and ecophysiological characteristics. Results from this study contribute to the characterization of Allium transcriptomes. The new SSR markers developed, along with the data from the polymorphism and transferability analyses, will aid in assisting genetic research and breeding in garlic and other Allium.
Goethe and the ABC model of flower development.
Coen, E
2001-06-01
About 10 years ago, the ABC model for the genetic control of flower development was proposed. This model was initially based on the analysis of mutant flowers but has subsequently been confirmed by molecular analysis. This paper describes the 200-year history behind this model, from the late 18th century when Goethe arrived at his idea of plant metamorphosis, to the genetic studies on flower mutants carried out on Arabidopsis and Antirrhinum in the late 20th century.
Kim, Jin-Hee; Chung, Il Kyung; Kim, Kyung-Min
2017-01-01
The Sweet potato, Ipomoea batatas (L.) Lam, is difficult to study in genetics and genomics because it is a hexaploid. The sweet potato study not have been performed domestically or internationally. In this study was performed to construct genetic map and quantitative trait loci (QTL) analysis. A total of 245 EST-SSR markers were developed, and the map was constructed by using 210 of those markers. The total map length was 1508.1 cM, and the mean distance between markers was 7.2 cM. Fifteen characteristics were investigated for QTLs analysis. According to those, the Four QTLs were identified, and The LOD score was 3.0. Further studies need to develop molecular markers in terms of EST-SSR markers for doing to be capable of efficient breeding. The genetic map created here using EST-SSR markers will facilitate planned breeding of sweet potato cultivars with various desirable traits.
Coutelle, C; Speer, A; Grade, K; Rosenthal, A; Hunger, H D
1989-01-01
The introduction of molecular human genetics has become a paradigma for the application of genetic engineering in medicine. The main principles of this technology are the isolation of molecular probes, their application in hybridization reactions, specific gene-amplification by the polymerase chain reaction, and DNA sequencing reactions. These methods are used for the analysis of monogenic diseases by linkage studies and the elucidation of the molecular defect causing these conditions, respectively. They are also the basis for genomic diagnosis of monogenic diseases, introduced into the health care system of the GDR by a national project on Duchenne/Becker muscular dystrophy, Cystic Fibrosis and Phenylketonuria. The rapid development of basic research on the molecular analysis of the human genome and genomic diagnosis indicates, that human molecular genetics is becoming a decisive basic discipline of modern medicine.
Dutheil, Julien; Gaillard, Sylvain; Bazin, Eric; Glémin, Sylvain; Ranwez, Vincent; Galtier, Nicolas; Belkhir, Khalid
2006-04-04
A large number of bioinformatics applications in the fields of bio-sequence analysis, molecular evolution and population genetics typically share input/output methods, data storage requirements and data analysis algorithms. Such common features may be conveniently bundled into re-usable libraries, which enable the rapid development of new methods and robust applications. We present Bio++, a set of Object Oriented libraries written in C++. Available components include classes for data storage and handling (nucleotide/amino-acid/codon sequences, trees, distance matrices, population genetics datasets), various input/output formats, basic sequence manipulation (concatenation, transcription, translation, etc.), phylogenetic analysis (maximum parsimony, markov models, distance methods, likelihood computation and maximization), population genetics/genomics (diversity statistics, neutrality tests, various multi-locus analyses) and various algorithms for numerical calculus. Implementation of methods aims at being both efficient and user-friendly. A special concern was given to the library design to enable easy extension and new methods development. We defined a general hierarchy of classes that allow the developer to implement its own algorithms while remaining compatible with the rest of the libraries. Bio++ source code is distributed free of charge under the CeCILL general public licence from its website http://kimura.univ-montp2.fr/BioPP.
A survey of application: genomics and genetic programming, a new frontier.
Khan, Mohammad Wahab; Alam, Mansaf
2012-08-01
The aim of this paper is to provide an introduction to the rapidly developing field of genetic programming (GP). Particular emphasis is placed on the application of GP to genomics. First, the basic methodology of GP is introduced. This is followed by a review of applications in the areas of gene network inference, gene expression data analysis, SNP analysis, epistasis analysis and gene annotation. Finally this paper concluded by suggesting potential avenues of possible future research on genetic programming, opportunities to extend the technique, and areas for possible practical applications. Copyright © 2012 Elsevier Inc. All rights reserved.
Costello, Tracy J; Falk, Catherine T; Ye, Kenny Q
2003-01-01
The Framingham Heart Study data, as well as a related simulated data set, were generously provided to the participants of the Genetic Analysis Workshop 13 in order that newly developed and emerging statistical methodologies could be tested on that well-characterized data set. The impetus driving the development of novel methods is to elucidate the contributions of genes, environment, and interactions between and among them, as well as to allow comparison between and validation of methods. The seven papers that comprise this group used data-mining methodologies (tree-based methods, neural networks, discriminant analysis, and Bayesian variable selection) in an attempt to identify the underlying genetics of cardiovascular disease and related traits in the presence of environmental and genetic covariates. Data-mining strategies are gaining popularity because they are extremely flexible and may have greater efficiency and potential in identifying the factors involved in complex disorders. While the methods grouped together here constitute a diverse collection, some papers asked similar questions with very different methods, while others used the same underlying methodology to ask very different questions. This paper briefly describes the data-mining methodologies applied to the Genetic Analysis Workshop 13 data sets and the results of those investigations. Copyright 2003 Wiley-Liss, Inc.
Development of Genomic Simple Sequence Repeats (SSR) by Enrichment Libraries in Date Palm.
Al-Faifi, Sulieman A; Migdadi, Hussein M; Algamdi, Salem S; Khan, Mohammad Altaf; Al-Obeed, Rashid S; Ammar, Megahed H; Jakse, Jerenj
2017-01-01
Development of highly informative markers such as simple sequence repeats (SSR) for cultivar identification and germplasm characterization and management is essential for date palms genetic studies. The present study documents the development of SSR markers and assesses genetic relationships of commonly grown date palm (Phoenix dactylifera L.) cultivars in different geographical regions of Saudi Arabia. A total of 93 novel simple sequence repeat (SSR) markers were screened for their ability to detect polymorphism in date palm. Around 71% of genomic SSRs are dinucleotide, 25% trinucleotide, 3% tetranucleotide, and 1% pentanucleotide motives and show 100% polymorphism. The Unweighted Pair Group Method with Arithmetic Mean (UPGMA) cluster analysis illustrates that cultivars trend to group according to their class of maturity, region of cultivation, and fruit color. Analysis of molecular variations (AMOVA) reveals genetic variation among and within cultivars of 27% and 73%, respectively, according to the geographical distribution of the cultivars. Developed microsatellite markers are of additional value to date palm characterization, tools which can be used by researchers in population genetics, cultivar identification, as well as genetic resource exploration and management. The cultivars tested exhibited a significant amount of genetic diversity and could be suitable for successful breeding programs. Genomic sequences generated from this study are available at the National Center for Biotechnology Information (NCBI), Sequence Read Archive (Accession numbers. LIBGSS_039019).
From Genetics to Genomics: A Short Introduction for Pediatric Neurologists.
Neubauer, Bernd A; Lemke, Johannes R
2016-01-01
It is estimated that in humans approximately 50% of all 22500 genes are needed for the development and maintenance of the nervous system. The introduction of high-throughput technology in genetic analysis has therefore major implications, not only for the investigation of specific disease entities but also for the diagnostic workup of single individuals with neurologic disorders of genetic origin. A short primer for clinicians is presented, addressing aspects of current developments in medical genomics. Significant findings of the last years are exemplified in an educational manner to provide a basic understanding of disease mechanisms that were unraveled by recent genomic analysis. Georg Thieme Verlag KG Stuttgart · New York.
Predicting age-age genetic correlations in tree-breeding programs: a case study of Pinus taeda L.
D.P. Gwaze; F.E. Bridgwater; T.D. Byram; J.A. Woolliams; C.G. Williams
2000-01-01
A meta-analysis of 520 parents and 51,439 individuals was used to develop two equations for predicting age-age genetic correlations in Pinus taeda L. Genetic and phenotypic family mean correlations and heritabilities were estimated for ages ranging from 2 to 25 years on 31...
Molecular Analysis of Protein Assembly in Muscle Development.
ERIC Educational Resources Information Center
Epstein, Henry F.; Fischman, Donald A.
1991-01-01
Advances in the genetics and cell biology of muscle development are discussed. In-vitro analysis of the renaturation, polymerization, and three-dimensional structure of the purified proteins involved is described. (CW)
Gemenetzi, M; Yang, Y; Lotery, A J
2012-01-01
Glaucoma is a common, complex, heterogenous disease and it constitutes the major cause of irreversible blindness worldwide. Primary open-angle glaucoma (POAG) is the most common type of glaucoma in all populations. Most of the molecular mechanisms leading to POAG development are still unknown. Gene mutations in various populations have been identified by genetic studies and a genetic basis for glaucoma pathogenesis has been established. Linkage analysis and association studies are genetic approaches in the investigation of the genetic basis of POAG. Genome-wide association studies (GWAS) are more powerful compared with linkage analysis in discovering genes of small effect that might contribute to the development of the disease. POAG links to at least 20 genetic loci, but only 2 genes identified in these loci, myocilin and optineurin, are considered as well-established glaucoma-causing genes, whereas the role of other loci, genes, and variants implicated in the development of POAG remains controversial. Gene mutations associated with POAG result in retinal ganglion cell death, which is the common outcome of pathogenetic mechanisms in glaucoma. In future, if the sensitivity and specificity of genotyping increases, it may be possible to screen individuals routinely for disease susceptibility. This review is an update on the latest progress of genetic studies associated with POAG. It emphasizes the correlation of recent achievements in genetics with glaucoma pathophysiology, glaucoma treatment perspectives, and the possibility of future prevention of irreversible visual loss caused by the disease. PMID:22173078
USDA-ARS?s Scientific Manuscript database
In recent years SSR markers have been used widely for genetic analysis. The objective of this study was to use an SSR-based marker system to develop the molecular fingerprints and analyze the genetic relationship of sugarcane cultivars grown in Pakistan. Twenty-one highly polymorphic SSR markers wer...
Web-Based Analysis for Student-Generated Complex Genetic Profiles
ERIC Educational Resources Information Center
Kass, David H.; LaRoe, Robert
2007-01-01
A simple, rapid method for generating complex genetic profiles using Alu-based markers was recently developed for students primarily at the undergraduate level to learn more about forensics and paternity analysis. On the basis of the Cold Spring Harbor Allele Server, which provides an excellent tool for analyzing a single Alu variant, we present a…
The largest and most comprehensive genomic analysis of individuals with Ewing sarcoma performed to date reveals that some patients are genetically predisposed to developing the cancer. Learn more...
'Genetics is not the issue': insurers on genetics and life insurance.
Van Hoyweghen, Ine; Horstman, Klasien; Schepers, Rita
2005-04-01
This article offers an analysis of the way private insurers deal with the issue of genetics and insurance. Drawing on specific written insurance sources, a reconstruction is made of internal debates on genetics and insurance within the private insurance world in Europe and the United States. The article starts by analyzing the way insurers initially framed the issue of genetics. It proceeds by showing how ideas with respect to this issue developed beyond public policy debates in the nineties. Although not a strictly linear development, a trend towards a change in perspective can be demonstrated: at the beginning most insurance companies took another stance than they do nowadays. The article concludes by questioning the effect of these changes within the insurance world for the definition of the problem with respect to genetics and insurance. Does taking into account the public concerns around genetics also include taking genetics as a public problem?
Knudsen, Erik S; Balaji, Uthra; Mannakee, Brian; Vail, Paris; Eslinger, Cody; Moxom, Christopher; Mansour, John; Witkiewicz, Agnieszka K
2018-03-01
Pancreatic ductal adenocarcinoma (PDAC) is a therapy recalcitrant disease with the worst survival rate of common solid tumours. Preclinical models that accurately reflect the genetic and biological diversity of PDAC will be important for delineating features of tumour biology and therapeutic vulnerabilities. 27 primary PDAC tumours were employed for genetic analysis and development of tumour models. Tumour tissue was used for derivation of xenografts and cell lines. Exome sequencing was performed on the originating tumour and developed models. RNA sequencing, histological and functional analyses were employed to determine the relationship of the patient-derived models to clinical presentation of PDAC. The cohort employed captured the genetic diversity of PDAC. From most cases, both cell lines and xenograft models were developed. Exome sequencing confirmed preservation of the primary tumour mutations in developed cell lines, which remained stable with extended passaging. The level of genetic conservation in the cell lines was comparable to that observed with patient-derived xenograft (PDX) models. Unlike historically established PDAC cancer cell lines, patient-derived models recapitulated the histological architecture of the primary tumour and exhibited metastatic spread similar to that observed clinically. Detailed genetic analyses of tumours and derived models revealed features of ex vivo evolution and the clonal architecture of PDAC. Functional analysis was used to elucidate therapeutic vulnerabilities of relevance to treatment of PDAC. These data illustrate that with the appropriate methods it is possible to develop cell lines that maintain genetic features of PDAC. Such models serve as important substrates for analysing the significance of genetic variants and create a unique biorepository of annotated cell lines and xenografts that were established simultaneously from same primary tumour. These models can be used to infer genetic and empirically determined therapeutic sensitivities that would be germane to the patient. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Actor-network theory: a tool to support ethical analysis of commercial genetic testing.
Williams-Jones, Bryn; Graham, Janice E
2003-12-01
Social, ethical and policy analysis of the issues arising from gene patenting and commercial genetic testing is enhanced by the application of science and technology studies, and Actor-Network Theory (ANT) in particular. We suggest the potential for transferring ANT's flexible nature to an applied heuristic methodology for gathering empirical information and for analysing the complex networks involved in the development of genetic technologies. Three concepts are explored in this paper--actor-networks, translation, and drift--and applied to the case of Myriad Genetics and their commercial BRACAnalysis genetic susceptibility test for hereditary breast cancer. Treating this test as an active participant in socio-technical networks clarifies the extent to which it interacts with, shapes and is shaped by people, other technologies, and institutions. Such an understanding enables more sophisticated and nuanced technology assessment, academic analysis, as well as public debate about the social, ethical and policy implications of the commercialization of new genetic technologies.
Insight into the molecular genetics of myopia
Li, Jiali
2017-01-01
Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia. PMID:29386878
Giardine, Belinda; Borg, Joseph; Higgs, Douglas R; Peterson, Kenneth R; Philipsen, Sjaak; Maglott, Donna; Singleton, Belinda K; Anstee, David J; Basak, A Nazli; Clark, Barnaby; Costa, Flavia C; Faustino, Paula; Fedosyuk, Halyna; Felice, Alex E; Francina, Alain; Galanello, Renzo; Gallivan, Monica V E; Georgitsi, Marianthi; Gibbons, Richard J; Giordano, Piero C; Harteveld, Cornelis L; Hoyer, James D; Jarvis, Martin; Joly, Philippe; Kanavakis, Emmanuel; Kollia, Panagoula; Menzel, Stephan; Miller, Webb; Moradkhani, Kamran; Old, John; Papachatzopoulou, Adamantia; Papadakis, Manoussos N; Papadopoulos, Petros; Pavlovic, Sonja; Perseu, Lucia; Radmilovic, Milena; Riemer, Cathy; Satta, Stefania; Schrijver, Iris; Stojiljkovic, Maja; Thein, Swee Lay; Traeger-Synodinos, Jan; Tully, Ray; Wada, Takahito; Waye, John S; Wiemann, Claudia; Zukic, Branka; Chui, David H K; Wajcman, Henri; Hardison, Ross C; Patrinos, George P
2011-03-20
We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to hemoglobinopathies and thalassemia and implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories. A total of 1,941 unique genetic variants in 37 genes, encoding globins and other erythroid proteins, are currently documented in these databases, with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants, leading to a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The principles established here will serve as a model for other systems and for the analysis of other common and/or complex human genetic diseases.
Insight into the molecular genetics of myopia.
Li, Jiali; Zhang, Qingjiong
2017-01-01
Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia.
Guidelines for collecting and maintaining archives for genetic monitoring
Jackson, Jennifer A.; Laikre, Linda; Baker, C. Scott; Kendall, Katherine C.; ,
2012-01-01
Rapid advances in molecular genetic techniques and the statistical analysis of genetic data have revolutionized the way that populations of animals, plants and microorganisms can be monitored. Genetic monitoring is the practice of using molecular genetic markers to track changes in the abundance, diversity or distribution of populations, species or ecosystems over time, and to follow adaptive and non-adaptive genetic responses to changing external conditions. In recent years, genetic monitoring has become a valuable tool in conservation management of biological diversity and ecological analysis, helping to illuminate and define cryptic and poorly understood species and populations. Many of the detected biodiversity declines, changes in distribution and hybridization events have helped to drive changes in policy and management. Because a time series of samples is necessary to detect trends of change in genetic diversity and species composition, archiving is a critical component of genetic monitoring. Here we discuss the collection, development, maintenance, and use of archives for genetic monitoring. This includes an overview of the genetic markers that facilitate effective monitoring, describes how tissue and DNA can be stored, and provides guidelines for proper practice.
PAQ: Partition Analysis of Quasispecies.
Baccam, P; Thompson, R J; Fedrigo, O; Carpenter, S; Cornette, J L
2001-01-01
The complexities of genetic data may not be accurately described by any single analytical tool. Phylogenetic analysis is often used to study the genetic relationship among different sequences. Evolutionary models and assumptions are invoked to reconstruct trees that describe the phylogenetic relationship among sequences. Genetic databases are rapidly accumulating large amounts of sequences. Newly acquired sequences, which have not yet been characterized, may require preliminary genetic exploration in order to build models describing the evolutionary relationship among sequences. There are clustering techniques that rely less on models of evolution, and thus may provide nice exploratory tools for identifying genetic similarities. Some of the more commonly used clustering methods perform better when data can be grouped into mutually exclusive groups. Genetic data from viral quasispecies, which consist of closely related variants that differ by small changes, however, may best be partitioned by overlapping groups. We have developed an intuitive exploratory program, Partition Analysis of Quasispecies (PAQ), which utilizes a non-hierarchical technique to partition sequences that are genetically similar. PAQ was used to analyze a data set of human immunodeficiency virus type 1 (HIV-1) envelope sequences isolated from different regions of the brain and another data set consisting of the equine infectious anemia virus (EIAV) regulatory gene rev. Analysis of the HIV-1 data set by PAQ was consistent with phylogenetic analysis of the same data, and the EIAV rev variants were partitioned into two overlapping groups. PAQ provides an additional tool which can be used to glean information from genetic data and can be used in conjunction with other tools to study genetic similarities and genetic evolution of viral quasispecies.
Bastidas, Robert J.
2016-01-01
SUMMARY Chlamydia species infect millions of individuals worldwide and are important etiological agents of sexually transmitted disease, infertility, and blinding trachoma. Historically, the genetic intractability of this intracellular pathogen has hindered the molecular dissection of virulence factors contributing to its pathogenesis. The obligate intracellular life cycle of Chlamydia and restrictions on the use of antibiotics as selectable markers have impeded the development of molecular tools to genetically manipulate these pathogens. However, recent developments in the field have resulted in significant gains in our ability to alter the genome of Chlamydia, which will expedite the elucidation of virulence mechanisms. In this review, we discuss the challenges affecting the development of molecular genetic tools for Chlamydia and the work that laid the foundation for recent advancements in the genetic analysis of this recalcitrant pathogen. PMID:27030552
USDA-ARS?s Scientific Manuscript database
Peanut (Arachis hypogaea L.) is an important source for edible oil and protein. It is important to identify genetic diversity of peanut for cultivar development. In this study, 111 SSR markers with high polymorphic information content (PIC) were used to assess the genetic variation of 79 peanut cult...
Bohra, Abhishek; Saxena, Rachit K; Gnanesh, B N; Saxena, Kulbhushan; Byregowda, M; Rathore, Abhishek; Kavikishor, P B; Cook, Douglas R; Varshney, Rajeev K
2012-10-01
Pigeonpea (Cajanus cajan L.) is an important food legume crop of rainfed agriculture. Owing to exposure of the crop to a number of biotic and abiotic stresses, the crop productivity has remained stagnant for almost last five decades at ca. 750 kg/ha. The availability of a cytoplasmic male sterility (CMS) system has facilitated the development and release of hybrids which are expected to enhance the productivity of pigeonpea. Recent advances in genomics and molecular breeding such as marker-assisted selection (MAS) offer the possibility to accelerate hybrid breeding. Molecular markers and genetic maps are pre-requisites for deploying MAS in breeding. However, in the case of pigeonpea, only one inter- and two intra-specific genetic maps are available so far. Here, four new intra-specific genetic maps comprising 59-140 simple sequence repeat (SSR) loci with map lengths ranging from 586.9 to 881.6 cM have been constructed. Using these four genetic maps together with two recently published intra-specific genetic maps, a consensus map was constructed, comprising of 339 SSR loci spanning a distance of 1,059 cM. Furthermore, quantitative trait loci (QTL) analysis for fertility restoration (Rf) conducted in three mapping populations identified four major QTLs explaining phenotypic variances up to 24 %. To the best of our knowledge, this is the first report on construction of a consensus genetic map in pigeonpea and on the identification of QTLs for fertility restoration. The developed consensus genetic map should serve as a reference for developing new genetic maps as well as correlating with the physical map in pigeonpea to be developed in near future. The availability of more informative markers in the bins harbouring QTLs for sterility mosaic disease (SMD) and Rf will facilitate the selection of the most suitable markers for genetic analysis and molecular breeding applications in pigeonpea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balmain, Allan; Song, Ihn Young
2013-05-15
The ultimate goal of this project is to identify the combinations of genetic variants that confer an individual's susceptibility to the effects of low dose (0.1 Gy) gamma-radiation, in particular with regard to tumor development. In contrast to the known effects of high dose radiation in cancer induction, the responses to low dose radiation (defined as 0.1 Gy or less) are much less well understood, and have been proposed to involve a protective anti-tumor effect in some in vivo scientific models. These conflicting results confound attempts to develop predictive models of the risk of exposure to low dose radiation, particularlymore » when combined with the strong effects of inherited genetic variants on both radiation effects and cancer susceptibility. We have used a Systems Genetics approach in mice that combines genetic background analysis with responses to low and high dose radiation, in order to develop insights that will allow us to reconcile these disparate observations. Using this comprehensive approach we have analyzed normal tissue gene expression (in this case the skin and thymus), together with the changes that take place in this gene expression architecture a) in response to low or high- dose radiation and b) during tumor development. Additionally, we have demonstrated that using our expression analysis approach in our genetically heterogeneous/defined radiation-induced tumor mouse models can uniquely identify genes and pathways relevant to human T-ALL, and uncover interactions between common genetic variants of genes which may lead to tumor susceptibility.« less
Gene Ontology-Based Analysis of Zebrafish Omics Data Using the Web Tool Comparative Gene Ontology.
Ebrahimie, Esmaeil; Fruzangohar, Mario; Moussavi Nik, Seyyed Hani; Newman, Morgan
2017-10-01
Gene Ontology (GO) analysis is a powerful tool in systems biology, which uses a defined nomenclature to annotate genes/proteins within three categories: "Molecular Function," "Biological Process," and "Cellular Component." GO analysis can assist in revealing functional mechanisms underlying observed patterns in transcriptomic, genomic, and proteomic data. The already extensive and increasing use of zebrafish for modeling genetic and other diseases highlights the need to develop a GO analytical tool for this organism. The web tool Comparative GO was originally developed for GO analysis of bacterial data in 2013 ( www.comparativego.com ). We have now upgraded and elaborated this web tool for analysis of zebrafish genetic data using GOs and annotations from the Gene Ontology Consortium.
Kochunov, Peter; Jahanshad, Neda; Sprooten, Emma; Nichols, Thomas E; Mandl, René C; Almasy, Laura; Booth, Tom; Brouwer, Rachel M; Curran, Joanne E; de Zubicaray, Greig I; Dimitrova, Rali; Duggirala, Ravi; Fox, Peter T; Hong, L Elliot; Landman, Bennett A; Lemaitre, Hervé; Lopez, Lorna M; Martin, Nicholas G; McMahon, Katie L; Mitchell, Braxton D; Olvera, Rene L; Peterson, Charles P; Starr, John M; Sussmann, Jessika E; Toga, Arthur W; Wardlaw, Joanna M; Wright, Margaret J; Wright, Susan N; Bastin, Mark E; McIntosh, Andrew M; Boomsma, Dorret I; Kahn, René S; den Braber, Anouk; de Geus, Eco J C; Deary, Ian J; Hulshoff Pol, Hilleke E; Williamson, Douglas E; Blangero, John; van 't Ent, Dennis; Thompson, Paul M; Glahn, David C
2014-07-15
Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9-85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large "mega-family". We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability. Copyright © 2014 Elsevier Inc. All rights reserved.
[Development of laboratory sequence analysis software based on WWW and UNIX].
Huang, Y; Gu, J R
2001-01-01
Sequence analysis tools based on WWW and UNIX were developed in our laboratory to meet the needs of molecular genetics research in our laboratory. General principles of computer analysis of DNA and protein sequences were also briefly discussed in this paper.
Genetic analysis of ossification of the posterior longitudinal ligament.
Matsunaga, S; Yamaguchi, M; Hayashi, K; Sakou, T
1999-05-15
The human leukocyte antigen (HLA) haplotypes in families of patients with known ossification of the posterior longitudinal ligament (OPLL) were reviewed. To clarify how genetic factors relate to the development of OPLL. The association between genetic factors and the development of OPLL is still unknown. The association between HLA haplotypes and OPLL was studied in families of 24 patients with OPLL. The prevalence of OPLL was higher in the siblings showing a higher share of identical HLA haplotypes: 10 (53%) of 19 with concurrence of two strands, and 5 (24%) of 21 with concurrence of one strand. Of 21 subjects who had no HLA haplotype identical with that in OPLL patients, only one showed evidence of OPLL. Genetic factors predispose toward the development of OPLL.
Prenatal diagnose of a fetus with Harlequin ichthyosis in a Chinese family.
Jian, Wei; Du, Qi-Ting; Lai, Zhen-Fei; Li, Yu-Fan; Li, Shi-Quan; Xiong, Zhong-Tang; Chen, Dun-Jin; Chen, Min; Chen, Jing-Si
2018-06-01
Harlequin ichthyosis (HI) was the most severe form of ichthyoses, which leaded to neonatal death in 50% of cases. It was the result of mutations in ABCA12 gene. With the development of ultrasound skills and genetic analysis, HI could be prenatal diagnosed. Here, we reported a case of HI, which was prenatal diagnosed by ultrasound examination and genetic analysis. The fetus was found that severe ectropion, eclabium, flattened nose, and rudimentary ears by ultrasound at 20 weeks gestation. A molecular genetic analysis was performed and revealed two mutations in the ABCA12 gene. One of two mutations were not reported in the past. The fetus was terminated. HI was associated with the poor prognosis of HI neonates. Prenatal ultrasound and genetic analysis were important for prenatal diagnosis of HI and were helpful to give sufficient prenatal counsels for the family with HI baby. Copyright © 2018. Published by Elsevier B.V.
A strategy to apply quantitative epistasis analysis on developmental traits.
Labocha, Marta K; Yuan, Wang; Aleman-Meza, Boanerges; Zhong, Weiwei
2017-05-15
Genetic interactions are keys to understand complex traits and evolution. Epistasis analysis is an effective method to map genetic interactions. Large-scale quantitative epistasis analysis has been well established for single cells. However, there is a substantial lack of such studies in multicellular organisms and their complex phenotypes such as development. Here we present a method to extend quantitative epistasis analysis to developmental traits. In the nematode Caenorhabditis elegans, we applied RNA interference on mutants to inactivate two genes, used an imaging system to quantitatively measure phenotypes, and developed a set of statistical methods to extract genetic interactions from phenotypic measurement. Using two different C. elegans developmental phenotypes, body length and sex ratio, as examples, we showed that this method could accommodate various metazoan phenotypes with performances comparable to those methods in single cell growth studies. Comparing with qualitative observations, this method of quantitative epistasis enabled detection of new interactions involving subtle phenotypes. For example, several sex-ratio genes were found to interact with brc-1 and brd-1, the orthologs of the human breast cancer genes BRCA1 and BARD1, respectively. We confirmed the brc-1 interactions with the following genes in DNA damage response: C34F6.1, him-3 (ortholog of HORMAD1, HORMAD2), sdc-1, and set-2 (ortholog of SETD1A, SETD1B, KMT2C, KMT2D), validating the effectiveness of our method in detecting genetic interactions. We developed a reliable, high-throughput method for quantitative epistasis analysis of developmental phenotypes.
Molecular Study of the Amazonian Macabea Cattle History.
Vargas, Julio; Landi, Vincenzo; Martínez, Amparo; Gómez, Mayra; Camacho, María Esperanza; Álvarez, Luz Ángela; Aguirre, Lenin; Delgado, Juan Vicente
2016-01-01
Macabea cattle are the only Bos taurus breed that have adapted to the wet tropical conditions of the Amazon. This breed has integrated into the culture of the indigenous Shuar-Asuar nations probably since its origins, being one of the few European zoogenetic resources assimilated by the deep-jungle Amazon communities. Despite its potential for local endogenous sustainable development, this breed is currently endangered. The present study used molecular genetics tools to investigate the within- and between-breeds diversity, in order to characterize the breed population, define its associations with other breeds, and infer its origin and evolution. The within-breed genetic diversity showed high values, as indicated by all genetic parameters, such as the mean number of alleles (MNA = 7.25±2.03), the observed heterozygosity (Ho = 0.72±0.02) and the expected heterozygosity (He = 0.72±0.02). The between-breeds diversity analysis, which included factorial correspondence analysis, Reynolds genetic distance, neighbor-joining analysis, and genetic structure analysis, showed that the Macabea breed belongs to the group of the American Creoles, with a Southern-Spain origin. Our outcomes demonstrated that the Macabea breed has a high level of purity and null influences of exotic cosmopolitan breeds with European or Asiatic origin. This breed is an important zoogenetic resource of Ecuador, with relevant and unique attributes; therefore, there is an urgent need to develop conservation strategies for the Macabea breed.
Molecular Study of the Amazonian Macabea Cattle History
Vargas, Julio; Martínez, Amparo; Gómez, Mayra; Camacho, María Esperanza; Álvarez, Luz Ángela; Aguirre, Lenin; Delgado, Juan Vicente
2016-01-01
Macabea cattle are the only Bos taurus breed that have adapted to the wet tropical conditions of the Amazon. This breed has integrated into the culture of the indigenous Shuar-Asuar nations probably since its origins, being one of the few European zoogenetic resources assimilated by the deep-jungle Amazon communities. Despite its potential for local endogenous sustainable development, this breed is currently endangered. The present study used molecular genetics tools to investigate the within- and between-breeds diversity, in order to characterize the breed population, define its associations with other breeds, and infer its origin and evolution. The within-breed genetic diversity showed high values, as indicated by all genetic parameters, such as the mean number of alleles (MNA = 7.25±2.03), the observed heterozygosity (Ho = 0.72±0.02) and the expected heterozygosity (He = 0.72±0.02). The between-breeds diversity analysis, which included factorial correspondence analysis, Reynolds genetic distance, neighbor-joining analysis, and genetic structure analysis, showed that the Macabea breed belongs to the group of the American Creoles, with a Southern-Spain origin. Our outcomes demonstrated that the Macabea breed has a high level of purity and null influences of exotic cosmopolitan breeds with European or Asiatic origin. This breed is an important zoogenetic resource of Ecuador, with relevant and unique attributes; therefore, there is an urgent need to develop conservation strategies for the Macabea breed. PMID:27776178
Multidisciplinary Design, Analysis, and Optimization Tool Development using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Li, Wesley
2008-01-01
Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space A dministration Dryden Flight Research Center to automate analysis and design process by leveraging existing tools such as NASTRAN, ZAERO a nd CFD codes to enable true multidisciplinary optimization in the pr eliminary design stage of subsonic, transonic, supersonic, and hypers onic aircraft. This is a promising technology, but faces many challe nges in large-scale, real-world application. This paper describes cur rent approaches, recent results, and challenges for MDAO as demonstr ated by our experience with the Ikhana fire pod design.
Klinkenberg-Ramirez, Stephanie; Neri, Pamela M; Volk, Lynn A; Samaha, Sara J; Newmark, Lisa P; Pollard, Stephanie; Varugheese, Matthew; Baxter, Samantha; Aronson, Samuel J; Rehm, Heidi L; Bates, David W
2016-01-01
Partners HealthCare Personalized Medicine developed GeneInsight Clinic (GIC), a tool designed to communicate updated variant information from laboratory geneticists to treating clinicians through automated alerts, categorized by level of variant interpretation change. The study aimed to evaluate feedback from the initial users of the GIC, including the advantages and challenges to receiving this variant information and using this technology at the point of care. Healthcare professionals from two clinics that ordered genetic testing for cardiomyopathy and related disorders were invited to participate in one-hour semi-structured interviews and/ or a one-hour focus group. Using a Grounded Theory approach, transcript concepts were coded and organized into themes. Two genetic counselors and two physicians from two treatment clinics participated in individual interviews. Focus group participants included one genetic counselor and four physicians. Analysis resulted in 8 major themes related to structuring and communicating variant knowledge, GIC's impact on the clinic, and suggestions for improvements. The interview analysis identified longitudinal patient care, family data, and growth in genetic testing content as potential challenges to optimization of the GIC infrastructure. Participants agreed that GIC implementation increased efficiency and effectiveness of the clinic through increased access to genetic variant information at the point of care. Development of information technology (IT) infrastructure to aid in the organization and management of genetic variant knowledge will be critical as the genetic field moves towards whole exome and whole genome sequencing. Findings from this study could be applied to future development of IT support for genetic variant knowledge management that would serve to improve clinicians' ability to manage and care for patients.
Genetical genomics of Populus leaf shape variation
Drost, Derek R.; Puranik, Swati; Novaes, Evandro; ...
2015-06-30
Leaf morphology varies extensively among plant species and is under strong genetic control. Mutagenic screens in model systems have identified genes and established molecular mechanisms regulating leaf initiation, development, and shape. However, it is not known whether this diversity across plant species is related to naturally occurring variation at these genes. Quantitative trait locus (QTL) analysis has revealed a polygenic control for leaf shape variation in different species suggesting that loci discovered by mutagenesis may only explain part of the naturally occurring variation in leaf shape. Here we undertook a genetical genomics study in a poplar intersectional pseudo-backcross pedigree tomore » identify genetic factors controlling leaf shape. Here, the approach combined QTL discovery in a genetic linkage map anchored to the Populus trichocarpa reference genome sequence and transcriptome analysis.« less
Wang, Hai-yan
2015-08-01
The classical research cases, which have greatly promoted the development of genetics in history, can be combined with the content of courses in genetics teaching to train students' ability of scientific thinking and genetic analysis. The localization and clone of gene controlling tomato fruit weight is a pioneer work in quantitative trait locus (QTL) studies and represents a complete process of QTL research in plants. Application of this integrated case in genetics teaching, which showed a wonderful process of scientific discovery and the fascination of genetic research, has inspired students' interest in genetics and achieved a good teaching effect.
Convergent evidence from systematic analysis of GWAS revealed genetic basis of esophageal cancer.
Gao, Xue-Xin; Gao, Lei; Wang, Jiu-Qiang; Qu, Su-Su; Qu, Yue; Sun, Hong-Lei; Liu, Si-Dang; Shang, Ying-Li
2016-07-12
Recent genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with risk of esophageal cancer (EC). However, investigation of genetic basis from the perspective of systematic biology and integrative genomics remains scarce.In this study, we explored genetic basis of EC based on GWAS data and implemented a series of bioinformatics methods including functional annotation, expression quantitative trait loci (eQTL) analysis, pathway enrichment analysis and pathway grouped network analysis.Two hundred and thirteen risk SNPs were identified, in which 44 SNPs were found to have significantly differential gene expression in esophageal tissues by eQTL analysis. By pathway enrichment analysis, 170 risk genes mapped by risk SNPs were enriched into 38 significant GO terms and 17 significant KEGG pathways, which were significantly grouped into 9 sub-networks by pathway grouped network analysis. The 9 groups of interconnected pathways were mainly involved with muscle cell proliferation, cellular response to interleukin-6, cell adhesion molecules, and ethanol oxidation, which might participate in the development of EC.Our findings provide genetic evidence and new insight for exploring the molecular mechanisms of EC.
ERIC Educational Resources Information Center
Okoye, Namdi N. S.
2009-01-01
The study tried to examine the interaction between two independent variables of selective attention and cognitive development on Achievement in Genetics at the Secondary School level. In looking at the problem of this study three null hypotheses were generated for testing at 0.05 level of significance. Factorial Analysis of Variance design with…
Manzanero, Silvia; Kozlovskaia, Maria; Vlahovich, Nicole
2018-01-01
Background With the increasing capacity for remote collection of both data and samples for medical research, a thorough assessment is needed to determine the association of population characteristics and recruitment methodologies with response rates. Objective The aim of this research was to assess population representativeness in a two-stage study of health and injury in recreational runners, which consisted of an epidemiological arm and genetic analysis. Methods The cost and success of various classical and internet-based methods were analyzed, and demographic representativeness was assessed for recruitment to the epidemiological survey, reported willingness to participate in the genetic arm of the study, actual participation, sample return, and approval for biobank storage. Results A total of 4965 valid responses were received, of which 1664 were deemed eligible for genetic analysis. Younger age showed a negative association with initial recruitment rate, expressed willingness to participate in genetic analysis, and actual participation. Additionally, female sex was associated with higher initial recruitment rates, and ethnic origin impacted willingness to participate in the genetic analysis (all P<.001). Conclusions The sharp decline in retention through the different stages of the study in young respondents suggests the necessity to develop specific recruitment and retention strategies when investigating a young, physically active population. PMID:29792293
Bastidas, Robert J; Valdivia, Raphael H
2016-06-01
Chlamydia species infect millions of individuals worldwide and are important etiological agents of sexually transmitted disease, infertility, and blinding trachoma. Historically, the genetic intractability of this intracellular pathogen has hindered the molecular dissection of virulence factors contributing to its pathogenesis. The obligate intracellular life cycle of Chlamydia and restrictions on the use of antibiotics as selectable markers have impeded the development of molecular tools to genetically manipulate these pathogens. However, recent developments in the field have resulted in significant gains in our ability to alter the genome of Chlamydia, which will expedite the elucidation of virulence mechanisms. In this review, we discuss the challenges affecting the development of molecular genetic tools for Chlamydia and the work that laid the foundation for recent advancements in the genetic analysis of this recalcitrant pathogen. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
[Neurosis and genetic theory of etiology and pathogenesis of ulcer disease].
Kolotilova, M L; Ivanov, L N
2014-01-01
Based on the analysis of literature data and our own research, we have developed the original concept of etiology and pathogenesis of peptic ulcer disease. An analysis of the literature shows that none of the theories of pathogenesis of peptic ulcer disease does not cover the full diversity of the involved functions and their shifts, which lead to the development of ulcers in the stomach and the duodenum. Our neurogenic-genetic theory of etiology and pathogenesis of gastric ulcer and duodenal ulcer very best explains the cause-and-effect relationships in the patient peptic ulcer, allowing options for predominance in one or the other case factors of neurosis or genetic factors. However, it is clear that the only other: combination of neurogenic factor with genetically modified reactivity of gastroduodenal system (the presence of the target organ) cause the chronicity of the sores. The theory of peptic ulcer disease related to psychosomatic pathologies allows us to develop effective schema therapy, including drugs with psychocorrective action. On the basis of our theory of the role of Helicobacter pylori infection is treated as a pathogenetic factor in the development of peptic ulcer disease.
MS-based analytical methodologies to characterize genetically modified crops.
García-Cañas, Virginia; Simó, Carolina; León, Carlos; Ibáñez, Elena; Cifuentes, Alejandro
2011-01-01
The development of genetically modified crops has had a great impact on the agriculture and food industries. However, the development of any genetically modified organism (GMO) requires the application of analytical procedures to confirm the equivalence of the GMO compared to its isogenic non-transgenic counterpart. Moreover, the use of GMOs in foods and agriculture faces numerous criticisms from consumers and ecological organizations that have led some countries to regulate their production, growth, and commercialization. These regulations have brought about the need of new and more powerful analytical methods to face the complexity of this topic. In this regard, MS-based technologies are increasingly used for GMOs analysis to provide very useful information on GMO composition (e.g., metabolites, proteins). This review focuses on the MS-based analytical methodologies used to characterize genetically modified crops (also called transgenic crops). First, an overview on genetically modified crops development is provided, together with the main difficulties of their analysis. Next, the different MS-based analytical approaches applied to characterize GM crops are critically discussed, and include "-omics" approaches and target-based approaches. These methodologies allow the study of intended and unintended effects that result from the genetic transformation. This information is considered to be essential to corroborate (or not) the equivalence of the GM crop with its isogenic non-transgenic counterpart. Copyright © 2010 Wiley Periodicals, Inc.
Gene-Based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions.
Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y; Chen, Wei
2016-02-01
Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, here we develop Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT), which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. © 2016 WILEY PERIODICALS, INC.
Gene-based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions
Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E.; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y.; Chen, Wei
2015-01-01
Summary Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, we develop here Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT) which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. PMID:26782979
2012-01-01
Background For complex diseases like cancer, pooled-analysis of individual data represents a powerful tool to investigate the joint contribution of genetic, phenotypic and environmental factors to the development of a disease. Pooled-analysis of epidemiological studies has many advantages over meta-analysis, and preliminary results may be obtained faster and with lower costs than with prospective consortia. Design and methods Based on our experience with the study design of the Melanocortin-1 receptor (MC1R) gene, SKin cancer and Phenotypic characteristics (M-SKIP) project, we describe the most important steps in planning and conducting a pooled-analysis of genetic epidemiological studies. We then present the statistical analysis plan that we are going to apply, giving particular attention to methods of analysis recently proposed to account for between-study heterogeneity and to explore the joint contribution of genetic, phenotypic and environmental factors in the development of a disease. Within the M-SKIP project, data on 10,959 skin cancer cases and 14,785 controls from 31 international investigators were checked for quality and recoded for standardization. We first proposed to fit the aggregated data with random-effects logistic regression models. However, for the M-SKIP project, a two-stage analysis will be preferred to overcome the problem regarding the availability of different study covariates. The joint contribution of MC1R variants and phenotypic characteristics to skin cancer development will be studied via logic regression modeling. Discussion Methodological guidelines to correctly design and conduct pooled-analyses are needed to facilitate application of such methods, thus providing a better summary of the actual findings on specific fields. PMID:22862891
Moges, Asmare D.; Admassu, Belayneh; Belew, Derbew; Yesuf, Mohammed; Njuguna, Joyce; Kyalo, Martina; Ghimire, Sita R.
2016-01-01
Twenty three polymorphic microsatellite markers were developed for citrus plant pathogenic fungus, Colletotrichum gloeosporioides, and were used to analyze genetic diversity and population structure of 163 isolates from four different geographical regions of Ethiopia. These loci produced a total of 118 alleles with an average of 5.13 alleles per microsatellite marker. The polymorphic information content values ranged from 0.104 to 0.597 with an average of 0.371. The average observed heterozygosity across all loci varied from 0.046 to 0.058. The gene diversity among the loci ranged from 0.106 to 0.664. Unweighted Neighbor-joining and population structure analysis grouped these 163 isolates into three major groups. The clusters were not according to the geographic origin of the isolates. Analysis of molecular variance showed 85% of the total variation within populations and only 5% among populations. There was low genetic differentiation in the total populations (FST = 0.049) as evidenced by high level of gene flow estimate (Nm = 4.8 per generation) among populations. The results show that Ethiopian C. gloeosporioides populations are generally characterized by a low level of genetic diversity. The newly developed microsatellite markers were useful in analyzing the genetic diversity and population structure of the C. gloeosporioides populations. Information obtained from this study could be useful as a base to design strategies for better management of leaf and fruit spot disease of citrus in Ethiopia. PMID:26978654
Green, Nancy
2005-04-01
We developed a Bayesian network coding scheme for annotating biomedical content in layperson-oriented clinical genetics documents. The coding scheme supports the representation of probabilistic and causal relationships among concepts in this domain, at a high enough level of abstraction to capture commonalities among genetic processes and their relationship to health. We are using the coding scheme to annotate a corpus of genetic counseling patient letters as part of the requirements analysis and knowledge acquisition phase of a natural language generation project. This paper describes the coding scheme and presents an evaluation of intercoder reliability for its tag set. In addition to giving examples of use of the coding scheme for analysis of discourse and linguistic features in this genre, we suggest other uses for it in analysis of layperson-oriented text and dialogue in medical communication.
The complex genetics of gait speed: genome-wide meta-analysis approach
Lunetta, Kathryn L.; Smith, Jennifer A.; Eicher, John D.; Vered, Rotem; Deelen, Joris; Arnold, Alice M.; Buchman, Aron S.; Tanaka, Toshiko; Faul, Jessica D.; Nethander, Maria; Fornage, Myriam; Adams, Hieab H.; Matteini, Amy M.; Callisaya, Michele L.; Smith, Albert V.; Yu, Lei; De Jager, Philip L.; Evans, Denis A.; Gudnason, Vilmundur; Hofman, Albert; Pattie, Alison; Corley, Janie; Launer, Lenore J.; Knopman, Davis S.; Parimi, Neeta; Turner, Stephen T.; Bandinelli, Stefania; Beekman, Marian; Gutman, Danielle; Sharvit, Lital; Mooijaart, Simon P.; Liewald, David C.; Houwing-Duistermaat, Jeanine J.; Ohlsson, Claes; Moed, Matthijs; Verlinden, Vincent J.; Mellström, Dan; van der Geest, Jos N.; Karlsson, Magnus; Hernandez, Dena; McWhirter, Rebekah; Liu, Yongmei; Thomson, Russell; Tranah, Gregory J.; Uitterlinden, Andre G.; Weir, David R.; Zhao, Wei; Starr, John M.; Johnson, Andrew D.; Ikram, M. Arfan; Bennett, David A.; Cummings, Steven R.; Deary, Ian J.; Harris, Tamara B.; Kardia, Sharon L. R.; Mosley, Thomas H.; Srikanth, Velandai K.; Windham, Beverly G.; Newman, Ann B.; Walston, Jeremy D.; Davies, Gail; Evans, Daniel S.; Slagboom, Eline P.; Ferrucci, Luigi; Kiel, Douglas P.; Murabito, Joanne M.; Atzmon, Gil
2017-01-01
Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging. PMID:28077804
Lenk, Christian; Frommeld, Debora
2015-08-01
Genetic predispositions often concern not only individual persons, but also other family members. Advances in the development of genetic tests lead to a growing number of genetic diagnoses in medical practice and to an increasing importance of genetic counseling. In the present article, a number of ethical foundations and preconditions for this issue are discussed. Four different models for the handling of genetic information are presented and analyzed including a discussion of practical implications. The different models' ranges of content reach from a strictly autonomous position over self-governed arrangements in the practice of genetic counseling up to the involvement of official bodies and committees. The different models show a number of elements which seem to be very useful for the handling of genetic data in families from an ethical perspective. In contrast, the limitations of the standard medical attempt regarding confidentiality and personal autonomy in the context of genetic information in the family are described. Finally, recommendations for further ethical research and the development of genetic counseling in families are given.
He, Linwen; Zhu, Jianyi; Lu, Qinqin; Niu, Jianfeng; Zhang, Baoyu; Lin, Apeng; Wang, Guangce
2013-06-01
Pyropia yezoensis (Ueda) M. S. Hwang et H. G. Choi (previously called Porphyra yezoensis) is an economically important alga. The blades generated from conchospores are genetic chimeras, which are not suitable for genetic similarity analysis. In this study, two types of blades from a single filament of P. yezoensis sporophyte filament were obtained. One type, ConB, consisted of 40 blades that had germinated from conchospores. The other type, ArcB, consisted of 88 blades that had germinated from archeospores released from ConB. Both of them were analyzed by amplified fragment length polymorphism. The low genetic similarity levels for both conchospore-germinated and archeospore-germinated blades demonstrated that the conchcelis we used was cross-fertilized. Furthermore, a higher polymorphic loci ratio (98.6%) was detected in ArcB than in ConB (80.7%), and the average genetic similarity of ArcB (average 0.61) was lower than that of ConB (average 0.71). These differences indicated that genetic analysis using ArcB gives more accurate results. © 2013 Phycological Society of America.
Genetic Technology: A Proposal for the Development of a Science of the Possible
ERIC Educational Resources Information Center
Hudock, George A.
1974-01-01
Urges that biology teachers include the study of genetic anomolies, some very simple aspects of pedigree analysis, and related problems in order to produce citizens who are aware of the impact of science on their lives. (PEB)
Drosophila Melanogaster as an Experimental Organism.
ERIC Educational Resources Information Center
Rubin, Gerald M.
1988-01-01
Discusses the role of the fruit fly in genetics research requiring a multidisciplinary approach. Describes embryological and genetic methods used in the experimental analysis of this organism. Outlines the use of Drosophila in the study of the development and function of the nervous system. (RT)
Genetics educational needs in China: physicians' experience and knowledge of genetic testing.
Li, Jing; Xu, Tengda; Yashar, Beverly M
2015-09-01
The aims of this study were to explore the relationship between physicians' knowledge and utilization of genetic testing and to explore genetics educational needs in China. An anonymous survey about experience, attitudes, and knowledge of genetic testing was conducted among physicians affiliated with Peking Union Medical College Hospital during their annual health evaluation. A personal genetics knowledge score was developed and predictors of personal genetics knowledge score were evaluated. Sixty-four physicians (33% male) completed the survey. Fifty-eight percent of them had used genetic testing in their clinical practice. Using a 4-point scale, mean knowledge scores of six common genetic testing techniques ranged from 1.7 ± 0.9 to 2.4 ± 1.0, and the average personal genetics knowledge score was 2.1 ± 0.8. In regression analysis, significant predictors of higher personal genetics knowledge score were ordering of genetic testing, utilization of pedigrees, higher medical degree, and recent genetics training (P < 0.05). Sixty-six percent of physicians indicated a desire for specialized genetic services, and 84% reported a desire for additional genetics education. This study demonstrated a sizable gap between Chinese physicians' knowledge and utilization of genetic testing. Participants had high self-perceived genetics educational needs. Development of genetics educational platforms is both warranted and desired in China.Genet Med 17 9, 757-760.
Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G; Helland, Aslaug; Rye, Inga H; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia
2014-02-13
Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G.; Helland, Åslaug; Rye, Inga H.; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L.; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia
2014-01-01
SUMMARY Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor subtype-specific and it did not change during treatment in tumors with partial or no response. However, lower pre-treatment genetic diversity was significantly associated with complete pathologic response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. PMID:24462293
Almendro, Vanessa; Cheng, Yu -Kang; Randles, Amanda; ...
2014-02-01
Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatialmore » distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.« less
Roy, Neha Samir; Park, Kyong-Cheul; Lee, Sung-Il; Im, Min-Ji; Ramekar, Rahul Vasudeo; Kim, Nam-Soo
2018-02-01
Molecular marker technologies have proven to be an important breakthrough for genetic studies, construction of linkage maps and population genetics analysis. Transposable elements (TEs) constitute major fractions of repetitive sequences in plants and offer a wide range of possible areas to be explored as molecular markers. Sequence characterized amplified region (SCAR) marker development provides us with a simple and time saving alternative approach for marker development. We employed the CACTA-TD to develop SCARs and then integrated them into linkage map and used them for population structure and genetic diversity analysis of corn inbred population. A total of 108 dominant SCAR markers were designed out of which, 32 were successfully integrated in to the linkage map of maize RIL population and the remaining were added to a physical map for references to check the distribution throughout all chromosomes. Moreover, 76 polymorphic SCARs were used for diversity analysis of corn accessions being used in Korean corn breeding program. The overall average polymorphic information content (PIC) was 0.34, expected heterozygosity was 0.324 and Shannon's information index was 0.491 with a percentage of polymorphism of 98.67%. Further analysis by associating with desirable traits may also provide some accurate trait specific tagged SCAR markers. TE linked SCARs can provide an added level of polymorphism as well as improved discriminating ability and therefore can be useful in further breeding programs to develop high yielding germplasm.
Current genetic methodologies in the identification of disaster victims and in forensic analysis.
Ziętkiewicz, Ewa; Witt, Magdalena; Daca, Patrycja; Zebracka-Gala, Jadwiga; Goniewicz, Mariusz; Jarząb, Barbara; Witt, Michał
2012-02-01
This review presents the basic problems and currently available molecular techniques used for genetic profiling in disaster victim identification (DVI). The environmental conditions of a mass disaster often result in severe fragmentation, decomposition and intermixing of the remains of victims. In such cases, traditional identification based on the anthropological and physical characteristics of the victims is frequently inconclusive. This is the reason why DNA profiling became the gold standard for victim identification in mass-casualty incidents (MCIs) or any forensic cases where human remains are highly fragmented and/or degraded beyond recognition. The review provides general information about the sources of genetic material for DNA profiling, the genetic markers routinely used during genetic profiling (STR markers, mtDNA and single-nucleotide polymorphisms [SNP]) and the basic statistical approaches used in DNA-based disaster victim identification. Automated technological platforms that allow the simultaneous analysis of a multitude of genetic markers used in genetic identification (oligonucleotide microarray techniques and next-generation sequencing) are also presented. Forensic and population databases containing information on human variability, routinely used for statistical analyses, are discussed. The final part of this review is focused on recent developments, which offer particularly promising tools for forensic applications (mRNA analysis, transcriptome variation in individuals/populations and genetic profiling of specific cells separated from mixtures).
Conomos, Matthew P.; Laurie, Cecelia A.; Stilp, Adrienne M.; Gogarten, Stephanie M.; McHugh, Caitlin P.; Nelson, Sarah C.; Sofer, Tamar; Fernández-Rhodes, Lindsay; Justice, Anne E.; Graff, Mariaelisa; Young, Kristin L.; Seyerle, Amanda A.; Avery, Christy L.; Taylor, Kent D.; Rotter, Jerome I.; Talavera, Gregory A.; Daviglus, Martha L.; Wassertheil-Smoller, Sylvia; Schneiderman, Neil; Heiss, Gerardo; Kaplan, Robert C.; Franceschini, Nora; Reiner, Alex P.; Shaffer, John R.; Barr, R. Graham; Kerr, Kathleen F.; Browning, Sharon R.; Browning, Brian L.; Weir, Bruce S.; Avilés-Santa, M. Larissa; Papanicolaou, George J.; Lumley, Thomas; Szpiro, Adam A.; North, Kari E.; Rice, Ken; Thornton, Timothy A.; Laurie, Cathy C.
2016-01-01
US Hispanic/Latino individuals are diverse in genetic ancestry, culture, and environmental exposures. Here, we characterized and controlled for this diversity in genome-wide association studies (GWASs) for the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). We simultaneously estimated population-structure principal components (PCs) robust to familial relatedness and pairwise kinship coefficients (KCs) robust to population structure, admixture, and Hardy-Weinberg departures. The PCs revealed substantial genetic differentiation within and among six self-identified background groups (Cuban, Dominican, Puerto Rican, Mexican, and Central and South American). To control for variation among groups, we developed a multi-dimensional clustering method to define a “genetic-analysis group” variable that retains many properties of self-identified background while achieving substantially greater genetic homogeneity within groups and including participants with non-specific self-identification. In GWASs of 22 biomedical traits, we used a linear mixed model (LMM) including pairwise empirical KCs to account for familial relatedness, PCs for ancestry, and genetic-analysis groups for additional group-associated effects. Including the genetic-analysis group as a covariate accounted for significant trait variation in 8 of 22 traits, even after we fit 20 PCs. Additionally, genetic-analysis groups had significant heterogeneity of residual variance for 20 of 22 traits, and modeling this heteroscedasticity within the LMM reduced genomic inflation for 19 traits. Furthermore, fitting an LMM that utilized a genetic-analysis group rather than a self-identified background group achieved higher power to detect previously reported associations. We expect that the methods applied here will be useful in other studies with multiple ethnic groups, admixture, and relatedness. PMID:26748518
Groen-Blokhuis, Maria M.; Pourcain, Beate St.; Greven, Corina U.; Pappa, Irene; Tiesler, Carla M.T.; Ang, Wei; Nolte, Ilja M.; Vilor-Tejedor, Natalia; Bacelis, Jonas; Ebejer, Jane L.; Zhao, Huiying; Davies, Gareth E.; Ehli, Erik A.; Evans, David M.; Fedko, Iryna O.; Guxens, Mònica; Hottenga, Jouke-Jan; Hudziak, James J.; Jugessur, Astanand; Kemp, John P.; Krapohl, Eva; Martin, Nicholas G.; Murcia, Mario; Myhre, Ronny; Ormel, Johan; Ring, Susan M.; Standl, Marie; Stergiakouli, Evie; Stoltenberg, Camilla; Thiering, Elisabeth; Timpson, Nicholas J.; Trzaskowski, Maciej; van der Most, Peter J.; Wang, Carol; Nyholt, Dale R.; Medland, Sarah E.; Neale, Benjamin; Jacobsson, Bo; Sunyer, Jordi; Hartman, Catharina A.; Whitehouse, Andrew J.O.; Pennell, Craig E.; Heinrich, Joachim; Plomin, Robert; Smith, George Davey; Tiemeier, Henning; Posthuma, Danielle; Boomsma, Dorret I.
2016-01-01
Objective To elucidate the influence of common genetic variants on childhood attention-deficit/hyperactivity disorder (ADHD) symptoms, to identify genetic variants that explain its high heritability, and to investigate the genetic overlap of ADHD symptom scores with ADHD diagnosis. Method Within the EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium, genome-wide single nucleotide polymorphisms (SNPs) and ADHD symptom scores were available for 17,666 children (< 13 years) from nine population-based cohorts. SNP-based heritability was estimated in data from the three largest cohorts. Meta-analysis based on genome-wide association (GWA) analyses with SNPs was followed by gene-based association tests, and the overlap in results with a meta-analysis in the Psychiatric Genomics Consortium (PGC) case-control ADHD study was investigated. Results SNP-based heritability ranged from 5% to 34%, indicating that variation in common genetic variants influences ADHD symptom scores. The meta-analysis did not detect genome-wide significant SNPs, but three genes, lying close to each other with SNPs in high linkage disequilibrium (LD), showed a gene-wide significant association (p values between 1.46×10-6 and 2.66×10-6). One gene, WASL, is involved in neuronal development. Both SNP- and gene-based analyses indicated overlap with the PGC meta-analysis results with the genetic correlation estimated at 0.96. Conclusion The SNP-based heritability for ADHD symptom scores indicates a polygenic architecture and genes involved in neurite outgrowth are possibly involved. Continuous and dichotomous measures of ADHD appear to assess a genetically common phenotype. A next step is to combine data from population-based and case-control cohorts in genetic association studies to increase sample size and improve statistical power for identifying genetic variants. PMID:27663945
A Model Program for Translational Medicine in Epilepsy Genetics
Smith, Lacey A.; Ullmann, Jeremy F. P.; Olson, Heather E.; El Achkar, Christelle M.; Truglio, Gessica; Kelly, McKenna; Rosen-Sheidley, Beth; Poduri, Annapurna
2017-01-01
Recent technological advances in gene sequencing have led to a rapid increase in gene discovery in epilepsy. However, the ability to assess pathogenicity of variants, provide functional analysis, and develop targeted therapies has not kept pace with rapid advances in sequencing technology. Thus, although clinical genetic testing may lead to a specific molecular diagnosis for some patients, test results often lead to more questions than answers. As the field begins to focus on therapeutic applications of genetic diagnoses using precision medicine, developing processes that offer more than equivocal test results is essential. The success of precision medicine in epilepsy relies on establishing a correct genetic diagnosis, analyzing functional consequences of genetic variants, screening potential therapeutics in the preclinical laboratory setting, and initiating targeted therapy trials for patients. We describe the structure of a comprehensive, pediatric Epilepsy Genetics Program that can serve as a model for translational medicine in epilepsy. PMID:28056630
A role for molecular genetics in biological conservation.
O'Brien, S J
1994-01-01
The recognition of recent accelerated depletion of species as a consequence of human industrial development has spawned a wide interest in identifying threats to endangered species. In addition to ecological and demographic perils, it has become clear that small populations that narrowly survive demographic contraction may undergo close inbreeding, genetic drift, and loss of overall genomic variation due to allelic loss or reduction to homozygosity. I review here the consequences of such genetic depletion revealed by applying molecular population genetic analysis to four endangered mammals: African cheetah, lion, Florida panther, and humpback whale. The accumulated genetic results, combined with physiological, ecological, and ethological data, provide a multifaceted perspective of the process of species diminution. An emerging role of population genetics, phylogenetics, and phylogeography as indicators of a population's natural history and its future prognosis provides valuable data of use in the development of conservation management plans for endangered species. PMID:7912434
NASA Astrophysics Data System (ADS)
Liu, Robin H.; Longiaru, Mathew
2009-05-01
DNA microarrays are becoming a widespread tool used in life science and drug screening due to its many benefits of miniaturization and integration. Microarrays permit a highly multiplexed DNA analysis. Recently, the development of new detection methods and simplified methodologies has rapidly expanded the use of microarray technologies from predominantly gene expression analysis into the arena of diagnostics. Osmetech's eSensor® is an electrochemical detection platform based on a low-to- medium density DNA hybridization array on a cost-effective printed circuit board substrate. eSensor® has been cleared by FDA for Warfarin sensitivity test and Cystic Fibrosis Carrier Detection. Other genetic-based diagnostic and infectious disease detection tests are under development. The eSensor® platform eliminates the need for an expensive laser-based optical system and fluorescent reagents. It allows one to perform hybridization and detection in a single and small instrument without any fluidic processing and handling. Furthermore, the eSensor® platform is readily adaptable to on-chip sample-to-answer genetic analyses using microfluidics technology. The eSensor® platform provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus have a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.
Identification of natural high-oleate mutants from the USDA Peanut Germplasm Collection
USDA-ARS?s Scientific Manuscript database
Natural genetic variation may exist in plant germplasm collections. Identifying genetic variation may provide useful materials for breeders to develop new cultivars. After screening 8,846 cultivated peanut germplasm accessions by gas chromatography analysis, we identified three natural mutant lines ...
Price, William D; Underhill, Lynne
2013-09-04
With the development of recombinant DNA techniques for genetically modifying plants to exhibit beneficial traits, laws and regulations were adopted to ensure the safety of food and feed derived from such plants. This paper focuses on the regulation of genetically modified (GM) plants in Canada and the United States, with emphasis on the results of the compositional analysis routinely utilized as an indicator of possible unintended effects resulting from genetic modification. This work discusses the mandate of Health Canada and the Canadian Food Inspection Agency as well as the U.S. Food and Drug Administration's approach to regulating food and feed derived from GM plants. This work also addresses how publications by the Organisation for Economic Co-operation and Development and Codex Alimentarius fit, particularly with defining the importance and purpose of compositional analysis. The importance of study design, selection of comparators, use of literature, and commercial variety reference values is also discussed.
Bridging the gap between genome analysis and precision breeding in potato.
Gebhardt, Christiane
2013-04-01
Efficiency and precision in plant breeding can be enhanced by using diagnostic DNA-based markers for the selection of superior cultivars. This technique has been applied to many crops, including potatoes. The first generation of diagnostic DNA-based markers useful in potato breeding were enabled by several developments: genetic linkage maps based on DNA polymorphisms, linkage mapping of qualitative and quantitative agronomic traits, cloning and functional analysis of genes for pathogen resistance and genes controlling plant metabolism, and association genetics in collections of tetraploid varieties and advanced breeding clones. Although these have led to significant improvements in potato genetics, the prediction of most, if not all, natural variation in agronomic traits by diagnostic markers ultimately requires the identification of the causal genes and their allelic variants. This objective will be facilitated by new genomic tools, such as genomic resequencing and comparative profiling of the proteome, transcriptome, and metabolome in combination with phenotyping genetic materials relevant for variety development. Copyright © 2012 Elsevier Ltd. All rights reserved.
Song, W; Cao, L-J; Wang, Y-Z; Li, B-Y; Wei, S-J
2017-06-01
The oriental fruit moth (OFM) Grapholita molesta (Lepidoptera: Tortricidae) is an important economic pest of stone and pome fruits worldwide. We sequenced the OFM genome using next-generation sequencing and characterized the microsatellite distribution. In total, 56,674 microsatellites were identified, with 11,584 loci suitable for primer design. Twenty-seven polymorphic microsatellites, including 24 loci with trinucleotide repeat and three with pentanucleotide repeat, were validated in 95 individuals from four natural populations. The allele numbers ranged from 4 to 40, with an average value of 13.7 per locus. A high frequency of null alleles was observed in most loci developed for the OFM. Three marker panels, all of the loci, nine loci with the lowest null allele frequencies, and nine loci with the highest null allele frequencies, were established for population genetics analyses. The null allele influenced estimations of genetic diversity parameters but not the OFM's genetic structure. Both a STRUCTURE analysis and a discriminant analysis of principal components, using the three marker panels, divided the four natural populations into three groups. However, more individuals were incorrectly assigned by the STRUCTURE analysis when the marker panel with the highest null allele frequency was used compared with the other two panels. Our study provides empirical research on the effects of null alleles on population genetics analyses. The microsatellites developed will be valuable markers for genetic studies of the OFM.
Population genetic characterization of Cyclospora cayetanensis from discrete geographical regions.
Guo, Yaqiong; Li, Na; Ortega, Ynes R; Zhang, Longxian; Roellig, Dawn M; Feng, Yaoyu; Xiao, Lihua
2018-01-01
Cyclospora cayetanensis is an emerging pathogen that is endemic in developing countries and responsible for many large foodborne cyclosporiasis outbreaks in North America since 1990s. Because of the lack of typing targets, the genetic diversity and population genetics of C. cayetanensis have not been investigated. In this study, we undertook a population genetic analysis of multilocus sequence typing data we recently collected from 64 C. cayetanensis specimens. Despite the extensive genetic heterogeneity in the overall C. cayetanensis population, there were significant intra- and inter-genic linkage disequilibria (LD). A disappearance of LD was observed when only multilocus genotypes were included in the population genetic analysis, indicative of an epidemic nature of C. cayetanensis. Geographical segregation-associated sub-structuring was observed between specimens from China and those from Peru and the United States. The two subpopulations had reduced LD, indicating the likely occurrence of genetic exchange among isolates in endemic areas. Further analyses of specimens from other geographical regions are necessary to fully understand the population genetics of C. cayetanensis. Copyright © 2017 Elsevier Inc. All rights reserved.
Kaur, Kuljit; Sharma, Vikas; Singh, Vijay; Wani, Mohammad Saleem; Gupta, Raghbir Chand
2016-12-01
Tribulus terrestris L., commonly called puncture vine and gokhru, is an important member of Zygophyllaceae. The species is highly important in context to therapeutic uses and provides important active principles responsible for treatment of various diseases and also used as tonic. It is widely distributed in tropical regions of India and the world. However, status of its genetic diversity remained concealed due to lack of research work in this species. In present study, genetic diversity and structure of different populations of T. terrestris from north India was examined at molecular level using newly developed Simple Sequence Repeat (SSR) markers. In total, 20 primers produced 48 alleles in a size range of 100-500 bp with maximum (4) fragments amplified by TTMS-1, TTMS-25 and TTMS-33. Mean Polymorphism Information Content (PIC) and Marker Index (MI) were 0.368 and 1.01, respectively. Dendrogram showed three groups, one of which was purely containing accessions from Rajasthan while other two groups corresponded to Punjab and Haryana regions with intermixing of few other accessions. Analysis of molecular variance partitioned 76 % genetic variance within populations and 24 % among populations. Bayesian model based STRUCTURE analysis detected two genetic stocks for analyzed germplasm and also detected some admixed individuals. Different geographical populations of this species showed high level of genetic diversity. Results of present study can be useful in identifying diverse accessions and management of this plant resource. Moreover, the novel SSR markers developed can be utilized for various genetic analyses in this species in future.
Microfluidics for Single-Cell Genetic Analysis
Thompson, A. M.; Paguirigan, A. L.; Kreutz, J. E.; Radich, J. P.; Chiu, D. T.
2014-01-01
The ability to correlate single-cell genetic information to cellular phenotypes will provide the kind of detailed insight into human physiology and disease pathways that is not possible to infer from bulk cell analysis. Microfluidic technologies are attractive for single-cell manipulation due to precise handling and low risk of contamination. Additionally, microfluidic single-cell techniques can allow for high-throughput and detailed genetic analyses that increase accuracy and decreases reagent cost compared to bulk techniques. Incorporating these microfluidic platforms into research and clinical laboratory workflows can fill an unmet need in biology, delivering the highly accurate, highly informative data necessary to develop new therapies and monitor patient outcomes. In this perspective, we describe the current and potential future uses of microfluidics at all stages of single-cell genetic analysis, including cell enrichment and capture, single-cell compartmentalization and manipulation, and detection and analyses. PMID:24789374
Spinal schwannomatosis in the absence of neurofibromatosis: A very rare condition
Landi, A.; Dugoni, D.E.; Marotta, N.; Mancarella, C.; Delfini, R.
2010-01-01
Schwannomatosis is defined as an extremely rare tumors syndrome characterized by the presence of multiple schwannomas in the absence of typical signs of NF1 and NF2 syndromes. The genetic and molecular analysis performed on these tumors makes it possible to name schwannomatosis as distinct clinical and genetic syndrome. The treatment in the case of symptomatic lesions is surgical removal; if the lesions are asymptomatic it is better to perform serial MRI studies. Given the high incidence of developing additional lesions in patients with schwannomatosis, it remains imperative to perform serial brain and spinal cord MRI studies during follow-up. The differential diagnosis is important including clinical and radiological criteria plus molecular genetic analysis of tumor cells and lymphocyte DNA. We report a rare case of spinal schwannomatosis in which genetic analysis performed on surgical samples showed two different mutations in the cells of the two lesions. PMID:22096683
Spinal schwannomatosis in the absence of neurofibromatosis: A very rare condition.
Landi, A; Dugoni, D E; Marotta, N; Mancarella, C; Delfini, R
2011-01-01
Schwannomatosis is defined as an extremely rare tumors syndrome characterized by the presence of multiple schwannomas in the absence of typical signs of NF1 and NF2 syndromes. The genetic and molecular analysis performed on these tumors makes it possible to name schwannomatosis as distinct clinical and genetic syndrome. The treatment in the case of symptomatic lesions is surgical removal; if the lesions are asymptomatic it is better to perform serial MRI studies. Given the high incidence of developing additional lesions in patients with schwannomatosis, it remains imperative to perform serial brain and spinal cord MRI studies during follow-up. The differential diagnosis is important including clinical and radiological criteria plus molecular genetic analysis of tumor cells and lymphocyte DNA. We report a rare case of spinal schwannomatosis in which genetic analysis performed on surgical samples showed two different mutations in the cells of the two lesions.
Zhang, F; Ge, Y Y; Wang, W Y; Shen, X L; Yu, X Y
2012-12-03
Conventional hybridization and selection techniques have aided the development of new ornamental crop cultivars. However, little information is available on the genetic divergence of bromeliad hybrids. In the present study, we investigated the genetic variability in interspecific hybrids of Aechmea gomosepala and A. recurvata var. recurvata using inflorescence characteristics and sequence-related amplified polymorphism (SRAP) markers. The morphological analysis showed that the putative hybrids were intermediate between both parental species with respect to inflorescence characteristics. The 16 SRAP primer combinations yield 265 bands, among which 154 (57.72%) were polymorphic. The genetic similarity was an average of 0.59 and ranged from 0.21 to 0.87, indicating moderate genetic divergence among the hybrids. The unweighted pair group method with arithmetic average (UPGMA)-based cluster analysis distinguished the hybrids from their parents with a genetic distance coefficient of 0.54. The cophenetic correlation was 0.93, indicating a good fit between the dendrogram and the original distance matrix. The two-dimensional plot from the principal coordinate analysis showed that the hybrids were intermediately dispersed between both parents, corresponding to the results of the UPGMA cluster and the morphological analysis. These results suggest that SRAP markers could help to identify breeders, characterize F(1) hybrids of bromeliads at an early stage, and expedite genetic improvement of bromeliad cultivars.
NASA Technical Reports Server (NTRS)
Norga, Koenraad K.; Gurganus, Marjorie C.; Dilda, Christy L.; Yamamoto, Akihiko; Lyman, Richard F.; Patel, Prajal H.; Rubin, Gerald M.; Hoskins, Roger A.; Mackay, Trudy F.; Bellen, Hugo J.
2003-01-01
BACKGROUND: The identification of the function of all genes that contribute to specific biological processes and complex traits is one of the major challenges in the postgenomic era. One approach is to employ forward genetic screens in genetically tractable model organisms. In Drosophila melanogaster, P element-mediated insertional mutagenesis is a versatile tool for the dissection of molecular pathways, and there is an ongoing effort to tag every gene with a P element insertion. However, the vast majority of P element insertion lines are viable and fertile as homozygotes and do not exhibit obvious phenotypic defects, perhaps because of the tendency for P elements to insert 5' of transcription units. Quantitative genetic analysis of subtle effects of P element mutations that have been induced in an isogenic background may be a highly efficient method for functional genome annotation. RESULTS: Here, we have tested the efficacy of this strategy by assessing the extent to which screening for quantitative effects of P elements on sensory bristle number can identify genes affecting neural development. We find that such quantitative screens uncover an unusually large number of genes that are known to function in neural development, as well as genes with yet uncharacterized effects on neural development, and novel loci. CONCLUSIONS: Our findings establish the use of quantitative trait analysis for functional genome annotation through forward genetics. Similar analyses of quantitative effects of P element insertions will facilitate our understanding of the genes affecting many other complex traits in Drosophila.
Metabolic thrift and the genetic basis of human obesity
O’Rourke, Robert W.
2014-01-01
Evolution has molded metabolic thrift within humans, a genetic heritage that, when thrust into our modern “obesogenic” environment, creates the current obesity crisis. Modern genetic analysis has identified genetic and epigenetic contributors to obesity, an understanding of which will guide the development of environmental, pharmacologic, and genetic therapeutic interventions. “The voyage was so long, food and water ran out. One hundred of the paddlers died; forty men remained. The voyagers finally reached Fitinui, then Aotona.”-From “The Story of Aka”, in The Native Culture in the Marquesas by E. S. Craighill Handy PMID:24368636
Moore, Jason H; Amos, Ryan; Kiralis, Jeff; Andrews, Peter C
2015-01-01
Simulation plays an essential role in the development of new computational and statistical methods for the genetic analysis of complex traits. Most simulations start with a statistical model using methods such as linear or logistic regression that specify the relationship between genotype and phenotype. This is appealing due to its simplicity and because these statistical methods are commonly used in genetic analysis. It is our working hypothesis that simulations need to move beyond simple statistical models to more realistically represent the biological complexity of genetic architecture. The goal of the present study was to develop a prototype genotype–phenotype simulation method and software that are capable of simulating complex genetic effects within the context of a hierarchical biology-based framework. Specifically, our goal is to simulate multilocus epistasis or gene–gene interaction where the genetic variants are organized within the framework of one or more genes, their regulatory regions and other regulatory loci. We introduce here the Heuristic Identification of Biological Architectures for simulating Complex Hierarchical Interactions (HIBACHI) method and prototype software for simulating data in this manner. This approach combines a biological hierarchy, a flexible mathematical framework, a liability threshold model for defining disease endpoints, and a heuristic search strategy for identifying high-order epistatic models of disease susceptibility. We provide several simulation examples using genetic models exhibiting independent main effects and three-way epistatic effects. PMID:25395175
Transcriptome and proteome analysis of ovaries of arrhenotokous and thelytokous Venturia canescens.
Mateo Leach, I; Hesseling, A; Huibers, W H C; Witsenboer, H; Beukeboom, L W; van de Zande, L
2009-08-01
Under arrhenotoky, unfertilized haploid eggs develop as males but under thelytoky they develop into diploid females after they have undergone diploidy restoration. In the parasitoid wasp Venturia canescens both reproductive modes occur. Thelytoky is genetically determined but the underlying genetics of diploidy restoration remain unknown. In this study we aim to identify the genes and/or proteins that control thelytoky. cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis of total ovarian RNA and two-dimensional protein electrophoresis in combination with mass spectrometry revealed putative transcripts and proteins involved in arrhenotokous and thelytokous development. The detected tubulin and actin protein differences are most likely functionally related to the two types of reproduction.
Manzanero, Silvia; Kozlovskaia, Maria; Vlahovich, Nicole; Hughes, David C
2018-05-23
With the increasing capacity for remote collection of both data and samples for medical research, a thorough assessment is needed to determine the association of population characteristics and recruitment methodologies with response rates. The aim of this research was to assess population representativeness in a two-stage study of health and injury in recreational runners, which consisted of an epidemiological arm and genetic analysis. The cost and success of various classical and internet-based methods were analyzed, and demographic representativeness was assessed for recruitment to the epidemiological survey, reported willingness to participate in the genetic arm of the study, actual participation, sample return, and approval for biobank storage. A total of 4965 valid responses were received, of which 1664 were deemed eligible for genetic analysis. Younger age showed a negative association with initial recruitment rate, expressed willingness to participate in genetic analysis, and actual participation. Additionally, female sex was associated with higher initial recruitment rates, and ethnic origin impacted willingness to participate in the genetic analysis (all P<.001). The sharp decline in retention through the different stages of the study in young respondents suggests the necessity to develop specific recruitment and retention strategies when investigating a young, physically active population. ©Silvia Manzanero, Maria Kozlovskaia, Nicole Vlahovich, David C Hughes. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 23.05.2018.
Karyotype versus microarray testing for genetic abnormalities after stillbirth.
Reddy, Uma M; Page, Grier P; Saade, George R; Silver, Robert M; Thorsten, Vanessa R; Parker, Corette B; Pinar, Halit; Willinger, Marian; Stoll, Barbara J; Heim-Hall, Josefine; Varner, Michael W; Goldenberg, Robert L; Bukowski, Radek; Wapner, Ronald J; Drews-Botsch, Carolyn D; O'Brien, Barbara M; Dudley, Donald J; Levy, Brynn
2012-12-06
Genetic abnormalities have been associated with 6 to 13% of stillbirths, but the true prevalence may be higher. Unlike karyotype analysis, microarray analysis does not require live cells, and it detects small deletions and duplications called copy-number variants. The Stillbirth Collaborative Research Network conducted a population-based study of stillbirth in five geographic catchment areas. Standardized postmortem examinations and karyotype analyses were performed. A single-nucleotide polymorphism array was used to detect copy-number variants of at least 500 kb in placental or fetal tissue. Variants that were not identified in any of three databases of apparently unaffected persons were then classified into three groups: probably benign, clinical significance unknown, or pathogenic. We compared the results of karyotype and microarray analyses of samples obtained after delivery. In our analysis of samples from 532 stillbirths, microarray analysis yielded results more often than did karyotype analysis (87.4% vs. 70.5%, P<0.001) and provided better detection of genetic abnormalities (aneuploidy or pathogenic copy-number variants, 8.3% vs. 5.8%; P=0.007). Microarray analysis also identified more genetic abnormalities among 443 antepartum stillbirths (8.8% vs. 6.5%, P=0.02) and 67 stillbirths with congenital anomalies (29.9% vs. 19.4%, P=0.008). As compared with karyotype analysis, microarray analysis provided a relative increase in the diagnosis of genetic abnormalities of 41.9% in all stillbirths, 34.5% in antepartum stillbirths, and 53.8% in stillbirths with anomalies. Microarray analysis is more likely than karyotype analysis to provide a genetic diagnosis, primarily because of its success with nonviable tissue, and is especially valuable in analyses of stillbirths with congenital anomalies or in cases in which karyotype results cannot be obtained. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.).
Understanding patterns of post-establishment spread by invasive species is critically important for the design of effective management strategies and the development of appropriate theoretical models predicting spatial expansion of introduced populations. Here we explore genetic ...
Nakamura, Kosuke; Kondo, Kazunari; Akiyama, Hiroshi; Ishigaki, Takumi; Noguchi, Akio; Katsumata, Hiroshi; Takasaki, Kazuto; Futo, Satoshi; Sakata, Kozue; Fukuda, Nozomi; Mano, Junichi; Kitta, Kazumi; Tanaka, Hidenori; Akashi, Ryo; Nishimaki-Mogami, Tomoko
2016-08-15
Identification of transgenic sequences in an unknown genetically modified (GM) papaya (Carica papaya L.) by whole genome sequence analysis was demonstrated. Whole genome sequence data were generated for a GM-positive fresh papaya fruit commodity detected in monitoring using real-time polymerase chain reaction (PCR). The sequences obtained were mapped against an open database for papaya genome sequence. Transgenic construct- and event-specific sequences were identified as a GM papaya developed to resist infection from a Papaya ringspot virus. Based on the transgenic sequences, a specific real-time PCR detection method for GM papaya applicable to various food commodities was developed. Whole genome sequence analysis enabled identifying unknown transgenic construct- and event-specific sequences in GM papaya and development of a reliable method for detecting them in papaya food commodities. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Advances in genetic research of cerebral palsy].
Wang, Fang-Fang; Luo, Rong; Qu, Yi; Mu, De-Zhi
2017-09-01
Cerebral palsy is a group of syndromes caused by non-progressive brain injury in the fetus or infant and can cause disabilities in childhood. Etiology of cerebral palsy has always been a hot topic for clinical scientists. More and more studies have shown that genetic factors are closely associated with the development of cerebral palsy. With the development and application of various molecular and biological techniques such as chromosome microarray analysis, genome-wide association study, and whole exome sequencing, new achievements have been made in the genetic research of cerebral palsy. Chromosome abnormalities, copy number variations, susceptibility genes, and single gene mutation associated with the development of cerebral palsy have been identified, which provides new opportunities for the research on the pathogenesis of cerebral palsy. This article reviews the advances in the genetic research on cerebral palsy in recent years.
Disease Modeling via Large-Scale Network Analysis
2015-05-20
SECURITY CLASSIFICATION OF: A central goal of genetics is to learn how the genotype of an organism determines its phenotype. We address the implicit...guarantees for the methods. In the past, we have developed predictive methods general enough to apply to potentially any genetic trait, varying from... genetics is to learn how the genotype of an organism determines its phenotype. We address the implicit problem of predicting the association of genes with
Rapid identification of Enterobacter hormaechei and Enterobacter cloacae genetic cluster III.
Ohad, S; Block, C; Kravitz, V; Farber, A; Pilo, S; Breuer, R; Rorman, E
2014-05-01
Enterobacter cloacae complex bacteria are of both clinical and environmental importance. Phenotypic methods are unable to distinguish between some of the species in this complex, which often renders their identification incomplete. The goal of this study was to develop molecular assays to identify Enterobacter hormaechei and Ent. cloacae genetic cluster III which are relatively frequently encountered in clinical material. The molecular assays developed in this study are qPCR technology based and served to identify both Ent. hormaechei and Ent. cloacae genetic cluster III. qPCR results were compared to hsp60 sequence analysis. Most clinical isolates were assigned to Ent. hormaechei subsp. steigerwaltii and Ent. cloacae genetic cluster III. The latter was proportionately more frequently isolated from bloodstream infections than from other material (P < 0·05). The qPCR assays detecting Ent. hormaechei and Ent. cloacae genetic cluster III demonstrated high sensitivity and specificity. The presented qPCR assays allow accurate and rapid identification of clinical isolates of the Ent. cloacae complex. The improved identifications obtained can specifically assist analysis of Ent. hormaechei and Ent. cloacae genetic cluster III in nosocomial outbreaks and can promote rapid environmental monitoring. An association was observed between Ent. cloacae cluster III and systemic infection that deserves further attention. © 2014 The Society for Applied Microbiology.
Genetic determinants of prepubertal and pubertal growth and development.
Thomis, Martine A; Towne, Bradford
2006-12-01
This article surveys the current general understanding of genetic influences on within- and between-population variation in growth and development in the context of establishing an International Growth Standard for Preadolescent and Adolescent Children. Traditional genetic epidemiologic analysis methods are reviewed, and evidence from family studies for genetic effects on different measures of growth and development is then presented. Findings from linkage and association studies seeking to identify specific genomic locations and allelic variants of genes influencing variation in growth and maturation are then summarized. Special mention is made of the need to study the interactions between genes and environments. At present, specific genes and polymorphisms contributing to variation in growth and maturation are only beginning to be identified. Larger genetic epidemiologic studies are needed in different parts of the world to better explore population differences in gene frequencies and gene-environment interactions. As advances continue to be made in molecular and statistical genetic methods, the genetic architecture of complex processes, including those of growth and development, will become better elucidated. For now, it can only be concluded that although the fundamental genetic underpinnings of the growth and development of children worldwide are likely to be essentially the same, there are also likely to be differences between populations in the frequencies of allelic gene variants that influence growth and maturation and in the nature of gene-environment interactions. This does not necessarily preclude an international growth reference, but it does have important implications for the form that such a reference might ultimately take.
2013-01-01
Background Cucumber is an important vegetable crop that is susceptible to many pathogens, but no disease resistance (R) genes have been cloned. The availability of whole genome sequences provides an excellent opportunity for systematic identification and characterization of the nucleotide binding and leucine-rich repeat (NB-LRR) type R gene homolog (RGH) sequences in the genome. Cucumber has a very narrow genetic base making it difficult to construct high-density genetic maps. Development of a consensus map by synthesizing information from multiple segregating populations is a method of choice to increase marker density. As such, the objectives of the present study were to identify and characterize NB-LRR type RGHs, and to develop a high-density, integrated cucumber genetic-physical map anchored with RGH loci. Results From the Gy14 draft genome, 70 NB-containing RGHs were identified and characterized. Most RGHs were in clusters with uneven distribution across seven chromosomes. In silico analysis indicated that all 70 RGHs had EST support for gene expression. Phylogenetic analysis classified 58 RGHs into two clades: CNL and TNL. Comparative analysis revealed high-degree sequence homology and synteny in chromosomal locations of these RGH members between the cucumber and melon genomes. Fifty-four molecular markers were developed to delimit 67 of the 70 RGHs, which were integrated into a genetic map through linkage analysis. A 1,681-locus cucumber consensus map including 10 gene loci and spanning 730.0 cM in seven linkage groups was developed by integrating three component maps with a bin-mapping strategy. Physically, 308 scaffolds with 193.2 Mbp total DNA sequences were anchored onto this consensus map that covered 52.6% of the 367 Mbp cucumber genome. Conclusions Cucumber contains relatively few NB-LRR RGHs that are clustered and unevenly distributed in the genome. All RGHs seem to be transcribed and shared significant sequence homology and synteny with the melon genome suggesting conservation of these RGHs in the Cucumis lineage. The 1,681-locus consensus genetic-physical map developed and the RGHs identified and characterized herein are valuable genomics resources that may have many applications such as quantitative trait loci identification, map-based gene cloning, association mapping, marker-assisted selection, as well as assembly of a more complete cucumber genome. PMID:23531125
Kiper, Ilkser Erdem; Bloomer, Paulette; Borsa, Philippe; Hoareau, Thierry Bernard
2018-02-01
Rabbitfishes are reef-associated fishes that support local fisheries throughout the Indo-West Pacific region. Sound management of the resource requires the development of molecular tools for appropriate stock delimitation of the different species in the family. Microsatellite markers were developed for the cordonnier, Siganus sutor, and their potential for cross-amplification was investigated in 12 congeneric species. A library of 792 repeat-containing sequences was built. Nineteen sets of newly developed primers, and 14 universal finfish microsatellites were tested in S. sutor. Amplification success of the 19 Siganus-specific markers ranged from 32 to 79% in the 12 other Siganus species, slightly decreasing when the genetic distance of the target species to S. sutor increased. Seventeen of these markers were polymorphic in S. sutor and were further assayed in S. luridus, S. rivulatus, and S. spinus, of which respectively 9, 10 and 8 were polymorphic. Statistical power analysis and an analysis of molecular variance showed that subtle genetic differentiation can be detected using these markers, highlighting their utility for the study of genetic diversity and population genetic structure in rabbitfishes.
USDA-ARS?s Scientific Manuscript database
Straighthead is a physiological disorder in rice that causes yield losses and is a serious threat to rice production worldwide. Identification of QTL conferring resistance will help develop resistant cultivars for straighthead control. We conducted linkage mapping to identify QTL involved with strai...
Theobroma cacao: A genetically integrated physical map and genome-scale comparative synteny analysis
USDA-ARS?s Scientific Manuscript database
A comprehensive integrated genomic framework is considered a centerpiece of genomic research. In collaboration with the USDA-ARS (SHRS) and Mars Inc., the Clemson University Genomics Institute (CUGI) has developed a genetically anchored physical map of the T. cacao genome. Three BAC libraries contai...
Teaching Mitochondrial Genetics & Disease: A GENA Project Curriculum Intervention
ERIC Educational Resources Information Center
Reardon, Ryan A.; Sharer, J. Daniel
2012-01-01
This report describes a novel, inquiry-based learning plan developed as part of the GENA educational outreach project. Focusing on mitochondrial genetics and disease, this interactive approach utilizes pedigree analysis and laboratory techniques to address non-Mendelian inheritance. The plan can be modified to fit a variety of educational goals…
Genetic evaluation of gestation length as a trait of the service sire
USDA-ARS?s Scientific Manuscript database
Predicted transmitting abilities (PTA) for gestation length (GL) were developed for all dairy breeds and crossbreds. Initial GL edits gave 20.5 million records of 10.8 million cows and included GL after either heifer or cow inseminations. Preliminary analysis revealed a very negative genetic trend i...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-20
...] Syngenta Biotechnology, Inc.; Determination of Nonregulated Status for Corn Genetically Engineered for... are advising the public of our determination that a corn line developed by Syngenta Biotechnology, Inc... Biotechnology, Inc., in its petition for a determination of nonregulated status, our analysis of other...
Liu, Dajiang J; Leal, Suzanne M
2012-10-05
Next-generation sequencing has led to many complex-trait rare-variant (RV) association studies. Although single-variant association analysis can be performed, it is grossly underpowered. Therefore, researchers have developed many RV association tests that aggregate multiple variant sites across a genetic region (e.g., gene), and test for the association between the trait and the aggregated genotype. After these aggregate tests detect an association, it is only possible to estimate the average genetic effect for a group of RVs. As a result of the "winner's curse," such an estimate can be biased. Although for common variants one can obtain unbiased estimates of genetic parameters by analyzing a replication sample, for RVs it is desirable to obtain unbiased genetic estimates for the study where the association is identified. This is because there can be substantial heterogeneity of RV sites and frequencies even among closely related populations. In order to obtain an unbiased estimate for aggregated RV analysis, we developed bootstrap-sample-split algorithms to reduce the bias of the winner's curse. The unbiased estimates are greatly important for understanding the population-specific contribution of RVs to the heritability of complex traits. We also demonstrate both theoretically and via simulations that for aggregate RV analysis the genetic variance for a gene or region will always be underestimated, sometimes substantially, because of the presence of noncausal variants or because of the presence of causal variants with effects of different magnitudes or directions. Therefore, even if RVs play a major role in the complex-trait etiologies, a portion of the heritability will remain missing, and the contribution of RVs to the complex-trait etiologies will be underestimated. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Understanding genetics: Analysis of secondary students' conceptual status
NASA Astrophysics Data System (ADS)
Tsui, Chi-Yan; Treagust, David F.
2007-02-01
This article explores the conceptual change of students in Grades 10 and 12 in three Australian senior high schools when the teachers included computer multimedia to a greater or lesser extent in their teaching of a genetics course. The study, underpinned by a multidimensional conceptual-change framework, used an interpretive approach and a case-based design with multiple data collection methods. Over 4-8 weeks, the students learned genetics in classroom lessons that included BioLogica activities, which feature multiple representations. Results of the online tests and interview tasks revealed that most students improved their understanding of genetics as evidenced in the development of genetics reasoning. However, using Thorley's (1990) status analysis categories, a cross-case analysis of the gene conceptions of 9 of the 26 students interviewed indicated that only 4 students' postinstructional conceptions were intelligible-plausible-fruitful. Students' conceptual change was consistent with classroom teaching and learning. Findings suggested that multiple representations supported conceptual understanding of genetics but not in all students. It was also shown that status can be a viable hallmark enabling researchers to identify students' conceptual change that would otherwise be less accessible. Thorley's method for analyzing conceptual status is discussed.
Ashbrook, David G; Williams, Robert W; Lu, Lu; Stein, Jason L; Hibar, Derrek P; Nichols, Thomas E; Medland, Sarah E; Thompson, Paul M; Hager, Reinmar
2014-10-03
Variation in hippocampal volume has been linked to significant differences in memory, behavior, and cognition among individuals. To identify genetic variants underlying such differences and associated disease phenotypes, multinational consortia such as ENIGMA have used large magnetic resonance imaging (MRI) data sets in human GWAS studies. In addition, mapping studies in mouse model systems have identified genetic variants for brain structure variation with great power. A key challenge is to understand how genetically based differences in brain structure lead to the propensity to develop specific neurological disorders. We combine the largest human GWAS of brain structure with the largest mammalian model system, the BXD recombinant inbred mouse population, to identify novel genetic targets influencing brain structure variation that are linked to increased risk for neurological disorders. We first use a novel cross-species, comparative analysis using mouse and human genetic data to identify a candidate gene, MGST3, associated with adult hippocampus size in both systems. We then establish the coregulation and function of this gene in a comprehensive systems-analysis. We find that MGST3 is associated with hippocampus size and is linked to a group of neurodegenerative disorders, such as Alzheimer's.
Savage, Jeanne E; Jansen, Philip R; Stringer, Sven; Watanabe, Kyoko; Bryois, Julien; de Leeuw, Christiaan A; Nagel, Mats; Awasthi, Swapnil; Barr, Peter B; Coleman, Jonathan R I; Grasby, Katrina L; Hammerschlag, Anke R; Kaminski, Jakob A; Karlsson, Robert; Krapohl, Eva; Lam, Max; Nygaard, Marianne; Reynolds, Chandra A; Trampush, Joey W; Young, Hannah; Zabaneh, Delilah; Hägg, Sara; Hansell, Narelle K; Karlsson, Ida K; Linnarsson, Sten; Montgomery, Grant W; Muñoz-Manchado, Ana B; Quinlan, Erin B; Schumann, Gunter; Skene, Nathan G; Webb, Bradley T; White, Tonya; Arking, Dan E; Avramopoulos, Dimitrios; Bilder, Robert M; Bitsios, Panos; Burdick, Katherine E; Cannon, Tyrone D; Chiba-Falek, Ornit; Christoforou, Andrea; Cirulli, Elizabeth T; Congdon, Eliza; Corvin, Aiden; Davies, Gail; Deary, Ian J; DeRosse, Pamela; Dickinson, Dwight; Djurovic, Srdjan; Donohoe, Gary; Conley, Emily Drabant; Eriksson, Johan G; Espeseth, Thomas; Freimer, Nelson A; Giakoumaki, Stella; Giegling, Ina; Gill, Michael; Glahn, David C; Hariri, Ahmad R; Hatzimanolis, Alex; Keller, Matthew C; Knowles, Emma; Koltai, Deborah; Konte, Bettina; Lahti, Jari; Le Hellard, Stephanie; Lencz, Todd; Liewald, David C; London, Edythe; Lundervold, Astri J; Malhotra, Anil K; Melle, Ingrid; Morris, Derek; Need, Anna C; Ollier, William; Palotie, Aarno; Payton, Antony; Pendleton, Neil; Poldrack, Russell A; Räikkönen, Katri; Reinvang, Ivar; Roussos, Panos; Rujescu, Dan; Sabb, Fred W; Scult, Matthew A; Smeland, Olav B; Smyrnis, Nikolaos; Starr, John M; Steen, Vidar M; Stefanis, Nikos C; Straub, Richard E; Sundet, Kjetil; Tiemeier, Henning; Voineskos, Aristotle N; Weinberger, Daniel R; Widen, Elisabeth; Yu, Jin; Abecasis, Goncalo; Andreassen, Ole A; Breen, Gerome; Christiansen, Lene; Debrabant, Birgit; Dick, Danielle M; Heinz, Andreas; Hjerling-Leffler, Jens; Ikram, M Arfan; Kendler, Kenneth S; Martin, Nicholas G; Medland, Sarah E; Pedersen, Nancy L; Plomin, Robert; Polderman, Tinca J C; Ripke, Stephan; van der Sluis, Sophie; Sullivan, Patrick F; Vrieze, Scott I; Wright, Margaret J; Posthuma, Danielle
2018-06-25
Intelligence is highly heritable 1 and a major determinant of human health and well-being 2 . Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence 3-7 , but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.
[Algorithm of toxigenic genetically altered Vibrio cholerae El Tor biovar strain identification].
Smirnova, N I; Agafonov, D A; Zadnova, S P; Cherkasov, A V; Kutyrev, V V
2014-01-01
Development of an algorithm of genetically altered Vibrio cholerae biovar El Tor strai identification that ensures determination of serogroup, serovar and biovar of the studied isolate based on pheno- and genotypic properties, detection of genetically altered cholera El Tor causative agents, their differentiation by epidemic potential as well as evaluation of variability of key pathogenicity genes. Complex analysis of 28 natural V. cholerae strains was carried out by using traditional microbiological methods, PCR and fragmentary sequencing. An algorithm of toxigenic genetically altered V. cholerae biovar El Tor strain identification was developed that includes 4 stages: determination of serogroup, serovar and biovar based on phenotypic properties, confirmation of serogroup and biovar based on molecular-genetic properties determination of strains as genetically altered, differentiation of genetically altered strains by their epidemic potential and detection of ctxB and tcpA key pathogenicity gene polymorphism. The algorithm is based on the use of traditional microbiological methods, PCR and sequencing of gene fragments. The use of the developed algorithm will increase the effectiveness of detection of genetically altered variants of the cholera El Tor causative agent, their differentiation by epidemic potential and will ensure establishment of polymorphism of genes that code key pathogenicity factors for determination of origins of the strains and possible routes of introduction of the infection.
Zadro, Joshua R; Shirley, Debra; Pinheiro, Marina B; Sánchez-Romera, Juan F; Pérez-Riquelme, Francisco; Ordoñana, Juan R; Ferreira, Paulo H
2017-04-01
There is limited research investigating educational attainment as a risk factor for low back pain (LBP), with the influence of gender commonly being neglected. Furthermore, genetics and early shared environment explain a substantial proportion of LBP cases and need to be controlled for when investigating risk factors for LBP. To investigate whether educational attainment affects the prevalence and risk of LBP differently in men and women while controlling for the influence of genetics and early shared environment. This is a cross-sectional and prospective twin case-control study. Adult monozygotic (MZ) and dizygotic (DZ) twins from the Murcia Twin Registry, with available data on educational attainment, formed the base sample for this study. The prevalence analysis considered twins with available data on LBP in 2013 (n=1,580). The longitudinal analysis considered twins free of LBP at baseline (2009-2011), with available data on LBP at follow-up (2013) (n=1,077). Data on the lifetime prevalence of activity limiting LBP (outcome) and educational attainment (risk factor) were self-reported. The prevalence analysis investigated the cross-sectional association between educational attainment and LBP, whereas the longitudinal analysis investigated whether educational attainment increased the risk of developing LBP. Both analyses were performed in the following sequence. First, a total sample analysis was performed on all twins (considering them as individuals), adjusting for confounding variables selected by the data. Second, to control for the influence of genetics and early shared environment, a within-pair case-control analysis (stratified by zygosity) was performed on complete twin pairs discordant for LBP (ie, one twin had LBP, whereas the co-twin did not). All analyses were stratified for gender where possible, with an interaction term determining whether gender was a significant moderator of the association between educational attainment and LBP. Women with either general secondary or university education were less likely to experience (prevalence analysis) or to develop LBP (longitudinal analysis). Educational attainment did not affect the risk of LBP in men. When controlling for the effects of genetics and early shared environment, the relationship between educational status and LBP in women was no longer statistically significant. Educational attainment affects LBP differently in men and women, with higher levels of education only decreasing the risk of developing LBP in women. After adjusting for genetics and early shared environment, the relationship between educational attainment and LBP in women disappears. This suggests that genetics and early shared environment are confounding the relationship between educational attainment and LBP in women. Copyright © 2016 Elsevier Inc. All rights reserved.
Dahlhoff, Maik; Schäfer, Matthias; Wolf, Eckhard; Schneider, Marlon R
2013-02-15
The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor with manifold functions during development, tissue homeostasis and disease. EGFR activation, the formation of homodimers or heterodimers (with the related ERBB2-4 receptors) and downstream signaling is initiated by the binding of a family of structurally related growth factors, the EGFR ligands. Genetic deletion experiments clarified the biological function of all family members except for the last characterized ligand, epigen. We employed gene targeting in mouse embryonic stem cells to generate mice lacking epigen expression. Loss of epigen did not affect mouse development, fertility, or organ physiology. Quantitative RT-PCR analysis revealed increased expression of betacellulin and EGF in a few organs of epigen-deficient mice, suggesting a functional compensation by these ligands. In conclusion, we completed the genetic analysis of EGFR ligands and show that epigen has non-essential functions or functions that can be compensated by other EGFR ligands during growth and tissue homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.
Konganti, Kranti; Ehrlich, Andre; Rusyn, Ivan; Threadgill, David W
2018-06-07
Multi-parental recombinant inbred populations, such as the Collaborative Cross (CC) mouse genetic reference population, are increasingly being used for analysis of quantitative trait loci (QTL). However specialized analytic software for these complex populations is typically built in R that works only on command-line, which limits the utility of these powerful resources for many users. To overcome analytic limitations, we developed gQTL, a web accessible, simple graphical user interface application based on the DOQTL platform in R to perform QTL mapping using data from CC mice. Copyright © 2018, G3: Genes, Genomes, Genetics.
GWAS meta-analysis of 16 852 women identifies new susceptibility locus for endometrial cancer
Chen, Maxine M.; O'Mara, Tracy A.; Thompson, Deborah J.; Painter, Jodie N.; Attia, John; Black, Amanda; Brinton, Louise; Chanock, Stephen; Chen, Chu; Cheng, Timothy HT; Cook, Linda S.; Crous-Bou, Marta; Doherty, Jennifer; Friedenreich, Christine M.; Garcia-Closas, Montserrat; Gaudet, Mia M.; Gorman, Maggie; Haiman, Christopher; Hankinson, Susan E.; Hartge, Patricia; Henderson, Brian E.; Hodgson, Shirley; Holliday, Elizabeth G.; Horn-Ross, Pamela L.; Hunter, David J.; Le Marchand, Loic; Liang, Xiaolin; Lissowska, Jolanta; Long, Jirong; Lu, Lingeng; Magliocco, Anthony M.; Martin, Lynn; McEvoy, Mark; Olson, Sara H.; Orlow, Irene; Pooler, Loreall; Prescott, Jennifer; Rastogi, Radhai; Rebbeck, Timothy R.; Risch, Harvey; Sacerdote, Carlotta; Schumacher, Frederick; Wendy Setiawan, Veronica; Scott, Rodney J.; Sheng, Xin; Shu, Xiao-Ou; Turman, Constance; Van Den Berg, David; Wang, Zhaoming; Weiss, Noel S.; Wentzensen, Nicholas; Xia, Lucy; Xiang, Yong-Bing; Yang, Hannah P.; Yu, Herbert; Zheng, Wei; Pharoah, Paul D.P.; Dunning, Alison M.; Tomlinson, Ian; Easton, Douglas F.; Kraft, Peter; Spurdle, Amanda B.; De Vivo, Immaculata
2016-01-01
Endometrial cancer is the most common gynecological malignancy in the developed world. Although there is evidence of genetic predisposition to the disease, most of the genetic risk remains unexplained. We present the meta-analysis results of four genome-wide association studies (4907 cases and 11 945 controls total) in women of European ancestry. We describe one new locus reaching genome-wide significance (P < 5 × 10 −8) at 6p22.3 (rs1740828; P = 2.29 × 10 −8, OR = 1.20), providing evidence of an additional region of interest for genetic susceptibility to endometrial cancer. PMID:27008869
[Genetic information and future medicine].
Sakurai, Akihiro
2012-11-01
Rapid technological advances in genetic analysis have revealed the genetic background of various diseases. Elucidation of the genes responsible for a disease enables better clinical management of the disease and helps to develop targeted drugs. Also, early diagnosis and management of at-risk family members can be made by identification of a genetic disease in the proband. On the other hand, genetic issues often cause psychological distress to the family. To perform genetic testing appropriately and to protect patients and family members from any harm, guidelines for genetic testing were released from the alliance of Japanese genetics-related academic societies in 2003. As genetic testing is becoming incorporated into clinical practice more broadly, the guideline was revised and released by the Japanese Society of Medical Sciences in 2011. All medical professionals in Japan are expected to follow this guideline.
Clinical applications of preimplantation genetic testing.
Brezina, Paul R; Kutteh, William H
2015-02-19
Genetic diagnostic technologies are rapidly changing the way medicine is practiced. Preimplantation genetic testing is a well established application of genetic testing within the context of in vitro fertilization cycles. It involves obtaining a cell(s) from a developing embryo in culture, which is then subjected to genetic diagnostic analysis; the resulting information is used to guide which embryos are transferred into the uterus. The potential applications and use of this technology have increased in recent years. Experts agree that preimplantation genetic diagnosis is clinically appropriate for many known genetic disorders. However, some applications of such testing, such as preimplantation genetic screening for aneuploidy, remain controversial. Clinical data suggest that preimplantation genetic screening may be useful, but further studies are needed to quantify the size of the effect and who would benefit most. © BMJ Publishing Group Ltd 2015.
Application of medical cases in general genetics teaching in universities.
He, Zhumei; Bie, Linsai; Li, Wei
2018-01-20
General genetics is a core course in life sciences, medicine, agriculture and other related fields. As one of the most fast-developing disciplines of life sciences in the 21th century, the influence of the genetics knowledge on daily life is expanding, especially on human health and reproduction. In order to make it easier for students to understand the profound principles of genetics and to better apply the theories to daily life, we have introduced appropriate medical cases in general genetics teaching and further extended them combined with theoretical basis of genetics. This approach will be beneficial to enhance students' abilities of genetic analysis and promote their enthusiasm to learn and master practical skills. In this paper, we enumerate medical cases related to the modern genetics teaching system to provide a reference for genetics teaching in general and normal universities.
Feliubadaló, Lídia; Lopez-Doriga, Adriana; Castellsagué, Ester; del Valle, Jesús; Menéndez, Mireia; Tornero, Eva; Montes, Eva; Cuesta, Raquel; Gómez, Carolina; Campos, Olga; Pineda, Marta; González, Sara; Moreno, Victor; Brunet, Joan; Blanco, Ignacio; Serra, Eduard; Capellá, Gabriel; Lázaro, Conxi
2013-01-01
Next-generation sequencing (NGS) is changing genetic diagnosis due to its huge sequencing capacity and cost-effectiveness. The aim of this study was to develop an NGS-based workflow for routine diagnostics for hereditary breast and ovarian cancer syndrome (HBOCS), to improve genetic testing for BRCA1 and BRCA2. A NGS-based workflow was designed using BRCA MASTR kit amplicon libraries followed by GS Junior pyrosequencing. Data analysis combined Variant Identification Pipeline freely available software and ad hoc R scripts, including a cascade of filters to generate coverage and variant calling reports. A BRCA homopolymer assay was performed in parallel. A research scheme was designed in two parts. A Training Set of 28 DNA samples containing 23 unique pathogenic mutations and 213 other variants (33 unique) was used. The workflow was validated in a set of 14 samples from HBOCS families in parallel with the current diagnostic workflow (Validation Set). The NGS-based workflow developed permitted the identification of all pathogenic mutations and genetic variants, including those located in or close to homopolymers. The use of NGS for detecting copy-number alterations was also investigated. The workflow meets the sensitivity and specificity requirements for the genetic diagnosis of HBOCS and improves on the cost-effectiveness of current approaches. PMID:23249957
Song, Qinxin; Wei, Guijiang; Zhou, Guohua
2014-07-01
A portable bioluminescence analyser for detecting the DNA sequence of genetically modified organisms (GMOs) was developed by using a photodiode (PD) array. Pyrosequencing on eight genes (zSSIIb, Bt11 and Bt176 gene of genetically modified maize; Lectin, 35S-CTP4, CP4EPSPS, CaMV35S promoter and NOS terminator of the genetically modified Roundup ready soya) was successfully detected with this instrument. The corresponding limit of detection (LOD) was 0.01% with 35 PCR cycles. The maize and soya available from three different provenances in China were detected. The results indicate that pyrosequencing using the small size of the detector is a simple, inexpensive, and reliable way in a farm/field test of GMO analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bungartz, Annemarie; Klaus, Marius; Mathew, Boby; Léon, Jens; Naz, Ali Ahmad
2016-03-01
The aim of the present study was to develop a new cost effective PCR based CAPS marker set using advantages of high-throughput SNP genotyping. Initially, SNP survey was made using 20 diverse barley genotypes via 9k iSelect array genotyping that resulted in 6334 polymorphic SNP markers. Principle component analysis using this marker data showed fine differentiation of barley diverse gene pool. Till this end, we developed 200 SNP derived CAPS markers distributed across the genome covering around 991cM with an average marker density of 5.09cM. Further, we genotyped 68 CAPS markers in an F2 population (Cheri×ICB181160) segregating for seed color variation in barley. Genetic mapping of seed color revealed putative linkage of single nuclear gene on chromosome 1H. These findings showed the proof of concept for the development and utility of a newer cost effective genomic tool kit to analyze broader genetic resources of barley worldwide. Copyright © 2016 Elsevier Inc. All rights reserved.
Nagl, Nevena; Taski-Ajdukovic, Ksenija; Barac, Goran; Baburski, Aleksandar; Seccareccia, Ivana; Milic, Dragan; Katic, Slobodan
2011-01-01
Alfalfa is an autotetraploid, allogamous and heterozygous forage legume, whose varieties are synthetic populations. Due to the complex nature of the species, information about genetic diversity of germplasm used in any alfalfa breeding program is most beneficial. The genetic diversity of five alfalfa varieties, involved in progeny tests at Institute of Field and Vegetable Crops, was characterized based on RAPD markers. A total of 60 primers were screened, out of which 17 were selected for the analysis of genetic diversity. A total of 156 polymorphic bands were generated, with 10.6 bands per primer. Number and percentage of polymorphic loci, effective number of alleles, expected heterozygosity and Shannon's information index were used to estimate genetic variation. Variety Zuzana had the highest values for all tested parameters, exhibiting the highest level of variation, whereas variety RSI 20 exhibited the lowest. Analysis of molecular variance (AMOVA) showed that 88.39% of the total genetic variation was attributed to intra-varietal variance. The cluster analysis for individual samples and varieties revealed differences in their population structures: variety Zuzana showed a very high level of genetic variation, Banat and Ghareh were divided in subpopulations, while Pecy and RSI 20 were relatively uniform. Ways of exploiting the investigated germplasm in the breeding programs are suggested in this paper, depending on their population structure and diversity. The RAPD analysis shows potential to be applied in analysis of parental populations in semi-hybrid alfalfa breeding program in both, development of new homogenous germplasm, and identification of promising, complementary germplasm.
Renan, Sharon; Greenbaum, Gili; Shahar, Naama; Templeton, Alan R; Bouskila, Amos; Bar-David, Shirli
2015-04-01
Small populations are prone to loss of genetic variation and hence to a reduction in their evolutionary potential. Therefore, studying the mating system of small populations and its potential effects on genetic drift and genetic diversity is of high importance for their viability assessments. The traditional method for studying genetic mating systems is paternity analysis. Yet, as small populations are often rare and elusive, the genetic data required for paternity analysis are frequently unavailable. The endangered Asiatic wild ass (Equus hemionus), like all equids, displays a behaviourally polygynous mating system; however, the level of polygyny has never been measured genetically in wild equids. Combining noninvasive genetic data with stochastic modelling of shifts in allele frequencies, we developed an alternative approach to paternity analysis for studying the genetic mating system of the re-introduced Asiatic wild ass in the Negev Desert, Israel. We compared the shifts in allele frequencies (as a measure of genetic drift) that have occurred in the wild ass population since re-introduction onset to simulated scenarios under different proportions of mating males. We revealed a strongly polygynous mating system in which less than 25% of all males participate in the mating process each generation. This strongly polygynous mating system and its potential effect on the re-introduced population's genetic diversity could have significant consequences for the long-term persistence of the population in the Negev. The stochastic modelling approach and the use of allele-frequency shifts can be further applied to systems that are affected by genetic drift and for which genetic data are limited. © 2015 John Wiley & Sons Ltd.
Path analysis of the genetic integration of traits in the sand cricket: a novel use of BLUPs.
Roff, D A; Fairbairn, D J
2011-09-01
This study combines path analysis with quantitative genetics to analyse a key life history trade-off in the cricket, Gryllus firmus. We develop a path model connecting five traits associated with the trade-off between flight capability and reproduction and test this model using phenotypic data and estimates of breeding values (best linear unbiased predictors) from a half-sibling experiment. Strong support by both types of data validates our causal model and indicates concordance between the phenotypic and genetic expression of the trade-off. Comparisons of the trade-off between sexes and wing morphs reveal that these discrete phenotypes are not genetically independent and that the evolutionary trajectories of the two wing morphs are more tightly constrained to covary than those of the two sexes. Our results illustrate the benefits of combining a quantitative genetic analysis, which examines statistical correlations between traits, with a path model that focuses upon the causal components of variation. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Environment, genes, and experience: lessons from behavior genetics.
Barsky, Philipp I
2010-11-01
The article reviews the theoretical analysis of the problems inherent in studying the environment within behavior genetics across several periods in the development of environmental studies in behavior genetics and proposes some possible alternatives to traditional approaches to studying the environment in behavior genetics. The first period (from the end of the 1920s to the end of the 1970s), when the environment was not actually studied, is called pre-environmental; during this time, the basic principles and theoretical models of understanding environmental effects in behavior genetics were developed. The second period is characterized by the development of studies on environmental influences within the traditional behavior genetics paradigm; several approaches to studying the environment emerged in behavior genetics during this period, from the beginning of the 1980s until today. At the present time, the field is undergoing paradigmatic changes, concerned with methodology, theory, and mathematical models of genotype-environment interplay; this might be the beginning of a third period of development of environmental studies in behavior genetics. In another part, the methodological problems related to environmental studies in behavior genetics are discussed. Although the methodology used in differential psychology is applicable for assessment of differences between individuals, it is insufficient to explain the sources of these differences. In addition, we stress that psychoanalytic studies of twins and their experiences, initiated in the 1930s and continued episodically until the 1980s, could bring an interesting methodology and contribute to the explanation of puzzling findings from environmental studies of behavior genetics. Finally, we will conclude with implications from the results of environmental studies in behavior genetics, including methodological issues. Copyright © 2010 Elsevier Ltd. All rights reserved.
Vinson, Amanda; Prongay, Kamm; Ferguson, Betsy
2013-01-01
Complex diseases (e.g., cardiovascular disease and type 2 diabetes, among many others) pose the biggest threat to human health worldwide and are among the most challenging to investigate. Susceptibility to complex disease may be caused by multiple genetic variants (GVs) and their interaction, by environmental factors, and by interaction between GVs and environment, and large study cohorts with substantial analytical power are typically required to elucidate these individual contributions. Here, we discuss the advantages of both power and feasibility afforded by the use of extended pedigrees of rhesus macaques (Macaca mulatta) for genetic studies of complex human disease based on next-generation sequence data. We present these advantages in the context of previous research conducted in rhesus macaques for several representative complex diseases. We also describe a single, multigeneration pedigree of Indian-origin rhesus macaques and a sample biobank we have developed for genetic analysis of complex disease, including power of this pedigree to detect causal GVs using either genetic linkage or association methods in a variance decomposition approach. Finally, we summarize findings of significant heritability for a number of quantitative traits that demonstrate that genetic contributions to risk factors for complex disease can be detected and measured in this pedigree. We conclude that the development and application of an extended pedigree to analysis of complex disease traits in the rhesus macaque have shown promising early success and that genome-wide genetic and higher order -omics studies in this pedigree are likely to yield useful insights into the architecture of complex human disease. PMID:24174435
Smýkal, Petr; K Varshney, Rajeev; K Singh, Vikas; Coyne, Clarice J; Domoney, Claire; Kejnovský, Eduard; Warkentin, Thomas
2016-12-01
This work discusses several selected topics of plant genetics and breeding in relation to the 150th anniversary of the seminal work of Gregor Johann Mendel. In 2015, we celebrated the 150th anniversary of the presentation of the seminal work of Gregor Johann Mendel. While Darwin's theory of evolution was based on differential survival and differential reproductive success, Mendel's theory of heredity relies on equality and stability throughout all stages of the life cycle. Darwin's concepts were continuous variation and "soft" heredity; Mendel espoused discontinuous variation and "hard" heredity. Thus, the combination of Mendelian genetics with Darwin's theory of natural selection was the process that resulted in the modern synthesis of evolutionary biology. Although biology, genetics, and genomics have been revolutionized in recent years, modern genetics will forever rely on simple principles founded on pea breeding using seven single gene characters. Purposeful use of mutants to study gene function is one of the essential tools of modern genetics. Today, over 100 plant species genomes have been sequenced. Mapping populations and their use in segregation of molecular markers and marker-trait association to map and isolate genes, were developed on the basis of Mendel's work. Genome-wide or genomic selection is a recent approach for the development of improved breeding lines. The analysis of complex traits has been enhanced by high-throughput phenotyping and developments in statistical and modeling methods for the analysis of phenotypic data. Introgression of novel alleles from landraces and wild relatives widens genetic diversity and improves traits; transgenic methodologies allow for the introduction of novel genes from diverse sources, and gene editing approaches offer possibilities to manipulate gene in a precise manner.
Dougherty, M.J.; Pleasants, C.; Solow, L.; Wong, A.; Zhang, H.
2011-01-01
Science education in the United States will increasingly be driven by testing and accountability requirements, such as those mandated by the No Child Left Behind Act, which rely heavily on learning outcomes, or “standards,” that are currently developed on a state-by-state basis. Those standards, in turn, drive curriculum and instruction. Given the importance of standards to teaching and learning, we investigated the quality of life sciences/biology standards with respect to genetics for all 50 states and the District of Columbia, using core concepts developed by the American Society of Human Genetics as normative benchmarks. Our results indicate that the states’ genetics standards, in general, are poor, with more than 85% of the states receiving overall scores of Inadequate. In particular, the standards in virtually every state have failed to keep pace with changes in the discipline as it has become genomic in scope, omitting concepts related to genetic complexity, the importance of environment to phenotypic variation, differential gene expression, and the differences between inherited and somatic genetic disease. Clearer, more comprehensive genetics standards are likely to benefit genetics instruction and learning, help prepare future genetics researchers, and contribute to the genetic literacy of the U.S. citizenry. PMID:21885828
Barriers to the use of genetic information for the development of new epilepsy treatments.
Ferraro, Thomas N
2016-01-01
Genetic analysis is providing new information on the biological basis of epilepsy at a rapid pace; this article identifies factors acting as major barriers to use of these data for therapy development. Disease heterogeneity is a primary obstacle since so many genes can cause or predispose to epilepsy and the clinical presentation of epilepsy is so diverse, thus making it difficult to define the most therapeutically relevant targets. Further, many epilepsy genes affect brain development, an observation that represents a barrier unto itself given the challenge of reversing or preventing genetically mediated alterations of brain pathway formation. Finally, the lack of appropriate models for testing new therapies is also recognized as a fundamental limitation. Overcoming these barriers will be aided by full characterization of the genetic landscape of epilepsy, elucidation of key pathway points for therapeutic intervention and creation of unique experimental models to validate results.
A practical guide to environmental association analysis in landscape genomics.
Rellstab, Christian; Gugerli, Felix; Eckert, Andrew J; Hancock, Angela M; Holderegger, Rolf
2015-09-01
Landscape genomics is an emerging research field that aims to identify the environmental factors that shape adaptive genetic variation and the gene variants that drive local adaptation. Its development has been facilitated by next-generation sequencing, which allows for screening thousands to millions of single nucleotide polymorphisms in many individuals and populations at reasonable costs. In parallel, data sets describing environmental factors have greatly improved and increasingly become publicly accessible. Accordingly, numerous analytical methods for environmental association studies have been developed. Environmental association analysis identifies genetic variants associated with particular environmental factors and has the potential to uncover adaptive patterns that are not discovered by traditional tests for the detection of outlier loci based on population genetic differentiation. We review methods for conducting environmental association analysis including categorical tests, logistic regressions, matrix correlations, general linear models and mixed effects models. We discuss the advantages and disadvantages of different approaches, provide a list of dedicated software packages and their specific properties, and stress the importance of incorporating neutral genetic structure in the analysis. We also touch on additional important aspects such as sampling design, environmental data preparation, pooled and reduced-representation sequencing, candidate-gene approaches, linearity of allele-environment associations and the combination of environmental association analyses with traditional outlier detection tests. We conclude by summarizing expected future directions in the field, such as the extension of statistical approaches, environmental association analysis for ecological gene annotation, and the need for replication and post hoc validation studies. © 2015 John Wiley & Sons Ltd.
Yoon, Jun-Hee; Kim, Thomas W; Mendez, Pedro; Jablons, David M; Kim, Il-Jin
2017-01-01
The development of next-generation sequencing (NGS) technology allows to sequence whole exomes or genome. However, data analysis is still the biggest bottleneck for its wide implementation. Most laboratories still depend on manual procedures for data handling and analyses, which translates into a delay and decreased efficiency in the delivery of NGS results to doctors and patients. Thus, there is high demand for developing an automatic and an easy-to-use NGS data analyses system. We developed comprehensive, automatic genetic analyses controller named Mobile Genome Express (MGE) that works in smartphones or other mobile devices. MGE can handle all the steps for genetic analyses, such as: sample information submission, sequencing run quality check from the sequencer, secured data transfer and results review. We sequenced an Actrometrix control DNA containing multiple proven human mutations using a targeted sequencing panel, and the whole analysis was managed by MGE, and its data reviewing program called ELECTRO. All steps were processed automatically except for the final sequencing review procedure with ELECTRO to confirm mutations. The data analysis process was completed within several hours. We confirmed the mutations that we have identified were consistent with our previous results obtained by using multi-step, manual pipelines.
Ostergren, Jenny E; Dingel, Molly J; McCormick, Jennifer B; Koenig, Barbara A
2015-01-01
The cost of addiction in the United States, in combination with a host of new tools and techniques, has fueled an explosion of genetic research on addiction. Because the media has the capacity to reflect and influence public perception, there is a need to examine how treatments and preventive approaches projected to emerge from addiction genetic research are presented to the public. The authors conducted a textual analysis of 145 news articles reporting on genetic research on addiction from popular print media in the United States and from popular news and medical internet sites. In articles that report on prevention, the media emphasize vaccine development and identifying individuals at genetic risk through population screening. Articles that emphasize treatment often promote current pharmaceutical solutions and highlight the possibility of tailoring treatments to specific genetic variants. The authors raise concerns about the tendency of this coverage to focus on the benefits of pharmaceutical treatments and genetic-based approaches to prevention while neglecting or downplaying potential risks and ethical issues. This analysis suggests a need for more balanced, evidence-based media reporting on the potential outcomes of genetic research.
Ostergren, Jenny E.; Dingel, Molly J.; McCormick, Jennifer B.; Koenig, Barbara A.
2015-01-01
The cost of addiction in the U.S., in combination with a host of new tools and techniques, has fueled an explosion of genetic research on addiction. Since the media has the capacity to reflect and influence public perception, there is a need to examine how treatments and preventive approaches projected to emerge from addiction genetic research are presented to the public. We conducted a textual analysis of 145 news articles reporting on genetic research on addiction from popular print media in the U.S., and from popular news and medical internet sites. In articles that report on prevention, the media emphasize vaccine development and identifying individuals at genetic risk through population screening. Articles that emphasize treatment often promote current pharmaceutical solutions and highlight the possibility of tailoring treatments to specific genetic variants. We raise concerns about the tendency of this coverage to focus on the benefits of pharmaceutical treatments and genetic-based approaches to prevention while neglecting or downplaying potential risks and ethical issues. Our analysis suggests a need for more balanced, evidence-based media reporting on the potential outcomes of genetic research. PMID:25806781
[Precision Oncology and "Molecular Tumor Boards" - Concepts, Chances and Challenges].
Holch, Julian Walter; Westphalen, Christoph Benedikt; Hiddemann, Wolfgang; Heinemann, Volker; Jung, Andreas; Metzeler, Klaus Hans
2017-11-01
Recent developments in genomics allow a more and more comprehensive genetic analysis of human malignancies, and have sparked hopes that this will contribute to the development of novel targeted, effective and well-tolerated therapies.While targeted therapies have improved the prognosis of many cancer patients with certain tumor types, "precision oncology" also brings along new challenges. Highly personalized treatment strategies require new strategies for clinical trials and translation into routine clinical practice. We review the current technical approaches for "universal genetic testing" in cancer, and potential pitfalls in the interpretation of such data. We then provide an overview of the available evidence supporting treatment strategies based on extended genetic analysis. Based on the available data, we conclude that "precision oncology" approaches that go beyond the current standard of care should be pursued within the framework of an interdisciplinary "molecular tumor board", and preferably within clinical trials. © Georg Thieme Verlag KG Stuttgart · New York.
Diverse types of genetic variation converge on functional gene networks involved in schizophrenia.
Gilman, Sarah R; Chang, Jonathan; Xu, Bin; Bawa, Tejdeep S; Gogos, Joseph A; Karayiorgou, Maria; Vitkup, Dennis
2012-12-01
Despite the successful identification of several relevant genomic loci, the underlying molecular mechanisms of schizophrenia remain largely unclear. We developed a computational approach (NETBAG+) that allows an integrated analysis of diverse disease-related genetic data using a unified statistical framework. The application of this approach to schizophrenia-associated genetic variations, obtained using unbiased whole-genome methods, allowed us to identify several cohesive gene networks related to axon guidance, neuronal cell mobility, synaptic function and chromosomal remodeling. The genes forming the networks are highly expressed in the brain, with higher brain expression during prenatal development. The identified networks are functionally related to genes previously implicated in schizophrenia, autism and intellectual disability. A comparative analysis of copy number variants associated with autism and schizophrenia suggests that although the molecular networks implicated in these distinct disorders may be related, the mutations associated with each disease are likely to lead, at least on average, to different functional consequences.
A multivariate twin study of early literacy in Japanese Kana
Fujisawa, Keiko K.; Wadsworth, Sally J.; Kakihana, Shinichiro; Olson, Richard K.; DeFries, John C.; Byrne, Brian; Ando, Juko
2013-01-01
This first Japanese twin study of early literacy development investigated the extent to which genetic and environmental factors influence individual differences in prereading skills in 238 pairs of twins at 42 months of age. Twin pairs were individually tested on measures of phonological awareness, kana letter name/sound knowledge, receptive vocabulary, visual perception, nonword repetition, and digit span. Results obtained from univariate behavioral-genetic analyses yielded little evidence for genetic influences, but substantial shared-environmental influences, for all measures. Phenotypic confirmatory factor analysis suggested three correlated factors: phonological awareness, letter name/sound knowledge, and general prereading skills. Multivariate behavioral genetic analyses confirmed relatively small genetic and substantial shared environmental influences on the factors. The correlations among the three factors were mostly attributable to shared environment. Thus, shared environmental influences play an important role in the early reading development of Japanese children. PMID:23997545
The Genomic and Genetic Toolbox of the Teleost Medaka (Oryzias latipes)
Kirchmaier, Stephan; Naruse, Kiyoshi; Wittbrodt, Joachim; Loosli, Felix
2015-01-01
The Japanese medaka, Oryzias latipes, is a vertebrate teleost model with a long history of genetic research. A number of unique features and established resources distinguish medaka from other vertebrate model systems. A large number of laboratory strains from different locations are available. Due to a high tolerance to inbreeding, many highly inbred strains have been established, thus providing a rich resource for genetic studies. Furthermore, closely related species native to different habitats in Southeast Asia permit comparative evolutionary studies. The transparency of embryos, larvae, and juveniles allows a detailed in vivo analysis of development. New tools to study diverse aspects of medaka biology are constantly being generated. Thus, medaka has become an important vertebrate model organism to study development, behavior, and physiology. In this review, we provide a comprehensive overview of established genetic and molecular-genetic tools that render medaka fish a full-fledged vertebrate system. PMID:25855651
Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders.
Novarino, Gaia; Fenstermaker, Ali G; Zaki, Maha S; Hofree, Matan; Silhavy, Jennifer L; Heiberg, Andrew D; Abdellateef, Mostafa; Rosti, Basak; Scott, Eric; Mansour, Lobna; Masri, Amira; Kayserili, Hulya; Al-Aama, Jumana Y; Abdel-Salam, Ghada M H; Karminejad, Ariana; Kara, Majdi; Kara, Bulent; Bozorgmehri, Bita; Ben-Omran, Tawfeg; Mojahedi, Faezeh; El Din Mahmoud, Iman Gamal; Bouslam, Naima; Bouhouche, Ahmed; Benomar, Ali; Hanein, Sylvain; Raymond, Laure; Forlani, Sylvie; Mascaro, Massimo; Selim, Laila; Shehata, Nabil; Al-Allawi, Nasir; Bindu, P S; Azam, Matloob; Gunel, Murat; Caglayan, Ahmet; Bilguvar, Kaya; Tolun, Aslihan; Issa, Mahmoud Y; Schroth, Jana; Spencer, Emily G; Rosti, Rasim O; Akizu, Naiara; Vaux, Keith K; Johansen, Anide; Koh, Alice A; Megahed, Hisham; Durr, Alexandra; Brice, Alexis; Stevanin, Giovanni; Gabriel, Stacy B; Ideker, Trey; Gleeson, Joseph G
2014-01-31
Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease.
Rahmatalla, Siham A; Arends, Danny; Reissmann, Monika; Said Ahmed, Ammar; Wimmers, Klaus; Reyer, Henry; Brockmann, Gudrun A
2017-10-23
Sudan is endowed with a variety of indigenous goat breeds which are used for meat and milk production and which are well adapted to the local environment. The aim of the present study was to determine the genetic diversity and relationship within and between the four main Sudanese breeds of Nubian, Desert, Taggar and Nilotic goats. Using the 50 K SNP chip, 24 animals of each breed were genotyped. More than 96% of high quality SNPs were polymorphic with an average minor allele frequency of 0.3. In all breeds, no significant difference between observed (0.4) and expected (0.4) heterozygosity was found and the inbreeding coefficients (F IS ) did not differ from zero. F st coefficients for the genetic distance between breeds also did not significantly deviate from zero. In addition, the analysis of molecular variance revealed that 93% of the total variance in the examined population can be explained by differences among individuals, while only 7% result from differences between the breeds. These findings provide evidence for high genetic diversity and little inbreeding within breeds on one hand, and low diversity between breeds on the other hand. Further examinations using Nei's genetic distance and STRUCTURE analysis clustered Taggar goats distinct from the other breeds. In a principal component (PC) analysis, PC1 could separate Taggar, Nilotic and a mix of Nubian and Desert goats into three groups. The SNPs that contributed strongly to PC1 showed high F st values in Taggar goat versus the other goat breeds. PCA allowed us to identify target genomic regions which contain genes known to influence growth, development, bone formation and the immune system. The information on the genetic variability and diversity in this study confirmed that Taggar goat is genetically different from the other goat breeds in Sudan. The SNPs identified by the first principal components show high F st values in Taggar goat and allowed to identify candidate genes which can be used in the development of breed selection programs to improve local breeds and find genetic factors contributing to the adaptation to harsh environments.
Exploring science teachers' pedagogical content knowledge in the teaching of genetics in Swaziland
NASA Astrophysics Data System (ADS)
Mthethwa-Kunene, Khetsiwe Eunice Faith
Recent trends show that learners' enrolment and performance in science at secondary school level is dwindling. Some science topics including genetics in biology are said to be difficult for learners to learn and thus they perform poorly in examinations. Teacher knowledge base, particularly topic-specific pedagogical content knowledge (PCK), has been identified by many researchers as an important factor that is linked with learner understanding and achievement in science. This qualitative study was an attempt to explore the PCK of four successful biology teachers and how they developed it in the context of teaching genetics. The purposive sampling technique was employed to select the participating teachers based on their schools' performance in biology public examinations and recommendations by science specialists and school principals. Pedagogical content knowledge was used as a theoretical framework for the study, which guided the inquiry in data collection, analysis and discussion of the research findings. The study adopted the case study method and various sources of evidence including concept maps, lesson plans, pre-lesson interviews, lesson observations, post-teaching teacher questionnaire, post-lesson interviews and document analysis were used to collect data on teachers' PCK as well as how PCK was assumed to have developed. The data were analysed in an attempt to determine the individual teachers' school genetics' content knowledge, related knowledge of instructional strategies and knowledge of learners' preconceptions and learning difficulties. The analysis involved an iterative process of coding data into PCK categories of content knowledge, pedagogical knowledge and knowledge of learners' preconceptions and learning difficulties. The findings of the study indicate that the four successful biology teachers generally have the necessary content knowledge of school genetics, used certain topic-specific instructional strategies, but lacked knowledge of genetics-related learners' preconceptions and learning difficulties despite having taught the topic for many years. There were some instructional deficits in their approaches and techniques in teaching genetics. The teachers failed to use physical models, teacher demonstration and/or learner experimentation in their lessons (or include them in their lesson plans) to assist learners in visualizing or internalizing the genetics concepts or processes located at the sub-microscopic level. The teachers' PCK in genetics teaching was assumed to have developed mainly through formal university education programmes, classroom teaching experiences, peer support and participation in in-service workshops. The implications for biology teacher education are also discussed.
Coser, S M; Motoike, S Y; Corrêa, T R; Pires, T P; Resende, M D V
2016-10-17
Macaw palm (Acrocomia aculeata) is a promising species for use in biofuel production, and establishing breeding programs is important for the development of commercial plantations. The aim of the present study was to analyze genetic diversity, verify correlations between traits, estimate genetic parameters, and select different accessions of A. aculeata in the Macaw Palm Germplasm Bank located in Universidade Federal de Viçosa, to develop a breeding program for this species. Accessions were selected based on precocity (PREC), total spathe (TS), diameter at breast height (DBH), height of the first spathe (HFS), and canopy area (CA). The traits were evaluated in 52 accessions during the 2012/2013 season and analyzed by restricted estimation maximum likelihood/best linear unbiased predictor procedures. Genetic diversity resulted in the formation of four groups by Tocher's clustering method. The correlation analysis showed it was possible to have indirect and early selection for the traits PREC and DBH. Estimated genetic parameters strengthened the genetic variability verified by cluster analysis. Narrow-sense heritability was classified as moderate (PREC, TS, and CA) to high (HFS and DBH), resulting in strong genetic control of the traits and success in obtaining genetic gains by selection. Accuracy values were classified as moderate (PREC and CA) to high (TS, HFS, and DBH), reinforcing the success of the selection process. Selection of accessions for PREC, TS, and HFS by the rank-average method permits selection gains of over 100%, emphasizing the successful use of the accessions in breeding programs and obtaining superior genotypes for commercial plantations.
NASA Astrophysics Data System (ADS)
Christopher, Mark; Tang, Li; Fingert, John H.; Scheetz, Todd E.; Abramoff, Michael D.
2014-03-01
Evaluation of optic nerve head (ONH) structure is a commonly used clinical technique for both diagnosis and monitoring of glaucoma. Glaucoma is associated with characteristic changes in the structure of the ONH. We present a method for computationally identifying ONH structural features using both imaging and genetic data from a large cohort of participants at risk for primary open angle glaucoma (POAG). Using 1054 participants from the Ocular Hypertension Treatment Study, ONH structure was measured by application of a stereo correspondence algorithm to stereo fundus images. In addition, the genotypes of several known POAG genetic risk factors were considered for each participant. ONH structural features were discovered using both a principal component analysis approach to identify the major modes of variance within structural measurements and a linear discriminant analysis approach to capture the relationship between genetic risk factors and ONH structure. The identified ONH structural features were evaluated based on the strength of their associations with genotype and development of POAG by the end of the OHTS study. ONH structural features with strong associations with genotype were identified for each of the genetic loci considered. Several identified ONH structural features were significantly associated (p < 0.05) with the development of POAG after Bonferroni correction. Further, incorporation of genetic risk status was found to substantially increase performance of early POAG prediction. These results suggest incorporating both imaging and genetic data into ONH structural modeling significantly improves the ability to explain POAG-related changes to ONH structure.
Gajurel, Jyoti Prasad; Cornejo, Carolina; Werth, Silke; Shrestha, Krishna Kumar; Scheidegger, Christoph
2013-03-01
Microsatellite primers were developed in the endangered tree species Taxus wallichiana from Nepal to investigate regional genetic differentiation, local genetic diversity, and gene flow for the conservation of this species under climate- and land-use change scenarios in mountain regions of Nepal. • We developed 10 highly polymorphic microsatellite markers from 454 DNA sequencing. Characterization of the new microsatellite loci was done in 99 individuals collected from three valleys with different climatic regimes. The number of alleles per locus varied from four to 12. Observed heterozygosity of populations, averaged across loci, ranged from 0.30 to 0.59. • The new markers provided by this study will substantially increase the resolution for detailed studies in phylogeography, population genetics, and parentage analysis.
Capellini, Terence D.; Vaccari, Giulia; Ferretti, Elisabetta; Fantini, Sebastian; He, Mu; Pellegrini, Massimo; Quintana, Laura; Di Giacomo, Giuseppina; Sharpe, James; Selleri, Licia; Zappavigna, Vincenzo
2010-01-01
The genetic pathways underlying shoulder blade development are largely unknown, as gene networks controlling limb morphogenesis have limited influence on scapula formation. Analysis of mouse mutants for Pbx and Emx2 genes has suggested their potential roles in girdle development. In this study, by generating compound mutant mice, we examined the genetic control of scapula development by Pbx genes and their functional relationship with Emx2. Analyses of Pbx and Pbx1;Emx2 compound mutants revealed that Pbx genes share overlapping functions in shoulder development and that Pbx1 genetically interacts with Emx2 in this process. Here, we provide a biochemical basis for Pbx1;Emx2 genetic interaction by showing that Pbx1 and Emx2 can bind specific DNA sequences as heterodimers. Moreover, the expression of genes crucial for scapula development is altered in these mutants, indicating that Pbx genes act upstream of essential pathways for scapula formation. In particular, expression of Alx1, an effector of scapula blade patterning, is absent in all compound mutants. We demonstrate that Pbx1 and Emx2 bind in vivo to a conserved sequence upstream of Alx1 and cooperatively activate its transcription via this potential regulatory element. Our results establish an essential role for Pbx1 in genetic interactions with its family members and with Emx2 and delineate novel regulatory networks in shoulder girdle development. PMID:20627960
New DArT markers for oat provide enhanced map coverage and global germplasm characterization
USDA-ARS?s Scientific Manuscript database
Background Genomic discovery in oat and its application to oat improvement have been hindered by a lack of genetic markers common to different genetic maps, and by the difficulty of conducting whole-genome analysis using high-throughput markers. This study was intended to develop, characterize, and ...
PredictABEL: an R package for the assessment of risk prediction models.
Kundu, Suman; Aulchenko, Yurii S; van Duijn, Cornelia M; Janssens, A Cecile J W
2011-04-01
The rapid identification of genetic markers for multifactorial diseases from genome-wide association studies is fuelling interest in investigating the predictive ability and health care utility of genetic risk models. Various measures are available for the assessment of risk prediction models, each addressing a different aspect of performance and utility. We developed PredictABEL, a package in R that covers descriptive tables, measures and figures that are used in the analysis of risk prediction studies such as measures of model fit, predictive ability and clinical utility, and risk distributions, calibration plot and the receiver operating characteristic plot. Tables and figures are saved as separate files in a user-specified format, which include publication-quality EPS and TIFF formats. All figures are available in a ready-made layout, but they can be customized to the preferences of the user. The package has been developed for the analysis of genetic risk prediction studies, but can also be used for studies that only include non-genetic risk factors. PredictABEL is freely available at the websites of GenABEL ( http://www.genabel.org ) and CRAN ( http://cran.r-project.org/).
2013-01-01
Background Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America. Thirty percent of infected individuals develop chronic Chagas cardiomyopathy (CCC), an inflammatory dilated cardiomyopathy that is, by far, the most important clinical consequence of T. cruzi infection. The others remain asymptomatic (ASY). A possible genetic component to disease progression was suggested by familial aggregation of cases and the association of markers of innate and adaptive immunity genes with CCC development. Migration of Th1-type T cells play a major role in myocardial damage. Methods Our genetic analysis focused on CCR5, CCL2 and MAL/TIRAP genes. We used the Tag SNPs based approach, defined to catch all the genetic information from each gene. The study was conducted on a large Brazilian population including 315 CCC cases and 118 ASY subjects. Results The CCL2rs2530797A/A and TIRAPrs8177376A/A were associated to an increase susceptibility whereas the CCR5rs3176763C/C genotype is associated to protection to CCC. These associations were confirmed when we restricted the analysis to severe CCC, characterized by a left ventricular ejection fraction under 40%. Conclusions Our data show that polymorphisms affecting key molecules involved in several immune parameters (innate immunity signal transduction and T cell/monocyte migration) play a role in genetic susceptibility to CCC development. This also points out to the multigenic character of CCC, each polymorphism imparting a small contribution. The identification of genetic markers for CCC will provide information for pathogenesis as well as therapeutic targets. PMID:24330528
Domestication to Crop Improvement: Genetic Resources for Sorghum and Saccharum (Andropogoneae)
Dillon, Sally L.; Shapter, Frances M.; Henry, Robert J.; Cordeiro, Giovanni; Izquierdo, Liz; Lee, L. Slade
2007-01-01
Background Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes. PMID:17766842
García-Lor, Andrés; Luro, François; Navarro, Luis; Ollitrault, Patrick
2012-01-01
Genetic stratification associated with domestication history is a key parameter for estimating the pertinence of genetic association study within a gene pool. Previous molecular and phenotypic studies have shown that most of the diversity of cultivated citrus results from recombination between three main species: C. medica (citron), C. reticulata (mandarin) and C. maxima (pummelo). However, the precise contribution of each of these basic species to the genomes of secondary cultivated species, such as C. sinensis (sweet orange), C. limon (lemon), C. aurantium (sour orange), C. paradisi (grapefruit) and recent hybrids is unknown. Our study focused on: (1) the development of insertion-deletion (InDel) markers and their comparison with SSR markers for use in genetic diversity and phylogenetic studies; (2) the analysis of the contributions of basic taxa to the genomes of secondary species and modern cultivars and (3) the description of the organisation of the Citrus gene pool, to evaluate how genetic association studies should be done at the cultivated Citrus gene pool level. InDel markers appear to be better phylogenetic markers for tracing the contributions of the three ancestral species, whereas SSR markers are more useful for intraspecific diversity analysis. Most of the genetic organisation of the Citrus gene pool is related to the differentiation between C. reticulata, C. maxima and C. medica. High and generalised LD was observed, probably due to the initial differentiation between the basic species and a limited number of interspecific recombinations. This structure precludes association genetic studies at the genus level without developing additional recombinant populations from interspecific hybrids. Association genetic studies should also be affordable at intraspecific level in a less structured pool such as C. reticulata.
Genetics, development and composition of the insect head--a beetle's view.
Posnien, Nico; Schinko, Johannes B; Kittelmann, Sebastian; Bucher, Gregor
2010-11-01
Many questions regarding evolution and ontogeny of the insect head remain open. Likewise, the genetic basis of insect head development is poorly understood. Recently, the investigation of gene expression data and the analysis of patterning gene function have revived interest in insect head development. Here, we argue that the red flour beetle Tribolium castaneum is a well suited model organism to spearhead research with respect to the genetic control of insect head development. We review recent molecular data and discuss its bearing on early development and morphogenesis of the head. We present a novel hypothesis on the ontogenetic origin of insect head sutures and review recent insights into the question on the origin of the labrum. Further, we argue that the study of developmental genes may identify the elusive anterior non-segmental region and present some evidence in favor of its existence. With respect to the question of evolution of patterning we show that the head Anlagen of the fruit fly Drosophila melanogaster and Tribolium differ considerably and we review profound differences of their genetic regulation. Finally, we discuss which insect model species might help us to answer the open questions concerning the genetic regulation of head development and its evolution. Copyright © 2010 Elsevier Ltd. All rights reserved.
Zhu, Yun; Fan, Ruzong; Xiong, Momiao
2017-01-01
Investigating the pleiotropic effects of genetic variants can increase statistical power, provide important information to achieve deep understanding of the complex genetic structures of disease, and offer powerful tools for designing effective treatments with fewer side effects. However, the current multiple phenotype association analysis paradigm lacks breadth (number of phenotypes and genetic variants jointly analyzed at the same time) and depth (hierarchical structure of phenotype and genotypes). A key issue for high dimensional pleiotropic analysis is to effectively extract informative internal representation and features from high dimensional genotype and phenotype data. To explore correlation information of genetic variants, effectively reduce data dimensions, and overcome critical barriers in advancing the development of novel statistical methods and computational algorithms for genetic pleiotropic analysis, we proposed a new statistic method referred to as a quadratically regularized functional CCA (QRFCCA) for association analysis which combines three approaches: (1) quadratically regularized matrix factorization, (2) functional data analysis and (3) canonical correlation analysis (CCA). Large-scale simulations show that the QRFCCA has a much higher power than that of the ten competing statistics while retaining the appropriate type 1 errors. To further evaluate performance, the QRFCCA and ten other statistics are applied to the whole genome sequencing dataset from the TwinsUK study. We identify a total of 79 genes with rare variants and 67 genes with common variants significantly associated with the 46 traits using QRFCCA. The results show that the QRFCCA substantially outperforms the ten other statistics. PMID:29040274
Beaton, Derek; Dunlop, Joseph; Abdi, Hervé
2016-12-01
For nearly a century, detecting the genetic contributions to cognitive and behavioral phenomena has been a core interest for psychological research. Recently, this interest has been reinvigorated by the availability of genotyping technologies (e.g., microarrays) that provide new genetic data, such as single nucleotide polymorphisms (SNPs). These SNPs-which represent pairs of nucleotide letters (e.g., AA, AG, or GG) found at specific positions on human chromosomes-are best considered as categorical variables, but this coding scheme can make difficult the multivariate analysis of their relationships with behavioral measurements, because most multivariate techniques developed for the analysis between sets of variables are designed for quantitative variables. To palliate this problem, we present a generalization of partial least squares-a technique used to extract the information common to 2 different data tables measured on the same observations-called partial least squares correspondence analysis-that is specifically tailored for the analysis of categorical and mixed ("heterogeneous") data types. Here, we formally define and illustrate-in a tutorial format-how partial least squares correspondence analysis extends to various types of data and design problems that are particularly relevant for psychological research that include genetic data. We illustrate partial least squares correspondence analysis with genetic, behavioral, and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative. R code is available on the Comprehensive R Archive Network and via the authors' websites. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua
2013-03-28
Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.
Conservation Genetics of an Endangered Lady’s Slipper Orchid: Cypripedium japonicum in China
Qian, Xin; Li, Quan-Jian; Liu, Fen; Gong, Mao-Jiang; Wang, Cai-Xia; Tian, Min
2014-01-01
Knowledge about the population genetic variation of the endangered orchid, Cypripedium japonicum, is conducive to the development of conservation strategies. Here, we examined the levels and partitioning of inter-simple sequence repeat (ISSR) diversity (109 loci) in five populations of this orchid to gain insight into its genetic variation and population structure in Eastern and Central China. It harbored considerably lower levels of genetic diversity both at the population (percentage of polymorphic loci (PPL) = 11.19%, Nei’s gene diversity (H) = 0.0416 and Shannon’s information index (I) = 0.0613) and species level (PPL = 38.53%, H = 0.1273 and I = 0.1928) and a significantly higher degree of differentiation among populations (the proportion of the total variance among populations (Φpt) = 0.698) than those typical of ISSR-based studies in other orchid species. Furthermore, the Nei’s genetic distances between populations were independent of the corresponding geographical distances. Two main clusters are shown in an arithmetic average (UPGMA) dendrogram, which is in agreement with the results of principal coordinate analysis (PCoA) analysis and the STRUCTURE program. In addition, individuals within a population were more similar to each other than to those in other populations. Based on the genetic data and our field survey, the development of conservation management for this threatened orchid should include habitat protection, artificial gene flow and ex situ measures. PMID:24983476
D’Souza, Fiona; Pudakalakatti, Shivanand M.; Uppangala, Shubhashree; Honguntikar, Sachin; Salian, Sujith Raj; Kalthur, Guruprasad; Pasricha, Renu; Appajigowda, Divya; Atreya, Hanudatta S.; Adiga, Satish Kumar
2016-01-01
Early development of certain mammalian embryos is protected by complex checkpoint systems to maintain the genomic integrity. Several metabolic pathways are modulated in response to genetic insults in mammalian cells. The present study investigated the relationship between the genetic integrity, embryo metabolites and developmental competence in preimplantation stage mouse embryos with the aim to identify early biomarkers which can predict embryonic genetic integrity using spent medium profiling by NMR spectroscopy. Embryos carrying induced DNA lesions (IDL) developed normally for the first 2.5 days, but began to exhibit a developmental delay at embryonic day 3.5(E3.5) though they were morphologically indistinguishable from control embryos. Analysis of metabolites in the spent medium on E3.5 revealed a significant association between pyruvate, lactate, glucose, proline, lysine, alanine, valine, isoleucine and thymine and the extent of genetic instability observed in the embryos on E4.5. Further analysis revealed an association of apoptosis and micronuclei frequency with P53 and Bax transcripts in IDL embryos on the E4.5 owing to delayed induction of chromosome instability. We conclude that estimation of metabolites on E3.5 in spent medium may serve as a biomarker to predict the genetic integrity in pre-implantation stage embryos which opens up new avenues to improve outcomes in clinical IVF programs. PMID:27853269
Effective communication of molecular genetic test results to primary care providers.
Scheuner, Maren T; Edelen, Maria Orlando; Hilborne, Lee H; Lubin, Ira M
2013-06-01
We evaluated a template for molecular genetic test reports that was developed as a strategy to reduce communication errors between the laboratory and ordering clinician. We surveyed 1,600 primary care physicians to assess satisfaction, ease of use, and effectiveness of genetic test reports developed using our template and reports developed by clinical laboratories. Mean score differences of responses between the reports were compared using t-tests. Two-way analysis of variance evaluated the effect of template versus standard reports and the influence of physician characteristics. There were 396 (24%) respondents. Template reports had higher scores than the standard reports for each survey item. The gender and specialty of the physician did not influence scores; however, younger physicians gave higher scores regardless of report type. There was significant interaction between report type and whether physicians ordered or reviewed any genetic tests (none versus at least one) in the past year, P = 0.005. For each survey item assessing satisfaction, ease of use, and effectiveness, physicians gave higher ratings to genetic test reports developed with the template than standard reports used by clinical laboratories. Physicians least familiar with genetic test reports, and possibly having the greatest need for better communication, were best served by the template reports.
Baig, Hasan; Madsen, Jan
2017-01-15
Simulation and behavioral analysis of genetic circuits is a standard approach of functional verification prior to their physical implementation. Many software tools have been developed to perform in silico analysis for this purpose, but none of them allow users to interact with the model during runtime. The runtime interaction gives the user a feeling of being in the lab performing a real world experiment. In this work, we present a user-friendly software tool named D-VASim (Dynamic Virtual Analyzer and Simulator), which provides a virtual laboratory environment to simulate and analyze the behavior of genetic logic circuit models represented in an SBML (Systems Biology Markup Language). Hence, SBML models developed in other software environments can be analyzed and simulated in D-VASim. D-VASim offers deterministic as well as stochastic simulation; and differs from other software tools by being able to extract and validate the Boolean logic from the SBML model. D-VASim is also capable of analyzing the threshold value and propagation delay of a genetic circuit model. D-VASim is available for Windows and Mac OS and can be downloaded from bda.compute.dtu.dk/downloads/. haba@dtu.dk, jama@dtu.dk. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Malcov, Mira; Reches, Adi; Ben-Yosef, Dalit; Cohen, Tania; Amit, Ami; Dgany, Orly; Tamary, Hannah; Yaron, Yuval
2010-03-01
Severe congenital neutropenia is an inherited disease characterized by low peripheral blood neutrophils, amenable to bone marrow transplantation. Genetic analysis in the family here described detected a ELA2 splice-site mutation in the affected child and also in his asymptomatic father. The parents requested preimplantation genetic diagnosis (PGD), coupled with HLA matching, to obtain a suitable bone marrow donor for the affected child. A PGD protocol was developed, based on multiplex nested PCR for direct analysis of the ELA2 mutation, flanking polymorphic markers and HLA typing. The amplification efficiency of the mutation was > 90% in single leukocytes from the affected child but only 67% in the father. Analysis of single haploid sperm cells from the father demonstrated three different sperm-cell populations: (1) sperm cells harboring the ELA2 mutation on the 'affected' haplotype, (2) sperm cells without the ELA2 mutation on the 'normal' haplotype, and (3) sperm cells without the ELA2 mutation on the 'affected' haplotype. These data demonstrate that the ELA2 mutation in the father occurred de novo during his embryonic development, resulting in somatic as well as germ-line mosaicism. This conclusion was also taken into consideration when PGD was performed. Copyright (c) 2010 John Wiley & Sons, Ltd.
[Public health, genetics and ethics].
Kottow, Miguel H
2002-10-01
Genetics research has shown enormous developments in recent decades, although as yet with only limited clinical application. Bioethical analysis has been unable to deal with the vast problems of genetics because emphasis has been put on the principlism applied to both clinical and research bioethics. Genetics nevertheless poses its most complex moral dilemmas at the public level, where a social brand of ethics ought to supersede the essentially interpersonal perspective of principlism. A more social understanding of ethics in genetics is required to unravel issues such as research and clinical explorations, ownership and patents, genetic manipulation, and allocation of resources. All these issues require reflection based on the requirements of citizenry, consideration of common assets, and definition of public policies in regulating genetic endeavors and protecting the society as a whole Bioethics has privileged the approach to individual ethical issues derived from genetic intervention, thereby neglecting the more salient aspects of genetics and social ethics.
2012-01-01
Background Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS) technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD) might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP) marker development. Results An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. Conclusions The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison. PMID:22908993
Shukla, Sudhir; Bhargava, Atul; Chatterjee, Avijeet; Pandey, Avinash Chandra; Mishra, Brij K
2010-01-15
Assessment of genetic diversity in a crop-breeding programme helps in the identification of diverse parental combinations to create segregating progenies with maximum genetic variability and facilitates introgression of desirable genes from diverse germplasm into the available genetic base. In the present study, 39 strains of vegetable amaranth (Amaranthus tricolor) were evaluated for eight morphological and seven quality traits for two test seasons to study the extent of genetic divergence among the strains. Multivariate analysis showed that the first four principal components contributed 67.55% of the variability. Cluster analysis grouped the strains into six clusters that displayed a wide range of diversity for most of the traits. Cluster analysis has proved to be an effective method in grouping strains that may facilitate effective management and utilisation in crop-breeding programmes. The diverse strains falling in different clusters were identified, which can be utilised in different hybridisation programmes to develop high-foliage-yielding varieties rich in nutritional components. Copyright (c) 2009 Society of Chemical Industry.
Wang, Lili; Fan, Jean; Francis, Joshua M.; Georghiou, George; Hergert, Sarah; Li, Shuqiang; Gambe, Rutendo; Zhou, Chensheng W.; Yang, Chunxiao; Xiao, Sheng; Cin, Paola Dal; Bowden, Michaela; Kotliar, Dylan; Shukla, Sachet A.; Brown, Jennifer R.; Neuberg, Donna; Alessi, Dario R.; Zhang, Cheng-Zhong; Kharchenko, Peter V.; Livak, Kenneth J.; Wu, Catherine J.
2017-01-01
Intra-tumoral genetic heterogeneity has been characterized across cancers by genome sequencing of bulk tumors, including chronic lymphocytic leukemia (CLL). In order to more accurately identify subclones, define phylogenetic relationships, and probe genotype–phenotype relationships, we developed methods for targeted mutation detection in DNA and RNA isolated from thousands of single cells from five CLL samples. By clearly resolving phylogenic relationships, we uncovered mutated LCP1 and WNK1 as novel CLL drivers, supported by functional evidence demonstrating their impact on CLL pathways. Integrative analysis of somatic mutations with transcriptional states prompts the idea that convergent evolution generates phenotypically similar cells in distinct genetic branches, thus creating a cohesive expression profile in each CLL sample despite the presence of genetic heterogeneity. Our study highlights the potential for single-cell RNA-based targeted analysis to sensitively determine transcriptional and mutational profiles of individual cancer cells, leading to increased understanding of driving events in malignancy. PMID:28679620
NASA Astrophysics Data System (ADS)
Kang, Hyun-Sil; Hong, Hyun-Ki; Park, Kyung-Il; Cho, Moonjae; Youn, Seok-Hyun; Choi, Kwang-Sik
2017-03-01
Manila clam Ruditapes philippinarum is one of the most important benthic animals in the coastal north Pacific region, where clam populations have been mixed genetically through trade and aquaculture activities. Accordingly, identification of the genetically different clam populations has become one of the most important issues to manage interbreeding of the local and introduced clam populations. To identify genetically different populations of clam populations, we developed 11 expressed sequence tag (EST)-microsatellite loci (i.e., simple sequence repeat, SSR) from 1,128 clam hemocyte cDNA clones challenged by the protozoan parasite Perkinsus olseni. Genotype analysis using the markers developed in this study demonstrated that clams from a tidal flat on the west coast contained 6 to 19 alleles per locus, and a population from Jeju Island had 4 to 20 alleles per locus. The expected heterozygosity of the 2 clam populations ranged from 0.472 to 0.919 for clams from the west coast, and 0.494 to 0.919 for clams from Jeju Island, respectively. Among the 11 loci discovered in this study, 7 loci significantly deviated from the Hardy-Weinberg equilibrium after Bonferroni correction. The 5 loci developed in this study also successfully amplified the SSRs of R. variegatus, a clam species taxonomically very close to R. philippinarum, from Hong Kong and Jeju Island. We believe that the 11 novel polymorphic SSR developed in this study can be utilized successfully in Manila clam genetic diversity analysis, as well as in genetic discrimination of different clam populations.
Welling, Matthew T.; Shapter, Tim; Rose, Terry J.; Liu, Lei; Stanger, Rhia; King, Graham J.
2016-01-01
Cannabis is a predominantly diecious phenotypically diverse domesticated genus with few if any extant natural populations. International narcotics conventions and associated legislation have constrained the establishment, characterization, and use of Cannabis genetic resource collections. This has resulted in the underutilization of genepool variability in cultivar development and has limited the inclusion of secondary genepools associated with genetic improvement strategies of the Green Revolution. The structured screening of ex situ germplasm and the exploitation of locally-adapted intraspecific traits is expected to facilitate the genetic improvement of Cannabis. However, limited attempts have been made to establish the full extent of genetic resources available for pre-breeding. We present a thorough critical review of Cannabis ex situ genetic resources, and discuss recommendations for conservation, pre-breeding characterization, and genetic analysis that will underpin future cultivar development. We consider East Asian germplasm to be a priority for conservation based on the prolonged historical cultivation of Cannabis in this region over a range of latitudes, along with the apparent high levels of genetic diversity and relatively low representation in published genetic resource collections. Seed cryopreservation could improve conservation by reducing hybridization and genetic drift that may occur during Cannabis germplasm regeneration. Given the unique legal status of Cannabis, we propose the establishment of a global virtual core collection based on the collation of consistent and comprehensive provenance meta-data and the adoption of high-throughput DNA sequencing technologies. This would enable representative core collections to be used for systematic phenotyping, and so underpin breeding strategies for the genetic improvement of Cannabis. PMID:27524992
Welling, Matthew T; Shapter, Tim; Rose, Terry J; Liu, Lei; Stanger, Rhia; King, Graham J
2016-01-01
Cannabis is a predominantly diecious phenotypically diverse domesticated genus with few if any extant natural populations. International narcotics conventions and associated legislation have constrained the establishment, characterization, and use of Cannabis genetic resource collections. This has resulted in the underutilization of genepool variability in cultivar development and has limited the inclusion of secondary genepools associated with genetic improvement strategies of the Green Revolution. The structured screening of ex situ germplasm and the exploitation of locally-adapted intraspecific traits is expected to facilitate the genetic improvement of Cannabis. However, limited attempts have been made to establish the full extent of genetic resources available for pre-breeding. We present a thorough critical review of Cannabis ex situ genetic resources, and discuss recommendations for conservation, pre-breeding characterization, and genetic analysis that will underpin future cultivar development. We consider East Asian germplasm to be a priority for conservation based on the prolonged historical cultivation of Cannabis in this region over a range of latitudes, along with the apparent high levels of genetic diversity and relatively low representation in published genetic resource collections. Seed cryopreservation could improve conservation by reducing hybridization and genetic drift that may occur during Cannabis germplasm regeneration. Given the unique legal status of Cannabis, we propose the establishment of a global virtual core collection based on the collation of consistent and comprehensive provenance meta-data and the adoption of high-throughput DNA sequencing technologies. This would enable representative core collections to be used for systematic phenotyping, and so underpin breeding strategies for the genetic improvement of Cannabis.
Revanna, Roopashree; Turnbull, Matthew H; Shaw, Martin L; Wright, Kathryn M; Butler, Ruth C; Jameson, Paula E; McCallum, John A
2013-08-15
Non-structural carbohydrate (NSC; glucose, fructose, sucrose and fructan) composition of onions (Allium cepa L.) varies widely and is a key determinant of market usage. To analyse the physiology and genetics of onion carbohydrate metabolism and to enable selective breeding, an inexpensive, reliable and practicable sugar assay is required to phenotype large numbers of samples. A rapid, reliable and cost-effective microplate-based assay was developed for NSC analysis in onions and used to characterise variation in tissue hexose, sucrose and fructan content in open-pollinated breeding populations and in mapping populations developed from a wide onion cross. Sucrose measured in microplates employing maltase as a hydrolytic enzyme was in agreement with HPLC-PAD results. The method revealed significant variation in bulb fructan content within open-pollinated 'Pukekohe Longkeeper' breeding populations over a threefold range. Very wide segregation from 80 to 600 g kg(-1) in fructan content was observed in bulbs of F2 genetic mapping populations from the wide onion cross 'Nasik Red × CUDH2150'. The microplate enzymatic assay is a reliable and practicable method for onion sugar analysis for genetics, breeding and food technology. Open-pollinated onion populations may harbour extensive within-population variability in carbohydrate content, which may be quantified and exploited using this method. The phenotypic data obtained from genetic mapping populations show that the method is well suited to detailed genetic and physiological analysis. © 2013 Society of Chemical Industry.
Developments in neonatal technology continue to improve infant outcomes.
Noble, Lawrence
2003-09-01
The past 20 years have yielded little success in reducing prematurity rates or decreasing the major morbidities of premature infants. Determination of interventions to decrease prematurity rates, and the development of methods to reduce premature neurologic damage, are the challenges for the next 20 years. With the advent of genetic analysis and the ability to study environmental and genetic interactions, we may be on the threshold of another significant decrease in mortality and morbidity in the premature infant.
Reverse genetics: Its origins and prospects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, P.
1991-04-01
The nucleotide sequence of a gene and its flanking segments alone will not tell us how its expression is regulated during development and differentiation, or in response to environmental changes. To comprehend the physiological significance of the molecular details requires biological analysis. Recombinant DNA techniques provide a powerful experimental approach. A strategy termed reverse genetics' utilizes the analysis of the activities of mutant and normal genes and experimentally constructed mutants to explore the relationship between gene structure and function thereby helping elucidate the relationship between genotype and phenotype.
Kazi, Abid A.; Yee, Rosemary K.
2013-01-01
Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer. PMID:23682805
Yee, Nelson S; Kazi, Abid A; Yee, Rosemary K
2013-06-01
Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer.
de Jong, Simone; Vidler, Lewis R; Mokrab, Younes; Collier, David A; Breen, Gerome
2016-08-01
Genome-wide association studies (GWAS) have identified thousands of novel genetic associations for complex genetic disorders, leading to the identification of potential pharmacological targets for novel drug development. In schizophrenia, 108 conservatively defined loci that meet genome-wide significance have been identified and hundreds of additional sub-threshold associations harbour information on the genetic aetiology of the disorder. In the present study, we used gene-set analysis based on the known binding targets of chemical compounds to identify the 'drug pathways' most strongly associated with schizophrenia-associated genes, with the aim of identifying potential drug repositioning opportunities and clues for novel treatment paradigms, especially in multi-target drug development. We compiled 9389 gene sets (2496 with unique gene content) and interrogated gene-based p-values from the PGC2-SCZ analysis. Although no single drug exceeded experiment wide significance (corrected p<0.05), highly ranked gene-sets reaching suggestive significance including the dopamine receptor antagonists metoclopramide and trifluoperazine and the tyrosine kinase inhibitor neratinib. This is a proof of principle analysis showing the potential utility of GWAS data of schizophrenia for the direct identification of candidate drugs and molecules that show polypharmacy. © The Author(s) 2016.
Transcriptome Analysis and Development of SSR Molecular Markers in Glycyrrhiza uralensis Fisch.
Liu, Yaling; Zhang, Pengfei; Song, Meiling; Hou, Junling; Qing, Mei; Wang, Wenquan; Liu, Chunsheng
2015-01-01
Licorice is an important traditional Chinese medicine with clinical and industrial applications. Genetic resources of licorice are insufficient for analysis of molecular biology and genetic functions; as such, transcriptome sequencing must be conducted for functional characterization and development of molecular markers. In this study, transcriptome sequencing on the Illumina HiSeq 2500 sequencing platform generated a total of 5.41 Gb clean data. De novo assembly yielded a total of 46,641 unigenes. Comparison analysis using BLAST showed that the annotations of 29,614 unigenes were conserved. Further study revealed 773 genes related to biosynthesis of secondary metabolites of licorice, 40 genes involved in biosynthesis of the terpenoid backbone, and 16 genes associated with biosynthesis of glycyrrhizic acid. Analysis of unigenes larger than 1 Kb with a length of 11,702 nt presented 7,032 simple sequence repeats (SSR). Sixty-four of 69 randomly designed and synthesized SSR pairs were successfully amplified, 33 pairs of primers were polymorphism in in Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., Glycyrrhiza glabra L. and Glycyrrhiza pallidiflora Maxim. This study not only presents the molecular biology data of licorice but also provides a basis for genetic diversity research and molecular marker-assisted breeding of licorice. PMID:26571372
Rapid Genetic Analysis of Epithelial-Mesenchymal Signaling During Hair Regeneration
Zhen, Hanson H.; Oro, Anthony E.
2013-01-01
Hair follicle morphogenesis, a complex process requiring interaction between epithelia-derived keratinocytes and the underlying mesenchyme, is an attractive model system to study organ development and tissue-specific signaling. Although hair follicle development is genetically tractable, fast and reproducible analysis of factors essential for this process remains a challenge. Here we describe a procedure to generate targeted overexpression or shRNA-mediated knockdown of factors using lentivirus in a tissue-specific manner. Using a modified version of a hair regeneration model 5, 6, 11, we can achieve robust gain- or loss-of-function analysis in primary mouse keratinocytes or dermal cells to facilitate study of epithelial-mesenchymal signaling pathways that lead to hair follicle morphogenesis. We describe how to isolate fresh primary mouse keratinocytes and dermal cells, which contain dermal papilla cells and their precursors, deliver lentivirus containing either shRNA or cDNA to one of the cell populations, and combine the cells to generate fully formed hair follicles on the backs of nude mice. This approach allows analysis of tissue-specific factors required to generate hair follicles within three weeks and provides a fast and convenient companion to existing genetic models. PMID:23486463
Genetic Regulation of Development of Thymic Lymphomas Induced by N‐Propyl‐N‐nitrosourea in the Rat
Fukami, Hiroko; Nishimura, Mayumi; Matsuyama, Mutsushi
1995-01-01
To clarify the linkage between Hbb and Tls‐1 (thymic lymphoma susceptible‐1) loci and to investigate other loci concerned in thymic lymphomagenesis, the BUF/Mna rat, which is highly sensitive to the lymphomagenic activity of N‐propyl‐N‐nitrosourea (PNU), the WKY/NCrj rat, reported to be resistant, and their cross offspring were subjected to genetic analysis. F1 hybrid and backcross generations were raised from the 2 strains, and 6 genetic markers including Hbb were analyzed in individuals of the backcross generation. However, no linkage between Hbb and Tls‐1 loci could be demonstrated since WKY rats also developed a high incidence of thymic lymphomas in response to PNU. Nevertheless, thymic lymphomas developed more rapidly and reached a larger size in the BUF rats. F1 rats expressed a rather rapid and large tumor growth phenotype, while the [(WKY × BUF) × WKY] backcross generation consisted of rats with either rapidly growing or slowly growing tumors. It was thus concluded that rapid development of thymic lymphomas is determined by a gene, provisionally designated Tls‐3. Analysis of the relationship between 6 genetic markers and development of thymic lymphoma in the backcross generation demonstrated that the Tls‐3 locus is loosely linked to the Gc locus, suggesting a possible location on rat chromosome 14. Tls‐3 may not be identical with Tls‐1 and other genes known to be relevant to thymic tumors, but its relationship with Tls‐2 remains obscure. PMID:7559080
Hasham, Alia; Zhang, Weijia; Lotay, Vaneet; Haggerty, Shannon; Stefan, Mihaela; Concepcion, Erlinda; Dieterich, Douglas T; Tomer, Yaron
2013-08-01
Autoimmune thyroid diseases (AITD) have become increasingly recognized as a complication of interferon-alpha (IFNα) therapy in patients with chronic Hepatitis C virus (HCV) infection. Interferon-induced thyroiditis (IIT) can manifest as clinical thyroiditis in approximately 15% of HCV patients receiving IFNα and subclinical thyroiditis in up to 40% of patients, possibly resulting in either dose reduction or discontinuation of IFNα treatment. However, the exact mechanisms that lead to the development of IIT are unknown and may include IFNα-mediated immune-recruitment as well as direct toxic effects on thyroid follicular cells. We hypothesized that IIT develops in genetically predisposed individuals whose threshold for developing thyroiditis is lowered by IFNα. Therefore, our aim was to identify the susceptibility genes for IIT. We used a genomic convergence approach combining genetic association data with transcriptome analysis of genes upregulated by IFNα. Integrating results of genetic association, transcriptome data, pathway, and haplotype analyses enabled the identification of 3 putative loci, SP100/110/140 (2q37.1), HLA (6p21.3), and TAP1 (6p21.3) that may be involved in the pathogenesis of IIT. Immune-regulation and apoptosis emerged as the predominant mechanisms underlying the etiology of IIT. Published by Elsevier Ltd.
Hasham, Alia; Zhang, Weijia; Lotay, Vaneet; Haggerty, Shannon; Stefan, Mihaela; Concepcion, Erlinda; Dieterich, Douglas T.; Tomer, Yaron
2013-01-01
Autoimmune thyroid diseases (AITD) have become increasingly recognized as a complication of interferon-alpha (IFNα) therapy in patients with chronic Hepatitis C virus (HCV) infection. Interferon-induced thyroiditis (IIT) can manifest as clinical thyroiditis in approximately 15% of HCV patients receiving IFNα and subclinical thyroiditis in up to 40% of patients, possibly resulting in either dose reduction or discontinuation of IFNα treatment. However, the exact mechanisms that lead to the development of IIT are unknown and may include IFNα-mediated immune-recruitment as well as direct toxic effects on thyroid follicular cells. We hypothesized that IIT develops in genetically predisposed individuals whose threshold for developing thyroiditis is lowered by IFNα. Therefore, our aim was to identify the susceptibility genes for IIT. We used a genomic convergence approach combining genetic association data with transcriptome analysis of genes upregulated by IFNα. Integrating results of genetic association, transcriptome data, pathway, and haplotype analyses enabled the identification of 3 putative loci, SP100/110/140 (2q37.1), HLA (6p21.3), and TAP1 (6p21.3) that may be involved in the pathogenesis of IIT. Immune-regulation and apoptosis emerged as the predominant mechanisms underlying the etiology of IIT. PMID:23683877
Development of a forensic skin colour predictive test.
Maroñas, Olalla; Phillips, Chris; Söchtig, Jens; Gomez-Tato, Antonio; Cruz, Raquel; Alvarez-Dios, José; de Cal, María Casares; Ruiz, Yarimar; Fondevila, Manuel; Carracedo, Ángel; Lareu, María V
2014-11-01
There is growing interest in skin colour prediction in the forensic field. However, a lack of consensus approaches for recording skin colour phenotype plus the complicating factors of epistatic effects, environmental influences such as exposure to the sun and unidentified genetic variants, present difficulties for the development of a forensic skin colour predictive test centred on the most strongly associated SNPs. Previous studies have analysed skin colour variation in single unadmixed population groups, including South Asians (Stokowski et al., 2007, Am. J. Hum. Genet, 81: 1119-32) and Europeans (Jacobs et al., 2013, Hum Genet. 132: 147-58). Nevertheless, a major challenge lies in the analysis of skin colour in admixed individuals, where co-ancestry proportions do not necessarily dictate any one person's skin colour. Our study sought to analyse genetic differences between African, European and admixed African-European subjects where direct spectrometric measurements and photographs of skin colour were made in parallel. We identified strong associations to skin colour variation in the subjects studied from a pigmentation SNP discovery panel of 59 markers and developed a forensic online classifier based on naïve Bayes analysis of the SNP profiles made. A skin colour predictive test is described using the ten most strongly associated SNPs in 8 genes linked to skin pigmentation variation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Sigrist, M S; Pinheiro, J B; Filho, J A Azevedo; Zucchi, M I
2011-03-09
Turmeric (Curcuma longa) is a triploid, vegetatively propagated crop introduced early during the colonization of Brazil. Turmeric rhizomes are ground into a powder used as a natural dye in the food industry, although recent research suggests a greater potential for the development of drugs and cosmetics. In Brazil, little is known about the genetic variability available for crop improvement. We examined the genetic diversity among turmeric accessions from a Brazilian germplasm collection comprising 39 accessions collected from the States of Goiás, Mato Grosso do Sul, Minas Gerais, São Paulo, and Pará. For comparison, 18 additional genotypes were analyzed, including samples from India and Puerto Rico. Total DNA was extracted from lyophilized leaf tissue and genetic analysis was performed using 17 microsatellite markers (single-sequence repeats). Shannon-Weiner indexes ranged from 0.017 (Minas Gerais) to 0.316 (São Paulo). Analyses of molecular variance (AMOVA) demonstrated major differences between countries (63.4%) and that most of the genetic diversity in Brazil is found within states (75.3%). Genotypes from São Paulo State were the most divergent and potentially useful for crop improvement. Structure analysis indicated two main groups of accessions. These results can help target future collecting efforts for introduction of new materials needed to develop more productive and better adapted cultivars.
Genetic Analysis of Reduced γ-Tocopherol Content in Ethiopian Mustard Seeds.
García-Navarro, Elena; Fernández-Martínez, José M; Pérez-Vich, Begoña; Velasco, Leonardo
2016-01-01
Ethiopian mustard (Brassica carinata A. Braun) line BCT-6, with reduced γ-tocopherol content in the seeds, has been previously developed. The objective of this research was to conduct a genetic analysis of seed tocopherols in this line. BCT-6 was crossed with the conventional line C-101 and the F1, F2, and BC plant generations were analyzed. Generation mean analysis using individual scaling tests indicated that reduced γ-tocopherol content fitted an additive-dominant genetic model with predominance of additive effects and absence of epistatic interactions. This was confirmed through a joint scaling test and additional testing of the goodness of fit of the model. Conversely, epistatic interactions were identified for total tocopherol content. Estimation of the minimum number of genes suggested that both γ- and total tocopherol content may be controlled by two genes. A positive correlation between total tocopherol content and the proportion of γ-tocopherol was identified in the F2 generation. Additional research on the feasibility of developing germplasm with high tocopherol content and reduced concentration of γ-tocopherol is required.
Pettey, Christina M; McSweeney, Jean C; Stewart, Katharine E; Price, Elvin T; Cleves, Mario A; Heo, Seongkum; Souder, Elaine
2016-01-01
Background Pedigree development, family history, and genetic testing are thought to be useful in improving outcomes of chronic illnesses such as hypertension (HTN). However, the clinical utility of pedigree development is still unknown. Further, little is known about African Americans’ (AAs’) perceptions of family history and genetic testing. Aims This study examined the feasibility of developing pedigrees for AAs with HTN and explored perceptions of family history and genetic research among AAs with HTN. Methods The US Surgeon General’s My Family Health Portrait was administered, and 30–60 minute in-person individual interviews were conducted. Descriptive statistics were used to analyze pedigree data. Interview transcripts were analyzed with content analysis and constant comparison. Results Twenty-nine AAs with HTN were recruited from one free clinic (15 women, 14 men; mean age 49 years, SD 9.6). Twenty-six (90%) reported their family history in sufficient detail to develop a pedigree. Perceptions of family history included knowledge of HTN in the family, culturally influenced family teaching about HTN, and response to family history of HTN. Most participants agreed to future genetic testing and DNA collection because they wanted to help others; some said they needed more information and others expressed a concern for privacy. Conclusion The majority of AAs in this sample possessed extensive knowledge of HTN within their family and were able to develop a three generation pedigree with assistance. The majority were willing to participate in future genetic research. PMID:25322748
Pettey, Christina M; McSweeney, Jean C; Stewart, Katharine E; Price, Elvin T; Cleves, Mario A; Heo, Seongkum; Souder, Elaine
2015-02-01
Pedigree development, family history, and genetic testing are thought to be useful in improving outcomes of chronic illnesses such as hypertension (HTN). However, the clinical utility of pedigree development is still unknown. Further, little is known about the perceptions of African Americans (AAs) of family history and genetic testing. This study examined the feasibility of developing pedigrees for AAs with HTN and explored perceptions of family history and genetic research among AAs with HTN. The US Surgeon General's My Family Health Portrait was administered, and 30-60 min in-person individual interviews were conducted. Descriptive statistics were used to analyze pedigree data. Interview transcripts were analyzed with content analysis and constant comparison. Twenty-nine AAs with HTN were recruited from one free clinic (15 women, 14 men; mean age 49 years, standard deviation (SD) 9.6). Twenty-six (90%) reported their family history in sufficient detail to develop a pedigree. Perceptions of family history included knowledge of HTN in the family, culturally influenced family teaching about HTN, and response to family history of HTN. Most participants agreed to future genetic testing and DNA collection because they wanted to help others; some said they needed more information and others expressed a concern for privacy. The majority of AAs in this sample possessed extensive knowledge of HTN within their family and were able to develop a three-generation pedigree with assistance. The majority were willing to participate in future genetic research. © The European Society of Cardiology 2014.
Blood pressure and cerebral white matter share common genetic factors in Mexican Americans.
Kochunov, Peter; Glahn, David C; Lancaster, Jack; Winkler, Anderson; Karlsgodt, Kathrin; Olvera, Rene L; Curran, Joanna E; Carless, Melanie A; Dyer, Thomas D; Almasy, Laura; Duggirala, Ravi; Fox, Peter T; Blangero, John
2011-02-01
Elevated arterial pulse pressure and blood pressure (BP) can lead to atrophy of cerebral white matter (WM), potentially attributable to shared genetic factors. We calculated the magnitude of shared genetic variance between BP and fractional anisotropy of water diffusion, a sensitive measurement of WM integrity in a well-characterized population of Mexican Americans. The patterns of whole-brain and regional genetic overlap between BP and fractional anisotropy were interpreted in the context the pulse-wave encephalopathy theory. We also tested whether regional pattern in genetic pleiotropy is modulated by the phylogeny of WM development. BP and high-resolution (1.7 × 1.7 × 3 mm; 55 directions) diffusion tensor imaging data were analyzed for 332 (202 females; mean age 47.9 ± 13.3 years) members of the San Antonio Family Heart Study. Bivariate genetic correlation analysis was used to calculate the genetic overlap between several BP measurements (pulse pressure, systolic BP, and diastolic BP) and fractional anisotropy (whole-brain and regional values). Intersubject variance in pulse pressure and systolic BP exhibited a significant genetic overlap with variance in whole-brain fractional anisotropy values, sharing 36% and 22% of genetic variance, respectively. Regionally, shared genetic variance was significantly influenced by rates of WM development (r=-0.75; P=0.01). The pattern of genetic overlap between BP and WM integrity was generally in agreement with the pulse-wave encephalopathy theory. Our study provides evidence that a set of pleiotropically acting genetic factors jointly influence phenotypic variation in BP and WM integrity. The magnitude of this overlap appears to be influenced by phylogeny of WM development, suggesting a possible role for genotype-by-age interactions.
Blood Pressure and Cerebral White Matter Share Common Genetic Factors in Mexican-Americans
Kochunov, Peter; Glahn, David C; Lancaster, Jack; Winkler, Anderson; Karlsgodt, Kathrin; Olvera, Rene L; Curran, Joanna E; Carless, Melanie A; Dyer, Thomas D; Almasy, Laura; Duggirala, Ravi; Fox, Peter T; Blangero, John
2010-01-01
Elevated arterial pulse pressure (PP) and blood pressure (BP) can lead to atrophy of cerebral white matter (WM), potentially due to shared genetic factors. We calculated the magnitude of shared genetic variance between BP and fractional anisotropy (FA) of water diffusion, a sensitive measurement of WM integrity in a well-characterized population of Mexican-Americans. The patterns of whole-brain and regional genetic overlap between BP and FA were interpreted in the context the pulse-wave encephalopathy (PWE) theory. We also tested whether regional pattern in genetic pleiotropy is modulated by the phylogeny of WM development. BP and high-resolution (1.7×1.7×3mm, 55 directions) diffusion tensor imaging (DTI) data were analyzed for 332 (202 females; mean age=47.9±13.3years) members of the San Antonio Family Heart Study. Bivariate genetic correlation analysis was used to calculate the genetic overlap between several BP measurements [PP, systolic (SBP) and diastolic (DBP)] and FA (whole-brain and regional values). Intersubject variance in PP and SBP exhibited a significant genetic overlap with variance in whole-brain FA values, sharing 36% and 22% of genetic variance, respectively. Regionally, shared genetic variance was significantly influenced by rates of WM development (r=−.75, p=0.01). The pattern of genetic overlap between BP and WM integrity was generally in-agreement with the PWE theory. Our study provides evidence that a set of pleiotropically acting genetic factors jointly influence phenotypic variation in BP and WM integrity. The magnitude of this overlap appears to be influenced by phylogeny of WM development suggesting a possible role for genotype-by-age interactions. PMID:21135356
Pickard, Dawn
2007-01-01
We have developed experiments and materials to model human genetics using rapid cycling Brassica rapa, also known as Fast Plants. Because of their self-incompatibility for pollination and the genetic diversity within strains, B. rapa can serve as a relevant model for human genetics in teaching laboratory experiments. The experiment presented here is a paternity exclusion project in which a child is born with a known mother but two possible alleged fathers. Students use DNA markers (microsatellites) to perform paternity exclusion on these subjects. Realistic DNA marker analysis can be challenging to implement within the limitations of an instructional lab, but we have optimized the experimental methods to work in a teaching lab environment and to maximize the “hands-on” experience for the students. The genetic individuality of each B. rapa plant, revealed by analysis of polymorphic microsatellite markers, means that each time students perform this project, they obtain unique results that foster independent thinking in the process of data interpretation. PMID:17548880
Landscape Analysis and Algorithm Development for Plateau Plagued Search Spaces
2011-02-28
Final Report for AFOSR #FA9550-08-1-0422 Landscape Analysis and Algorithm Development for Plateau Plagued Search Spaces August 1, 2008 to November 30...focused on developing high level general purpose algorithms , such as Tabu Search and Genetic Algorithms . However, understanding of when and why these... algorithms perform well still lags. Our project extended the theory of certain combi- natorial optimization problems to develop analytical
Nivard, Michel G; Gage, Suzanne H; Hottenga, Jouke J; van Beijsterveldt, Catharina E M; Abdellaoui, Abdel; Bartels, Meike; Baselmans, Bart M L; Ligthart, Lannie; Pourcain, Beate St; Boomsma, Dorret I; Munafò, Marcus R; Middeldorp, Christel M
2017-10-21
Several nonpsychotic psychiatric disorders in childhood and adolescence can precede the onset of schizophrenia, but the etiology of this relationship remains unclear. We investigated to what extent the association between schizophrenia and psychiatric disorders in childhood is explained by correlated genetic risk factors. Polygenic risk scores (PRS), reflecting an individual's genetic risk for schizophrenia, were constructed for 2588 children from the Netherlands Twin Register (NTR) and 6127 from the Avon Longitudinal Study of Parents And Children (ALSPAC). The associations between schizophrenia PRS and measures of anxiety, depression, attention deficit hyperactivity disorder (ADHD), and oppositional defiant disorder/conduct disorder (ODD/CD) were estimated at age 7, 10, 12/13, and 15 years in the 2 cohorts. Results were then meta-analyzed, and a meta-regression analysis was performed to test differences in effects sizes over, age and disorders. Schizophrenia PRS were associated with childhood and adolescent psychopathology. Meta-regression analysis showed differences in the associations over disorders, with the strongest association with childhood and adolescent depression and a weaker association for ODD/CD at age 7. The associations increased with age and this increase was steepest for ADHD and ODD/CD. Genetic correlations varied between 0.10 and 0.25. By optimally using longitudinal data across diagnoses in a multivariate meta-analysis this study sheds light on the development of childhood disorders into severe adult psychiatric disorders. The results are consistent with a common genetic etiology of schizophrenia and developmental psychopathology as well as with a stronger shared genetic etiology between schizophrenia and adolescent onset psychopathology. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com
Kuiper, H A; König, A; Kleter, G A; Hammes, W P; Knudsen, I
2004-07-01
The most important results from the EU-sponsored ENTRANSFOOD Thematic Network project are reviewed, including the design of a detailed step-wise procedure for the risk assessment of foods derived from genetically modified crops based on the latest scientific developments, evaluation of topical risk assessment issues, and the formulation of proposals for improved risk management and public involvement in the risk analysis process. Copyright 2004 Elsevier Ltd.
Genetic analysis of growth curves for a woody perennial species, Pinus taeda L.
D.P. Gwaze; F.E. Bridgwater; C.G. Williams
2002-01-01
Inheritance of growth curves is critical for understanding evolutionary change and formulating efficient breeding plans, yet has received limited attention. Growth curves, like other characters that change in concert with development, often have higher heritability than age-specific traits. This study compared genetic parameters of height-growth curves with those of...
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphisms (SNPs) are capable of providing the highest level of genome coverage for genomic and genetic analysis because of their abundance and relatively even distribution in the genome. Such a capacity, however, cannot be achieved without an efficient genotyping platform such ...
USDA-ARS?s Scientific Manuscript database
Cowpea (Vigna unguiculata) is an important legume crop with diverse uses. The species is presently a minor crop, and evaluation of its genetic diversity has been very limited. In this study, a total of 200 genic and 100 genomic simple sequence repeat (SSR) markers were developed from cowpea unigene ...
Genetic diversity of Trichomonas vaginalis clinical isolates from Henan province in central China.
Mao, Meng; Liu, Hui Li
2015-07-01
Trichomonas vaginalis is a flagellated protozoan parasite that infects the human urogenital tract, causing the most common non-viral, sexually transmitted disease worldwide. In this study, genetic variants of T. vaginalis were identified in Henan Province, China. Fragments of the small subunit of nuclear ribosomal RNA (18S rRNA) were amplified from 32 T. vaginalis isolates obtained from seven regions of Henan Province. Overall, 18 haplotypes were determined from the 18S rRNA sequences. Each sampled population and the total population displayed high haplotype diversity (Hd), accompanied by very low nucleotide diversity (Pi). In these molecular genetic variants, 91.58% genetic variation was derived from intra-regions. Phylogenetic analysis revealed no correlation between phylogeny and geographic distribution. Demographic analysis supported population expansion of T. vaginalis isolates from central China. Our findings showing moderate-to-high genetic variations in the 32 isolates of T. vaginalis provide useful knowledge for monitoring changes in parasite populations for the development of future control strategies.
Sermon, Karen
2017-01-01
Preimplantation genetic diagnosis (PGD) was introduced as an alternative to prenatal diagnosis: embryos cultured in vitro were analysed for a monogenic disease and only disease-free embryos were transferred to the mother, to avoid the termination of pregnancy with an affected foetus. It soon transpired that human embryos show a great deal of acquired chromosomal abnormalities, thought to explain the low success rate of IVF - hence preimplantation genetic testing for aneuploidy (PGT-A) was developed to select euploid embryos for transfer. Areas covered: PGD has followed the tremendous evolution in genetic analysis, with only a slight delay due to adaptations for diagnosis on small samples. Currently, next generation sequencing combining chromosome with single-base pair analysis is on the verge of becoming the golden standard in PGD and PGT-A. Papers highlighting the different steps in the evolution of PGD/PGT-A were selected. Expert commentary: Different methodologies used in PGD/PGT-A with their pros and cons are discussed.
Riaz, Summaira; De Lorenzis, Gabriella; Velasco, Dianne; Koehmstedt, Anne; Maghradze, David; Bobokashvili, Zviad; Musayev, Mirza; Zdunic, Goran; Laucou, Valerie; Andrew Walker, M; Failla, Osvaldo; Preece, John E; Aradhya, Mallikarjuna; Arroyo-Garcia, Rosa
2018-06-27
The mountainous region between the Caucasus and China is considered to be the center of domestication for grapevine. Despite the importance of Central Asia in the history of grape growing, information about the extent and distribution of grape genetic variation in this region is limited in comparison to wild and cultivated grapevines from around the Mediterranean basin. The principal goal of this work was to survey the genetic diversity and relationships among wild and cultivated grape germplasm from the Caucasus, Central Asia, and the Mediterranean basin collectively to understand gene flow, possible domestication events and adaptive introgression. A total of 1378 wild and cultivated grapevines collected around the Mediterranean basin and from Central Asia were tested with a set of 20 nuclear SSR markers. Genetic data were analyzed (Cluster analysis, Principal Coordinate Analysis and STRUCTURE) to identify groups, and the results were validated by Nei's genetic distance, pairwise F ST analysis and assignment tests. All of these analyses identified three genetic groups: G1, wild accessions from Croatia, France, Italy and Spain; G2, wild accessions from Armenia, Azerbaijan and Georgia; and G3, cultivars from Spain, France, Italy, Georgia, Iran, Pakistan and Turkmenistan, which included a small group of wild accessions from Georgia and Croatia. Wild accessions from Georgia clustered with cultivated grape from the same area (proles pontica), but also with Western Europe (proles occidentalis), supporting Georgia as the ancient center of grapevine domestication. In addition, cluster analysis indicated that Western European wild grapes grouped with cultivated grapes from the same area, suggesting that the cultivated proles occidentalis contributed more to the early development of wine grapes than the wild vines from Eastern Europe. The analysis of genetic relationships among the tested genotypes provided evidence of genetic relationships between wild and cultivated accessions in the Mediterranean basin and Central Asia. The genetic structure indicated a considerable amount of gene flow, which limited the differentiation between the two subspecies. The results also indicated that grapes with mixed ancestry occur in the regions where wild grapevines were domesticated.
Gene Level Meta-Analysis of Quantitative Traits by Functional Linear Models.
Fan, Ruzong; Wang, Yifan; Boehnke, Michael; Chen, Wei; Li, Yun; Ren, Haobo; Lobach, Iryna; Xiong, Momiao
2015-08-01
Meta-analysis of genetic data must account for differences among studies including study designs, markers genotyped, and covariates. The effects of genetic variants may differ from population to population, i.e., heterogeneity. Thus, meta-analysis of combining data of multiple studies is difficult. Novel statistical methods for meta-analysis are needed. In this article, functional linear models are developed for meta-analyses that connect genetic data to quantitative traits, adjusting for covariates. The models can be used to analyze rare variants, common variants, or a combination of the two. Both likelihood-ratio test (LRT) and F-distributed statistics are introduced to test association between quantitative traits and multiple variants in one genetic region. Extensive simulations are performed to evaluate empirical type I error rates and power performance of the proposed tests. The proposed LRT and F-distributed statistics control the type I error very well and have higher power than the existing methods of the meta-analysis sequence kernel association test (MetaSKAT). We analyze four blood lipid levels in data from a meta-analysis of eight European studies. The proposed methods detect more significant associations than MetaSKAT and the P-values of the proposed LRT and F-distributed statistics are usually much smaller than those of MetaSKAT. The functional linear models and related test statistics can be useful in whole-genome and whole-exome association studies. Copyright © 2015 by the Genetics Society of America.
Genetics in Diabetic Retinopathy: Current Concepts and New Insights
Simó-Servat, Olga; Hernández, Cristina; Simó, Rafael
2013-01-01
There is emerging evidence which indicates the essential role of genetic factors in the development of diabetic retinopathy (DR). In this regard it should be highlighted that genetic factors account for 25-50% of the risk of developing DR. Therefore, the use of genetic analysis to identify those diabetic patients most prone to developing DR might be useful in designing a more individualized treatment. In this regard, there are three main research strategies: candidate gene studies, linkage studies and Genome-Wide Association Studies (GWAS). In the candidate gene approach, several genes encoding proteins closely related to DR development have been analyzed. The linkage studies analyze shared alleles among family members with DR under the assumption that these predispose to a more aggressive development of DR. Finally, Genome-Wide Association Studies (GWAS) are a new tool involving a massive evaluation of single nucleotide polymorphisms (SNP) in large samples. In this review the available information using these three methodologies is critically analyzed. A genetic approach in order to identify new candidates in the pathogenesis of DR would permit us to design more targeted therapeutic strategies in order to decrease this devastating complication of diabetes. Basic researchers, ophthalmologists, diabetologists and geneticists should work together in order to gain new insights into this issue. PMID:24403848
2010-01-01
Background As advances in genetics are becoming increasingly relevant to mainstream healthcare, a major challenge is to ensure that these are integrated appropriately into mainstream medical services. In 2003, the Department of Health for England announced the availability of start-up funding for ten 'Mainstreaming Genetics' pilot services to develop models to achieve this. Methods Multiple methods were used to explore the pilots' experiences of incorporating genetics which might inform the development of new services in the future. A workshop with project staff, an email questionnaire, interviews and a thematic analysis of pilot final reports were carried out. Results Seven themes relating to the integration of genetics into mainstream medical services were identified: planning services to incorporate genetics; the involvement of genetics departments; the establishment of roles incorporating genetic activities; identifying and involving stakeholders; the challenges of working across specialty boundaries; working with multiple healthcare organisations; and the importance of cultural awareness of genetic conditions. Pilots found that the planning phase often included the need to raise awareness of genetic conditions and services and that early consideration of organisational issues such as clinic location was essential. The formal involvement of genetics departments was crucial to success; benefits included provision of clinical and educational support for staff in new roles. Recruitment and retention for new roles outside usual career pathways sometimes proved difficult. Differences in specialties' working practices and working with multiple healthcare organisations also brought challenges such as the 'genetic approach' of working with families, incompatible record systems and different approaches to health professionals' autonomous practice. 'Practice points' have been collated into a Toolkit which includes resources from the pilots, including job descriptions and clinical tools. These can be customised for reuse by other services. Conclusions Healthcare services need to translate advances in genetics into benefits for patients. Consideration of the issues presented here when incorporating genetics into mainstream medical services will help ensure that new service developments build on the body of experience gained by the pilots, to provide high quality services for patients with or at risk of genetic conditions. PMID:20470377
Bennett, Catherine L; Burke, Sarah E; Burton, Hilary; Farndon, Peter A
2010-05-14
As advances in genetics are becoming increasingly relevant to mainstream healthcare, a major challenge is to ensure that these are integrated appropriately into mainstream medical services. In 2003, the Department of Health for England announced the availability of start-up funding for ten 'Mainstreaming Genetics' pilot services to develop models to achieve this. Multiple methods were used to explore the pilots' experiences of incorporating genetics which might inform the development of new services in the future. A workshop with project staff, an email questionnaire, interviews and a thematic analysis of pilot final reports were carried out. Seven themes relating to the integration of genetics into mainstream medical services were identified: planning services to incorporate genetics; the involvement of genetics departments; the establishment of roles incorporating genetic activities; identifying and involving stakeholders; the challenges of working across specialty boundaries; working with multiple healthcare organisations; and the importance of cultural awareness of genetic conditions. Pilots found that the planning phase often included the need to raise awareness of genetic conditions and services and that early consideration of organisational issues such as clinic location was essential. The formal involvement of genetics departments was crucial to success; benefits included provision of clinical and educational support for staff in new roles. Recruitment and retention for new roles outside usual career pathways sometimes proved difficult. Differences in specialties' working practices and working with multiple healthcare organisations also brought challenges such as the 'genetic approach' of working with families, incompatible record systems and different approaches to health professionals' autonomous practice. 'Practice points' have been collated into a Toolkit which includes resources from the pilots, including job descriptions and clinical tools. These can be customised for reuse by other services. Healthcare services need to translate advances in genetics into benefits for patients. Consideration of the issues presented here when incorporating genetics into mainstream medical services will help ensure that new service developments build on the body of experience gained by the pilots, to provide high quality services for patients with or at risk of genetic conditions.
Kirilenko, M Yu; Tikunova, E V; Sirotina, S S; Polonikov, A V; Bushueva, O Yu; Churnosov, M I
Primary open-angle glaucoma (POAG) is a multifactorial disease, etiopathogenesis of which largely depends on growth factors. Possessing a variety of medical and biological effects, these cytokines may influence the development and progression of POAG. to reveal the role of genetic polymorphisms of growth factors in predisposition to developing POAG that is refractory to local hypotensive therapy. The object of the study were 162 patients with stage II-III POAG, in whom local hypotensive therapy was inefficient, 90 patients with stage II-III POAG well controlled on local hypotensive therapy, and 191 controls. The material for the study was venous blood taken from the cubital vein of a proband. Isolation of genomic DNA was performed by phenol-chloroform extraction. Analysis of genetic polymorphisms of growth factors was performed through allelic discrimination. For that, synthesis of DNA was carried out via polymerase chain reaction (PCR). It is found that the T IGFR-1 genetic variant (OR=1.34) and a combination of the C VEGF-A and T IGFR-1 genetic variants (OR=1.90) are risk factors of developing POAG that is refractory to local hypotensive therapy. A statistical model for predicting such a risk has been proposed that includes: VEGF-A с.-958C>T genetic marker (rs 833,061), age, concomitant non-inflammatory ocular diseases, microvascular changes in the conjunctiva, the degree of pigmentation of the angle of the anterior chamber, and pseudoexfoliative syndrome. Recognition accuracy of the model is 90.42%. The T IGFR-1 genetic variant and a combination of the C VEGF-A and T IGFR-1 genetic variants increase the risk of developing POAG that is refractory to local hypotensive therapy.
Kurata, Kaoruko; Jaffré, Tanguy; Setoguchi, Hiroaki
2008-12-01
Among the many species that grow in New Caledonia, the pitcher plant Nepenthes vieillardii (Nepenthaceae) has a high degree of morphological variation. In this study, we present the patterns of genetic differentiation of pitcher plant populations based on chloroplast DNA haplotype analysis using the sequences of five spacers. We analyzed 294 samples from 16 populations covering the entire range of the species, using 4660 bp of sequence. Our analysis identified 17 haplotypes, including one that is widely distributed across the islands, as well as regional and private haplotypes. The greatest haplotype diversity was detected on the eastern coast of the largest island and included several private haplotypes, while haplotype diversity was low in the southern plains region. The parsimony network analysis of the 17 haplotypes suggested that the genetic divergence is the result of long-term isolation of individual populations. Results from a spatial analysis of molecular variance and a cluster analysis suggest that the plants once covered the entire serpentine area of New Caledonia and that subsequent regional fragmentation resulted in the isolation of each population and significantly restricted seed flow. This isolation may have been an important factor in the development of the morphological and genetic variation among pitcher plants in New Caledonia.
New approaches in GMO detection.
Querci, Maddalena; Van den Bulcke, Marc; Zel, Jana; Van den Eede, Guy; Broll, Hermann
2010-03-01
The steady rate of development and diffusion of genetically modified plants and their increasing diversification of characteristics, genes and genetic control elements poses a challenge in analysis of genetically modified organisms (GMOs). It is expected that in the near future the picture will be even more complex. Traditional approaches, mostly based on the sequential detection of one target at a time, or on a limited multiplexing, allowing only a few targets to be analysed at once, no longer meet the testing requirements. Along with new analytical technologies, new approaches for the detection of GMOs authorized for commercial purposes in various countries have been developed that rely on (1) a smart and accurate strategy for target selection, (2) the use of high-throughput systems or platforms for the detection of multiple targets and (3) algorithms that allow the conversion of analytical results into an indication of the presence of individual GMOs potentially present in an unknown sample. This paper reviews the latest progress made in GMO analysis, taking examples from the most recently developed strategies and tools, and addresses some of the critical aspects related to these approaches.
Emura, Takeshi; Nakatochi, Masahiro; Matsui, Shigeyuki; Michimae, Hirofumi; Rondeau, Virginie
2017-01-01
Developing a personalized risk prediction model of death is fundamental for improving patient care and touches on the realm of personalized medicine. The increasing availability of genomic information and large-scale meta-analytic data sets for clinicians has motivated the extension of traditional survival prediction based on the Cox proportional hazards model. The aim of our paper is to develop a personalized risk prediction formula for death according to genetic factors and dynamic tumour progression status based on meta-analytic data. To this end, we extend the existing joint frailty-copula model to a model allowing for high-dimensional genetic factors. In addition, we propose a dynamic prediction formula to predict death given tumour progression events possibly occurring after treatment or surgery. For clinical use, we implement the computation software of the prediction formula in the joint.Cox R package. We also develop a tool to validate the performance of the prediction formula by assessing the prediction error. We illustrate the method with the meta-analysis of individual patient data on ovarian cancer patients.
Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset.
High-performance single cell genetic analysis using microfluidic emulsion generator arrays.
Zeng, Yong; Novak, Richard; Shuga, Joe; Smith, Martyn T; Mathies, Richard A
2010-04-15
High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput microfluidic emulsion generation with single cell multiplex polymerase chain reaction (PCR). Microfabricated emulsion generator array (MEGA) devices containing 4, 32, and 96 channels are developed to confer a flexible capability of generating up to 3.4 x 10(6) nanoliter-volume droplets per hour. Hybrid glass-polydimethylsiloxane diaphragm micropumps integrated into the MEGA chips afford uniform droplet formation, controlled generation frequency, and effective transportation and encapsulation of primer functionalized microbeads and cells. A multiplex single cell PCR method is developed to detect and quantify both wild type and mutant/pathogenic cells. In this method, microbeads functionalized with multiple forward primers targeting specific genes from different cell types are used for solid-phase PCR in droplets. Following PCR, the droplets are lysed and the beads are pooled and rapidly analyzed by multicolor flow cytometry. Using Escherichia coli bacterial cells as a model, we show that this technique enables digital detection of pathogenic E. coli O157 cells in a high background of normal K12 cells, with a detection limit on the order of 1/10(5). This result demonstrates that multiplex SCGA is a promising tool for high-throughput quantitative digital analysis of genetic variation in complex populations.
High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays
Zeng, Yong; Novak, Richard; Shuga, Joe; Smith, Martyn T.; Mathies, Richard A.
2010-01-01
High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput microfluidic emulsion generation with single cell multiplex PCR. Microfabricated emulsion generator array (MEGA) devices containing 4, 32 and 96 channels are developed to confer a flexible capability of generating up to 3.4 × 106 nanoliter-volume droplets per hour. Hybrid glass-polydimethylsiloxane diaphragm micropumps integrated into the MEGA chips afford uniform droplet formation, controlled generation frequency, and effective transportation and encapsulation of primer functionalized microbeads and cells. A multiplex single cell PCR method is developed to detect and quantify both wild type and mutant/pathogenic cells. In this method, microbeads functionalized with multiple forward primers targeting specific genes from different cell types are used for solid-phase PCR in droplets. Following PCR, the droplets are lysed, the beads are pooled and rapidly analyzed by multi-color flow cytometry. Using E. coli bacterial cells as a model, we show that this technique enables digital detection of pathogenic E. coli O157 cells in a high background of normal K12 cells, with a detection limit on the order of 1:105. This result demonstrates that multiplex SCGA is a promising tool for high-throughput quantitative digital analysis of genetic variation in complex populations. PMID:20192178
The genetics of pre-eclampsia and other hypertensive disorders of pregnancy
Williams, Paula J.; Broughton Pipkin, Fiona
2011-01-01
Hypertension is the most frequent medical complication occurring during pregnancy. In this chapter, we aim to address the genetic contribution to these disorders, with specific focus on pre-eclampsia. The pathogenic mechanisms underlying pre-eclampsia remain to be elucidated; however, immune maladaptation, inadequate placental development and trophoblast invasion, placental ischaemia, oxidative stress and thrombosis are all thought to represent key factors in the development of disease. Furthermore, all of these components have genetic factors that may be involved in the pathogenic changes occurring. The familial nature of pre-eclampsia has been known for many years and, as such, extensive genetic research has been carried out in this area using strategies that include candidate gene studies and linkage analysis. Interactions between fetal and maternal genotypes, the effect of environmental factors, and epistasis will also be considered. PMID:21429808
Applications of genetic programming in cancer research.
Worzel, William P; Yu, Jianjun; Almal, Arpit A; Chinnaiyan, Arul M
2009-02-01
The theory of Darwinian evolution is the fundamental keystones of modern biology. Late in the last century, computer scientists began adapting its principles, in particular natural selection, to complex computational challenges, leading to the emergence of evolutionary algorithms. The conceptual model of selective pressure and recombination in evolutionary algorithms allow scientists to efficiently search high dimensional space for solutions to complex problems. In the last decade, genetic programming has been developed and extensively applied for analysis of molecular data to classify cancer subtypes and characterize the mechanisms of cancer pathogenesis and development. This article reviews current successes using genetic programming and discusses its potential impact in cancer research and treatment in the near future.
Iarossi, Giancarlo; Bertelli, Matteo; Maltese, Paolo Enrico; Gusson, Elena; Marchini, Giorgio; Bruson, Alice; Benedetti, Sabrina; Volpetti, Sabrina; Catena, Gino; Buzzonetti, Luca; Ziccardi, Lucia
2017-01-01
Familial exudative vitreoretinopathy (FEVR) is a complex disorder characterized by incomplete development of the retinal vasculature. Here, we report the results obtained on the spectrum of genetic variations and correlated phenotypes found in a cohort of Italian FEVR patients. Eight probands (age range 7-19 years) were assessed by genetic analysis and comprehensive age-appropriate ophthalmic examination. Genetic testing investigated the genes most widely associated in literature with FEVR: FZD4 , LRP5 , TSPAN12 , and NDP . Clinical and genetic evaluations were extended to relatives of probands positive to genetic testing. Six out of eight probands (75%) showed a genetic variation probably related to the phenotype. We identified four novel genetic variants, one variant already described in association with Norrie disease and one previously described linked to autosomal dominant FEVR. Pedigree analysis of patients led to the classification of four autosomal dominant cases of FEVR (caused by FZD4 and TSPAN12 variants) and two X-linked FEVR probands ( NDP variants). None of the patients showed variants in the LRP5 gene. This study represents the largest cohort study in Italian FEVR patients. Our findings are in agreement with the previous literature confirming that FEVR is a clinically and genetically heterogeneous retinal disorder, even when it manifests in the same family.
Marchini, Giorgio; Volpetti, Sabrina; Catena, Gino
2017-01-01
Familial exudative vitreoretinopathy (FEVR) is a complex disorder characterized by incomplete development of the retinal vasculature. Here, we report the results obtained on the spectrum of genetic variations and correlated phenotypes found in a cohort of Italian FEVR patients. Eight probands (age range 7–19 years) were assessed by genetic analysis and comprehensive age-appropriate ophthalmic examination. Genetic testing investigated the genes most widely associated in literature with FEVR: FZD4, LRP5, TSPAN12, and NDP. Clinical and genetic evaluations were extended to relatives of probands positive to genetic testing. Six out of eight probands (75%) showed a genetic variation probably related to the phenotype. We identified four novel genetic variants, one variant already described in association with Norrie disease and one previously described linked to autosomal dominant FEVR. Pedigree analysis of patients led to the classification of four autosomal dominant cases of FEVR (caused by FZD4 and TSPAN12 variants) and two X-linked FEVR probands (NDP variants). None of the patients showed variants in the LRP5 gene. This study represents the largest cohort study in Italian FEVR patients. Our findings are in agreement with the previous literature confirming that FEVR is a clinically and genetically heterogeneous retinal disorder, even when it manifests in the same family. PMID:28758032
Wang, Xing-Ya; Yang, Xian-Ming; Lu, Bin; Zhou, Li-Hong; Wu, Kong-Ming
2017-05-15
Aphis gossypii, one of the most important agricultural pests in the world, can cause serious economic losses in the main crop-producing areas. To clarify issues such as the genetic differentiation, genetic structure, and demographic history of A. gossypii populations, we used 10 nuclear microsatellite loci (SSR) and two mitochondrial gene sequences (COI and Cytb) to investigate genetic diversity and population structure of A. gossypii populations that were collected from 33 sampling sites in China from different climatic zones. SSR and mtDNA data suggested low to moderate levels of genetic diversity. A star-shaped network of mtDNA haplotypes indicated that the maternal ancestor of China cotton aphids likely originated in Xinjiang. The POPTREE, STRUCTURE and principal coordinate analysis (PCoA) revealed two genetic clusters: an eastern and a western region group. Isolation by distance (IBD) results showed a positive correlation between geographic distance and genetic distance in the vast eastern region but not in the western region. Neutrality testing and mismatch distribution analysis provided strong evidence for a recent rapid expansion in most populations. Genetic bottleneck was not detected in A. gossypii populations of China. The present work can help us to develop strategies for managing this pest.
46,XX T testicular disorder of sex development. Case report.
Pastor Guzmán, José María; Pastor Navarro, Hector; Quintanilla Mata, María Luisa; Carrión López, Pedro; Martínez Ruíz, Jesús; Martínez Sanchiz, Carlos; Perán Teruel, Miguel; Virseda Rodríguez, Julio Antonio
2011-06-01
We present a case of X-Y translocation with male phenotype (46,XX testicular disorder of sex development) and review the literature. Disorders of sex development with mismatch of genetic, gonadal and phenotypic sex are quite rare, and some are due to genetic or chromosomal abnormalities. The karyotype was investigated by a cytogenetic study of peripheral blood (phytohemagglutinin-timulated lymphocyte culture over 72 hours). G-banding analysis of 25 metaphases showed a 46,XX chromosome constitution (46 chromosomes with XX sexual composition). Fluorescence in situ hybridization (FISH) analysis with probes for X centromeres and the sex-determining region of the Y chromosome (SRY) (testis-determining factor gene) showed two X chromosomes. The analysis also showed the SRY signal in the telomeric region of the short arm of one of the chromosomes. In recent years, a number of other genes involved in disorders of sex development in animals and humans have also been identified. Genetic defects in the peptide hormone receptors, members of the steroid receptor superfamily, and other transcription factors, as well as any of a series of enzymes and cofactors involved in steroid biosynthesis can cause abnormal determination and differentiation. Although chromosomal abnormalities are rarely present in patients with apparently normal external genitalia, they should be considered in urology consultations by adolescents and adults, particularly in the investigation of gynecomastia or infertility.
2011-01-01
Background Pigeonpea [Cajanus cajan (L.) Millsp.] is an important legume crop of rainfed agriculture. Despite of concerted research efforts directed to pigeonpea improvement, stagnated productivity of pigeonpea during last several decades may be accounted to prevalence of various biotic and abiotic constraints and the situation is exacerbated by availability of inadequate genomic resources to undertake any molecular breeding programme for accelerated crop improvement. With the objective of enhancing genomic resources for pigeonpea, this study reports for the first time, large scale development of SSR markers from BAC-end sequences and their subsequent use for genetic mapping and hybridity testing in pigeonpea. Results A set of 88,860 BAC (bacterial artificial chromosome)-end sequences (BESs) were generated after constructing two BAC libraries by using HindIII (34,560 clones) and BamHI (34,560 clones) restriction enzymes. Clustering based on sequence identity of BESs yielded a set of >52K non-redundant sequences, comprising 35 Mbp or >4% of the pigeonpea genome. These sequences were analyzed to develop annotation lists and subdivide the BESs into genome fractions (e.g., genes, retroelements, transpons and non-annotated sequences). Parallel analysis of BESs for microsatellites or simple sequence repeats (SSRs) identified 18,149 SSRs, from which a set of 6,212 SSRs were selected for further analysis. A total of 3,072 novel SSR primer pairs were synthesized and tested for length polymorphism on a set of 22 parental genotypes of 13 mapping populations segregating for traits of interest. In total, we identified 842 polymorphic SSR markers that will have utility in pigeonpea improvement. Based on these markers, the first SSR-based genetic map comprising of 239 loci was developed for this previously uncharacterized genome. Utility of developed SSR markers was also demonstrated by identifying a set of 42 markers each for two hybrids (ICPH 2671 and ICPH 2438) for genetic purity assessment in commercial hybrid breeding programme. Conclusion In summary, while BAC libraries and BESs should be useful for genomics studies, BES-SSR markers, and the genetic map should be very useful for linking the genetic map with a future physical map as well as for molecular breeding in pigeonpea. PMID:21447154
Meece, J.K.; Anderson, J.L.; Fisher, M.C.; Henk, D.A.; Sloss, Brian L.; Reed, K.D.
2011-01-01
Blastomyces dermatitidis, a thermally dimorphic fungus, is the etiologic agent of North American blastomycosis. Clinical presentation is varied, ranging from silent infections to fulminant respiratory disease and dissemination to skin and other sites. Exploration of the population genetic structure of B. dermatitidis would improve our knowledge regarding variation in virulence phenotypes, geographic distribution, and difference in host specificity. The objective of this study was to develop and test a panel of microsatellite markers to delineate the population genetic structure within a group of clinical and environmental isolates of B. dermatitidis. We developed 27 microsatellite markers and genotyped B. dermatitidis isolates from various hosts and environmental sources (n = 112). Assembly of a neighbor-joining tree of allele-sharing distance revealed two genetically distinct groups, separated by a deep node. Bayesian admixture analysis showed that two populations were statistically supported. Principal coordinate analysis also reinforced support for two genetic groups, with the primary axis explaining 61.41% of the genetic variability. Group 1 isolates average 1.8 alleles/locus, whereas group 2 isolates are highly polymorphic, averaging 8.2 alleles/locus. In this data set, alleles at three loci are unshared between the two groups and appear diagnostic. The mating type of individual isolates was determined by PCR. Both mating type-specific genes, the HMG and ??-box domains, were represented in each of the genetic groups, with slightly more isolates having the HMG allele. One interpretation of this study is that the species currently designated B. dermatitidis includes a cryptic subspecies or perhaps a separate species. ?? 2011, American Society for Microbiology.
Meece, Jennifer K.; Anderson, Jennifer L.; Fisher, Matthew C.; Henk, Daniel A.; Sloss, Brian L.; Reed, Kurt D.
2011-01-01
Blastomyces dermatitidis, a thermally dimorphic fungus, is the etiologic agent of North American blastomycosis. Clinical presentation is varied, ranging from silent infections to fulminant respiratory disease and dissemination to skin and other sites. Exploration of the population genetic structure of B. dermatitidis would improve our knowledge regarding variation in virulence phenotypes, geographic distribution, and difference in host specificity. The objective of this study was to develop and test a panel of microsatellite markers to delineate the population genetic structure within a group of clinical and environmental isolates of B. dermatitidis. We developed 27 microsatellite markers and genotyped B. dermatitidis isolates from various hosts and environmental sources (n=112). Assembly of a neighbor-joining tree of allele-sharing distance revealed two genetically distinct groups, separated by a deep node. Bayesian admixture analysis showed that two populations were statistically supported. Principal coordinate analysis also reinforced support for two genetic groups, with the primary axis explaining 61.41% of the genetic variability. Group 1 isolates average 1.8 alleles/locus, whereas group 2 isolates are highly polymorphic, averaging 8.2 alleles/locus. In this data set, alleles at three loci are unshared between the two groups and appear diagnostic. The mating type of individual isolates was determined by PCR. Both mating type-specific genes, the HMG and α-box domains, were represented in each of the genetic groups, with slightly more isolates having the HMG allele. One interpretation of this study is that the species currently designated B. dermatitidis includes a cryptic subspecies or perhaps a separate species.
Mathew, Lisa S; Spannagl, Manuel; Al-Malki, Ameena; George, Binu; Torres, Maria F; Al-Dous, Eman K; Al-Azwani, Eman K; Hussein, Emad; Mathew, Sweety; Mayer, Klaus F X; Mohamoud, Yasmin Ali; Suhre, Karsten; Malek, Joel A
2014-04-15
The date palm is one of the oldest cultivated fruit trees. It is critical in many ways to cultures in arid lands by providing highly nutritious fruit while surviving extreme heat and environmental conditions. Despite its importance from antiquity, few genetic resources are available for improving the productivity and development of the dioecious date palm. To date there has been no genetic map and no sex chromosome has been identified. Here we present the first genetic map for date palm and identify the putative date palm sex chromosome. We placed ~4000 markers on the map using nearly 1200 framework markers spanning a total of 1293 cM. We have integrated the genetic map, derived from the Khalas cultivar, with the draft genome and placed up to 19% of the draft genome sequence scaffolds onto linkage groups for the first time. This analysis revealed approximately ~1.9 cM/Mb on the map. Comparison of the date palm linkage groups revealed significant long-range synteny to oil palm. Analysis of the date palm sex-determination region suggests it is telomeric on linkage group 12 and recombination is not suppressed in the full chromosome. Based on a modified genotyping-by-sequencing approach we have overcome challenges due to lack of genetic resources and provide the first genetic map for date palm. Combined with the recent draft genome sequence of the same cultivar, this resource offers a critical new tool for date palm biotechnology, palm comparative genomics and a better understanding of sex chromosome development in the palms.
Wang, C; Zhang, S J; Du, X Y; Xu, Y M; Huo, X Y; Liao, L F; Chen, Z W
2015-11-13
The grey hamster has been used in biomedical research for decades. However, effective molecular methods for evaluating the genetic structure of this species are lacking, which hinders its wider usage. In this study, we employed cross-amplification of microsatellite loci of species within the same genus by polymerase chain reaction. Loci screened included 107 from the Mongolian gerbil (MG) and 60 from the Chinese hamster (CH); of these, 15 polymorphic loci were identified for the grey hamster. Of the 167 loci screened, 95 (56.9%) with clear bands on agarose gel were initially identified. After sequencing, 74 (77.9%) of these matched the criteria for microsatellite characteristics, including 41 from MG and 33 from CH. Lastly, 15 (20.3%) loci with more than two alleles for each locus were identified through capillary electrophoresis scanning. To justify the applicability of the 15 grey hamster loci, genetic indexes of grey hamsters were evaluated using 46 generations of outbred stock, established 20 years ago, from Xinjiang, China. Mean effective allele numbers and expected heterozygosity of stock were as low as, respectively, 1.2 and 0.14; these were 2.8 and 4.0 times inferior, respectively, to wild grey hamsters. This finding suggests that the genetic structure of the stock-bred population is too weak to resist artificial and natural selection, mutation and genetic drifting. In conclusion, we have developed de novo microsatellite markers for genetic analysis of the grey hamster, providing data and methodology for the enrichment of a genetic library for this species.
A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy.
Brenton, Zachary W; Cooper, Elizabeth A; Myers, Mathew T; Boyles, Richard E; Shakoor, Nadia; Zielinski, Kelsey J; Rauh, Bradley L; Bridges, William C; Morris, Geoffrey P; Kresovich, Stephen
2016-09-01
With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes representing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement. Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy production. Copyright © 2016 by the Genetics Society of America.
NASA Astrophysics Data System (ADS)
Sheng, Lizeng
The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms, GA Version 1, 2 and 3, were developed to find the optimal locations of piezoelectric actuators from the order of 1021 ˜ 1056 candidate placements. Introducing a variable population approach, we improve the flexibility of selection operation in genetic algorithms. Incorporating mutation and hill climbing into micro-genetic algorithms, we are able to develop a more efficient genetic algorithm. Through extensive numerical experiments, we find that the design search space for the optimal placements of a large number of actuators is highly multi-modal and that the most distinct nature of genetic algorithms is their robustness. They give results that are random but with only a slight variability. The genetic algorithms can be used to get adequate solution using a limited number of evaluations. To get the highest quality solution, multiple runs including different random seed generators are necessary. The investigation time can be significantly reduced using a very coarse grain parallel computing. Overall, the methodology of using finite element analysis and genetic algorithm optimization provides a robust solution approach for the challenging problem of optimal placements of a large number of actuators in the design of next generation of adaptive structures.
Genetic variation in IBD: progress, clues to pathogenesis and possible clinical utility
Ye, Byong Duk; McGovern, Dermot P.B.
2016-01-01
Epidemiological and clinical studies have suggested that the pathogenesis of inflammatory bowel disease (IBD) is strongly influenced by genetic predisposition. Beyond the limitations of linkage analysis, multiple genome-wide association studies, their meta-analyses, and targeted genotyping array techniques have broadened our understanding of the genetic architecture of IBD. Currently, over 200 single nucleotide polymorphisms are known to be associated with susceptibility to IBD and through functional analysis of genes and loci, a substantial proportion of pathophysiologic mechanisms have been revealed. However, because only a modest fraction of predicted heritability can be explained by known genes/loci, additional strategies are needed including the identification of rare variants with large effect sizes to help explain the missing heritability. Considerable progress is also being made on applying outcomes of genetic research in diagnostics, classification, prognostics, and the development of new therapeutics of IBD. PMID:27156530
NASA Astrophysics Data System (ADS)
Tewari, Jagdish C.; Dixit, Vivechana; Cho, Byoung-Kwan; Malik, Kamal A.
2008-12-01
The capacity to confirm the variety or origin and the estimation of sucrose, glucose, fructose of the citrus fruits are major interests of citrus juice industry. A rapid classification and quantification technique was developed and validated for simultaneous and nondestructive quantifying the sugar constituent's concentrations and the origin of citrus fruits using Fourier Transform Near-Infrared (FT-NIR) spectroscopy in conjunction with Artificial Neural Network (ANN) using genetic algorithm, Chemometrics and Correspondences Analysis (CA). To acquire good classification accuracy and to present a wide range of concentration of sucrose, glucose and fructose, we have collected 22 different varieties of citrus fruits from the market during the entire season of citruses. FT-NIR spectra were recorded in the NIR region from 1100 to 2500 nm using the fiber optic probe and three types of data analysis were performed. Chemometrics analysis using Partial Least Squares (PLS) was performed in order to determine the concentration of individual sugars. Artificial Neural Network analysis was performed for classification, origin or variety identification of citrus fruits using genetic algorithm. Correspondence analysis was performed in order to visualize the relationship between the citrus fruits. To compute a PLS model based upon the reference values and to validate the developed method, high performance liquid chromatography (HPLC) was performed. Spectral range and the number of PLS factors were optimized for the lowest standard error of calibration (SEC), prediction (SEP) and correlation coefficient ( R2). The calibration model developed was able to assess the sucrose, glucose and fructose contents in unknown citrus fruit up to an R2 value of 0.996-0.998. Numbers of factors from F1 to F10 were optimized for correspondence analysis for relationship visualization of citrus fruits based on the output values of genetic algorithm. ANN and CA analysis showed excellent classification of citrus according to the variety to which they belong and well-classified citrus according to their origin. The technique has potential in rapid determination of sugars content and to identify different varieties and origins of citrus in citrus juice industry.
Tewari, Jagdish C; Dixit, Vivechana; Cho, Byoung-Kwan; Malik, Kamal A
2008-12-01
The capacity to confirm the variety or origin and the estimation of sucrose, glucose, fructose of the citrus fruits are major interests of citrus juice industry. A rapid classification and quantification technique was developed and validated for simultaneous and nondestructive quantifying the sugar constituent's concentrations and the origin of citrus fruits using Fourier Transform Near-Infrared (FT-NIR) spectroscopy in conjunction with Artificial Neural Network (ANN) using genetic algorithm, Chemometrics and Correspondences Analysis (CA). To acquire good classification accuracy and to present a wide range of concentration of sucrose, glucose and fructose, we have collected 22 different varieties of citrus fruits from the market during the entire season of citruses. FT-NIR spectra were recorded in the NIR region from 1,100 to 2,500 nm using the fiber optic probe and three types of data analysis were performed. Chemometrics analysis using Partial Least Squares (PLS) was performed in order to determine the concentration of individual sugars. Artificial Neural Network analysis was performed for classification, origin or variety identification of citrus fruits using genetic algorithm. Correspondence analysis was performed in order to visualize the relationship between the citrus fruits. To compute a PLS model based upon the reference values and to validate the developed method, high performance liquid chromatography (HPLC) was performed. Spectral range and the number of PLS factors were optimized for the lowest standard error of calibration (SEC), prediction (SEP) and correlation coefficient (R(2)). The calibration model developed was able to assess the sucrose, glucose and fructose contents in unknown citrus fruit up to an R(2) value of 0.996-0.998. Numbers of factors from F1 to F10 were optimized for correspondence analysis for relationship visualization of citrus fruits based on the output values of genetic algorithm. ANN and CA analysis showed excellent classification of citrus according to the variety to which they belong and well-classified citrus according to their origin. The technique has potential in rapid determination of sugars content and to identify different varieties and origins of citrus in citrus juice industry.
Pestana, R K N; Amorim, E P; Ferreira, C F; Amorim, V B O; Oliveira, L S; Ledo, C A S; Silva, S O
2011-10-25
Bananas are among the most important fruit crops worldwide, being cultivated in more than 120 countries, mainly by small-scale producers. However, short-stature high-yielding bananas presenting good agronomic characteristics are hard to find. Consequently, wind continues to damage a great number of plantations each year, leading to lodging of plants and bunch loss. Development of new cultivars through conventional genetic breeding methods is hindered by female sterility and the low number of seeds. Mutation induction seems to have great potential for the development of new cultivars. We evaluated genetic dissimilarity among putative 'Preciosa' banana mutants generated by gamma-ray irradiation, using morphoagronomic characteristics and ISSR markers. The genetic distances between the putative 'Preciosa' mutants varied from 0.21 to 0.66, with a cophenetic correlation coefficient of 0.8064. We found good variability after irradiation of 'Preciosa' bananas; this procedure could be useful for banana breeding programs aimed at developing short-stature varieties with good agronomic characteristics.
[Costicartilage analysis inspection technology in the application of forensic medicine].
Meng, Hang; Xiao, Bi; Yan, Jian-Jun; Ma, Kai-Jun
2011-10-01
The traditional costicartilage analysis inspection is limited to morphological inspection. In recent years, with the development of forensic radiology and molecular genetics, the costicartilage analysis inspection technology has been further enriched and developed. At present, the costicartilage analysis inspection technology have been able to be used in the practice of forensic medicine. This paper reviews the research advances about the costicartilage analysis inspection technology in the identification of human gender, age and so on in order to provide the references for forensic appraisers.
Dutta, Sutapa; Kumawat, Giriraj; Singh, Bikram P; Gupta, Deepak K; Singh, Sangeeta; Dogra, Vivek; Gaikwad, Kishor; Sharma, Tilak R; Raje, Ranjeet S; Bandhopadhya, Tapas K; Datta, Subhojit; Singh, Mahendra N; Bashasab, Fakrudin; Kulwal, Pawan; Wanjari, K B; K Varshney, Rajeev; Cook, Douglas R; Singh, Nagendra K
2011-01-20
Pigeonpea [Cajanus cajan (L.) Millspaugh], one of the most important food legumes of semi-arid tropical and subtropical regions, has limited genomic resources, particularly expressed sequence based (genic) markers. We report a comprehensive set of validated genic simple sequence repeat (SSR) markers using deep transcriptome sequencing, and its application in genetic diversity analysis and mapping. In this study, 43,324 transcriptome shotgun assembly unigene contigs were assembled from 1.696 million 454 GS-FLX sequence reads of separate pooled cDNA libraries prepared from leaf, root, stem and immature seed of two pigeonpea varieties, Asha and UPAS 120. A total of 3,771 genic-SSR loci, excluding homopolymeric and compound repeats, were identified; of which 2,877 PCR primer pairs were designed for marker development. Dinucleotide was the most common repeat motif with a frequency of 60.41%, followed by tri- (34.52%), hexa- (2.62%), tetra- (1.67%) and pentanucleotide (0.76%) repeat motifs. Primers were synthesized and tested for 772 of these loci with repeat lengths of ≥ 18 bp. Of these, 550 markers were validated for consistent amplification in eight diverse pigeonpea varieties; 71 were found to be polymorphic on agarose gel electrophoresis. Genetic diversity analysis was done on 22 pigeonpea varieties and eight wild species using 20 highly polymorphic genic-SSR markers. The number of alleles at these loci ranged from 4-10 and the polymorphism information content values ranged from 0.46 to 0.72. Neighbor-joining dendrogram showed distinct separation of the different groups of pigeonpea cultivars and wild species. Deep transcriptome sequencing of the two parental lines helped in silico identification of polymorphic genic-SSR loci to facilitate the rapid development of an intra-species reference genetic map, a subset of which was validated for expected allelic segregation in the reference mapping population. We developed 550 validated genic-SSR markers in pigeonpea using deep transcriptome sequencing. From these, 20 highly polymorphic markers were used to evaluate the genetic relationship among species of the genus Cajanus. A comprehensive set of genic-SSR markers was developed as an important genomic resource for diversity analysis and genetic mapping in pigeonpea.
2011-01-01
Background Pigeonpea [Cajanus cajan (L.) Millspaugh], one of the most important food legumes of semi-arid tropical and subtropical regions, has limited genomic resources, particularly expressed sequence based (genic) markers. We report a comprehensive set of validated genic simple sequence repeat (SSR) markers using deep transcriptome sequencing, and its application in genetic diversity analysis and mapping. Results In this study, 43,324 transcriptome shotgun assembly unigene contigs were assembled from 1.696 million 454 GS-FLX sequence reads of separate pooled cDNA libraries prepared from leaf, root, stem and immature seed of two pigeonpea varieties, Asha and UPAS 120. A total of 3,771 genic-SSR loci, excluding homopolymeric and compound repeats, were identified; of which 2,877 PCR primer pairs were designed for marker development. Dinucleotide was the most common repeat motif with a frequency of 60.41%, followed by tri- (34.52%), hexa- (2.62%), tetra- (1.67%) and pentanucleotide (0.76%) repeat motifs. Primers were synthesized and tested for 772 of these loci with repeat lengths of ≥18 bp. Of these, 550 markers were validated for consistent amplification in eight diverse pigeonpea varieties; 71 were found to be polymorphic on agarose gel electrophoresis. Genetic diversity analysis was done on 22 pigeonpea varieties and eight wild species using 20 highly polymorphic genic-SSR markers. The number of alleles at these loci ranged from 4-10 and the polymorphism information content values ranged from 0.46 to 0.72. Neighbor-joining dendrogram showed distinct separation of the different groups of pigeonpea cultivars and wild species. Deep transcriptome sequencing of the two parental lines helped in silico identification of polymorphic genic-SSR loci to facilitate the rapid development of an intra-species reference genetic map, a subset of which was validated for expected allelic segregation in the reference mapping population. Conclusion We developed 550 validated genic-SSR markers in pigeonpea using deep transcriptome sequencing. From these, 20 highly polymorphic markers were used to evaluate the genetic relationship among species of the genus Cajanus. A comprehensive set of genic-SSR markers was developed as an important genomic resource for diversity analysis and genetic mapping in pigeonpea. PMID:21251263
Developmental neurogenetics of sexual dimorphism in Aedes aegypti
Duman-Scheel, Molly; Syed, Zainulabeuddin
2015-01-01
Sexual dimorphism, a poorly understood but crucial aspect of vector mosquito biology, encompasses sex-specific physical, physiological, and behavioral traits related to mosquito reproduction. The study of mosquito sexual dimorphism has largely focused on analysis of the differences between adult female and male mosquitoes, particularly with respect to sex-specific behaviors related to disease transmission. However, sexually dimorphic behaviors are the products of differential gene expression that initiates during development and therefore must also be studied during development. Recent technical advancements are facilitating functional genetic studies in the dengue vector Aedes aegypti, an emerging model for mosquito development. These methodologies, many of which could be extended to other non-model insect species, are facilitating analysis of the development of sexual dimorphism in neural tissues, particularly the olfactory system. These studies are providing insight into the neurodevelopmental genetic basis for sexual dimorphism in vector mosquitoes. PMID:26949699
GWAS meta-analysis of 16 852 women identifies new susceptibility locus for endometrial cancer.
Chen, Maxine M; O'Mara, Tracy A; Thompson, Deborah J; Painter, Jodie N; Attia, John; Black, Amanda; Brinton, Louise; Chanock, Stephen; Chen, Chu; Cheng, Timothy Ht; Cook, Linda S; Crous-Bou, Marta; Doherty, Jennifer; Friedenreich, Christine M; Garcia-Closas, Montserrat; Gaudet, Mia M; Gorman, Maggie; Haiman, Christopher; Hankinson, Susan E; Hartge, Patricia; Henderson, Brian E; Hodgson, Shirley; Holliday, Elizabeth G; Horn-Ross, Pamela L; Hunter, David J; Le Marchand, Loic; Liang, Xiaolin; Lissowska, Jolanta; Long, Jirong; Lu, Lingeng; Magliocco, Anthony M; Martin, Lynn; McEvoy, Mark; Olson, Sara H; Orlow, Irene; Pooler, Loreall; Prescott, Jennifer; Rastogi, Radhai; Rebbeck, Timothy R; Risch, Harvey; Sacerdote, Carlotta; Schumacher, Frederick; Wendy Setiawan, Veronica; Scott, Rodney J; Sheng, Xin; Shu, Xiao-Ou; Turman, Constance; Van Den Berg, David; Wang, Zhaoming; Weiss, Noel S; Wentzensen, Nicholas; Xia, Lucy; Xiang, Yong-Bing; Yang, Hannah P; Yu, Herbert; Zheng, Wei; Pharoah, Paul D P; Dunning, Alison M; Tomlinson, Ian; Easton, Douglas F; Kraft, Peter; Spurdle, Amanda B; De Vivo, Immaculata
2016-06-15
Endometrial cancer is the most common gynecological malignancy in the developed world. Although there is evidence of genetic predisposition to the disease, most of the genetic risk remains unexplained. We present the meta-analysis results of four genome-wide association studies (4907 cases and 11 945 controls total) in women of European ancestry. We describe one new locus reaching genome-wide significance (P < 5 × 10 - 8 ) at 6p22.3 (rs1740828; P = 2.29 × 10 - 8 , OR = 1.20), providing evidence of an additional region of interest for genetic susceptibility to endometrial cancer. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Whitten, Miranda; Dyson, Paul
2017-03-01
Insight into animal biology and development provided by classical genetic analysis of the model organism Drosophila melanogaster was an incentive to develop advanced genetic tools for this insect. But genetic systems for the over one million other known insect species are largely undeveloped. With increasing information about insect genomes resulting from next generation sequencing, RNA interference is now the method of choice for reverse genetics, although it is constrained by the means of delivery of interfering RNA. A recent advance to ensure sustained delivery with minimal experimental intervention or trauma to the insect is to exploit commensal bacteria for symbiont-mediated RNA interference. This technology not only offers an efficient means for RNA interference in insects in laboratory conditions, but also has potential for use in the control of human disease vectors, agricultural pests and pathogens of beneficial insects. © 2017 WILEY Periodicals, Inc.
NETWORK ASSISTED ANALYSIS TO REVEAL THE GENETIC BASIS OF AUTISM1
Liu, Li; Lei, Jing; Roeder, Kathryn
2016-01-01
While studies show that autism is highly heritable, the nature of the genetic basis of this disorder remains illusive. Based on the idea that highly correlated genes are functionally interrelated and more likely to affect risk, we develop a novel statistical tool to find more potentially autism risk genes by combining the genetic association scores with gene co-expression in specific brain regions and periods of development. The gene dependence network is estimated using a novel partial neighborhood selection (PNS) algorithm, where node specific properties are incorporated into network estimation for improved statistical and computational efficiency. Then we adopt a hidden Markov random field (HMRF) model to combine the estimated network and the genetic association scores in a systematic manner. The proposed modeling framework can be naturally extended to incorporate additional structural information concerning the dependence between genes. Using currently available genetic association data from whole exome sequencing studies and brain gene expression levels, the proposed algorithm successfully identified 333 genes that plausibly affect autism risk. PMID:27134692
Covassin, L D; Siekmann, A F; Kacergis, M C; Laver, E; Moore, J C; Villefranc, J A; Weinstein, B M; Lawson, N D
2009-05-15
In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development.
Covassin, L. D.; Siekmann, A. F.; Kacergis, M. C.; Laver, E.; Moore, J. C.; Villefranc, J. A.; Weinstein, B. M.; Lawson, N. D.
2009-01-01
In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development. PMID:19269286
Speciation genetics: current status and evolving approaches
Wolf, Jochen B. W.; Lindell, Johan; Backström, Niclas
2010-01-01
The view of species as entities subjected to natural selection and amenable to change put forth by Charles Darwin and Alfred Wallace laid the conceptual foundation for understanding speciation. Initially marred by a rudimental understanding of hereditary principles, evolutionists gained appreciation of the mechanistic underpinnings of speciation following the merger of Mendelian genetic principles with Darwinian evolution. Only recently have we entered an era where deciphering the molecular basis of speciation is within reach. Much focus has been devoted to the genetic basis of intrinsic postzygotic isolation in model organisms and several hybrid incompatibility genes have been successfully identified. However, concomitant with the recent technological advancements in genome analysis and a newfound interest in the role of ecology in the differentiation process, speciation genetic research is becoming increasingly open to non-model organisms. This development will expand speciation research beyond the traditional boundaries and unveil the genetic basis of speciation from manifold perspectives and at various stages of the splitting process. This review aims at providing an extensive overview of speciation genetics. Starting from key historical developments and core concepts of speciation genetics, we focus much of our attention on evolving approaches and introduce promising methodological approaches for future research venues. PMID:20439277
ERIC Educational Resources Information Center
Bishop, E. G.; Cherny, Stacey S.; Corley, Robin; Plomin, Robert; DeFries, John C.; Hewitt, John K.
2003-01-01
Studied continuity and change in general cognitive ability from infancy to adolescence in adoptees (107 children), biological siblings (87 pairs), and twins (224 monozygotic and 189 dyzygotic pairs). Findings generally support previous findings about genetic and environmental factors, with the exception that in the transition to adolescence,…
ERIC Educational Resources Information Center
Dougherty, M. J.; Pleasants, C.; Solow, L.; Wong, A.; Zhang, H.
2011-01-01
Science education in the United States will increasingly be driven by testing and accountability requirements, such as those mandated by the No Child Left Behind Act, which rely heavily on learning outcomes, or "standards," that are currently developed on a state-by-state basis. Those standards, in turn, drive curriculum and instruction.…
ERIC Educational Resources Information Center
Smith, Lee; van Jaarsveld, Cornelia H. M.; Llewellyn, Clare H.; Fildes, Alison; López Sánchez, Guillermo Felipe; Wardle, Jane; Fisher, Abigail
2017-01-01
Purpose: Variability in the timing of infant developmental milestones is poorly understood. We used a twin analysis to estimate genetic and environmental influences on motor development and activity levels in infancy. Method: Data were from the Gemini Study, a twin birth cohort of 2,402 families with twins born in the United Kingdom in 2007.…
Jabbar, Abdul; Gasser, Robin B
2013-07-01
Adult tapeworms of the genus Echinococcus (family Taeniidae) occur in the small intestines of carnivorous definitive hosts and are transmitted to particular intermediate mammalian hosts, in which they develop as fluid-filled larvae (cysts) in internal organs (usually lung and liver), causing the disease echinococcosis. Echinococcus species are of major medical importance and also cause losses to the meat and livestock industries, mainly due to the condemnation of infected offal. Decisions regarding the treatment and control of echinococcosis rely on the accurate identification of species and population variants (strains). Conventional, phenetic methods for specific identification have some significant limitations. Despite advances in the development of molecular tools, there has been limited application of mutation scanning methods to species of Echinococcus. Here, we briefly review key genetic markers used for the identification of Echinococcus species and techniques for the analysis of genetic variation within and among populations, and the diagnosis of echinococcosis. We also discuss the benefits of utilizing mutation scanning approaches to elucidate the population genetics and epidemiology of Echinococcus species. These benefits are likely to become more evident following the complete characterization of the genomes of E. granulosus and E. multilocularis.
Liu, Chan; Zeng, Liangbin; Zhu, Siyuan; Wu, Lingqing; Wang, Yanzhou; Tang, Shouwei; Wang, Hongwu; Zheng, Xia; Zhao, Jian; Chen, Xiaorong; Dai, Qiuzhong; Liu, Touming
2017-11-15
Plentiful bast fiber, a high crude protein content, and vigorous vegetative growth make ramie a popular fiber and forage crop. Here, we report the draft genome of ramie, along with a genomic comparison and evolutionary analysis. The draft genome contained a sequence of approximately 335.6 Mb with 42,463 predicted genes. A high-density genetic map with 4,338 single nucleotide polymorphisms (SNPs) was developed and used to anchor the genome sequence, thus, creating an integrated genetic and physical map containing a 58.2-Mb genome sequence and 4,304 molecular markers. A genomic comparison identified 1,075 unique gene families in ramie, containing 4,082 genes. Among these unique genes, five were cellulose synthase genes that were specifically expressed in stem bark, and 3 encoded a WAT1-related protein, suggesting that they are probably related to high bast fiber yield. An evolutionary analysis detected 106 positively selected genes, 22 of which were related to nitrogen metabolism, indicating that they are probably responsible for the crude protein content and vegetative growth of domesticated varieties. This study is the first to characterize the genome and develop a high-density genetic map of ramie and provides a basis for the genetic and molecular study of this crop. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Comte, Guillaume; Panfili, Aurélie; Delcamp, Adline; Salin, Franck; Marullo, Philippe; Bely, Marina
2014-01-01
The yeast Torulaspora delbrueckii is associated with several human activities including oenology, bakery, distillery, dairy industry, etc. In addition to its biotechnological applications, T. delbrueckii is frequently isolated in natural environments (plant, soil, insect). T. delbrueckii is thus a remarkable ubiquitous yeast species with both wild and anthropic habitats, and appears to be a perfect yeast model to search for evidence of human domestication. For that purpose, we developed eight microsatellite markers that were used for the genotyping of 110 strains from various substrates and geographical origins. Microsatellite analysis showed four genetic clusters: two groups contained most nature strains from Old World and Americas respectively, and two clusters were associated with winemaking and other bioprocesses. Analysis of molecular variance (AMOVA) confirmed that human activities significantly shaped the genetic variability of T. delbrueckii species. Natural isolates are differentiated on the basis of geographical localisation, as expected for wild population. The domestication of T. delbrueckii probably dates back to the Roman Empire for winemaking (∼1900 years ago), and to the Neolithic era for bioprocesses (∼4000 years ago). Microsatellite analysis also provided valuable data regarding the life-cycle of the species, suggesting a mostly diploid homothallic life. In addition to population genetics and ecological studies, the microsatellite tool will be particularly useful for further biotechnological development of T. delbrueckii strains for winemaking and other bioprocesses. PMID:24718638
Albertin, Warren; Chasseriaud, Laura; Comte, Guillaume; Panfili, Aurélie; Delcamp, Adline; Salin, Franck; Marullo, Philippe; Bely, Marina
2014-01-01
The yeast Torulaspora delbrueckii is associated with several human activities including oenology, bakery, distillery, dairy industry, etc. In addition to its biotechnological applications, T. delbrueckii is frequently isolated in natural environments (plant, soil, insect). T. delbrueckii is thus a remarkable ubiquitous yeast species with both wild and anthropic habitats, and appears to be a perfect yeast model to search for evidence of human domestication. For that purpose, we developed eight microsatellite markers that were used for the genotyping of 110 strains from various substrates and geographical origins. Microsatellite analysis showed four genetic clusters: two groups contained most nature strains from Old World and Americas respectively, and two clusters were associated with winemaking and other bioprocesses. Analysis of molecular variance (AMOVA) confirmed that human activities significantly shaped the genetic variability of T. delbrueckii species. Natural isolates are differentiated on the basis of geographical localisation, as expected for wild population. The domestication of T. delbrueckii probably dates back to the Roman Empire for winemaking (∼ 1900 years ago), and to the Neolithic era for bioprocesses (∼ 4000 years ago). Microsatellite analysis also provided valuable data regarding the life-cycle of the species, suggesting a mostly diploid homothallic life. In addition to population genetics and ecological studies, the microsatellite tool will be particularly useful for further biotechnological development of T. delbrueckii strains for winemaking and other bioprocesses.
Cost-Effectiveness Analysis of Different Genetic Testing Strategies for Lynch Syndrome in Taiwan.
Chen, Ying-Erh; Kao, Sung-Shuo; Chung, Ren-Hua
2016-01-01
Patients with Lynch syndrome (LS) have a significantly increased risk of developing colorectal cancer (CRC) and other cancers. Genetic screening for LS among patients with newly diagnosed CRC aims to identify mutations in the disease-causing genes (i.e., the DNA mismatch repair genes) in the patients, to offer genetic testing for relatives of the patients with the mutations, and then to provide early prevention for the relatives with the mutations. Several genetic tests are available for LS, such as DNA sequencing for MMR genes and tumor testing using microsatellite instability and immunohistochemical analyses. Cost-effectiveness analyses of different genetic testing strategies for LS have been performed in several studies from different countries such as the US and Germany. However, a cost-effectiveness analysis for the testing has not yet been performed in Taiwan. In this study, we evaluated the cost-effectiveness of four genetic testing strategies for LS described in previous studies, while population-specific parameters, such as the mutation rates of the DNA mismatch repair genes and treatment costs for CRC in Taiwan, were used. The incremental cost-effectiveness ratios based on discounted life years gained due to genetic screening were calculated for the strategies relative to no screening and to the previous strategy. Using the World Health Organization standard, which was defined based on Taiwan's Gross Domestic Product per capita, the strategy based on immunohistochemistry as a genetic test followed by BRAF mutation testing was considered to be highly cost-effective relative to no screening. Our probabilistic sensitivity analysis results also suggest that the strategy has a probability of 0.939 of being cost-effective relative to no screening based on the commonly used threshold of $50,000 to determine cost-effectiveness. To the best of our knowledge, this is the first cost-effectiveness analysis for evaluating different genetic testing strategies for LS in Taiwan. The results will be informative for the government when considering offering screening for LS in patients newly diagnosed with CRC.
Kogelman, Lisette J. A.; Pant, Sameer D.; Fredholm, Merete; Kadarmideen, Haja N.
2014-01-01
Obesity is a complex condition with world-wide exponentially rising prevalence rates, linked with severe diseases like Type 2 Diabetes. Economic and welfare consequences have led to a raised interest in a better understanding of the biological and genetic background. To date, whole genome investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation of haplotype blocks. We built Weighted Interaction SNP Hub (WISH) and differentially wired (DW) networks using genotypic correlations amongst obesity-associated SNPs resulting from GWA analysis. GWA results and SNP modules detected by WISH and DW analyses were further investigated by functional enrichment analyses. The functional annotation of SNPs revealed several genes associated with obesity, e.g., NPC2 and OR4D10. Moreover, gene enrichment analyses identified several significantly associated pathways, over and above the GWA study results, that may influence obesity and obesity related diseases, e.g., metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic) obesity index and employ systems genetics in a porcine model to provide important insights into the complex genetic architecture associated with obesity and many biological pathways that underlie it. PMID:25071839
Shen, X L; Zhang, Y M; Xue, J Y; Li, M M; Lin, Y B; Sun, X Q; Hang, Y Y
2016-04-25
Non-heading Chinese cabbage [Brassica rapa var. chinensis (Linnaeus) Kitamura] is a popular vegetable and is also used as a medicinal plant in traditional Chinese medicine. Fragrant Bok Choy is a unique accession of non-heading Chinese cabbage and a product of geographic indication certified by the Ministry of Agriculture of China, which is noted for its rich aromatic flavor. However, transitional and overlapping morphological traits can make it difficult to distinguish this accession from other non-heading Chinese cabbages. This study aimed to develop a molecular method for efficient identification of Fragrant Bok Choy. Genetic diversity analysis, based on inter-simple sequence repeat molecular markers, was conducted for 11 non-heading Chinese cabbage accessions grown in the Yangtze River Delta region. Genetic similarity coefficients between the 11 accessions ranged from 0.5455 to 0.8961, and the genetic distance ranged from 0.0755 to 0.4475. Cluster analysis divided the 11 accessions into two major groups. The primer ISSR-840 amplified a fragment specific for Fragrant Bok Choy. A pair of specific sequence-characterized amplified region (SCAR) primers based on this fragment amplified a target band in Fragrant Bok Choy individuals, but no band was detected in individuals of other accessions. In conclusion, this study has developed an efficient strategy for authentication of Fragrant Bok Choy. The SCAR marker described here will facilitate the conservation and utilization of this unique non-heading Chinese cabbage germplasm resource.
Zhang, Zhen; Shang, Haihong; Shi, Yuzhen; Huang, Long; Li, Junwen; Ge, Qun; Gong, Juwu; Liu, Aiying; Chen, Tingting; Wang, Dan; Wang, Yanling; Palanga, Koffi Kibalou; Muhammad, Jamshed; Li, Weijie; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Song, Weiwu; Cai, Juan; Li, Pengtao; Rashid, Harun or; Gong, Wankui; Yuan, Youlu
2016-04-11
Upland Cotton (Gossypium hirsutum) is one of the most important worldwide crops it provides natural high-quality fiber for the industrial production and everyday use. Next-generation sequencing is a powerful method to identify single nucleotide polymorphism markers on a large scale for the construction of a high-density genetic map for quantitative trait loci mapping. In this research, a recombinant inbred lines population developed from two upland cotton cultivars 0-153 and sGK9708 was used to construct a high-density genetic map through the specific locus amplified fragment sequencing method. The high-density genetic map harbored 5521 single nucleotide polymorphism markers which covered a total distance of 3259.37 cM with an average marker interval of 0.78 cM without gaps larger than 10 cM. In total 18 quantitative trait loci of boll weight were identified as stable quantitative trait loci and were detected in at least three out of 11 environments and explained 4.15-16.70 % of the observed phenotypic variation. In total, 344 candidate genes were identified within the confidence intervals of these stable quantitative trait loci based on the cotton genome sequence. These genes were categorized based on their function through gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and eukaryotic orthologous groups analysis. This research reported the first high-density genetic map for Upland Cotton (Gossypium hirsutum) with a recombinant inbred line population using single nucleotide polymorphism markers developed by specific locus amplified fragment sequencing. We also identified quantitative trait loci of boll weight across 11 environments and identified candidate genes within the quantitative trait loci confidence intervals. The results of this research would provide useful information for the next-step work including fine mapping, gene functional analysis, pyramiding breeding of functional genes as well as marker-assisted selection.
Genetic Psychophysiology: advances, problems, and future directions
Anokhin, Andrey P.
2014-01-01
This paper presents an overview of historical advances and the current state of genetic psychophysiology, a rapidly developing interdisciplinary research linking genetics, brain, and human behavior, discusses methodological problems, and outlines future directions of research. The main goals of genetic psychophysiology are to elucidate the neural pathways and mechanisms mediating genetic influences on cognition and emotion, identify intermediate brain-based phenotypes for psychopathology, and provide a functional characterization of genes being discovered by large association studies of behavioral phenotypes. Since the initiation of this neurogenetic approach to human individual differences in the 1970s, numerous twin and family studies have provided strong evidence for heritability of diverse aspects of brain function including resting-state brain oscillations, functional connectivity, and event-related neural activity in a variety of cognitive and emotion processing tasks, as well as peripheral psychophysiological responses. These data indicate large differences in the presence and strength of genetic influences across measures and domains, permitting the selection of heritable characteristics for gene finding studies. More recently, candidate gene association studies began to implicate specific genetic variants in different aspects of neurocognition. However, great caution is needed in pursuing this line of research due to its demonstrated proneness to generate false-positive findings. Recent developments in methods for physiological signal analysis, hemodynamic imaging, and genomic technologies offer new exciting opportunities for the investigation of the interplay between genetic and environmental factors in the development of individual differences in behavior, both normal and abnormal. PMID:24739435
Mideros, Santiago X; Chung, Chia-Lin; Wiesner-Hanks, Tyr; Poland, Jesse A; Wu, Dongliang; Fialko, Ariel A; Turgeon, B Gillian; Nelson, Rebecca J
2018-02-01
Generating effective and stable strategies for resistance breeding requires an understanding of the genetics of host-pathogen interactions and the implications for pathogen dynamics and evolution. Setosphaeria turcica causes northern leaf blight (NLB), an important disease of maize for which major resistance genes have been deployed. Little is known about the evolutionary dynamics of avirulence (AVR) genes in S. turcica. To test the hypothesis that there is a genetic association between avirulence and in vitro development traits, we (i) created a genetic map of S. turcica, (ii) located candidate AVRHt1 and AVRHt2 regions, and (iii) identified genetic regions associated with several in vitro development traits. A cross was generated between a race 1 and a race 23N strain, and 221 progeny were isolated. Genotyping by sequencing was used to score 2,078 single-nucleotide polymorphism markers. A genetic map spanning 1,981 centimorgans was constructed, consisting of 21 linkage groups. Genetic mapping extended prior evidence for the location and identity of the AVRHt1 gene and identified a region of interest for AVRHt2. The genetic location of AVRHt2 colocalized with loci influencing radial growth and mycelial abundance. Our data suggest a trade-off between virulence on Ht1 and Ht2 and the pathogen's vegetative growth rate. In addition, in-depth analysis of the genotypic data suggests the presence of significant duplication in the genome of S. turcica.
6C.04: INTEGRATED SNP ANALYSIS AND METABOLOMIC PROFILES OF METABOLIC SYNDROME.
Marrachelli, V; Monleon, D; Morales, J M; Rentero, P; Martínez, F; Chaves, F J; Martin-Escudero, J C; Redon, J
2015-06-01
Metabolic syndrome (MS) has become a health and financial burden worldwide. Susceptibility of genetically determined metabotype of MS has not yet been investigated. We aimed to identify a distinctive metabolic profile of blood serum which might correlates to the early detection of the development of MS associated to genetic polymorphism. We applied high resolution NMR spectroscopy to profile blood serum from patients without MS (n = 945) or with (n = 291). Principal component analysis (PCA) and projection to latent structures for discriminant analysis (PLS-DA) were applied to NMR spectral datasets. Results were cross-validated using the Venetian Blinds approach. Additionally, five SNPs previously associated with MS were genotyped with SNPlex and tested for associations between the metabolic profiles and the genetic variants. Statistical analysis was performed using in-house MATLAB scripts and the PLS Toolbox statistical multivariate analysis library. Our analysis provided a PLS-DA Metabolic Syndrome discrimination model based on NMR metabolic profile (AUC = 0.86) with 84% of sensitivity and 72% specificity. The model identified 11 metabolites differentially regulated in patients with MS. Among others, fatty acids, glucose, alanine, hydroxyisovalerate, acetone, trimethylamine, 2-phenylpropionate, isobutyrate and valine, significantly contributed to the model. The combined analysis of metabolomics and SNP data revealed an association between the metabolic profile of MS and genes polymorphism involved in the adiposity regulation and fatty acids metabolism: rs2272903_TT (TFAP2B), rs3803_TT (GATA2), rs174589_CC (FADS2) and rs174577_AA (FADS2). In addition, individuals with the rs2272903-TT genotype seem to develop MS earlier than general population. Our study provides new insights on the metabolic alterations associated with a MS high-risk genotype. These results could help in future development of risk assessment and predictive models for subclinical cardiovascular disease.
High genetic diversity of Jatropha curcas assessed by ISSR.
Díaz, B G; Argollo, D M; Franco, M C; Nucci, S M; Siqueira, W J; de Laat, D M; Colombo, C A
2017-05-31
Jatropha curcas L. is a highly promising oilseed for sustainable production of biofuels and bio-kerosene due to its high oil content and excellent quality. However, it is a perennial and incipiently domesticated species with none stable cultivar created until now despite genetic breeding programs in progress in several countries. Knowledge of the genetic structure and diversity of the species is a necessary step for breeding programs. The molecular marker can be used as a tool for speed up the process. This study was carried out to assess genetic diversity of a germplasm bank represented by J. curcas accessions from different provenance beside interspecific hybrid and backcrosses generated by IAC breeding programs using inter-simple sequence repeat markers. The molecular study revealed 271 bands of which 98.9% were polymorphic with an average of 22.7 polymorphic bands per primer. Genetic diversity of the germplasm evaluated was slightly higher than other germplasm around the world and ranged from 0.55 to 0.86 with an average of 0.59 (Jaccard index). Cluster analysis (UPGMA) revealed no clear grouping as to the geographical origin of accessions, consistent with genetic structure analysis using the Structure software. For diversity analysis between groups, accessions were divided into eight groups by origin. Nei's genetic distance between groups was 0.14. The results showed the importance of Mexican accessions, congeneric wild species, and interspecific hybrids for conservation and development of new genotypes in breeding programs.
Genetic and Phenotypic Analysis of Lateral Root Development in Arabidopsis thaliana.
Napsucialy-Mendivil, Selene; Dubrovsky, Joseph G
2018-01-01
Root system formation to a great extent depends on lateral root (LR) formation. In Arabidopsis thaliana, LRs are initiated within a parent root in pericycle that is an external tissue of the stele. LR initiation takes place in a strictly acropetal pattern, whereas posterior lateral root primordium (LRP) formation is asynchronous. In this chapter, we focus on methods of genetic and phenotypic analysis of LR initiation, LRP morphogenesis, and LR emergence in Arabidopsis. We provide details on how to make cleared root preparations and how to identify the LRP stages. We also pay attention to the categorization of the LRP developmental stages and their variations and to the normalization of the number of LRs and LRPs formed, per length of the primary root, and per number of cells produced within a root. Hormonal misbalances and mutations affect LRP morphogenesis significantly, and the evaluation of LRP abnormalities is addressed as well. Finally, we deal with various molecular markers that can be used for genetic and phenotypic analyses of LR development.
Mah, In Kyoung
2017-01-01
For decades, the mechanism of skeletal patterning along a proximal-distal axis has been an area of intense inquiry. Here, we examine the development of the ribs, simple structures that in most terrestrial vertebrates consist of two skeletal elements—a proximal bone and a distal cartilage portion. While the ribs have been shown to arise from the somites, little is known about how the two segments are specified. During our examination of genetically modified mice, we discovered a series of progressively worsening phenotypes that could not be easily explained. Here, we combine genetic analysis of rib development with agent-based simulations to conclude that proximal-distal patterning and outgrowth could occur based on simple rules. In our model, specification occurs during somite stages due to varying Hedgehog protein levels, while later expansion refines the pattern. This framework is broadly applicable for understanding the mechanisms of skeletal patterning along a proximal-distal axis. PMID:29068314
Date Palm Genetic Diversity Analysis Using Microsatellite Polymorphism.
Khierallah, Hussam S M; Bader, Saleh M; Hamwieh, Alladin; Baum, Michael
2017-01-01
Date palm (Phoenix dactylifera L.) is considered one of the great socioeconomic resources in the Middle East and the Arab regions. The tree has been and still is at the center of the comprehensive agricultural development. The number of known date palm cultivars, distributed worldwide, is approximately 3000. The success of genetic diversity conservation or any breeding program depends on an understanding of the amount and distribution of the genetic variation already in existence in the genetic pool. Development of suitable DNA molecular markers for this tree may allow researchers to estimate genetic diversity, which will ultimately lead to the genetic conservation of date palm. Simple sequence repeats (SSRs) are DNA strands, consisting of tandemly repeated mono-, di-, tri-, tetra-, or penta-nucleotide units that are arranged throughout the genomes of most eukaryotic species. Microsatellite markers, developed from genomic libraries, belong to either the transcribed region or the non-transcribed region of the genome, and there is rarely available information on their functions. Microsatellite sequences are especially suited to distinguish closely related genotypes due to a high degree of variability making them ideally suitable in population studies and the identification of closely related cultivars. This chapter focuses on the methods employed to characterize date palm genotypes using SSR markers.
Sellitto, Maria; Bai, Guoyun; Serena, Gloria; Fricke, W Florian; Sturgeon, Craig; Gajer, Pawel; White, James R; Koenig, Sara S K; Sakamoto, Joyce; Boothe, Dustin; Gicquelais, Rachel; Kryszak, Deborah; Puppa, Elaine; Catassi, Carlo; Ravel, Jacques; Fasano, Alessio
2012-01-01
Celiac disease (CD) is a unique autoimmune disorder in which the genetic factors (DQ2/DQ8) and the environmental trigger (gluten) are known and necessary but not sufficient for its development. Other environmental components contributing to CD are poorly understood. Studies suggest that aspects of gluten intake might influence the risk of CD occurrence and timing of its onset, i.e., the amount and quality of ingested gluten, together with the pattern of infant feeding and the age at which gluten is introduced in the diet. In this study, we hypothesize that the intestinal microbiota as a whole rather than specific infections dictates the switch from tolerance to immune response in genetically susceptible individuals. Using a sample of infants genetically at risk of CD, we characterized the longitudinal changes in the microbial communities that colonize infants from birth to 24 months and the impact of two patterns of gluten introduction (early vs. late) on the gut microbiota and metabolome, and the switch from gluten tolerance to immune response, including onset of CD autoimmunity. We show that infants genetically susceptible to CD who are exposed to gluten early mount an immune response against gluten and develop CD autoimmunity more frequently than at-risk infants in which gluten exposure is delayed until 12 months of age. The data, while derived from a relatively small number of subjects, suggest differences between the developing microbiota of infants with genetic predisposition for CD and the microbiota from infants with a non-selected genetic background, with an overall lack of bacteria of the phylum Bacteriodetes along with a high abundance of Firmicutes and microbiota that do not resemble that of adults even at 2 years of age. Furthermore, metabolomics analysis reveals potential biomarkers for the prediction of CD. This study constitutes a definite proof-of-principle that these combined genomic and metabolomic approaches will be key to deciphering the role of the gut microbiota on CD onset.
Tucker-Drob, Elliot M.; Briley, Daniel A.
2014-01-01
The longitudinal rank-order stability of cognitive ability increases dramatically over the lifespan. Multiple theoretical perspectives have proposed that genetic and/or environmental mechanisms underlie the longitudinal stability of cognition, and developmental trends therein. However, the patterns of stability of genetic and environmental influences on cognition over the lifespan largely remain poorly understood. We searched for longitudinal studies of cognition that reported raw genetically-informative longitudinal correlations or parameter estimates from longitudinal behavior genetic models. We identified 150 combinations of time points and measures from 15 independent longitudinal samples. In total, longitudinal data came from 4,538 monozygotic twin pairs raised together, 7,777 dizygotic twin pairs raised together, 34 monozygotic twin pairs raised apart, 78 dizygotic twin pairs raised apart, 141 adoptive sibling pairs, and 143 non-adoptive sibling pairs, ranging in age from infancy through late adulthood. At all ages, cross-time genetic correlations and shared environmental correlations were substantially larger than cross-time nonshared environmental correlations. Cross-time correlations for genetic and shared environmental components were low during early childhood, increased sharply over child development, and remained relatively high from adolescence through late adulthood. Cross-time correlations for nonshared environmental components were low across childhood and increased gradually to moderate magnitudes in adulthood. Increasing phenotypic stability over child development was almost entirely mediated by genetic factors. Time-based decay of genetic and shared environmental stability was more pronounced earlier in child development. Results are interpreted in reference to theories of gene-environment interaction and correlation. PMID:24611582
Oja, Ragne; Soe, Egle; Valdmann, Harri; Saarma, Urmas
2017-01-01
Capercaillie (Tetrao urogallus) and other grouse species represent conservation concerns across Europe due to their negative abundance trends. In addition to habitat deterioration, predation is considered a major factor contributing to population declines. While the role of generalist predators on grouse predation is relatively well known, the impact of the omnivorous wild boar has remained elusive. We hypothesize that wild boar is an important predator of ground-nesting birds, but has been neglected as a bird predator because traditional morphological methods underestimate the proportion of birds in wild boar diet. To distinguish between different mammalian predator species, as well as different grouse prey species, we developed a molecular method based on the analysis of mitochondrial DNA that allows accurate species identification. We collected 109 wild boar faeces at protected capercaillie leks and surrounding areas and analysed bird consumption using genetic methods and classical morphological examination. Genetic analysis revealed that the proportion of birds in wild boar faeces was significantly higher (17.3%; 4.5×) than indicated by morphological examination (3.8%). Moreover, the genetic method allowed considerably more precise taxonomic identification of consumed birds compared to morphological analysis. Our results demonstrate: (i) the value of using genetic approaches in faecal dietary analysis due to their higher sensitivity, and (ii) that wild boar is an important predator of ground-nesting birds, deserving serious consideration in conservation planning for capercaillie and other grouse.
Using population genetic tools to develop a control strategy for feral cats (Felis catus) in Hawai'i
Hansen, H.; Hess, S.C.; Cole, D.; Banko, P.C.
2007-01-01
Population genetics can provide information about the demographics and dynamics of invasive species that is beneficial for developing effective control strategies. We studied the population genetics of feral cats on Hawai'i Island by microsatellite analysis to evaluate genetic diversity and population structure, assess gene flow and connectivity among three populations, identify potential source populations, characterise population dynamics, and evaluate sex-biased dispersal. High genetic diversity, low structure, and high number of migrants per generation supported high gene flow that was not limited spatially. Migration rates revealed that most migration occurred out of West Mauna Kea. Effective population size estimates indicated increasing cat populations despite control efforts. Despite high gene flow, relatedness estimates declined significantly with increased geographic distance and Bayesian assignment tests revealed the presence of three population clusters. Genetic structure and relatedness estimates indicated male-biased dispersal, primarily from Mauna Kea, suggesting that this population should be targeted for control. However, recolonisation seems likely, given the great dispersal ability that may not be inhibited by barriers such as lava flows. Genetic monitoring will be necessary to assess the effectiveness of future control efforts. Management of other invasive species may benefit by employing these population genetic tools. ?? CSIRO 2007.
Array comparative genome hybridization in patients with developmental delay: two example cases.
Hancarova, Miroslava; Drabova, Jana; Zmitkova, Zuzana; Vlckova, Marketa; Hedvicakova, Petra; Novotna, Drahuse; Vlckova, Zdenka; Vejvalkova, Sarka; Marikova, Tatana; Sedlacek, Zdenek
2012-02-15
Developmental delay is often a predictor of mental retardation (MR) or autism, two relatively frequent developmental disorders severely affecting intellectual and social functioning. The causes of these conditions remain unknown in most patients. They have a strong genetic component, but the specific genetic defects can only be identified in a fraction of patients. Recent developments in genomics supported the establishment of the causal link between copy number variants in the genomes of some patients and their affection. One of the techniques suitable for this analysis is array comparative genome hybridization, which can be used both for detailed mapping of chromosome rearrangements identified by classical cytogenetics and for the identification of novel submicroscopic gains or losses of genetic material. We illustrate the power of this approach in two patients. Patient 1 had a cytogenetically visible deletion of chromosome X and the molecular analysis was used to specify the gene content of the deletion and the prognosis of the child. Patient 2 had a seemingly normal karyotype and the analysis revealed a small recurrent deletion of chromosome 1 likely to be responsible for his phenotype. However, the genetic dissection of MR and autism is complicated by high heterogeneity of the genetic aberrations among patients and by broad variability of phenotypic effects of individual genetic defects. Copyright © 2010 Elsevier B.V. All rights reserved.
Mas, Sergi; Gassó, Patricia; Morer, Astrid; Calvo, Anna; Bargalló, Nuria; Lafuente, Amalia; Lázaro, Luisa
2016-01-01
We propose an integrative approach that combines structural magnetic resonance imaging data (MRI), diffusion tensor imaging data (DTI), neuropsychological data, and genetic data to predict early-onset obsessive compulsive disorder (OCD) severity. From a cohort of 87 patients, 56 with complete information were used in the present analysis. First, we performed a multivariate genetic association analysis of OCD severity with 266 genetic polymorphisms. This association analysis was used to select and prioritize the SNPs that would be included in the model. Second, we split the sample into a training set (N = 38) and a validation set (N = 18). Third, entropy-based measures of information gain were used for feature selection with the training subset. Fourth, the selected features were fed into two supervised methods of class prediction based on machine learning, using the leave-one-out procedure with the training set. Finally, the resulting model was validated with the validation set. Nine variables were used for the creation of the OCD severity predictor, including six genetic polymorphisms and three variables from the neuropsychological data. The developed model classified child and adolescent patients with OCD by disease severity with an accuracy of 0.90 in the testing set and 0.70 in the validation sample. Above its clinical applicability, the combination of particular neuropsychological, neuroimaging, and genetic characteristics could enhance our understanding of the neurobiological basis of the disorder. PMID:27093171
Boycott, Kym; Hartley, Taila; Adam, Shelin; Bernier, Francois; Chong, Karen; Fernandez, Bridget A; Friedman, Jan M; Geraghty, Michael T; Hume, Stacey; Knoppers, Bartha M; Laberge, Anne-Marie; Majewski, Jacek; Mendoza-Londono, Roberto; Meyn, M Stephen; Michaud, Jacques L; Nelson, Tanya N; Richer, Julie; Sadikovic, Bekim; Skidmore, David L; Stockley, Tracy; Taylor, Sherry; van Karnebeek, Clara; Zawati, Ma'n H; Lauzon, Julie; Armour, Christine M
2015-01-01
Purpose and scope The aim of this Position Statement is to provide recommendations for Canadian medical geneticists, clinical laboratory geneticists, genetic counsellors and other physicians regarding the use of genome-wide sequencing of germline DNA in the context of clinical genetic diagnosis. This statement has been developed to facilitate the clinical translation and development of best practices for clinical genome-wide sequencing for genetic diagnosis of monogenic diseases in Canada; it does not address the clinical application of this technology in other fields such as molecular investigation of cancer or for population screening of healthy individuals. Methods of statement development Two multidisciplinary groups consisting of medical geneticists, clinical laboratory geneticists, genetic counsellors, ethicists, lawyers and genetic researchers were assembled to review existing literature and guidelines on genome-wide sequencing for clinical genetic diagnosis in the context of monogenic diseases, and to make recommendations relevant to the Canadian context. The statement was circulated for comment to the Canadian College of Medical Geneticists (CCMG) membership-at-large and, following incorporation of feedback, approved by the CCMG Board of Directors. The CCMG is a Canadian organisation responsible for certifying medical geneticists and clinical laboratory geneticists, and for establishing professional and ethical standards for clinical genetics services in Canada. Results and conclusions Recommendations include (1) clinical genome-wide sequencing is an appropriate approach in the diagnostic assessment of a patient for whom there is suspicion of a significant monogenic disease that is associated with a high degree of genetic heterogeneity, or where specific genetic tests have failed to provide a diagnosis; (2) until the benefits of reporting incidental findings are established, we do not endorse the intentional clinical analysis of disease-associated genes other than those linked to the primary indication; and (3) clinicians should provide genetic counselling and obtain informed consent prior to undertaking clinical genome-wide sequencing. Counselling should include discussion of the limitations of testing, likelihood and implications of diagnosis and incidental findings, and the potential need for further analysis to facilitate clinical interpretation, including studies performed in a research setting. These recommendations will be routinely re-evaluated as knowledge of diagnostic and clinical utility of clinical genome-wide sequencing improves. While the document was developed to direct practice in Canada, the applicability of the statement is broader and will be of interest to clinicians and health jurisdictions internationally. PMID:25951830
Jahanshad, Neda; Kochunov, Peter; Sprooten, Emma; Mandl, René C.; Nichols, Thomas E.; Almassy, Laura; Blangero, John; Brouwer, Rachel M.; Curran, Joanne E.; de Zubicaray, Greig I.; Duggirala, Ravi; Fox, Peter T.; Hong, L. Elliot; Landman, Bennett A.; Martin, Nicholas G.; McMahon, Katie L.; Medland, Sarah E.; Mitchell, Braxton D.; Olvera, Rene L.; Peterson, Charles P.; Starr, John M.; Sussmann, Jessika E.; Toga, Arthur W.; Wardlaw, Joanna M.; Wright, Margaret J.; Hulshoff Pol, Hilleke E.; Bastin, Mark E.; McIntosh, Andrew M.; Deary, Ian J.; Thompson, Paul M.; Glahn, David C.
2013-01-01
The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA–DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18–85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/). PMID:23629049
Valkonen, Mira; Ruusuvuori, Pekka; Kartasalo, Kimmo; Nykter, Matti; Visakorpi, Tapio; Latonen, Leena
2017-01-01
Cancer involves histological changes in tissue, which is of primary importance in pathological diagnosis and research. Automated histological analysis requires ability to computationally separate pathological alterations from normal tissue with all its variables. On the other hand, understanding connections between genetic alterations and histological attributes requires development of enhanced analysis methods suitable also for small sample sizes. Here, we set out to develop computational methods for early detection and distinction of prostate cancer-related pathological alterations. We use analysis of features from HE stained histological images of normal mouse prostate epithelium, distinguishing the descriptors for variability between ventral, lateral, and dorsal lobes. In addition, we use two common prostate cancer models, Hi-Myc and Pten+/− mice, to build a feature-based machine learning model separating the early pathological lesions provoked by these genetic alterations. This work offers a set of computational methods for separation of early neoplastic lesions in the prostates of model mice, and provides proof-of-principle for linking specific tumor genotypes to quantitative histological characteristics. The results obtained show that separation between different spatial locations within the organ, as well as classification between histologies linked to different genetic backgrounds, can be performed with very high specificity and sensitivity. PMID:28317907
Van Ryzin, Mark J; Leve, Leslie D; Neiderhiser, Jenae M; Shaw, Daniel S; Natsuaki, Misaki N; Reiss, David
2015-01-01
Although social competence in children has been linked to the quality of parenting, prior research has typically not accounted for genetic similarities between parents and children, or for interactions between environmental (i.e., parental) and genetic influences. In this article, the possibility of a Gene x Environment (G × E) interaction in the prediction of social competence in school-age children is evaluated. Using a longitudinal, multimethod data set from a sample of children adopted at birth (N = 361), a significant interaction was found between birth parent sociability and sensitive, responsive adoptive parenting when predicting child social competence at school entry (age 6), even when controlling for potential confounds. An analysis of the interaction revealed that genetic strengths can buffer the effects of unresponsive parenting. © 2015 The Authors. Child Development © 2015 Society for Research in Child Development, Inc.
Fantozzi, Anna; Ermolli, Monica; Marini, Massimiliano; Scotti, Domenico; Balla, Branko; Querci, Maddalena; Langrell, Stephen R H; Van den Eede, Guy
2007-02-21
An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis.
Islam, Md-Sajedul; Glynn, Jonathan M; Bai, Yang; Duan, Yong-Ping; Coletta-Filho, Helvecio D; Kuruba, Gopal; Civerolo, Edwin L; Lin, Hong
2012-03-20
Huanglongbing (HLB) is one of the most destructive citrus diseases in the world. The disease is associated with the presence of a fastidious, phloem-limited α- proteobacterium, 'Candidatus Liberibacter asiaticus', 'Ca. Liberibacter africanus' or 'Ca. Liberibacter americanus'. HLB-associated Liberibacters have spread to North America and South America in recent years. While the causal agents of HLB have been putatively identified, information regarding the worldwide population structure and epidemiological relationships for 'Ca. L. asiaticus' is limited. The availability of the 'Ca. L. asiaticus' genome sequence has facilitated development of molecular markers from this bacterium. The objectives of this study were to develop microsatellite markers and conduct genetic analyses of 'Ca. L. asiaticus' from a worldwide collection. Two hundred eighty seven isolates from USA (Florida), Brazil, China, India, Cambodia, Vietnam, Taiwan, Thailand, and Japan were analyzed. A panel of seven polymorphic microsatellite markers was developed for 'Ca. L. asiaticus'. Microsatellite analyses across the samples showed that the genetic diversity of 'Ca. L. asiaticus' is higher in Asia than Americas. UPGMA and STRUCTURE analyses identified three major genetic groups worldwide. Isolates from India were genetically distinct. East-southeast Asian and Brazilian isolates were generally included in the same group; a few members of this group were found in Florida, but the majority of the isolates from Florida were clustered separately. eBURST analysis predicted three founder haplotypes, which may have given rise to three groups worldwide. Our results identified three major genetic groups of 'Ca. L. asiaticus' worldwide. Isolates from Brazil showed similar genetic makeup with east-southeast Asian dominant group, suggesting the possibility of a common origin. However, most of the isolates recovered from Florida were clustered in a separate group. While the sources of the dominant 'Ca. L. asiaticus' in Florida were not clearly understood, the less-pervasive groups may have been introduced directly from Asia or via Brazil. Notably, the recent outbreak of HLB in Florida probably occurred through multiple introductions. Microsatellite markers developed in this study provide adequate discriminatory power for the identification and differentiation of closely-related isolates, as well as for genetic studies of 'Ca. L. asiaticus'.
A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy
Brenton, Zachary W.; Cooper, Elizabeth A.; Myers, Mathew T.; Boyles, Richard E.; Shakoor, Nadia; Zielinski, Kelsey J.; Rauh, Bradley L.; Bridges, William C.; Morris, Geoffrey P.; Kresovich, Stephen
2016-01-01
With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes representing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement. Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy production. PMID:27356613
Plaza Reyes, Alvaro; Lanner, Fredrik
2017-01-01
Developmental biologists have become increasingly aware that the wealth of knowledge generated through genetic studies of pre-implantation mouse development might not easily be translated to the human embryo. Comparative studies have been fueled by recent technological advances in single-cell analysis, allowing in-depth analysis of the human embryo. This field could shortly gain more momentum as novel genome editing technologies might, for the first time, also allow functional genetic studies in the human embryo. In this Spotlight article, we summarize the CRISPR-Cas9 genome editing system and discuss its potential applications and limitations in human pre-implantation embryos, and the ethical considerations thereof. © 2017. Published by The Company of Biologists Ltd.
Jackman, Patrick; Sun, Da-Wen; Allen, Paul; Valous, Nektarios A; Mendoza, Fernando; Ward, Paddy
2010-04-01
A method to discriminate between various grades of pork and turkey ham was developed using colour and wavelet texture features. Image analysis methods originally developed for predicting the palatability of beef were applied to rapidly identify the ham grade. With high quality digital images of 50-94 slices per ham it was possible to identify the greyscale that best expressed the differences between the various ham grades. The best 10 discriminating image features were then found with a genetic algorithm. Using the best 10 image features, simple linear discriminant analysis models produced 100% correct classifications for both pork and turkey on both calibration and validation sets. 2009 Elsevier Ltd. All rights reserved.
Singh, Akanksha; Sharma, Vinay; Dikshit, Harsh Kumar; Aski, Muraleedhar; Kumar, Harish; Thirunavukkarasu, Nepolean; Patil, Basavanagouda S.; Kumar, Shiv; Sarker, Ashutosh
2017-01-01
Lentil is a major cool-season grain legume grown in South Asia, West Asia, and North Africa. Populations in developing countries of these regions have micronutrient deficiencies; therefore, breeding programs should focus more on improving the micronutrient content of food. In the present study, a set of 96 diverse germplasm lines were evaluated at three different locations in India to examine the variation in iron (Fe) and zinc (Zn) concentration and identify simple sequence repeat (SSR) markers that associate with the genetic variation. The genetic variation among genotypes of the association mapping (AM) panel was characterized using a genetic distance-based and a general model-based clustering method. The model-based analysis identified six subpopulations, which satisfactorily explained the genetic structure of the AM panel. AM analysis identified three SSRs (PBALC 13, PBALC 206, and GLLC 563) associated with grain Fe concentration explaining 9% to 11% of phenotypic variation and four SSRs (PBALC 353, SSR 317–1, PLC 62, and PBALC 217) were associated with grain Zn concentration explaining 14%, to 21% of phenotypic variation. These identified SSRs exhibited consistent performance across locations. These candidate SSRs can be used in marker-assisted genetic improvement for developing Fe and Zn fortified lentil varieties. Favorable alleles and promising genotypes identified in this study can be utilized for lentil biofortification. PMID:29161321
Xu, Rong; Wang, QuanQiu; Li, Li
2015-01-01
Dietary intakes of red meat and fat are established risk factors for both colorectal cancer (CRC) and cardiovascular disease (CVDs). Recent studies have shown a mechanistic link between TMAO, an intestinal microbial metabolite of red meat and fat, and risk of CVDs. Data linking TMAO directly to CRC is, however, lacking. Here, we present an unbiased data-driven network-based systems approach to uncover a potential genetic relationship between TMAO and CRC. We constructed two different epigenetic interaction networks (EINs) using chemical-gene, disease-gene and protein-protein interaction data from multiple large-scale data resources. We developed a network-based ranking algorithm to ascertain TMAO-related diseases from EINs. We systematically analyzed disease categories among TMAO-related diseases at different ranking cutoffs. We then determined which genetic pathways were associated with both TMAO and CRC. We show that CVDs and their major risk factors were ranked highly among TMAO-related diseases, confirming the newly discovered mechanistic link between CVDs and TMAO, and thus validating our algorithms. CRC was ranked highly among TMAO-related disease retrieved from both EINs (top 0.02%, #1 out of 4,372 diseases retrieved based on Mendelian genetics and top 10.9% among 882 diseases based on genome-wide association genetics), providing strong supporting evidence for our hypothesis that TMAO is genetically related to CRC. We have also identified putative genetic pathways that may link TMAO to CRC, which warrants further investigation. Through systematic disease enrichment analysis, we also demonstrated that TMAO is related to metabolic syndromes and cancers in general. Our genome-wide analysis demonstrates that systems approaches to studying the epigenetic interactions among diet, microbiome metabolisms, and disease genetics hold promise for understanding disease pathogenesis. Our results show that TMAO is genetically associated with CRC. This study suggests that TMAO may be an important intermediate marker linking dietary meat and fat and gut microbiota metabolism to risk of CRC, underscoring opportunities for the development of new gut microbiome-dependent diagnostic tests and therapeutics for CRC.
Genetic Candidate Variants in Two Multigenerational Families with Childhood Apraxia of Speech
Wijsman, Ellen M.; Nato, Alejandro Q.; Matsushita, Mark M.; Chapman, Kathy L.; Stanaway, Ian B.; Wolff, John; Oda, Kaori; Gabo, Virginia B.; Raskind, Wendy H.
2016-01-01
Childhood apraxia of speech (CAS) is a severe and socially debilitating form of speech sound disorder with suspected genetic involvement, but the genetic etiology is not yet well understood. Very few known or putative causal genes have been identified to date, e.g., FOXP2 and BCL11A. Building a knowledge base of the genetic etiology of CAS will make it possible to identify infants at genetic risk and motivate the development of effective very early intervention programs. We investigated the genetic etiology of CAS in two large multigenerational families with familial CAS. Complementary genomic methods included Markov chain Monte Carlo linkage analysis, copy-number analysis, identity-by-descent sharing, and exome sequencing with variant filtering. No overlaps in regions with positive evidence of linkage between the two families were found. In one family, linkage analysis detected two chromosomal regions of interest, 5p15.1-p14.1, and 17p13.1-q11.1, inherited separately from the two founders. Single-point linkage analysis of selected variants identified CDH18 as a primary gene of interest and additionally, MYO10, NIPBL, GLP2R, NCOR1, FLCN, SMCR8, NEK8, and ANKRD12, possibly with additive effects. Linkage analysis in the second family detected five regions with LOD scores approaching the highest values possible in the family. A gene of interest was C4orf21 (ZGRF1) on 4q25-q28.2. Evidence for previously described causal copy-number variations and validated or suspected genes was not found. Results are consistent with a heterogeneous CAS etiology, as is expected in many neurogenic disorders. Future studies will investigate genome variants in these and other families with CAS. PMID:27120335
ERIC Educational Resources Information Center
Christensen, Douglas; Jovic, Marko
2006-01-01
This report describes a molecular biotechnology-based laboratory curriculum developed to accompany an undergraduate genetics course. During the course of a semester, students researched the pathogen, developed a research question, designed experiments, and performed transcriptional analysis of a set of genes that confer virulence to the food-borne…
NASA Technical Reports Server (NTRS)
1998-01-01
Perceptive Scientific Instruments, Inc., provides the foundation for the Powergene line of chromosome analysis and molecular genetic instrumentation. This product employs image processing technology from NASA's Jet Propulsion Laboratory and image enhancement techniques from Johnson Space Center. Originally developed to send pictures back to earth from space probes, digital imaging techniques have been developed and refined for use in a variety of medical applications, including diagnosis of disease.
USDA-ARS?s Scientific Manuscript database
The development of genomic selection methodology, with accompanying substantial gains in reliability for low-heritability traits, may dramatically improve the feasibility of genetic improvement of dairy cow health. Many methods for genomic analysis have now been developed, including the “Bayesian Al...
[Landscape and ecological genomics].
Tetushkin, E Ia
2013-10-01
Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment.
Knudson's hypothesis revisited in Indian retinoblastoma patients.
Gaikwad, Namrata; Vanniarajan, Ayyasamy; Husain, Akram; Jeyaram, Illaiyaraja; Thirumalairaj, Kannan; Santhi, Radhakrishnan; Muthukkaruppan, Veerappan; Kim, Usha
2015-12-01
Retinoblastoma (RB) is the most common primary intraocular malignancy affecting children under 5 years of age. This study aims to correlate the clinical parameters with RB1 mutation in the light of Knudson's two-hit hypothesis in Indian RB patients. We analyzed the clinical details of 73 RB patients visiting Aravind Eye Hospital, Madurai, India, between January and October 2012. Data on gender, presenting age and sign, laterality, number of tumors in each eye and family history were collected. A semi log plot was derived based on Knudson's two-hit hypothesis. Genetic analysis of RB1 was carried out to identify the two hits. The mean age at diagnosis for unilateral and bilateral cases was 24.0 ± 15.1 and 9.8 ± 11.5 months, respectively. Familial RB was seen in 13 (17.8%) patients of whom 11 were bilateral. Multiple tumors were observed more frequently in bilateral than in unilateral cases. All unilateral and bilateral patients followed the two-hit and one-hit curves, respectively, confirming Knudson's hypothesis in Indian patients. Genetic analysis identified two somatic mutations in tumor samples of sporadic unilateral cases. Among the two bilateral patients, one received the first hit from her father and the other patient developed a de novo germline mutation during early development. The two-hit hypothesis has been reestablished in Indian patients. Genetic analysis of tumor samples has also complemented the statistical analysis to reaffirm the two hits in tumor development. © 2015 Wiley Publishing Asia Pty Ltd.
Functional analysis of regulatory single-nucleotide polymorphisms.
Pampín, Sandra; Rodríguez-Rey, José C
2007-04-01
The identification of regulatory polymorphisms has become a key problem in human genetics. In the past few years there has been a conceptual change in the way in which regulatory single-nucleotide polymorphisms are studied. We revise the new approaches and discuss how gene expression studies can contribute to a better knowledge of the genetics of common diseases. New techniques for the association of single-nucleotide polymorphisms with changes in gene expression have been recently developed. This, together with a more comprehensive use of the old in-vitro methods, has produced a great amount of genetic information. When added to current databases, it will help to design better tools for the detection of regulatory single-nucleotide polymorphisms. The identification of functional regulatory single-nucleotide polymorphisms cannot be done by the simple inspection of DNA sequence. In-vivo techniques, based on primer-extension, and the more recently developed 'haploChIP' allow the association of gene variants to changes in gene expression. Gene expression analysis by conventional in-vitro techniques is the only way to identify the functional consequences of regulatory single-nucleotide polymorphisms. The amount of information produced in the last few years will help to refine the tools for the future analysis of regulatory gene variants.
High-resolution DNA melting analysis in plant research
USDA-ARS?s Scientific Manuscript database
Genetic and genomic studies provide valuable insight into the inheritance, structure, organization, and function of genes. The knowledge gained from the analysis of plant genes is beneficial to all aspects of plant research, including crop improvement. New methods and tools are continually developed...
2014-01-01
Background The date palm is one of the oldest cultivated fruit trees. It is critical in many ways to cultures in arid lands by providing highly nutritious fruit while surviving extreme heat and environmental conditions. Despite its importance from antiquity, few genetic resources are available for improving the productivity and development of the dioecious date palm. To date there has been no genetic map and no sex chromosome has been identified. Results Here we present the first genetic map for date palm and identify the putative date palm sex chromosome. We placed ~4000 markers on the map using nearly 1200 framework markers spanning a total of 1293 cM. We have integrated the genetic map, derived from the Khalas cultivar, with the draft genome and placed up to 19% of the draft genome sequence scaffolds onto linkage groups for the first time. This analysis revealed approximately ~1.9 cM/Mb on the map. Comparison of the date palm linkage groups revealed significant long-range synteny to oil palm. Analysis of the date palm sex-determination region suggests it is telomeric on linkage group 12 and recombination is not suppressed in the full chromosome. Conclusions Based on a modified gentoyping-by-sequencing approach we have overcome challenges due to lack of genetic resources and provide the first genetic map for date palm. Combined with the recent draft genome sequence of the same cultivar, this resource offers a critical new tool for date palm biotechnology, palm comparative genomics and a better understanding of sex chromosome development in the palms. PMID:24735434
Genetic analysis of virulence in the Pyrenophora teres f. teres population BB25 x FGOH04Ptt021
USDA-ARS?s Scientific Manuscript database
Pyrenophora teres f. teres is the causal agent of net form net blotch (NFNB) of barley. In order to map the genetics of avirulence/virulence in P. teres f. teres, a fungal population was developed using P. teres f. teres isolates BB25 (Denmark) and FGOH04Ptt-21 (North Dakota, USA) due to these two i...
Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp).
Xiong, Haizheng; Shi, Ainong; Mou, Beiquan; Qin, Jun; Motes, Dennis; Lu, Weiguo; Ma, Jianbing; Weng, Yuejin; Yang, Wei; Wu, Dianxing
2016-01-01
The genetic diversity of cowpea was analyzed, and the population structure was estimated in a diverse set of 768 cultivated cowpea genotypes from the USDA GRIN cowpea collection, originally collected from 56 countries. Genotyping by sequencing was used to discover single nucleotide polymorphism (SNP) in cowpea and the identified SNP alleles were used to estimate the level of genetic diversity, population structure, and phylogenetic relationships. The aim of this study was to detect the gene pool structure of cowpea and to determine its relationship between different regions and countries. Based on the model-based ancestry analysis, the phylogenetic tree, and the principal component analysis, three well-differentiated genetic populations were postulated from 768 worldwide cowpea genotypes. According to the phylogenetic analyses between each individual, region, and country, we may trace the accession from off-original, back to the two candidate original areas (West and East of Africa) to predict the migration and domestication history during the cowpea dispersal and development. To our knowledge, this is the first report of the analysis of the genetic variation and relationship between globally cultivated cowpea genotypes. The results will help curators, researchers, and breeders to understand, utilize, conserve, and manage the collection for more efficient contribution to international cowpea research.
Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp)
Xiong, Haizheng; Shi, Ainong; Mou, Beiquan; Qin, Jun; Motes, Dennis; Lu, Weiguo; Ma, Jianbing; Weng, Yuejin; Yang, Wei; Wu, Dianxing
2016-01-01
The genetic diversity of cowpea was analyzed, and the population structure was estimated in a diverse set of 768 cultivated cowpea genotypes from the USDA GRIN cowpea collection, originally collected from 56 countries. Genotyping by sequencing was used to discover single nucleotide polymorphism (SNP) in cowpea and the identified SNP alleles were used to estimate the level of genetic diversity, population structure, and phylogenetic relationships. The aim of this study was to detect the gene pool structure of cowpea and to determine its relationship between different regions and countries. Based on the model-based ancestry analysis, the phylogenetic tree, and the principal component analysis, three well-differentiated genetic populations were postulated from 768 worldwide cowpea genotypes. According to the phylogenetic analyses between each individual, region, and country, we may trace the accession from off-original, back to the two candidate original areas (West and East of Africa) to predict the migration and domestication history during the cowpea dispersal and development. To our knowledge, this is the first report of the analysis of the genetic variation and relationship between globally cultivated cowpea genotypes. The results will help curators, researchers, and breeders to understand, utilize, conserve, and manage the collection for more efficient contribution to international cowpea research. PMID:27509049
Swinford, A E; McKeag, D B
1990-01-01
There has been recent interest in the development of problem-based human genetics curricula in U.S. medical schools. The College of Human Medicine at Michigan State University has had a problem-based curriculum since 1974. The vertical integration of genetics within the problem-based curriculum, called "Track II," has recently been revised. On first inspection, the curriculum appeared to lack a significant genetics component; however, on further analysis it was found that many genetics concepts were covered in the biochemistry, microbiology, pathology, and clinical science components. Both basic science concepts and clinical applications of genetics are covered in the curriculum by providing appropriate references for basic concepts and including inherited conditions within the differential diagnosis in the cases studied. Evaluations consist of a multiple-choice content exam and a modified essay exam based on a clinical case, allowing evaluation of both basic concepts and problem-solving ability. This curriculum prepares students to use genetics in a clinical context in their future careers. PMID:2220816
Zou, Ping; Luo, Pei-Gao
2010-05-01
Chemistry is an important group of basic courses, while genetics is one of the important major-basic courses in curriculum of many majors in agricultural institutes or universities. In order to establish the linkage between the major course and the basic course, the ability of application of the chemical knowledge previously learned in understanding genetic knowledge in genetics teaching is worthy of discussion for genetics teachers. In this paper, the authors advocate to apply some chemical knowledge previously learned to understand genetic knowledge in genetics teaching with infiltrative model, which could help students learn and understand genetic knowledge more deeply. Analysis of the intrinsic logistic relationship among the knowledge of different courses and construction of the integral knowledge network are useful for students to improve their analytic, comprehensive and logistic abilities. By this way, we could explore a new teaching model to develop the talents with new ideas and comprehensive competence in agricultural fields.
Fernandez, A; Mills, E N C; Lovik, M; Spoek, A; Germini, A; Mikalsen, A; Wal, J M
2013-12-01
Allergenicity assessment of genetically modified (GM) plants is one of the key pillars in the safety assessment process of these products. As part of this evaluation, one of the concerns is to assess that unintended effects (e.g. over-expression of endogenous allergens) relevant for the food safety have not occurred due to the genetic modification. Novel technologies are now available and could be used as complementary and/or alternative methods to those based on human sera for the assessment of endogenous allergenicity. In view of these developments and as a step forward in the allergenicity assessment of GM plants, it is recommended that known endogenous allergens are included in the compositional analysis as additional parameters to be measured. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hart, Sara A.; Logan, Jessica A.R.; Soden-Hensler, Brooke; Kershaw, Sarah; Taylor, Jeanette; Schatschneider, Christopher
2013-01-01
Research on the development of reading skills through the primary school years has pointed to the importance of individual differences in initial ability as well as the growth of those skills. Additionally, it has been theorized that reading skills develop incrementally. The present study examined the genetic and environmental influences on two developmental models representing these parallel ideas, generalizing the findings to explore the processes of reading development. Participants were drawn from the Florida Twin Project on Reading, with a total of 2370 pairs of twins’ representative of the state of Florida. Twins’ oral reading fluency scores from school progress monitoring records collected in the fall of grades 1 through 5 were used to model development. Results suggested that genetic influences on the development of reading are general, shared across the early school years, as well as novel, with new genetic influences introduced at each of the first three years of school. The shared environment estimates suggest a pattern of general influences only, suggesting environmental effects which are moderate and stable across development. PMID:23294149
Pathway-based discovery of genetic interactions in breast cancer
Xu, Zack Z.; Boone, Charles; Lange, Carol A.
2017-01-01
Breast cancer is the second largest cause of cancer death among U.S. women and the leading cause of cancer death among women worldwide. Genome-wide association studies (GWAS) have identified several genetic variants associated with susceptibility to breast cancer, but these still explain less than half of the estimated genetic contribution to the disease. Combinations of variants (i.e. genetic interactions) may play an important role in breast cancer susceptibility. However, due to a lack of statistical power, the current tests for genetic interactions from GWAS data mainly leverage prior knowledge to focus on small sets of genes or SNPs that are known to have an association with breast cancer. Thus, many genetic interactions, particularly among novel variants, remain understudied. Reverse-genetic interaction screens in model organisms have shown that genetic interactions frequently cluster into highly structured motifs, where members of the same pathway share similar patterns of genetic interactions. Based on this key observation, we recently developed a method called BridGE to search for such structured motifs in genetic networks derived from GWAS studies and identify pathway-level genetic interactions in human populations. We applied BridGE to six independent breast cancer cohorts and identified significant pathway-level interactions in five cohorts. Joint analysis across all five cohorts revealed a high confidence consensus set of genetic interactions with support in multiple cohorts. The discovered interactions implicated the glutathione conjugation, vitamin D receptor, purine metabolism, mitotic prometaphase, and steroid hormone biosynthesis pathways as major modifiers of breast cancer risk. Notably, while many of the pathways identified by BridGE show clear relevance to breast cancer, variants in these pathways had not been previously discovered by traditional single variant association tests, or single pathway enrichment analysis that does not consider SNP-SNP interactions. PMID:28957314
Bohl, Daniel D; Telles, Connor J; Ruiz, Ferrin K; Badrinath, Raghav; DeLuca, Peter A; Grauer, Jonathan N
2016-04-01
Retrospective cohort. To determine whether a genetic test is associated with successful Providence bracing for adolescent idiopathic scoliosis (AIS). Genetic factors have been defined that predict the risk of progression of AIS in a polygenic fashion. From these data, a commercially available genetic test, ScoliScore, was developed. It is now used in clinical practice for counseling and to guide clinical management. Bracing is a mainstay of treatment for AIS. Large efforts have been made recently to reduce potential confounding across studies of different braces; however, none of these have considered genetics as a potential confounder. In particular, ScoliScore has not been evaluated in a population undergoing bracing. We conducted a retrospective cohort study in which we identified a population of AIS patients who were initiated with Providence bracing and followed over time. Although these patients did not necessarily fit the commercial indications for ScoliScore, we contacted the patients and obtained a saliva sample from each for genetic analysis. We then tested whether ScoliScore correlated with the outcome of their bracing therapy. We were able to contact and invite 25 eligible subjects, of whom 16 (64.0%) returned samples for laboratory analysis. Patients were followed for an average of 2.3 years (range, 1.1-4 y) after initiation of the Providence brace. Eight patients (50.0%) progressed to >45 degrees, whereas the other 8 patients (50.0%) did not. The mean ScoliScore among those who progressed to >45 degrees was higher than that among those who did not (176 vs. 112, P=0.030). We demonstrate that a genetic test correlates with bracing outcome. It may be appropriate for future bracing studies to include analysis of genetic predisposition to limit potential confounding.
Otto, Lars-Gernot; Mondal, Prodyut; Brassac, Jonathan; Preiss, Susanne; Degenhardt, Jörg; He, Sang; Reif, Jochen Christoph; Sharbel, Timothy Francis
2017-08-10
Chamomile (Matricaria recutita L.) has a long history of use in herbal medicine with various applications, and the flower heads contain numerous secondary metabolites which are medicinally active. In the major crop plants, next generation sequencing (NGS) approaches are intensely applied to exploit genetic resources, to develop genomic resources and to enhance breeding. Here, genotyping-by-sequencing (GBS) has been used in the non-model medicinal plant chamomile to evaluate the genetic structure of the cultivated varieties/populations, and to perform genome wide association study (GWAS) focusing on genes with large effect on flowering time and the medicinally important alpha-bisabolol content. GBS analysis allowed the identification of 6495 high-quality SNP-markers in our panel of 91 M. recutita plants from 33 origins (2-4 genotypes each) and 4 M. discoidea plants as outgroup, grown in the greenhouse in Gatersleben, Germany. M. recutita proved to be clearly distinct from the outgroup, as was demonstrated by different cluster and principal coordinate analyses using the SNP-markers. Chamomile genotypes from the same origin were mostly genetically similar. Model-based cluster analysis revealed one large group of tetraploid genotypes with low genetic differentiation including 39 plants from 14 origins. Tetraploids tended to display lower genetic diversity than diploids, probably reflecting their origin by artificial polyploidisation from only a limited set of genetic backgrounds. Analyses of flowering time demonstrated that diploids generally flowered earlier than tetraploids, and the analysis of alpha-bisabolol identified several tetraploid genotypes with a high content. GWAS identified highly significant (P < 0.01) SNPs for flowering time (9) and alpha-bisabolol (71). One sequence harbouring SNPs associated with flowering time was described to play a role in self-pollination in Arabidopsis thaliana, whereas four sequences harbouring SNPs associated with alpha-bisabolol were identified to be involved in plant biotic and abiotic stress response in various plants species. The first genomic resource for future applications to enhance breeding in chamomile was created, andanalyses of diversity will facilitate the exploitation of these genetic resources. The GWAS data pave the way for future research towards the genetics underlying important traits in chamomile, the identification of marker-trait associations, and development of reliable markers for practical breeding.
Aleza, Pablo; Cuenca, José; Hernández, María; Juárez, José; Navarro, Luis; Ollitrault, Patrick
2015-03-08
Mapping centromere locations in plant species provides essential information for the analysis of genetic structures and population dynamics. The centromere's position affects the distribution of crossovers along a chromosome and the parental heterozygosity restitution by 2n gametes is a direct function of the genetic distance to the centromere. Sexual polyploidisation is relatively frequent in Citrus species and is widely used to develop new seedless triploid cultivars. The study's objectives were to (i) map the positions of the centromeres of the nine Citrus clementina chromosomes; (ii) analyse the crossover interference in unreduced gametes; and (iii) establish the pattern of genetic recombination in haploid clementine gametes along each chromosome and its relationship with the centromere location and distribution of genic sequences. Triploid progenies were derived from unreduced megagametophytes produced by second-division restitution. Centromere positions were mapped genetically for all linkage groups using half-tetrad analysis. Inference of the physical locations of centromeres revealed one acrocentric, four metacentric and four submetacentric chromosomes. Crossover interference was observed in unreduced gametes, with variation seen between chromosome arms. For haploid gametes, a strong decrease in the recombination rate occurred in centromeric and pericentromeric regions, which contained a low density of genic sequences. In chromosomes VIII and IX, these low recombination rates extended beyond the pericentromeric regions. The genomic region corresponding to a genetic distance < 5cM from a centromere represented 47% of the genome and 23% of the genic sequences. The centromere positions of the nine citrus chromosomes were genetically mapped. Their physical locations, inferred from the genetic ones, were consistent with the sequence constitution and recombination pattern along each chromosome. However, regions with low recombination rates extended beyond the pericentromeric regions of some chromosomes into areas richer in genic sequences. The persistence of strong linkage disequilibrium between large numbers of genes promotes the stability of epistatic interactions and multilocus-controlled traits over successive generations but also maintains multi-trait associations. Identification of the centromere positions will allow the development of simple methods to analyse unreduced gamete formation mechanisms in a large range of genotypes and further modelling of genetic inheritance in sexual polyploidisation breeding schemes.
Botha, Gerda M; Viljoen, Christopher D
2008-02-01
It is said that genetic modification (GM) of grain sorghum has the potential to alleviate hunger in Africa. To this end, millions of dollars have been committed to developing GM sorghum. Current developments in the genetic engineering of sorghum are similar to efforts to improve cassava and other traditional African crops, as well as rice in Asia. On closer analysis, GM sorghum is faced with the same limitations as 'Golden Rice' (GM rice) in the context of combating vitamin A deficiency (VAD) efficiently and sustainably. Thus, it is questionable whether the cost of developing GM sorghum can be justified when compared to the cost of investing in sustainable agricultural practice in Africa.
Lu, Taofeng; Sun, Yujiao; Ma, Qin; Zhu, Minghao; Liu, Dan; Ma, Jianzhang; Ma, Yuehui; Chen, Hongyan; Guan, Weijun
2016-12-01
The Siberian tiger, Panthera tigris altaica, is an endangered species, and much more work is needed to protect this species, which is still vulnerable to extinction. Conservation efforts may be supported by the genetic assessment of wild populations, for which highly specific microsatellite markers are required. However, only a limited amount of genetic sequence data is available for this species. To identify the genes involved in the lung transcriptome and to develop additional simple sequence repeat (SSR) markers for the Siberian tiger, we used high-throughput RNA-Seq to characterize the Siberian tiger transcriptome in lung tissue (designated 'PTA-lung') and a pooled tissue sample (designated 'PTA'). Approximately 47.5 % (33,187/69,836) of the lung transcriptome was annotated in four public databases (Nr, Swiss-Prot, KEGG, and COG). The annotated genes formed a potential pool for gene identification in the tiger. An analysis of the genes differentially expressed in the PTA lung, and PTA samples revealed that the tiger may have suffered a series of diseases before death. In total, 1062 non-redundant SSRs were identified in the Siberian tiger transcriptome. Forty-three primer pairs were randomly selected for amplification reactions, and 26 of the 43 pairs were also used to evaluate the levels of genetic polymorphism. Fourteen primer pairs (32.56 %) amplified products that were polymorphic in size in P. tigris altaica. In conclusion, the transcriptome sequences will provide a valuable genomic resource for genetic research, and these new SSR markers comprise a reasonable number of loci for the genetic analysis of wild and captive populations of P. tigris altaica.
Clinical evaluation incorporating a personal genome
Ashley, Euan A.; Butte, Atul J.; Wheeler, Matthew T.; Chen, Rong; Klein, Teri E.; Dewey, Frederick E.; Dudley, Joel T.; Ormond, Kelly E.; Pavlovic, Aleksandra; Hudgins, Louanne; Gong, Li; Hodges, Laura M.; Berlin, Dorit S.; Thorn, Caroline F.; Sangkuhl, Katrin; Hebert, Joan M.; Woon, Mark; Sagreiya, Hersh; Whaley, Ryan; Morgan, Alexander A.; Pushkarev, Dmitry; Neff, Norma F; Knowles, Joshua W.; Chou, Mike; Thakuria, Joseph; Rosenbaum, Abraham; Zaranek, Alexander Wait; Church, George; Greely, Henry T.; Quake, Stephen R.; Altman, Russ B.
2010-01-01
Background The cost of genomic information has fallen steeply but the path to clinical translation of risk estimates for common variants found in genome wide association studies remains unclear. Since the speed and cost of sequencing complete genomes is rapidly declining, more comprehensive means of analyzing these data in concert with rare variants for genetic risk assessment and individualisation of therapy are required. Here, we present the first integrated analysis of a complete human genome in a clinical context. Methods An individual with a family history of vascular disease and early sudden death was evaluated. Clinical assessment included risk prediction for coronary artery disease, screening for causes of sudden cardiac death, and genetic counselling. Genetic analysis included the development of novel methods for the integration of whole genome sequence data including 2.6 million single nucleotide polymorphisms and 752 copy number variations. The algorithm focused on predicting genetic risk of genes associated with known Mendelian disease, recognised drug responses, and pathogenicity for novel variants. In addition, since integration of risk ratios derived from case control studies is challenging, we estimated posterior probabilities from age and sex appropriate prior probability and likelihood ratios derived for each genotype. In addition, we developed a visualisation approach to account for gene-environment interactions and conditionally dependent risks. Findings We found increased genetic risk for myocardial infarction, type II diabetes and certain cancers. Rare variants in LPA are consistent with the family history of coronary artery disease. Pharmacogenomic analysis suggested a positive response to lipid lowering therapy, likely clopidogrel resistance, and a low initial dosing requirement for warfarin. Many variants of uncertain significance were reported. Interpretation Although challenges remain, our results suggest that whole genome sequencing can yield useful and clinically relevant information for individual patients, especially for those with a strong family history of significant disease. PMID:20435227
Guzman-Valencia, S; Santillán-Galicia, M T; Guzmán-Franco, A W; González-Hernández, H; Carrillo-Benítez, M G; Suárez-Espinoza, J
2014-10-01
Oligonychus punicae and Oligonychus perseae (Acari: Tetranychidae) are the most important mite species affecting avocado orchards in Mexico. Here we used nucleotide sequence data from segments of the nuclear ribosomal internal transcribed spacers (ITS1 and ITS2) and mitochondrial cytochrome oxidase subunit I (COI) genes to assess the phylogenetic relationships between both sympatric mite species and, using only ITS sequence data, examine genetic variation and population structure in both species, to test the hypothesis that, although both species co-occur, their genetic population structures are different in both Michoacan state (main producer) and Mexico state. Phylogenetic analysis showed a clear separation between both species using ITS and COI sequence information. Haplotype network analysis done on 24 samples of O. punicae revealed low genetic diversity with only three haplotypes found but a significant geographical population structure confirmed by analysis of molecular variance (AMOVA) and Kimura-2-parameter (K2P) analyses. In addition, a Mantel test revealed that geographical isolation was a factor responsible for the genetic differentiation. In contrast, analyses of 22 samples of O. perseae revealed high genetic diversity with 15 haplotypes found but no geographical structure confirmed by the AMOVA, K2P and Mantel test analyses. We have suggested that geographical separation is one of the most important factors driving genetic variation, but that it affected each species differently. The role of the ecology of these species on our results, and the importance of our findings in the development of monitoring and control strategies are discussed.
Feng, Hui; Gupta, Bhavna; Wang, Meilian; Zheng, Wenqi; Zheng, Li; Zhu, Xiaotong; Yang, Yimei; Fang, Qiang; Luo, Enjie; Fan, Qi; Tsuboi, Takafumi; Cao, Yaming; Cui, Liwang
2015-12-01
The male gamete fertilization factor P48/45 in malaria parasites is a prime transmission-blocking vaccine (TBV) candidate. Efforts to develop antimalarial vaccines are often thwarted by genetic diversity of the target antigens. Here we evaluated the genetic diversity of Pvs48/45 gene in global Plasmodium vivax populations. We determined 200 Pvs48/45 sequences collected from temperate and subtropical parasite populations in China. Population genetic and evolutionary analyses were performed to determine the levels of genetic diversity, potential signature of selection, and population differentiation. Analysis of the Pvs48/45 sequences from 200 P. vivax parasites collected in a temperate and a tropical region revealed a low level of genetic diversity (π = 0.0012) with 14 single nucleotide polymorphisms, of which 11 were nonsynonymous. Analysis of 344 Pvs48/45 sequences from nine worldwide P. vivax populations detected a total of 38 haplotypes, of which 13 haplotypes were present only once. Multiple tests for selection confirmed a signature of positive selection on Pvs48/45 with selection skewed to the second cysteine domain. Haplotype network analysis and Wright's fixation index showed large geographical differentiation with the presence of continent-or region-specific mutations in this gene. Pvs48/45 displays low levels of genetic diversity with the presence of region-specific mutations. Some of the mutations may be potential epitope targets based on their positions in the predicted structure, highlighting the need for future evaluation of these mutations in designing Pvs48/45-based TBV.
Sparse models for correlative and integrative analysis of imaging and genetic data
Lin, Dongdong; Cao, Hongbao; Calhoun, Vince D.
2014-01-01
The development of advanced medical imaging technologies and high-throughput genomic measurements has enhanced our ability to understand their interplay as well as their relationship with human behavior by integrating these two types of datasets. However, the high dimensionality and heterogeneity of these datasets presents a challenge to conventional statistical methods; there is a high demand for the development of both correlative and integrative analysis approaches. Here, we review our recent work on developing sparse representation based approaches to address this challenge. We show how sparse models are applied to the correlation and integration of imaging and genetic data for biomarker identification. We present examples on how these approaches are used for the detection of risk genes and classification of complex diseases such as schizophrenia. Finally, we discuss future directions on the integration of multiple imaging and genomic datasets including their interactions such as epistasis. PMID:25218561
Takabatake, Reona; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi
2013-01-01
A novel real-time polymerase chain reaction (PCR)-based quantitative screening method was developed for three genetically modified soybeans: RRS, A2704-12, and MON89788. The 35S promoter (P35S) of cauliflower mosaic virus is introduced into RRS and A2704-12 but not MON89788. We then designed a screening method comprised of the combination of the quantification of P35S and the event-specific quantification of MON89788. The conversion factor (Cf) required to convert the amount of a genetically modified organism (GMO) from a copy number ratio to a weight ratio was determined experimentally. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDR), respectively. The determined RSDR values for the method were less than 25% for both targets. We consider that the developed method would be suitable for the simple detection and approximate quantification of GMO.
New tools for the analysis of glial cell biology in Drosophila.
Awasaki, Takeshi; Lee, Tzumin
2011-09-01
Because of its genetic, molecular, and behavioral tractability, Drosophila has emerged as a powerful model system for studying molecular and cellular mechanisms underlying the development and function of nervous systems. The Drosophila nervous system has fewer neurons and exhibits a lower glia:neuron ratio than is seen in vertebrate nervous systems. Despite the simplicity of the Drosophila nervous system, glial organization in flies is as sophisticated as it is in vertebrates. Furthermore, fly glial cells play vital roles in neural development and behavior. In addition, powerful genetic tools are continuously being created to explore cell function in vivo. In taking advantage of these features, the fly nervous system serves as an excellent model system to study general aspects of glial cell development and function in vivo. In this article, we review and discuss advanced genetic tools that are potentially useful for understanding glial cell biology in Drosophila. Copyright © 2011 Wiley-Liss, Inc.
Defective enamel ultrastructure in diabetic rodents.
Atar, M; Atar-Zwillenberg, D R; Verry, P; Spornitz, U M
2004-07-01
We investigated six different types of diabetic rodents. Four expressed a genetic obesity resulting in diabetes. One developed diabetes induced by a diet-dependent obesity, and one with genetic diabetes received anti-diabetic medication. The tooth samples were examined under a scanning electron microscope and with an energy dispersive microanalysis (EDX). The electron micrographs showed severe, varying degrees of damage within the six different diabetic animal types, such as irregular crystallite deposition and prism perforations in genetically obese animals compared to less-disordered prism structures in diet-dependent obesity. Anti-diabetic medication resulted in normal enamel ultrastructure. The EDX analysis revealed a reduction in the amount of calcium and phosphorus in all regions affected by diabetes. Based on these animal studies, we suggest that both juvenile diabetes type I (in infants) and adult diabetes type II (in pregnant mothers, affecting the developing foetus) may affect the normal development of teeth in humans.
Machine learning applications in genetics and genomics.
Libbrecht, Maxwell W; Noble, William Stafford
2015-06-01
The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets. Here, we provide an overview of machine learning applications for the analysis of genome sequencing data sets, including the annotation of sequence elements and epigenetic, proteomic or metabolomic data. We present considerations and recurrent challenges in the application of supervised, semi-supervised and unsupervised machine learning methods, as well as of generative and discriminative modelling approaches. We provide general guidelines to assist in the selection of these machine learning methods and their practical application for the analysis of genetic and genomic data sets.
Current and future developments in patents for quantitative trait loci in dairy cattle.
Weller, Joel I
2007-01-01
Many studies have proposed that rates of genetic gain in dairy cattle can be increased by direct selection on the individual quantitative loci responsible for the genetic variation in these traits, or selection on linked genetic markers. The development of DNA-level genetic markers has made detection of QTL nearly routine in all major livestock species. The studies that attempted to detect genes affecting quantitative traits can be divided into two categories: analysis of candidate genes, and genome scans based on within-family genetic linkage. To date, 12 patent cooperative treaty (PCT) and US patents have been registered for DNA sequences claimed to be associated with effects on economic traits in dairy cattle. All claim effects on milk production, but other traits are also included in some of the claims. Most of the sequences found by the candidate gene approach are of dubious validity, and have been repeated in only very few independent studies. The two missense mutations on chromosomes 6 and 14 affecting milk concentration derived from genome scans are more solidly based, but the claims are also disputed. A few PCT in dairy cattle are commercialized as genetic tests where commercial dairy farmers are the target market.
Who should know about our genetic makeup and why?
Takala, T.; Gylling, H. A.
2000-01-01
Recent developments in biology have made it possible to acquire more and more precise information concerning our genetic makeup. Although the most far-reaching effects of these developments will probably be felt only after the Human Genome Project has been completed in a few years' time, scientists can even today identify a number of genetic disorders which may cause illness and disease in their carriers. The improved knowledge regarding the human genome will, it is predicted, in the near future make diagnoses more accurate and treatments more effective, and thereby considerably reduce and prevent unnecessary suffering. On the other hand, however, the knowledge can also be, depending on the case, futile, distressing or plainly harmful. This is why we propose to answer in this paper the dual question: who should know about our genetic makeup and why? Through an analysis of prudential, moral and legal grounds for acquiring the information, we conclude that, at least on the levels of law and social policy, practically nobody is either duty-bound to receive or entitled to have that knowledge. Key Words: Genetic testing • genetic screening • law • ethics • duties PMID:10860207
Ethical issues in pediatric genetic testing and screening.
Botkin, Jeffrey R
2016-12-01
Developments in genetic test technologies enable a detailed analysis of the genomes of individuals across the range of human development from embryos to adults with increased precision and lower cost. These powerful technologies raise a number of ethical issues in pediatrics, primarily because of the frequent lack of clinical utility of genetic information, the generation of secondary results and questions over the proper scope of parental authority for testing. Several professional organizations in the fields of genetics and pediatrics have published new guidance on the ethical, legal, and policy issues relevant to genetic testing in children. The roles of predictive testing for adult-onset conditions, the management of secondary findings and the role of informed consent for newborn screening remain controversial. However, research and experience are not demonstrating serious adverse psychosocial impacts from genetic testing and screening in children. The use of these technologies is expanding with the notion that the personal utility of test results, rather than clinical utility, may be sufficient to justify testing. The use of microarray and genome sequencing technologies is expanding in the care of children. More deference to parental decision-making is evolving in contexts wherein information and counseling can be made readily available.
Chemical characteristics and volatile profile of genetically modified peanut cultivars.
Ng, Ee Chin; Dunford, Nurhan T; Chenault, Kelly
2008-10-01
Genetic engineering has been used to modify peanut cultivars for improving agronomic performance and pest resistance. Food products developed through genetic engineering have to be assessed for their safety before approval for human consumption. Preservation of desirable chemical, flavor and aroma attributes of the peanut cultivars during the genetic modifications is critical for acceptance of genetically modified peanuts (GMP) by the food industry. Hence, the main objective of this study is to examine chemical characteristics and volatile profile of GMP. The genetically modified peanut cultivars, 188, 540 and 654 were obtained from the USDA-ARS in Stillwater, Oklahoma. The peanut variety Okrun was examined as a control. The volatile analysis was performed using a gas chromatograph/mass spectrometer (GC/MS) equipped with an olfactory detector. The peanut samples were also analyzed for their moisture, ash, protein, sugar and oil compositions. Experimental results showed that the variations in nutritional composition of peanut lines examined in this study were within the values reported for existing cultivars. There were minor differences in volatile profile among the samples. The implication of this study is significant, since it shows that peanut cultivars with greater pest and fungal resistance were successfully developed without major changes in their chemical characteristics.
Improved classification accuracy by feature extraction using genetic algorithms
NASA Astrophysics Data System (ADS)
Patriarche, Julia; Manduca, Armando; Erickson, Bradley J.
2003-05-01
A feature extraction algorithm has been developed for the purposes of improving classification accuracy. The algorithm uses a genetic algorithm / hill-climber hybrid to generate a set of linearly recombined features, which may be of reduced dimensionality compared with the original set. The genetic algorithm performs the global exploration, and a hill climber explores local neighborhoods. Hybridizing the genetic algorithm with a hill climber improves both the rate of convergence, and the final overall cost function value; it also reduces the sensitivity of the genetic algorithm to parameter selection. The genetic algorithm includes the operators: crossover, mutation, and deletion / reactivation - the last of these effects dimensionality reduction. The feature extractor is supervised, and is capable of deriving a separate feature space for each tissue (which are reintegrated during classification). A non-anatomical digital phantom was developed as a gold standard for testing purposes. In tests with the phantom, and with images of multiple sclerosis patients, classification with feature extractor derived features yielded lower error rates than using standard pulse sequences, and with features derived using principal components analysis. Using the multiple sclerosis patient data, the algorithm resulted in a mean 31% reduction in classification error of pure tissues.
Fourtune, Lisa; Prunier, Jérôme G; Paz-Vinas, Ivan; Loot, Géraldine; Veyssière, Charlotte; Blanchet, Simon
2018-04-01
Identifying landscape features that affect functional connectivity among populations is a major challenge in fundamental and applied sciences. Landscape genetics combines landscape and genetic data to address this issue, with the main objective of disentangling direct and indirect relationships among an intricate set of variables. Causal modeling has strong potential to address the complex nature of landscape genetic data sets. However, this statistical approach was not initially developed to address the pairwise distance matrices commonly used in landscape genetics. Here, we aimed to extend the applicability of two causal modeling methods-that is, maximum-likelihood path analysis and the directional separation test-by developing statistical approaches aimed at handling distance matrices and improving functional connectivity inference. Using simulations, we showed that these approaches greatly improved the robustness of the absolute (using a frequentist approach) and relative (using an information-theoretic approach) fits of the tested models. We used an empirical data set combining genetic information on a freshwater fish species (Gobio occitaniae) and detailed landscape descriptors to demonstrate the usefulness of causal modeling to identify functional connectivity in wild populations. Specifically, we demonstrated how direct and indirect relationships involving altitude, temperature, and oxygen concentration influenced within- and between-population genetic diversity of G. occitaniae.
Konishi, Sayaka; Hata, Shoko; Matsuda, Sayumi; Arai, Kazushi; Mizoguchi, Yasushi
2017-11-01
The browsing habits of sika deer (Cervus nippon) in Japan have caused serious ecological problems. Appropriate management of sika deer populations requires understanding the different genetic structures of local populations. In the present study, we used 10 microsatellite polymorphisms to explore the genetic structures of sika deer populations (162 individuals) living in the Kanto region. The expected heterozygosity of the Tanzawa mountain range population (Group I) was lower than that of the populations in the Kanto mountain areas (Group II). Our results suggest that moderate gene flow has occurred between the sika deer populations in the Kanto mountain areas (Group II), but not to or from the Tanzawa mountain range population (Group I). Also, genetic structure analysis showed that the Tanzawa population was separated from the other populations. This is probably attributable to a genetic bottleneck that developed in the Tanzawa sika deer population in the 1950s. However, we found that the Tanzawa population has since recovered from the bottleneck situation and now exhibits good genetic diversity. Our results show that it is essential to periodically evaluate the genetic structures of deer populations to develop conservation strategies appropriate to the specific structures of individual populations at any given time. © 2017 Japanese Society of Animal Science.
Liu, Minxuan; Xu, Yue; He, Jihong; Zhang, Shuang; Wang, Yinyue; Lu, Ping
2016-01-01
Broomcorn millet (Panicum miliaceum L.), one of the first domesticated crops, has been grown in Northern China for at least 10,000 years. The species is presently a minor crop, and evaluation of its genetic diversity has been very limited. In this study, we analyzed the genetic diversity of 88 accessions of broomcorn millet collected from various provinces of China. Amplification with 67 simple sequence repeat (SSR) primers revealed moderate levels of diversity in the investigated accessions. A total of 179 alleles were detected, with an average of 2.7 alleles per locus. Polymorphism information content and expected heterozygosity ranged from 0.043 to 0.729 (mean = 0.376) and 0.045 to 0.771 (mean = 0.445), respectively. Cluster analysis based on the unweighted pair group method of mathematical averages separated the 88 accessions into four groups at a genetic similarity level of 0.633. A genetic structure assay indicated a close correlation between geographical regions and genetic diversity. The uncovered information will be valuable for defining gene pools and developing breeding programs for broomcorn millet. Furthermore, the millet-specific SSR markers developed in this study should serve as useful tools for assessment of genetic diversity and elucidation of population structure in broomcorn millet. PMID:26985894
Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun
2016-01-01
Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo. PMID:26870082
Mancini, I; Ricaño-Ponce, I; Pappalardo, E; Cairo, A; Gorski, M M; Casoli, G; Ferrari, B; Alberti, M; Mikovic, D; Noris, M; Wijmenga, C; Peyvandi, F
2016-12-01
Essentials Genetic predisposition to acquired thrombotic thrombocytopenic purpura (aTTP) is mainly unknown. Genetic risk factors for aTTP were studied by Immunochip analysis and replication study. Human leukocyte antigen (HLA) variant rs6903608 conferred a 2.5-fold higher risk of developing aTTP. rs6903608 and HLA-DQB1*05:03 may explain most of the HLA association signal in aTTP. Click to hear Dr Cataland's presentation on acquired thrombotic thrombocytopenic purpura SUMMARY: Background Acquired thrombotic thrombocytopenic purpura (TTP) is a rare, life-threatening thrombotic microangiopathy associated with the development of autoantibodies against the von Willebrand factor-cleaving protease ADAMTS-13. Similarly to what has been found for other autoimmune disorders, there is evidence of a genetic contribution, including the association of the human leukocyte antigen (HLA) class II complex with disease risk. Objective To identify novel genetic risk factors in acquired TTP. Patients/Methods We undertook a case-control genetic association study in 190 European-origin TTP patients and 1255 Italian healthy controls by using the Illumina Immunochip. Replication analysis in 88 Italian cases and 456 controls was performed with single-nucleotide polymorphism (SNP) TaqMan assays. Results and conclusion We identified one common variant (rs6903608) located within the HLA class II locus that was independently associated with acquired TTP at genome-wide significance and conferred a 2.6-fold increased risk of developing a TTP episode (95% confidence interval [CI] 2.02-3.27, P = 1.64 × 10 -14 ). We also found five non-HLA variants mapping to chromosomes 2, 6, 8 and X that were suggestively associated with the disease: rs9490550, rs115265285, rs5927472, rs7823314, and rs1334768 (nominal P-values ranging from 1.59 × 10 -5 to 7.60 × 10 -5 ). Replication analysis confirmed the association of HLA variant rs6903608 with acquired TTP (pooled P = 3.95 × 10 -19 ). Imputation of classic HLA genes followed by stepwise conditional analysis revealed that the combination of rs6903608 and HLA-DQB1*05:03 may explain most of the HLA association signal in acquired TTP. Our results refined the association of the HLA class II locus with acquired TTP, confirming its importance in the etiology of this autoimmune disease. © 2016 International Society on Thrombosis and Haemostasis.
Basak, Supriyo; Ramesh, Aadi Moolam; Kesari, Vigya; Parida, Ajay; Mitra, Sudip; Rangan, Latha
2014-12-01
Molecular genetic fingerprints of eleven Hedychium species from Northeast India were developed using PCR based markers. Fifteen inter-simple sequence repeats (ISSRs) and five amplified fragment length polymorphism (AFLP) primers produced 547 polymorphic fragments. Positive correlation (r = 0.46) was observed between the mean genetic similarity and genetic diversity parameters at the inter-species level. AFLP and ISSR markers were able to group the species according to its altitude and intensity of flower aroma. Cophenetic correlation coefficients between the dendrogram and the original similarity matrix were significant for ISSR (r = 0.89) compared to AFLP (r = 0.83) markers. This genetic characterization of Hedychium from Northeast India contributes to the knowledge of genetic structure of the species and can be used to define strategies for their conservation and management.
Higher criticism approach to detect rare variants using whole genome sequencing data
2014-01-01
Because of low statistical power of single-variant tests for whole genome sequencing (WGS) data, the association test for variant groups is a key approach for genetic mapping. To address the features of sparse and weak genetic effects to be detected, the higher criticism (HC) approach has been proposed and theoretically has proven optimal for detecting sparse and weak genetic effects. Here we develop a strategy to apply the HC approach to WGS data that contains rare variants as the majority. By using Genetic Analysis Workshop 18 "dose" genetic data with simulated phenotypes, we assess the performance of HC under a variety of strategies for grouping variants and collapsing rare variants. The HC approach is compared with the minimal p-value method and the sequence kernel association test. The results show that the HC approach is preferred for detecting weak genetic effects. PMID:25519367
Current Evidence and Insights about Genetics in Thoracic Aorta Disease
Muneretto, Claudio
2013-01-01
Thoracic aortic aneurysms have been historically considered to be caused by etiologic factors similar to those implied in abdominal aortic aneurysms. However, during the past decade, there has been increasing evidence that almost 20% of thoracic aortic aneurysms may be associated with a genetic disease, often within a syndromic or familial disorder. Moreover, the presence of congenital anomalies, such as bicuspid aortic valve, may have a unique common genetic underlying cause. Finally, also sporadic forms have been found to be potentially associated with genetic disorders, as highlighted by the analysis of rare variants and expression of specific microRNAs. We therefore sought to perform a comprehensive review of the role of genetic causes in the development of thoracic aortic aneurysms, by analyzing in detail the current evidence of genetic alterations in syndromes such as Marfan, Loeys-Dietz, and Ehler-Danlos, familial or sporadic forms, or forms associated with bicuspid aortic valve. PMID:24453931
Camargo, L K P; Mógor, A F; Resende, J T V; Da-Silva, P R
2013-11-18
The sweet potato (Ipomoea batatas L.) is a crop of great importance in developing countries, as a food staple, for animal feed, and potentially for biofuel. Development of cultivars adapted to specific regions within these countries would be useful. To start a breeding program, the first step is the establishment of a germplasm bank. We initiated a sweet potato germplasm bank with accessions collected from the highlands of Paraná State, Brazil. To establish this germplasm bank, we carried out numerous sweet potato-collecting expeditions in regions with an altitude above 700 meters in this region; 116 genotypes currently comprise this collection. The genetic diversity of this germplasm bank was estimated using inter simple sequence repeat (ISSR) markers. Polymorphic information content (PIC), marker index (MI), and resolving power (RP) were calculated to determine the viability of ISSR markers for use in sweet potato genetic studies. The correlation between PIC and MI (r(2) = 0.81) and between MI and RP (r(2) = 0.97) were positive and significant, indicating that ISSR markers are robust for sweet potato identification. Two ISSR primers, 807 and 808, gave the best results for all attributes, and thus could be used as representative ISSR primers for the genetic analysis of sweet potato. Cluster analysis and principal component analysis indicated high genetic variability (0.51 of similarity among all genotypes); genotypes collected from different counties grouped together.
Genetic and environmental continuity in personality development: a meta-analysis.
Briley, Daniel A; Tucker-Drob, Elliot M
2014-09-01
The longitudinal stability of personality is low in childhood but increases substantially into adulthood. Theoretical explanations for this trend differ in the emphasis placed on intrinsic maturation and socializing influences. To what extent does the increasing stability of personality result from the continuity and crystallization of genetically influenced individual differences, and to what extent does the increasing stability of life experiences explain increases in personality trait stability? Behavioral genetic studies, which decompose longitudinal stability into sources associated with genetic and environmental variation, can help to address this question. We aggregated effect sizes from 24 longitudinal behavioral genetic studies containing information on a total of 21,057 sibling pairs from 6 types that varied in terms of genetic relatedness and ranged in age from infancy to old age. A combination of linear and nonlinear meta-analytic regression models were used to evaluate age trends in levels of heritability and environmentality, stabilities of genetic and environmental effects, and the contributions of genetic and environmental effects to overall phenotypic stability. Both the genetic and environmental influences on personality increase in stability with age. The contribution of genetic effects to phenotypic stability is moderate in magnitude and relatively constant with age, in part because of small-to-moderate decreases in the heritability of personality over child development that offset increases in genetic stability. In contrast, the contribution of environmental effects to phenotypic stability increases from near zero in early childhood to moderate in adulthood. The life-span trend of increasing phenotypic stability, therefore, predominantly results from environmental mechanisms. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Genetic and Environmental Continuity in Personality Development: A Meta-Analysis
Briley, Daniel A.; Tucker-Drob, Elliot M.
2014-01-01
The longitudinal stability of personality is low in childhood, but increases substantially into adulthood. Theoretical explanations for this trend differ in the emphasis placed on intrinsic maturation and socializing influences. To what extent does the increasing stability of personality result from the continuity and crystallization of genetically influenced individual differences, and to what extent does the increasing stability of life experiences explain increases in personality trait stability? Behavioral genetic studies, which decompose longitudinal stability into sources associated with genetic and environmental variation, can help to address this question. We aggregated effect sizes from 24 longitudinal behavioral genetic studies containing information on a total of 21,057 sibling pairs from six types that varied in terms of genetic relatedness and ranged in age from infancy to old age. A combination of linear and nonlinear meta-analytic regression models were used to evaluate age-trends in levels of heritability and environmentality, stabilities of genetic and environmental effects, and the contributions of genetic and environmental effects to overall phenotypic stability. Both the genetic and environmental influences on personality increase in stability with age. The contribution of genetic effects to phenotypic stability is moderate in magnitude and relatively constant with age, in part because of small-to-moderate decreases in the heritability of personality over child development that offset increases in genetic stability. In contrast, the contribution of environmental effects to phenotypic stability increases from near-zero in early childhood to moderate in adulthood. The lifespan trend of increasing phenotypic stability, therefore, predominantly results from environmental mechanisms. PMID:24956122
NASA Astrophysics Data System (ADS)
Isingizwe Nturambirwe, J. Frédéric; Perold, Willem J.; Opara, Umezuruike L.
2016-02-01
Near infrared (NIR) spectroscopy has gained extensive use in quality evaluation. It is arguably one of the most advanced spectroscopic tools in non-destructive quality testing of food stuff, from measurement to data analysis and interpretation. NIR spectral data are interpreted through means often involving multivariate statistical analysis, sometimes associated with optimisation techniques for model improvement. The objective of this research was to explore the extent to which genetic algorithms (GA) can be used to enhance model development, for predicting fruit quality. Apple fruits were used, and NIR spectra in the range from 12000 to 4000 cm-1 were acquired on both bruised and healthy tissues, with different degrees of mechanical damage. GAs were used in combination with partial least squares regression methods to develop bruise severity prediction models, and compared to PLS models developed using the full NIR spectrum. A classification model was developed, which clearly separated bruised from unbruised apple tissue. GAs helped improve prediction models by over 10%, in comparison with full spectrum-based models, as evaluated in terms of error of prediction (Root Mean Square Error of Cross-validation). PLS models to predict internal quality, such as sugar content and acidity were developed and compared to the versions optimized by genetic algorithm. Overall, the results highlighted the potential use of GA method to improve speed and accuracy of fruit quality prediction.
Kurome, Mayuko; Geistlinger, Ludwig; Kessler, Barbara; Zakhartchenko, Valeri; Klymiuk, Nikolai; Wuensch, Annegret; Richter, Anne; Baehr, Andrea; Kraehe, Katrin; Burkhardt, Katinka; Flisikowski, Krzysztof; Flisikowska, Tatiana; Merkl, Claudia; Landmann, Martina; Durkovic, Marina; Tschukes, Alexander; Kraner, Simone; Schindelhauer, Dirk; Petri, Tobias; Kind, Alexander; Nagashima, Hiroshi; Schnieke, Angelika; Zimmer, Ralf; Wolf, Eckhard
2013-05-20
Somatic cell nuclear transfer (SCNT) using genetically engineered donor cells is currently the most widely used strategy to generate tailored pig models for biomedical research. Although this approach facilitates a similar spectrum of genetic modifications as in rodent models, the outcome in terms of live cloned piglets is quite variable. In this study, we aimed at a comprehensive analysis of environmental and experimental factors that are substantially influencing the efficiency of generating genetically engineered pigs. Based on a considerably large data set from 274 SCNT experiments (in total 18,649 reconstructed embryos transferred into 193 recipients), performed over a period of three years, we assessed the relative contribution of season, type of genetic modification, donor cell source, number of cloning rounds, and pre-selection of cloned embryos for early development to the cloning efficiency. 109 (56%) recipients became pregnant and 85 (78%) of them gave birth to offspring. Out of 318 cloned piglets, 243 (76%) were alive, but only 97 (40%) were clinically healthy and showed normal development. The proportion of stillborn piglets was 24% (75/318), and another 31% (100/318) of the cloned piglets died soon after birth. The overall cloning efficiency, defined as the number of offspring born per SCNT embryos transferred, including only recipients that delivered, was 3.95%. SCNT experiments performed during winter using fetal fibroblasts or kidney cells after additive gene transfer resulted in the highest number of live and healthy offspring, while two or more rounds of cloning and nuclear transfer experiments performed during summer decreased the number of healthy offspring. Although the effects of individual factors may be different between various laboratories, our results and analysis strategy will help to identify and optimize the factors, which are most critical to cloning success in programs aiming at the generation of genetically engineered pig models.
Eppig, Janan T
2017-07-01
The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. © The Author 2017. Published by Oxford University Press.
Eppig, Janan T.
2017-01-01
Abstract The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. PMID:28838066
Ng, Yit Han; Fong, Mun Yik; Subramaniam, Vellayan; Shahari, Shahhaziq; Lau, Yee Ling
2015-12-01
Sarcocystis species are pathogenic parasites that infect a wide range of animals, including cattle. A high prevalence of cattle sarcocystosis has been reported worldwide, but its status is unknown in Malaysia. This study focused on utilizing 18S rDNA to identify Sarcocystis species in Malaysian cattle and to determine their genetic variants. In this study, only Sarcocystis cruzi was detected in Malaysian cattle. The intra-species S. cruzi phylogenetic tree analysis and principal coordinate analysis (PCoA), respectively displayed two minor groups among the parasite isolates. This finding was supported by high Wright FST value (FST=0.647). The definitive hosts (dogs) may play a fundamental role in the development of S. cruzi genetic variants. Additionally, the existence of microheterogeneity within the S. cruzi merozoites and/or distinct genetic variants arisen from independent merozoites in mature sarcocysts, possibly contributed to the existence of intra-species variations within the population. Copyright © 2015 Elsevier Ltd. All rights reserved.
Genetic and environmental pathways to complex diseases.
Gohlke, Julia M; Thomas, Reuben; Zhang, Yonqing; Rosenstein, Michael C; Davis, Allan P; Murphy, Cynthia; Becker, Kevin G; Mattingly, Carolyn J; Portier, Christopher J
2009-05-05
Pathogenesis of complex diseases involves the integration of genetic and environmental factors over time, making it particularly difficult to tease apart relationships between phenotype, genotype, and environmental factors using traditional experimental approaches. Using gene-centered databases, we have developed a network of complex diseases and environmental factors through the identification of key molecular pathways associated with both genetic and environmental contributions. Comparison with known chemical disease relationships and analysis of transcriptional regulation from gene expression datasets for several environmental factors and phenotypes clustered in a metabolic syndrome and neuropsychiatric subnetwork supports our network hypotheses. This analysis identifies natural and synthetic retinoids, antipsychotic medications, Omega 3 fatty acids, and pyrethroid pesticides as potential environmental modulators of metabolic syndrome phenotypes through PPAR and adipocytokine signaling and organophosphate pesticides as potential environmental modulators of neuropsychiatric phenotypes. Identification of key regulatory pathways that integrate genetic and environmental modulators define disease associated targets that will allow for efficient screening of large numbers of environmental factors, screening that could set priorities for further research and guide public health decisions.
Miller, Adam D; Van Rooyen, Anthony; Sweeney, Oisín F; Whiterod, Nick S; Weeks, Andrew R
2013-07-01
The Glenelg spiny crayfish, Euastacus bispinosus, is an iconic freshwater invertebrate of south eastern Australia and listed as 'endangered' under the Environment Protection and Biodiversity Conservation Act 1999, and 'vulnerable' under the International Union for Conservation of Nature's Red List. The species has suffered major population declines as a result of over-fishing, low environmental flows, the introduction of invasive fish species and habitat degradation. In order to develop an effective conservation strategy, patterns of gene flow, genetic structure and genetic diversity across the species distribution need to be clearly understood. In this study we develop a suite of polymorphic microsatellite markers by next generation sequencing. A total of 15 polymorphic loci were identified and 10 characterized using 22 individuals from the lower Glenelg River. We observed low to moderate genetic variation across most loci (mean number of alleles per locus = 2.80; mean expected heterozygosity = 0.36) with no evidence of individual loci deviating significantly from Hardy-Weinberg equilibrium. Marker independence was confirmed with tests for linkage disequilibrium, and analyses indicated no evidence of null alleles across loci. Individuals from two additional sites (Crawford River, Victoria; Ewens Ponds Conservation Park, South Australia) were genotyped at all 10 loci and a preliminary investigation of genetic diversity and population structure was undertaken. Analyses indicate high levels of genetic differentiation among sample locations (F ST = 0.49), while the Ewens Ponds population is genetically homogeneous, indicating a likely small founder group and ongoing inbreeding. Management actions will be needed to restore genetic diversity in this and possibly other at risk populations. These markers will provide a valuable resource for future population genetic assessments so that an effective framework can be developed for implementing conservation strategies for E. bispinosus.
Hill, Theresa A.; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W.; Van Deynze, Allen
2013-01-01
The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome-wide transcript-based markers to assess genetic and genomic features among Capsicum annuum. PMID:23409153
Hill, Theresa A; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W; Van Deynze, Allen
2013-01-01
The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome-wide transcript-based markers to assess genetic and genomic features among Capsicum annuum.
Issues related to the use of genetic material and information.
Giarelli, E; Jacobs, L A
2000-04-01
To review issues regarding the use of genetic materials and information. Professional literature, regional and federal legislation. An analysis is provided of the relationship among advances in genetic technology, use of genetic material and information, and the development of laws that protect the interests of donors, researchers, and insurers. Rapid technological achievements have generated complex questions that are difficult to answer. The Human Genome Project began and the scientific discoveries were put to use before adequate professional and public debate on the ethical, legal, social, and clinical issues. The term "proper use" of genetic material and information is not defined consistently. An incomplete patchwork of protective state and federal legislation exists. Many complicated issues surround the use and potential misuse of genetic material and information. Rapidly advancing technology in genetics makes it difficult for regulations that protect individuals and families to keep pace. Oncology nurses need to recognize their role as change agents, understand genetic technology, and advocate for patients by participating in the debate on the proper use and prevention of misuse of genetic material and information.
NASA Astrophysics Data System (ADS)
Guruprasad, R.; Behera, B. K.
2015-10-01
Quantitative prediction of fabric mechanical properties is an essential requirement for design engineering of textile and apparel products. In this work, the possibility of prediction of bending rigidity of cotton woven fabrics has been explored with the application of Artificial Neural Network (ANN) and two hybrid methodologies, namely Neuro-genetic modeling and Adaptive Neuro-Fuzzy Inference System (ANFIS) modeling. For this purpose, a set of cotton woven grey fabrics was desized, scoured and relaxed. The fabrics were then conditioned and tested for bending properties. With the database thus created, a neural network model was first developed using back propagation as the learning algorithm. The second model was developed by applying a hybrid learning strategy, in which genetic algorithm was first used as a learning algorithm to optimize the number of neurons and connection weights of the neural network. The Genetic algorithm optimized network structure was further allowed to learn using back propagation algorithm. In the third model, an ANFIS modeling approach was attempted to map the input-output data. The prediction performances of the models were compared and a sensitivity analysis was reported. The results show that the prediction by neuro-genetic and ANFIS models were better in comparison with that of back propagation neural network model.
[Review of Second Generation Sequencing and Its Application in Forensic Genetics].
Zhang, S H; Bian, Y N; Zhao, Q; Li, C T
2016-08-01
The rapid development of second generation sequencing (SGS) within the past few years has led to the increasement of data throughput and read length while at the same time brought down substantially the sequencing cost. This made new breakthrough in the area of biology and ushered the forensic genetics into a new era. Based on the history of sequencing application in forensic genetics, this paper reviews the importance of sequencing technologies for genetic marker detection. The application status and potential of SGS in forensic genetics are discussed based on the already explored SGS platforms of Roche, Illumina and Life Technologies. With these platforms, DNA markers (SNP, STR), RNA markers (mRNA, microRNA) and whole mtDNA can be sequenced. However, development and validation of application kits, maturation of analysis software, connection to the existing databases and the possible ethical issues occurred with big data will be the key factors that determine whether this technology can substitute or supplement PCR-CE, the mature technology, and be widely used for cases detection. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Genetic privacy and non-discrimination.
Romeo Casabona, Carlos María
2011-01-01
The UN Inter-Agency Committee on Bioethics met for its tenth meeting at the UNESCO headquarters in Paris on 4-5th March 2011. Member organisations such as the WHO and UNESCO were in attendance alongside associate members such as the Council for Europe, the European Commission, the Organisation for Economic Co-operation and Development and the World Trade Organisation. Discussion centred on the theme "genetic privacy and nondiscrimination". The United Nations Economic and Social Council (ECOSOC) had previously considered, from a legal and ethical perspective, the implications of increasingly sophisticated technologies for genetic privacy and non-discrimination in fields such as medicine, employment and insurance. Thus, the ECOSOC requested that UNESCO report on relevant developments in the field of genetic privacy and non-discrimination. In parallel with a consultation process with member states, UNESCO launched a consultation with the UN Interagency Committee on Bioethics. This article analyses the report presented by the author concerning the analysis of the current contentions in the field and illustrates attempts at responding on a normative level to a perceived threat to genetic privacy and non-discrimination.
Genetically Encoded Catalytic Hairpin Assembly for Sensitive RNA Imaging in Live Cells.
Mudiyanselage, Aruni P K K Karunanayake; Yu, Qikun; Leon-Duque, Mark A; Zhao, Bin; Wu, Rigumula; You, Mingxu
2018-06-26
DNA and RNA nanotechnology has been used for the development of dynamic molecular devices. In particular, programmable enzyme-free nucleic acid circuits, such as catalytic hairpin assembly, have been demonstrated as useful tools for bioanalysis and to scale up system complexity to an extent beyond current cellular genetic circuits. However, the intracellular functions of most synthetic nucleic acid circuits have been hindered by challenges in the biological delivery and degradation. On the other hand, genetically encoded and transcribed RNA circuits emerge as alternative powerful tools for long-term embedded cellular analysis and regulation. Herein, we reported a genetically encoded RNA-based catalytic hairpin assembly circuit for sensitive RNA imaging inside living cells. The split version of Broccoli, a fluorogenic RNA aptamer, was used as the reporter. One target RNA can catalytically trigger the fluorescence from tens-to-hundreds of Broccoli. As a result, target RNAs can be sensitively detected. We have further engineered our circuit to allow easy programming to image various target RNA sequences. This design principle opens the arena for developing a large variety of genetically encoded RNA circuits for cellular applications.
Pleiotropy Analysis of Quantitative Traits at Gene Level by Multivariate Functional Linear Models
Wang, Yifan; Liu, Aiyi; Mills, James L.; Boehnke, Michael; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Xiong, Momiao; Wu, Colin O.; Fan, Ruzong
2015-01-01
In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks’s Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. PMID:25809955
Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.
Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong
2015-05-01
In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.
Sun, J; Wang, T; Li, Z D; Shao, Y; Zhang, Z Y; Feng, H; Zou, D H; Chen, Y J
2017-12-01
To reconstruct a vehicle-bicycle-cyclist crash accident and analyse the injuries using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, and to provide biomechanical basis for the forensic identification of death cause. The vehicle was measured by 3D laser scanning technology. The multi-rigid-body models of cyclist, bicycle and vehicle were developed based on the measurements. The value range of optimal variables was set. A multi-objective genetic algorithm and the nondominated sorting genetic algorithm were used to find the optimal solutions, which were compared to the record of the surveillance video around the accident scene. The reconstruction result of laser scanning on vehicle was satisfactory. In the optimal solutions found by optimization method of genetic algorithm, the dynamical behaviours of dummy, bicycle and vehicle corresponded to that recorded by the surveillance video. The injury parameters of dummy were consistent with the situation and position of the real injuries on the cyclist in accident. The motion status before accident, damage process by crash and mechanical analysis on the injury of the victim can be reconstructed using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, which have application value in the identification of injury manner and analysis of death cause in traffic accidents. Copyright© by the Editorial Department of Journal of Forensic Medicine
Guenni, K; Aouadi, M; Chatti, K; Salhi-Hannachi, A
2016-10-17
Sequence-related amplified polymorphism (SRAP) markers preferentially amplify open reading frames and were used to study the genetic diversity of Tunisian pistachio. In the present study, 43 Pistacia vera accessions were screened using seven SRAP primer pairs. A total of 78 markers was revealed (95.12%) with an average polymorphic information content of 0.850. The results suggest that there is strong genetic differentiation, which characterizes the local resources (G ST = 0.307). High gene flow (N m = 1.127) among groups was explained by the exchange of plant material among regions. Analysis of molecular variance revealed significant differences within groups and showed that 73.88% of the total genetic diversity occurred within groups, whereas the remaining 26.12% occurred among groups. Bayesian clustering and principal component analysis identified three pools, El Guettar, Pollenizers, and the rest of the pistachios belonging to the Gabès, Kasserine, and Sfax localities. Bayesian analysis revealed that El Guettar and male genotypes were assigned with more than 80% probability. The BayeScan method proposed that locus 59 (F13-R9) could be used in the development of sex-linked SCAR markers from SRAP since it is a commonly detected locus in comparisons involving the Pollenizers group. This is the first application of SRAP markers for the assessment of genetic diversity in Tunisian germplasm of P. vera. Such information will be useful to define conservation strategies and improvement programs for this species.
Cuenca, José; Aleza, Pablo; Vicent, Antonio; Brunel, Dominique; Ollitrault, Patrick; Navarro, Luis
2013-01-01
Genetic analysis of phenotypical traits and marker-trait association in polyploid species is generally considered as a challenge. In the present work, different approaches were combined taking advantage of the particular genetic structures of 2n gametes resulting from second division restitution (SDR) to map a genome region linked to Alternaria brown spot (ABS) resistance in triploid citrus progeny. ABS in citrus is a serious disease caused by the tangerine pathotype of the fungus Alternaria alternata. This pathogen produces ACT-toxin, which induces necrotic lesions on fruit and young leaves, defoliation and fruit drop in susceptible genotypes. It is a strong concern for triploid breeding programs aiming to produce seedless mandarin cultivars. The monolocus dominant inheritance of susceptibility, proposed on the basis of diploid population studies, was corroborated in triploid progeny. Bulk segregant analysis coupled with genome scan using a large set of genetically mapped SNP markers and targeted genetic mapping by half tetrad analysis, using SSR and SNP markers, allowed locating a 3.3 Mb genomic region linked to ABS resistance near the centromere of chromosome III. Clusters of resistance genes were identified by gene ontology analysis of this genomic region. Some of these genes are good candidates to control the dominant susceptibility to the ACT-toxin. SSR and SNP markers were developed for efficient early marker-assisted selection of ABS resistant hybrids.
Cuenca, José; Aleza, Pablo; Vicent, Antonio; Brunel, Dominique; Ollitrault, Patrick; Navarro, Luis
2013-01-01
Genetic analysis of phenotypical traits and marker-trait association in polyploid species is generally considered as a challenge. In the present work, different approaches were combined taking advantage of the particular genetic structures of 2n gametes resulting from second division restitution (SDR) to map a genome region linked to Alternaria brown spot (ABS) resistance in triploid citrus progeny. ABS in citrus is a serious disease caused by the tangerine pathotype of the fungus Alternaria alternata. This pathogen produces ACT-toxin, which induces necrotic lesions on fruit and young leaves, defoliation and fruit drop in susceptible genotypes. It is a strong concern for triploid breeding programs aiming to produce seedless mandarin cultivars. The monolocus dominant inheritance of susceptibility, proposed on the basis of diploid population studies, was corroborated in triploid progeny. Bulk segregant analysis coupled with genome scan using a large set of genetically mapped SNP markers and targeted genetic mapping by half tetrad analysis, using SSR and SNP markers, allowed locating a 3.3 Mb genomic region linked to ABS resistance near the centromere of chromosome III. Clusters of resistance genes were identified by gene ontology analysis of this genomic region. Some of these genes are good candidates to control the dominant susceptibility to the ACT-toxin. SSR and SNP markers were developed for efficient early marker-assisted selection of ABS resistant hybrids. PMID:24116149
Brasil, B S A F; Coelho, E G A; Drummond, M G; Oliveira, D A A
2013-11-18
The Brazilian cattle population is mainly composed of breeds of zebuine origin and their American derivatives. Comprehensive knowledge about the genetic diversity of these populations is fundamental for animal breeding programs and the conservation of genetic resources. This study aimed to assess the phylogenetic relationships, levels of genetic diversity, and patterns of taurine/zebuine admixture among 9 commercial cattle breeds raised in Brazil. Analysis of DNA polymorphisms was performed on 2965 animals using the 11 microsatellite markers recommended by the International Society of Animal Genetics. High genetic diversity was detected in all breeds, even though significant inbreeding was observed within some. Differences among the breeds accounted for 14.72% of the total genetic variability, and genetic differentiation was higher among taurine than among zebuine cattle. Of note, Nelore cattle presented with high levels of admixture, which is consistent with the history of frequent gene flow during the establishment of this breed in Brazil. Furthermore, significant genetic variability was partitioned within the commercial cattle breeds formed in America, which, therefore, comprise important resources of genetic diversity in the tropics. The genetic characterization of these important Brazilian breeds may now facilitate the development of management and breeding programs for these populations.
Genetics-based methods for detection of Salmonella spp. in foods.
Mozola, Mark A
2006-01-01
Genetic methods are now at the forefront of foodborne pathogen testing. The sensitivity, specificity, and inclusivity advantages offered by deoxyribonucleic acid (DNA) probe technology have driven an intense effort in methods development over the past 20 years. DNA probe-based methods for Salmonella spp. and other pathogens have progressed from time-consuming procedures involving the use of radioisotopes to simple, high throughput, automated assays. The analytical sensitivity of nucleic acid amplification technology has facilitated a reduction in analysis time by allowing enriched samples to be tested for previously undetectable quantities of analyte. This article will trace the evolution of the development of genetic methods for detection of Salmonella in foods, review the basic assay formats and their advantages and limitations, and discuss method performance characteristics and considerations for selection of methods.
The future: genetics advances in MEN1 therapeutic approaches and management strategies.
Agarwal, Sunita K
2017-10-01
The identification of the multiple endocrine neoplasia type 1 ( MEN1 ) gene in 1997 has shown that germline heterozygous mutations in the MEN1 gene located on chromosome 11q13 predisposes to the development of tumors in the MEN1 syndrome. Tumor development occurs upon loss of the remaining normal copy of the MEN1 gene in MEN1-target tissues. Therefore, MEN1 is a classic tumor suppressor gene in the context of MEN1. This tumor suppressor role of the protein encoded by the MEN1 gene, menin, holds true in mouse models with germline heterozygous Men1 loss, wherein MEN1-associated tumors develop in adult mice after spontaneous loss of the remaining non-targeted copy of the Men1 gene. The availability of genetic testing for mutations in the MEN1 gene has become an essential part of the diagnosis and management of MEN1. Genetic testing is also helping to exclude mutation-negative cases in MEN1 families from the burden of lifelong clinical screening. In the past 20 years, efforts of various groups world-wide have been directed at mutation analysis, molecular genetic studies, mouse models, gene expression studies, epigenetic regulation analysis, biochemical studies and anti-tumor effects of candidate therapies in mouse models. This review will focus on the findings and advances from these studies to identify MEN1 germline and somatic mutations, the genetics of MEN1-related states, several protein partners of menin, the three-dimensional structure of menin and menin-dependent target genes. The ongoing impact of all these studies on disease prediction, management and outcomes will continue in the years to come. © 2017 Society for Endocrinology.
Benlloch, Reyes; d'Erfurth, Isabelle; Ferrandiz, Cristina; Cosson, Viviane; Beltrán, José Pío; Cañas, Luis Antonio; Kondorosi, Adam; Madueño, Francisco; Ratet, Pascal
2006-01-01
Comparative studies help shed light on how the huge diversity in plant forms found in nature has been produced. We use legume species to study developmental differences in inflorescence architecture and flower ontogeny with classical models such as Arabidopsis thaliana or Antirrhinum majus. Whereas genetic control of these processes has been analyzed mostly in pea (Pisum sativum), Medicago truncatula is emerging as a promising alternative system for these studies due to the availability of a range of genetic tools. To assess the use of the retrotransposon Tnt1 for reverse genetics in M. truncatula, we screened a small Tnt1-mutagenized population using degenerate primers for MADS-box genes, known controllers of plant development. We describe here the characterization of mtpim, a new mutant caused by the insertion of Tnt1 in a homolog to the PROLIFERATING INFLORESCENCE MERISTEM (PIM)/APETALA1 (AP1)/SQUAMOSA genes. mtpim shows flower-to-inflorescence conversion and altered flowers with sepals transformed into leaves, indicating that MtPIM controls floral meristem identity and flower development. Although more extreme, this phenotype resembles the pea pim mutants, supporting the idea that M. truncatula could be used to complement analysis of reproductive development already initiated in pea. In fact, our study reveals aspects not shown by analysis of pea mutants: that the mutation in the AP1 homolog interferes with the specification of floral organs from common primordia and causes conversion of sepals into leaves, in addition to true conversion of flowers into inflorescences. The isolation of mtpim represents a proof of concept demonstrating that Tnt1 populations can be efficiently used in reverse genetics screenings in M. truncatula. PMID:16963524
NASA Astrophysics Data System (ADS)
Pata, Kai; Sarapuu, Tago
2006-09-01
This study investigated the possible activation of different types of model-based reasoning processes in two learning settings, and the influence of various terms of reasoning on the learners’ problem representation development. Changes in 53 students’ problem representations about genetic issue were analysed while they worked with different modelling tools in a synchronous network-based environment. The discussion log-files were used for the “microgenetic” analysis of reasoning types. For studying the stages of students’ problem representation development, individual pre-essays and post-essays and their utterances during two reasoning phases were used. An approach for mapping problem representations was developed. Characterizing the elements of mental models and their reasoning level enabled the description of five hierarchical categories of problem representations. Learning in exploratory and experimental settings was registered as the shift towards more complex stages of problem representations in genetics. The effect of different types of reasoning could be observed as the divergent development of problem representations within hierarchical categories.
Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma.
Schmitz, Roland; Wright, George W; Huang, Da Wei; Johnson, Calvin A; Phelan, James D; Wang, James Q; Roulland, Sandrine; Kasbekar, Monica; Young, Ryan M; Shaffer, Arthur L; Hodson, Daniel J; Xiao, Wenming; Yu, Xin; Yang, Yandan; Zhao, Hong; Xu, Weihong; Liu, Xuelu; Zhou, Bin; Du, Wei; Chan, Wing C; Jaffe, Elaine S; Gascoyne, Randy D; Connors, Joseph M; Campo, Elias; Lopez-Guillermo, Armando; Rosenwald, Andreas; Ott, German; Delabie, Jan; Rimsza, Lisa M; Tay Kuang Wei, Kevin; Zelenetz, Andrew D; Leonard, John P; Bartlett, Nancy L; Tran, Bao; Shetty, Jyoti; Zhao, Yongmei; Soppet, Dan R; Pittaluga, Stefania; Wilson, Wyndham H; Staudt, Louis M
2018-04-12
Diffuse large B-cell lymphomas (DLBCLs) are phenotypically and genetically heterogeneous. Gene-expression profiling has identified subgroups of DLBCL (activated B-cell-like [ABC], germinal-center B-cell-like [GCB], and unclassified) according to cell of origin that are associated with a differential response to chemotherapy and targeted agents. We sought to extend these findings by identifying genetic subtypes of DLBCL based on shared genomic abnormalities and to uncover therapeutic vulnerabilities based on tumor genetics. We studied 574 DLBCL biopsy samples using exome and transcriptome sequencing, array-based DNA copy-number analysis, and targeted amplicon resequencing of 372 genes to identify genes with recurrent aberrations. We developed and implemented an algorithm to discover genetic subtypes based on the co-occurrence of genetic alterations. We identified four prominent genetic subtypes in DLBCL, termed MCD (based on the co-occurrence of MYD88 L265P and CD79B mutations), BN2 (based on BCL6 fusions and NOTCH2 mutations), N1 (based on NOTCH1 mutations), and EZB (based on EZH2 mutations and BCL2 translocations). Genetic aberrations in multiple genes distinguished each genetic subtype from other DLBCLs. These subtypes differed phenotypically, as judged by differences in gene-expression signatures and responses to immunochemotherapy, with favorable survival in the BN2 and EZB subtypes and inferior outcomes in the MCD and N1 subtypes. Analysis of genetic pathways suggested that MCD and BN2 DLBCLs rely on "chronic active" B-cell receptor signaling that is amenable to therapeutic inhibition. We uncovered genetic subtypes of DLBCL with distinct genotypic, epigenetic, and clinical characteristics, providing a potential nosology for precision-medicine strategies in DLBCL. (Funded by the Intramural Research Program of the National Institutes of Health and others.).
2013-01-01
Background Bacteria and archaea develop immunity against invading genomes by incorporating pieces of the invaders' sequences, called spacers, into a clustered regularly interspaced short palindromic repeats (CRISPR) locus between repeats, forming arrays of repeat-spacer units. When spacers are expressed, they direct CRISPR-associated (Cas) proteins to silence complementary invading DNA. In order to characterize the invaders of human microbiomes, we use spacers from CRISPR arrays that we had previously assembled from shotgun metagenomic datasets, and identify contigs that contain these spacers' targets. Results We discover 95,000 contigs that are putative invasive mobile genetic elements, some targeted by hundreds of CRISPR spacers. We find that oral sites in healthy human populations have a much greater variety of mobile genetic elements than stool samples. Mobile genetic elements carry genes encoding diverse functions: only 7% of the mobile genetic elements are similar to known phages or plasmids, although a much greater proportion contain phage- or plasmid-related genes. A small number of contigs share similarity with known integrative and conjugative elements, providing the first examples of CRISPR defenses against this class of element. We provide detailed analyses of a few large mobile genetic elements of various types, and a relative abundance analysis of mobile genetic elements and putative hosts, exploring the dynamic activities of mobile genetic elements in human microbiomes. A joint analysis of mobile genetic elements and CRISPRs shows that protospacer-adjacent motifs drive their interaction network; however, some CRISPR-Cas systems target mobile genetic elements lacking motifs. Conclusions We identify a large collection of invasive mobile genetic elements in human microbiomes, an important resource for further study of the interaction between the CRISPR-Cas immune system and invaders. PMID:23628424
Conrad, Melissa D; Gorman, Andrew W; Schillinger, Julia A; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E; Carlton, Jane M
2012-01-01
Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.
Lopez-Doriga, Adriana; Feliubadaló, Lídia; Menéndez, Mireia; Lopez-Doriga, Sergio; Morón-Duran, Francisco D; del Valle, Jesús; Tornero, Eva; Montes, Eva; Cuesta, Raquel; Campos, Olga; Gómez, Carolina; Pineda, Marta; González, Sara; Moreno, Victor; Capellá, Gabriel; Lázaro, Conxi
2014-03-01
Next-generation sequencing (NGS) has revolutionized genomic research and is set to have a major impact on genetic diagnostics thanks to the advent of benchtop sequencers and flexible kits for targeted libraries. Among the main hurdles in NGS are the difficulty of performing bioinformatic analysis of the huge volume of data generated and the high number of false positive calls that could be obtained, depending on the NGS technology and the analysis pipeline. Here, we present the development of a free and user-friendly Web data analysis tool that detects and filters sequence variants, provides coverage information, and allows the user to customize some basic parameters. The tool has been developed to provide accurate genetic analysis of targeted sequencing of common high-risk hereditary cancer genes using amplicon libraries run in a GS Junior System. The Web resource is linked to our own mutation database, to assist in the clinical classification of identified variants. We believe that this tool will greatly facilitate the use of the NGS approach in routine laboratories.
Update on the role of genetics in the onset of age-related macular degeneration
Francis, Peter James; Klein, Michael L
2011-01-01
Age-related macular degeneration (AMD), akin to other common age-related diseases, has a complex pathogenesis and arises from the interplay of genes, environmental factors, and personal characteristics. The past decade has seen very significant strides towards identification of those precise genetic variants associated with disease. That genes encoding proteins of the (alternative) complement pathway (CFH, C2, CFB, C3, CFI) are major players in etiology came as a surprise to many but has already lead to the development of therapies entering human clinical trials. Other genes replicated in many populations ARMS2, APOE, variants near TIMP3, and genes involved in lipid metabolism have also been implicated in disease pathogenesis. The genes discovered to date can be estimated to account for approximately 50% of the genetic variance of AMD and have been discovered by candidate gene approaches, pathway analysis, and latterly genome-wide association studies. Next generation sequencing modalities and meta-analysis techniques are being employed with the aim of identifying the remaining rarer but, perhaps, individually more significant sequence variations, linked to disease status. Complementary studies have also begun to utilize this genetic information to develop clinically useful algorithms to predict AMD risk and evaluate pharmacogenetics. In this article, contemporary commentary is provided on rapidly progressing efforts to elucidate the genetic pathogenesis of AMD as the field stands at the end of the first decade of the 21st century. PMID:21887094
USDA-ARS?s Scientific Manuscript database
Genic microsatellites or simple sequence repeat (genic-SSR) markers were developed in boxwood (Buxus taxa) for genetic diversity analysis, identification of taxa, and to facilitate breeding. cDNA libraries were developed from mRNA extracted from leaves of Buxus sempervirens ‘Vardar Valley’ and seque...
Hrovatin, Karin; Kunej, Tanja
2018-01-01
Erstwhile, sex was determined by observation, which is not always feasible. Nowadays, genetic methods are prevailing due to their accuracy, simplicity, low costs, and time-efficiency. However, there is no comprehensive review enabling overview and development of the field. The studies are heterogeneous, lacking a standardized reporting strategy. Therefore, our aim was to collect genetic sexing assays for mammals and assemble them in a catalogue with unified terminology. Publications were extracted from online databases using key words such as sexing and molecular. The collected data were supplemented with species and gene IDs and the type of sex-specific sequence variant (SSSV). We developed a catalogue and graphic presentation of diagnostic tests for molecular sex determination of mammals, based on 58 papers published from 2/1991 to 10/2016. The catalogue consists of five categories: species, genes, SSSVs, methods, and references. Based on the analysis of published literature, we propose minimal requirements for reporting, consisting of: species scientific name and ID, genetic sequence with name and ID, SSSV, methodology, genomic coordinates (e.g., restriction sites, SSSVs), amplification system, and description of detected amplicon and controls. The present study summarizes vast knowledge that has up to now been scattered across databases, representing the first step toward standardization regarding molecular sexing, enabling a better overview of existing tests and facilitating planned designs of novel tests. The project is ongoing; collecting additional publications, optimizing field development, and standardizing data presentation are needed.
NASA Astrophysics Data System (ADS)
Boerwinkel, Dirk Jan; Yarden, Anat; Waarlo, Arend Jan
2017-12-01
To determine what knowledge of genetics is needed for decision-making on genetic-related issues, a consensus-reaching approach was used. An international group of 57 experts, involved in teaching, studying, or developing genetic education and communication or working with genetic applications in medicine, agriculture, or forensics, answered the questions: "What knowledge of genetics is relevant to those individuals not professionally involved in science?" and "Why is this knowledge relevant?" The answers were classified in different knowledge components following the PISA 2015 science framework. During a workshop with the participants, the results were discussed and applied to seven cases in which genetic knowledge is relevant for decision-making. The analysis of these discussions resulted in a revised framework consisting of nine conceptual knowledge components, three sociocultural components, and four epistemic components. The framework can be used in curricular decisions; its open character allows for including new technologies and applications and facilitates comparisons of different cases.
Conference summary: Navigating the Sea of Genomic Data, October 28-29, 2015.
Pihlstrom, Bruce L; Barnett, Michael L
2016-03-01
The rapid pace of biomedical discoveries in the past few years has resulted in substantial advances in our ability to diagnose, treat, and prevent a wide variety of diseases. The sequencing of the human genome offered the possibility of understanding the etiology, pathogenesis, and risk of developing disease from a genetic perspective and has resulted, for example, in the development of genomic-based diagnostic or risk-assessment tests for a number of medical and dental conditions. To assess the scientific evidence underlying such tests and determine whether they may be useful in clinical practice, practitioners need to have a basic understanding of the state-of-the-science of genomics and genetic testing. To assist practitioners in understanding the science of genomics, the American Dental Association and the Task Force on Design and Analysis in Oral Health Research co-sponsored a landmark conference, Navigating the Sea of Genomic Data, held October 28-29, 2015, at the American Dental Association headquarters building in Chicago, IL. The purpose of this conference was to review the basics of genomic science, promote sound design and analysis of genomic studies of oral diseases, and provide a basis or "framework" to guide practitioners in assessing new development in genomics and genetic tests for oral diseases. Presentations at this conference were made by 9 world-renowned scientists who discussed a wide range of topics involving genomic science, genetic testing for rare mendelian single gene disorders, and genetic testing for assessing the risk of experiencing common complex diseases. This article summarizes the key points and concepts presented by the speakers. It is essential for oral health care professionals to have a fundamental understanding of genomic science so that they can evaluate new advances in this field and the use of genetic testing for the benefit of their patients. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.
High-density genetic map construction and comparative genome analysis in asparagus bean.
Huang, Haitao; Tan, Huaqiang; Xu, Dongmei; Tang, Yi; Niu, Yisong; Lai, Yunsong; Tie, Manman; Li, Huanxiu
2018-03-19
Genetic maps are a prerequisite for quantitative trait locus (QTL) analysis, marker-assisted selection (MAS), fine gene mapping, and assembly of genome sequences. So far, several asparagus bean linkage maps have been established using various kinds of molecular markers. However, these maps were all constructed by gel- or array-based markers. No maps based on sequencing method have been reported. In this study, an NGS-based strategy, SLAF-seq, was applied to create a high-density genetic map for asparagus bean. Through SLAF library construction and Illumina sequencing of two parents and 100 F2 individuals, a total of 55,437 polymorphic SLAF markers were developed and mined for SNP markers. The map consisted of 5,225 SNP markers in 11 LGs, spanning a total distance of 1,850.81 cM, with an average distance between markers of 0.35 cM. Comparative genome analysis with four other legume species, soybean, common bean, mung bean and adzuki bean showed that asparagus bean is genetically more related to adzuki bean. The results will provide a foundation for future genomic research, such as QTL fine mapping, comparative mapping in pulses, and offer support for assembling asparagus bean genome sequence.
Chen, Honglin; Wang, Lixia; Liu, Xiaoyan; Hu, Liangliang; Wang, Suhua; Cheng, Xuzhen
2017-07-11
Cowpea [Vigna unguiculata (L.) Walp.] is one of the most important legumes in tropical and semi-arid regions. However, there is relatively little genomic information available for genetic research on and breeding of cowpea. The objectives of this study were to analyse the cowpea transcriptome and develop genic molecular markers for future genetic studies of this genus. Approximately 54 million high-quality cDNA sequence reads were obtained from cowpea based on Illumina paired-end sequencing technology and were de novo assembled to generate 47,899 unigenes with an N50 length of 1534 bp. Sequence similarity analysis revealed 36,289 unigenes (75.8%) with significant similarity to known proteins in the non-redundant (Nr) protein database, 23,471 unigenes (49.0%) with BLAST hits in the Swiss-Prot database, and 20,654 unigenes (43.1%) with high similarity in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Further analysis identified 5560 simple sequence repeats (SSRs) as potential genic molecular markers. Validating a random set of 500 SSR markers yielded 54 polymorphic markers among 32 cowpea accessions. This transcriptomic analysis of cowpea provided a valuable set of genomic data for characterizing genes with important agronomic traits in Vigna unguiculata and a new set of genic SSR markers for further genetic studies and breeding in cowpea and related Vigna species.
Genetic control of floral zygomorphy in pea (Pisum sativum L.).
Wang, Zheng; Luo, Yonghai; Li, Xin; Wang, Liping; Xu, Shilei; Yang, Jun; Weng, Lin; Sato, Shusei; Tabata, Satoshi; Ambrose, Mike; Rameau, Catherine; Feng, Xianzhong; Hu, Xiaohe; Luo, Da
2008-07-29
Floral zygomorphy (flowers with bilateral symmetry) has multiple origins and typically manifests two kinds of asymmetries, dorsoventral (DV) and organ internal (IN) asymmetries in floral and organ planes, respectively, revealing the underlying key regulators in plant genomes that generate and superimpose various mechanisms to build up complexity and different floral forms during plant development. In this study, we investigate the loci affecting these asymmetries during the development of floral zygomorphy in pea (Pisum sativum L.). Two genes, LOBED STANDARD 1 (LST1) and KEELED WINGS (K), were cloned that encode TCP transcription factors and have divergent functions to constitute the DV asymmetry. A previously undescribed regulator, SYMMETRIC PETALS 1 (SYP1), has been isolated as controlling IN asymmetry. Genetic analysis demonstrates that DV and IN asymmetries could be controlled independently by the two kinds of regulators in pea, and their interactions help to specify the type of zygomorphy. Based on the genetic analysis in pea, we suggest that variation in both the functions and interactions of these regulators could give rise to the wide spectrum of floral symmetries among legume species and other flowering plants.
Cancer Cytogenetics: Methodology Revisited
2014-01-01
The Philadelphia chromosome was the first genetic abnormality discovered in cancer (in 1960), and it was found to be consistently associated with CML. The description of the Philadelphia chromosome ushered in a new era in the field of cancer cytogenetics. Accumulating genetic data have been shown to be intimately associated with the diagnosis and prognosis of neoplasms; thus, karyotyping is now considered a mandatory investigation for all newly diagnosed leukemias. The development of FISH in the 1980s overcame many of the drawbacks of assessing the genetic alterations in cancer cells by karyotyping. Karyotyping of cancer cells remains the gold standard since it provides a global analysis of the abnormalities in the entire genome of a single cell. However, subsequent methodological advances in molecular cytogenetics based on the principle of FISH that were initiated in the early 1990s have greatly enhanced the efficiency and accuracy of karyotype analysis by marrying conventional cytogenetics with molecular technologies. In this review, the development, current utilization, and technical pitfalls of both the conventional and molecular cytogenetics approaches used for cancer diagnosis over the past five decades will be discussed. PMID:25368816
Conservation implications of the genetic diversity of Gymnospermium microrrhynchum in Korea.
Lee, S H; Yeon, M H; Shim, J K
2016-10-24
Gymnospermium microrrhynchum (Berberidaceae) is an ephemeral perennial herb with a limited distributional range in the Baekdudaegan mountain areas of the Korean Peninsula, and is designated a rare plant by the Korean Forest Service. Information about its genetic variation and structure is important for developing successful conservation strategies. To investigate the genetic variation within and among seven G. microrrhynchum populations, random amplified polymorphic DNA data were obtained for 207 individuals. The populations exhibited relatively low genetic diversity: the percentage of polymorphic bands (PPB) ranged from 32.1 to 66.7% (mean = 51.4%) and Nei's gene diversity (H E ) ranged from 0.116 to 0.248 (mean = 0.188). However, genetic diversity at the species level was relatively high (PPB = 98.7%, H E = 0.349). An analysis of molecular variance revealed high differentiation among populations (Φ ST = 0.6818), but the low gene flow value (N m = 0.117) suggests a low level of gene exchange occurs among populations. Principal coordinates analysis revealed that individuals were separated according to population. The high level of genetic differentiation and restricted gene flow among G. microrrhynchum populations, which resulted from their isolation in alpine areas after the Ice Age, indicates that it is essential to protect and manage all populations, rather than focus on specific populations, in order to maintain the genetic diversity of this species.
NASA Astrophysics Data System (ADS)
Liu, Ting; Li, Qi; Song, Junlin; Yu, Hong
2017-02-01
There is an increasing requirement for traceability of aquaculture products, both for consumer protection and for food safety. There are high error rates in the conventional traceability systems depending on physical labels. Genetic traceability technique depending on DNA-based tracking system can overcome this problem. Genealogy information is essential for genetic traceability, and microsatellite DNA marker is a good choice for pedigree analysis. As increasing genotyping throughput of microsatellites, microsatellite multiplex PCR has become a fast and cost-effective technique. As a commercially important cultured aquatic species, Pacific oyster Crassostrea gigas has the highest global production. The objective of this study was to develop microsatellite multiplex PCR panels with dye-labeled universal primer for pedigree analysis in C. gigas, and these multiplex PCRs were validated using 12 full-sib families with known pedigrees. Here we developed six informative multiplex PCRs using 18 genomic microsatellites in C. gigas. Each multiplex panel contained a single universal primer M13(-21) used as a tail on each locus-specific forward primer and a single universal primer M13(-21) labeled with fluorophores. The polymorphisms of the markers were moderate, with an average of 10.3 alleles per locus and average polymorphic information content of 0.740. The observed heterozygosity per locus ranged from 0.492 to 0.822. Cervus simulations revealed that the six panels would still be of great value when massive families were analysed. Pedigree analysis of real offspring demonstrated that 100% of the offspring were unambiguously allocated to their parents when two multiplex PCRs were used. The six sets of multiplex PCRs can be an important tool for tracing cultured individuals, population genetic analysis, and selective breeding program in C. gigas.
Genetic manipulation and monitoring of autophagy in Drosophila.
Neufeld, Thomas P
2008-01-01
Drosophila melanogaster provides a model system useful for many aspects of the study of autophagy in vivo. These include testing and validation of genes potentially involved in autophagy, discovery of novel genes through genetic screening for mutations that affect autophagy, and analysis of potential roles of autophagy in specific developmental or physiological processes. In recent years, a number of techniques and transgenic and mutant fly strains have been developed to facilitate autophagy analysis in this system. Here, protocols are described for activating or inhibiting autophagy in Drosophila, and for examining the progression of autophagy in vivo through imaging-based assays. The goal of this chapter is to provide a resource both for autophagy investigators with limited familiarity with fly genetics, as well as for experienced Drosophila biologists who wish to test for connections between autophagy and a given gene, pathway or process.
Shao, Changwei; Niu, Yongchao; Rastas, Pasi; Liu, Yang; Xie, Zhiyuan; Li, Hengde; Wang, Lei; Jiang, Yong; Tai, Shuaishuai; Tian, Yongsheng; Sakamoto, Takashi; Chen, Songlin
2015-01-01
High-resolution genetic maps are essential for fine mapping of complex traits, genome assembly, and comparative genomic analysis. Single-nucleotide polymorphisms (SNPs) are the primary molecular markers used for genetic map construction. In this study, we identified 13,362 SNPs evenly distributed across the Japanese flounder (Paralichthys olivaceus) genome. Of these SNPs, 12,712 high-confidence SNPs were subjected to high-throughput genotyping and assigned to 24 consensus linkage groups (LGs). The total length of the genetic linkage map was 3,497.29 cM with an average distance of 0.47 cM between loci, thereby representing the densest genetic map currently reported for Japanese flounder. Nine positive quantitative trait loci (QTLs) forming two main clusters for Vibrio anguillarum disease resistance were detected. All QTLs could explain 5.1–8.38% of the total phenotypic variation. Synteny analysis of the QTL regions on the genome assembly revealed 12 immune-related genes, among them 4 genes strongly associated with V. anguillarum disease resistance. In addition, 246 genome assembly scaffolds with an average size of 21.79 Mb were anchored onto the LGs; these scaffolds, comprising 522.99 Mb, represented 95.78% of assembled genomic sequences. The mapped assembly scaffolds in Japanese flounder were used for genome synteny analyses against zebrafish (Danio rerio) and medaka (Oryzias latipes). Flounder and medaka were found to possess almost one-to-one synteny, whereas flounder and zebrafish exhibited a multi-syntenic correspondence. The newly developed high-resolution genetic map, which will facilitate QTL mapping, scaffold assembly, and genome synteny analysis of Japanese flounder, marks a milestone in the ongoing genome project for this species. PMID:25762582
Yang, Lulu; Chen, Jianjun; Hu, Weiming; Yang, Tianshun; Zhang, Yanjun; Yukiyoshi, Tamura; Zhou, Yanyang; Wang, Ying
2016-01-01
Habitat fragmentation, water resources and biological characteristics are important factors that shape the genetic structure and geographical distribution of desert plants. Analysis of the relationships between these factors and population genetic variation should help to determine the evolutionary potential and conservation strategies for genetic resources for desert plant populations. As a traditional Chinese herb, Glycyrrhiza inflata B. (Fabaceae) is restricted to the fragmented desert habitat in China and has undergone a dramatic decline due to long-term over-excavation. Determining the genetic structure of the G. inflata population and identifying a core collection could help with the development of strategies to conserve this species. We investigated the genetic variation of 25 G. inflata populations based on microsatellite markers. A high level of population genetic divergence (FST = 0.257), population bottlenecks, reduced gene flow and moderate genetic variation (HE = 0.383) were detected. The genetic distances between the populations significantly correlated with the geographical distances, and this suggests that habitat fragmentation has driven a special genetic structure of G. inflata in China through isolation by distance. STRUCTURE analysis showed that G. inflata populations were structured into three clusters and that the populations belonged to multiple water systems, which suggests that water resources were related to the genetic structure of G. inflata. In addition, the biological characteristics of the perennial species G. inflata, such as its long-lived seeds, asexual reproduction, and oasis ecology, may be related to its resistance to habitat fragmentation. A core collection of G. inflata, that included 57 accessions was further identified, which captured the main allelic diversity of G. inflata. Recent habitat fragmentation has accelerated genetic divergence. The population genetic structure of G. inflata has been shaped by habitat fragmentation, water resources and biological characteristics. This genetic information and core collection will facilitate the conservation of wild germplasm and breeding of this Chinese medicinal plant.
Yang, Lulu; Chen, Jianjun; Hu, Weiming; Yang, Tianshun; Zhang, Yanjun; Yukiyoshi, Tamura; Zhou, Yanyang; Wang, Ying
2016-01-01
Background Habitat fragmentation, water resources and biological characteristics are important factors that shape the genetic structure and geographical distribution of desert plants. Analysis of the relationships between these factors and population genetic variation should help to determine the evolutionary potential and conservation strategies for genetic resources for desert plant populations. As a traditional Chinese herb, Glycyrrhiza inflata B. (Fabaceae) is restricted to the fragmented desert habitat in China and has undergone a dramatic decline due to long-term over-excavation. Determining the genetic structure of the G. inflata population and identifying a core collection could help with the development of strategies to conserve this species. Results We investigated the genetic variation of 25 G. inflata populations based on microsatellite markers. A high level of population genetic divergence (FST = 0.257), population bottlenecks, reduced gene flow and moderate genetic variation (HE = 0.383) were detected. The genetic distances between the populations significantly correlated with the geographical distances, and this suggests that habitat fragmentation has driven a special genetic structure of G. inflata in China through isolation by distance. STRUCTURE analysis showed that G. inflata populations were structured into three clusters and that the populations belonged to multiple water systems, which suggests that water resources were related to the genetic structure of G. inflata. In addition, the biological characteristics of the perennial species G. inflata, such as its long-lived seeds, asexual reproduction, and oasis ecology, may be related to its resistance to habitat fragmentation. A core collection of G. inflata, that included 57 accessions was further identified, which captured the main allelic diversity of G. inflata. Conclusions Recent habitat fragmentation has accelerated genetic divergence. The population genetic structure of G. inflata has been shaped by habitat fragmentation, water resources and biological characteristics. This genetic information and core collection will facilitate the conservation of wild germplasm and breeding of this Chinese medicinal plant. PMID:27711241
Fully Integrated Microfluidic Device for Direct Sample-to-Answer Genetic Analysis
NASA Astrophysics Data System (ADS)
Liu, Robin H.; Grodzinski, Piotr
Integration of microfluidics technology with DNA microarrays enables building complete sample-to-answer systems that are useful in many applications such as clinic diagnostics. In this chapter, a fully integrated microfluidic device [1] that consists of microfluidic mixers, valves, pumps, channels, chambers, heaters, and a DNA microarray sensor to perform DNA analysis of complex biological sample solutions is present. This device can perform on-chip sample preparation (including magnetic bead-based cell capture, cell preconcentration and purification, and cell lysis) of complex biological sample solutions (such as whole blood), polymerase chain reaction, DNA hybridization, and electrochemical detection. A few novel microfluidic techniques were developed and employed. A micromix-ing technique based on a cavitation microstreaming principle was implemented to enhance target cell capture from whole blood samples using immunomagnetic beads. This technique was also employed to accelerate DNA hybridization reaction. Thermally actuated paraffin-based microvalves were developed to regulate flows. Electrochemical pumps and thermopneumatic pumps were integrated on the chip to provide pumping of liquid solutions. The device is completely self-contained: no external pressure sources, fluid storage, mechanical pumps, or valves are necessary for fluid manipulation, thus eliminating possible sample contamination and simplifying device operation. Pathogenic bacteria detection from ~mL whole blood samples and single-nucleotide polymorphism analysis directly from diluted blood were demonstrated. The device provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus has a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.
Ruiz-Montoya, L; Zúñiga, G; Cisneros, R; Salinas-Moreno, Y; Peña-Martínez, R; Machkour-M'Rabet, S
2015-12-01
The study of phenotypic and genetic variation of obligate parthenogenetic organisms contributes to an understanding of evolution in the absence of genetic variation produced by sexual reproduction. Eriosoma lanigerum Hausmann undergoes obligate parthenogenesis in Mexico City, Mexico, due to the unavailability of the host plants required for sexual reproduction. We analysed the phenotypic and genetic variation of E. lanigerum in relation to the dry and wet season and plant phenology. Aphids were collected on two occasions per season on a secondary host plant, Pyracantha koidzumii, at five different sites in the southern area of Mexico City, Mexico. Thirteen morphological characteristics were measured from 147 to 276 individuals per site and per season. A multivariate analysis of variance was performed to test the effect of the season, site and their interaction on morphological traits. Morphological variation was summarised using a principal component analysis. Genetic variation was described using six enzymatic loci, four of which were polymorphic. Our study showed that the site and season has a significant effect on morphological trait variation. The largest aphids were recorded during cold temperatures with low relative humidity and when the plant was at the end of the fruiting period. The mean genetic diversity was low (mean H e = .161), and populations were genetically structured by season and site. Morphological and genetic variations appear to be associated with environmental factors that directly affect aphid development and/or indirectly by host plant phenology.
NASA Astrophysics Data System (ADS)
Mthethwa-Kunene, Eunice; Oke Onwu, Gilbert; de Villiers, Rian
2015-05-01
This study explored the pedagogical content knowledge (PCK) and its development of four experienced biology teachers in the context of teaching school genetics. PCK was defined in terms of teacher content knowledge, pedagogical knowledge and knowledge of students' preconceptions and learning difficulties. Data sources of teacher knowledge base included teacher-constructed concept maps, pre- and post-lesson teacher interviews, video-recorded genetics lessons, post-lesson teacher questionnaire and document analysis of teacher's reflective journals and students' work samples. The results showed that the teachers' individual PCK profiles consisted predominantly of declarative and procedural content knowledge in teaching basic genetics concepts. Conditional knowledge, which is a type of meta-knowledge for blending together declarative and procedural knowledge, was also demonstrated by some teachers. Furthermore, the teachers used topic-specific instructional strategies such as context-based teaching, illustrations, peer teaching, and analogies in diverse forms but failed to use physical models and individual or group student experimental activities to assist students' internalization of the concepts. The finding that all four teachers lacked knowledge of students' genetics-related preconceptions was equally significant. Formal university education, school context, journal reflection and professional development programmes were considered as contributing to the teachers' continuing PCK development. Implications of the findings for biology teacher education are briefly discussed.
Bezdjian, Serena; Tuvblad, Catherine; Wang, Pan; Raine, Adrian; Baker, Laura A
2014-11-01
In the present study, we investigated genetic and environmental effects on motor impulsivity from childhood to late adolescence using a longitudinal sample of twins from ages 9 to 18 years. Motor impulsivity was assessed using errors of commission (no-go errors) in a visual go/no-go task at 4 time points: ages 9-10, 11-13, 14-15, and 16-18 years. Significant genetic and nonshared environmental effects on motor impulsivity were found at each of the 4 waves of assessment with genetic factors explaining 22%-41% of the variance within each of the 4 waves. Phenotypically, children's average performance improved across age (i.e., fewer no-go errors during later assessments). Multivariate biometric analyses revealed that common genetic factors influenced 12%-40% of the variance in motor impulsivity across development, whereas nonshared environmental factors common to all time points contributed to 2%-52% of the variance. Nonshared environmental influences specific to each time point also significantly influenced motor impulsivity. Overall, results demonstrated that although genetic factors were critical to motor impulsivity across development, both common and specific nonshared environmental factors played a strong role in the development of motor impulsivity across age. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Fuentes-Contreras, Eduardo; Basoalto, Esteban; Franck, Pierre; Lavandero, Blas; Knight, Alan L; Ramírez, Claudio C
2014-04-01
The genetic structure of adult codling moth, Cydia pomonella (L.), populations was characterized both inside a managed apple, Malus domestica Borkdhausen, orchard and in surrounding unmanaged hosts and nonhost trees in central Chile during 2006-2007. Adult males were collected using an array of sex pheromone-baited traps. Five microsatellite genetic markers were used to study the population genetic structure across both spatial (1-100 ha) and temporal (generations within a season) gradients. Analysis of molecular variance (AMOVA) found a significant, but weak, association in both the spatial and temporal genetic structures. Discriminant analysis also found significant differentiation between the first and second generation for traps located either inside or outside the managed orchard. The Bayesian assignment test detected three genetic clusters during each of the two generations, which corresponded to different areas within the unmanaged and managed apple orchard interface. The lack of a strong spatial structure at a local scale was hypothesized to be because of active adult movement between the managed and unmanaged hosts and the asymmetry in the insecticide selection pressure inside and outside the managed habitats. These data highlight the importance of developing area-wide management programs that incorporate management tactics effective at the landscape level for successful codling moth control.
THREaD Mapper Studio: a novel, visual web server for the estimation of genetic linkage maps
Cheema, Jitender; Ellis, T. H. Noel; Dicks, Jo
2010-01-01
The estimation of genetic linkage maps is a key component in plant and animal research, providing both an indication of the genetic structure of an organism and a mechanism for identifying candidate genes associated with traits of interest. Because of this importance, several computational solutions to genetic map estimation exist, mostly implemented as stand-alone software packages. However, the estimation process is often largely hidden from the user. Consequently, problems such as a program crashing may occur that leave a user baffled. THREaD Mapper Studio (http://cbr.jic.ac.uk/threadmapper) is a new web site that implements a novel, visual and interactive method for the estimation of genetic linkage maps from DNA markers. The rationale behind the web site is to make the estimation process as transparent and robust as possible, while also allowing users to use their expert knowledge during analysis. Indeed, the 3D visual nature of the tool allows users to spot features in a data set, such as outlying markers and potential structural rearrangements that could cause problems with the estimation procedure and to account for them in their analysis. Furthermore, THREaD Mapper Studio facilitates the visual comparison of genetic map solutions from third party software, aiding users in developing robust solutions for their data sets. PMID:20494977
Alam, M Amirul; Juraimi, Abdul Shukor; Rafii, Mohd Yusop; Hamid, Azizah Abdul; Arolu, Ibrahim Wasiu; Abdul Latif, M
2015-01-01
Genetic diversity and relationships among 45 collected purslane accessions were evaluated using ISSR markers. The 28 primers gave a total of 167 bands, among which 163 were polymorphic (97.6%). The genetic diversity as estimated by Shannon's information index was 0.513, revealing a quite high level of genetic diversity in the germplasm. The average number of observed allele, effective allele, expected heterozygosity, polymorphic information content (PIC) and Nei's index were 5.96, 1.59, 0.43, 0.35 and 0.35, respectively. The UPGMA dendrogram based on Nei's genetic distance grouped the whole germplasm into 7 distinct clusters. The analysis of molecular variance (AMOVA) revealed that 89% of total variation occurred within population, while 11% were found among populations. Based on the constructed dendrogram using ISSR markers those accessions that are far from each other by virtue of genetic origin and diversity index (like Ac1 and Ac42; Ac19 and Ac45; Ac9 and Ac23; Ac18 and A25; Ac24 and Ac18) are strongly recommended to select as parent for future breeding program to develop high yielding and stress tolerant purslane variety in contribution to global food security. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Huniche, Lotte
2011-06-01
This article is concerned with understanding moral aspects of everyday life in families with Huntington's Disease (HD). It draws on findings from an empirical research project in Denmark in 1998-2002 involving multi-sited ethnography to argue that medical genetics provides a particular framework for conducting life in an HD family. A framework that implies that being informed and making use of genetic services expresses greater moral responsibility than conducting life without drawing on these resources. The moral imperative of engagement in medical genetics is challenged here by two pieces of ethnographic analysis. The first concerns a person who, as described by a family member, does not engage with medical genetics but who brings to the fore other culturally legitimate concerns, priorities and areas of responsibility. The second figures a genetic counselling session where neither the knowledge nor the imagined solutions of medical genetics are as unproblematic and straightforward as might be thought. To assist our understanding of the moral aspects of living with severe familial disease, the ethnographic analysis is aligned with bioethical reflections that place the concrete concerns of those personally involved centre stage in the development of theoretical stances that aim to assist reflections in practice. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hsueh, Wen-Chi; He, Qimei; Willcox, D. Craig; Nievergelt, Caroline M.; Donlon, Timothy A.; Kwok, Pui-Yan; Suzuki, Makoto; Willcox, Bradley J.
2014-01-01
Isolated populations have advantages for genetic studies of longevity from decreased haplotype diversity and long-range linkage disequilibrium. This permits smaller sample sizes without loss of power, among other utilities. Little is known about the genome of the Okinawans, a potential population isolate, recognized for longevity. Therefore, we assessed genetic diversity, structure, and admixture in Okinawans, and compared this with Caucasians, Chinese, Japanese, and Africans from HapMap II, genotyped on the same Affymetrix GeneChip Human Mapping 500K array. Principal component analysis, haplotype coverage, and linkage disequilibrium decay revealed a distinct Okinawan genome—more homogeneity, less haplotype diversity, and longer range linkage disequilibrium. Population structure and admixture analyses utilizing 52 global reference populations from the Human Genome Diversity Cell Line Panel demonstrated that Okinawans clustered almost exclusively with East Asians. Sibling relative risk (λs) analysis revealed that siblings of Okinawan centenarians have 3.11 times (females) and 3.77 times (males) more likelihood of centenarianism. These findings suggest that Okinawans are genetically distinct and share several characteristics of a population isolate, which are prone to develop extreme phenotypes (eg, longevity) from genetic drift, natural selection, and population bottlenecks. These data support further exploration of genetic influence on longevity in the Okinawans. PMID:24444611
Functional Analysis of SPECC1L in Craniofacial Development and Oblique Facial Cleft Pathogenesis
Gfrerer, Lisa; Shubinets, Valeriy; Hoyos, Tatiana; Kong, Yawei; Nguyen, Christina; Pietschmann, Peter; Morton, Cynthia C.; Maas, Richard L.; Liao, Eric C.
2015-01-01
Background Oblique facial clefts, also known as Tessier clefts, are severe orofacial clefts, the genetic basis of which is poorly understood. Human genetics studies revealed that disruption in SPECC1L resulted in oblique facial clefts, demonstrating that oblique facial cleft malformation has a genetic basis. An important step toward innovation in treatment of oblique facial clefts would be improved understanding of its genetic pathogenesis. The authors exploit the zebrafish model to elucidate the function of SPECC1L by studying its homolog, specc1lb. Methods Gene and protein expression analysis was carried out by reverse-transcriptase polymerase chain reaction and immunohistochemistry staining. Morpholino knockdown, mRNA rescue, lineage tracing and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assays were performed for functional analysis. Results Expression of specc1lb was detected in epithelia juxtaposed to chondrocytes. Knockdown of specc1lb resulted in bilateral clefts between median and lateral elements of the ethmoid plate, structures analogous to the frontonasal process and the paired maxillary processes. Lineage tracing analysis revealed that cranial neural crest cells contributing to the frontonasal prominence failed to integrate with the maxillary prominence populations. Cells contributing to lower jaw structures were able to migrate to their destined pharyngeal segment but failed to converge to form mandibular elements. Conclusions These results demonstrate that specc1lb is required for integration of frontonasal and maxillary elements and convergence of mandibular prominences. The authors confirm the role of SPECC1L in orofacial cleft pathogenesis in the first animal model of Tessier cleft, providing morphogenetic insight into the mechanisms of normal craniofacial development and oblique facial cleft pathogenesis. PMID:25357034
Smith, Michelle K; Wood, William B; Knight, Jennifer K
2008-01-01
We have designed, developed, and validated a 25-question Genetics Concept Assessment (GCA) to test achievement of nine broad learning goals in majors and nonmajors undergraduate genetics courses. Written in everyday language with minimal jargon, the GCA is intended for use as a pre- and posttest to measure student learning gains. The assessment was reviewed by genetics experts, validated by student interviews, and taken by >600 students at three institutions. Normalized learning gains on the GCA were positively correlated with averaged exam scores, suggesting that the GCA measures understanding of topics relevant to instructors. Statistical analysis of our results shows that differences in the item difficulty and item discrimination index values between different questions on pre- and posttests can be used to distinguish between concepts that are well or poorly learned during a course.
Wood, William B.; Knight, Jennifer K.
2008-01-01
We have designed, developed, and validated a 25-question Genetics Concept Assessment (GCA) to test achievement of nine broad learning goals in majors and nonmajors undergraduate genetics courses. Written in everyday language with minimal jargon, the GCA is intended for use as a pre- and posttest to measure student learning gains. The assessment was reviewed by genetics experts, validated by student interviews, and taken by >600 students at three institutions. Normalized learning gains on the GCA were positively correlated with averaged exam scores, suggesting that the GCA measures understanding of topics relevant to instructors. Statistical analysis of our results shows that differences in the item difficulty and item discrimination index values between different questions on pre- and posttests can be used to distinguish between concepts that are well or poorly learned during a course. PMID:19047428
Microstructure and tuber properties of potato varieties with different genetic profiles.
Romano, Annalisa; Masi, Paolo; Aversano, Riccardo; Carucci, Francesca; Palomba, Sara; Carputo, Domenico
2018-01-15
The objectives of this research were to study tuber starch characteristics and chemical - thermal properties of 21 potato varieties, and to determine their genetic diversity through SSR markers. Starch granular size varied among samples, with a wide diameter distribution (5-85μm), while granule shapes were similar. Differential Scanning Calorimeter analysis showed that the transition temperatures (69°C-74°C) and enthalpies of gelatinization (0.9J/g-3.8J/g) of tubers were also variety dependent. SSR analysis allowed the detection of 157 alleles across all varieties, with an average value of 6.8 alleles per locus. Variety-specific alleles were also identified. SSR-based cluster analysis revealed that varieties with interesting quality attributes were distributed among all clusters and sub-clusters, suggesting that the genetic basis of traits analyzed may differ among our varieties. The information obtained in this study may be useful to identify and develop varieties with slowly digestible starch. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hamoy, I G; Santos, E J M; Santos, S E B
2008-01-22
The aim of the present study was the development of a multiplex genotyping panel of eight microsatellite markers of Arapaima gigas, previously described. Specific primer pairs were developed, each one of them marked with either FAM-6, HEX or NED. The amplification conditions using the new primers were standardized for a single reaction. The results obtained demonstrate high heterozygosity (average of 0.69) in a Lower Amazon population. The multiplex system described can thus be considered a fast, efficient and inexpensive method for the investigation of genetic variability in Arapaima populations.
White, Paul A; Johnson, George E
2016-05-01
Applied genetic toxicology is undergoing a transition from qualitative hazard identification to quantitative dose-response analysis and risk assessment. To facilitate this change, the Health and Environmental Sciences Institute (HESI) Genetic Toxicology Technical Committee (GTTC) sponsored a workshop held in Lancaster, UK on July 10-11, 2014. The event included invited speakers from several institutions and the contents was divided into three themes-1: Point-of-departure Metrics for Quantitative Dose-Response Analysis in Genetic Toxicology; 2: Measurement and Estimation of Exposures for Better Extrapolation to Humans and 3: The Use of Quantitative Approaches in Genetic Toxicology for human health risk assessment (HHRA). A host of pertinent issues were discussed relating to the use of in vitro and in vivo dose-response data, the development of methods for in vitro to in vivo extrapolation and approaches to use in vivo dose-response data to determine human exposure limits for regulatory evaluations and decision-making. This Special Issue, which was inspired by the workshop, contains a series of papers that collectively address topics related to the aforementioned themes. The Issue includes contributions that collectively evaluate, describe and discuss in silico, in vitro, in vivo and statistical approaches that are facilitating the shift from qualitative hazard evaluation to quantitative risk assessment. The use and application of the benchmark dose approach was a central theme in many of the workshop presentations and discussions, and the Special Issue includes several contributions that outline novel applications for the analysis and interpretation of genetic toxicity data. Although the contents of the Special Issue constitutes an important step towards the adoption of quantitative methods for regulatory assessment of genetic toxicity, formal acceptance of quantitative methods for HHRA and regulatory decision-making will require consensus regarding the relationships between genetic damage and disease, and the concomitant ability to use genetic toxicity results per se. © Her Majesty the Queen in Right of Canada 2016. Reproduced with the permission of the Minister of Health.
Midorikawa, G E O; Pinheiro, M R R; Vidigal, B S; Arruda, M C; Costa, F F; Pappas, G J; Ribeiro, S G; Freire, F; Miller, R N G
2008-07-01
The aim of this study was to determine the genetic variability in Aspergillus flavus populations from Brazil nut and cashew and develop a polymerase chain reaction (PCR) detection method. Chomatography analysis of 48 isolates identified 36 as aflatoxigenic (75%). One hundred and forty-one DNA bands were generated with 11 random amplified polymorphic DNA (RAPD) primers and analysed via unweighted pair group analysis, using arithmetic means (UPGMA). Isolates grouped according to host, with differentiation of those from A. occidentale also according to geographical origin. Aspergillus flavus-specific PCR primers ASPITSF2 and ASPITSR3 were designed from ribosomal DNA internal transcribed spacers (ITS 1 and 2), and an internal amplification control was developed, to prevent false negative results. Specificity to only A. flavus was confirmed against DNA from additional aspergilli and other fungi. RAPD-based characterization differentiated isolates according to plant host. The PCR primer pair developed showed specificity to A. flavus, with a detection limit of 10 fg. Genetic variability observed in A. flavus isolates from two Brazilian agroecosystems suggested reproductive isolation. The PCR detection method developed for A. flavus represents progress towards multiplex PCR detection of aflatoxigenic and nonaflatoxigenic strains in Hazard Analysis Critical Control Point systems.
NASA Astrophysics Data System (ADS)
Moguilnaya, T.; Suminov, Y.; Botikov, A.; Ignatov, S.; Kononenko, A.; Agibalov, A.
2017-01-01
We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.
Planes, Serge; Lemer, Sarah
2011-01-01
Studying the movement of individuals in the wild has always been a challenge in ecology. However, estimating such movement is essential in life sciences as it is the base-line for evaluating connectivity, a major component in developing management and conservation plans. Furthermore, movement, or migration, is an essential parameter in population genetics, as it directly affects genetic differentiation. The development of highly variable markers has allowed genetic discrimination between individuals within populations and at larger scales, and the availability of high-throughput technologies means that many samples and hence many individuals can be screened. These advances mean that we can now use genetic identification for tracking individuals, and hence follow both survival and reproductive output through the life cycle. The paper by Morrissey & Ferguson (2011, this issue) is a demonstration of this new capability, as authors were able to infer the movement of salmonid fish initially captured as juveniles, and later as reproductively mature adults.
Wang, Boyi; Tan, Hua-Wei; Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Matsumoto, Tracie; Zhang, Dapeng
2015-01-01
Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in 50 longan germplasm accessions, including cultivated varieties and wild germplasm; and designated 25 SNP markers that unambiguously identified all tested longan varieties with high statistical rigor (P<0.0001). Multiple trees from the same clone were verified and off-type trees were identified. Diversity analysis revealed genetic relationships among analyzed accessions. Cultivated varieties differed significantly from wild populations (Fst=0.300; P<0.001), demonstrating untapped genetic diversity for germplasm conservation and utilization. Within cultivated varieties, apparent differences between varieties from China and those from Thailand and Hawaii indicated geographic patterns of genetic differentiation. These SNP markers provide a powerful tool to manage longan genetic resources and breeding, with accurate and efficient genotype identification. PMID:26504559
Santos, D N; Nunes, C F; Setotaw, T A; Pio, R; Pasqual, M; Cançado, G M A
2016-12-19
Cambuci (Campomanesia phaea) belongs to the Myrtaceae family and is native to the Atlantic Forest of Brazil. It has ecological and social appeal but is exposed to problems associated with environmental degradation and expansion of agricultural activities in the region. Comprehensive studies on this species are rare, making its conservation and genetic improvement difficult. Thus, it is important to develop research activities to understand the current situation of the species as well as to make recommendations for its conservation and use. This study was performed to characterize the cambuci accessions found in the germplasm bank of Coordenadoria de Assistência Técnica Integral using inter-simple sequence repeat markers, with the goal of understanding the plant's population structure. The results showed the existence of some level of genetic diversity among the cambuci accessions that could be exploited for the genetic improvement of the species. Principal coordinate analysis and discriminant analysis clustered the 80 accessions into three groups, whereas Bayesian model-based clustering analysis clustered them into two groups. The formation of two cluster groups and the high membership coefficients within the groups pointed out the importance of further collection to cover more areas and more genetic variability within the species. The study also showed the lack of conservation activities; therefore, more attention from the appropriate organizations is needed to plan and implement natural and ex situ conservation activities.
Liu, Tian-Jia; Li, Yong-Ping; Zhou, Jing-Jing; Hu, Chun-Gen; Zhang, Jin-Zhi
2018-03-01
The comprehensive genetic variation of two citrus species were analyzed at genome and transcriptome level. A total of 1090 differentially expressed genes were found during fruit development by RNA-sequencing. Fruit size (fruit equatorial diameter) and weight (fresh weight) are the two most important components determining yield and consumer acceptability for many horticultural crops. However, little is known about the genetic control of these traits. Here, we performed whole-genome resequencing to reveal the comprehensive genetic variation of the fruit development between kumquat (Citrus japonica) and Clementine mandarin (Citrus clementina). In total, 5,865,235 single-nucleotide polymorphisms (SNPs) and 414,447 insertions/deletions (InDels) were identified in the two citrus species. Based on integrative analysis of genome and transcriptome of fruit, 640,801 SNPs and 20,733 InDels were identified. The features, genomic distribution, functional effect, and other characteristics of these genetic variations were explored. RNA-sequencing identified 1090 differentially expressed genes (DEGs) during fruit development of kumquat and Clementine mandarin. Gene Ontology revealed that these genes were involved in various molecular functional and biological processes. In addition, the genetic variation of 939 DEGs and 74 multiple fruit development pathway genes from previous reports were also identified. A global survey identified 24,237 specific alternative splicing events in the two citrus species and showed that intron retention is the most prevalent pattern of alternative splicing. These genome variation data provide a foundation for further exploration of citrus diversity and gene-phenotype relationships and for future research on molecular breeding to improve kumquat, Clementine mandarin and related species.
The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers.
Amos, Christopher I; Dennis, Joe; Wang, Zhaoming; Byun, Jinyoung; Schumacher, Fredrick R; Gayther, Simon A; Casey, Graham; Hunter, David J; Sellers, Thomas A; Gruber, Stephen B; Dunning, Alison M; Michailidou, Kyriaki; Fachal, Laura; Doheny, Kimberly; Spurdle, Amanda B; Li, Yafang; Xiao, Xiangjun; Romm, Jane; Pugh, Elizabeth; Coetzee, Gerhard A; Hazelett, Dennis J; Bojesen, Stig E; Caga-Anan, Charlisse; Haiman, Christopher A; Kamal, Ahsan; Luccarini, Craig; Tessier, Daniel; Vincent, Daniel; Bacot, François; Van Den Berg, David J; Nelson, Stefanie; Demetriades, Stephen; Goldgar, David E; Couch, Fergus J; Forman, Judith L; Giles, Graham G; Conti, David V; Bickeböller, Heike; Risch, Angela; Waldenberger, Melanie; Brüske-Hohlfeld, Irene; Hicks, Belynda D; Ling, Hua; McGuffog, Lesley; Lee, Andrew; Kuchenbaecker, Karoline; Soucy, Penny; Manz, Judith; Cunningham, Julie M; Butterbach, Katja; Kote-Jarai, Zsofia; Kraft, Peter; FitzGerald, Liesel; Lindström, Sara; Adams, Marcia; McKay, James D; Phelan, Catherine M; Benlloch, Sara; Kelemen, Linda E; Brennan, Paul; Riggan, Marjorie; O'Mara, Tracy A; Shen, Hongbing; Shi, Yongyong; Thompson, Deborah J; Goodman, Marc T; Nielsen, Sune F; Berchuck, Andrew; Laboissiere, Sylvie; Schmit, Stephanie L; Shelford, Tameka; Edlund, Christopher K; Taylor, Jack A; Field, John K; Park, Sue K; Offit, Kenneth; Thomassen, Mads; Schmutzler, Rita; Ottini, Laura; Hung, Rayjean J; Marchini, Jonathan; Amin Al Olama, Ali; Peters, Ulrike; Eeles, Rosalind A; Seldin, Michael F; Gillanders, Elizabeth; Seminara, Daniela; Antoniou, Antonis C; Pharoah, Paul D P; Chenevix-Trench, Georgia; Chanock, Stephen J; Simard, Jacques; Easton, Douglas F
2017-01-01
Common cancers develop through a multistep process often including inherited susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wide backbone, comprising 230,000 SNPs tagging most common genetic variants, together with dense mapping of known susceptibility regions, rare variants from sequencing experiments, pharmacogenetic markers, and cancer-related traits. The OncoArray can be genotyped using a novel technology developed by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers, and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy among centers and by ethnic background. The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring algorithm based on principal components analysis. Results from these analyses will enable researchers to identify new susceptibility loci, perform fine-mapping of new or known loci associated with either single or multiple cancers, assess the degree of overlap in cancer causation and pleiotropic effects of loci that have been identified for disease-specific risk, and jointly model genetic, environmental, and lifestyle-related exposures. Ongoing analyses will shed light on etiology and risk assessment for many types of cancer. Cancer Epidemiol Biomarkers Prev; 26(1); 126-35. ©2016 AACR. ©2016 American Association for Cancer Research.
The OncoArray Consortium: a Network for Understanding the Genetic Architecture of Common Cancers
Amos, Christopher I.; Dennis, Joe; Wang, Zhaoming; Byun, Jinyoung; Schumacher, Fredrick R.; Gayther, Simon A.; Casey, Graham; Hunter, David J.; Sellers, Thomas A.; Gruber, Stephen B.; Dunning, Alison M.; Michailidou, Kyriaki; Fachal, Laura; Doheny, Kimberly; Spurdle, Amanda B.; Li, Yafang; Xiao, Xiangjun; Romm, Jane; Pugh, Elizabeth; Coetzee, Gerhard A.; Hazelett, Dennis J.; Bojesen, Stig E.; Caga-Anan, Charlisse; Haiman, Christopher A.; Kamal, Ahsan; Luccarini, Craig; Tessier, Daniel; Vincent, Daniel; Bacot, François; Van Den Berg, David J.; Nelson, Stefanie; Demetriades, Stephen; Goldgar, David E.; Couch, Fergus J.; Forman, Judith L.; Giles, Graham G.; Conti, David V.; Bickeböller, Heike; Risch, Angela; Waldenberger, Melanie; Brüske, Irene; Hicks, Belynda D.; Ling, Hua; McGuffog, Lesley; Lee, Andrew; Kuchenbaecker, Karoline B.; Soucy, Penny; Manz, Judith; Cunningham, Julie M.; Butterbach, Katja; Kote-Jarai, Zsofia; Kraft, Peter; FitzGerald, Liesel M.; Lindström, Sara; Adams, Marcia; McKay, James D.; Phelan, Catherine M.; Benlloch, Sara; Kelemen, Linda E.; Brennan, Paul; Riggan, Marjorie; O’Mara, Tracy A.; Shen, Hongbin; Shi, Yongyong; Thompson, Deborah J.; Goodman, Marc T.; Nielsen, Sune F.; Berchuck, Andrew; Laboissiere, Sylvie; Schmit, Stephanie L.; Shelford, Tameka; Edlund, Christopher K.; Taylor, Jack A.; Field, John K.; Park, Sue K.; Offit, Kenneth; Thomassen, Mads; Schmutzler, Rita; Ottini, Laura; Hung, Rayjean J.; Marchini, Jonathan; Al Olama, Ali Amin; Peters, Ulrike; Eeles, Rosalind A.; Seldin, Michael F.; Gillanders, Elizabeth; Seminara, Daniela; Antoniou, Antonis C.; Pharoah, Paul D.; Chenevix-Trench, Georgia; Chanock, Stephen J.; Simard, Jacques; Easton, Douglas F.
2016-01-01
Background Common cancers develop through a multistep process often including inherited susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wide backbone, comprising 230,000 SNPs tagging most common genetic variants, together with dense mapping of known susceptibility regions, rare variants from sequencing experiments, pharmacogenetic markers and cancer related traits. Methods The OncoArray can be genotyped using a novel technology developed by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy among centers and by ethnic background. Results The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring algorithm based on principal components analysis. Conclusions Results from these analyses will enable researchers to identify new susceptibility loci, perform fine mapping of new or known loci associated with either single or multiple cancers, assess the degree of overlap in cancer causation and pleiotropic effects of loci that have been identified for disease-specific risk, and jointly model genetic, environmental and lifestyle related exposures. Impact Ongoing analyses will shed light on etiology and risk assessment for many types of cancer. PMID:27697780
Boycott, Kym; Hartley, Taila; Adam, Shelin; Bernier, Francois; Chong, Karen; Fernandez, Bridget A; Friedman, Jan M; Geraghty, Michael T; Hume, Stacey; Knoppers, Bartha M; Laberge, Anne-Marie; Majewski, Jacek; Mendoza-Londono, Roberto; Meyn, M Stephen; Michaud, Jacques L; Nelson, Tanya N; Richer, Julie; Sadikovic, Bekim; Skidmore, David L; Stockley, Tracy; Taylor, Sherry; van Karnebeek, Clara; Zawati, Ma'n H; Lauzon, Julie; Armour, Christine M
2015-07-01
The aim of this Position Statement is to provide recommendations for Canadian medical geneticists, clinical laboratory geneticists, genetic counsellors and other physicians regarding the use of genome-wide sequencing of germline DNA in the context of clinical genetic diagnosis. This statement has been developed to facilitate the clinical translation and development of best practices for clinical genome-wide sequencing for genetic diagnosis of monogenic diseases in Canada; it does not address the clinical application of this technology in other fields such as molecular investigation of cancer or for population screening of healthy individuals. Two multidisciplinary groups consisting of medical geneticists, clinical laboratory geneticists, genetic counsellors, ethicists, lawyers and genetic researchers were assembled to review existing literature and guidelines on genome-wide sequencing for clinical genetic diagnosis in the context of monogenic diseases, and to make recommendations relevant to the Canadian context. The statement was circulated for comment to the Canadian College of Medical Geneticists (CCMG) membership-at-large and, following incorporation of feedback, approved by the CCMG Board of Directors. The CCMG is a Canadian organisation responsible for certifying medical geneticists and clinical laboratory geneticists, and for establishing professional and ethical standards for clinical genetics services in Canada. Recommendations include (1) clinical genome-wide sequencing is an appropriate approach in the diagnostic assessment of a patient for whom there is suspicion of a significant monogenic disease that is associated with a high degree of genetic heterogeneity, or where specific genetic tests have failed to provide a diagnosis; (2) until the benefits of reporting incidental findings are established, we do not endorse the intentional clinical analysis of disease-associated genes other than those linked to the primary indication; and (3) clinicians should provide genetic counselling and obtain informed consent prior to undertaking clinical genome-wide sequencing. Counselling should include discussion of the limitations of testing, likelihood and implications of diagnosis and incidental findings, and the potential need for further analysis to facilitate clinical interpretation, including studies performed in a research setting. These recommendations will be routinely re-evaluated as knowledge of diagnostic and clinical utility of clinical genome-wide sequencing improves. While the document was developed to direct practice in Canada, the applicability of the statement is broader and will be of interest to clinicians and health jurisdictions internationally. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
[Helgoland (Germany): hemogenetic study of an island population].
Schmidt, H D; Scheil, H G; Winkelbauer, S
2001-03-01
24 haemogenetic markers (5 erythrocyte antigenes, 6 polymorphisms of serum proteins, 12 polymorphisms of red cell enzymes) had been studied in up to 80 individuals from the island of Helgoland (Germany). The cluster analysis separates clearly the Helgoland sample from the neighbouring populations as well as from European standard data. This special position is interpreted partly by genetic peculiarities developed in the course of time, partly as a consequence of genetic drift.
Kabat, Susan M; Dick, Christopher W; Hunter, Mark D
2010-05-01
Microsatellite primers were developed for the common milkweed, Asclepias syriaca L., to assist in genet identification and the analysis of spatial genetic structure. Using an enrichment cloning protocol, eight microsatellite loci were isolated and characterized in a Michigan population of A. syriaca. The primers amplified di- and trinucleotide repeats with 4-13 alleles per locus. The primers will be useful for studies of clonality and gene flow in natural populations.
Moffitt, Terrie E; Baker, Timothy B; Biddle, Andrea K; Evans, James P; Harrington, HonaLee; Houts, Renate; Meier, Madeline; Sugden, Karen; Williams, Benjamin; Poulton, Richie; Caspi, Avshalom
2013-01-01
OBJECTIVE To test how genomic loci identified in genome-wide association studies (GWAS) influence the developmental progression of smoking behavior. DESIGN A 38-year prospective longitudinal study of a representative birth-cohort. SETTING The Dunedin Multidisciplinary Health and Development Study, New Zealand. PARTICIPANTS N=1037 male and female study members. MAIN EXPOSURES We assessed genetic risk with a multi-locus genetic risk score (GRS). The GRS was composed of single-nucleotide polymorphisms identified in three meta-analyses of GWAS of smoking quantity phenotypes. OUTCOME MEASURES Smoking initiation, conversion to daily smoking, progression to heavy smoking, nicotine dependence (Fagerstrom Test of Nicotine Dependence), and cessation difficulties were evaluated at eight assessments spanning ages 11-38 years. RESULTS Genetic risk score was unrelated to smoking initiation. However, individuals at higher genetic risk were more likely to convert to daily smoking as teenagers, progressed more rapidly from smoking initiation to heavy smoking, persisted longer in smoking heavily, developed nicotine dependence more frequently, were more reliant on smoking to cope with stress, and were more likely to fail in their cessation attempts. Further analysis revealed that two adolescent developmental phenotypes—early conversion to daily smoking and rapid progression to heavy smoking--mediated associations between the genetic risk score and mature phenotypes of persistent heavy smoking, nicotine dependence, and cessation failure. The genetic risk score predicted smoking risk over and above family history. CONCLUSIONS Initiatives that disrupt the developmental progression of smoking behavior among adolescents may mitigate genetic risks for developing adult smoking problems. Future genetic research may maximize discovery potential by focusing on smoking behavior soon after smoking initiation and by studying young smokers. PMID:23536134
Blackman, Scott M.; Deering-Brose, Rebecca; McWilliams, Rita; Naughton, Kathleen; Coleman, Barbara; Lai, Teresa; Algire, Marilyn; Beck, Suzanne; Hoover-Fong, Julie; Hamosh, Ada; Fallin, M. Daniele; West, Kristen; Arking, Dan E.; Chakravarti, Aravinda; Cutler, David J.; Cutting, Garry R
2006-01-01
Background & Aims Neonatal intestinal obstruction (meconium ileus or MI) occurs in 15% of patients with cystic fibrosis (CF). Our aim was to determine the relative contribution of genetic and non-genetic modifiers to the development of this major complication of CF. Methods Using clinical data and DNA collected by the CF Twin and Sibling Study, 65 monozygous twin pairs, 23 dizygous twin/triplet sets, and 349 sets of siblings with CF were analyzed for MI status, significant covariates, and genome-wide linkage. Results Specific mutations in CFTR, the gene responsible for CF, correlated with MI indicating a role for CFTR genotype. Monozygous twins showed substantially greater concordance for MI than dizygous twins and siblings (p=1×10−5) demonstrating that modifier genes independent of CFTR contribute substantially to this trait. Regression analysis revealed that MI was correlated with distal intestinal obstruction syndrome (DIOS; p=8×10−4). Unlike MI, concordance analysis indicated that the risk for development of DIOS in CF patients is primarily due to non-genetic factors. Regions of suggestive linkage (logarithm of the odds of linkage >2.0) for modifier genes that cause MI (chromosomes 4q35.1, 8p23.1, and 11q25) or protect from MI (chromosomes 20p11.22 and 21q22.3) were identified by genome-wide analyses. These analyses did not support the existence of a major modifier gene within the CFM1 region on chromosome 19 that had previously been linked to MI. Conclusions The CFTR gene along with two or more modifier genes are the major determinants of intestinal obstruction in newborn CF patients, while intestinal obstruction in older CF patients is primarily due to non-genetic factors. PMID:17030173
TCGA study of genetic drivers of melanoma
A comprehensive analysis of the genome of cutaneous melanoma has provided new insights into the roles of frequently mutated cancer genes and other genomic alterations that drive the development of this disease.
Learning abilities and disabilities: generalist genes in early adolescence.
Davis, Oliver S P; Haworth, Claire M A; Plomin, Robert
2009-01-01
The new view of cognitive neuropsychology that considers not just case studies of rare severe disorders but also common disorders, as well as normal variation and quantitative traits, is more amenable to recent advances in molecular genetics, such as genome-wide association studies, and advances in quantitative genetics, such as multivariate genetic analysis. A surprising finding emerging from multivariate quantitative genetic studies across diverse learning abilities is that most genetic influences are shared: they are "generalist", rather than "specialist". We exploited widespread access to inexpensive and fast Internet connections in the United Kingdom to assess over 5000 pairs of 12-year-old twins from the Twins Early Development Study (TEDS) on four distinct batteries: reading, mathematics, general cognitive ability (g) and, for the first time, language. Genetic correlations remain high among all of the measured abilities, with language as highly correlated genetically with g as reading and mathematics. Despite developmental upheaval, generalist genes remain important into early adolescence, suggesting optimal strategies for molecular genetic studies seeking to identify the genes of small effect that influence learning abilities and disabilities.
Thul, Sanjog T; Srivastava, Ankit K; Singh, Subhash C; Shanker, Karuna
2011-09-01
A method was developed based on multiple approaches wherein DNA and chemical analysis was carried out toward differentiation of important species of Sida complex that is being used for commercial preparation. Isolated DNA samples were successfully performed through PCR amplification using ISSR markers and degree of genetic diversity among the different species of Sida is compared with that of chemical diversity. For genetic fingerprint investigation, selected 10 ISSR primers generating reproducible banding patterns were used. Among the total of 63 amplicons, 62 were recorded as polymorphic, genetic similarity index deduced from ISSR profiles ranged from 12 to 51%. Based on similarity index, S. acuta and S. rhombifolia found to be most similar (51%). High number of species-specific bands played pivotal role to delineate species at genetic level. Investigation based on HPTLC fingerprints analysis revealed 23 bands representing to characteristic chemicals and similarity index ranged from 73 to 91%. Prominent distinguishable bands were observed only in S. acuta, while S. cordifolia and S. rhombifolia shared most bands making them difficult to identify on chemical fingerprint basis. This report summarizes the genotypic and chemotypic diversity and the use of profiles for authentication of species of Sida complex.
Multiple Phenotype Association Tests Using Summary Statistics in Genome-Wide Association Studies
Liu, Zhonghua; Lin, Xihong
2017-01-01
Summary We study in this paper jointly testing the associations of a genetic variant with correlated multiple phenotypes using the summary statistics of individual phenotype analysis from Genome-Wide Association Studies (GWASs). We estimated the between-phenotype correlation matrix using the summary statistics of individual phenotype GWAS analyses, and developed genetic association tests for multiple phenotypes by accounting for between-phenotype correlation without the need to access individual-level data. Since genetic variants often affect multiple phenotypes differently across the genome and the between-phenotype correlation can be arbitrary, we proposed robust and powerful multiple phenotype testing procedures by jointly testing a common mean and a variance component in linear mixed models for summary statistics. We computed the p-values of the proposed tests analytically. This computational advantage makes our methods practically appealing in large-scale GWASs. We performed simulation studies to show that the proposed tests maintained correct type I error rates, and to compare their powers in various settings with the existing methods. We applied the proposed tests to a GWAS Global Lipids Genetics Consortium summary statistics data set and identified additional genetic variants that were missed by the original single-trait analysis. PMID:28653391
Multiple phenotype association tests using summary statistics in genome-wide association studies.
Liu, Zhonghua; Lin, Xihong
2018-03-01
We study in this article jointly testing the associations of a genetic variant with correlated multiple phenotypes using the summary statistics of individual phenotype analysis from Genome-Wide Association Studies (GWASs). We estimated the between-phenotype correlation matrix using the summary statistics of individual phenotype GWAS analyses, and developed genetic association tests for multiple phenotypes by accounting for between-phenotype correlation without the need to access individual-level data. Since genetic variants often affect multiple phenotypes differently across the genome and the between-phenotype correlation can be arbitrary, we proposed robust and powerful multiple phenotype testing procedures by jointly testing a common mean and a variance component in linear mixed models for summary statistics. We computed the p-values of the proposed tests analytically. This computational advantage makes our methods practically appealing in large-scale GWASs. We performed simulation studies to show that the proposed tests maintained correct type I error rates, and to compare their powers in various settings with the existing methods. We applied the proposed tests to a GWAS Global Lipids Genetics Consortium summary statistics data set and identified additional genetic variants that were missed by the original single-trait analysis. © 2017, The International Biometric Society.
Genetic evidence for monogamy in the dwarf seahorse, Hippocampus zosterae.
Rose, Emily; Small, Clayton M; Saucedo, Hector A; Harper, Cristin; Jones, Adam G
2014-01-01
Syngnathid fishes (pipefishes, seahorses, and seadragons) exhibit a wide array of mating systems ranging from monogamy with long-term pair bonds to more promiscuous mating systems, such as polyandry and polygynandry. Some seahorses, including the dwarf seahorse Hippocampus zosterae, have been found to be socially monogamous. Although several seahorse species have also been shown to be genetically monogamous, parentage analysis has not yet been applied to the dwarf seahorse. We developed 8 novel microsatellites for the dwarf seahorse to conduct genetic parentage analysis to confirm that this species is indeed monogamous. Using 4 selected loci and a total of 16 pregnant male seahorses, with 8 collected in Florida and 8 sampled in Texas, we genotyped all of the offspring within each male's brood to determine the maternal contributions to each brood. We found a maximum of 4 alleles per locus segregating within each pregnant male's brood, a pattern consistent with each brood having exactly 1 mother and 1 father. These results support previous laboratory-based behavioral studies and indicate that the dwarf seahorse, H. zosterae, is genetically monogamous. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Michailidou, S; Tsangaris, G; Fthenakis, G C; Tzora, A; Skoufos, I; Karkabounas, S C; Banos, G; Argiriou, A; Arsenos, G
2018-06-01
In the present study, genome-wide genotyping was applied to characterize the genetic diversity and population structure of three autochthonous Greek breeds: Boutsko, Karagouniko and Chios. Dairy sheep are among the most significant livestock species in Greece numbering approximately 9 million animals which are characterized by large phenotypic variation and reared under various farming systems. A total of 96 animals were genotyped with the Illumina's OvineSNP50K microarray beadchip, to study the population structure of the breeds and develop a specialized panel of single-nucleotide polymorphisms (SNPs), which could distinguish one breed from the others. Quality control on the dataset resulted in 46,125 SNPs, which were used to evaluate the genetic structure of the breeds. Population structure was assessed through principal component analysis (PCA) and admixture analysis, whereas inbreeding was estimated based on runs of homozygosity (ROHs) coefficients, genomic relationship matrix inbreeding coefficients (F GRM ) and patterns of linkage disequilibrium (LD). Associations between SNPs and breeds were analyzed with different inheritance models, to identify SNPs that distinguish among the breeds. Results showed high levels of genetic heterogeneity in the three breeds. Genetic distances among breeds were modest, despite their different ancestries. Chios and Karagouniko breeds were more genetically related to each other compared to Boutsko. Analysis revealed 3802 candidate SNPs that can be used to identify two-breed crosses and purebred animals. The present study provides, for the first time, data on the genetic background of three Greek indigenous dairy sheep breeds as well as a specialized marker panel that can be applied for traceability purposes as well as targeted genetic improvement schemes and conservation programs.
Kato, S; Ishii, A; Nishi, A; Kuriki, S; Koide, T
2014-01-01
Recent genetic studies have shown that genetic loci with significant effects in whole-genome quantitative trait loci (QTL) analyses were lost or weakened in congenic strains. Characterisation of the genetic basis of this attenuated QTL effect is important to our understanding of the genetic mechanisms of complex traits. We previously found that a consomic strain, B6-Chr6CMSM, which carries chromosome 6 of a wild-derived strain MSM/Ms on the genetic background of C57BL/6J, exhibited lower home-cage activity than C57BL/6J. In the present study, we conducted a composite interval QTL analysis using the F2 mice derived from a cross between C57BL/6J and B6-Chr6CMSM. We found one QTL peak that spans 17.6 Mbp of chromosome 6. A subconsomic strain that covers the entire QTL region also showed lower home-cage activity at the same level as the consomic strain. We developed 15 congenic strains, each of which carries a shorter MSM/Ms-derived chromosomal segment from the subconsomic strain. Given that the results of home-cage activity tests on the congenic strains cannot be explained by a simple single-gene model, we applied regression analysis to segregate the multiple genetic loci. The results revealed three loci (loci 1–3) that have the effect of reducing home-cage activity and one locus (locus 4) that increases activity. We also found that the combination of loci 3 and 4 cancels out the effects of the congenic strains, which indicates the existence of a genetic mechanism related to the loss of QTLs. PMID:24781804
Eltaher, Shamseldeen; Sallam, Ahmed; Belamkar, Vikas; Emara, Hamdy A; Nower, Ahmed A; Salem, Khaled F M; Poland, Jesse; Baenziger, Peter S
2018-01-01
The availability of information on the genetic diversity and population structure in wheat ( Triticum aestivum L.) breeding lines will help wheat breeders to better use their genetic resources and manage genetic variation in their breeding program. The recent advances in sequencing technology provide the opportunity to identify tens or hundreds of thousands of single nucleotide polymorphism (SNPs) in large genome species (e.g., wheat). These SNPs can be utilized for understanding genetic diversity and performing genome wide association studies (GWAS) for complex traits. In this study, the genetic diversity and population structure were investigated in a set of 230 genotypes (F 3:6 ) derived from various crosses as a prerequisite for GWAS and genomic selection. Genotyping-by-sequencing provided 25,566 high-quality SNPs. The polymorphism information content (PIC) across chromosomes ranged from 0.09 to 0.37 with an average of 0.23. The distribution of SNPs markers on the 21 chromosomes ranged from 319 on chromosome 3D to 2,370 on chromosome 3B. The analysis of population structure revealed three subpopulations (G1, G2, and G3). Analysis of molecular variance identified 8% variance among and 92% within subpopulations. Of the three subpopulations, G2 had the highest level of genetic diversity based on three genetic diversity indices: Shannon's information index ( I ) = 0.494, diversity index ( h ) = 0.328 and unbiased diversity index (uh) = 0.331, while G3 had lowest level of genetic diversity ( I = 0.348, h = 0.226 and uh = 0.236). This high genetic diversity identified among the subpopulations can be used to develop new wheat cultivars.
Eltaher, Shamseldeen; Sallam, Ahmed; Belamkar, Vikas; Emara, Hamdy A.; Nower, Ahmed A.; Salem, Khaled F. M.; Poland, Jesse; Baenziger, Peter S.
2018-01-01
The availability of information on the genetic diversity and population structure in wheat (Triticum aestivum L.) breeding lines will help wheat breeders to better use their genetic resources and manage genetic variation in their breeding program. The recent advances in sequencing technology provide the opportunity to identify tens or hundreds of thousands of single nucleotide polymorphism (SNPs) in large genome species (e.g., wheat). These SNPs can be utilized for understanding genetic diversity and performing genome wide association studies (GWAS) for complex traits. In this study, the genetic diversity and population structure were investigated in a set of 230 genotypes (F3:6) derived from various crosses as a prerequisite for GWAS and genomic selection. Genotyping-by-sequencing provided 25,566 high-quality SNPs. The polymorphism information content (PIC) across chromosomes ranged from 0.09 to 0.37 with an average of 0.23. The distribution of SNPs markers on the 21 chromosomes ranged from 319 on chromosome 3D to 2,370 on chromosome 3B. The analysis of population structure revealed three subpopulations (G1, G2, and G3). Analysis of molecular variance identified 8% variance among and 92% within subpopulations. Of the three subpopulations, G2 had the highest level of genetic diversity based on three genetic diversity indices: Shannon’s information index (I) = 0.494, diversity index (h) = 0.328 and unbiased diversity index (uh) = 0.331, while G3 had lowest level of genetic diversity (I = 0.348, h = 0.226 and uh = 0.236). This high genetic diversity identified among the subpopulations can be used to develop new wheat cultivars. PMID:29593779
Ai, Yuncan; Ai, Hannan; Meng, Fanmei; Zhao, Lei
2013-01-01
No attention has been paid on comparing a set of genome sequences crossing genetic components and biological categories with far divergence over large size range. We define it as the systematic comparative genomics and aim to develop the methodology. First, we create a method, GenomeFingerprinter, to unambiguously produce a set of three-dimensional coordinates from a sequence, followed by one three-dimensional plot and six two-dimensional trajectory projections, to illustrate the genome fingerprint of a given genome sequence. Second, we develop a set of concepts and tools, and thereby establish a method called the universal genome fingerprint analysis (UGFA). Particularly, we define the total genetic component configuration (TGCC) (including chromosome, plasmid, and phage) for describing a strain as a systematic unit, the universal genome fingerprint map (UGFM) of TGCC for differentiating strains as a universal system, and the systematic comparative genomics (SCG) for comparing a set of genomes crossing genetic components and biological categories. Third, we construct a method of quantitative analysis to compare two genomes by using the outcome dataset of genome fingerprint analysis. Specifically, we define the geometric center and its geometric mean for a given genome fingerprint map, followed by the Euclidean distance, the differentiate rate, and the weighted differentiate rate to quantitatively describe the difference between two genomes of comparison. Moreover, we demonstrate the applications through case studies on various genome sequences, giving tremendous insights into the critical issues in microbial genomics and taxonomy. We have created a method, GenomeFingerprinter, for rapidly computing, geometrically visualizing, intuitively comparing a set of genomes at genome fingerprint level, and hence established a method called the universal genome fingerprint analysis, as well as developed a method of quantitative analysis of the outcome dataset. These have set up the methodology of systematic comparative genomics based on the genome fingerprint analysis.
Integrative Analysis of High-throughput Cancer Studies with Contrasted Penalization
Shi, Xingjie; Liu, Jin; Huang, Jian; Zhou, Yong; Shia, BenChang; Ma, Shuangge
2015-01-01
In cancer studies with high-throughput genetic and genomic measurements, integrative analysis provides a way to effectively pool and analyze heterogeneous raw data from multiple independent studies and outperforms “classic” meta-analysis and single-dataset analysis. When marker selection is of interest, the genetic basis of multiple datasets can be described using the homogeneity model or the heterogeneity model. In this study, we consider marker selection under the heterogeneity model, which includes the homogeneity model as a special case and can be more flexible. Penalization methods have been developed in the literature for marker selection. This study advances from the published ones by introducing the contrast penalties, which can accommodate the within- and across-dataset structures of covariates/regression coefficients and, by doing so, further improve marker selection performance. Specifically, we develop a penalization method that accommodates the across-dataset structures by smoothing over regression coefficients. An effective iterative algorithm, which calls an inner coordinate descent iteration, is developed. Simulation shows that the proposed method outperforms the benchmark with more accurate marker identification. The analysis of breast cancer and lung cancer prognosis studies with gene expression measurements shows that the proposed method identifies genes different from those using the benchmark and has better prediction performance. PMID:24395534
Kuzma, Jennifer; Najmaie, Pouya; Larson, Joel
2009-01-01
The U.S. oversight system for genetically engineered organisms (GEOs) was evaluated to develop hypotheses and derive lessons for oversight of other emerging technologies, such as nanotechnology. Evaluation was based upon quantitative expert elicitation, semi-standardized interviews, and historical literature analysis. Through an interdisciplinary policy analysis approach, blending legal, ethical, risk analysis, and policy sciences viewpoints, criteria were used to identify strengths and weaknesses of GEOs oversight and explore correlations among its attributes and outcomes. From the three sources of data, hypotheses and broader conclusions for oversight were developed. Our analysis suggests several lessons for oversight of emerging technologies: the importance of reducing complexity and uncertainty in oversight for minimizing financial burdens on small product developers; consolidating multi-agency jurisdictions to avoid gaps and redundancies in safety reviews; consumer benefits for advancing acceptance of GEO products; rigorous and independent pre- and post-market assessment for environmental safety; early public input and transparency for ensuring public confidence; and the positive role of public input in system development, informed consent, capacity, compliance, incentives, and data requirements and stringency in promoting health and environmental safety outcomes, as well as the equitable distribution of health impacts. Our integrated approach is instructive for more comprehensive analyses of oversight systems, developing hypotheses for how features of oversight systems affect outcomes, and formulating policy options for oversight of future technological products, especially nanotechnology products.
Govindaraj, M; Vetriventhan, M; Srinivasan, M
2015-01-01
The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable. The pros and cons of the basic and advanced statistical tools available for measuring genetic diversity are briefly discussed and their source links (mostly) were provided to get easy access; thus, it improves the understanding of tools and its practical applicability to the researchers.
Govindaraj, M.; Vetriventhan, M.; Srinivasan, M.
2015-01-01
The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable. The pros and cons of the basic and advanced statistical tools available for measuring genetic diversity are briefly discussed and their source links (mostly) were provided to get easy access; thus, it improves the understanding of tools and its practical applicability to the researchers. PMID:25874132
Genetic identity of Thamnophis sp. using microsatellite genetic markers
Sloss, Brian L.
2011-01-01
Butler’s gartersnake (Thamnophis butleri) was previously listed by the Wisconsin Department of Natural Resources as a state threatened species. Several key questions associated with species identity, integrity, and hybridization with other gartersnake species needed to be addressed to further refi ne the management plan for this species. The objectives of this research were: 1) to determine if genetic markers developed in the initial phase of research could identify discrete genetic groups of Wisconsin gartersnakes, 2) to determine if any or all genetic groups delineated in objective one were consistent with Butler’s gartersnake, plains gartersnake (T. radix), and/or common gartersnake (T. sirtalis), and 3) to determine if any of the genetic data were consistent with hybridization occurring between gartersnakes in Wisconsin. Snakes were sampled from various Midwestern locations with a focus on sites in Wisconsin. All snakes were photo-vouchered, morphological landmarks were taken, and a tail snip was collected for genetic analysis. Genetic data from previously developed microsatellite markers discriminated three genetic groups from a composite 13-locus dataset (N=815) using the Bayesian admixture analysis in STRUCTURE v2.3.3. These units were highly consistent with species-groups based on the membership of a small number of known snakes from areas where the species are not thought to co-occur. Using a threshold q-value (proportional genotype) of ≥80%, 498 Butler’s gartersnakes, 93 plains gartersnakes, and 107 common gartersnakes were identifi ed in Wisconsin samples; putative hybrid snakes of Butler’s gartersnake x plain gartersnake (34), Butler’s gartersnake x common gartersnake (8), and a single ambiguous snake were also identifi ed in Wisconsin samples. Levels of divergence among the species groups from Wisconsin were lower than between species groups from other states consistent with either larger than expected Wisconsin population sizes or signifi cant gene fl ow (introgressive hybridization) having occurred among species. Regardless, levels of divergence and overall integrity of the three groups were such that the presence of three species of gartersnakes in Wisconsin was supported and hybridization, at a minimum between Butler’s gartersnakes and the two other species, was shown to occur.
TCGA study of genetic drivers of melanoma - TCGA
A comprehensive analysis of the genome of cutaneous melanoma has provided new insights into the roles of frequently mutated cancer genes and other genomic alterations that drive the development of this disease.
TCGA study improves understanding of thyroid cancer genetics - TCGA
A comprehensive analysis of the genomes of nearly 500 papillary thyroid carcinomas has provided new insights into the roles of frequently mutated cancer genes and other genomic alterations that drive disease development.
2012-01-01
Background Although modern sequencing technologies permit the ready detection of numerous DNA sequence variants in any organisms, converting such information to PCR-based genetic markers is hampered by a lack of simple, scalable tools. Onion is an example of an under-researched crop with a complex, heterozygous genome where genome-based research has previously been hindered by limited sequence resources and genetic markers. Results We report the development of generic tools for large-scale web-based PCR-based marker design in the Galaxy bioinformatics framework, and their application for development of next-generation genetics resources in a wide cross of bulb onion (Allium cepa L.). Transcriptome sequence resources were developed for the homozygous doubled-haploid bulb onion line ‘CUDH2150’ and the genetically distant Indian landrace ‘Nasik Red’, using 454™ sequencing of normalised cDNA libraries of leaf and shoot. Read mapping of ‘Nasik Red’ reads onto ‘CUDH2150’ assemblies revealed 16836 indel and SNP polymorphisms that were mined for portable PCR-based marker development. Tools for detection of restriction polymorphisms and primer set design were developed in BioPython and adapted for use in the Galaxy workflow environment, enabling large-scale and targeted assay design. Using PCR-based markers designed with these tools, a framework genetic linkage map of over 800cM spanning all chromosomes was developed in a subset of 93 F2 progeny from a very large F2 family developed from the ‘Nasik Red’ x ‘CUDH2150’ inter-cross. The utility of tools and genetic resources developed was tested by designing markers to transcription factor-like polymorphic sequences. Bin mapping these markers using a subset of 10 progeny confirmed the ability to place markers within 10 cM bins, enabling increased efficiency in marker assignment and targeted map refinement. The major genetic loci conditioning red bulb colour (R) and fructan content (Frc) were located on this map by QTL analysis. Conclusions The generic tools developed for the Galaxy environment enable rapid development of sets of PCR assays targeting sequence variants identified from Illumina and 454 sequence data. They enable non-specialist users to validate and exploit large volumes of next-generation sequence data using basic equipment. PMID:23157543
Baldwin, Samantha; Revanna, Roopashree; Thomson, Susan; Pither-Joyce, Meeghan; Wright, Kathryn; Crowhurst, Ross; Fiers, Mark; Chen, Leshi; Macknight, Richard; McCallum, John A
2012-11-19
Although modern sequencing technologies permit the ready detection of numerous DNA sequence variants in any organisms, converting such information to PCR-based genetic markers is hampered by a lack of simple, scalable tools. Onion is an example of an under-researched crop with a complex, heterozygous genome where genome-based research has previously been hindered by limited sequence resources and genetic markers. We report the development of generic tools for large-scale web-based PCR-based marker design in the Galaxy bioinformatics framework, and their application for development of next-generation genetics resources in a wide cross of bulb onion (Allium cepa L.). Transcriptome sequence resources were developed for the homozygous doubled-haploid bulb onion line 'CUDH2150' and the genetically distant Indian landrace 'Nasik Red', using 454™ sequencing of normalised cDNA libraries of leaf and shoot. Read mapping of 'Nasik Red' reads onto 'CUDH2150' assemblies revealed 16836 indel and SNP polymorphisms that were mined for portable PCR-based marker development. Tools for detection of restriction polymorphisms and primer set design were developed in BioPython and adapted for use in the Galaxy workflow environment, enabling large-scale and targeted assay design. Using PCR-based markers designed with these tools, a framework genetic linkage map of over 800cM spanning all chromosomes was developed in a subset of 93 F(2) progeny from a very large F(2) family developed from the 'Nasik Red' x 'CUDH2150' inter-cross. The utility of tools and genetic resources developed was tested by designing markers to transcription factor-like polymorphic sequences. Bin mapping these markers using a subset of 10 progeny confirmed the ability to place markers within 10 cM bins, enabling increased efficiency in marker assignment and targeted map refinement. The major genetic loci conditioning red bulb colour (R) and fructan content (Frc) were located on this map by QTL analysis. The generic tools developed for the Galaxy environment enable rapid development of sets of PCR assays targeting sequence variants identified from Illumina and 454 sequence data. They enable non-specialist users to validate and exploit large volumes of next-generation sequence data using basic equipment.
Lee, Hea-Young; Ro, Na-Young; Jeong, Hee-Jin; Kwon, Jin-Kyung; Jo, Jinkwan; Ha, Yeaseong; Jung, Ayoung; Han, Ji-Woong; Venkatesh, Jelli; Kang, Byoung-Cheorl
2016-11-14
Conservation of genetic diversity is an essential prerequisite for developing new cultivars with desirable agronomic traits. Although a large number of germplasm collections have been established worldwide, many of them face major difficulties due to large size and a lack of adequate information about population structure and genetic diversity. Core collection with a minimum number of accessions and maximum genetic diversity of pepper species and its wild relatives will facilitate easy access to genetic material as well as the use of hidden genetic diversity in Capsicum. To explore genetic diversity and population structure, we investigated patterns of molecular diversity using a transcriptome-based 48 single nucleotide polymorphisms (SNPs) in a large germplasm collection comprising 3,821 accessions. Among the 11 species examined, Capsicum annuum showed the highest genetic diversity (H E = 0.44, I = 0.69), whereas the wild species C. galapagoense showed the lowest genetic diversity (H E = 0.06, I = 0.07). The Capsicum germplasm collection was divided into 10 clusters (cluster 1 to 10) based on population structure analysis, and five groups (group A to E) based on phylogenetic analysis. Capsicum accessions from the five distinct groups in an unrooted phylogenetic tree showed taxonomic distinctness and reflected their geographic origins. Most of the accessions from European countries are distributed in the A and B groups, whereas the accessions from Asian countries are mainly distributed in C and D groups. Five different sampling strategies with diverse genetic clustering methods were used to select the optimal method for constructing the core collection. Using a number of allelic variations based on 48 SNP markers and 32 different phenotypic/morphological traits, a core collection 'CC240' with a total of 240 accessions (5.2 %) was selected from within the entire Capsicum germplasm. Compared to the other core collections, CC240 displayed higher genetic diversity (I = 0.95) and genetic evenness (J' = 0.80), and represented a wider range of phenotypic variation (MD = 9.45 %, CR = 98.40 %). A total of 240 accessions were selected from 3,821 Capsicum accessions based on transcriptome-based 48 SNP markers with genome-wide distribution and 32 traits using a systematic approach. This core collection will be a primary resource for pepper breeders and researchers for further genetic association and functional analyses.
Habitat Design Optimization and Analysis
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Hull, Patrick V.; Tinker, Michael L.
2006-01-01
Long-duration surface missions to the Moon and Mars will require habitats for the astronauts. The materials chosen for the habitat walls play a direct role in the protection against the harsh environments found on the surface. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Advanced optimization techniques are necessary for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat design optimization tool utilizing genetic algorithms has been developed. Genetic algorithms use a "survival of the fittest" philosophy, where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multi-objective formulation of structural analysis, heat loss, radiation protection, and meteoroid protection. This paper presents the research and development of this tool.
Li, Qiang; Byrns, Brook; Badawi, Mohamed A.; Diallo, Abdoulaye Banire; Danyluk, Jean; Sarhan, Fathey; Zou, Jitao
2018-01-01
Cold acclimation and winter survival in cereal species is determined by complicated environmentally regulated gene expression. However, studies investigating these complex cold responses are mostly conducted in controlled environments that only consider the responses to single environmental variables. In this study, we have comprehensively profiled global transcriptional responses in crowns of field-grown spring and winter wheat (Triticum aestivum) genotypes and their near-isogenic lines with the VRN-A1 alleles swapped. This in-depth analysis revealed multiple signaling, interactive pathways that influence cold tolerance and phenological development to optimize plant growth and development in preparation for a wide range of over-winter stresses. Investigation of genetic differences at the VRN-A1 locus revealed that a vernalization requirement maintained a higher level of cold response pathways while VRN-A1 genetically promoted floral development. Our results also demonstrated the influence of genetic background on the expression of cold and flowering pathways. The link between delayed shoot apex development and the induction of cold tolerance was reflected by the gradual up-regulation of abscisic acid-dependent and C-REPEAT-BINDING FACTOR pathways. This was accompanied by the down-regulation of key genes involved in meristem development as the autumn progressed. The chromosome location of differentially expressed genes between the winter and spring wheat genetic backgrounds showed a striking pattern of biased gene expression on chromosomes 6A and 6D, indicating a transcriptional regulation at the genome level. This finding adds to the complexity of the genetic cascades and gene interactions that determine the evolutionary patterns of both phenological development and cold tolerance traits in wheat. PMID:29259104
Guinard, Jérémy; Latreille, Anne; Guérin, Fabien; Poussier, Stéphane
2016-01-01
ABSTRACT Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is considered one of the most harmful plant diseases in the world. Special attention should be paid to R. pseudosolanacearum phylotype I due to its large host range, its worldwide distribution, and its high evolutionary potential. So far, the molecular epidemiology and population genetics of this bacterium are poorly understood. Until now, the genetic structure of the RSSC has been analyzed on the worldwide and regional scales. Emerging questions regarding evolutionary forces in RSSC adaptation to hosts now require genetic markers that are able to monitor RSSC field populations. In this study, we aimed to evaluate the multilocus variable-number tandem-repeat analysis (MLVA) approach for its ability to discriminate genetically close phylotype I strains and for population genetics studies. We developed a new MLVA scheme (MLVA-7) allowing us to genotype 580 R. pseudosolanacearum phylotype I strains extracted from susceptible and resistant hosts and from different habitats (stem, soil, and rhizosphere). Based on specificity, polymorphism, and the amplification success rate, we selected seven fast-evolving variable-number tandem-repeat (VNTR) markers. The newly developed MLVA-7 scheme showed higher discriminatory power than the previously published MLVA-13 scheme when applied to collections sampled from the same location on different dates and to collections from different locations on very small scales. Our study provides a valuable tool for fine-scale monitoring and microevolution-related study of R. pseudosolanacearum phylotype I populations. IMPORTANCE Understanding the evolutionary dynamics of adaptation of plant pathogens to new hosts or ecological niches has become a key point for the development of innovative disease management strategies, including durable resistance. Whereas the molecular mechanisms underlying virulence or pathogenicity changes have been studied thoroughly, the population genetics of plant pathogen adaptation remains an open, unexplored field, especially for plant-pathogenic bacteria. MLVA has become increasingly popular for epidemiosurveillance and molecular epidemiology studies of plant pathogens. However, this method has been used mostly for genotyping and identification on a regional or global scale. In this study, we developed a new MLVA scheme, targeting phylotype I of the soilborne Ralstonia solanacearum species complex (RSSC), specifically to address the bacterial population genetics on the field scale. Such a MLVA scheme, based on fast-evolving loci, may be a tool of choice for field experimental evolution and spatial genetics studies. PMID:28003195
Multivariate modelling of endophenotypes associated with the metabolic syndrome in Chinese twins.
Pang, Z; Zhang, D; Li, S; Duan, H; Hjelmborg, J; Kruse, T A; Kyvik, K O; Christensen, K; Tan, Q
2010-12-01
The common genetic and environmental effects on endophenotypes related to the metabolic syndrome have been investigated using bivariate and multivariate twin models. This paper extends the pairwise analysis approach by introducing independent and common pathway models to Chinese twin data. The aim was to explore the common genetic architecture in the development of these phenotypes in the Chinese population. Three multivariate models including the full saturated Cholesky decomposition model, the common factor independent pathway model and the common factor common pathway model were fitted to 695 pairs of Chinese twins representing six phenotypes including BMI, total cholesterol, total triacylglycerol, fasting glucose, HDL and LDL. Performances of the nested models were compared with that of the full Cholesky model. Cross-phenotype correlation coefficients gave clear indication of common genetic or environmental backgrounds in the phenotypes. Decomposition of phenotypic correlation by the Cholesky model revealed that the observed phenotypic correlation among lipid phenotypes had genetic and unique environmental backgrounds. Both pathway models suggest a common genetic architecture for lipid phenotypes, which is distinct from that of the non-lipid phenotypes. The declining performance with model restriction indicates biological heterogeneity in development among some of these phenotypes. Our multivariate analyses revealed common genetic and environmental backgrounds for the studied lipid phenotypes in Chinese twins. Model performance showed that physiologically distinct endophenotypes may follow different genetic regulations.
Development of New Candidate Gene and EST-Based Molecular Markers for Gossypium Species
Buyyarapu, Ramesh; Kantety, Ramesh V.; Yu, John Z.; Saha, Sukumar; Sharma, Govind C.
2011-01-01
New source of molecular markers accelerate the efforts in improving cotton fiber traits and aid in developing high-density integrated genetic maps. We developed new markers based on candidate genes and G. arboreum EST sequences that were used for polymorphism detection followed by genetic and physical mapping. Nineteen gene-based markers were surveyed for polymorphism detection in 26 Gossypium species. Cluster analysis generated a phylogenetic tree with four major sub-clusters for 23 species while three species branched out individually. CAP method enhanced the rate of polymorphism of candidate gene-based markers between G. hirsutum and G. barbadense. Two hundred A-genome based SSR markers were designed after datamining of G. arboreum EST sequences (Mississippi Gossypium arboreum EST-SSR: MGAES). Over 70% of MGAES markers successfully produced amplicons while 65 of them demonstrated polymorphism between the parents of G. hirsutum and G. barbadense RIL population and formed 14 linkage groups. Chromosomal localization of both candidate gene-based and MGAES markers was assisted by euploid and hypoaneuploid CS-B analysis. Gene-based and MGAES markers were highly informative as they were designed from candidate genes and fiber transcriptome with a potential to be integrated into the existing cotton genetic and physical maps. PMID:22315588
Irla, Marta; Heggeset, Tonje M B; Nærdal, Ingemar; Paul, Lidia; Haugen, Tone; Le, Simone B; Brautaset, Trygve; Wendisch, Volker F
2016-01-01
Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 11.3 to 17.5 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium.
Irla, Marta; Heggeset, Tonje M. B.; Nærdal, Ingemar; Paul, Lidia; Haugen, Tone; Le, Simone B.; Brautaset, Trygve; Wendisch, Volker F.
2016-01-01
Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 11.3 to 17.5 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium. PMID:27713731
Wang, Jun; Wang, Zhilan; Du, Xiaofen; Yang, Huiqing; Han, Fang; Han, Yuanhuai; Yuan, Feng; Zhang, Linyi; Peng, Shuzhong; Guo, Erhu
2017-01-01
Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model plant for cereal crops and biofuel grasses. Although its reference genome sequence was released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains limited. The development of massively parallel genotyping methods and next-generation sequencing technologies provides an excellent opportunity for developing single-nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantitative traits. In this study, a high-throughput and cost-effective RAD-seq approach was employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP markers were used to genotype 124 F2 progenies derived from the cross between Hongmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for eight agronomic traits were identified; five co-dominant DNA markers were developed. These findings will be of value for the identification of candidate genes and marker-assisted selection in foxtail millet.
Wang, Zhilan; Du, Xiaofen; Yang, Huiqing; Han, Fang; Han, Yuanhuai; Yuan, Feng; Zhang, Linyi; Peng, Shuzhong; Guo, Erhu
2017-01-01
Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model plant for cereal crops and biofuel grasses. Although its reference genome sequence was released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains limited. The development of massively parallel genotyping methods and next-generation sequencing technologies provides an excellent opportunity for developing single-nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantitative traits. In this study, a high-throughput and cost-effective RAD-seq approach was employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP markers were used to genotype 124 F2 progenies derived from the cross between Hongmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for eight agronomic traits were identified; five co-dominant DNA markers were developed. These findings will be of value for the identification of candidate genes and marker-assisted selection in foxtail millet. PMID:28644843
Boutwell, Brian B; Beaver, Kevin M; Barnes, James C; Vaske, Jamie
2012-05-30
A line of research has revealed that the influence of genes on behavioral development is closely tied to environmental experiences. Known as gene-environment interaction, research in this area is beginning to reveal that variation in parenting behaviors may moderate genetic influences on antisocial behaviors in children. Despite growing interest in gene-environment interaction research, little evidence exists concerning the role of maternal disengagement in the conditioning of genetic influences on childhood behavioral problems. The current study is intended to address this gap in the literature by analyzing a sample of twin pairs drawn from the Early Childhood Longitudinal Study, Birth Cohort (ECLS-B). Analysis of the ECLS-B provided evidence that maternal disengagement moderates genetic influences on the development of externalizing problems. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Genetic and phenotypic analysis of shoot apical and floral meristem development
USDA-ARS?s Scientific Manuscript database
The shoot apical and floral meristems (SAM and FM, respectively) of Arabidopsis thaliana contain reservoirs of self-renewing stem cells that function as sources of progenitor cells for organ formation during development. The primary SAM produces all of the aerial structures of the adult plant, where...
USDA-ARS?s Scientific Manuscript database
Technological developments in both the collection and analysis of molecular genetic data over the past few years have provided new opportunities for an improved understanding of the global response to pathogen exposure. Such developments are particularly dramatic for scientists studying the pig, whe...
Miranda, Cacy; Veach, Patricia McCarthy; Martyr, Meredith A; LeRoy, Bonnie S
2016-08-01
This study comprises an initial empirical description of personal and professional characteristics of master genetic counselors-those considered to be experts in the profession. Fifteen peer-nominated genetic counselors, actively engaged in providing clinical services to patients, participated in semi-structured telephone interviews exploring their personal qualities, inspirations, and perspectives on professional development of expertise. Analysis using modified Consensual Qualitative Research methods yielded 7 domains and 33 categories. Findings indicate master genetic counselors have a strong passion for and dynamic commitment to the profession. They also have insatiable curiosity and are life-long learners who are reflective, self-aware, confident, and recognize their limitations. They are authentic and genuine, and consider their personality to be their counseling style. They form collaborative and interactive relationships with patients based on trust, and they have nuanced attunement to the complexity and multiple levels of the counseling process. Master genetic counselors have deep empathy and are inspired by patients and colleagues, and they derive personal meaning from their work. They are affected emotionally by their work, but effectively manage the emotional impact. They view their professional development as ongoing, influenced by colleagues, patients, mentoring, multicultural considerations, and their own family of origin. They also believe professional development of expertise occurs through critical reflection upon the experiences one accrues. Additional findings and their relationship to theory and research, study strengths and limitations, implication for training and practice, and research recommendation are discussed.
Hindrikson, Maris; Remm, Jaanus; Männil, Peep; Ozolins, Janis; Tammeleht, Egle; Saarma, Urmas
2013-01-01
Spatial genetics is a relatively new field in wildlife and conservation biology that is becoming an essential tool for unravelling the complexities of animal population processes, and for designing effective strategies for conservation and management. Conceptual and methodological developments in this field are therefore critical. Here we present two novel methodological approaches that further the analytical possibilities of STRUCTURE and DResD. Using these approaches we analyse structure and migrations in a grey wolf (Canislupus) population in north-eastern Europe. We genotyped 16 microsatellite loci in 166 individuals sampled from the wolf population in Estonia and Latvia that has been under strong and continuous hunting pressure for decades. Our analysis demonstrated that this relatively small wolf population is represented by four genetic groups. We also used a novel methodological approach that uses linear interpolation to statistically test the spatial separation of genetic groups. The new method, which is capable of using program STRUCTURE output, can be applied widely in population genetics to reveal both core areas and areas of low significance for genetic groups. We also used a recently developed spatially explicit individual-based method DResD, and applied it for the first time to microsatellite data, revealing a migration corridor and barriers, and several contact zones.
Veeramah, Krishna R.; Rott, Andreas; Groß, Melanie; López, Saioa; Kirsanow, Karola; Sell, Christian; Blöcher, Jens; Link, Vivian; Hofmanová, Zuzana; Peters, Joris; Trautmann, Bernd; Gairhos, Anja; Haberstroh, Jochen; Päffgen, Bernd; Hellenthal, Garrett; Haas-Gebhard, Brigitte; Harbeck, Michaela; Burger, Joachim
2018-01-01
Modern European genetic structure demonstrates strong correlations with geography, while genetic analysis of prehistoric humans has indicated at least two major waves of immigration from outside the continent during periods of cultural change. However, population-level genome data that could shed light on the demographic processes occurring during the intervening periods have been absent. Therefore, we generated genomic data from 41 individuals dating mostly to the late 5th/early 6th century AD from present-day Bavaria in southern Germany, including 11 whole genomes (mean depth 5.56×). In addition we developed a capture array to sequence neutral regions spanning a total of 5 Mb and 486 functional polymorphic sites to high depth (mean 72×) in all individuals. Our data indicate that while men generally had ancestry that closely resembles modern northern and central Europeans, women exhibit a very high genetic heterogeneity; this includes signals of genetic ancestry ranging from western Europe to East Asia. Particularly striking are women with artificial skull deformations; the analysis of their collective genetic ancestry suggests an origin in southeastern Europe. In addition, functional variants indicate that they also differed in visible characteristics. This example of female-biased migration indicates that complex demographic processes during the Early Medieval period may have contributed in an unexpected way to shape the modern European genetic landscape. Examination of the panel of functional loci also revealed that many alleles associated with recent positive selection were already at modern-like frequencies in European populations ∼1,500 years ago. PMID:29531040
Contribution of European research to risk analysis.
Boenke, A
2001-12-01
The European Commission's, Quality of Life Research Programme, Key Action 1-Health, Food & Nutrition is mission-oriented and aims, amongst other things, at providing a healthy, safe and high-quality food supply leading to reinforced consumer confidence in the safety, of European food. Its objectives also include the enhancing of the competitiveness of the European food supply. Key Action 1 is currently supporting a number of different types of European collaborative projects in the area of risk analysis. The objectives of these projects range from the development and validation of prevention strategies including the reduction of consumers risks; development and validation of new modelling approaches, harmonization of risk assessment principles methodologies and terminology; standardization of methods and systems used for the safety evaluation of transgenic food; providing of tools for the evaluation of human viral contamination of shellfish and quality control; new methodologies for assessing the potential of unintended effects of genetically modified (genetically modified) foods; development of a risk assessment model for Cryptosporidium parvum related to the food and water industries, to the development of a communication platform for genetically modified organism, producers, retailers, regulatory authorities and consumer groups to improve safety assessment procedures, risk management strategies and risk communication; development and validation of new methods for safety testing of transgenic food; evaluation of the safety and efficacy of iron supplementation in pregnant women, evaluation of the potential cancer-preventing activity of pro- and pre-biotic ('synbiotic') combinations in human volunteers. An overview of these projects is presented here.
DNA origami-based shape IDs for single-molecule nanomechanical genotyping
NASA Astrophysics Data System (ADS)
Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai
2017-04-01
Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ~10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.
DNA origami-based shape IDs for single-molecule nanomechanical genotyping
Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai
2017-01-01
Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ∼10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level. PMID:28382928
[GENOTYPING OF THE BURKHOLDERIA MALLEI STRAINS BASED ON DIFFERENT REGION ANALYSIS].
Bondareva, O S; Savchenko, S S; Tkachenko, G A; Ledeneva, M L; Lemasova, L V; Antonov, V A
2016-01-01
Development of the genotyping methods of glanders agent is urgent due to its high pathogenicity, lack of effective preventive measures and threat of the use of Burkholderia mallei as a biological weapon. In this work we proposed a scheme for the typing of the B. mallei strains based on different region analysis (DFR). The choice of variable loci differentially presented in various strains of glanders agents was performed by analyzing annotated whole-genome sequences of the B. mallei strains. Primers and fluorescence probes were designed for 9 selected loci. The amplification conditions for different regions were optimized in two variants: with electrophoretic detection and hybridization-fluorescence detection in the strip format. The possibility of applying the DFR analysis to genetic characterization of strains was assessed in 14 B. mallei strains. The genetic profiles of the studied B. mallei strains revealed that the developed DFR-typing scheme was characterized by high discrimination power (Hunter-Gaston index value was 0.92), reproducibility, rapidity, easy interpretation, and applicability for epidemiological surveillance of glanders.
Sharma, Vishakha; Nandineni, Madhusudan R
2014-04-01
Potato (Solanum tuberosum) is an important non-cereal crop throughout the world and is highly recommended for ensuring global food security. Owing to the complexities in genetics and inheritance pattern of potato, the conventional method of cross breeding for developing improved varieties has been difficult. Identification and tagging of desirable traits with informative molecular markers would aid in the development of improved varieties. Insertional polymorphism of copia-like and gypsy-like long terminal repeat retrotransposons (RTN) were investigated among 47 potato varieties from India using Inter-Retrotransposon Amplified Polymorphism (IRAP) and Retrotransposon Microsatellite Amplified Polymorphism (REMAP) marker techniques and were compared with the DNA profiles obtained with simple sequence repeats (SSRs). The genetic polymorphism, efficiency of polymorphism and effectiveness of marker systems were evaluated to assess the extent of genetic diversity among Indian potato varieties. A total of 139 polymorphic SSR alleles, 270 IRAP and 98 REMAP polymorphic bands, showing polymorphism of 100%, 87.9% and 68.5%, respectively, were used for detailed characterization of the genetic relationships among potato varieties by using cluster analysis and principal coordinate analysis (PCoA). IRAP analysis resulted in the highest number of polymorphic bands with an average of 15 polymorphic bands per assay unit when compared to the other two marker systems. Based on pair-wise comparison, the genetic similarity was calculated using Dice similarity coefficient. The SSRs showed a wide range in genetic similarity values (0.485-0.971) as compared to IRAP (0.69-0.911) and REMAP (0.713-0.947). A Mantel's matrix correspondence test showed a high positive correlation (r=0.6) between IRAP and REMAP, an intermediate value (r=0.58) for IRAP and SSR and the lowest value (r=0.17) for SSR and REMAP. Statistically significant cophenetic correlation coefficient values, of 0.961, 0.941 and 0.905 were observed for REMAP, IRAP and SSR, respectively. The widespread presence and distinct DNA profiles for copia-like and gypsy-like RTNs in the examined genotypes indicate that these elements are active in the genome and may have even contributed to the potato genome organization. Although the three marker systems were capable of distinguishing all the 47 varieties; high reproducibility, low cost and ease of DNA profiling data collection make IRAP and REMAP markers highly efficient whole-genome scanning molecular probes for population genetic studies. Information obtained from the present study regarding the genetic association and distinctiveness provides an useful guide for selection of germplasm for plant breeding and conservation efforts. Copyright © 2014. Published by Elsevier Inc.
Ertiro, Berhanu Tadesse; Semagn, Kassa; Das, Biswanath; Olsen, Michael; Labuschagne, Maryke; Worku, Mosisa; Wegary, Dagne; Azmach, Girum; Ogugo, Veronica; Keno, Tolera; Abebe, Beyene; Chibsa, Temesgen; Menkir, Abebe
2017-10-12
Molecular characterization is important for efficient utilization of germplasm and development of improved varieties. In the present study, we investigated the genetic purity, relatedness and population structure of 265 maize inbred lines from the Ethiopian Institute of Agricultural Research (EIAR), the International Maize and Wheat Improvement Centre (CIMMYT) and the International Institute of Tropical Agriculture (IITA) using 220,878 single nucleotide polymorphic (SNP) markers obtained using genotyping by sequencing (GBS). Only 22% of the inbred lines were considered pure with <5% heterogeneity, while the remaining 78% of the inbred lines had a heterogeneity ranging from 5.1 to 31.5%. Pairwise genetic distances among the 265 inbred lines varied from 0.011 to 0.345, with 89% of the pairs falling between 0.301 and 0.345. Only <1% of the pairs had a genetic distance lower than 0.200, which included 14 pairs of sister lines that were nearly identical. Relative kinship analysis showed that the kinship coefficients for 59% of the pairs of lines was close to zero, which agrees with the genetic distance estimates. Principal coordinate analysis, discriminant analysis of principal components (DAPC) and the model-based population structure analysis consistently suggested the presence of three groups, which generally agreed with pedigree information (genetic background). Although not distinct enough, the SNP markers showed some level of separation between the two CIMMYT heterotic groups A and B established based on pedigree and combining ability information. The high level of heterogeneity detected in most of the inbred lines suggested the requirement for purification or further inbreeding except those deliberately maintained at early inbreeding level. The genetic distance and relative kinship analysis clearly indicated the uniqueness of most of the inbred lines in the maize germplasm available for breeders in the mid-altitude maize breeding program of Ethiopia. Results from the present study facilitate the maize breeding work in Ethiopia and germplasm exchange among breeding programs in Africa. We suggest the incorporation of high density molecular marker information in future heterotic group assignments.
Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems
JIN, Li-Fang; LI, Jin-Song
2016-01-01
With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Recently, important progress has been achieved in the generation of genetically modified mice based on CRISPR/Cas9 and haploid embryonic stem cell (haESC) approaches, which provide new platforms for gene function analysis, human disease modeling, and gene therapy. Here, we review the CRISPR/Cas9 and haESC technology for the generation of genetically modified mice and discuss the key challenges in the application of these approaches. PMID:27469251
Structure and function of the homeotic gene complex (HOM-C) in the beetle, Tribolium castaneum
NASA Technical Reports Server (NTRS)
Beeman, R. W.; Stuart, J. J.; Brown, S. J.; Denell, R. E.; Spooner, B. S. (Principal Investigator)
1993-01-01
The powerful combination of genetic, developmental and molecular approaches possible with the fruit fly, Drosophila melanogaster, has led to a profound understanding of the genetic control of early developmental events. However, Drosophila is a highly specialized long germ insect, and the mechanisms controlling its early development may not be typical of insects or Arthropods in general. The beetle, Tribolium castaneum, offers a similar opportunity to integrate high resolution genetic analysis with the developmental/molecular approaches currently used in other organisms. Early results document significant differences between insect orders in the functions of genes responsible for establishing developmental commitments.
Structure and function of the homeotic gene complex (HOM-C) in the beetle, Tribolium castaneum.
Beeman, R W; Stuart, J J; Brown, S J; Denell, R E
1993-07-01
The powerful combination of genetic, developmental and molecular approaches possible with the fruit fly, Drosophila melanogaster, has led to a profound understanding of the genetic control of early developmental events. However, Drosophila is a highly specialized long germ insect, and the mechanisms controlling its early development may not be typical of insects or Arthropods in general. The beetle, Tribolium castaneum, offers a similar opportunity to integrate high resolution genetic analysis with the developmental/molecular approaches currently used in other organisms. Early results document significant differences between insect orders in the functions of genes responsible for establishing developmental commitments.
Wolf, Erika J; Miller, Mark W; Sullivan, Danielle R; Amstadter, Ananda B; Mitchell, Karen S; Goldberg, Jack; Magruder, Kathryn M
2018-02-01
To examine shared genetic and environmental risk factors across PTSD symptoms and resilience. Classical twin study of 2010-2012 survey data conducted among 3,318 male twin pairs in the Vietnam Era Twin Registry. Analyses included: (a) estimates of genetic and environmental influences on PTSD symptom severity (as measured by the PTSD Checklist) and resilience (assessed with the Connor-Davidson Resilience Scale-10); (b) development of a latent model of traumatic stress, spanning both PTSD and resilience; and (c) estimates of genetic and environmental influences on this spectrum. The heritability of PTSD was 49% and of resilience was 25%. PTSD and resilience were correlated at r = -.59, and 59% of this correlation was attributable to a single genetic factor, whereas the remainder was due to a single non-shared environment factor. Resilience was also influenced by common and unique environmental factors not shared with PTSD, but there was no genetic factor specific to resilience. Confirmatory factor analysis supported the Development of a revised phenotype reflecting the broader dimension of traumatic stress, with biometric models suggesting increased heritability (66%) of this spectrum compared to PTSD or resilience individually. Genetic factors contribute to a single spectrum of traumatic stress reflecting resilience at one end and high symptom severity at the other. This carries implications for phenotype refinement in the search for molecular genetic markers of trauma-related psychopathology. Rather than focusing only on genetic risk for PTSD, molecular genetics research may benefit from evaluation of the broader spectrum of traumatic stress. © 2017 Wiley Periodicals, Inc.
McGue, Matt; Rustichini, Aldo; Iacono, William G
2017-02-01
There is considerable evidence that college attainment is associated with family background and cognitive and noncognitive skills. Behavioral genetic methods are used to determine whether the family background effect is mediated through cognitive and noncognitive skill development. We analyze data from two longitudinal behavioral genetic studies: the Minnesota Twin Family Study, consisting of 1,382 pairs of like-sex twins and their parents, and the Sibling Interaction and Behavior Study, consisting of 409 adoptive and 208 nonadoptive families with two offspring and their rearing parents. Cognitive ability, noncognitive skills, and family background are all associated with offspring college attainment. Biometric analysis shows that the intergenerational transmission of college attainment owes to both genetic and shared environmental factors. The shared environmental influence was not due to highly educated parents fostering noncognitive skill development in their children, and there was limited evidence that they foster cognitive skill development. The environmental transmission of educational attainment does not appear to be a consequence of highly educated parents fostering cognitive and noncognitive skill development. Alternative mechanisms are needed to explain the strong shared environmental influence on college attainment. Possibilities include academic expectations, social network effects, and the economic benefits of having wealthy parents. © 2015 Wiley Periodicals, Inc.
Zintzaras, Elias; Doxani, Chrysoula; Rodopoulou, Paraskevi; Bakalos, Georgios; Ziogas, Dimitris C; Ziakas, Panayiotis; Voulgarelis, Michael
2012-04-01
Acute lymphoblastic leukemia (ALL) is a complex disease with genetic background. The genetic association studies (GAS) that investigated the association between ALL and the MTHFR C677T and A1298C gene variants have produced contradictory or inconclusive results. In order to decrease the uncertainty of estimated genetic risk effects, a meticulous meta-analysis of published GAS related the variants in the MTFHR gene with susceptibility to ALL was conducted. The risk effects were estimated based on the odds ratio (OR) of the allele contrast and the generalized odds ratio (OR(G)). Cumulative and recursive cumulative meta-analyses were also performed. The analysis showed marginal significant association for the C677T variant, overall [OR=0.91 (0.82-1.00) and OR(G)=0.89 (0.79-1.01)], and in Whites [OR=0.88 (0.77-0.99) and OR(G)=0.85 (0.73-0.99)]. The A1298C variant produced non-significant results. For both variants, the cumulative meta-analysis did not show a trend of association as evidence accumulates and the recursive cumulative meta-analysis indicated lack of sufficient evidence for denying or claiming an association. The current evidence is not sufficient to draw definite conclusions regarding the association of MTHFR variants and development of ALL. Copyright © 2011 Elsevier Ltd. All rights reserved.
Investigating CSI: portrayals of DNA testing on a forensic crime show and their potential effects.
Ley, Barbara L; Jankowski, Natalie; Brewer, Paul R
2012-01-01
The popularity of forensic crime shows such as CSI has fueled debate about their potential social impact. This study considers CSI's potential effects on public understandings regarding DNA testing in the context of judicial processes, the policy debates surrounding crime laboratory procedures, and the forensic science profession, as well as an effect not discussed in previous accounts: namely, the show's potential impact on public understandings of DNA and genetics more generally. To develop a theoretical foundation for research on the "CSI effect," it draws on cultivation theory, social cognitive theory, and audience reception studies. It then uses content analysis and textual analysis to illuminate how the show depicts DNA testing. The results demonstrate that CSI tends to depict DNA testing as routine, swift, useful, and reliable and that it echoes broader discourses about genetics. At times, however, the show suggests more complex ways of thinking about DNA testing and genetics.
Behavioral and Molecular Genetics of Reading-Related AM and FM Detection Thresholds.
Bruni, Matthew; Flax, Judy F; Buyske, Steven; Shindhelm, Amber D; Witton, Caroline; Brzustowicz, Linda M; Bartlett, Christopher W
2017-03-01
Auditory detection thresholds for certain frequencies of both amplitude modulated (AM) and frequency modulated (FM) dynamic auditory stimuli are associated with reading in typically developing and dyslexic readers. We present the first behavioral and molecular genetic characterization of these two auditory traits. Two extant extended family datasets were given reading tasks and psychoacoustic tasks to determine FM 2 Hz and AM 20 Hz sensitivity thresholds. Univariate heritabilities were significant for both AM (h 2 = 0.20) and FM (h 2 = 0.29). Bayesian posterior probability of linkage (PPL) analysis found loci for AM (12q, PPL = 81 %) and FM (10p, PPL = 32 %; 20q, PPL = 65 %). Bivariate heritability analyses revealed that FM is genetically correlated with reading, while AM was not. Bivariate PPL analysis indicates that FM loci (10p, 20q) are not also associated with reading.
Ab initio genotype–phenotype association reveals intrinsic modularity in genetic networks
Slonim, Noam; Elemento, Olivier; Tavazoie, Saeed
2006-01-01
Microbial species express an astonishing diversity of phenotypic traits, behaviors, and metabolic capacities. However, our molecular understanding of these phenotypes is based almost entirely on studies in a handful of model organisms that together represent only a small fraction of this phenotypic diversity. Furthermore, many microbial species are not amenable to traditional laboratory analysis because of their exotic lifestyles and/or lack of suitable molecular genetic techniques. As an adjunct to experimental analysis, we have developed a computational information-theoretic framework that produces high-confidence gene–phenotype predictions using cross-species distributions of genes and phenotypes across 202 fully sequenced archaea and eubacteria. In addition to identifying the genetic basis of complex traits, our approach reveals the organization of these genes into generic preferentially co-inherited modules, many of which correspond directly to known enzymatic pathways, molecular complexes, signaling pathways, and molecular machines. PMID:16732191
The genetic architecture of long QT syndrome: A critical reappraisal.
Giudicessi, John R; Wilde, Arthur A M; Ackerman, Michael J
2018-03-30
Collectively, the completion of the Human Genome Project and subsequent development of high-throughput next-generation sequencing methodologies have revolutionized genomic research. However, the rapid sequencing and analysis of thousands upon thousands of human exomes and genomes has taught us that most genes, including those known to cause heritable cardiovascular disorders such as long QT syndrome, harbor an unexpected background rate of rare, and presumably innocuous, non-synonymous genetic variation. In this Review, we aim to reappraise the genetic architecture underlying both the acquired and congenital forms of long QT syndrome by examining how the clinical phenotype associated with and background genetic variation in long QT syndrome-susceptibility genes impacts the clinical validity of existing gene-disease associations and the variant classification and reporting strategies that serve as the foundation for diagnostic long QT syndrome genetic testing. Copyright © 2018 Elsevier Inc. All rights reserved.
[Genetic obesity: new diagnostic options].
de Vries, T I; Alsters, S I M; Kleinendorst, L; van Haaften, G; van der Zwaag, B; Van Haelst, M M
2017-01-01
- Obesity is an important risk factor for morbidity and premature death, as well as a contributing factor to psychosocial problems. The incidence of obesity has increased dramatically over the last few decades.- Obesity is considered to be a multifactorial condition in which both environmental factors and genetic factors play a part.- In approximately 5% of patients with morbid obesity, a monogenic cause can be identified. Mutations in the MC4R gene are the most frequently occurring monogenic cause of obesity.- The department of Genetics at the VU University Medical Center Amsterdam offers morbidly obese patients a diagnostic analysis of 50 obesity-associated genes. - An underlying obesity-associated genetic defect can influence patient response to certain treatments. Therefore, if the gene defect is known, it can be taken into account when considering treatment options.- The understanding of the genetics of obesity will significantly contribute to research into the development of personalized treatment options.
2017-01-01
Induced mutagenesis was employed to create genetic variation in the lentil cultivars for yield improvement. The assessments were made on genetic variability, character association, and genetic divergence among the twelve mutagenized populations and one parent population of each of the two lentil cultivars, developed by single and combination treatments with gamma rays and hydrazine hydrates. Analysis of variance revealed significant inter-population differences for the observed quantitative phenotypic traits. The sample mean of six treatment populations in each of the cultivar exhibited highly superior quantitative phenotypic traits compared to their parent cultivars. The higher values of heritability and genetic advance with a high genotypic coefficient of variation for most of the yield attributing traits confirmed the possibilities of lentil yield improvement through phenotypic selection. The number of pods and seeds per plant appeared to be priority traits in selection for higher yield due to their strong direct association with yield. The cluster analysis divided the total populations into three divergent groups in each lentil cultivar with parent genotypes in an independent group showing the high efficacy of the mutagens. Considering the highest contribution of yield trait to the genetic divergence among the clustered population, it was confirmed that the mutagenic treatments created a wide heritable variation for the trait in the mutant populations. The selection of high yielding mutants from the mutant populations of DPL 62 (100 Gy) and Pant L 406 (100Gy + 0.1% HZ) in the subsequent generation is expected to give elite lentil cultivars. Also, hybridization between members of the divergent group would produce diverse segregants for crop improvement. Apart from this, the induced mutations at loci controlling economically important traits in the selected high yielding mutants have successfully contributed in diversifying the accessible lentil genetic base and will definitely be of immense value to the future lentil breeding programmes in India. PMID:28922405
Systematic review and meta-analysis of genetic risk factors for neuropathic pain.
Veluchamy, Abirami; Hébert, Harry L; Meng, Weihua; Palmer, Colin N A; Smith, Blair H
2018-05-01
Neuropathic pain (NP) is an increasingly common chronic pain state and a major health burden, affecting approximately 7% to 10% of the general population. Emerging evidence suggests that genetic factors could partially explain individual susceptibility to NP and the estimated heritability in twins is 37%. The aim of this study was to systematically review and summarize the studies in humans that have investigated the influence of genetic factors associated with NP. We conducted a comprehensive literature search and performed meta-analyses of all the potential genetic variants associated with NP. We reviewed 29 full-text articles and identified 28 genes that were significantly associated with NP, mainly involved in neurotransmission, immune response, and metabolism. Genetic variants in HLA genes, COMT, OPRM1, TNFA, IL6, and GCH1, were found to have an association with NP in more than one study. In the meta-analysis, polymorphisms in HLA-DRB1*13 (odds ratio [OR], 2.96; confidence interval [CI], 1.93-4.56), HLA-DRB1*04 (OR, 1.40; CI, 1.02-1.93), HLA-DQB1*03 (OR, 2.86; CI, 1.57-5.21), HLA-A*33 (OR, 2.32; CI, 1.42-3.80), and HLA-B*44 (OR, 3.17; CI, 2.22-4.55) were associated with significantly increased risk of developing NP, whereas HLA-A*02 (OR, 0.64; CI, 0.47-0.87) conferred reduced risk and neither rs1799971 in OPRM1 (OR, 0.55; CI, 0.27-1.11) nor rs4680 in COMT (OR, 0.95; CI, 0.81-1.13) were significantly associated with NP. These findings demonstrate an important and specific contribution of genetic factors to the risk of developing NP. However, large-scale replication studies are required to validate these candidate genes. Our review also highlights the need for genome-wide association studies with consistent case definition to elucidate the genetic architecture underpinning NP.
Zong, Jian-Wei; Zhao, Tian-Tian; Ma, Qing-Hua; Liang, Li-Song; Wang, Gui-Xi
2015-01-01
Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777). According to the coefficient of genetic differentiation (Fst = 0.1215), genetic variation within the populations (87.85%) were remarkably higher than among populations (12.15%). The average gene flow (Nm = 1.8080) significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages) dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km) among populations (r = 0.419, P = 0.005), suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic distance. These data provide comprehensive information for the development of conservation strategies of these valuable hazelnut resources.
Dias, Elisabete F.; Moura, M.; Schaefer, H.; Silva, Luís
2016-01-01
Island plants are frequently used as model systems in evolutionary biology to understand factors that might explain genetic diversity and population differentiation levels. Theory suggests that island plants should have lower levels of genetic diversity than their continental relatives, but this hypothesis has been rejected in several recent studies. In the Azores, the population level genetic diversity is generally low. However, like in most island systems, there are high levels of genetic differentiation between different islands. The Azores lettuce, Lactuca watsoniana, is an endangered Asteraceae with small population sizes. Therefore, we expect to find a lower level of genetic diversity than in the other more common endemic Asteraceae. The intra- and interpopulation genetic structure and diversity of L. watsoniana was assessed using eight newly developed microsatellite markers. We included 135 individuals, from all 13 known populations in the study. Because our microsatellite results suggested that the species is tetraploid, we analysed the microsatellite data (i) in codominant format using PolySat (Principal Coordinate Analysis, PCoA) and SPAgedi (genetic diversity indexes) and (ii) in dominant format using Arlequin (AMOVA) and STRUCTURE (Bayesian genetic cluster analysis). A total of 129 alleles were found for all L. watsoniana populations. In contrast to our expectations, we found a high level of intrapopulation genetic diversity (total heterozigosity = 0.85; total multilocus average proportion of private alleles per population = 26.5 %, Fis = −0.19). Our results show the existence of five well-defined genetic groups, one for each of the three islands São Miguel, Terceira and Faial, plus two groups for the East and West side of Pico Island (Fst = 0.45). The study revealed the existence of high levels of genetic diversity, which should be interpreted taking into consideration the ploidy level of this rare taxon. PMID:27742648
Santurtún, Ana; Riancho, José A; Arozamena, Jana; López-Duarte, Mónica; Zarrabeitia, María T
2017-01-01
Several methods have been developed to determinate genetic profiles from a mixed samples and chimerism analysis in transplanted patients. The aim of this study was to explore the effectiveness of using the droplet digital PCR (ddPCR) for mixed chimerism detection (a mixture of genetic profiles resulting after allogeneic hematopoietic stem cell transplantation (HSCT)). We analyzed 25 DNA samples from patients who had undergone HSCT and compared the performance of ddPCR and two established methods for chimerism detection, based upon the Indel and STRs analysis, respectively. Additionally, eight artificial mixture DNA samples were created to evaluate the sensibility of ddPCR. Our results show that the chimerism percentages estimated by the analysis of a single Indel using ddPCR were very similar to those calculated by the amplification of 15 STRs (r 2 = 0.970) and with the results obtained by the amplification of 38 Indels (r 2 = 0.975). Moreover, the amplification of a single Indel by ddPCR was sensitive enough to detect a minor DNA contributor comprising down to 0.5 % of the sample. We conclude that ddPCR can be a powerful tool for the determination of a genetic profile of forensic mixtures and clinical chimerism analysis when traditional techniques are not sensitive enough.
NASA Astrophysics Data System (ADS)
Gouache, David; Beauchêne, Katia; Mini, Agathe; Fournier, Antoine; de Solan, Benoit; Baret, Fred; Comar, Alexis
2016-05-01
Digital and image analysis technologies in greenhouses have become commonplace in plant science research and started to move into the plant breeding industry. However, the core of plant breeding work takes place in fields. We will present successive technological developments that have allowed the migration and application of remote sensing approaches at large into the field of crop genetics and physiology research, with a number of projects that have taken place in France. These projects have allowed us to develop combined sensor plus vector systems, from tractor mounted and UAV (unmanned aerial vehicle) mounted spectroradiometry to autonomous vehicle mounted spectroradiometry, RGB (red-green-blue) imagery and Lidar. We have tested these systems for deciphering the genetics of complex plant improvement targets such as the robustness to nitrogen and water deficiency of wheat and maize. Our results from wheat experiments indicate that these systems can be used both to screen genetic diversity for nitrogen stress tolerance and to decipher the genetics behind this diversity. We will present our view on the next critical steps in terms of technology and data analysis that will be required to reach cost effective implementation in industrial plant breeding programs. If this can be achieved, these technologies will largely contribute to resolving the equation of increasing food supply in the resource limited world that lies ahead.
Kuesap, Jiraporn; Chaijaroenkul, Wanna; Ketprathum, Kanchanok; Tattiyapong, Puntanat; Na-Bangchang, Kesara
2014-02-01
Plasmodium falciparum malaria is a major public health problem in Thailand due to the emergence of multidrug resistance. The understanding of genetic diversity of malaria parasites is essential for developing effective drugs and vaccines. The genetic diversity of the merozoite surface protein-1 (PfMSP-1) and merozoite surface protein-2 (PfMSP-2) genes was investigated in a total of 145 P. falciparum isolates collected from Mae Sot District, Tak Province, Thailand during 3 different periods (1997-1999, 2005-2007, and 2009-2010). Analysis of genetic polymorphisms was performed to track the evolution of genetic change of P. falciparum using PCR. Both individual genes and their combination patterns showed marked genetic diversity during the 3 study periods. The results strongly support that P. falciparum isolates in Thailand are markedly diverse and patterns changed with time. These 2 polymorphic genes could be used as molecular markers to detect multiple clone infections and differentiate recrudescence from reinfection in P. falciparum isolates in Thailand.
Wang, Q Z; Huang, M; Downie, S R; Chen, Z X
2016-05-23
Invasive plants tend to spread aggressively in new habitats and an understanding of their genetic diversity and population structure is useful for their management. In this study, expressed sequence tag-simple sequence repeat (EST-SSR) markers were developed for the invasive plant species Praxelis clematidea (Asteraceae) from 5548 Stevia rebaudiana (Asteraceae) expressed sequence tags (ESTs). A total of 133 microsatellite-containing ESTs (2.4%) were identified, of which 56 (42.1%) were hexanucleotide repeat motifs and 50 (37.6%) were trinucleotide repeat motifs. Of the 24 primer pairs designed from these 133 ESTs, 7 (29.2%) resulted in significant polymorphisms. The number of alleles per locus ranged from 5 to 9. The relatively high genetic diversity (H = 0.2667, I = 0.4212, and P = 100%) of P. clematidea was related to high gene flow (Nm = 1.4996) among populations. The coefficient of population differentiation (GST = 0.2500) indicated that most genetic variation occurred within populations. A Mantel test suggested that there was significant correlation between genetic distance and geographical distribution (r = 0.3192, P = 0.012). These results further support the transferability of EST-SSR markers between closely related genera of the same family.
Allnutt, T R; Roper, K; Henry, C
2008-01-23
A genetic marker system based on the S1 Short Interspersed Elements (SINEs) in the important commercial crop, oilseed rape ( Brassica napus L.) has been developed. SINEs provided a successful multilocus, dominant marker system that was capable of clearly delineating winter- and spring-type crop varieties. Sixteen of 20 varieties tested showed unique profiles from the 17 polymorphic SINE markers generated. The 3' or 5' flank region of nine SINE markers were cloned, and DNA was sequenced. In addition, one putative pre-transposition SINE allele was cloned and sequenced. Two SINE flanking sequences were used to design real-time PCR assays. These quantitative SINE assays were applied to study the genetic structure of eight fields of oilseed rape crops. Studied fields were more genetically diverse than expected for the chosen loci (mean H T = 0.23). The spatial distribution of SINE marker frequencies was highly structured in some fields, suggesting locations of volunteer impurities within the crop. In one case, the assay identified a mislabeling of the crop variety. SINE markers were a useful tool for crop genetics, phylogenetics, variety identification, and purity analysis. The use and further application of quantitative, real-time PCR markers are discussed.
Hemmings, Sîan M J; Kinnear, Craig J; Lochner, Christine; Niehaus, Dana J H; Knowles, James A; Moolman-Smook, Johanna C; Corfield, Valerie A; Stein, Dan J
2004-09-30
There is increasing evidence that obsessive-compulsive disorder (OCD) is mediated by genetic factors. Although the precise mechanism of inheritance is unclear, recent evidence has pointed towards the involvement of the serotonergic and dopaminergic systems in the disorder's development. Furthermore, early-onset OCD appears to be a subtype that exhibits distinct clinical features and that is associated with greater familial loading. In the present investigation, South African OCD patients (n=252) were stratified according to age of onset and were clinically assessed. Additionally, selected variants in genes encoding serotonergic and dopaminergic components were investigated in a Caucasian OCD subset (n=180). This subgroup was further stratified to evaluate the role that these candidate genes may play in the genetically homogeneous Afrikaner subset (n=80). Analysis of the clinical data revealed an association between early age of onset and an increased frequency of tics, Tourette's disorder, and trichotillomania (TTM). The genetic studies yielded statistically significant results when the allelic distributions of genetic variants in the dopamine receptor type 4 gene (DRD4) were analysed in the Caucasian OCD cohort. These data support a role for the dopaminergic system, which may be relevant to the development of early-onset OCD.
Trezza, Alfonso; Bernini, Andrea; Langella, Andrea; Ascher, David B; Pires, Douglas E V; Sodi, Andrea; Passerini, Ilaria; Pelo, Elisabetta; Rizzo, Stanislao; Niccolai, Neri; Spiga, Ottavia
2017-10-01
The aim of this article is to report the investigation of the structural features of ABCA4, a protein associated with a genetic retinal disease. A new database collecting knowledge of ABCA4 structure may facilitate predictions about the possible functional consequences of gene mutations observed in clinical practice. In order to correlate structural and functional effects of the observed mutations, the structure of mouse P-glycoprotein was used as a template for homology modeling. The obtained structural information and genetic data are the basis of our relational database (ABCA4Database). Sequence variability among all ABCA4-deposited entries was calculated and reported as Shannon entropy score at the residue level. The three-dimensional model of ABCA4 structure was used to locate the spatial distribution of the observed variable regions. Our predictions from structural in silico tools were able to accurately link the functional effects of mutations to phenotype. The development of the ABCA4Database gathers all the available genetic and structural information, yielding a global view of the molecular basis of some retinal diseases. ABCA4 modeled structure provides a molecular basis on which to analyze protein sequence mutations related to genetic retinal disease in order to predict the risk of retinal disease across all possible ABCA4 mutations. Additionally, our ABCA4 predicted structure is a good starting point for the creation of a new data analysis model, appropriate for precision medicine, in order to develop a deeper knowledge network of the disease and to improve the management of patients.
ERIC Educational Resources Information Center
Johnson, Erin Phinney; Pennington, Bruce F.; Lowenstein, Joanna H.; Nittrouer, Susan
2011-01-01
Research Design;Intervention;Biology;Biotechnology;Teaching Methods;Hands on Science;Professional Development;Comparative Analysis;Genetics;Evaluation;Pretests Posttests;Control Groups;Science Education;Science Instruction;Pedagogical Content Knowledge;
The Diversity Outbred Mouse Population
Churchill, Gary A.; Gatti, Daniel M.; Munger, Steven C.; Svenson, Karen L.
2012-01-01
The Diversity Outbred (DO) population is a heterogeneous stock derived from the same eight founder strains as the Collaborative Cross (CC) inbred strains. Genetically heterogeneous DO mice display a broad range of phenotypes. Natural levels of heterozygosity provide genetic buffering and, as a result, DO mice are robust and breed well. Genetic mapping analysis in the DO presents new challenges and opportunities. Specialized algorithms are required to reconstruct haplotypes from high-density SNP array data. The eight founder haplotypes can be combined into 36 possible diplotypes, which must be accommodated in QTL mapping analysis. Population structure of the DO must be taken into account here. Estimated allele effects of 8 founder haplotypes provide information that is not available in two-parent crosses and can dramatically reduce the number of candidate loci. Allele effects can also distinguish chance co-location of QTL from pleiotropy – which provides a basis for establishing causality in expression QTL studies. We recommended sample sizes of 200 to 800 mice for QTL mapping studies, larger than for traditional crosses. The CC inbred strains provide a resource for independent validation of DO mapping results. Genetic heterogeneity of the DO can provide a powerful advantage in our ability to generalize conclusions to other genetically diverse populations. Genetic diversity can also help to avoid the pitfall of identifying an idiosyncratic reaction that occurs only in a limited genetic context. Informatics tools and data resources associated with the CC, the DO, and their founder strains are developing rapidly. We anticipate a flood of new results to follow as our community begins to adopt and utilize these new genetic resource populations. PMID:22892839
Cost-effectiveness analysis of carrier and prenatal genetic testing for X-linked hemophilia.
Tsai, Meng-Che; Cheng, Chao-Neng; Wang, Ru-Jay; Chen, Kow-Tong; Kuo, Mei-Chin; Lin, Shio-Jean
2015-08-01
Hemophilia involves a lifelong burden from the perspective of the patient and the entire healthcare system. Advances in genetic testing provide valuable information to hemophilia-affected families for family planning. The aim of this study was to analyze the cost-effectiveness of carrier and prenatal genetic testing in the health-economic framework in Taiwan. A questionnaire was developed to assess the attitudes towards genetic testing for hemophilia. We modeled clinical outcomes of the proposed testing scheme by using the decision tree method. Incremental cost-effectiveness analysis was conducted, based on data from the National Health Insurance (NHI) database and a questionnaire survey. From the NHI database, 1111 hemophilic patients were identified and required an average medical expenditure of approximately New Taiwan (NT) $2.1 million per patient-year in 2009. By using the decision tree model, we estimated that 26 potential carriers need to be tested to prevent one case of hemophilia. At a screening rate of 79%, carrier and prenatal genetic testing would cost NT $85.9 million, which would be offset by an incremental saving of NT $203 million per year by preventing 96 cases of hemophilia. Assuming that the life expectancy for hemophilic patients is 70 years, genetic testing could further save NT $14.2 billion. Higher screening rates would increase the savings for healthcare resources. Carrier and prenatal genetic testing for hemophilia is a cost-effective investment in healthcare allocation. A case management system should be integrated in the current practice to facilitate patient care (e.g., collecting family pedigrees and providing genetic counseling). Copyright © 2013. Published by Elsevier B.V.
Pissard, Audrey; Arbizu, Carlos; Ghislain, Marc; Faux, Anne-Michèle; Paulet, Sébastien; Bertin, Pierre
2008-01-01
Oxalis tuberosa is an important crop cultivated in the highest Andean zones. A germplasm collection is maintained ex situ by CIP, which has developed a morphological markers system to classify the accessions into morphotypes, i.e. groups of morphologically identical accessions. However, their genetic uniformity is currently unknown. The ISSR technique was used in two experiments to determine the relationships between both morphological and molecular markers systems. The intra-morphotype genetic diversity, the spatial structures of the diversity and the congruence between both markers systems were determined. In the first experience, 44 accessions representing five morphotypes, clearly distinct from each other, were analyzed. At the molecular level, the accessions exactly clustered according to their morphotypes. However, a genetic variability was observed inside each morphotype. In the second experiment, 34 accessions gradually differing from each other on morphological base were analyzed. The morphological clustering showed no geographical structure. On the opposite, the molecular analysis showed that the genetic structure was slightly related to the collection site. The correlation between both markers systems was weak but significant. The lack of perfect congruence between morphological and molecular data suggests that the morphological system may be useful for the morphotypes management but is not appropriate to study the genetic structure of the oca. The spatial structure of the genetic diversity can be related to the evolution of the species and the discordance between the morphological and molecular structures may result from similar selection pressures at different places leading to similar forms with a different genetic background.
ERIC Educational Resources Information Center
Mysliwiec, Tami H.
2003-01-01
Incorporates history and genetics to explain how genetic traits are passed on to the next generation by focusing on methemoglobinemia, a rare genetic disease, and discusses how oxygen is carried by hemoglobin. Includes individual pedigree analysis and class pedigree analysis. (YDS)
Albertin, Warren; Panfili, Aurélie; Miot-Sertier, Cécile; Goulielmakis, Aurélie; Delcamp, Adline; Salin, Franck; Lonvaud-Funel, Aline; Curtin, Chris; Masneuf-Pomarede, Isabelle
2014-09-01
Although many yeasts are useful for food production and beverage, some species may cause spoilage with important economic loss. This is the case of Dekkera/Brettanomyces bruxellensis, a contaminant species that is mainly associated with fermented beverages (wine, beer, cider and traditional drinks). To better control Brettanomyces spoilage, rapid and reliable genotyping methods are necessary to determine the origins of the spoilage, to assess the effectiveness of preventive treatments and to develop new control strategies. Despite several previously published typing methods, ranging from classical molecular methods (RAPD, AFLP, REA-PFGE, mtDNA restriction analysis) to more engineered technologies (infrared spectroscopy), there is still a lack of a rapid, reliable and universal genotyping approach. In this work, we developed eight polymorphic microsatellites markers for the Brettanomyces/Dekkera bruxellensis species. Microsatellite typing was applied to the genetic analysis of wine and beer isolates from Europe, Australia and South Africa. Our results suggest that B. bruxellensis is a highly disseminated species, with some strains isolated from different continents being closely related at the genetic level. We also focused on strains isolated from two Bordeaux wineries on different substrates (grapes, red wines) and for different vintages (over half a century). We showed that all B. bruxellensis strains within a cellar are strongly related at the genetic level, suggesting that one clonal population may cause spoilage over decades. The microsatellite tool now paves the way for future population genetics research of the B. bruxellensis species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of Design Rules for Reliable Antisense RNA Behavior in E. coli.
Hoynes-O'Connor, Allison; Moon, Tae Seok
2016-12-16
A key driver of synthetic biology is the development of designable genetic parts with predictable behaviors that can be quickly implemented in complex genetic systems. However, the intrinsic complexity of gene regulation can make the rational design of genetic parts challenging. This challenge is apparent in the design of antisense RNA (asRNA) regulators. Though asRNAs are well-known regulators, the literature governing their design is conflicting and leaves the synthetic biology community without clear asRNA design rules. The goal of this study is to perform a comprehensive experimental characterization and statistical analysis of 121 unique asRNA regulators in order to resolve the conflicts that currently exist in the literature. asRNAs usually consist of two regions, the Hfq binding site and the target binding region (TBR). First, the behaviors of several high-performing Hfq binding sites were compared, in terms of their ability to improve repression efficiencies and their orthogonality. Next, a large-scale analysis of TBR design parameters identified asRNA length, the thermodynamics of asRNA-mRNA complex formation, and the percent of target mismatch as key parameters for TBR design. These parameters were used to develop simple asRNA design rules. Finally, these design rules were applied to construct both a simple and a complex genetic circuit containing different asRNAs, and predictable behavior was observed in both circuits. The results presented in this study will drive synthetic biology forward by providing useful design guidelines for the construction of asRNA regulators with predictable behaviors.
Genetic diversity of populations and clones of Rhopilema esculentum in China based on AFLP analysis
NASA Astrophysics Data System (ADS)
Qiao, Hongjin; Liu, Xiangquan; Zhang, Xijia; Jiang, Haibin; Wang, Jiying; Zhang, Limin
2013-03-01
Amplified fragment length polymorphisms (AFLP) markers were developed to assess the genetic variation of populations and clones of Rhopilema esculentum Kishinouye (Scyphozoa, Rhizostomatidae). One hundred and seventy-nine loci from 56 individuals of two hatchery populations and two wild populations were genotyped with five primer combinations. The polymorphic ratio, Shannon's diversity index and average heterozygosity were 70.3%, 0.346 and 0.228 for the white hatchery population, 74.3%, 0.313, and 0.201 for the red hatchery population, 79.3%, 0.349, and 0.224 for the Jiangsu wild population, and 74.9%, 0.328 and 0.210 for the Penglai wild population, respectively. Thus, all populations had a relatively high level of genetic diversity. A specific band was identified that could separate the white from the red hatchery population. There was 84.85% genetic differentiation within populations. Individual cluster analysis using unweighted pair-group method with arithmetic mean (UPGMA) suggested that hatchery populations and wild populations could be divided. For the hatchery populations, the white and red populations clustered separately; however, for the wild populations, Penglai and Jiangsu populations clustered together. The genetic diversity at the clone level was also determined. Our data suggest that there are relatively high genetic diversities within populations but low genetic differentiation between populations, which may be related to the long-term use of germplasm resources from Jiangsu Province for artificial seeding and releasing. These findings will benefit the artificial seeding and conservation of the germplasm resources.
Functional genomics platform for pooled screening and mammalian genetic interaction maps
Kampmann, Martin; Bassik, Michael C.; Weissman, Jonathan S.
2014-01-01
Systematic genetic interaction maps in microorganisms are powerful tools for identifying functional relationships between genes and defining the function of uncharacterized genes. We have recently implemented this strategy in mammalian cells as a two-stage approach. First, genes of interest are robustly identified in a pooled genome-wide screen using complex shRNA libraries. Second, phenotypes for all pairwise combinations of hit genes are measured in a double-shRNA screen and used to construct a genetic interaction map. Our protocol allows for rapid pooled screening under various conditions without a requirement for robotics, in contrast to arrayed approaches. Each stage of the protocol can be implemented in ~2 weeks, with additional time for analysis and generation of reagents. We discuss considerations for screen design, and present complete experimental procedures as well as a full computational analysis suite for identification of hits in pooled screens and generation of genetic interaction maps. While the protocols outlined here were developed for our original shRNA-based approach, they can be applied more generally, including to CRISPR-based approaches. PMID:24992097
Arunachalam Palaniyandi, Sasikumar; Yang, Seung Hwan; Damodharan, Karthiyaini; Suh, Joo-Won
2013-12-01
Actinobacteria were isolated from the rhizosphere of yam plants from agricultural fields from Yeoju, South Korea and analyzed for their genetic and plant-beneficial functional diversity. A total of 29 highly occurring actinobacterial isolates from the yam rhizosphere were screened for various plant-beneficial traits such as antimicrobial activity on fungi and bacteria; biocontrol traits such as production of siderophore, protease, chitinase, endo-cellulase, and β-glucanase. The isolates were also screened for plant growth-promoting (PGP) traits such as auxin production, phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and in vitro Arabidopsis growth promotion. 16S rDNA sequence-based phylogenetic analysis was carried out on the actinobacterial isolates to determine their genetic relatedness to known actinobacteria. BOX-PCR analysis revealed high genetic diversity among the isolates. Several isolates were identified to belong to the genus Streptomyces and a few to Kitasatospora. The actinobacterial strains exhibited high diversity in their functionality and were identified as novel and promising candidates for future development into biocontrol and PGP agents. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.