24. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, ...
24. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, Natick, Mass, Climatic Building, First Floor Plan, Architectural. Drawing No. 35-07-01, Sheet 2 of 72, 1952, updated to 1985. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
25. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, ...
25. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, Natick, Mass. Climatic Building, First Floor Plan, Refrigeration and Engineering. Drawing No. 35-07-01, Sheet 52 of 72, 1952. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
ERIC Educational Resources Information Center
Zhong, Ying
2013-01-01
Virtual worlds are well-suited for building virtual laboratories for educational purposes to complement hands-on physical laboratories. However, educators may face technical challenges because developing virtual worlds requires skills in programming and 3D design. Current virtual world building tools are developed for users who have programming…
Solar buildings program contract summary, calendar year 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2000-06-07
The mission of the US Department of Energy's Solar Buildings Program is to advance the development and widespread deployment of competitive solar thermal technologies for use in buildings. The long-term goal of the Program is to combine solar energy technologies with energy-efficient construction techniques and create cost-effective buildings that have a zero net need for fossil fuel energy on an annual basis. The Solar Buildings Program conducts research and development on solar technologies that can deliver heat, light, and hot water to residential and commercial buildings. By working closely with manufacturers in both the buildings and solar energy industries andmore » by supporting research at universities and national laboratories, the Solar Buildings Program brings together the diverse players developing reliable and affordable solar technologies for building applications. The National Renewable Energy Laboratory (NREL) in Golden, Colorado, and Sandia National Laboratories (SNL) in Albuquerque, New Mexico, jointly participate in the Solar Buildings Program. These two national laboratories work closely with industry researching new concepts, developing technology improvements, reducing manufacturing costs, monitoring system performance, promoting quality assurance, and identifying potential new markets. In calendar year 1999, the Solar Buildings Program focused primarily on solar hot water system research and development (R and D), US industry manufacturing assistance, and US market assistance. The Program also completed a number of other projects that were begun in earlier years. This Contract Summary describes the Program's contracted activities that were active during 1999.« less
Ontology for Life-Cycle Modeling of Water Distribution Systems: Model View Definition
2013-06-01
Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) to develop a life-cycle building model have resulted in the...Laboratory (ERDC-CERL) to develop a life-cycle building model have resulted in the definition of a “core” building information model that contains...developed experimental BIM models us- ing commercial off-the-shelf (COTS) software. Those models represent three types of typical low-rise Army
Dickmann, Petra; Sheeley, Heather; Lightfoot, Nigel
2015-01-01
Laboratory capacity building is characterized by a paradox between endemicity and resources: countries with high endemicity of pathogenic agents often have low and intermittent resources (water, electricity) and capacities (laboratories, trained staff, adequate regulations). Meanwhile, countries with low endemicity of pathogenic agents often have high-containment facilities with costly infrastructure and maintenance governed by regulations. The common practice of exporting high biocontainment facilities and standards is not sustainable and concerns about biosafety and biosecurity require careful consideration. A group at Chatham House developed a draft conceptual framework for safer, more secure, and sustainable laboratory capacity building. The draft generic framework is guided by the phrase "LOCAL - PEOPLE - MAKE SENSE" that represents three major principles: capacity building according to local needs (local) with an emphasis on relationship and trust building (people) and continuous outcome and impact measurement (make sense). This draft generic framework can serve as a blueprint for international policy decision-making on improving biosafety and biosecurity in laboratory capacity building, but requires more testing and detailing development.
Fire safety evaluation system for NASA office/laboratory buildings
NASA Astrophysics Data System (ADS)
Nelson, H. E.
1986-11-01
A fire safety evaluation system for office/laboratory buildings is developed. The system is a life safety grading system. The system scores building construction, hazardous areas, vertical openings, sprinklers, detectors, alarms, interior finish, smoke control, exit systems, compartmentation, and emergency preparedness.
1. View southeast of Climatic Chambers Building from roof of ...
1. View southeast of Climatic Chambers Building from roof of Research Building. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalemci, Emrah
This work summarizes the efforts in Turkey to build a laboratory capable of building and testing high energy astrophysics detectors that work in space. The EC FP6 ASTRONS project contributed strongly to these efforts, and as a result a fully operational laboratory at Sabanci University have been developed. In this laboratory we test and develop Si and CdZnTe based room temperature semiconductor strip detectors and develop detector and electronics system to be used as a payload on potential small Turkish satellites.
ERIC Educational Resources Information Center
Haley, Tim R.
2008-01-01
This article seeks to answer the question of whether or not the design and development of an educational laboratory really changes when the focus is on nanotechnology. It explores current laboratory building trends and the added considerations for building a nanotechnology laboratory. The author leaves the reader with additional points to consider…
Research Staff | Buildings | NREL
Research Staff Research Staff Photo of Roderick Jackson Roderick Jackson Laboratory Program Manager -related research at NREL. He works closely with senior laboratory management to set the strategic agenda for NREL's buildings portfolio, including all research, development, and market implementation
16. ARAII Administration building ARA613. South (front) and east sides. ...
16. ARA-II Administration building ARA-613. South (front) and east sides. Camera facing northwest. Sign at left corner of building says, "Fuels and materials division, materials joining research and development laboratory." Part of south wall already has been demolished. Sign on roof railing says, "Danger--Abestos." Ineel photo no. 2-3. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Building America Top Innovations 2013 Profile – Building America Solution Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2013-09-01
This Top Innovation profile provides information about the Building America Solution Center created by Pacific Northwest National Laboratory, a web tool connecting users to thousands of pieces of building science information developed by DOE’s Building America research partners.
Masanza, Monica Musenero; Nqobile, Ndlovu; Mukanga, David; Gitta, Sheba Nakacubo
2010-12-03
Laboratory is one of the core capacities that countries must develop for the implementation of the International Health Regulations (IHR[2005]) since laboratory services play a major role in all the key processes of detection, assessment, response, notification, and monitoring of events. While developed countries easily adapt their well-organized routine laboratory services, resource-limited countries need considerable capacity building as many gaps still exist. In this paper, we discuss some of the efforts made by the African Field Epidemiology Network (AFENET) in supporting laboratory capacity development in the Africa region. The efforts range from promoting graduate level training programs to building advanced technical, managerial and leadership skills to in-service short course training for peripheral laboratory staff. A number of specific projects focus on external quality assurance, basic laboratory information systems, strengthening laboratory management towards accreditation, equipment calibration, harmonization of training materials, networking and provision of pre-packaged laboratory kits to support outbreak investigation. Available evidence indicates a positive effect of these efforts on laboratory capacity in the region. However, many opportunities exist, especially to support the roll-out of these projects as well as attending to some additional critical areas such as biosafety and biosecuity. We conclude that AFENET's approach of strengthening national and sub-national systems provide a model that could be adopted in resource-limited settings such as sub-Saharan Africa.
Director's Discretionary Research and Development Program: Annual Report, Fiscal Year 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2005-12-01
The Director's Discretionary Research and Development (DDRD) program is designed to encourage technical innovation and build new research and development capabilities at the National Renewable Energy Laboratory (NREL). Technical innovation is critical to the long-term viability of NREL (also referred to as the Laboratory) and to the success of the U.S. Department of Energy (DOE). The strategic value of DDRD is being continuously enhanced by expanding the opportunities to propose and pursue innovative ideas for building new and enhanced capabilities.
A laboratory facility for research on wind-driven rain intrusion in building envelope assemblies
Samuel V. Glass
2010-01-01
Moisture management is critical for durable, energy-efficient buildings. To address the need for research on wind-driven rain intrusion in wall assemblies, the U.S. Forest Products Laboratory is developing a new facility. This paper describes the underlying principle of this facility and its capabilities.
Teaching Model Building to High School Students: Theory and Reality.
ERIC Educational Resources Information Center
Roberts, Nancy; Barclay, Tim
1988-01-01
Builds on a National Science Foundation (NSF) microcomputer based laboratory project to introduce system dynamics into the precollege setting. Focuses on providing students with powerful and investigatory theory building tools. Discusses developed hardware, software, and curriculum materials used to introduce model building and simulations into…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullrich, Rebecca A.
Assembly Building 9B (Building 09-54) is a contributing element to the Sandia National Laboratories (SNL) Tonopah Test Range (TTR) Historic District. The SNL TTR Historic District played a significant role in U.S. Cold War history in the areas of stockpile surveillance and non-nuclear field testing of nuclear weapons designs. The district covers approximately 179,200 acres and illustrates Cold War development testing of nuclear weapons components and systems. This report includes historical information, architectural information, sources of information, project information, maps, blueprints, and photographs.
2. NORTH AND EAST SIDES OF BUILDING 525. VIEW TO ...
2. NORTH AND EAST SIDES OF BUILDING 525. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Acetylene Scrubbing Building-Product Development Laboratory, 700 feet South of December Seventh Avenue; 1030 feet East of D Street, Commerce City, Adams County, CO
3. SOUTH AND WEST SIDES OF BUILDING 525. VIEW TO ...
3. SOUTH AND WEST SIDES OF BUILDING 525. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Acetylene Scrubbing Building-Product Development Laboratory, 700 feet South of December Seventh Avenue; 1030 feet East of D Street, Commerce City, Adams County, CO
1. SOUTH AND EAST SIDES OF BUILDING 525. VIEW TO ...
1. SOUTH AND EAST SIDES OF BUILDING 525. VIEW TO NORTHWEST. - Rocky Mountain Arsenal, Acetylene Scrubbing Building-Product Development Laboratory, 700 feet South of December Seventh Avenue; 1030 feet East of D Street, Commerce City, Adams County, CO
This is the fourth, also the last, report of the report series entitled “Laboratory Study of Polychlorinated Biphenyl (PCB) Contamination and Mitigation in Buildings.” This report evaluates the performance of an on-site PCB destruction method, known as the AMTS method, developed ...
ASM LabCap's contributions to disease surveillance and the International Health Regulations (2005).
Specter, Steven; Schuermann, Lily; Hakiruwizera, Celestin; Sow, Mah-Séré Keita
2010-12-03
The revised International Health Regulations [IHR(2005)], which requires the Member States of the World Health Organization (WHO) to develop core capacities to detect, assess, report, and respond to public health threats, is bringing new challenges for national and international surveillance systems. As more countries move toward implementation and/or strengthening of their infectious disease surveillance programs, the strengthening of clinical microbiology laboratories becomes increasingly important because they serve as the first line responders to detect new and emerging microbial threats, re-emerging infectious diseases, the spread of antibiotic resistance, and the possibility of bioterrorism. In fact, IHR(2005) Core Capacity #8, "Laboratory", requires that laboratory services be a part of every phase of alert and response.Public health laboratories in many resource-constrained countries require financial and technical assistance to build their capacity. In recognition of this, in 2006, the American Society for Microbiology (ASM) established an International Laboratory Capacity Building Program, LabCap, housed under the ASM International Board. ASM LabCap utilizes ASM's vast resources and its membership's expertise-40,000 microbiologists worldwide-to strengthen clinical and public health laboratory systems in low and low-middle income countries. ASM LabCap's program activities align with HR(2005) by building the capability of resource-constrained countries to develop quality-assured, laboratory-based information which is critical to disease surveillance and the rapid detection of disease outbreaks, whether they stem from natural, deliberate or accidental causes.ASM LabCap helps build laboratory capacity under a cooperative agreement with the U.S. Centers for Disease Control and Prevention (CDC) and under a sub-contract with the Program for Appropriate Technology in Health (PATH) funded by the United States Agency for International Development (USAID). Successful activities of ASM LabCap have occurred throughout Africa, Asia, Central America and the Caribbean. In addition, ASM LabCap coordinates efforts with international agencies such as the WHO in order to maximize resources and ensure a unified response, with the intended goal to help build integrated disease surveillance and response capabilities worldwide in compliance with HR(2005)'s requirements.
NASA Astrophysics Data System (ADS)
Breen, M.; O'Donovan, A.; Murphy, M. D.; Delaney, F.; Hill, M.; Sullivan, P. D. O.
2016-03-01
The aim of this paper was to develop a virtual laboratory simulation platform of the National Building Retrofit Test-bed at the Cork Institute of Technology, Ireland. The building in question is a low-energy retrofit which is provided with electricity by renewable systems including photovoltaics and wind. It can be thought of as a living laboratory, as a number of internal and external building factors are recorded at regular intervals during human occupation. The analysis carried out in this paper demonstrated that, for the period from April to September 2015, the electricity provided by the renewable systems did not consistently match the building’s electricity requirements due to differing load profiles. It was concluded that the use of load shifting techniques may help to increase the percentage of renewable energy utilisation.
Derivation of Building Energy Use Intensity Targets for ASHRAE Standard 100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, Terry R
2014-06-01
The steps to develop the building energy use intensity targets for American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 100, Energy Efficiency in Existing Buildings are outlined in this report. The analyses were conducted by Oak Ridge National Laboratory (ORNL) in collaboration with the ASHRAE Standard 100 committee and Dr. Alexander Zhivov, the subcommittee chair responsible for targets development.
Laboratory Directed Research and Development FY-10 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dena Tomchak
2011-03-01
The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.
Mulders, Mick N; Serhan, Fatima; Goodson, James L; Icenogle, Joseph; Johnson, Barbara W; Rota, Paul A
2017-07-01
Laboratory networks were established to provide accurate and timely laboratory confirmation of infections, an essential component of disease surveillance systems. The World Health Organization (WHO) coordinates global laboratory surveillance of vaccine-preventable diseases (VPDs), including polio, measles and rubella, yellow fever, Japanese encephalitis, rotavirus, and invasive bacterial diseases. In addition to providing high-quality laboratory surveillance data to help guide disease control, elimination, and eradication programs, these global networks provide capacity-building and an infrastructure for public health laboratories. There are major challenges with sustaining and expanding the global laboratory surveillance capacity: limited resources and the need for expansion to meet programmatic goals. Here, we describe the WHO-coordinated laboratory networks supporting VPD surveillance and present a plan for the further development of these networks. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
NASA Astrophysics Data System (ADS)
Ahmadia, A. J.; Kees, C. E.
2014-12-01
Developing scientific software is a continuous balance between not reinventing the wheel and getting fragile codes to interoperate with one another. Binary software distributions such as Anaconda provide a robust starting point for many scientific software packages, but this solution alone is insufficient for many scientific software developers. HashDist provides a critical component of the development workflow, enabling highly customizable, source-driven, and reproducible builds for scientific software stacks, available from both the IPython Notebook and the command line. To address these issues, the Coastal and Hydraulics Laboratory at the US Army Engineer Research and Development Center has funded the development of HashDist in collaboration with Simula Research Laboratories and the University of Texas at Austin. HashDist is motivated by a functional approach to package build management, and features intelligent caching of sources and builds, parametrized build specifications, and the ability to interoperate with system compilers and packages. HashDist enables the easy specification of "software stacks", which allow both the novice user to install a default environment and the advanced user to configure every aspect of their build in a modular fashion. As an advanced feature, HashDist builds can be made relocatable, allowing the easy redistribution of binaries on all three major operating systems as well as cloud, and supercomputing platforms. As a final benefit, all HashDist builds are reproducible, with a build hash specifying exactly how each component of the software stack was installed. This talk discusses the role of HashDist in the hydrological sciences, including its use by the Coastal and Hydraulics Laboratory in the development and deployment of the Proteus Toolkit as well as the Rapid Operational Access and Maneuver Support project. We demonstrate HashDist in action, and show how it can effectively support development, deployment, teaching, and reproducibility for scientists working in the hydrological sciences. The HashDist documentation is available from: http://hashdist.readthedocs.org/en/latest/ HashDist is currently hosted at: https://github.com/hashdist/hashdist
OpenADR Specification to Ease Saving Power in Buildings
None
2017-12-09
A new data model developed by researchers at the Department of Energys Lawrence Berkeley National Laboratory and their colleagues at other universities and in the private sector will help facilities and buildings save power through automated demand response technology, and advance the development of the Smart Grid.
NASA Astrophysics Data System (ADS)
Pournazeri, Sam; Princevac, Marko; Venkatram, Akula
2012-08-01
Field and laboratory studies have been conducted to investigate the effect of surrounding buildings on the plume rise from low-level buoyant sources, such as distributed power generators. The field experiments were conducted in Palm Springs, California, USA in November 2010 and plume rise from a 9.3 m stack was measured. In addition to the field study, a laboratory study was conducted in a water channel to investigate the effects of surrounding buildings on plume rise under relatively high wind-speed conditions. Different building geometries and source conditions were tested. The experiments revealed that plume rise from low-level buoyant sources is highly affected by the complex flows induced by buildings stationed upstream and downstream of the source. The laboratory results were compared with predictions from a newly developed numerical plume-rise model. Using the flow measurements associated with each building configuration, the numerical model accurately predicted plume rise from low-level buoyant sources that are influenced by buildings. This numerical plume rise model can be used as a part of a computational fluid dynamics model.
ORNL Develops Novel, Nontoxic System That Seeks Air Leaks in Occupied Buildings
Hun, Diana
2018-06-13
Oak Ridge National Laboratory scientists demonstrate their novel, nontoxic fluorescent air leak detection system that uses a vitamin- and water-based solution to quickly locate cracks in occupied buildings without damaging property.
ORNL Develops Novel, Nontoxic System That Seeks Air Leaks in Occupied Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hun, Diana
2016-12-06
Oak Ridge National Laboratory scientists demonstrate their novel, nontoxic fluorescent air leak detection system that uses a vitamin- and water-based solution to quickly locate cracks in occupied buildings without damaging property.
NASA Astrophysics Data System (ADS)
Zagroba, Marek
2016-10-01
This paper deals with the conditions underlying and the problems arising from the siting of a building with specialist laboratories in a developed part of the university campus in Olsztyn, Poland. The topography of the terrain and the need to house civil engineering laboratories in the planned building had an immense impact on the shape of the building and consequently on its foundations, whose dimensions responded to the ground conditions and the specification of various loads they would have to support, including the equipment for the laboratories. The siting of a building as a step in the construction process entails several problems, which are first taken into consideration at the stage of making preliminary concept plans and are subsequently verified while working on the final construction plan. The required information included geotechnical documentation, survey of the ground conditions and the data regarding the predicted loads on the building, necessary to select the right type of foundations. All these problems grow in importance when dealing with such unique buildings like the discussed example of a laboratory building for the Civil Engineering Department, built on a site within a conservation zone on the campus of the University of Warmia and Mazury in Olsztyn, Poland. The specific character of the building and the specialist equipment with which it was to be furnished (a resistance testing machine, a 17-meter-long wave flume) necessitated a series of analyses prior to the siting of the building and selecting suitable foundations. In turn, the fact that the new building was to be erected in the conservation zone meant that collaboration with the Heritage Conservation Office had to be undertaken at the stage of making the plan and continued during the construction works. The Heritage Officer's recommendations concerning the building's shape, divisions, dimensions, materials used, etc., created a situation where the team of designers and architects had to become engaged in the process of landscape and spatial management. The above requirements concerned the functions of the building and its siting on a land parcel that was difficult to handle, also because of the protected trees growing there. Other constraints included the small size of this site, the developed surroundings, and the pre-defined programme of functions and use of the new building. On the other hand, the siting of the planned building had to be accommodated to the existing underground infrastructure (utilities). All the above circumstances made the task difficult and demanded good coordination between individual teams of engineers and architects, both at the stage of making the plan and during the construction works.
None
2018-01-16
This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.
SAFETY IN THE DESIGN OF SCIENCE LABORATORIES AND BUILDING CODES.
ERIC Educational Resources Information Center
HOROWITZ, HAROLD
THE DESIGN OF COLLEGE AND UNIVERSITY BUILDINGS USED FOR SCIENTIFIC RESEARCH AND EDUCATION IS DISCUSSED IN TERMS OF LABORATORY SAFETY AND BUILDING CODES AND REGULATIONS. MAJOR TOPIC AREAS ARE--(1) SAFETY RELATED DESIGN FEATURES OF SCIENCE LABORATORIES, (2) LABORATORY SAFETY AND BUILDING CODES, AND (3) EVIDENCE OF UNSAFE DESIGN. EXAMPLES EMPHASIZE…
2. Exterior view of Systems Integration Laboratory Building (T28), looking ...
2. Exterior view of Systems Integration Laboratory Building (T-28), looking southwest. The low-lying concrete Signal Transfer Building (T-28A) is located in the immediate foreground. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Building America Systems Integration Research Annual Report. FY 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gestwick, Michael
2013-05-01
This Building America FY2012 Annual Report includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.
VOLTTRON™: Tech-to-Market Best-Practices Guide for Small- and Medium-Sized Commercial Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cort, Katherine A.; Haack, Jereme N.; Katipamula, Srinivas
VOLTTRON™ is an open-source distributed control and sensing platform developed by Pacific Northwest National Laboratory for the U.S. Department of Energy. It was developed to be used by the Office of Energy Efficiency and Renewable Energy to support transactive controls research and deployment activities. VOLTTRON is designed to be an overarching integration platform that could be used to bring together vendors, users, and developers and enable rapid application development and testing. The platform is designed to support modern control strategies, including the use of agent- and transaction-based controls. It also is designed to support the management of a wide rangemore » of applications, including heating, ventilation, and air-conditioning systems; electric vehicles; and distributed-energy and whole-building loads. This report was completed as part of the Building Technologies Office’s Technology-to-Market Initiative for VOLTTRON’s Market Validation and Business Case Development efforts. The report provides technology-to-market guidance and best practices related to VOLTTRON platform deployments and commercialization activities for use by entities serving small- and medium-sized commercial buildings. The report characterizes the platform ecosystem within the small- and medium-sized commercial building market and articulates the value proposition of VOLTTRON for three core participants in this ecosystem: 1) platform owners/adopters, 2) app developers, and 3) end-users. The report also identifies key market drivers and opportunities for open platform deployments in the small- and medium-sized commercial building market. Possible pathways to the market are described—laboratory testing to market adoption to commercialization. We also identify and address various technical and market barriers that could hinder deployment of VOLTTRON. Finally, we provide “best practice” tech-to-market guidance for building energy-related deployment efforts serving small- and medium-sized commercial buildings.« less
4. Exterior view of Systems Integration Laboratory Building (T28), looking ...
4. Exterior view of Systems Integration Laboratory Building (T-28), looking northwest. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
3. Exterior view of Systems Integration Laboratory Building (T28), looking ...
3. Exterior view of Systems Integration Laboratory Building (T-28), looking southeast. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Modeling and Optimization of Commercial Buildings and Stationary Fuel Cell Systems (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ainscough, C.; McLarty, D.; Sullivan, R.
2013-10-01
This presentation describes the Distributed Generation Building Energy Assessment Tool (DG-BEAT) developed by the National Renewable Energy Laboratory and the University of California Irvine. DG-BEAT is designed to allow stakeholders to assess the economics of installing stationary fuel cell systems in a variety of building types in the United States.
Cookstove Laboratory Research - Fiscal Year 2016 Report
This report provides an overview of the work conducted by the EPA cookstove laboratory research team in Fiscal Year 2016. The report describes research and activities including (1) ISO standards development, (2) capacity building for international testing and knowledge centers, ...
FY 2014 LDRD Annual Report Project Summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomchak, Dena
The FY 2014 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support future DOE missions and national research priorities. LDRD is essential to INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enahnces technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.
NASA Astrophysics Data System (ADS)
Venkataramanan, S.; Ajith kumar, B. P.; Kurup, Kiran K.; Varier, K. M.
2018-01-01
A γ -ray spectroscopy system based on a 1^' ' }× 1^' ' } NaI(Tl) detector and 1.5^' ' } photomultiplier tube has been developed at IUAC for teaching laboratory applications involving radioactive sources. Following along the lines of the Phoenix and Expeyes hardware developed in the laboratory earlier, a low-cost, light weight multichannel analyser also has been developed. Here the details about the same are presented. The detector-analyser system has been used as a part of the postgraduate curriculum for measuring ^{40}K content in some potassium salts and common building materials like brick, cement, concrete and sand.
OpenADR Specification to Ease Saving Power in Buildings
Piette, Mary Ann
2017-12-09
A new data model developed by researchers at the Department of Energys Lawrence Berkeley National Laboratory and their colleagues at other universities and in the private sector will help facilities and buildings save power through automated demand response technology, and advance the development of the Smart Grid. http://newscenter.lbl.gov/press-releases/2009/04/27/openadr-specification/
2. VIEW OF THE MICROWAVE MELTER DEVELOPED BY THE RESEARCH ...
2. VIEW OF THE MICROWAVE MELTER DEVELOPED BY THE RESEARCH AND DEVELOPMENT GROUP LOCATED IN BUILDING 701. THE MICROWAVE MELTER TRANSFORMED WASTE INTO A VITREOUS GLASS-LIKE SUBSTANCE, IMMOBILIZING THE WASTE, SO THAT IT COULD BE SHIPPED OFF SITE FOR DISPOSAL. (1/31/91) - Rocky Flats Plant, Design Laboratory, Northwest quadrant of Plant, between buildings 776-777 & 771, Golden, Jefferson County, CO
2012-11-08
CAPE CANAVERAL, Fla. -- Inside the Applied Physics Laboratory in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, lead researcher Dr. Bob Youngquist demonstrates a technology developed for the Space Shuttle Program to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston
2012-11-08
CAPE CANAVERAL, Fla. -- Inside the Applied Physics Laboratory in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, lead researcher Dr. Bob Youngquist describes technologies developed for the Space Shuttle Program to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston
History | Frederick National Laboratory for Cancer Research
The Frederick National Laboratory for Cancer Research was established as the Frederick Cancer Research and Development Center in 1972 when about 70 acres and 67 buildings of the U.S. Army were transferred to the U.S. Department of Health and Huma
Anderson, Kim A.; Seck, Dogo; Hobbie, Kevin A.; Traore, Anna Ndiaye; McCartney, Melissa A.; Ndaye, Adama; Forsberg, Norman D.; Haigh, Theodore A.; Sower, Gregory J.
2014-01-01
It is difficult to assess pollution in remote areas of less-developed regions owing to the limited availability of energy, equipment, technology, trained personnel and other key resources. Passive sampling devices (PSDs) are technologically simple analytical tools that sequester and concentrate bioavailable organic contaminants from the environment. Scientists from Oregon State University and the Centre Régional de Recherches en Ecotoxicologie et de Sécurité Environnementale (CERES) in Senegal developed a partnership to build capacity at CERES and to develop a pesticide-monitoring project using PSDs. This engagement resulted in the development of a dynamic training process applicable to capacity-building programmes. The project culminated in a field and laboratory study where paired PSD samples were simultaneously analysed in African and US laboratories with quality control evaluation and traceability. The joint study included sampling from 63 sites across six western African countries, generating a 9000 data point pesticide database with virtual access to all study participants. PMID:24535398
Anderson, Kim A; Seck, Dogo; Hobbie, Kevin A; Traore, Anna Ndiaye; McCartney, Melissa A; Ndaye, Adama; Forsberg, Norman D; Haigh, Theodore A; Sower, Gregory J
2014-04-05
It is difficult to assess pollution in remote areas of less-developed regions owing to the limited availability of energy, equipment, technology, trained personnel and other key resources. Passive sampling devices (PSDs) are technologically simple analytical tools that sequester and concentrate bioavailable organic contaminants from the environment. Scientists from Oregon State University and the Centre Régional de Recherches en Ecotoxicologie et de Sécurité Environnementale (CERES) in Senegal developed a partnership to build capacity at CERES and to develop a pesticide-monitoring project using PSDs. This engagement resulted in the development of a dynamic training process applicable to capacity-building programmes. The project culminated in a field and laboratory study where paired PSD samples were simultaneously analysed in African and US laboratories with quality control evaluation and traceability. The joint study included sampling from 63 sites across six western African countries, generating a 9000 data point pesticide database with virtual access to all study participants.
12. View north of Tropic Chamber. Natick Research & ...
12. View north of Tropic Chamber. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
13. View south of Arctic Chamber. Natick Research & ...
13. View south of Arctic Chamber. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
BDP Is Unified at the ATRF | Poster
By Ken Michaels, Staff Writer The Biopharmaceutical Development Program (BDP) at the Frederick National Laboratory is, for the first time ever, in a single building at the Advanced Technology Research Facility (ATRF). At Fort Detrick, BDP operations were spread out in about a dozen buildings, resulting in redundancies in maintaining various utilities (air handlers, clean steam, WFI, etc.) for multiple buildings rather than one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, Joshua M.
2015-03-01
This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-02-01
Researchers at the National Renewable Energy Laboratory (NREL) have developed two technical reports that provide recommendations to help designers and operators of large office buildings and hospitals achieve at least a 50% energy savings using existing technology.
Building America Systems Integration Research Annual Report: FY 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gestwick, M.
2013-05-01
This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.
Laboratory and Physical Modelling of Building Ventilation Flows
NASA Astrophysics Data System (ADS)
Hunt, Gary
2001-11-01
Heating and ventilating buildings accounts for a significant fraction of the total energy budget of cities and an immediate challenge in building physics is for the design of sustainable, low-energy buildings. Natural ventilation provides a low-energy solution as it harness the buoyancy force associated with temperature differences between the internal and external environment, and the wind to drive a ventilating flow. Modern naturally-ventilated buildings use innovative design solutions, e.g. glazed atria and solar chimneys, to enhance the ventilation and demand for these and other designs has far outstripped our understanding of the fluid mechanics within these buildings. Developing an understanding of the thermal stratification and movement of air provides a considerable challenge as the flows involve interactions between stratification and turbulence and often in complex geometries. An approach that has provided significant new insight into these flows and which has led to the development of design guidelines for architects and ventilation engineers is laboratory modelling at small-scale in water tanks combined with physical modelling. Density differences to drive the flow in simplified plexiglass models of rooms or buildings are provided by fresh and salt water solutions, and wind flow is represented by a mean flow in a flume tank. In tandom with the experiments, theoretical models that capture the essential physics of these flows have been developed in order to generalise the experimental results to a wide range of typical building geometries and operating conditions. This paper describes the application and outcomes of these modelling techniques to the study of a variety of natural ventilation flows in buildings.
Yao, Katy; McKinney, Barbara; Murphy, Anna; Rotz, Phil; Wafula, Winnie; Sendagire, Hakim; Okui, Scolastica; Nkengasong, John N
2010-09-01
The Strengthening Laboratory Management Toward Accreditation (SLMTA) program was developed to promote immediate, measurable improvement in laboratories of developing countries. The laboratory management framework, a tool that prescribes managerial job tasks, forms the basis of the hands-on, activity-based curriculum. SLMTA is implemented through multiple workshops with intervening site visits to support improvement projects. To evaluate the effectiveness of SLMTA, the laboratory accreditation checklist was developed and subsequently adopted by the World Health Organization Regional Office for Africa (WHO AFRO). The SLMTA program and the implementation model were validated through a pilot in Uganda. SLMTA yielded observable, measurable results in the laboratories and improved patient flow and turnaround time in a laboratory simulation. The laboratory staff members were empowered to improve their own laboratories by using existing resources, communicate with clinicians and hospital administrators, and advocate for system strengthening. The SLMTA program supports laboratories by improving management and building preparedness for accreditation.
2. View southwest of north facade elevation. Natick Research ...
2. View southwest of north facade elevation. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
9. Exterior view, Test Cell 7, Systems Integration Laboratory Building ...
9. Exterior view, Test Cell 7, Systems Integration Laboratory Building (T-28), looking southwest. The enclosure discussed in CO-88-B-8 is at the right. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
5. INTERIOR OF BUILDING 313, SHOWING LABORATORY. VIEW TO SOUTHWEST. ...
5. INTERIOR OF BUILDING 313, SHOWING LABORATORY. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Laboratory Building, 510 feet South of December Seventh Avenue; 175 feet East of D Street, Commerce City, Adams County, CO
3. INTERIOR OF BUILDING 313, SHOWING LABORATORY. VIEW TO SOUTHEAST. ...
3. INTERIOR OF BUILDING 313, SHOWING LABORATORY. VIEW TO SOUTHEAST. - Rocky Mountain Arsenal, Laboratory Building, 510 feet South of December Seventh Avenue; 175 feet East of D Street, Commerce City, Adams County, CO
7. INTERIOR OF BUILDING 313, SHOWING LABORATORY. VIEW TO NORTHEAST. ...
7. INTERIOR OF BUILDING 313, SHOWING LABORATORY. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Laboratory Building, 510 feet South of December Seventh Avenue; 175 feet East of D Street, Commerce City, Adams County, CO
4. INTERIOR OF BUILDING 313, SHOWING LABORATORY. VIEW TO EAST. ...
4. INTERIOR OF BUILDING 313, SHOWING LABORATORY. VIEW TO EAST. - Rocky Mountain Arsenal, Laboratory Building, 510 feet South of December Seventh Avenue; 175 feet East of D Street, Commerce City, Adams County, CO
6. INTERIOR OF BUILDING 313, SHOWING LABORATORY. VIEW TO NORTHWEST. ...
6. INTERIOR OF BUILDING 313, SHOWING LABORATORY. VIEW TO NORTHWEST. - Rocky Mountain Arsenal, Laboratory Building, 510 feet South of December Seventh Avenue; 175 feet East of D Street, Commerce City, Adams County, CO
Catastrophic incidents can generate a large number of samples with analytically diverse types including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface resid...
Computer Based Simulation of Laboratory Experiments.
ERIC Educational Resources Information Center
Edward, Norrie S.
1997-01-01
Examines computer based simulations of practical laboratory experiments in engineering. Discusses the aims and achievements of lab work (cognitive, process, psychomotor, and affective); types of simulations (model building and behavioral); and the strengths and weaknesses of simulations. Describes the development of a centrifugal pump simulation,…
3. View southeast of north and west elevations. Natick ...
3. View southeast of north and west elevations. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
10. View south of Arctic Observation Room (typical). Natick ...
10. View south of Arctic Observation Room (typical). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
NREL's Sustainable Campus Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rukavina, Frank; Pless, Shanti
2015-04-06
The high-performance buildings across the Energy Department's National Renewable Energy Laboratory's (NREL) South Table Mountain campus incorporate a number of state-of-the art energy efficiency and renewable energy technologies, making them models for sustainability. Each building, designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) program, brings NREL closer to developing the campus of the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shehabi, Arman; Ganeshalingam, Mohan; DeMates, Lauren
Laboratories are estimated to be 3-5 times more energy intensive than typical office buildings and offer significant opportunities for energy use reductions. Although energy intensity varies widely, laboratories are generally energy intensive due to ventilation requirements, the research instruments used, and other health and safety concerns. Because the requirements of laboratory facilities differ so dramatically from those of other buildings, a clear need exists for an initiative exclusively targeting these facilities. The building stock of laboratories in the United States span different economic sectors, include governmental and academic institution, and are often defined differently by different groups. Information on laboratorymore » buildings is often limited to a small subsection of the total building stock making aggregate estimates of the total U.S. laboratories and their energy use challenging. Previous estimates of U.S. laboratory space vary widely owing to differences in how laboratories are defined and categorized. A 2006 report on fume hoods provided an estimate of 150,000 laboratories populating the U.S. based in part on interviews of industry experts, however, a 2009 analysis of the 2003 Commercial Buildings Energy Consumption Survey (CBECS) generated an estimate of only 9,000 laboratory buildings. This report draws on multiple data sources that have been evaluated to construct an understanding of U.S. laboratories across different sizes and markets segments. This 2016 analysis is an update to draft reports released in October and December 2016.« less
Impacts: NIST Building and Fire Research Laboratory (technical and societal)
NASA Astrophysics Data System (ADS)
Raufaste, N. J.
1993-08-01
The Building and Fire Research Laboratory (BFRL) of the National Institute of Standards and Technology (NIST) is dedicated to the life cycle quality of constructed facilities. The report describes major effects of BFRL's program on building and fire research. Contents of the document include: structural reliability; nondestructive testing of concrete; structural failure investigations; seismic design and construction standards; rehabilitation codes and standards; alternative refrigerants research; HVAC simulation models; thermal insulation; residential equipment energy efficiency; residential plumbing standards; computer image evaluation of building materials; corrosion-protection for reinforcing steel; prediction of the service lives of building materials; quality of construction materials laboratory testing; roofing standards; simulating fires with computers; fire safety evaluation system; fire investigations; soot formation and evolution; cone calorimeter development; smoke detector standards; standard for the flammability of children's sleepwear; smoldering insulation fires; wood heating safety research; in-place testing of concrete; communication protocols for building automation and control systems; computer simulation of the properties of concrete and other porous materials; cigarette-induced furniture fires; carbon monoxide formation in enclosure fires; halon alternative fire extinguishing agents; turbulent mixing research; materials fire research; furniture flammability testing; standard for the cigarette ignition resistance of mattresses; support of navy firefighter trainer program; and using fire to clean up oil spills.
NASA Astrophysics Data System (ADS)
Vhurumuku, Elaosi; Holtman, Lorna; Mikalsen, Oyvind; Kolsto, Stein D.
2006-02-01
This study investigates the proximal and distal images of the nature of science (NOS) that A-level students develop from their participation in chemistry laboratory work. We also explored the nature of the interactions among the students' proximal and distal images of the NOS and students' participation in laboratory work. Students' views of the NOS and the nature of their chemistry laboratory work were elicited through students' responses to an open-ended questionnaire and semistructured interviews. The results suggest that students build some understandings of the NOS from their participation in laboratory work. Students' proximal NOS understandings appear to build into and interact with their understandings of the nature and practice of professional science. This interaction appears to be mediated by the nature of instruction. It is posited that each student's conceptual ecological system is replete with interactions, which govern attenuation of proximal understandings into distal images. Methodologically, the study illustrates how students' laboratory work-based proximal and distal images of the NOS can be identified and extracted through analyzing and interpreting their responses to protocols. Implications for A-level Chemistry instruction and curriculum development are raised.
9. View to west of Tropic Dressing Room (typical). ...
9. View to west of Tropic Dressing Room (typical). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
4. View northeast of west (partial) and south elevations. ...
4. View northeast of west (partial) and south elevations. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
5. View northwest of south (partial) and east elevations. ...
5. View northwest of south (partial) and east elevations. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
Co-"Lab"oration: A New Paradigm for Building a Management Information Systems Course
ERIC Educational Resources Information Center
Breimer, Eric; Cotler, Jami; Yoder, Robert
2010-01-01
We propose a new paradigm for building a Management Information Systems course that focuses on laboratory activities developed collaboratively using Computer-Mediated Communication and Collaboration tools. A highlight of our paradigm is the "practice what you preach" concept where the computer communication tools and collaboration…
U.S. EPA/ORD LARGE BUILDINGS STUDY: RESULTS OF THE INITIAL SURVEY OF RANDOMLY SELECTED GSA BUILDINGS
The Atmospheric Research and Exposure Assessment Laboratory (AREAL), Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), is initiating a research program to connect fundamental information on the key parameters and factors that influence indoor a...
Twelve Scientific Specialists of the Peenemuende Team
NASA Technical Reports Server (NTRS)
2004-01-01
Twelve scientific specialists of the Peenemuende team at the front of Building 4488, Redstone Arsenal, Huntsville, Alabama. They led the Army's space efforts at ABMA before transfer of the team to National Aeronautic and Space Administration (NASA), George C. Marshall Space Flight Center (MSFC). (Left to right) Dr. Ernst Stuhlinger, Director, Research Projects Office; Dr. Helmut Hoelzer, Director, Computation Laboratory: Karl L. Heimburg, Director, Test Laboratory; Dr. Ernst Geissler, Director, Aeroballistics Laboratory; Erich W. Neubert, Director, Systems Analysis Reliability Laboratory; Dr. Walter Haeussermarn, Director, Guidance and Control Laboratory; Dr. Wernher von Braun, Director Development Operations Division; William A. Mrazek, Director, Structures and Mechanics Laboratory; Hans Hueter, Director, System Support Equipment Laboratory;Eberhard Rees, Deputy Director, Development Operations Division; Dr. Kurt Debus, Director Missile Firing Laboratory; Hans H. Maus, Director, Fabrication and Assembly Engineering Laboratory
Origin of Marshall Space Flight Center (MSFC)
2004-04-15
Twelve scientific specialists of the Peenemuende team at the front of Building 4488, Redstone Arsenal, Huntsville, Alabama. They led the Army's space efforts at ABMA before transfer of the team to National Aeronautic and Space Administration (NASA), George C. Marshall Space Flight Center (MSFC). (Left to right) Dr. Ernst Stuhlinger, Director, Research Projects Office; Dr. Helmut Hoelzer, Director, Computation Laboratory: Karl L. Heimburg, Director, Test Laboratory; Dr. Ernst Geissler, Director, Aeroballistics Laboratory; Erich W. Neubert, Director, Systems Analysis Reliability Laboratory; Dr. Walter Haeussermarn, Director, Guidance and Control Laboratory; Dr. Wernher von Braun, Director Development Operations Division; William A. Mrazek, Director, Structures and Mechanics Laboratory; Hans Hueter, Director, System Support Equipment Laboratory;Eberhard Rees, Deputy Director, Development Operations Division; Dr. Kurt Debus, Director Missile Firing Laboratory; Hans H. Maus, Director, Fabrication and Assembly Engineering Laboratory
Setting Goals and Achieving Aggressing Energy Savings
2010-11-30
Path to a Low Energy Building Typical 90.1 Compliant Building National Renewable Energy Laboratory Innovation for Our...flow 1 2 The Path to a Low Energy Building National Renewable Energy Laboratory Innovation for Our Energy Future 0 0% 100...to a Low Energy Building National Renewable Energy Laboratory Innovation for Our Energy Future 0 0% 100% Source Energy
A Living Laboratory for Building-Grid Integration
Shankle, Steve; Goyal, Siddharth
2018-01-16
At PNNL weâre developing a test bed for control of how buildings interact with the gridâan important step toward helping buildings achieve their potential for reducing energy use and improving the management of the nationâs power systems. The test bed works by allowing researchers to conduct experiments on PNNLâs specially-equipped Systems Engineering Building. This unique resource will help the Department of Energy achieve its mission of reducing buildings energy use by 50 percent by 2030.
Burner Rig in the Material and Stresses Building
1969-11-21
A burner rig heats up a material sample in the Materials and Stresses Building at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Materials technology is an important element in the successful development of advanced airbreathing and rocket propulsion systems. Different types of engines operate in different environments so an array of dependable materials is needed. NASA Lewis began investigating the characteristics of different materials shortly after World War II. In 1949 the materials group was expanded into its own division. The Lewis researchers sought to study and test materials in environments that simulate the environment in which they would operate. The Materials and Stresses Building, built in 1949, contained a number of laboratories to analyze the materials. They are subjected to high temperatures, high stresses, corrosion, irradiation, and hot gasses. The Physics of Solids Laboratory included a cyclotron, cloud chamber, helium cryostat, and metallurgy cave. The Metallographic Laboratory possessed six x-ray diffraction machines, two metalloscopes, and other equipment. The Furnace Room had two large induction machines, a 4500⁰ F graphite furnace, and heat treating equipment. The Powder Laboratory included 60-ton and 3000-ton presses. The Stresses Laboratory included stress rupture machines, fatigue machines, and tensile strength machines.
Components of laboratory accreditation.
Royal, P D
1995-12-01
Accreditation or certification is a recognition given to an operation or product that has been evaluated against a standard; be it regulatory or voluntary. The purpose of accreditation is to provide the consumer with a level of confidence in the quality of operation (process) and the product of an organization. Environmental Protection Agency/OCM has proposed the development of an accreditation program under National Environmental Laboratory Accreditation Program for Good Laboratory Practice (GLP) laboratories as a supplement to the current program. This proposal was the result of the Inspector General Office reports that identified weaknesses in the current operation. Several accreditation programs can be evaluated and common components identified when proposing a structure for accrediting a GLP system. An understanding of these components is useful in building that structure. Internationally accepted accreditation programs provide a template for building a U.S. GLP accreditation program. This presentation will discuss the traditional structure of accreditation as presented in the Organization of Economic Cooperative Development/GLP program, ISO-9000 Accreditation and ISO/IEC Guide 25 Standard, and the Canadian Association for Environmental Analytical Laboratories, which has a biological component. Most accreditation programs are managed by a recognized third party, either privately or with government oversight. Common components often include a formal review of required credentials to evaluate organizational structure, a site visit to evaluate the facility, and a performance evaluation to assess technical competence. Laboratory performance is measured against written standards and scored. A formal report is then sent to the laboratory indicating accreditation status. Usually, there is a scheduled reevaluation built into the program. Fee structures vary considerably and will need to be examined closely when building a GLP program.
17. View northwest of Tropic Chamber refrigeration equipment, in machine ...
17. View northwest of Tropic Chamber refrigeration equipment, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
8. View north from hallway, through administration area to front ...
8. View north from hallway, through administration area to front entrance. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
NREL's Sustainable Campus Overview
Rukavina, Frank; Pless, Shanti
2018-05-11
The high-performance buildings across the Energy Department's National Renewable Energy Laboratory's (NREL) South Table Mountain campus incorporate a number of state-of-the art energy efficiency and renewable energy technologies, making them models for sustainability. Each building, designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) program, brings NREL closer to developing the campus of the future.
Fong, Eliza L.S.; Watson, Brendan M.; Kasper, F. Kurtis
2013-01-01
Our laboratory at Rice University has forged numerous collaborations with clinicians and basic scientists over the years to advance the development of novel biomaterials and modification of existing materials to meet clinical needs. This review highlights collaborative advances in biomaterials research from our laboratory in the areas of scaffold development, drug delivery and gene therapy, especially as related to applications in bone and cartilage tissue engineering. PMID:22821772
Artificial Neural Network Approach in Laboratory Test Reporting: Learning Algorithms.
Demirci, Ferhat; Akan, Pinar; Kume, Tuncay; Sisman, Ali Riza; Erbayraktar, Zubeyde; Sevinc, Suleyman
2016-08-01
In the field of laboratory medicine, minimizing errors and establishing standardization is only possible by predefined processes. The aim of this study was to build an experimental decision algorithm model open to improvement that would efficiently and rapidly evaluate the results of biochemical tests with critical values by evaluating multiple factors concurrently. The experimental model was built by Weka software (Weka, Waikato, New Zealand) based on the artificial neural network method. Data were received from Dokuz Eylül University Central Laboratory. "Training sets" were developed for our experimental model to teach the evaluation criteria. After training the system, "test sets" developed for different conditions were used to statistically assess the validity of the model. After developing the decision algorithm with three iterations of training, no result was verified that was refused by the laboratory specialist. The sensitivity of the model was 91% and specificity was 100%. The estimated κ score was 0.950. This is the first study based on an artificial neural network to build an experimental assessment and decision algorithm model. By integrating our trained algorithm model into a laboratory information system, it may be possible to reduce employees' workload without compromising patient safety. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
BDP Is Unified at the ATRF | Poster
By Ken Michaels, Staff Writer The Biopharmaceutical Development Program (BDP) at the Frederick National Laboratory is, for the first time ever, in a single building at the Advanced Technology Research Facility (ATRF). At Fort Detrick, BDP operations were spread out in about a dozen buildings, resulting in redundancies in maintaining various utilities (air handlers, clean
Decay of wood and wood-based products above ground in buildings
Charles G. Carll; Terry L. Highley
1999-01-01
This paper is an overview of what we know about occurrence of wood decay above ground within buildings. It presents information concerning under what conditions decay may become established. In laboratory tests involving optimum moisture and temperature conditions for decay fungi, and direct contact with large quantities of specific well-developed decay...
Explorations of roundwood technology in buildings
Jeffrey Cook
2001-01-01
A report and critical commentary is presented on the use of small diameter roundwood in building construction in the United States and England. Examples are discussed of roundwood joinery being evaluated at the USDA Forest Service's Forest Products Laboratory, and joinery developed by the British engineering consulting firm Buro Happold, working over 15 years in...
Contamination source review for Building E3180, Edgewood Area, Aberdeen Proving Ground, Maryland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zellmer, S.D.; Smits, M.P.; Rueda, J.
1995-09-01
This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E3180 at the Aberdeen Proving Ground (APG) in Maryland. The report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, collection of air samples, and review of available records regarding underground storage tanks associated with Building E3180. The field investigations were performed by ANL during 1994. Building,E3180 (current APG designation) is located near the eastern end ofmore » Kings Creek Road, north of Kings Creek, and about 0.5 miles east of the airstrip within APG`s Edgewood Area. The building was constructed in 1944 as a facsimile of a Japanese pillbox and used for the development of flame weapons systems until 1957 (EAI Corporation 1989). The building was not used from 1957 until 1965, when it was converted and used as a flame and incendiary laboratory. During the 1970s, the building was converted to a machine (metal) shop and used for that purpose until 1988.« less
Contamination source review for Building E3236, Edgewood Area, Aberdeen Proving Ground, Maryland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zellmer, S.D.; Smits, M.P.; Draugelis, A.K.
1995-09-01
The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, and review of available records regarding underground storage tanks associated with each building. This report provides the resultsmore » of the contamination source review for Building E3236. Many of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot- scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings and associated structures or appurtenances may contribute to environmental concerns at APG.« less
Contamination source review for Building E3642, Edgewood Area, Aberdeen Proving Ground, Maryland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booher, M.N.; O`Reilly, D.P.; Draugelis, A.K.
1995-09-01
Many of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances, the potential exists for portions of these buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings and associated structures or appurtenances may contribute to environmental concerns at APG. The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination sourcemore » review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation and review of available records regarding underground storage tanks associated with the building. This report provides the results of the contamination source review for Building E3642.« less
19. View northwest of Tropic Chamber reciprocal compressors (typical), in ...
19. View northwest of Tropic Chamber reciprocal compressors (typical), in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
21. PHOTOCOPY OF PHOTOGRAPH. view north of Tropic Chamber, ca. ...
21. PHOTOCOPY OF PHOTOGRAPH. view north of Tropic Chamber, ca. 1955. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
Capacity-building efforts by the AFHSC-GEIS program.
Sanchez, Jose L; Johns, Matthew C; Burke, Ronald L; Vest, Kelly G; Fukuda, Mark M; Yoon, In-Kyu; Lon, Chanthap; Quintana, Miguel; Schnabel, David C; Pimentel, Guillermo; Mansour, Moustafa; Tobias, Steven; Montgomery, Joel M; Gray, Gregory C; Saylors, Karen; Ndip, Lucy M; Lewis, Sheri; Blair, Patrick J; Sjoberg, Paul A; Kuschner, Robert A; Russell, Kevin L; Blazes, David L; Witt, Clara J; Money, Nisha N; Gaydos, Joel C; Pavlin, Julie A; Gibbons, Robert V; Jarman, Richard G; Stoner, Mikal; Shrestha, Sanjaya K; Owens, Angela B; Iioshi, Naomi; Osuna, Miguel A; Martin, Samuel K; Gordon, Scott W; Bulimo, Wallace D; Waitumbi, Dr John; Assefa, Berhane; Tjaden, Jeffrey A; Earhart, Kenneth C; Kasper, Matthew R; Brice, Gary T; Rogers, William O; Kochel, Tadeusz; Laguna-Torres, Victor Alberto; Garcia, Josefina; Baker, Whitney; Wolfe, Nathan; Tamoufe, Ubald; Djoko, Cyrille F; Fair, Joseph N; Akoachere, Jane Francis; Feighner, Brian; Hawksworth, Anthony; Myers, Christopher A; Courtney, William G; Macintosh, Victor A; Gibbons, Thomas; Macias, Elizabeth A; Grogl, Max; O'Neil, Michael T; Lyons, Arthur G; Houng, Huo-Shu; Rueda, Leopoldo; Mattero, Anita; Sekonde, Edward; Sang, Rosemary; Sang, William; Palys, Thomas J; Jerke, Kurt H; Millard, Monica; Erima, Bernard; Mimbe, Derrick; Byarugaba, Denis; Wabwire-Mangen, Fred; Shiau, Danny; Wells, Natalie; Bacon, David; Misinzo, Gerald; Kulanga, Chesnodi; Haverkamp, Geert; Kohi, Yadon Mtarima; Brown, Matthew L; Klein, Terry A; Meyers, Mitchell; Schoepp, Randall J; Norwood, David A; Cooper, Michael J; Maza, John P; Reeves, William E; Guan, Jian
2011-03-04
Capacity-building initiatives related to public health are defined as developing laboratory infrastructure, strengthening host-country disease surveillance initiatives, transferring technical expertise and training personnel. These initiatives represented a major piece of the Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) contributions to worldwide emerging infectious disease (EID) surveillance and response. Capacity-building initiatives were undertaken with over 80 local and regional Ministries of Health, Agriculture and Defense, as well as other government entities and institutions worldwide. The efforts supported at least 52 national influenza centers and other country-specific influenza, regional and U.S.-based EID reference laboratories (44 civilian, eight military) in 46 countries worldwide. Equally important, reference testing, laboratory infrastructure and equipment support was provided to over 500 field sites in 74 countries worldwide from October 2008 to September 2009. These activities allowed countries to better meet the milestones of implementation of the 2005 International Health Regulations and complemented many initiatives undertaken by other U.S. government agencies, such as the U.S. Department of Health and Human Services, the U.S. Agency for International Development and the U.S. Department of State.
Capacity-building efforts by the AFHSC-GEIS program
2011-01-01
Capacity-building initiatives related to public health are defined as developing laboratory infrastructure, strengthening host-country disease surveillance initiatives, transferring technical expertise and training personnel. These initiatives represented a major piece of the Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) contributions to worldwide emerging infectious disease (EID) surveillance and response. Capacity-building initiatives were undertaken with over 80 local and regional Ministries of Health, Agriculture and Defense, as well as other government entities and institutions worldwide. The efforts supported at least 52 national influenza centers and other country-specific influenza, regional and U.S.-based EID reference laboratories (44 civilian, eight military) in 46 countries worldwide. Equally important, reference testing, laboratory infrastructure and equipment support was provided to over 500 field sites in 74 countries worldwide from October 2008 to September 2009. These activities allowed countries to better meet the milestones of implementation of the 2005 International Health Regulations and complemented many initiatives undertaken by other U.S. government agencies, such as the U.S. Department of Health and Human Services, the U.S. Agency for International Development and the U.S. Department of State. PMID:21388564
Final Report National Laboratory Professional Development Workshop for Underrepresented Participants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Valerie
The 2013 CMD-IT National Laboratories Professional Development Workshop for Underrepresented Participants (CMD-IT NLPDev 2013) was held at the Oak Ridge National Laboratory campus in Oak Ridge, TN. from June 13 - 14, 2013. Sponsored by the Department of Energy (DOE) Advanced Scientific Computing Research Program, the primary goal of these workshops is to provide information about career opportunities in computational science at the various national laboratories and to mentor the underrepresented participants through community building and expert presentations focused on career success. This second annual workshop offered sessions to facilitate career advancement and, in particular, the strategies and resources neededmore » to be successful at the national laboratories.« less
Palaeonummulites venosus: Natural growth rates and quantification by means of CT investigation
NASA Astrophysics Data System (ADS)
Kinoshita, Shunichi; Eder, Wolfgang; Woeger, Julia; Hohenegger, Johann; Briguglio, Antonino
2016-04-01
Symbiont-bearing larger benthic Foraminifera (LBF) are long-living marine (possibly >1 year), single-celled organisms with complex calcium carbonate shells. Reproduction period, longevity and chamber building rate of LBF are important for population dynamics studies. It was expected that growth experiments in laboratory cultures cannot be used for estimation of chamber building rates and longevity studies although the laboratory conditions were simulated to natural conditions. Therefore, it is necessary to study individual and population growth under natural conditions for getting natural information. Therefore, the 'natural laboratory' method was developed to calculate the averaged chamber building rate and averaged longevity of species based on monthly sampling at fixed sampling stations and to compare with laboratory cultures simulating environmental conditions as close as possible to the natural environment. Thus, in this study, samples of living individuals were collected in 16 monthly intervals at 50m depth in front of Sesoko Island, Okinawa, Japan. We used micro-computed tomography (microCT) to investigate the chamber number of every specimen from the samples immediately dried after sampling. Single non dried specimens were cultured and the time of chamber building was obtained using microphotographs counted for every specimen at 2 to 4 days time intervals. The investigation using the natural laboratory method of Palaeonummulites venosus is based on the decomposition of the monthly frequency distributions into normally distributed components. Then the shift of the component parameters mean and standard deviation was used to calculate the necessary character of maximum chamber number and the Michaelis Menten function was applied to estimate the chamber building rate under natural conditions. This resulted in two reproduction periods, the first starting in May and the second in September, both showing the same chamber building rates, where the first shows a slightly stronger increase in the initial part. Longevity seems to be round about one year. Due to the several reproduction periods, the existence of small and large specimens in the same sample and the bimodal distributions can be explained. The cultured individuals shows a much lower chamber building rate, often demonstrating a longer period with no chamber production just after sampling, the results of sampling shock. This is the first time that it can be shown that chamber building rates and longevities cannot be based on laboratory investigations.
Jean Louis, Frantz; Buteau, Josiane; Boncy, Jacques; Anselme, Renette; Stanislas, Magalie; Nagel, Mary C; Juin, Stanley; Charles, Macarthur; Burris, Robert; Antoine, Eva; Yang, Chunfu; Kalou, Mireille; Vertefeuille, John; Marston, Barbara J; Lowrance, David W; Deyde, Varough
2017-10-01
Before the 2010 devastating earthquake and cholera outbreak, Haiti's public health laboratory systems were weak and services were limited. There was no national laboratory strategic plan and only minimal coordination across the laboratory network. Laboratory capacity was further weakened by the destruction of over 25 laboratories and testing sites at the departmental and peripheral levels and the loss of life among the laboratory health-care workers. However, since 2010, tremendous progress has been made in building stronger laboratory infrastructure and training a qualified public health laboratory workforce across the country, allowing for decentralization of access to quality-assured services. Major achievements include development and implementation of a national laboratory strategic plan with a formalized and strengthened laboratory network; introduction of automation of testing to ensure better quality of results and diversify the menu of tests to effectively respond to outbreaks; expansion of molecular testing for tuberculosis, human immunodeficiency virus, malaria, diarrheal and respiratory diseases; establishment of laboratory-based surveillance of epidemic-prone diseases; and improvement of the overall quality of testing. Nonetheless, the progress and gains made remain fragile and require the full ownership and continuous investment from the Haitian government to sustain these successes and achievements.
Jean Louis, Frantz; Buteau, Josiane; Boncy, Jacques; Anselme, Renette; Stanislas, Magalie; Nagel, Mary C.; Juin, Stanley; Charles, Macarthur; Burris, Robert; Antoine, Eva; Yang, Chunfu; Kalou, Mireille; Vertefeuille, John; Marston, Barbara J.; Lowrance, David W.; Deyde, Varough
2017-01-01
Abstract. Before the 2010 devastating earthquake and cholera outbreak, Haiti’s public health laboratory systems were weak and services were limited. There was no national laboratory strategic plan and only minimal coordination across the laboratory network. Laboratory capacity was further weakened by the destruction of over 25 laboratories and testing sites at the departmental and peripheral levels and the loss of life among the laboratory health-care workers. However, since 2010, tremendous progress has been made in building stronger laboratory infrastructure and training a qualified public health laboratory workforce across the country, allowing for decentralization of access to quality-assured services. Major achievements include development and implementation of a national laboratory strategic plan with a formalized and strengthened laboratory network; introduction of automation of testing to ensure better quality of results and diversify the menu of tests to effectively respond to outbreaks; expansion of molecular testing for tuberculosis, human immunodeficiency virus, malaria, diarrheal and respiratory diseases; establishment of laboratory-based surveillance of epidemic-prone diseases; and improvement of the overall quality of testing. Nonetheless, the progress and gains made remain fragile and require the full ownership and continuous investment from the Haitian government to sustain these successes and achievements. PMID:29064354
Capacity Building in Response to Pandemic Influenza Threats: Lao PDR Case Study
Phommasack, Bounlay; Moen, Ann; Vongphrachanh, Phengta; Tsuyuoka, Reiko; Cox, Nancy; Khamphaphongphanh, Bouaphanh; Phonekeo, Darouny; Kasai, Takeshi; Ketmayoon, Pakapak; Lewis, Hannah; Kounnavong, Bounheuang; Khanthamaly, Viengphone; Corwin, Andrew
2012-01-01
The Lao People's Democratic Republic (PDR) committed to pandemic detection and response preparations when faced with the threat of avian influenza. Since 2006, the National Center for Laboratory and Epidemiology of Lao PDR has developed credible laboratory, surveillance, and epidemiological (human) capacity and as a result was designated a World Health Organization National Influenza Center in 2010. The Lao PDR experience in building influenza capacities provides a case study of the considerable crossover effect of such investments to augment the capacity to combat emerging and re-emerging diseases other than influenza. PMID:23222137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullrich, Rebecca A.
The Fire Control Bunker (Building 09-51) is a contributing element to the Sandia National Laboratories (SNL) Tonopah Test Range (TTR) Historic District. The SNL TTR Historic District played a significant role in U.S. Cold War history in the areas of stockpile surveillance and non-nuclear field testing of nuclear weapons design. The district covers approximately 179,200 acres and illustrates Cold War development testing of nuclear weapons components and systems. This report includes historical information, architectural information, sources of information, project information, maps, blueprints, and photographs.
None
2017-12-09
Through research, the National Renewable Energy Laboratory (NREL) has developed many strategies and design techniques to ensure both commercial and residential buildings use as little energy as possible and also work well with the surroundings. Here you will find a video that introduces the work of NREL Buildings Research, highlights some of the facilities on the NREL campus, and demonstrates these efficient building strategies. Watch this video to see design highlights of the Science and Technology Facility on the NREL campusâthe first Federal building to be LEED® Platinum certified. Additionally, the video demonstrates the energy-saving features of NRELs Thermal Test Facility.
The Invention Factory: Thomas Edison's Laboratories. Teaching with Historic Places.
ERIC Educational Resources Information Center
Bolger, Benjamin
This lesson explores the group of buildings in West Orange, New Jersey, built in 1887, that formed the core of Thomas Edison's research and development complex. They consisted of chemistry, physics, and metallurgy laboratories; machine shop; pattern shop; research library; and rooms for experiments. The lesson explains that the prototypes (ideas…
FY 2009 National Renewable Energy Laboratory (NREL) Annual Report: A Year of Energy Transformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2010-01-01
This FY2009 Annual Report surveys the National Renewable Energy Laboratory's (NREL) accomplishments in renewable energy and energy efficiency research and development, commercialization and deployment of technologies, and strategic energy analysis. It offers NREL's vision and progress in building a clean, sustainable research campus and reports on community involvement.
5. BUILDING NO. 404, THERMO CHEMISTRY LABORATORY, LOOKING NORTHWEST AT ...
5. BUILDING NO. 404, THERMO CHEMISTRY LABORATORY, LOOKING NORTHWEST AT SOUTH SIDE OF BUILDING. BUILDING NO. 403 IN BACKGROUND RIGHT. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
11. Detail view west from airlock chamber of typical refrigerator ...
11. Detail view west from airlock chamber of typical refrigerator door into Trophic Chamber. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
20. PHOTOCOPY OF PHOTOGRAPH. View south of north elevation under ...
20. PHOTOCOPY OF PHOTOGRAPH. View south of north elevation under construction, ca. 1954. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
14. View north of Tropic wind tunnel and frontal view ...
14. View north of Tropic wind tunnel and frontal view of main fan (typical). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
15. View northeast of main control panels, Arctic and Tropic ...
15. View northeast of main control panels, Arctic and Tropic Chambers, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
7. Detail view west of Arctic Chamber wind tunnel shell ...
7. Detail view west of Arctic Chamber wind tunnel shell (typical) in east elevation. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
23. PHOTOCOPY OF PHOTOGRAPH. View west of Tropic Chamber refrigeration ...
23. PHOTOCOPY OF PHOTOGRAPH. View west of Tropic Chamber refrigeration equipment, ca. 1955. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
16. View northwest of Arctic Chamber Worthington centrifugal compressor and ...
16. View northwest of Arctic Chamber Worthington centrifugal compressor and control panel, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
18. View north of Tropic Chamber Worthington centrifugal compressor and ...
18. View north of Tropic Chamber Worthington centrifugal compressor and control panel, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-02-01
New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting errors in building energy audit software and calibration procedures. BESTEST-EX consists of building physics and utility billmore » calibration test cases, which software developers can use to compare their tools simulation findings to reference results generated with state-of-the-art simulation tools. Overall, the BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX is helping software developers identify and correct bugs in their software, as well as develop and test utility bill calibration procedures.« less
WUFI (Wärme and Feuchte Instationär)-Oak Ridge National Laboratory (ORNL)/Fraunhofer IBP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manfred Kehrer, ORNL
2014-05-20
WUFI - Oak Ridge National Laboratory (ORNL)/Fraunhofer IBP is a menu-driven PC program which allows realistic calculation of the transient coupled one-dimensional heat and moisture transport in multi-layer building components exposed to natural weather. It is based on the newest findings regarding vapor diffusion and liquid transport in building materials and has been validated by detailed comparison with measurements obtained in the laboratory and on outdoor testing fields. Together with Oak Ridge National Laboratory (ORNL) Fraunhofer IBP has developed a special version of WUFI ® for North America. WUFI® ORNL is a functionally limited free version of WUFI® Pro formore » non-commercial purposes. It contains climate data for 62 cities in the USA and Canada which are all available in the free version. http://web.ornl.gov/sci/ees/etsd/btric/wufi/ http://www.WUFI.com/ORNL« less
One wall of the original E Building is visible in ...
One wall of the original E Building is visible in the back of this image, looking west in Room 142, a typical laboratory space - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH
ERIC Educational Resources Information Center
Bruehl, Margaret; Pan, Denise; Ferrer-Vinent, Ignacio J.
2015-01-01
This paper describes curriculum modules developed for first-year general chemistry laboratory courses that use scientific literature and creative experiment design to build information literacy in a student-centered learning environment. Two curriculum units are discussed: Exploring Scientific Literature and Design Your Own General Chemistry…
Dava Newman tours the ECLSS lab
2015-08-06
NEWMAN TAKES A CLOSER LOOK AT EQUIPMENT UNDER DEVELOPMENT IN THE ENVIRONMENTAL CONTROL & LIFE SUPPORT SYSTEMS SECTION IN BUILDING 4755. ELCSS IS BUILDING DEVICES TO RECYCLE AIR AND WATER FOR CREW MEMBERS ON THE INTERNATIONAL SPACE STATION, USING THE ORBITING LABORATORY AS A TEST BED FOR LIFE SUPPORT SYSTEMS ON LONG-DURATION MISSIONS DEEPER INTO OUR SOLAR SYSTEM.
Experimental Shielding Evaluation of the Radiation Protection Provided by Residential Structures
NASA Astrophysics Data System (ADS)
Dickson, Elijah D.
The human health and environmental effects following a postulated accidental release of radioactive material to the environment has been a public and regulatory concern since the early development of nuclear technology and researched extensively to better understand the potential risks for accident mitigation and emergency planning purposes. The objective of this investigation is to research and develop the technical basis for contemporary building shielding factors for the U.S. housing stock. Building shielding factors quantify the protection a certain building-type provides from ionizing radiation. Much of the current data used to determine the quality of shielding around nuclear facilities and urban environments is based on simplistic point-kernel calculations for 1950's era suburbia and is no longer applicable to the densely populated urban environments seen today. To analyze a building's radiation shielding properties, the ideal approach would be to subject a variety of building-types to various radioactive materials and measure the radiation levels in and around the building. While this is not entirely practicable, this research uniquely analyzes the shielding effectiveness of a variety of likely U.S. residential buildings from a realistic source term in a laboratory setting. Results produced in the investigation provide a comparison between theory and experiment behind building shielding factor methodology by applying laboratory measurements to detailed computational models. These models are used to develop a series of validated building shielding factors for generic residential housing units using the computational code MCNP5. For these building shielding factors to be useful in radiologic consequence assessments and emergency response planning, two types of shielding factors have been developed for; (1) the shielding effectiveness of each structure within a semi-infinite cloud of radioactive material, and (2) the shielding effectiveness of each structure from contaminant deposition on the roof and surrounding surfaces. For example, results from this investigation estimate the building shielding factors from a semi-infinite plume between comparable two-story models with a basement constructed with either brick-and-mortar or vinyl siding composing the exterior wall weather and a typical single-wide manufactured home with vinyl siding to be 0.36, 0.65, and 0.82 respectively.
Contamination source review for Building E2370, Edgewood Area, Aberdeen Proving Ground, Maryland
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Reilly, D.P.; Glennon, M.A.; Draugelis, A.K.
1995-09-01
The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from this review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, and geophysical investigation. This report provides the results of the contamination source review for Building E2370. Many of the APGmore » facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings and associated structures or appurtenances may contribute to environmental concerns at APG.« less
The Advancement of Cool Roof Standards in China from 2010 to 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Jing; Levinson, Ronnen M.
Since the initiation of the U.S.-China Clean Energy Research Center-Building Energy Efficiency (CERC-BEE) cool roof research collaboration between the Lawrence Berkeley National Laboratory Heat Island Group and Chinese institutions in 2010, new cool surface credits (insulation trade- offs) have been adopted in Chinese building energy efficiency standards, industry standards, and green building standards. JGJ 75-2012: Design Standard for Energy Efficiency of Residential Buildings in Hot Summer and Warm Winter Zone became the first national level standard to provide cool surface credits. GB/T 50378-2014: Assessment Standard for Green Building is the first national level green building standard that offers points formore » heat island mitigation. JGJ/T 359-2015: Technical Specification for Application of Architectural Reflective Thermal Insulation Coating is the first industry standard that offers cool coating credits for both public and residential buildings in all hot-summer climates (Hot Summer/Cold Winter, Hot Summer/Warm Winter). As of December 2015, eight provinces or municipalities in hot-summer regions have credited cool surfaces credits in their residential and/or public building design standards; five other provinces or municipalities in hot-summer regions recommend, but do not credit, the use of cool surfaces in their building design standards. Cool surfaces could be further advanced in China by including cool roof credits for residential and public building energy efficiency standards in all hot-summer regions; developing a standardized process for natural exposure and aged-property rating of cool roofing products; and adapting the U.S.-developed laboratory aging process for roofing materials to replicate solar reflectance changes induced by natural exposure in China.« less
Using generic tool kits to build intelligent systems
NASA Technical Reports Server (NTRS)
Miller, David J.
1994-01-01
The Intelligent Systems and Robots Center at Sandia National Laboratories is developing technologies for the automation of processes associated with environmental remediation and information-driven manufacturing. These technologies, which focus on automated planning and programming and sensor-based and model-based control, are used to build intelligent systems which are able to generate plans of action, program the necessary devices, and use sensors to react to changes in the environment. By automating tasks through the use of programmable devices tied to computer models which are augmented by sensing, requirements for faster, safer, and cheaper systems are being satisfied. However, because of the need for rapid cost-effect prototyping and multi-laboratory teaming, it is also necessary to define a consistent approach to the construction of controllers for such systems. As a result, the Generic Intelligent System Controller (GISC) concept has been developed. This concept promotes the philosophy of producing generic tool kits which can be used and reused to build intelligent control systems.
6. Detail view north of typical window and loading door ...
6. Detail view north of typical window and loading door at east end of south elevation. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
1. Exterior view of Systems Integration Laboratory Building (T28), looking ...
1. Exterior view of Systems Integration Laboratory Building (T-28), looking northeast. The taller of the two gantries on the left houses Test Cell 6 (fuel), while the shorter gantry on the right houses Test Cell 7 (oxidizer). This structure serves as the functional center of the Systems Integration Laboratory complex for testing, handling, and storage of the Titan II's hydrazine - and nitrogen tetroxide-based fuel system propellants. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
A Computational Experiment of the Endo versus Exo Preference in a Diels-Alder Reaction
ERIC Educational Resources Information Center
Rowley, Christopher N.; Woo, Tom K.
2009-01-01
We have developed and tested a computational laboratory that investigates an endo versus exo Diels-Alder cycloaddition. This laboratory employed density functional theory (DFT) calculations to study the cycloaddition of N-phenylmaleimide to furan. The endo and exo stereoisomers of the product were distinguished by building the two isomers in a…
Contamination source review for Building E6891, Edgewood Area, Aberdeen Proving Ground, Maryland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zellmer, S.D.; Draugelis, A.K.; Rueda, J.
1995-09-01
The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of various APG buildings. This report provides the results of the contamination source review for Building E6891. The information obtained from this review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, and collection of airmore » samples. This building is part of the Lauderick Creek Concrete Slab Test Site, located in the Lauderick Creek Area in the Edgewood Area. Many of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances the potential exists` for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings and associated structures or appurtenances may contribute to environmental concerns at APG.« less
Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories.
Homer, Lesley C; Alderman, T Scott; Blair, Heather Ann; Brocard, Anne-Sophie; Broussard, Elaine E; Ellis, Robert P; Frerotte, Jay; Low, Eleanor W; McCarthy, Travis R; McCormick, Jessica M; Newton, JeT'Aime M; Rogers, Francine C; Schlimgen, Ryan; Stabenow, Jennifer M; Stedman, Diann; Warfield, Cheryl; Ntiforo, Corrie A; Whetstone, Carol T; Zimmerman, Domenica; Barkley, Emmett
2013-03-01
The Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories were developed by biosafety professionals who oversee training programs for the 2 national biocontainment laboratories (NBLs) and the 13 regional biocontainment laboratories (RBLs) that participate in the National Institute of Allergy and Infectious Diseases (NIAID) NBL/RBL Network. These guidelines provide a general training framework for biosafety level 3 (BSL-3) high-containment laboratories, identify key training concepts, and outline training methodologies designed to standardize base knowledge, understanding, and technical competence of laboratory personnel working in high-containment laboratories. Emphasis is placed on building a culture of risk assessment-based safety through competency training designed to enhance understanding and recognition of potential biological hazards as well as methods for controlling these hazards. These guidelines may be of value to other institutions and academic research laboratories that are developing biosafety training programs for BSL-3 research.
Streamlining Building Efficiency Evaluation with DOE's Asset Score Preview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goel, Supriya; Wang, Nora; Gonzalez, Juan
2016-08-26
Building Energy Asset Score (Asset Score), developed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE), is a tool to help building owners and managers assess the efficiency of a building's energy-related systems and encourage investment in cost-effective improvements. The Asset Score uses an EnergyPlus model to provide a quick assessment of building energy performance with minimum user inputs of building characteristics and identifies upgrade opportunities. Even with a reduced set of user inputs, data collection remains a challenge for wide-spread adoption, especially when evaluating a large number of buildings. To address this, Asset Scoremore » Preview was developed to allow users to enter as few as seven building characteristics to quickly assess their buildings before a more in-depth analysis. A streamlined assessment from Preview to full Asset Score provides an easy entry point and also enables users who manage a large number of buildings to screen and prioritize buildings that can benefit most from a more detailed evaluation and possible energy efficiency upgrades without intensive data collection.« less
VIEW OF BUILDING 126, LOOKING NORTH. BUILDING 126, THE SOURCE ...
VIEW OF BUILDING 126, LOOKING NORTH. BUILDING 126, THE SOURCE CALIBRATION LABORATORY, WAS USED TO EXPOSE AND CALIBRATE RADIATION DETECTION DEVICES, INCLUDING THERMOLUMINESCENT DOSIMETERS, WORN BY EMPLOYEES TO DETECT RADIATION EXPOSURE - Rocky Flats Plant, Source Calibration Laboratory, Between Second & Third Streets & Central & Cedar Avenues, Golden, Jefferson County, CO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Alastair; Regnier, Cindy; Settlemyre, Kevin
Massachusetts Institute of Technology (MIT) partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program.1 Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program. MIT is one of the U.S.’s foremost higher education institutions, occupying a campus that is nearly 100 years old, with a building floor area totaling more than 12 million square feet. The CBP project focused on improving the energy performance of two campus buildings, the Ray andmore » Maria Stata Center (RMSC) and the Building W91 (BW91) data center. A key goal of the project was to identify energy saving measures that could be applied to other buildings both within MIT’s portfolio and at other higher education institutions. The CBP retrofits at MIT are projected to reduce energy consumption by approximately 48%, including a reduction of around 72% in RMSC lighting energy and a reduction of approximately 55% in RMSC server room HVAC energy. The energy efficiency measure (EEM) package proposed for the BW91 data center is expected to reduce heating, ventilation, and air-conditioning (HVAC) energy use by 30% to 50%, depending on the final air intake temperature that is established for the server racks. The RMSC, an iconic building designed by Frank Gehry, houses the Computer Science and Artificial Intelligence Laboratory, the Laboratory for Information and Decision Systems, and the Department of Linguistics and Philosophy.« less
22. PHOTOCOPY OF PHOTOGRAPH. View north of main control panels, ...
22. PHOTOCOPY OF PHOTOGRAPH. View north of main control panels, Artic and Tropic Chambers, ca. 1955. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
Jerrold E. Winandy; John F. Hunt; Christopher Turk; James R. Anderson
2006-01-01
Following natural disasters (such as hurricanes, tornados, or tsunamis), when civilians become displaced, or when military troops are deployed overseas, temporary housing is often a critical need. The USDA Forest Products Laboratory recently developed a lightweight, transportable, reusable, and recyclable biocomposite building materialâthreedimensional engineered...
Building America Top Innovations 2014 Profile: HVAC Cabinet Air Leakage Test Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This 2014 Top Innovation profile describes Building America-funded research by teams and national laboratories that resulted in the development of an ASHRAE standard and a standardized testing method for testing the air leakage of HVAC air handlers and furnace cabinets and has spurred equipment manufacturers to tighten the cabinets they use for residential HVAC systems.
1. Exterior view of Signal Transfer Building (T28A), looking southwest. ...
1. Exterior view of Signal Transfer Building (T-28A), looking southwest. This structure houses controls for propellant transfer, instrumentation for testing, test data transmission receivers, data verification equipment, and centralized utilities for the Systems Integration Laboratory complex. The gantries of the Systems Integration Laboratory Building (T-28) are visible to the rear of this structure. - Air Force Plant PJKS, Systems Integration Laboratory, Signal Transfer Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
ARCHITECTURAL, 777M, PHYSICS ASSEMBLY LABORATORY BUILDING, EQUIPMENT ARRANGEMENT SECTIONS ...
ARCHITECTURAL, 777-M, PHYSICS ASSEMBLY LABORATORY BUILDING, EQUIPMENT ARRANGEMENT SECTIONS B AND C (W157132) - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, Jaime
2012-12-14
To unlock the potential of micro grids we plan to build, commission and operate a 5 kWDC PV array and integrate it to the UTPA Engineering building low voltage network, as a micro grid; and promote community awareness. Assisted by a solar radiation tracker providing on-line information of its measurements and performing analysis for the use by the scientific and engineering community, we will write, perform and operate a set of Laboratory experiments and computer simulations supporting Electrical Engineering (graduate and undergraduate) courses on Renewable Energy, as well as Senior Design projects.
Indoor Air Vapor Intrusion Mitigation Approaches
The National Risk Management Research Laboratory has developed a technology transfer document regarding management and treatment of vapor intrusion into building structures. This document describes the range of mitigation technologies available.
Strengthening national health laboratories in sub-Saharan Africa: a decade of remarkable progress
Alemnji, G. A.; Zeh, C.; Yao, K.; Fonjungo, P. N.
2016-01-01
OBJECTIVES Efforts to combat the HIV/AIDS pandemic have underscored the fragile and neglected nature of some national health laboratories in Africa. In response, national and international partners and various governments have worked collaboratively over the last several years to build sustainable laboratory capacities within the continent. Key accomplishments reflecting this successful partnership include the establishment of the African-based World Health Organization Regional Office for Africa (WHO-AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA); development of the Strengthening Laboratory Management Toward Accreditation (SLMTA) training programme; and launching of a Pan African-based institution, the African Society for Laboratory Medicine (ASLM). These platforms continue to serve as the foundations for national health laboratory infrastructure enhancement, capacity development and overall quality system improvement. Further targeted interventions should encourage countries to aim at integrated tiered referral networks, promote quality system improvement and accreditation, develop laboratory policies and strategic plans, enhance training and laboratory workforce development and a retention strategy, create career paths for laboratory professionals and establish public–private partnerships. Maintaining the gains and ensuring sustainability will require concerted action by all stakeholders with strong leadership and funding from African governments and from the African Union. PMID:24506521
University building safety index measurement using risk and implementation matrix
NASA Astrophysics Data System (ADS)
Rahman, A.; Arumsari, F.; Maryani, A.
2018-04-01
Many high rise building constructed in several universities in Indonesia. The high-rise building management must provide the safety planning and proper safety equipment in each part of the building. Unfortunately, most of the university in Indonesia have not been applying safety policy yet and less awareness on treating safety facilities. Several fire accidents in university showed that some significant risk should be managed by the building management. This research developed a framework for measuring the high rise building safety index in university The framework is not only assessed the risk magnitude but also designed modular building safety checklist for measuring the safety implementation level. The safety checklist has been developed for 8 types of the university rooms, i.e.: office, classroom, 4 type of laboratories, canteen, and library. University building safety index determined using risk-implementation matrix by measuring the risk magnitude and assessing the safety implementation level. Building Safety Index measurement has been applied in 4 high rise buildings in ITS Campus. The building assessment showed that the rectorate building in secure condition and chemical department building in beware condition. While the library and administration center building was in less secure condition.
Laboratory twinning to build capacity for rabies diagnosis.
Fooks, Anthony R; Drew, Trevor W; Tu, Changchun
2016-03-05
In 2009, the UK's OIE Reference Laboratory for rabies, based at the APHA in Weybridge, was awarded a project to twin with the Changchun Veterinary Research Institute in the People's Republic of China to help the institute develop the skills and methods necessary to become an OIE Reference Laboratory itself. Here, Tony Fooks, Trevor Drew and Changchun Tu describe the OIE's twinning project and the success that has since been realised in China. British Veterinary Association.
Long-term Energy and Emissions Savings Potential in New York City Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Vatsal; Lee, John; Klein, Yehuda
2012-09-30
The New York State Energy Research and Development Authority (NYSERDA) partnered with the Brookhaven National Laboratory (BNL) and the City University of New York (CUNY) to develop an integrated methodology that is capable of quantifying the impact of energy efficiency and load management options in buildings, including CUNY’s campus buildings, housing projects, hospitals, and hotels, while capturing the synergies and offsets in a complex and integrated energy-environmental system. The results of this work serve as a guideline in implementing urban energy efficiency and other forms of urban environmental improvement through cost-effective planning at the institutional and local level.
31. ORIGINAL 1905 BUILDING, LOOKING SOUTHWEST. THIS VIEW WAS PUBLISHED ...
31. ORIGINAL 1905 BUILDING, LOOKING SOUTHWEST. THIS VIEW WAS PUBLISHED IN UNDERWRITERS' LABORATORIES' REPORT, ORGANIZATION, PURPOSE AND METHODS OF UNDERWRITERS' LABORATORIES, page 2 - Underwriters' Laboratories, 207-231 East Ohio Street, Chicago, Cook County, IL
Temporary Laboratory Office in Huntsville Industrial Center Building
NASA Technical Reports Server (NTRS)
1964-01-01
Temporary quarters in the Huntsville Industrial Center (HIC) building located in downtown Huntsville, Alabama, as Marshall Space Flight Center (MSFC) grew. This image shows drafting specialists from the Propulsion and Vehicle Engineering Laboratory at work in the HIC building.
Dols, W. Stuart; Persily, Andrew K.; Morrow, Jayne B.; Matzke, Brett D.; Sego, Landon H.; Nuffer, Lisa L.; Pulsipher, Brent A.
2010-01-01
In an effort to validate and demonstrate response and recovery sampling approaches and technologies, the U.S. Department of Homeland Security (DHS), along with several other agencies, have simulated a biothreat agent release within a facility at Idaho National Laboratory (INL) on two separate occasions in the fall of 2007 and the fall of 2008. Because these events constitute only two realizations of many possible scenarios, increased understanding of sampling strategies can be obtained by virtually examining a wide variety of release and dispersion scenarios using computer simulations. This research effort demonstrates the use of two software tools, CONTAM, developed by the National Institute of Standards and Technology (NIST), and Visual Sample Plan (VSP), developed by Pacific Northwest National Laboratory (PNNL). The CONTAM modeling software was used to virtually contaminate a model of the INL test building under various release and dissemination scenarios as well as a range of building design and operation parameters. The results of these CONTAM simulations were then used to investigate the relevance and performance of various sampling strategies using VSP. One of the fundamental outcomes of this project was the demonstration of how CONTAM and VSP can be used together to effectively develop sampling plans to support the various stages of response to an airborne chemical, biological, radiological, or nuclear event. Following such an event (or prior to an event), incident details and the conceptual site model could be used to create an ensemble of CONTAM simulations which model contaminant dispersion within a building. These predictions could then be used to identify priority area zones within the building and then sampling designs and strategies could be developed based on those zones. PMID:27134782
Dols, W Stuart; Persily, Andrew K; Morrow, Jayne B; Matzke, Brett D; Sego, Landon H; Nuffer, Lisa L; Pulsipher, Brent A
2010-01-01
In an effort to validate and demonstrate response and recovery sampling approaches and technologies, the U.S. Department of Homeland Security (DHS), along with several other agencies, have simulated a biothreat agent release within a facility at Idaho National Laboratory (INL) on two separate occasions in the fall of 2007 and the fall of 2008. Because these events constitute only two realizations of many possible scenarios, increased understanding of sampling strategies can be obtained by virtually examining a wide variety of release and dispersion scenarios using computer simulations. This research effort demonstrates the use of two software tools, CONTAM, developed by the National Institute of Standards and Technology (NIST), and Visual Sample Plan (VSP), developed by Pacific Northwest National Laboratory (PNNL). The CONTAM modeling software was used to virtually contaminate a model of the INL test building under various release and dissemination scenarios as well as a range of building design and operation parameters. The results of these CONTAM simulations were then used to investigate the relevance and performance of various sampling strategies using VSP. One of the fundamental outcomes of this project was the demonstration of how CONTAM and VSP can be used together to effectively develop sampling plans to support the various stages of response to an airborne chemical, biological, radiological, or nuclear event. Following such an event (or prior to an event), incident details and the conceptual site model could be used to create an ensemble of CONTAM simulations which model contaminant dispersion within a building. These predictions could then be used to identify priority area zones within the building and then sampling designs and strategies could be developed based on those zones.
Hardware survey for the avionics test bed
NASA Technical Reports Server (NTRS)
Cobb, J. M.
1981-01-01
A survey of maor hardware items that could possibly be used in the development of an avionics test bed for space shuttle attached or autonomous large space structures was conducted in NASA Johnson Space Center building 16. The results of the survey are organized to show the hardware by laboratory usage. Computer systems in each laboratory are described in some detail.
VIEW OF BUILDING NO. 77710A, LOOKING WEST. LABORATORY WING AND ...
VIEW OF BUILDING NO. 777-10A, LOOKING WEST. LABORATORY WING AND MAIN ENTRANCE ON RIGHT; MULTISTORY REACTOR WING IN LEFT BACKGROUND - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
4. BUILDING NO. 404, THERMO CHEMISTRY LABORATORY, LOOKING SOUTHEAST AT ...
4. BUILDING NO. 404, THERMO CHEMISTRY LABORATORY, LOOKING SOUTHEAST AT SOUTH AND WEST SIDES OF BUILDING. ORIGINALLY USED AS A STOREHOUSE. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
U.S. EPA Federal Technology Transfer Program Fact Sheet
The Federal Technology Transfer Act (FTTA), enacted by Congress in 1986 and building on previous legislation, improves access to federal laboratories by non-federal organizations for research and development opportunities.
Contamination source review for Building E7995, Edgewood Area, Aberdeen Proving Ground, Maryland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booher, M.N.; Miller, G.A.; Draugelis, A.K.
1995-09-01
The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition, of the buildings. The source contamination review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, investigation of potential hazardous materials facilities (HMFs), and review of available records regarding underground storage tanks. This reportmore » provides the results of the contamination source review for Building E7995. any of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings, and associated structures or appurtenances, may contribute to environmental concerns at APG.« less
Fulks, Michael; Stout, Robert L; Dolan, Vera F
2012-01-01
Evaluate the degree of medium to longer term mortality prediction possible from a scoring system covering all laboratory testing used for life insurance applicants, as well as blood pressure and build measurements. Using the results of testing for life insurance applicants who reported a Social Security number in conjunction with the Social Security Death Master File, the mortality associated with each test result was defined by age and sex. The individual mortality scores for each test were combined for each individual and a composite mortality risk score was developed. This score was then tested against the insurance applicant dataset to evaluate its ability to discriminate risk across age and sex. The composite risk score was highly predictive of all-cause mortality risk in a linear manner from the best to worst quintile of scores in a nearly identical fashion for each sex and decade of age. Laboratory studies, blood pressure and build from life insurance applicants can be used to create scoring that predicts all-cause mortality across age and sex. Such an approach may hold promise for preventative health screening as well.
Hospital laboratory outreach: benefits and planning.
Anderson, Victoria
2007-12-01
A laboratory outreach program can benefit the hospital in several ways, such as increasing revenues, filling unused capacity, and solidifying relationships with the physician and patient communities. Building rapport with physicians and the community ultimately brings economic value to the hospital. To service this new market it is necessary to modify current systems and processes and develop new services. The areas most likely to be developed are logistics, service centers, client services, physician connectivity, billing, marketing, sales, and finance reporting. Developing efficient customer-related services is a key to reaping the benefits.
ARCHITECTURAL, 777M, PHYSICS ASSEMBLY LABORATORY BUILDING, PLAN OF +131 AND ...
ARCHITECTURAL, 777-M, PHYSICS ASSEMBLY LABORATORY BUILDING, PLAN OF +13-1 AND +27-0 FLOOR LEVELS (W157114) - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Draftsmen at Work during Construction of the Aircraft Engine Research Laboratory
1942-09-21
The National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory was designed by a group of engineers at the Langley Memorial Aeronautical Laboratory in late 1940 and 1941. Under the guidance of Ernest Whitney, the men worked on drawings and calculations in a room above Langley’s Structural Research Laboratory. The main Aircraft Engine Research Laboratory design group originally consisted of approximately 30 engineers and draftsmen, but there were smaller groups working separately on specific facilities. The new engine lab would have six principal buildings: the Engine Research Building, hangar, Fuels and Lubricants Building, Administration Building, Propeller Test Stand, and Altitude Wind Tunnel. In December 1941 most of those working on the project transferred to Cleveland from Langley. Harrison Underwood and Charles Egan led 18 architectural, 26 machine equipment, 3 structural and 10 mechanical draftsmen. Initially these staff members were housed in temporary offices in the hangar. As sections of the four-acre Engine Research Building were completed in the summer of 1942, the design team began relocating there. The Engine Research Building contained a variety of test cells and laboratories to address virtually every aspect of piston engine research. It also contained a two-story office wing, seen in this photograph that would later house many of the powerplant research engineers.
This photograph, looking southwest in Room 107, demonstrates some of ...
This photograph, looking southwest in Room 107, demonstrates some of the laboratory equipment and facilities which have been recently used in E Building - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH
Training the Cancer Research Workforce
The National Cancer Institute (NCI) builds up the nation's cancer research workforce through training and career development grants, as well as intramural research experiences at the NIH Clinical Center and NCI offices and laboratories in Maryland.
NREL Getting Extra 'Corn Squeezins'
DOT National Transportation Integrated Search
1993-11-01
This article discusses a cooperative research and development agreement between : New Energy Company of Indiana and the National Renewable Energy Laboratory to : build a pilot plant that will produce additional ethanol from the carbohydrates : left o...
2012-11-08
CAPE CANAVERAL, Fla. -- Inside a laboratory in the Engineering Development Laboratory, or EDL, at NASA’s Kennedy Space Center in Florida, research scientist Michael Hogue, in the green plaid shirt, describes several technologies to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston
2012-11-08
CAPE CANAVERAL, Fla. -- Inside a laboratory in the Engineering Development Laboratory, or EDL, at NASA’s Kennedy Space Center in Florida, research physicist Phil Metzger describes lunar excavators and soil processing technologies to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston
2012-11-08
CAPE CANAVERAL, Fla. -- – Inside a laboratory in the Engineering Development Laboratory, or EDL, at NASA’s Kennedy Space Center in Florida, research scientist Michael Johansen, in the blue polo shirt, describes dust mitigation technology to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston
2012-11-08
CAPE CANAVERAL, Fla. -- Inside a laboratory in the Engineering Development Laboratory, or EDL, at NASA’s Kennedy Space Center in Florida, research physicist Phil Metzger describes lunar excavators and soil processing technologies to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston
Small- and Medium-Sized Commercial Building Monitoring and Controls Needs: A Scoping Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katipamula, Srinivas; Underhill, Ronald M.; Goddard, James K.
2012-10-31
Buildings consume over 40% of the total energy consumption in the U.S. A significant portion of the energy consumed in buildings is wasted because of the lack of controls or the inability to use existing building automation systems (BASs) properly. Much of the waste occurs because of our inability to manage and controls buildings efficiently. Over 90% of the buildings are either small-size (<5,000 sf) or medium-size (between 5,000 sf and 50,000 sf); these buildings currently do not use BASs to monitor and control their building systems from a central location. According to Commercial Building Energy Consumption Survey (CBECS), aboutmore » 10% of the buildings in the U.S. use BASs or central controls to manage their building system operations. Buildings that use BASs are typically large (>100,000 sf). Lawrence Berkeley National Laboratory (LBNL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) were asked by the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP) to identify monitoring and control needs for small- and medium-sized commercial buildings and recommend possible solutions. This study documents the needs and solutions for small- and medium-sized buildings.« less
Residential Building Energy Code Field Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Bartlett, M. Halverson, V. Mendon, J. Hathaway, Y. Xie
This document presents a methodology for assessing baseline energy efficiency in new single-family residential buildings and quantifying related savings potential. The approach was developed by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) Building Energy Codes Program with the objective of assisting states as they assess energy efficiency in residential buildings and implementation of their building energy codes, as well as to target areas for improvement through energy codes and broader energy-efficiency programs. It is also intended to facilitate a consistent and replicable approach to research studies of this type and establish a transparent data setmore » to represent baseline construction practices across U.S. states.« less
Contamination source review for Building E3163, Edgewood Area, Aberdeen Proving Ground, Maryland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draugelis, A.K.; Muir-Ploense, K.L.; Glennon, M.A.
1995-09-01
This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review for Building E3163 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, and geophysical investigation. The field investigations were performed by ANL during 1994 and 1995. Building E3163 (APG designation) is part of the Medical Research Laboratories E3160 Complex. This research laboratory complex is located west of Kings Creek, east ofmore » the airfield and Ricketts Point Road, and south of Kings Creek Road in the Edgewood Area of APG. The original structures in the E3160 Complex were constructed during World War II. The complex was originally used as a medical research laboratory. Much of the research involved wound assessment. Building E3163, constructed in 1946, was used for toxicological studies on animals until 1965. All agent testing was done using laboratory-scale quantities of agents. All operational data were destroyed; total quantities and types of agents used during the testing are unknown. No experimentation has been conducted in the building since 1965. However, the building was used as overflow office space until the late 1980s. Since that time, the building has been unoccupied.« less
12. Exterior view, showing tank and piping associated with Test ...
12. Exterior view, showing tank and piping associated with Test Cell 7, Systems Integration Laboratory Building (T-28), looking west. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, Joseph M.; Boyd, Paul A.; Dahowski, Robert T.
The purpose of this assessment was to undertake an assessment and analysis of cost-effective options for energy-efficiency improvements and the deployment of a micro-grid to increase the energy resilience at the U.S. Virgin Islands Industrial Development Park (IDP) and adjacent facilities in St. Croix, Virgin Islands. The Economic Development Authority sought assistance from the U.S. Department of Energy to undertake this assessment undertaken by Pacific Northwest National Laboratory. The assessment included 18 buildings plus the perimeter security lighting at the Virgin Islands Bureau of Correctional Facility, four buildings plus exterior lighting at the IDP, and five buildings (one of whichmore » is to be constructed) at the Virgin Islands Police Department for a total of 27 buildings with a total of nearly 323,000 square feet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1957-01-01
The primary function of the 300 Area is the production and preparation of the fuel and target elements required for the 100 Area production reactors. Uranium slugs and lithium-aluminium alloy control and blanket rods are prepared in separate structures. Other facilities include a test pile, a physics assembly laboratory, an office and change house, an electrical substation, and various service facilities such as rail lines, roads, sewers, steam and water distribution lines, etc. The 700 Area contains housing and facilities for plant management, general plant services, and certain technical activities. The technical buildings include the Main Technical Laboratory, the Wastemore » Concentration Building, the Health Physics Headquarters, and the Health Physics Calibration building. Sections of this report describe the following: development of the 300-M Area; selection and description of process; design of main facilities of the 300 Area; development of the 700-A Area; design of the main facilities of the 700 Area; and general services and facilities, including transportation, plant protection, waste disposal and drainage, site work, pilot plants, storage, and furniture and fixtures.« less
Former Administration Building
2016-10-27
This archival image was released as part of a gallery comparing JPL's past and present, commemorating the 80th anniversary of NASA's Jet Propulsion Laboratory on Oct. 31, 2016. Building 11, one of the oldest buildings on lab, was once JPL's central administration building. It is now the Space Sciences Laboratory. This picture dates back to May 1943. http://photojournal.jpl.nasa.gov/catalog/PIA21201
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document contains the State Building Energy Codes Status prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy under Contract DE-AC06-76RL01830 and dated September 1996. The U.S. Department of Energy`s Office of Codes and Standards has developed this document to provide an information resource for individuals interested in energy efficiency of buildings and the relevant building energy codes in each state and U.S. territory. This is considered to be an evolving document and will be updated twice a year. In addition, special state updates will be issued as warranted.
[Building bridges toward the 21st century].
Sasaki, M
2000-10-01
Just as Rome was not built in a day, there are few great inventions and discoveries that can be made overnight. There are always historical circumstances behind them. Laboratory Automation is not an exception. With the end of World War II in 1945 as a turning point, a large volume of American medicine was introduced all over Japan, and clinical laboratory testing which was imported at the same time has taken root and matured. As a result, we can now carry out prompt and fully automated laboratory testing second to none at many hospital laboratories. In this paper, I recall the development and summarize the expansion by focusing on clinical laboratory automation as it has developed in the latter half of the 20th century in Japan. I would feel amply rewarded for my efforts if this paper proved helpful to the young generation. The clinical laboratory of the 21st century rests on their shoulders.
15. VIEW OF LABORATORY EQUIPMENT IN THE BUILDING 771 ANALYTICAL ...
15. VIEW OF LABORATORY EQUIPMENT IN THE BUILDING 771 ANALYTICAL LABORATORY. THE LAB ANALYZED SAMPLES FOR PLUTONIUM, AMERICIUM, URANIUM, NEPTUNIUM, AND OTHER RADIOACTIVE ISOTOPES. (9/25/62) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO
8. Exterior view, showing tank and associated piping adjacent to ...
8. Exterior view, showing tank and associated piping adjacent to Test Cell 6, Systems Integration Laboratory Building (T-28), looking south. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Strengthening national health laboratories in sub-Saharan Africa: a decade of remarkable progress.
Alemnji, G A; Zeh, C; Yao, K; Fonjungo, P N
2014-04-01
Efforts to combat the HIV/AIDS pandemic have underscored the fragile and neglected nature of some national health laboratories in Africa. In response, national and international partners and various governments have worked collaboratively over the last several years to build sustainable laboratory capacities within the continent. Key accomplishments reflecting this successful partnership include the establishment of the African-based World Health Organization Regional Office for Africa (WHO-AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA); development of the Strengthening Laboratory Management Toward Accreditation (SLMTA) training programme; and launching of a Pan African-based institution, the African Society for Laboratory Medicine (ASLM). These platforms continue to serve as the foundations for national health laboratory infrastructure enhancement, capacity development and overall quality system improvement. Further targeted interventions should encourage countries to aim at integrated tiered referral networks, promote quality system improvement and accreditation, develop laboratory policies and strategic plans, enhance training and laboratory workforce development and a retention strategy, create career paths for laboratory professionals and establish public-private partnerships. Maintaining the gains and ensuring sustainability will require concerted action by all stakeholders with strong leadership and funding from African governments and from the African Union. Published 2014. This article is a U.S. Government work and is in the public domain in the U.S.A.
Evaluation of warm mix asphalt for Alaska conditions : [summary].
DOT National Transportation Integrated Search
2010-09-01
This project developed and tested protocols to determine concrete curing strength during the construction process, so that : building under very cold conditions can be performed safely and quickly. Researchers determined the laboratory strengthmaturi...
Power and Scour: Laboratory simulations of tsunami-induced scour
NASA Astrophysics Data System (ADS)
Todd, David; McGovern, David; Whitehouse, Richard; Harris, John; Rossetto, Tiziana
2017-04-01
The world's coastal regions are becoming increasingly urbanised and densely populated. Recent major tsunami events in regions such as Samoa (2007), Indonesia (2004, 2006, 2010), and Japan (2011) have starkly highlighted this effect, resulting in catastrophic loss of both life and property, with much of the damage to buildings being reported in EEFIT mission reports following each of these events. The URBANWAVES project, led by UCL in collaboration with HR Wallingford, brings the power of the tsunami to the laboratory for the first time. The Pneumatic Tsunami Simulator is capable of tsimulating both idealised and real-world tsunami traces at a scale of 1:50. Experiments undertaken in the Fast Flow Facility at HR Wallingford using square and rectangular buildings placed on a sediment bed have allow us to measure, for the first time under laboratory conditions, the variations in the flow field around buildings produced by tsunami waves as a result of the scour process. The results of these tests are presented, providing insight into the process of scour development under different types of tsunami, giving a glimpse into the power of tsunamis that have already occurred, and helping us to inform the designs of future buildings so that we can be better prepared to analyse and design against these failure modes in the future. Additional supporting abstracts include Foster et al., on tsunami induced building loads; Chandler et al., on the tsunami simulation concept and McGovern et al., on the simulation of tsunami-driven scour and flow fields.
Building laboratory capacity to support HIV care in Nigeria: Harvard/APIN PEPFAR, 2004-2012.
Hamel, Donald J; Sankalé, Jean-Louis; Samuels, Jay Osi; Sarr, Abdoulaye D; Chaplin, Beth; Ofuche, Eke; Meloni, Seema T; Okonkwo, Prosper; Kanki, Phyllis J
From 2004-2012, the Harvard/AIDS Prevention Initiative in Nigeria, funded through the US President's Emergency Plan for AIDS Relief programme, scaled up HIV care and treatment services in Nigeria. We describe the methodologies and collaborative processes developed to improve laboratory capacity significantly in a resource-limited setting. These methods were implemented at 35 clinic and laboratory locations. Systems were established and modified to optimise numerous laboratory processes. These included strategies for clinic selection and management, equipment and reagent procurement, supply chains, laboratory renovations, equipment maintenance, electronic data management, quality development programmes and trainings. Over the eight-year programme, laboratories supported 160 000 patients receiving HIV care in Nigeria, delivering over 2.5 million test results, including regular viral load quantitation. External quality assurance systems were established for CD4+ cell count enumeration, blood chemistries and viral load monitoring. Laboratory equipment platforms were improved and standardised and use of point-of-care analysers was expanded. Laboratory training workshops supported laboratories toward increasing staff skills and improving overall quality. Participation in a World Health Organisation-led African laboratory quality improvement system resulted in significant gains in quality measures at five laboratories. Targeted implementation of laboratory development processes, during simultaneous scale-up of HIV treatment programmes in a resource-limited setting, can elicit meaningful gains in laboratory quality and capacity. Systems to improve the physical laboratory environment, develop laboratory staff, create improvements to reduce costs and increase quality are available for future health and laboratory strengthening programmes. We hope that the strategies employed may inform and encourage the development of other laboratories in resource-limited settings.
Chemistry in a Large, Multidisciplinary Laboratory.
ERIC Educational Resources Information Center
Lingren, Wesley E.; Hughson, Robert C.
1982-01-01
Describes a science facility built at Seattle Pacific University for approximately 70 percent of the capital cost of a conventional science building. The building serves seven disciplines on a regular basis. The operation of the multidisciplinary laboratory, special features, laboratory security, and student experience/reactions are highlighted.…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
... Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building... Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos... Chemistry and Metallurgy Research Building Replacement Project (CMRR-NF) at Los Alamos National Laboratory...
This image, looking south, shows a typical corridor in the ...
This image, looking south, shows a typical corridor in the laboratory area of the building, where numerous pipes were required to carry the various utilities needed for procedure and safety equipment - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, R.D.; Russell, P.E.
The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.
Weather Correlations to Calculate Infiltration Rates for U. S. Commercial Building Energy Models.
Ng, Lisa C; Quiles, Nelson Ojeda; Dols, W Stuart; Emmerich, Steven J
2018-01-01
As building envelope performance improves, a greater percentage of building energy loss will occur through envelope leakage. Although the energy impacts of infiltration on building energy use can be significant, current energy simulation software have limited ability to accurately account for envelope infiltration and the impacts of improved airtightness. This paper extends previous work by the National Institute of Standards and Technology that developed a set of EnergyPlus inputs for modeling infiltration in several commercial reference buildings using Chicago weather. The current work includes cities in seven additional climate zones and uses the updated versions of the prototype commercial building types developed by the Pacific Northwest National Laboratory for the U. S. Department of Energy. Comparisons were made between the predicted infiltration rates using three representations of the commercial building types: PNNL EnergyPlus models, CONTAM models, and EnergyPlus models using the infiltration inputs developed in this paper. The newly developed infiltration inputs in EnergyPlus yielded average annual increases of 3 % and 8 % in the HVAC electrical and gas use, respectively, over the original infiltration inputs in the PNNL EnergyPlus models. When analyzing the benefits of building envelope airtightening, greater HVAC energy savings were predicted using the newly developed infiltration inputs in EnergyPlus compared with using the original infiltration inputs. These results indicate that the effects of infiltration on HVAC energy use can be significant and that infiltration can and should be better accounted for in whole-building energy models.
NASA Astrophysics Data System (ADS)
Li, Xiwang
Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of this thesis can be used for building cluster energy forecasting model development and model based control and operation optimization. The thesis concludes with a summary of the key outcomes of this research, as well as a list of recommendations for future work.
Trollip, Andre; Erni, Donatelle; Kao, Kekeletso
2017-01-01
Background Quality-assured tuberculosis laboratory services are critical to achieve global and national goals for tuberculosis prevention and care. Implementation of a quality management system (QMS) in laboratories leads to improved quality of diagnostic tests and better patient care. The Strengthening Laboratory Management Toward Accreditation (SLMTA) programme has led to measurable improvements in the QMS of clinical laboratories. However, progress in tuberculosis laboratories has been slower, which may be attributed to the need for a structured tuberculosis-specific approach to implementing QMS. We describe the development and early implementation of the Strengthening Tuberculosis Laboratory Management Toward Accreditation (TB SLMTA) programme. Development The TB SLMTA curriculum was developed by customizing the SLMTA curriculum to include specific tools, job aids and supplementary materials specific to the tuberculosis laboratory. The TB SLMTA Harmonized Checklist was developed from the World Health Organisation Regional Office for Africa Stepwise Laboratory Quality Improvement Process Towards Accreditation checklist, and incorporated tuberculosis-specific requirements from the Global Laboratory Initiative Stepwise Process Towards Tuberculosis Laboratory Accreditation online tool. Implementation Four regional training-of-trainers workshops have been conducted since 2013. The TB SLMTA programme has been rolled out in 37 tuberculosis laboratories in 10 countries using the Workshop approach in 32 laboratories in five countries and the Facility-based approach in five tuberculosis laboratories in five countries. Conclusion Lessons learnt from early implementation of TB SLMTA suggest that a structured training and mentoring programme can build a foundation towards further quality improvement in tuberculosis laboratories. Structured mentoring, and institutionalisation of QMS into country programmes, is needed to support tuberculosis laboratories to achieve accreditation. PMID:28879165
MATERIALS TESTING REACTOR (MTR) BUILDING, TRA603. CONTEXTUAL VIEW OF MTR ...
MATERIALS TESTING REACTOR (MTR) BUILDING, TRA-603. CONTEXTUAL VIEW OF MTR BUILDING SHOWING NORTH SIDES OF THE HIGH-BAY REACTOR BUILDING, ITS SECOND/THIRD FLOOR BALCONY LEVEL, AND THE ATTACHED ONE-STORY OFFICE/LABORATORY BUILDING, TRA-604. CAMERA FACING SOUTHEAST. VERTICAL CONCRETE-SHROUDED BEAMS SUPPORT PRECAST CONCRETE PANELS. CONCRETE PROJECTION FORMED AS A BUNKER AT LEFT OF VIEW IS TRA-657, PLUG STORAGE BUILDING. INL NEGATIVE NO. HD46-42-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Morita, Toshisuke; Kawano, Seiji
2014-12-01
The symposium was held with the Japanese Society of Laboratory Medicine and JACLaP to discuss the way to develop a beneficial relationship between hospitals and laboratory testing companies with co-chairing by Seiji Kawano, Kobe University and Toshisuke Morita, Toho University. Clinical testing is considered to be essential for medical diagnosis and treatment; however, it is difficult for a hospital to perform all clinical testing for various reasons, including cost-effectiveness. In this session, 4 guest speakers gave a talk from their viewpoints. Doctor Kawano talked about the results of a questionnaire filled out by 114 university hospitals on how to develop a beneficial relationship between hospitalsoand laboratory testing companies. Next, Mr. Shinji Ogawa, president and CEO of SRL, talked about favorable ways to utilize laboratory testing companies, sayingthat such companies, which have a variety of skills, are expected to offer new and advanced technologies to hospitals continuously, and abundant data which laboratory testing companies have should be used for the advancement of community medicine. Professor Koshiba, Hyogo Medical School, expressed his apprehension to develop a so-called branch lab. in university hospitals from his own experience, and concluded that a beneficial relationship with companies to perform tasks required by hospitals should be sought. The last speaker, Yuichi Setoyama, Mitsubishi Chemical Medience, talked about the new relationship between hospitals and laboratory testing companies, and emphasized that hospitals and such companies should know the strong and weak points of each other and build a mutually complementary system. After all presentations were over, a discussion with participants was held. Doctors of clinics said that the role of laboratory testing companies for large hospitals is different from that for small clinics, and such companies are indispensable for his everyday medical activities. Each medical institute has its own medical mission, and, therefore, what constitutes a beneficial relationship varies with each medical institute. The key to the success of building a win-win relationship with laboratory testing companies is held by each hospital. (Review).
6. Exterior view, showing structural details and instrumentation at the ...
6. Exterior view, showing structural details and instrumentation at the walk-in entry level (bottom) of Test Cell 6, Systems Integration Laboratory Building (T-28), looking southwest. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
7. Exterior view, showing instrumentation and gauge panel at the ...
7. Exterior view, showing instrumentation and gauge panel at the walk-in entry level (bottom) of Test Cell 6, Systems Integration Laboratory Building (T-28), looking west. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
10. Exterior view, showing the structural details and tanks above ...
10. Exterior view, showing the structural details and tanks above at walk-in entry level (bottom) of Test Cell 7, Systems Integration Laboratory Building (T-28), looking west. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Photocopy of drawing (original drawing of Photographic Laboratory Building in ...
Photocopy of drawing (original drawing of Photographic Laboratory Building in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1939 architectural drawings by Construction Division, Office of the Quartermaster General) PLANS - MacDill Air Force Base, Photographic Laboratory, 7718 Hanger Loop Drive, Tampa, Hillsborough County, FL
The Frederick National Laboratory for Cancer Research was established as the Frederick Cancer Research and Development Center in 1972 when about 70 acres and 67 buildings of the U.S. Army were transferred to the U.S. Department of Health and Huma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schatz, Glenn
Higher education uses less energy per square foot than most commercial building sectors. However, higher education campuses house energy-intensive laboratories and data centers that may spend more than this average; laboratories, in particular, are disproportionately represented in the higher education sector. The Commercial Building Partnership (CBP), a public/private, cost-shared program sponsored by the U.S. Department of Energy (DOE), paired selected commercial building owners and operators with representatives of DOE, its national laboratories, and private-sector technical experts. These teams explored energy-saving measures across building systems–including some considered too costly or technologically challenging–and used advanced energy modeling to achieve peak whole-building performance.more » Modeling results were then included in new construction or retrofit designs to achieve significant energy reductions.« less
Development of heat-storage building materials for passive-solar applications
NASA Astrophysics Data System (ADS)
Fletcher, J. W.
A heat storage building material to be used for passive solar applications and general load leveling within building spaces was developed. Specifically, PCM-filled plastic panels are to be developed as wallboard and ceiling panels. Three PCMs (CaCl2, 6H2O; Na2SO4, 10H2O; LiNO3, 3H2O are to be evaluated for use in the double walled, hollow channeled plastic panels. Laboratory development of the panels will include determination of filling and sealing techniques, behavior of the PCMs, container properties and materials compatibility. Testing will include vapor transmission, thermal cycle, dynamic performance, accelerated life and durability tests. In addition to development and testing, an applications analysis will be performed for specific passive solar applications. Conceptual design of a single family passive solar residence will be prepared and performance evaluated. Screening of the three PCM candidates is essentially complete.
Energy Exchange by Thermal Radiation: Hints and Suggestions for an Inquiry Based Lab Approach
NASA Astrophysics Data System (ADS)
Battaglia, Onofrio Rosario; Fazio, Claudio; Pizzolato, Nicola; Mineo, Rosa Maria Sperandeo
In this paper we present some laboratory activities developed in the framework of an inquiry-based approach to the study of energy exchange by thermal radiation. These activities were developed in the context of "Establish", a FP7 European Project aimed at promoting and developing Inquiry Based Science Education in European Secondary Schools. By starting from real life students are engaged in designing and carrying out laboratory activities by collecting, processing and analysing data. Particular attention is paid in building data interpretation by taking into account the effects of parameters like the environmental temperature.
2017-12-08
NASA Kennedy Space Center's Engineering Director Pat Simpkins, at left, talks with Michael E. Johnson, a project engineer; and Emilio Cruz, deputy division chief in the Laboratories, Development and Testing Division, inside the Prototype Development Laboratory. A banner signing event was held to mark the successful delivery of a liquid oxygen test tank, called Tardis. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
Building Your Career in a Government Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Kelly O.; Snyder, Seth W.
In this chapter we cover an eclectic mix of topics with the intent of providing you the lessons that we believe will aid in your success in a government laboratory research environment, though of course most of these cross into other sorts of work environments as well: • Communication techniques • Working in a team • Personal development activities • Following the rules • The business of research • Your personal brand
EJS, JIL Server, and LabVIEW: An Architecture for Rapid Development of Remote Labs
ERIC Educational Resources Information Center
Chacón, Jesús; Vargas, Hector; Farias, Gonzalo; Sanchez, José; Dormido, Sebastián
2015-01-01
Designing and developing web-enabled remote laboratories for pedagogical purposes is not an easy task. Often, developers (generally, educators who know the subjects they teach but lack of the technical and programming skills required to build Internet-based educational applications) end up discarding the idea of exploring these new teaching and…
This photographic copy of an engineering drawing shows floor plans, ...
This photographic copy of an engineering drawing shows floor plans, sections and elevations of Building E-86, with details typical of the steel frame and "Transite" building construction at JPL Edwards Facility. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office: "Casting & Curing, Building E-86, Floor Plan, Elevations & Section," drawing no. E86/6, 25 February 1977. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Casting & Curing Building, Edwards Air Force Base, Boron, Kern County, CA
FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP601) BASEMENT SHOWING PROCESS ...
FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP-601) BASEMENT SHOWING PROCESS CORRIDOR AND EIGHTEEN CELLS. TO LEFT IS LABORATORY BUILDING (CPP-602). INL DRAWING NUMBER 200-0601-00-706-051981. ALTERNATE ID NUMBER CPP-E-1981. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Metrics for building performance assurance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koles, G.; Hitchcock, R.; Sherman, M.
This report documents part of the work performed in phase I of a Laboratory Directors Research and Development (LDRD) funded project entitled Building Performance Assurances (BPA). The focus of the BPA effort is to transform the way buildings are built and operated in order to improve building performance by facilitating or providing tools, infrastructure, and information. The efforts described herein focus on the development of metrics with which to evaluate building performance and for which information and optimization tools need to be developed. The classes of building performance metrics reviewed are (1) Building Services (2) First Costs, (3) Operating Costs,more » (4) Maintenance Costs, and (5) Energy and Environmental Factors. The first category defines the direct benefits associated with buildings; the next three are different kinds of costs associated with providing those benefits; the last category includes concerns that are broader than direct costs and benefits to the building owner and building occupants. The level of detail of the various issues reflect the current state of knowledge in those scientific areas and the ability of the to determine that state of knowledge, rather than directly reflecting the importance of these issues; it intentionally does not specifically focus on energy issues. The report describes work in progress and is intended as a resource and can be used to indicate the areas needing more investigation. Other reports on BPA activities are also available.« less
NASA Technical Reports Server (NTRS)
Perchonok, Michele; Russo, Dane M. (Technical Monitor)
2001-01-01
The Space Food Systems Laboratory (SFSL) is a multipurpose laboratory responsible for space food and package research and development. It is located on-site at Johnson Space Center in Building 17. The facility supports the development of flight food, menus, packaging and food related hardware for Shuttle, International Space Station, and Advanced Life Support food systems. All foods used to support NASA ground tests and/or missions must meet the highest standards before they are 'accepted' for use on actual space flights. The foods are evaluated for nutritional content, sensory acceptability, safety, storage and shelf life, and suitability for use in micro-gravity. The food packaging is also tested to determine its functionality and suitability for use in space. Food Scientist, Registered Dieticians, Packaging Engineers, Food Systems Engineers, and Technicians staff the Space Food Systems Laboratory.
VIEW OF THE HYDROSPINNING EQUIPMENT IN BUILDING 865. THE HYDROSPINNING ...
VIEW OF THE HYDROSPINNING EQUIPMENT IN BUILDING 865. THE HYDROSPINNING PROCESS FORMED METALS INTO DESIRED SHAPES BY ROLLERS WHILE THE METAL WAS ROTATED AT HIGH SPEED. BERYLLIUM, URANIUM, REFRACTORY METALS, AND OTHER NONFERROUS METALS WERE SPUN EITHER HOT OR COLD, INTO A VARIETY OF SHAPES. (11/9/73) - Rocky Flats Plant, Metal Research & Development Laboratory, South of Central Avenue at south end of terminus of Ninth Avenue, Golden, Jefferson County, CO
A Web-Based Simulation Tool on The Performance of Different Roofing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Joe; New, Joshua Ryan; Miller, William A
The Roof Savings Calculator (www.roofcalc.com) provides the general public with a web-based program for calculating the energy savings of different roofing and attic systems on four different building types (residential, office, retail, and warehouse) in 239 US TMY2 locations. The core simulation engine of the RSC is doe2attic, which couples the AtticSim program developed by Oak Ridge National Laboratory with the DOE-2.1E program originally developed by Lawrence Berkeley National Laboratory a widely used whole-building simulation program since the 1980 s. Although simulating heat flows through the roof may seem to be an easy task, simulating the net effect of roofingmore » strategies on building heating and cooling energy use can be quite challenging. Few simulation programs can reliably capture dynamics including an attic or plenum with large day-night temperature swings, high ventilation rates, significant radiant exchange between the roof and the attic floor and thermal interactions when there are ducts in the attic, as is typical in North American buildings. The doe2attic program has been tested against detailed measurements gathered in two residential buildings in Fresno, California from cooling energy use to air and surface temperatures, and heat fluxes of the roof and attic floor. The focus of this paper is on the doe2attic simulation tool, but the user interface of the RSC will also be briefly described.« less
Shrivastava, Ritu; Gadde, Renuka; Nkengasong, John N.
2016-01-01
After the launch of the US President's Emergency Plan for AIDS Relief in 2003, it became evident that inadequate laboratory systems and services would severely limit the scale-up of human immunodeficiency virus infection prevention, care, and treatment programs. Thus, the Office of the US Global AIDS Coordinator, Centers for Disease Control and Prevention, and Becton, Dickinson and Company developed a public-private partnership (PPP). Between October 2007 and July 2012, the PPP combined the competencies of the public and private sectors to boost sustainable laboratory systems and develop workforce skills in 4 African countries. Key accomplishments of the initiative include measurable and scalable outcomes to strengthen national capacities to build technical skills, develop sample referral networks, map disease prevalence, support evidence-based health programming, and drive continuous quality improvement in laboratories. This report details lessons learned from our experience and a series of recommendations on how to achieve successful PPPs. PMID:27025696
A&M. Technical service laboratory in administration building (TAN602). Floor plan, ...
A&M. Technical service laboratory in administration building (TAN-602). Floor plan, reception desk, door and finish schedules. Ralph M. Parsons 1480-12-ANP/GE-3-602-A-1. INEEL index code no. 033-0602-00-693-107488 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Photocopy of drawing (original drawing of Photographic Laboratory Building in ...
Photocopy of drawing (original drawing of Photographic Laboratory Building in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1939 architectural drawings by Construction Division, Office of the Quartermaster General) MAIN ENTRANCE DETAILS - MacDill Air Force Base, Photographic Laboratory, 7718 Hanger Loop Drive, Tampa, Hillsborough County, FL
Building laboratory capacity to support HIV care in Nigeria: Harvard/APIN PEPFAR, 2004–2012
Hamel, Donald J.; Sankalé, Jean-Louis; Samuels, Jay Osi; Sarr, Abdoulaye D.; Chaplin, Beth; Ofuche, Eke; Meloni, Seema T.; Okonkwo, Prosper; Kanki, Phyllis J.
2015-01-01
Introduction From 2004–2012, the Harvard/AIDS Prevention Initiative in Nigeria, funded through the US President’s Emergency Plan for AIDS Relief programme, scaled up HIV care and treatment services in Nigeria. We describe the methodologies and collaborative processes developed to improve laboratory capacity significantly in a resource-limited setting. These methods were implemented at 35 clinic and laboratory locations. Methods Systems were established and modified to optimise numerous laboratory processes. These included strategies for clinic selection and management, equipment and reagent procurement, supply chains, laboratory renovations, equipment maintenance, electronic data management, quality development programmes and trainings. Results Over the eight-year programme, laboratories supported 160 000 patients receiving HIV care in Nigeria, delivering over 2.5 million test results, including regular viral load quantitation. External quality assurance systems were established for CD4+ cell count enumeration, blood chemistries and viral load monitoring. Laboratory equipment platforms were improved and standardised and use of point-of-care analysers was expanded. Laboratory training workshops supported laboratories toward increasing staff skills and improving overall quality. Participation in a World Health Organisation-led African laboratory quality improvement system resulted in significant gains in quality measures at five laboratories. Conclusions Targeted implementation of laboratory development processes, during simultaneous scale-up of HIV treatment programmes in a resource-limited setting, can elicit meaningful gains in laboratory quality and capacity. Systems to improve the physical laboratory environment, develop laboratory staff, create improvements to reduce costs and increase quality are available for future health and laboratory strengthening programmes. We hope that the strategies employed may inform and encourage the development of other laboratories in resource-limited settings. PMID:26900573
19. VIEW OF THE GENERAL CHEMISTRY LABORATORY IN BUILDING 881. ...
19. VIEW OF THE GENERAL CHEMISTRY LABORATORY IN BUILDING 881. (4/12/62) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO
Building a Low-Cost Gross Anatomy Laboratory: A Big Step for a Small University
ERIC Educational Resources Information Center
Goldman, Evan
2010-01-01
This article illustrates details of the planning, building, and improvement phases of a cost-efficient, full-dissection gross anatomy laboratory on a campus of an historically design-centric university. Special considerations were given throughout the project to the nature of hosting cadavers in a building shared amongst all undergraduate majors.…
Building No. 5, Main Building; Building NO. 9, Guard House ...
Building No. 5, Main Building; Building NO. 9, Guard House (left). Viewed from across corner Lakeside Avenue and Main Street - Thomas A. Edison Laboratories, Main Street & Lakeside Avenue, West Orange, Essex County, NJ
A Long History of Supercomputing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grider, Gary
As part of its national security science mission, Los Alamos National Laboratory and HPC have a long, entwined history dating back to the earliest days of computing. From bringing the first problem to the nation’s first computer to building the first machine to break the petaflop barrier, Los Alamos holds many “firsts” in HPC breakthroughs. Today, supercomputers are integral to stockpile stewardship and the Laboratory continues to work with vendors in developing the future of HPC.
Lab-on-a-Chip Design-Build Project with a Nanotechnology Component in a Freshman Engineering Course
ERIC Educational Resources Information Center
Allam, Yosef; Tomasko, David L.; Trott, Bruce; Schlosser, Phil; Yang, Yong; Wilson, Tiffany M.; Merrill, John
2008-01-01
A micromanufacturing lab-on-a-chip project with a nanotechnology component was introduced as an alternate laboratory in the required first-year engineering curriculum at The Ohio State University. Nanotechnology is introduced in related reading and laboratory tours as well as laboratory activities including a quarter-length design, build, and test…
Photocopy of drawing (original drawing of Photographic Laboratory Building in ...
Photocopy of drawing (original drawing of Photographic Laboratory Building in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1939 architectural drawings by Construction Division, Office of the Quartermaster General) FRONT AND RIGHT SIDE ELEVATIONS AND SECTIONS - MacDill Air Force Base, Photographic Laboratory, 7718 Hanger Loop Drive, Tampa, Hillsborough County, FL
Photocopy of drawing (original drawing of Photographic Laboratory Building in ...
Photocopy of drawing (original drawing of Photographic Laboratory Building in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1939 architectural drawings by Construction Division, Office of the Quartermaster General) REAR AND LEFT SIDE ELEVATIONS AND SECTIONS - MacDill Air Force Base, Photographic Laboratory, 7718 Hanger Loop Drive, Tampa, Hillsborough County, FL
ERIC Educational Resources Information Center
Kroll, Linda R.
2017-01-01
This case study examines the development of self-regulation, socially, cognitively and emotionally, through the use of play in the curriculum in five preschool classrooms for children ages 2-5 years old at a university laboratory school. Five teachers were interviewed about their deliberate use of play to support the development of self-regulation…
Health benefits of particle filtration
This product was developed under an interagency agreement between the U.S. EPA and the U.S. Department of Energy - Lawrence Berkeley National Laboratory (LBNL). The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews o...
FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP601), SECOND FLOOR SHOWING ...
FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP-601), SECOND FLOOR SHOWING PROCESS MAKEUP AREA AND EIGHTEEN CELLS AND ADJOINING REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING COLD LAB, DECONTAMINATION ROOM, MULTICURIE CELL ROOM, AND OFFICES. TO LEFT ARE LABORATORY BUILDING (CPP-602) AND MAINTENANCE BUILDING (CPP-630). INL DRAWING NUMBER 200-0601-00-706-051980. ALTERNATE ID NUMBER CPP-E-1980. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP601), FIRST FLOOR SHOWING ...
FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP-601), FIRST FLOOR SHOWING SAMPLE CORRIDORS AND EIGHTEEN CELLS AND ADJOINING REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING REMOTE ANALYTICAL FACILITIES LAB, DECONTAMINATION ROOM, AND MULTICURIE CELL ROOM. TO LEFT ARE LABORATORY BUILDING (CPP-602) AND MAINTENANCE BUILDING (CPP-630). INL DRAWING NUMBER 200-0601-00-706-051979. ALTERNATE ID NUMBER CPP-E-1979. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Contamination source review for Building E3162, Edgewood Area, Aberdeen Proving Ground, Maryland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, G.A.; Draugelis, A.K.; Rueda, J.
1995-09-01
This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review for Building E3162 at the Aberdeen Proving Ground (APG) in Maryland. The report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, and collection of air samples. The field investigations were performed by ANL during 1994 and 1995. Building E3162 (APG designation) is part of the Medical Research Laboratories Building E3160 Complex. This research laboratory complex is located westmore » of Kings Creek, east of the airfield and Ricketts Point Road, and south of Kings Creek Road in the Edgewood Area of APG. The original structures in the E3160 Complex were constructed during World War 2. The complex was originally used as a medical research laboratory. Much of the research involved wound assessment involving chemical warfare agents. Building E3162 was used as a holding and study area for animals involved in non-agent burns. The building was constructed in 1952, placed on inactive status in 1983, and remains unoccupied. Analytical results from these air samples revealed no distinguishable difference in hydrocarbon and chlorinated solvent levels between the two background samples and the sample taken inside Building E3162.« less
2012-08-01
The first phase consisted of Shared Services , Threat Detection and Reporting, and the Remote Weapon Station (RWS) build up and validation. The...Awareness build up and validation. The first phase consisted of the development of the shared services or core services that are required by many...C4ISR/EW systems. The shared services include: time synchronization, position, direction of travel, and orientation. Time synchronization is
Shock wave interaction with L-shaped structures
NASA Astrophysics Data System (ADS)
Miller, Richard C.
1993-12-01
This study investigated the interaction of shock waves with L-shaped structures using the CTH hydrodynamics code developed by Sandia National Laboratories. Computer models of shock waves traveling through air were developed using techniques similar to shock tube experiments. Models of L-shaped buildings were used to determine overpressures achieved by the reflecting shock versus angle of incidence of the shock front. An L-shaped building model rotated 45 degrees to the planar shock front produced the highest reflected overpressure of 9.73 atmospheres in the corner joining the two wings, a value 9.5 times the incident overpressure of 1.02 atmospheres. The same L-shaped building was modeled with the two wings separated by 4.24 meters to simulate an open courtyard. This open area provided a relief path for the incident shock wave, creating a peak overpressure of only 4.86 atmospheres on the building's wall surfaces from the same 1.02 atmosphere overpressure incident shock wave.
Building No. 1, left; Building No. 9, Guard House, center; ...
Building No. 1, left; Building No. 9, Guard House, center; Building No. 5, Main Building, right. View from across Main Street - Thomas A. Edison Laboratories, Main Street & Lakeside Avenue, West Orange, Essex County, NJ
Black Maria Reconstruction (left foreground); Building No. 1; Main Building; ...
Black Maria Reconstruction (left foreground); Building No. 1; Main Building; Edison Storage Battery Building (right background) - Thomas A. Edison Laboratories, Main Street & Lakeside Avenue, West Orange, Essex County, NJ
REACTOR SERVICES BUILDING, TRA635, INTERIOR. ALSO KNOWN AS MATERIAL RECEIVING ...
REACTOR SERVICES BUILDING, TRA-635, INTERIOR. ALSO KNOWN AS MATERIAL RECEIVING AREA AND LABORATORY. CAMERA ON FIRST FLOOR FACING NORTH TOWARD MTR BUILDING. MOCK-UP AREA WAS TO THE RIGHT OF VIEW. INL NEGATIVE NO. HD46-10-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonopoulos, Chrissi A.; Baechler, Michael C.; Dillon, Heather E.
This study presents findings from questionnaire and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered with 12 organizations on new and retrofit construction projects as part of the U.S. Department of Energy (DOE) CBP program. PNNL and other national laboratories collaborate with industry leaders that own large portfolios of buildings to develop high performance projects for new construction and renovation. This project accelerates market adoption of commercially available energy saving technologies into the design process for new and upgraded commercial buildings. The labs provide assistancemore » to the partners’ design teams and make a business case for energy investments. From the owner’s perspective, a sound investment results in energy savings based on corporate objectives and design. Through a feedback questionnaire, along with personal interviews, PNNL gathered qualitative and quantitative information relating to replication efforts by each organization. Data through this process were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP entire program.« less
Laboratory Directed Research and Development FY2001 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Ayat, R
2002-06-20
Established by Congress in 1991, the Laboratory Directed Research and Development (LDRD) Program provides the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) laboratories, like Lawrence Livermore National Laboratory (LLNL or the Laboratory), with the flexibility to invest up to 6% of their budget in long-term, high-risk, and potentially high payoff research and development (R&D) activities to support the DOE/NNSA's national security missions. By funding innovative R&D, the LDRD Program at LLNL develops and extends the Laboratory's intellectual foundations and maintains its vitality as a premier research institution. As proof of the Program's success, many of the research thrusts thatmore » started many years ago under LDRD sponsorship are at the core of today's programs. The LDRD Program, which serves as a proving ground for innovative ideas, is the Laboratory's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. Basic and applied research activities funded by LDRD enhance the Laboratory's core strengths, driving its technical vitality to create new capabilities that enable LLNL to meet DOE/NNSA's national security missions. The Program also plays a key role in building a world-class multidisciplinary workforce by engaging the Laboratory's best researchers, recruiting its future scientists and engineers, and promoting collaborations with all sectors of the larger scientific community.« less
Aerial View of NACA's Lewis Flight Propulsion Research Laboratory
1946-05-21
The National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory in Cleveland, Ohio as seen from the west in May 1946. The Cleveland Municipal Airport is located directly behind. The laboratory was built in the early 1940s to resolve problems associated with aircraft engines. The initial campus contained seven principal buildings: the Engine Research Building, hangar, Fuels and Lubricants Building, Administration Building, Engine Propeller Research Building, Altitude Wind Tunnel, and Icing Research Tunnel. These facilities and their associated support structures were located within an area occupying approximately one-third of the NACA’s property. After World War II ended, the NACA began adding new facilities to address different problems associated with the newer, more powerful engines and high speed flight. Between 1946 and 1955, four new world-class test facilities were built: the 8- by 6-Foot Supersonic Wind Tunnel, the Propulsion Systems Laboratory, the Rocket Engine Test Facility, and the 10- by 10-Foot Supersonic Wind Tunnel. These large facilities occupied the remainder of the NACA’s semicircular property. The Lewis laboratory expanded again in the late 1950s and early 1960s as the space program commenced. Lewis purchased additional land in areas adjacent to the original laboratory and acquired a large 9000-acre site located 60 miles to the west in Sandusky, Ohio. The new site became known as Plum Brook Station.
A strategic approach to public health workforce development and capacity building.
Dean, Hazel D; Myles, Ranell L; Spears-Jones, Crystal; Bishop-Cline, Audriene; Fenton, Kevin A
2014-11-01
In February 2010, CDC's National Center for HIV/AIDS, Viral Hepatitis, Sexually Transmitted Disease (STD), and Tuberculosis (TB) Prevention (NCHHSTP) formally institutionalized workforce development and capacity building (WDCB) as one of six overarching goals in its 2010-2015 Strategic Plan. Annually, workforce team members finalize an action plan that lays the foundation for programs to be implemented for NCHHSTP's workforce that year. This paper describes selected WDCB programs implemented by NCHHSTP during the last 4 years in the three strategic goal areas: (1) attracting, recruiting, and retaining a diverse and sustainable workforce; (2) providing staff with development opportunities to ensure the effective and innovative delivery of NCHHSTP programs; and (3) continuously recognizing performance and achievements of staff and creating an atmosphere that promotes a healthy work-life balance. Programs have included but are not limited to an Ambassador Program for new hires, career development training for all staff, leadership and coaching for mid-level managers, and a Laboratory Workforce Development Initiative for laboratory scientists. Additionally, the paper discusses three overarching areas-employee communication, evaluation and continuous review to guide program development, and the implementation of key organizational and leadership structures to ensure accountability and continuity of programs. Since 2010, many lessons have been learned regarding strategic approaches to scaling up organization-wide public health workforce development and capacity building. Perhaps the most important is the value of ensuring the high-level strategic prioritization of this issue, demonstrating to staff and partners the importance of this imperative in achieving NCHHSTP's mission. Published by Elsevier Inc.
5. Exterior view, enclosure at walkin entry level between Test ...
5. Exterior view, enclosure at walk-in entry level between Test Cell 6 (right) and Test Cell 7 (left), Systems Integration Laboratory Building (T-28), looking southwest. High pressure gas tank and generator test firings are conducted in the enclosure. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
11. Exterior view, showing instrumentation and gauge panel at walkin ...
11. Exterior view, showing instrumentation and gauge panel at walk-in entry level (bottom) of Test Cell 7, Systems Integration Laboratory Building (T-28), looking west. Metal stair at left leads to working platform levels surrounding test cell. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
VIEW OF 77710A REACTOR WING, LOOKING NORTHEAST,SHOWING LOADING DOOR TO ...
VIEW OF 777-10A REACTOR WING, LOOKING NORTHEAST,SHOWING LOADING DOOR TO THE PROCESS DEVELOPMENT PILE ROOM. BUILDING 305-A IN BACKGROUND ON LEFT - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Helping the Defense Sector Build a Clean Energy Future | Working with Us |
Laboratory Program Manager, Partnership Development Email me Photo of a male and female researcher in a lab a male and female researcher in a lab working on a machine Helping to Solve the Army's Refueling
Development of an Augmented Reality Game to Teach Abstract Concepts in Food Chemistry
ERIC Educational Resources Information Center
Crandall, Philip G.; Engler, Robert K.; Beck, Dennis E.; Killian, Susan A.; O'Bryan, Corliss A.; Jarvis, Nathan; Clausen, Ed
2015-01-01
One of the most pressing issues for many land grant institutions is the ever increasing cost to build and operate wet chemistry laboratories. A partial solution is to develop computer-based teaching modules that take advantage of animation, web-based or off-campus learning experiences directed at engaging students' creative experiences. We…
Building integration of photovoltaic systems in cold climates
NASA Astrophysics Data System (ADS)
Athienitis, Andreas K.; Candanedo, José A.
2010-06-01
This paper presents some of the research activities on building-integrated photovoltaic (BIPV) systems developed by the Solar and Daylighting Laboratory at Concordia University. BIPV systems offer considerable advantages as compared to stand-alone PV installations. For example, BIPV systems can play a role as essential components of the building envelope. BIPV systems operate as distributed power generators using the most widely available renewable source. Since BIPV systems do not require additional space, they are especially appropriate for urban environments. BIPV/Thermal (BIPV/T) systems may use exterior air to extract useful heat from the PV panels, cooling them and thereby improving their electric performance. The recovered thermal energy can then be used for space heating and domestic hot water (DHW) heating, supporting the utilization of BIVP/T as an appropriate technology for cold climates. BIPV and BIPV/T systems are the subject of several ongoing research and demonstration projects (in both residential and commercial buildings) led by Concordia University. The concept of integrated building design and operation is at the centre of these efforts: BIPV and BIPV/T systems must be treated as part of a comprehensive strategy taking into account energy conservation measures, passive solar design, efficient lighting and HVAC systems, and integration of other renewable energy systems (solar thermal, heat pumps, etc.). Concordia Solar Laboratory performs fundamental research on heat transfer and modeling of BIPV/T systems, numerical and experimental investigations on BIPV and BIPV/T in building energy systems and non-conventional applications (building-attached greenhouses), and the design and optimization of buildings and communities.
Characterization of pollutant dispersion near elongated ...
This paper presents a wind tunnel study of the effects of elongated rectangular buildings on the dispersion of pollutants from nearby stacks. The study examines the influence of source location, building aspect ratio, and wind direction on pollutant dispersion with the goal of developing improved algorithms within dispersion models. The paper also examines the current AERMOD/PRIME modeling capabilities compared to wind tunnel observations. Differences in the amount of plume material entrained in the wake region downwind of a building for various source locations and source heights are illustrated with vertical and lateral concentration profiles. These profiles were parameterized using the Gaussian equation and show the influence of building/source configurations on those parameters. When the building is oriented at 45° to the approach flow, for example, the effective plume height descends more rapidly than it does for a perpendicular building, enhancing the resulting surface concentrations in the wake region. Buildings at angles to the wind cause a cross-wind shift in the location of the plume resulting from a lateral mean flow established in the building wake. These and other effects that are not well represented in many dispersion models are important considerations when developing improved algorithms to estimate the location and magnitude of concentrations downwind of elongated buildings. The National Exposure Research Laboratory (NERL) Computational Exposur
Maximize Energy Efficiency in Buildings | Climate Neutral Research Campuses
Buildings on a research campus, especially laboratory buildings, often represent the most cost-effective plans, campuses can evaluate the following: Energy Management Building Management New Buildings Design
2. Exterior view of instrumentation and gauge panels on southeast ...
2. Exterior view of instrumentation and gauge panels on southeast wall of Signal Transfer Building (T-28A). The piping and tubing visibile in the photograph extends from the structure to the Systems Integration Laboratory Building (T-28) and other structures in the complex. - Air Force Plant PJKS, Systems Integration Laboratory, Signal Transfer Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
GENERAL VIEW OF SITE, LOOKING WEST, WITH BUILDING NO. 77710A ...
GENERAL VIEW OF SITE, LOOKING WEST, WITH BUILDING NO. 777-10A ON LEFT. THE MULTISTORY REACTOR WING OF 777-10A IS ON THE FAR LEFT; THE ONE-STORY LABORATORY WING OF 777-10A IS IN CENTER OF VIEW. BUILDING NO. 305-A IS ON THE RIGHT - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Institutional Transformation 2.5 Building Module Help Manual.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa, Daniel
The Institutional Transformation (IX) building module is a software tool developed at Sandia National Laboratories to evaluate energy conservation measures (ECMs) on hundreds of DOE-2 building energy models simultaneously. In IX, ECMs can be designed through parameterizing DOE-2 building models and doing further processing via visual basic for applications subroutines. IX provides the functionality to handle multiple building models for different years, which enables incrementally changing a site of hundreds of buildings over time. It also enables evaluation of the effects of changing climate, comparisons between data and modeling results, and energy use of centralized utility buildings (CUBs). IX consistsmore » of a Microsoft Excel(r) user interface, Microsoft Access(r) database, and Microsoft Excel(r) CUB build utility whose functionalities are described in detail in this report. In addition to descriptions of the user interfaces, descriptions of every ECM already designed in IX is included. SAND2016-8983 IX 2.5 Help Manual« less
Enabling VOLTTRON: Energy Management of Commercial Buildings at the University of Maryland
NASA Astrophysics Data System (ADS)
Ebhojiaye, Itohan Omisi
Buildings waste approximately 30% of energy they consume due to inefficient HVAC and lighting operation. Building Automation Systems (BAS) can aid in reducing such wasted energy, but 90% of U.S. commercial buildings lack a BAS due to their high capital costs. This thesis demonstrates how VOLTTRON, an open source operating system developed by Pacific Northwest National Laboratory, was used to disable the mechanical cooling of a rooftop unit (RTU) during unoccupied hours, on a building without a BAS. With cooling off, the RTU's electricity dropped from 18 kW to 7kW. These results indicate 450 to 550 can be saved on the monthly electric bill of the building during the summer, compared to when the RTU operated in cooling mode continuously. The installation cost of the equipment that enabled the RTU to be controlled via VOLTTRON was $6,400, thus the project has a payback period of 13 months.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regnier, Cindy; Settlemyre, Kevin
The University of South Carolina (USC), a public university in Columbia, South Carolina, partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build a new, low-energy educational building. The new Darla Moore School of Business (DMSB) will consume at least 50% less energy than requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE's Commerical Building Partnerships (CBP) program. 4 Lawrence Berkeley National Laboratory (LBNL) provided technical expertise inmore » support of this DOE program.« less
Building environment analysis based on temperature and humidity for smart energy systems.
Yun, Jaeseok; Won, Kwang-Ho
2012-10-01
In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment.
VIEW OF THE INTERIOR OF BUILDING 125, THE STANDARDS LABORATORY. ...
VIEW OF THE INTERIOR OF BUILDING 125, THE STANDARDS LABORATORY. THE PRIMARY FUNCTION OF THE STANDARDS LABORATORY WAS TO ENSURE AND IMPLEMENT A SYSTEM OF QUALITY CONTROL FOR INCOMING MATERIALS USED IN MANUFACTURING PROCESSES. SEVERAL ENGINEERING CONTROLS WERE USED TO ASSURE ACCURACY OF THE CALIBRATION PROCESSES INCLUDING: FLEX-FREE GRANITE TABLES, AIR LOCKED DOORS, TEMPERATURE CONTROLS, AND A SUPER-CLEAN ENVIRONMENT - Rocky Flats Plant, Standards Laboratory, Immediately north of 215A water tower & adjacent to Third Street, Golden, Jefferson County, CO
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-31
... Engineering Command, Edgewood Chemical Biological Center (ECBC) AGENCY: Office of the Deputy Under Secretary... the Army, Army Research, Development and Engineering Command, Edgewood Chemical Biological Center... Biological Chemical Center, (RDCB-DPC-W), 5183 Blackhawk Road, Building 3330, Room 264, Aberdeen Proving...
AERIAL VIEW OF MAIN PROCESSING BUILDING SHOWING CONSTRUCTION PROGRESS AND ...
AERIAL VIEW OF MAIN PROCESSING BUILDING SHOWING CONSTRUCTION PROGRESS AND EXCAVATION FOR LABORATORY ON LEFT. INL PHOTO NUMBER NRTS-51-1759. Unknown Photographer, 3/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
North side, looking southeast. Leading to building 513. Fitzsimons ...
North side, looking southeast. Leading to building 513. - Fitzsimons General Hospital, Dental Laboratory, North of Building No. 511, West of corridor connecting Buildings 511 & 515, Aurora, Adams County, CO
Reimagining Building Sensing and Control (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polese, L.
2014-06-01
Buildings are responsible for 40% of US energy consumption, and sensing and control technologies are an important element in creating a truly sustainable built environment. Motion-based occupancy sensors are often part of these control systems, but are usually altered or disabled in response to occupants' complaints, at the expense of energy savings. Can we leverage commodity hardware developed for other sectors and embedded software to produce more capable sensors for robust building controls? The National Renewable Energy Laboratory's (NREL) 'Image Processing Occupancy Sensor (IPOS)' is one example of leveraging embedded systems to create smarter, more reliable, multi-function sensors that openmore » the door to new control strategies for building heating, cooling, ventilation, and lighting control. In this keynote, we will discuss how cost-effective embedded systems are changing the state-of-the-art of building sensing and control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M.H.
1995-07-01
The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory`s work in the future. Following severalmore » years of planning, opening ceremonies were held for the 5000 ft{sup 2} multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE`s new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft{sup 2} office and library addition to S@s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building.« less
Alabi, Abraham Sunday; Traoré, Afsatou Ndama; Loembe, Marguerite Massinga; Ateba-Ngoa, Ulysse; Frank, Matthias; Adegnika, Ayola Akim; Lell, Bertrand; Mahoumbou, Jocelyn; Köhler, Carsten; Kremsner, Peter Gottfried; Grobusch, Martin Peter
2017-03-01
Both routine and research tuberculosis (TB) laboratory capacity urgently need to be expanded in large parts of Sub-Saharan Africa. In 2009, the Centre de Recherches Médicales de Lambaréné (CERMEL) took a strategic decision to expand its activities by building TB laboratory capacity to address research questions and to improve routine diagnostic and treatment capacity. Over the past 7 years, a standard laboratory has been developed that is contributing significantly to TB diagnosis, treatment, and control in Gabon; training has also been provided for TB research staff in Central Africa. CERMEL has a cordial relationship with the Gabon National TB Control Programme (PNLT), which has culminated in a successful Global Fund joint application. This endeavour is considered a model for similar developments needed in areas of high TB prevalence and where TB control remains poor to date. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John
2016-01-01
Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.
Communications and Tracking Development Laboratory/Building 44. Historical Documentation
NASA Technical Reports Server (NTRS)
Slovinac, Patricia
2011-01-01
As part of this nation-wide study, in September 2006, historical survey and evaluation of NASA-owned and managed facilities was conducted by NASA's Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The results of this study are presented in a report entitled, Survey and Evaluation of NASA-owned Historic Facilities and Properties in the Context of the U.S. Space Shuttle Program, Lyndon B. Johnson Space Center, Houston, Texas, prepared in November 2007 by NASA JSC s contractor, Archaeological Consultants, Inc. As a result of this survey, the Communications and Tracking Development Laboratory (Building 44) was determined eligible for listing in the NRHP, with concurrence by the Texas State Historic Preservation Officer (SHPO). The survey concluded that Building 44 is eligible for the NRHP under Criteria A and C in the context of the U.S. Space Shuttle Program (1969-2010). Because it has achieved significance within the past 50 years, Criteria Consideration G applies. At the time of this documentation, Building 44 was still used to support the SSP as an engineering research facility, which is also sometimes used for astronaut training. This documentation package precedes any undertaking as defined by Section 106 of the NHPA, as amended, and implemented by 36 CFR Part 800, as NASA JSC has decided to proactively pursue efforts to mitigate the potential adverse affects of any future modifications to the facility. It includes a historical summary of the Space Shuttle Program; the history of JSC in relation to the SSP; a narrative of the history of Building 44 and how it supported the SSP; and a physical description of the building. In addition, photographs documenting the construction and historical use of Building 44 in support of the SSP, as well as photographs of the facility documenting the existing conditions, special technological features, and engineering details, are included. A contact sheet printed on archival paper, and an electronic copy of the work product on CD, are also provided.
2016-10-27
This archival image was released as part of a gallery comparing JPL’s past and present, commemorating the 80th anniversary of NASA’s Jet Propulsion Laboratory on Oct. 31, 2016. Building 264, also known as the Space Flight Support Building, hosts engineers supporting space missions in flight at NASA's Jet Propulsion Laboratory. It used to be just two stories, as seen in this image from January 1972, but then the Viking project to Mars needed more room. The building still serves the same function today, but now has eight floors. http://photojournal.jpl.nasa.gov/catalog/PIA21123
2016-10-27
This archival image was released as part of a gallery comparing JPL's past and present, commemorating the 80th anniversary of NASA's Jet Propulsion Laboratory on Oct. 31, 2016. The Administration Building of NASA's Jet Propulsion Laboratory (Building 180) is pictured in January 1965. What appears as a parking lot in this photograph later becomes "The Mall", a landscaped open-air gathering place. A small security control post can be seen at the left of the 1965 image. And Building 167, one of the lab's cafeterias, is on the right. http://photojournal.jpl.nasa.gov/catalog/PIA21121
LPT. Low power test control building (TAN641) east facade. Sign ...
LPT. Low power test control building (TAN-641) east facade. Sign says "Energy and Systems Technology Laboratory, INEL" (Post-ANP-use). Camera facing west. INEEL negative no. HD-40-3-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Recovery Act Weekly Video: Upper ALE Building Demolition
None
2017-12-11
CH2MHILL Plateau Remediation Company demolition of 6652C Space Science Laboratory. The largest building atop Rattlesnake Mountain, the laboratory served as a nightly radar patrol center as well as a barracks. The Recovery Act funded project is helping reduce the site footprint.
A Long History of Supercomputing
Grider, Gary
2018-06-13
As part of its national security science mission, Los Alamos National Laboratory and HPC have a long, entwined history dating back to the earliest days of computing. From bringing the first problem to the nationâs first computer to building the first machine to break the petaflop barrier, Los Alamos holds many âfirstsâ in HPC breakthroughs. Today, supercomputers are integral to stockpile stewardship and the Laboratory continues to work with vendors in developing the future of HPC.
2016-10-27
This archival image was released as part of a gallery comparing JPL's past and present, commemorating the 80th anniversary of NASA's Jet Propulsion Laboratory on Oct. 31, 2016. This photograph from 1949 shows the main entrance gate to the Jet Propulsion Laboratory in Pasadena, California, after a snowstorm. To the left is JPL's administration building at the time (Building 67). Building 67 is the Materials Research Building today. The Space Flight Operations Facility (Building 230), which houses JPL's Mission Control, now stands over the parking area on the right. As the lab expanded, the main entrance gate moved farther south. http://photojournal.jpl.nasa.gov/catalog/PIA21118
Urban Forestry Laboratory Exercises for Elementary, Middle and High School Students.
ERIC Educational Resources Information Center
Kupkowski, Gary; And Others
The curriculum in this program has been developed for the elementary, middle, and high school levels. Each level builds on the other, and forms a "thread of skills" that are upgraded at each level. The program is divided into two components. The first component is for the development of a school arboretum, tree walk, and herbarium. The second…
ERIC Educational Resources Information Center
Tremblay, Marie-Claude; Richard, Lucie; Brousselle, Astrid; Chiocchio, François; Beaudet, Nicole
2017-01-01
The health promotion laboratory (HPL-Canada) is a public health professional development program building on a collaborative learning approach in order to support long-term practice change in local health services teams. This study aims to analyse the collaborative learning processes of two teams involved in the program during the first year of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Howard; Braun, James E.
This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment inmore » the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Howard; Braun, James E.
2015-12-31
This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment inmore » the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.« less
Crew Systems Laboratory/Building 7. Historical Documentation
NASA Technical Reports Server (NTRS)
Slovinac, Patricia
2011-01-01
Building 7 is managed by the Crew and Thermal Systems Division of the JSC Engineering Directorate. Originally named the Life Systems Laboratory, it contained five major test facilities: two advanced environmental control laboratories and three human-rated vacuum chambers (8 , 11 , and the 20 ). These facilities supported flight crew familiarization and the testing and evaluation of hardware used in the early manned spaceflight programs, including Gemini, Apollo, and the ASTP.
Hazardous Waste Cleanup: AGFA Corporation - Peerless Photo Products in Shoreham, New York
The site is located on approximately 16.2 acres in a predominantly residential area. The site was originally developed in 1903 when Nikola Tesla constructed a building that served as a residence and a laboratory. Mr. Tesla also constructed a radio tower on
1. OVERALL VIEW OF BUILDING 9, LOOKING TO SOUTHEAST FROM ...
1. OVERALL VIEW OF BUILDING 9, LOOKING TO SOUTHEAST FROM BUILDING 4. BUILDING 2 IS VISIBLE BEHIND AND TO LEFT OF BUILDING 9. - U.S. Geological Survey, Rock Magnetics Laboratory, 345 Middlefield Road, Menlo Park, San Mateo County, CA
General view of buildings: Building No. 6 with smokestack (left ...
General view of buildings: Building No. 6 with smokestack (left foreground); Building No. 5 (left background); Base of Water Tower (right foreground); Buildings 4, 3, 2, 1 (center foreground to background) - Thomas A. Edison Laboratories, Main Street & Lakeside Avenue, West Orange, Essex County, NJ
[Tasks and duties of veterinary reference laboratories for food borne zoonoses].
Ellerbroek, Lüppo; Alter, T; Johne, R; Nöckler, K; Beutin, L; Helmuth, R
2009-02-01
Reference laboratories are of central importance for consumer protection. Field expertise and high scientific competence are basic requirements for the nomination of a national reference laboratory. To ensure a common approach in the analysis of zoonotic hazards, standards have been developed by the reference laboratories together with national official laboratories on the basis of Art. 33 of Directive (EG) No. 882/2004. Reference laboratories function as arbitrative boards in the case of ambivalent or debatable results. New methods for detection of zoonotic agents are developed and validated to provide tools for analysis, e. g., in legal cases, if results from different parties are disputed. Besides these tasks, national reference laboratories offer capacity building and advanced training courses and control the performance of ring trials to ensure consistency in the quality of analyses in official laboratories. All reference laboratories work according to the ISO standard 17025 which defines the grounds for strict laboratory quality rules and in cooperation with the respective Community Reference Laboratories (CRL). From the group of veterinary reference laboratories for food-borne zoonoses, the national reference laboratories are responsible for Listeria monocytogenes, for Campylobacter, for the surveillance and control of viral and bacterial contamination of bivalve molluscs, for E. coli, for the performance of analysis and tests on zoonoses (Salmonella), and from the group of parasitological zoonotic agents, the national reference laboratory for Trichinella.
Illinois Accelerator Research Center
Kroc, Thomas K.; Cooper, Charlie A.
2017-10-26
The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less
Illinois Accelerator Research Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroc, Thomas K.; Cooper, Charlie A.
The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less
Illinois Accelerator Research Center
NASA Astrophysics Data System (ADS)
Kroc, Thomas K.; Cooper, Charlie A.
The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.
The changing world of biocontainment and biosecurity.
Jeggo, M
2007-01-01
Since the 1980s, a number of key events have significantly altered our ideas on biosecurity and the role of biocontainment laboratories, such as the bovine spongiform encephalopathy (BSE) and severe acute respiratory syndrome (SARS) outbreaks and the anthrax episode of 2001 in the USA. This has resulted in the development of plans to build "high containment" facilities around the world and an array of new regulations at both national and international levels regarding the management of pathogens, the operation of high containment facilities, the use of genetically modified material, and the transportation of such agents and personnel security issues. Considering the cost, however, it is debatable whether every country needs to build its own high containment facility. The Australian Animal Health Laboratory (AAHL) provides an example of what might be considered best practice in biocontainment while considering regulations, cost and need.
ERIC Educational Resources Information Center
Barnett, Jonathan
The need for flexibility in science research facilities is discussed, with emphasis on the effect of that need on the design of laboratories. The relationship of office space, bench space, and special equipment areas, and the location and distribution of piping and air conditioning, are considered particularly important. This building type study…
CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP601) ON THE RIGHT ...
CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP-601) ON THE RIGHT AND LABORATORY (CPP-602) ON THE LEFT. INL PHOTO NUMBER NRTS-51-3373. Unknown Photographer, 9/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
32. The 1704B Supervisor's Office and Laboratory building, which also ...
32. The 1704-B Supervisor's Office and Laboratory building, which also contained the classified materials vault. This type of wooden construction was typical in the 100-B Area. Viewed from the northwest in September 1944. P-4445 - B Reactor, Richland, Benton County, WA
Measure PCB emission rates from primary sources in laboratory chambersMeasure transport and sorption by materials and dust in laboratory chambersCharacterize PCBs in school building materialsEstimate PCB emission rates from sources in schoolsExamine congener patterns in sources a...
Determining stressor-response relationships in reef building corals is a critical need for researchers because of global declines in coral reef ecosystems. A simplified recirculating coral exposure system for laboratory testing of a diversity of species and morphologies of reef b...
6. Exterior view of Components Test Laboratory (T27), looking southwest. ...
6. Exterior view of Components Test Laboratory (T-27), looking southwest. The building wing on the left houses Test Cell 9 (fuel), and that on the right houses the equipment room. The corrugated aluminum shed that is taller than the main building in the left foreground houses a citric acid air pollution control room (also known as scrubber room), the interior of which may be seen in CO-88-A-21. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
1. VIEW LOOKING NORTHWEST AT BUILDING 701. BUILDING 701 WAS ...
1. VIEW LOOKING NORTHWEST AT BUILDING 701. BUILDING 701 WAS USED TO DESIGN, BUILD, AND EVALUATE BENCH-SCALE TECHNOLOGIES USED IN ROCKY FLATS WASTE TREATMENT PROCESSES. (1/98) - Rocky Flats Plant, Design Laboratory, Northwest quadrant of Plant, between buildings 776-777 & 771, Golden, Jefferson County, CO
An image, looking southeast down the passage between E Building ...
An image, looking southeast down the passage between E Building and M Building immediately to the east. The east entrance and the south wing of the building are visible - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH
Renewable Energy in Fitness Centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvala, William D.
2009-09-30
All military installations have goals for implementing renewable energy projects, but not all have abundant solar energy or have massive feedstock for a large biomass plant. They must build up their renewable portfolio one project at it a time where they make the most sense – most of the time through small projects on specific buildings. During the last few years, Pacific Northwest National Laboratory (PNNL) provided project support to Army Installation Management Command Southeast Region (IMCOM-Southeast) installations. One of the building types visited, the physical fitness center (PFC), almost always yield project ideas. The building lends itself to amore » number of different technologies, and the high traffic nature is the perfect place to craft an educational message for users and demonstrate an installation’s commitment to sustainable energy development.« less
Removal design report for the 108-F Biological Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
Most of the 100-F facilities were deactivated with the reactor and have since been demolished. Of the dozen or so reactor-related structures, only the 105-F Reactor Building and the 108-F Biology Laboratory remain standing today. The 108-F Biology Laboratory was intended to be used as a facility for the mixing and addition of chemicals used in the treatment of the reactor cooling water. Shortly after F Reactor began operation, it was determined that the facility was not needed for this purpose. In 1949, the building was converted for use as a biological laboratory. In 1962, the lab was expanded bymore » adding a three-story annex to the original four-story structure. The resulting lab had a floor area of approximately 2,883 m{sup 2} (main building and annex) that operated until 1973. The building contained 47 laboratories, a number of small offices, a conference room, administrative section, lunch and locker rooms, and a heavily shielded, high-energy exposure cell. The purpose of this removal design report is to establish the methods of decontamination and decommissioning and the supporting functions associated with facility removal and disposal.« less
Flight Research Building at the Aircraft Engine Research Laboratory
1942-09-21
The Flight Research Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory is a 272- by 150-foot hangar with an internal height up to 90 feet. The hangar’s massive 37.5-foot-tall and 250-foot-long doors can be opened in sections to suit different size aircraft. The hangar has sheltered a diverse fleet of aircraft over the decades. These have ranged from World War II bombers to Cessna trainers and from supersonic fighter jets to a DC–9 airliner. At the time of this September 1942 photograph, however, the hangar was being used as an office building during the construction of the laboratory. In December of 1941, the Flight Research Building became the lab’s first functional building. Temporary offices were built inside the structure to house the staff while the other buildings were completed. The hangar offices were used for an entire year before being removed in early 1943. It was only then that the laboratory acquired its first aircraft, pilots and flight mechanics. The temporary one-story offices can be seen in this photograph inside the large sliding doors. Also note the vertical lift gate below the NACA logo. The gate was installed so that the tails of larger aircraft could pass into the hangar. The white Farm House that served as the Administration Building during construction can be seen in the distance to the left of the hangar.
Conducting experimental investigations of wind influence on high-rise constructions
NASA Astrophysics Data System (ADS)
Poddaeva, Olga I.; Fedosova, Anastasia N.; Churin, Pavel S.; Gribach, Julia S.
2018-03-01
The design of buildings with a height of more than 100 meters is accompanied by strict control in determining the external loads and the subsequent calculation of building structures, which is due to the uniqueness of these facilities. An important factor, the impact of which must be carefully studied at the stage of development of project documentation, is the wind. This work is devoted to the problem of studying the wind impact on buildings above 100 meters. In the article the technique of carrying out of experimental researches of wind influence on high-rise buildings and constructions, developed in the Educational-research-and-production laboratory on aerodynamic and aeroacoustic tests of building designs of NRU MGSU is presented. The publication contains a description of the main stages of the implementation of wind tunnel tests. The article presents the approbation of the methodology, based on the presented algorithm, on the example of a high-rise building under construction. This paper reflects the key requirements that are established at different stages of performing wind impact studies, as well as the results obtained, including the average values of the aerodynamic pressure coefficients, total forces and aerodynamic drag coefficients. Based on the results of the work, conclusions are presented.
Pre Incident Planning For The Los Alamos National Laboratory
2017-12-01
laboratory was asked to design and build the world’s first atomic bomb . The Los Alamos Fire Department (LAFD) provides emergency response services to...Project: the newly established laboratory was asked to design and build the world’s first atomic bomb . The Los Alamos Fire Department (LAFD) provides...lower priority despite its importance to the responders’ scene safety.20 In a Carolina Fire Rescue EMS Journal article, retired New York City
ENERGY AND SCIENCE: Five-Year Bibliography 1990-1994
1995-12-01
reviews the U.S. government’s efforts to support Venezuela’s energy sector. Sector de Energia en Venezuela: La Prodnccion Petrolera y las Condiciones... renovate existing laboratories or build new ones is often minimal. Four of the eight agencies recently started up task forces to reexamine their research...laboratory repairs. Moreover, funding to renovate existing laboratories or build new ones is often minimal. Four of the eight agencies recently started up
Vehicle Thermal Management Facilities | Transportation Research | NREL
Management Facilities Vehicle Thermal Management Facilities Image of a building with two semi truck evaluation facilities to develop advanced thermal management technologies for vehicles. Vehicle Testing and apparatus. Combined fluid loops bench research apparatus in the Vehicle Thermal Management Laboratory. Photo
LSS systems planning and performance program
NASA Technical Reports Server (NTRS)
Mckenna, Victoria Jones; Dendy, Michael J.; Naumann, Charles B.; Rice, Sally A.; Weathers, John M.
1993-01-01
This report describes, using viewgraphs, the Marshall Space Flight Center's Large Space Structures Ground Test Facilities located in building 4619. Major topics include the Active Control Evaluation of Systems (ACES) Laboratory; the Control-Structures Interaction/Controls, Astrophysics, and Structures Experiment in Space (CSI/CASES); Advanced Development Facility; and the ACES Guest Investigator Program.
evaluations of innovative building envelopes, water heating, and HVAC systems. She also conducts laboratory barriers for emerging and advanced retrofit systems to be implemented on a broad basis, as well as field Monitoring (NILM) techniques, and control strategies to develop cost-effective systems that integrate
ERIC Educational Resources Information Center
Kitts, Christopher; Quinn, Neil
2004-01-01
Santa Clara University's Robotic Systems Laboratory conducts an aggressive robotic development and operations program in which interdisciplinary teams of undergraduate students build and deploy a wide range of robotic systems, ranging from underwater vehicles to spacecraft. These year-long projects expose students to the breadth of and…
International Space Station (ISS)
1997-07-20
Photograph shows the International Space Station Laboratory Module under fabrication at Marshall Space Flight Center (MSFC), Building 4708 West High Bay. Although management of the U.S. elements for the Station were consolidated in 1994, module and node development continued at MSFC by Boeing Company, the prime contractor for the Space Station.
The University as an Open Laboratory
ERIC Educational Resources Information Center
Birx, Donald L.; Ford, Ralph M.; Payne, Carrie A.
2013-01-01
Colleges and universities are two of the most formidable resources a country has to reinvent and grow its economy. This is the second of two papers that outlines a process of building and strengthening research universities that enhances regional technology development and facilitates flexible networks of collaboration and resource sharing. In the…
Technology Development and Deployment | Energy Analysis | NREL
nexus. Example Projects Making Biofuel from Microalgae The Energy-Water-Food Nexus through the Lens of Algal Systems Planning for Algal Systems: An Energy-Water-Food Nexus Perspective (a strategic framework ) Core Capabilities Field Test Laboratory Building Sample Publications "Energy-Water-Food Nexus
Robot Contest as a Laboratory for Experiential Engineering Education
ERIC Educational Resources Information Center
Verner, Igor M.; Ahlgren, David J.
2004-01-01
By designing, building, and operating autonomous robots students learn key engineering subjects and develop systems-thinking, problem-solving, and teamwork skills. Such events as the Trinity College Fire-Fighting Home Robot Contest (TCFFHRC) offer rich opportunities for students to apply their skills by requiring design, and implementation of…
WorldWide Web: Hypertext from CERN.
ERIC Educational Resources Information Center
Nickerson, Gord
1992-01-01
Discussion of software tools for accessing information on the Internet focuses on the WorldWideWeb (WWW) system, which was developed at the European Particle Physics Laboratory (CERN) in Switzerland to build a worldwide network of hypertext links using available networking technology. Its potential for use with multimedia documents is also…
VIEW TO EAST OF CRYSTALLIZATION LABORATORY (CENTER LEFT FOREGROUND), PAINT ...
VIEW TO EAST OF CRYSTALLIZATION LABORATORY (CENTER LEFT FOREGROUND), PAINT APPLICATION BUILDING (CENTER BACKGROUND), AND c1944-1950 c1944-1950 POST-U.S. RADIUM ADDITION ADDITIONS TO EACH BUILDING (RIGHT FOREGROUND AND BACKGROUND) - United States Radium Corporation, 422-432 Alden Street, Orange, Essex County, NJ
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
... coatings, paper and related products, building seals and sealants, plastics, plumbing, roofing, and... products, building seals and sealants, plastics, plumbing, roofing, and mattresses. The purpose of this... plumbing laboratories are also accredited for plastic and paint testing in support of plumbing testing...
Research and Development on the Storage Ring Vacuum System for the APS Upgrade Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillwell, B.; Brajuskovic, B.; Carter, J.
A number of research and development activities are underway at Argonne National Laboratory to build confidence in the designs for the storage ring vacuum system required for the Advanced Photon Source Up-grade project (APS-U) [1]. The predominant technical risks are: excessive residual gas pressures during operation; insufficient beam position monitor stability; excessive beam impedance; excessive heating by induced electrical surface currents; and insufficient operational reliability. Present efforts to mitigate these risks include: building and evaluating mockup assemblies; performing mechanical testing of chamber weld joints; developing computational tools; investigating design alternatives; and performing electrical bench measurements. Status of these activities andmore » some of what has been learned to date will be shared.« less
TA-03-0035 Press Building – D&D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasenack, Marvin Leroy
The Press Building was constructed in 1954 with 15,073 ft 2 of floor space. It was built to house a 5000 ton double action Lake Erie hydraulic press and a uranium casting area. Missions included uranium activities associated with the Nuclear Weapons and Rover Rocket programs. At the end of the Rover program, the building continued to support various uranium materials science projects until the building was placed into a cold and dark status in 2013 and then was demolished in 2017. The building interior, the press, and associated systems were radiological contaminated and disposed of as low level waste.more » The demolition of this building opened up valuable real estate in the TA-3 area for the future construction of an ~11,000 Sq. Ft. Biosafety Level 2 laboratory and office building. This building will support the ongoing Bioscience Division mission at the laboratory.« less
Managing Campus Energy: Compromising between Rapid Needs and Environmental Requirement
NASA Astrophysics Data System (ADS)
Ambariyanto, Ambariyanto; Utama, Yos J.; Purwanto
2018-02-01
The utilization of energy, especially electricity at Diponegoro University campus continues to increase in line with the development of the university. This increase has a direct impact on the increased costs to be paid by the university. Some of the causes of increased utilization of electrical energy is the construction of new buildings to meet the needs, increased learning activities and education, research activities in the laboratory, and various other activities. On the other hand, the increase of energy utilization is considered not good from the environment point of view, especially the utilization of electrical energy coming from non sustainable resources. Efforts to compromise on both are to develop policies in developing environmentally friendly buildings, efficiency in utilization of electrical energy, and development of sustainable energy sources.
Building Environment Analysis based on Temperature and Humidity for Smart Energy Systems
Yun, Jaeseok; Won, Kwang-Ho
2012-01-01
In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment. PMID:23202004
de Boer, J; Leslie, H; van Leeuwen, S P J; Wegener, J-W; van Bavel, B; Lindström, G; Lahoutifard, N; Fiedler, H
2008-06-09
Within the framework of a United Nations Environment Programme (UNEP) Capacity Building Project for training of laboratory staff in developing countries on persistent organic pollutant (POP) analysis, an interlaboratory study was organised following an initial evaluation of the performance of laboratories (reality check) and a series of training sessions. The target compounds were polychlorinated biphenyls (PCB) and organochlorine pesticides (OCP). Seven laboratories from five countries (Ecuador, Uruguay, Kenya, Moldova, and Fiji) participated. Most of the laboratories had no experience in determining PCBs. Although chromatograms improved considerably after the training and installation of new gas chromatographic (GC) columns at participating laboratories, the level of performance in the interlaboratory study was essentially on par with the moderate performance level achieved by European POP laboratories in the 1980s. Only some individual results were within +/-20% of the target values. The relative standard deviations (R.S.D.s) in POP concentrations determined by laboratories in a sediment sample were >200% in a number of cases. The results for a certified herring sample were better with at least some R.S.D. values below 50% and most below 100%. Clean up was as one of the main sources of error. After inspection it was ascertained that training of laboratory staff and investments in simple consumables such as glassware and GC columns would help to improve the quality of the analysis more than major investments in expensive instrumentation. Creating an effective network of POP laboratories at different continents together with a series of interlaboratory studies and workshops is suggested to improve the measurements of POPs in these countries.
2016-10-27
This archival image was released as part of a gallery comparing JPL's past and present, commemorating the 80th anniversary of NASA's Jet Propulsion Laboratory on Oct. 31, 2016. This photograph from 1971 shows the open-air gathering area at NASA's Jet Propulsion Laboratory known as "The Mall." It looks east towards the Applied Mechanics building (the blocky white building now numbered 157). The person in the foreground is Robert Steinbacher, the project scientist for the Mariner 9 mission to Mars. The concrete bridge crossing the ponds remains, even though the ponds have been removed. Many trees and another building, the Central Engineering Building (301), block the view to Building 157 now. http://photojournal.jpl.nasa.gov/catalog/PIA21125
International Jobs and Economic Development Impacts (I-JEDI) Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
International Jobs and Economic Development Impacts (I-JEDI) is a freely available economic model that estimates gross economic impacts from wind, solar, biomass, and geothermal energy projects. Building on a similar model for the United States, I-JEDI was developed by the National Renewable Energy Laboratory under the U.S. government's Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program to support partner countries in assessing economic impacts of LEDS actions in the energy sector.
31. SOUTH PLANT NORTHERN EDGE, SHOWING CELL BUILDING (BUILDING 242) ...
31. SOUTH PLANT NORTHERN EDGE, SHOWING CELL BUILDING (BUILDING 242) AT LEFT, LABORATORY (BUILDING 241) AT CENTER AND CAUSTIC FUSION PLANT (BUILDING 254) AT RIGHT. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO
FAST CHOPPER BUILDING, TRA665. CONTEXTUAL VIEW: CHOPPER BUILDING IN CENTER. ...
FAST CHOPPER BUILDING, TRA-665. CONTEXTUAL VIEW: CHOPPER BUILDING IN CENTER. MTR REACTOR SERVICES BUILDING,TRA-635, TO LEFT; MTR BUILDING TO RIGHT. CAMERA FACING WEST. INL NEGATIVE NO. HD42-1. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Automatic control of a robotic vehicle
NASA Technical Reports Server (NTRS)
Mcreynolds, S. R.
1976-01-01
Over the last several years Jet Propulsion Laboratory has been engaged in a project to develop some of the technology required to build a robotic vehicle for exploring planetary surfaces. An overview of hardware and software being developed for this project is given. Particular emphasis is placed on the description of the current design for the Vehicle System required for locomotion and the path planning algorithm.
NASA Technical Reports Server (NTRS)
Hirsch, David B.
2010-01-01
This slide presentation reviews some of the lessons learned in the sphere of international cooperation during the development, assembly and operation of the International Space Station. From the begining all Partners shared a common objective to build, operate and utilize a crewed laboratory in low orbit as an international partnership. The importance of standards is emphasized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MATALUCCI,RUDOLPH V.; O'CONNOR,SHARON
The mission of the Architectural Surety{trademark} program at Sandia National Laboratories is to assure the performance of buildings, facilities, and other infrastructure systems under normal, abnormal, and malevolent threat conditions. Through educational outreach efforts in the classroom, at conferences, and presentations such as this one, public and professional awareness of the need to defuse and mitigate such threats is increased. Buildings, airports, utilities, and other kinds of infrastructure deteriorate over time, as evidenced most dramatically by the crumbling cities and aging buildings, bridges, and other facility systems. Natural disasters such as tornadoes, earthquakes, hurricanes, and flooding also stress the materialsmore » and structural elements of the built environment. In addition, criminals, vandals, and terrorists attack federal buildings, dams, bridges, tunnels, and other public and private facilities. Engineers and architects are beginning to systematically consider these threats during the design, construction, and retrofit phases of buildings and infrastructures and are recommending advanced research in new materials and techniques. Existing building codes and standards do not adequately address nor protect the infrastructure or the public from many of these emerging threats. The activities in Sandia National Laboratories' Architectural Surety{trademark} efforts take a risk management approach to enhancing the safety, security, and reliability of the constructed environment. The technologies and techniques developed during Sandia's 50 years as the nation's lead laboratory for nuclear weapons surety are now being applied to assessing and reducing the vulnerability of dams, to enhancing the safety and security of staff in foreign embassies, and assuring the reliability of other federal facilities. High consequence surety engineering and design brings together technological advancements, new material requirements, systems integration, and risk management to improve the safety, security, and reliability of the as-built environment. The thrust of this paper is the role that new materials can play in protecting the infrastructure. Retrofits of existing buildings, innovative approaches to the design and construction of new facilities, and the mitigation of consequences in the event of an unpreventable disaster are some of the areas that new construction materials can benefit the Architectural Surety{trademark} of the constructed environment.« less
Lawrence Berkeley National Laboratory 2015 Annual Financial Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Kim, P
FY2015 financial results reflect a year of significant scientific, operational and financial achievement for Lawrence Berkeley National Laboratory. Complementing many scientific accomplishments, Berkeley Lab completed construction of four new research facilities: the General Purpose Laboratory, Chu Hall, Wang Hall and the Flexlab Building Efficiency Testbed. These state-of-the-art facilities allow for program growth and enhanced collaboration, in part by enabling programs to return to the Lab’s Hill Campus from offsite locations. Detailed planning began for the new Integrative Genomics Building (IGB) that will house another major program currently located offsite. Existing site infrastructure was another key focus area. The Lab prioritizedmore » and increased investments in deferred maintenance in alignment with the Berkeley Lab Infrastructure Plan, which was developed under the leadership of the DOE Office of Science. With the expiration of American Recovery and Reinvestment Act (ARRA) funds, we completed the close-out of all of our 134 ARRA projects, recording total costs of $331M over the FY2009-2015 period. Download the report to read more.« less
Adams, Martin; Stamper, Paul D.; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D.; Richards, Allen L.; Hay, John
2016-01-01
Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community. PMID:27559843
Ondoa, Pascale; Datema, Tjeerd; Keita-Sow, Mah-Sere; Ndihokubwayo, Jean-Bosco; Isadore, Jocelyn; Oskam, Linda; Nkengasong, John; Lewis, Kim
2016-01-01
Functional national laboratory networks and systems are indispensable to the achievement of global health security targets according to the International Health Regulations. The lack of indicators to measure the functionality of national laboratory network has limited the efficiency of past and current interventions to enhance laboratory capacity in resource-limited-settings. We have developed a matrix for the assessment of national laboratory network functionality and progress thereof, with support from the African Society of Laboratory Medicine and the Association of Public Health Laboratories. The laboratory network (LABNET) scorecard was designed to: (1) Measure the status of nine overarching core capabilities of laboratory network required to achieve global health security targets, as recommended by the main normative standards; (2) Complement the World Health Organization joint external evaluation tool for the assessment of health system preparedness to International Health Regulations (2005) by providing detailed information on laboratory systems; and (3) Serve as a clear roadmap to guide the stepwise implementation of laboratory capability to prevent, detect and act upon infectious threats. The application of the LABNET scorecard under the coordination of the African Society of Laboratory Medicine and the Association of Public Health Laboratories could contribute to the design, monitoring and evaluation of upcoming Global Health Security Agenda-supported laboratory capacity building programmes in sub Saharan-Africa and other resource-limited settings, and inform the development of national laboratory policies and strategic plans. Endorsement by the World Health Organization Regional Office for Africa is foreseen.
Deckelbaum, Richard J; Ntambi, James M; Wolgemuth, Debra J
2011-09-01
This article provides evidence that basic science research and education should be key priorities for global health training, capacity building, and practice. Currently, there are tremendous gaps between strong science education and research in developed countries (the North) as compared to developing countries (the South). In addition, science research and education appear as low priorities in many developing countries. The need to stress basic science research beyond the typical investment of infectious disease basic service and research laboratories in developing areas is significant in terms of the benefits, not only to education, but also for economic strengthening and development of human resources. There are some indications that appreciation of basic science research education and training is increasing, but this still needs to be applied more rigorously and strengthened systematically in developing countries. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2003-03-07
Lawrence Berkeley National Laboratory (LBNL) proposes to build a six-story, approximately 86,500 gross square foot (gsf) Molecular Foundry building; and an adjacent 8,000 gsf, partly below-grade Central Utility Plant building (for a combined 94,500 gsf), to be funded and operated by the U.S. Department of Energy's Office of Basic Energy Sciences. The buildings would be located on an approximately 2 1/2-acre site in the southeastern portion of the LBNL facility in the Oakland-Berkeley hills. The site is on mostly undeveloped slopes between Building 72, which is the National Center for Electron Microscopy (NCEM), and Building 66, which is the Surfacemore » Science and Catalysis Laboratory (SSCL). The Molecular Foundry building would include laboratories, offices, and conference and seminar rooms; the Central Utility Plant would also serve as the foundation for 16 surface parking spaces. A new plaza and pedestrian bridges would connect or provide ready access between the proposed Molecular Foundry building and adjacent scientific buildings. The Proposed Action would extend Lee Road approximately 350 feet, and widen a portion of the road to accommodate two-way traffic. The Molecular Foundry would be staffed and/or used by an estimated 137 persons, of whom an estimated 59 would be staff persons, 36 would be students, and 42 would be visitors (i.e., visiting scientists) to the Center. The Proposed Action would require removal of an existing paved 18-space parking lot and retaining walls, as well as excavation into an undeveloped hillside. Approximately two-dozen mature trees would be removed along with approximately one-dozen saplings. The Proposed Action would replant or replace trees, generally in-kind and in or around the site. LBNL anticipates it would reuse all soil excavated for the Molecular Foundry to construct the new Lee Road extension and widen the existing roadway. This Proposed Action would be a resource for the Department of Energy's participation in the National Nanotechnology Initiative (NNI). Nanotechnology is the design, fabrication, characterization, and use of materials, devices, and systems through the control of matter at the nanometer-length scale. Nanoscience will develop the understanding of building blocks at the nanometer-length scale and the methods by which they are assembled into multi-component devices. Alternatives to the Proposed Action include a reduced size building configuration, location of the building on a different on-site location, and a No Action alternative. Several off-site alternatives were considered but were not found to reasonably meet the purpose and need for the Proposed Action. Of the reasonable alternatives analyzed, the Proposed Action is found to best meet DOE's purpose and need for action. Although the Proposed Action would take place on a partially developed site that is generally surrounded by existing buildings and roads, the site is near to designated Critical Habitat of the Federally-listed Alameda Whipsnake. To minimize any potential but unexpected impact to the Alameda whipsnake, several mitigation measures are proposed. In addition, the Proposed Action would result in minor increases in stormwater runoff, air pollutant emissions, visual quality impacts, noise impacts, and the potential to disturb unanticipated archaeological resources. It would produce marginal increases in traffic and parking demand, as well as incremental demand increases for water, energy, wastewater treatment, waste disposal, and public services. The following impact is found to be potentially significant without mitigation in this Environmental Assessment: Although the site is not located in USFWS-designated critical habitat, due to the potential for Alameda whipsnake movement into the project area, mitigation measures would be implemented to ensure that whipsnakes are protected to the greatest extent possible during project construction.« less
Space Planning for Laboratory Buildings | Climate Neutral Research Campuses
facilities such as warehouses, offices, and high-tech laboratories have very different energy requirements , and a successful climate action plan will set aside adequate space for different activities. The Facility offices are housed in a different portion of the building than labs, resulting in lower cost
Cavallaro, Kathleen F; Sandhu, Hardeep S; Hyde, Terri B; Johnson, Barbara W; Fischer, Marc; Mayer, Leonard W; Clark, Thomas A; Pallansch, Mark A; Yin, Zundong; Zuo, Shuyan; Hadler, Stephen C; Diorditsa, Serguey; Hasan, A S M Mainul; Bose, Anindya S; Dietz, Vance
2015-02-25
Surveillance for acute flaccid paralysis with laboratory confirmation has been a key strategy in the global polio eradication initiative, and the laboratory platform established for polio testing has been expanded in many countries to include surveillance for cases of febrile rash illness to identify measles and rubella cases. Vaccine-preventable disease surveillance is essential to detect outbreaks, define disease burden, guide vaccination strategies and assess immunization impact. Vaccines now exist to prevent Japanese encephalitis (JE) and some etiologies of bacterial meningitis. We evaluated the feasibility of expanding polio-measles surveillance and laboratory networks to detect bacterial meningitis and JE, using surveillance for acute meningitis-encephalitis syndrome in Bangladesh and China and acute encephalitis syndrome in India. We developed nine syndromic surveillance performance indicators based on international surveillance guidelines and calculated scores using supervisory visit reports, annual reports, and case-based surveillance data. Scores, variable by country and targeted disease, were highest for the presence of national guidelines, sustainability, training, availability of JE laboratory resources, and effectiveness of using polio-measles networks for JE surveillance. Scores for effectiveness of building on polio-measles networks for bacterial meningitis surveillance and specimen referral were the lowest, because of differences in specimens and techniques. Polio-measles surveillance and laboratory networks provided useful infrastructure for establishing syndromic surveillance and building capacity for JE diagnosis, but were less applicable for bacterial meningitis. Laboratory-supported surveillance for vaccine-preventable bacterial diseases will require substantial technical and financial support to enhance local diagnostic capacity. Published by Elsevier Ltd.
BUILDING PLANS OF FUEL STORAGE BUILDING (CPP603). INL DRAWING NUMBER ...
BUILDING PLANS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103029. ALTERNATE ID NUMBER 542-31-B-21. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Changes and challenges in the Software Engineering Laboratory
NASA Technical Reports Server (NTRS)
Pajerski, Rose
1994-01-01
Since 1976, the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization, the Flight Dynamics Division (FDD), develops, maintains, and manages complex flight dynamics systems. The SEL is composed of three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation. During the past 18 years, the SEL's overall goal has remained the same: to improve the FDD's software products and processes in a measured manner. This requires that each development and maintenance effort be viewed, in part, as a SEL experiment which examines a specific technology or builds a model of interest for use on subsequent efforts. The SEL has undertaken many technology studies while developing operational support systems for numerous NASA spacecraft missions.
NASA Technical Reports Server (NTRS)
Hooker, John R.; Wick, Andrew T.; Hardin, Christopher J.
2017-01-01
LM has leveraged our partnership with the Air Force Research Laboratory (AFRL) and NASA on the advanced hybrid wing body (HWB) concept to develop a commercial freighter which addresses the NASA Advanced Air Transport Technology (AATT) Project goals for improved efficiency beyond 2025. The current Air Force Research Laboratory (AFRL) Revolutionary Configurations for Energy Efficiency (RCEE) program established the HWB configuration and technologies needed for military transports to achieve aerodynamic and fuel efficiencies well beyond the commercial industry's most modern designs. This study builds upon that effort to develop a baseline commercial cargo aircraft and two HWB derivative commercial cargo aircraft to quanitify the benefit of the HWB and establish a technology roadmap for further development.
NASA Astrophysics Data System (ADS)
Antonopoulos, Chrissi Argyro
This study presents findings from survey and interview data investigating replication of green building measures by Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, quantitative and qualitative data were gathered relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners' replication efforts of green building approaches used in the CBP project to the rest of the organization's building portfolio, and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States. Findings from this study provided insight into motivations and objectives CBP partners had for program participation. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The optimized approach to the CBP program allows partners to develop green building parameters that fit the specific uses of their building, resulting in greater motivation for replication. In addition, the diffusion model developed for this analysis indicates that this method of market prediction may be used to adequately capture cumulative construction metrics for a whole-building analysis as opposed to individual energy efficiency measures used in green building.
ATLAS software configuration and build tool optimisation
NASA Astrophysics Data System (ADS)
Rybkin, Grigory; Atlas Collaboration
2014-06-01
ATLAS software code base is over 6 million lines organised in about 2000 packages. It makes use of some 100 external software packages, is developed by more than 400 developers and used by more than 2500 physicists from over 200 universities and laboratories in 6 continents. To meet the challenge of configuration and building of this software, the Configuration Management Tool (CMT) is used. CMT expects each package to describe its build targets, build and environment setup parameters, dependencies on other packages in a text file called requirements, and each project (group of packages) to describe its policies and dependencies on other projects in a text project file. Based on the effective set of configuration parameters read from the requirements files of dependent packages and project files, CMT commands build the packages, generate the environment for their use, or query the packages. The main focus was on build time performance that was optimised within several approaches: reduction of the number of reads of requirements files that are now read once per package by a CMT build command that generates cached requirements files for subsequent CMT build commands; introduction of more fine-grained build parallelism at package task level, i.e., dependent applications and libraries are compiled in parallel; code optimisation of CMT commands used for build; introduction of package level build parallelism, i. e., parallelise the build of independent packages. By default, CMT launches NUMBER-OF-PROCESSORS build commands in parallel. The other focus was on CMT commands optimisation in general that made them approximately 2 times faster. CMT can generate a cached requirements file for the environment setup command, which is especially useful for deployment on distributed file systems like AFS or CERN VMFS. The use of parallelism, caching and code optimisation significantly-by several times-reduced software build time, environment setup time, increased the efficiency of multi-core computing resources utilisation, and considerably improved software developer and user experience.
Transactive Control of Commercial Building HVAC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corbin, Charles D.; Makhmalbaf, Atefe; Huang, Sen
This document details the development and testing of market-based transactive controls for building heating, ventilating and air conditioning (HVAC) systems. These controls are intended to serve the purposes of reducing electricity use through conservation, reducing peak building electric demand, and providing demand flexibility to assist with power system operations. This report is the summary of the first year of work conducted under Phase 1 of the Clean Energy and Transactive Campus Project. The methods and techniques described here were first investigated in simulation, and then subsequently deployed to a physical testbed on the Pacific Northwest National Laboratory (PNNL) campus formore » validation. In this report, we describe the models and control algorithms we have developed, testing of the control algorithms in simulation, and deployment to a physical testbed. Results from physical experiments support previous simulation findings, and provide insights for further improvement.« less
Building a Laboratory-Scale Biogas Plant and Verifying its Functionality
NASA Astrophysics Data System (ADS)
Boleman, Tomáš; Fiala, Jozef; Blinová, Lenka; Gerulová, Kristína
2011-01-01
The paper deals with the process of building a laboratory-scale biogas plant and verifying its functionality. The laboratory-scale prototype was constructed in the Department of Safety and Environmental Engineering at the Faculty of Materials Science and Technology in Trnava, of the Slovak University of Technology. The Department has already built a solar laboratory to promote and utilise solar energy, and designed SETUR hydro engine. The laboratory is the next step in the Department's activities in the field of renewable energy sources and biomass. The Department is also involved in the European Union project, where the goal is to upgrade all existed renewable energy sources used in the Department.
Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kress, R.L.; Jansen, J.F.; Love, L.J.
1996-09-01
To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators,more » hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical results are included.« less
Druglitrø, Tone; Kirk, Robert G. W.
2015-01-01
Argument This article adopts a historical perspective to examine the development of Laboratory Animal Science and Medicine, an auxiliary field which formed to facilitate the work of the biomedical sciences by systematically improving laboratory animal production, provision, and maintenance in the post Second World War period. We investigate how Laboratory Animal Science and Medicine co-developed at the local level (responding to national needs and concerns) yet was simultaneously transnational in orientation (responding to the scientific need that knowledge, practices, objects and animals circulate freely). Adapting the work of Tsing (2004), we argue that national differences provided the creative “friction” that helped drive the formation of Laboratory Animal Science and Medicine as a transnational endeavor. Our analysis engages with the themes of this special issue by focusing on the development of Laboratory Animal Science and Medicine in Norway, which both informed wider transnational developments and was formed by them. We show that Laboratory Animal Science and Medicine can only be properly understood from a spatial perspective; whilst it developed and was structured through national “centers,” its orientation was transnational necessitating international networks through which knowledge, practice, technologies, and animals circulated. More and better laboratory animals are today required than ever before, and this demand will continue to rise if it is to keep pace with the quickening tempo of biological and veterinary research. The provision of this living experimental material is no longer a local problem; local, that is, to the research institute. It has become a national concern, and, in some of its aspects . . . even international. (William Lane-Petter 1957, 240) PMID:24941794
1985-03-01
gallons for Building 2. -... The system must be capable of wit standing caustic corrosion. • Either stainless steel or lined mild steel may be used. As...assumed that spent charcoal could be disposed in some safe manner arid would be re- placed as used. Additional costs were in luded for sampling and analysis...decontamination of all three explosives could be effected by further sequential treatment of the spent explosives decontami- nation solutions with acidic ferrous
Wilson, Deborah E.
2011-01-01
The events and aftermath of September 11, 2001, accelerated a search for personnel reliability test measures to identify individuals who could pose a threat to our nation's security and safety. The creation and administration of a behavioral health screen for BSL-4 laboratory workers at the National Institutes of Health represents a pioneering effort to proactively build a BSL-4 safety culture promoting worker cohesiveness, trust, respect, and reliability with a balance of worker privacy and public safety. PMID:21361798
Remote Systems Design & Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ
2009-08-28
The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.
This image, looking due north, demonstrates the south side of ...
This image, looking due north, demonstrates the south side of the building - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH
ERIC Educational Resources Information Center
Pontrello, Jason K.
2016-01-01
Introductory organic laboratory courses frequently begin with a set of activities built around developing basic experimental skills and techniques, often with guided-inquiry components. A sequence of skill-based activities is described to promote reflection, analysis of, and interpersonal communication around science. A multistage process was used…
ERIC Educational Resources Information Center
Korchnoy, Evgeny; Verner, Igor M.
2010-01-01
Growing popularity of robotics education motivates developing its didactics and studying it in teacher training programs. This paper presents a study conducted in the Department of Education in Technology and Science, Technion, in which university students and school pupils cope with robotics challenges of designing, building and operating…
NREL Solar Researcher Honored with ASES Abbot Award | News | NREL
desiccant cooling test laboratory, producing NREL's solar industrial process heat design handbook , developing stretched-membrane parabolic dish solar concentrators, inventing a high-performance heat exchanger the sun's heat to warm the building ventilation air. Kutscher has a B.S. degree in physics from the
NREL: News - NREL Wins Research and Development Awards
and chemicals, energy-efficient buildings, advanced vehicle design, geothermal energy and hydrogen the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) are among this year's 100 components in geothermal power plants; a solar power system that produces electricity while still allowing
3D engineered fiberboard : a new structural building product
John F. Hunt; Jerrold E. Winandy
2002-01-01
To help meet the need for sustainable forest management tools, the USDA Forest Products Laboratory is developing an economically viable process to produce three-dimensional structural fibreboard products that can utilize a wide range of lignocellulosic fibres contained in the forest undergrowth and in underutilized timber. This will encourage the public and private...
ERIC Educational Resources Information Center
Arumi, Francisco N.
Computer programs capable of describing the thermal behavior of buildings are used to help architectural students understand environmental systems. The Numerical Simulation Laboratory at the Architectural School of the University of Texas at Austin was developed to provide the necessary software capable of simulating the energy transactions…
BUILDING DETAILS AND SECTIONS OF MAIN PROCESSING BUILDING (CPP601). INL ...
BUILDING DETAILS AND SECTIONS OF MAIN PROCESSING BUILDING (CPP-601). INL DRAWING NUMBER 200-0601-00-291-103080. ALTERNATE ID NUMBER 542-11-B-74. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Zumwalt, Ann C; Lufler, Rebecca S; Monteiro, Joseph; Shaffer, Kitt
2010-01-01
Active learning exercises were developed to allow advanced medical students to revisit and review anatomy in a clinically meaningful context. In our curriculum, students learn anatomy two to three years before they participate in the radiology clerkship. These educational exercises are designed to review anatomy content while highlighting its relevance to the study of radiology. Laboratory exercises were developed using inexpensive materials in the form of hands-on stations designed for use by students working together in small groups. Station exercises include model building, exploring relevant radiological imaging, and practicing clinical techniques. Students are encouraged to move from abstract conceptualization of the anatomy using models to applying knowledge to living tissues by using a portable ultrasound to explore superficial anatomy on each other. Stations are designed to integrate knowledge and reemphasize concepts in different contexts, so that upon completion students have a reinforced understanding of the three-dimensional anatomy of the region in question, the appearance of the anatomy on radiological images, and an appreciation of the relevance of the anatomy to radiological procedures. (c) 2010 American Association of Anatomists.
Levin-Rector, Alison; Nivin, Beth; Yeung, Alice; Fine, Annie D; Greene, Sharon K
2015-08-01
Timely outbreak detection is necessary to successfully control influenza in long-term care facilities (LTCFs) and other institutions. To supplement nosocomial outbreak reports, calls from infection control staff, and active laboratory surveillance, the New York City (NYC) Department of Health and Mental Hygiene implemented an automated building-level analysis to proactively identify LTCFs with laboratory-confirmed influenza activity. Geocoded addresses of LTCFs in NYC were compared with geocoded residential addresses for all case-patients with laboratory-confirmed influenza reported through passive surveillance. An automated daily analysis used the geocoded building identification number, approximate text matching, and key-word searches to identify influenza in residents of LTCFs for review and follow-up by surveillance coordinators. Our aim was to determine whether the building analysis improved prospective outbreak detection during the 2013-2014 influenza season. Of 119 outbreaks identified in LTCFs, 109 (92%) were ever detected by the building analysis, and 55 (46%) were first detected by the building analysis. Of the 5,953 LTCF staff and residents who received antiviral prophylaxis during the 2013-2014 season, 929 (16%) were at LTCFs where outbreaks were initially detected by the building analysis. A novel building-level analysis improved influenza outbreak identification in LTCFs in NYC, prompting timely infection control measures. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Shrivastava, Ritu; Gadde, Renuka; Nkengasong, John N
2016-04-15
After the launch of the US President's Emergency Plan for AIDS Relief in 2003, it became evident that inadequate laboratory systems and services would severely limit the scale-up of human immunodeficiency virus infection prevention, care, and treatment programs. Thus, the Office of the US Global AIDS Coordinator, Centers for Disease Control and Prevention, and Becton, Dickinson and Company developed a public-private partnership (PPP). Between October 2007 and July 2012, the PPP combined the competencies of the public and private sectors to boost sustainable laboratory systems and develop workforce skills in 4 African countries. Key accomplishments of the initiative include measurable and scalable outcomes to strengthen national capacities to build technical skills, develop sample referral networks, map disease prevalence, support evidence-based health programming, and drive continuous quality improvement in laboratories. This report details lessons learned from our experience and a series of recommendations on how to achieve successful PPPs. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Developing teachers' understanding of molecular biology: Building a foundation for students.
Boulay, Rachel; Parisky, Alex; Campbell, Chris
2010-01-01
Molecular biology often uses participation in active research laboratories as a form of educational training. However, this approach to learning severely restricts access. As a way of addressing this need, the University of Hawaii launched a project to expand this model to include newly developed online training materials in addition to a hands-on laboratory experience. This paper further explores the process of material development and assessment plans. A pilot case study of a group of advanced biology teachers who embark on learning molecular biology over a four-month period through online training materials and working side-by-side with medical researchers in a laboratory is described. Teachers were positive in reporting about the many areas they gained instruction in although some feedback suggested that the initial online materials over-emphasised abstract concepts and laboratory techniques and did not adequately connect to the active research problems or local context of most interest to teachers and students. The experiences of the teachers are shared in an effort to gain insight on how teachers perceive their participation in the study.
Looking southeast, this photograph shows the length of the north ...
Looking southeast, this photograph shows the length of the north elevation of E Building - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH
Method development of damage detection in asymmetric buildings
NASA Astrophysics Data System (ADS)
Wang, Yi; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Andy
2018-01-01
Aesthetics and functionality requirements have caused most buildings to be asymmetric in recent times. Such buildings exhibit complex vibration characteristics under dynamic loads as there is coupling between the lateral and torsional components of vibration, and are referred to as torsionally coupled buildings. These buildings require three dimensional modelling and analysis. In spite of much recent research and some successful applications of vibration based damage detection methods to civil structures in recent years, the applications to asymmetric buildings has been a challenging task for structural engineers. There has been relatively little research on detecting and locating damage specific to torsionally coupled asymmetric buildings. This paper aims to compare the difference in vibration behaviour between symmetric and asymmetric buildings and then use the vibration characteristics for predicting damage in them. The need for developing a special method to detect damage in asymmetric buildings thus becomes evident. Towards this end, this paper modifies the traditional modal strain energy based damage index by decomposing the mode shapes into their lateral and vertical components and to form component specific damage indices. The improved approach is then developed by combining the modified strain energy based damage indices with the modal flexibility method which was modified to suit three dimensional structures to form a new damage indicator. The procedure is illustrated through numerical studies conducted on three dimensional five-story symmetric and asymmetric frame structures with the same layout, after validating the modelling techniques through experimental testing of a laboratory scale asymmetric building model. Vibration parameters obtained from finite element analysis of the intact and damaged building models are then applied into the proposed algorithms for detecting and locating the single and multiple damages in these buildings. The results obtained from a number of different damage scenarios confirm the feasibility of the proposed vibration based damage detection method for three dimensional asymmetric buildings.
View looking southeast from the roof of OSW Building, toward ...
View looking southeast from the roof of OSW Building, toward E Building (center ground of image). Part of H Building is in the immediate foreground. This photograph shows the relationship between E Building and others adjacent to it as well as some of the panorama of the site - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH
Improving the Automated Detection and Analysis of Secure Coding Violations
2014-06-01
eliminating software vulnerabilities and other flaws. The CERT Division produces books and courses that foster a security mindset in developers, and...website also provides a virtual machine containing a complete build of the Rosecheckers project on Linux . The Rosecheckers project leverages the...Compass/ROSE6 project developed at Law- rence Livermore National Laboratory. This project provides a high-level API for accessing the abstract syntax tree
Developing a Sand Management Plan for Galveston Island
2015-10-16
Engineer Coastal & Hydraulics Laboratory Engineer Research & Development Center On behalf of the Project Team: Andrew Morang, David King, and Robert...Budget Objectives • Identify sources and sinks of sediment in coastal system Beach fills Littoral and offshore sources Dredge data...more than 100 ft of erosion After 10 years After 50 years Innovative solutions for a safer, better world BUILDING STRONG® Beach Fills (West End
2017-12-08
NASA Kennedy Space Center's Engineering Directorate held a banner signing event in the Prototype Development Laboratory to mark the successful delivery of a liquid oxygen test tank, called Tardis. Engineers and technicians worked together to develop the tank and build it to support cryogenic testing at Johnson Space Center's White Stands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
ERIC Educational Resources Information Center
Southwest Educational Development Lab., Austin, TX.
In 1999, the Southern Educational Development Laboratory (SEDL) interviewed leaders from Hispanic, African American, Native American, and Asian communities in Arkansas and Oklahoma to understand what keeps parents and others from participating in community forums. After conducting more than fifty interviews, SEDL developed seven steps to help…
138. ARAII Building ARA606 floor plan for remodel as Inel ...
138. ARA-II Building ARA-606 floor plan for remodel as Inel Welding Laboratory. Shows room divisions and welding stations to be installed. Aerojet Nuclear Company 1375-ARA-II-606-E-2. Date: June 1976. Ineel index code no. 070-0606-10-400-156552. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
This photograph, taken from the main roof of E Building, ...
This photograph, taken from the main roof of E Building, looking north, shows two metal penthouses at right, a similar brick structure and some of the vents and other mechanical devices of the building - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH
Unlocking energy efficiency in small commercial buildings through mechanical contractors
Granderson, Jessica; Hult, Erin; Fernandes, Samuel; ...
2017-03-01
Although buildings smaller than 4,645 m 2 account for nearly half of the energy used in U.S. commercial buildings, energy-efficiency programs to date have primarily focused on larger buildings. Stakeholder interviews conducted during a scoping study by Lawrence Berkeley National Laboratory (LBNL) indicated interest in energy efficiency from the small commercial building sector, provided solutions are simple and of low cost. To address this need, an energy management package (EMP) was developed to deliver energy management to small commercial buildings via HVAC contractors, because they already serve these clients and the transaction cost to market would be reduced. This energy-managementmore » approach is unique from, but often complementary to, conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Furthermore, this paper presents an overview of the EMP, the business model to deliver it, and preliminary demonstration findings from a pilot use of the EMP. Results from the pilot validated that contractors could deliver the EMP in 4–8 h per building per year and that energy savings of 3–5% are feasible through this approach.« less
Unlocking energy efficiency in small commercial buildings through mechanical contractors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granderson, Jessica; Hult, Erin; Fernandes, Samuel
Although buildings smaller than 4,645 m 2 account for nearly half of the energy used in U.S. commercial buildings, energy-efficiency programs to date have primarily focused on larger buildings. Stakeholder interviews conducted during a scoping study by Lawrence Berkeley National Laboratory (LBNL) indicated interest in energy efficiency from the small commercial building sector, provided solutions are simple and of low cost. To address this need, an energy management package (EMP) was developed to deliver energy management to small commercial buildings via HVAC contractors, because they already serve these clients and the transaction cost to market would be reduced. This energy-managementmore » approach is unique from, but often complementary to, conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Furthermore, this paper presents an overview of the EMP, the business model to deliver it, and preliminary demonstration findings from a pilot use of the EMP. Results from the pilot validated that contractors could deliver the EMP in 4–8 h per building per year and that energy savings of 3–5% are feasible through this approach.« less
The impact of preclinical irreproducibility on drug development.
Freedman, L P; Gibson, M C
2015-01-01
The development of novel therapeutics depends and builds upon the validity and reproducibility of previously published data and findings. Yet irreproducibility is pervasive in preclinical life science research and can be traced to cumulative errors or flaws in several areas, including reference materials, study design, laboratory protocols, and data collection and analysis. The expanded development and use of consensus-based standards and well-documented best practices is needed to both enhance reproducibility and drive therapeutic innovations. © 2014 ASCPT.
ETRMTR MECHANICAL SERVICES BUILDING, TRA653. CAMERA FACING NORTHWEST AS BUILDING ...
ETR-MTR MECHANICAL SERVICES BUILDING, TRA-653. CAMERA FACING NORTHWEST AS BUILDING WAS NEARLY COMPLETE. INL NEGATIVE NO. 57-3653. K. Mansfield, Photographer, 7/22/1957 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
A compilation of chase work characterizes this image, looking south, ...
A compilation of chase work characterizes this image, looking south, in the niche which slightly separates E Building form R Building, on the north side - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH
Energy 101: Energy Efficient Commercial Buildings
None
2018-06-06
Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.
One approach to architectural acoustics in education
NASA Astrophysics Data System (ADS)
Jaffe, J. Christopher
2003-04-01
In the fall of 1997, Dean Alan Balfour of the School of Architecture at the Rennselaer Polytechnic Institute asked me to introduce an undergraduate 14 credit certificate course entitled ''Sonics in Architecture.`` Subsequently, the program was expanded to include a Master's Degree in Building Science. This paper discusses the trials and tribulations of building a scientific program in a liberal arts school. In addition, the problem of acquiring the research funds needed to provide tuition assistance for graduate students in Architectural Acoustics is reviewed. Information on the curriculum developed for both the lecture and laboratory courses is provided. I will also share my concerns regarding the teaching methods currently prevalent in many schools of architecture today, and how building science professionals might assist in addressing these issues.
Datema, Tjeerd; Keita-Sow, Mah-Sere; Ndihokubwayo, Jean-Bosco; Isadore, Jocelyn; Oskam, Linda; Nkengasong, John; Lewis, Kim
2016-01-01
Background Functional national laboratory networks and systems are indispensable to the achievement of global health security targets according to the International Health Regulations. The lack of indicators to measure the functionality of national laboratory network has limited the efficiency of past and current interventions to enhance laboratory capacity in resource-limited-settings. Scorecard for laboratory networks We have developed a matrix for the assessment of national laboratory network functionality and progress thereof, with support from the African Society of Laboratory Medicine and the Association of Public Health Laboratories. The laboratory network (LABNET) scorecard was designed to: (1) Measure the status of nine overarching core capabilities of laboratory network required to achieve global health security targets, as recommended by the main normative standards; (2) Complement the World Health Organization joint external evaluation tool for the assessment of health system preparedness to International Health Regulations (2005) by providing detailed information on laboratory systems; and (3) Serve as a clear roadmap to guide the stepwise implementation of laboratory capability to prevent, detect and act upon infectious threats. Conclusions The application of the LABNET scorecard under the coordination of the African Society of Laboratory Medicine and the Association of Public Health Laboratories could contribute to the design, monitoring and evaluation of upcoming Global Health Security Agenda-supported laboratory capacity building programmes in sub Saharan-Africa and other resource-limited settings, and inform the development of national laboratory policies and strategic plans. Endorsement by the World Health Organization Regional Office for Africa is foreseen. PMID:28879141
Auto-DR and Pre-cooling of Buildings at Tri-City Corporate Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Rongxin; Xu, Peng; Kiliccote, Sila
2008-11-01
Over the several past years, Lawrence Berkeley National Laboratory (LBNL) has conducted field tests for different pre-cooling strategies in different commercial buildings within California. The test results indicated that pre-cooling strategies were effective in reducing electric demand in these buildings during peak periods. This project studied how to optimize pre-cooling strategies for eleven buildings in the Tri-City Corporate Center, San Bernardino, California with the assistance of a building energy simulation tool -- the Demand Response Quick Assessment Tool (DRQAT) developed by LBNL's Demand Response Research Center funded by the California Energy Commission's Public Interest Energy Research (PIER) Program. From themore » simulation results of these eleven buildings, optimal pre-cooling and temperature reset strategies were developed. The study shows that after refining and calibrating initial models with measured data, the accuracy of the models can be greatly improved and the models can be used to predict load reductions for automated demand response (Auto-DR) events. This study summarizes the optimization experience of the procedure to develop and calibrate building models in DRQAT. In order to confirm the actual effect of demand response strategies, the simulation results were compared to the field test data. The results indicated that the optimal demand response strategies worked well for all buildings in the Tri-City Corporate Center. This study also compares DRQAT with other building energy simulation tools (eQUEST and BEST). The comparison indicate that eQUEST and BEST underestimate the actual demand shed of the pre-cooling strategies due to a flaw in DOE2's simulation engine for treating wall thermal mass. DRQAT is a more accurate tool in predicting thermal mass effects of DR events.« less
Deans, Zandra C; Costa, Jose Luis; Cree, Ian; Dequeker, Els; Edsjö, Anders; Henderson, Shirley; Hummel, Michael; Ligtenberg, Marjolijn Jl; Loddo, Marco; Machado, Jose Carlos; Marchetti, Antonio; Marquis, Katherine; Mason, Joanne; Normanno, Nicola; Rouleau, Etienne; Schuuring, Ed; Snelson, Keeda-Marie; Thunnissen, Erik; Tops, Bastiaan; Williams, Gareth; van Krieken, Han; Hall, Jacqueline A
2017-01-01
The clinical demand for mutation detection within multiple genes from a single tumour sample requires molecular diagnostic laboratories to develop rapid, high-throughput, highly sensitive, accurate and parallel testing within tight budget constraints. To meet this demand, many laboratories employ next-generation sequencing (NGS) based on small amplicons. Building on existing publications and general guidance for the clinical use of NGS and learnings from germline testing, the following guidelines establish consensus standards for somatic diagnostic testing, specifically for identifying and reporting mutations in solid tumours. These guidelines cover the testing strategy, implementation of testing within clinical service, sample requirements, data analysis and reporting of results. In conjunction with appropriate staff training and international standards for laboratory testing, these consensus standards for the use of NGS in molecular pathology of solid tumours will assist laboratories in implementing NGS in clinical services.
14. REAR (EAST SIDE) OF BUILDING SHOWING RECEIVING COURT AND ...
14. REAR (EAST SIDE) OF BUILDING SHOWING RECEIVING COURT AND SOUTH SIDE OF FOOD PRESERVATION AND SANITATION LABORATORY, LOOKING WEST-NORTHWEST (Harms) - Dairy Industry Building, Iowa State University campus, Ames, Story County, IA
Building Cross-Country Networks for Laboratory Capacity and Improvement.
Schneidman, Miriam; Matu, Martin; Nkengasong, John; Githui, Willie; Kalyesubula-Kibuuka, Simeon; Silva, Kelly Araujo
2018-03-01
Laboratory networks are vital to well-functioning public health systems and disease control efforts. Cross-country laboratory networks play a critical role in supporting epidemiologic surveillance, accelerating disease outbreak response, and tracking drug resistance. The East Africa Public Health Laboratory Network was established to bolster diagnostic and disease surveillance capacity. The network supports the introduction of regional quality standards; facilitates the rollout and evaluation of new diagnostic tools; and serves as a platform for training, research, and knowledge sharing. Participating facilities benefitted from state-of-the art investments, capacity building, and mentorship; conducted multicountry research studies; and contributed to disease outbreak response. Copyright © 2017 Elsevier Inc. All rights reserved.
Energy efficiency in California laboratory-type facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, E.; Bell, G.; Sartor, D.
The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in themore » overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.« less
9. Credit JPL. Photographic copy of drawing, engineering drawing showing ...
9. Credit JPL. Photographic copy of drawing, engineering drawing showing structure of Test Stand 'A' (Building 4202/E-3) and its relationship to the Monitor Building or blockhouse (Building 4203/E-4) when a reinforced concrete machinery room was added to the west side of Test Stand 'A' in 1955. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Electrical Layout - Muroc, Test Stand & Refrigeration Equipment Room,' drawing no. E3/7-0, April 6, 1955. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
The methodology of choice Cam-Clay model parameters for loess subsoil
NASA Astrophysics Data System (ADS)
Nepelski, Krzysztof; Błazik-Borowa, Ewa
2018-01-01
The paper deals with the calibration method of FEM subsoil model described by the constitutive Cam-Clay model. The four-storey residential building and solid substrate are modelled. Identification of the substrate is made using research drilling, CPT static tests, DMT Marchetti dilatometer, and laboratory tests. Latter are performed on the intact soil specimens which are taken from the wide planning trench at the depth of foundation. The real building settlements was measured as the vertical displacement of benchmarks. These measurements were carried out periodically during the erection of the building and its operation. Initially, the Cam Clay model parameters were determined on the basis of the laboratory tests, and later, they were corrected by taking into consideration numerical analyses results (whole building and its parts) and real building settlements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 basemore » pairs per year, while still retaining its efficiency.« less
Facility and Laboratory Equipment | Energy Systems Integration Facility |
Energy Systems Integration Facility is its infrastructure. In addition to extensive fixed laboratory . Photo of researchers testing building loads and power networks in the Systems Performance Laboratory
2. COLD FLOW LABORATORY, VIEW TOWARDS NORTH. Glenn L. ...
2. COLD FLOW LABORATORY, VIEW TOWARDS NORTH. - Glenn L. Martin Company, Titan Missile Test Facilities, Cold Flow Laboratory Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
1. COLD FLOW LABORATORY, VIEW TOWARDS EAST. Glenn L. ...
1. COLD FLOW LABORATORY, VIEW TOWARDS EAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Cold Flow Laboratory Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
7. INTERIOR VIEW, SHOWING LASER LABORATORY. WrightPatterson Air Force ...
7. INTERIOR VIEW, SHOWING LASER LABORATORY. - Wright-Patterson Air Force Base, Area B, Building 71A, Propulsion Research Laboratory, Seventh Street between D & G Streets, Dayton, Montgomery County, OH
City Reach Code Technical Support Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athalye, Rahul A.; Chen, Yan; Zhang, Jian
This report describes and analyzes a set of energy efficiency measures that will save 20% energy over ASHRAE Standard 90.1-2013. The measures will be used to formulate a Reach Code for cities aiming to go beyond national model energy codes. A coalition of U.S. cities together with other stakeholders wanted to facilitate the development of voluntary guidelines and standards that can be implemented in stages at the city level to improve building energy efficiency. The coalition's efforts are being supported by the U.S. Department of Energy via Pacific Northwest National Laboratory (PNNL) and in collaboration with the New Buildings Institute.
21. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHWEST. ...
21. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHWEST. BY THE LATE 1960S, THE SITE HAD UNDERGONE TWO MAJOR EXPANSIONS. THE FIRST EXPANSION IN 1956-57, WHEN THE TRIGGER DESIGN CHANGED AND NECESSITATED THE ADDITION OF SEVEN NEW BUILDINGS. THE SECOND LARGE EXPANSION TOOK PLACE FROM 1964-65, WHEN ROCKY FLATS BECAME THE SOLE PRODUCER OF TRIGGERS. DURING THIS EXPANSION, ELEVEN BUILDINGS WERE ADDED, PRIMARILY IN RESEARCH AND DEVELOPMENT LABORATORIES, GUARD HOUSES, AND WASTE WATER TREATMENT (7/1/69). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO
Preserving Envelope Efficiency in Performance Based Code Compliance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, Brian A.; Sullivan, Greg P.; Rosenberg, Michael I.
2015-06-20
The City of Seattle 2012 Energy Code (Seattle 2014), one of the most progressive in the country, is under revision for its 2015 edition. Additionally, city personnel participate in the development of the next generation of the Washington State Energy Code and the International Energy Code. Seattle has pledged carbon neutrality by 2050 including buildings, transportation and other sectors. The United States Department of Energy (DOE), through Pacific Northwest National Laboratory (PNNL) provided technical assistance to Seattle in order to understand the implications of one potential direction for its code development, limiting trade-offs of long-lived building envelope components less stringentmore » than the prescriptive code envelope requirements by using better-than-code but shorter-lived lighting and heating, ventilation, and air-conditioning (HVAC) components through the total building performance modeled energy compliance path. Weaker building envelopes can permanently limit building energy performance even as lighting and HVAC components are upgraded over time, because retrofitting the envelope is less likely and more expensive. Weaker building envelopes may also increase the required size, cost and complexity of HVAC systems and may adversely affect occupant comfort. This report presents the results of this technical assistance. The use of modeled energy code compliance to trade-off envelope components with shorter-lived building components is not unique to Seattle and the lessons and possible solutions described in this report have implications for other jurisdictions and energy codes.« less
This is the fourth, also the last, report of the report series entitled “Laboratory Study of Polychlorinated Biphenyl (PCB) Contamination and Mitigation in Buildings.” This report evaluates the performance of an on-site PCB destruction method, known as the AMTS method...
1. View of EPA Farm Lab Building 1506, facing south ...
1. View of EPA Farm Lab Building 15-06, facing south - Nevada Test Site, Environmental Protection Agency Farm, Laboratory Building, Area 15, Yucca Flat, 10-2 Road near Circle Road, Mercury, Nye County, NV
1. WEST AND SOUTH SIDES OF BUILDING 313. VIEW TO ...
1. WEST AND SOUTH SIDES OF BUILDING 313. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Laboratory Building, 510 feet South of December Seventh Avenue; 175 feet East of D Street, Commerce City, Adams County, CO
2. SOUTH AND WEST SIDES OF BUILDING 313. VIEW TO ...
2. SOUTH AND WEST SIDES OF BUILDING 313. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Laboratory Building, 510 feet South of December Seventh Avenue; 175 feet East of D Street, Commerce City, Adams County, CO
BEopt - Building Energy Optimization BEopt NREL - National Renewable Energy Laboratory Primary Energy Optimization) software provides capabilities to evaluate residential building designs and identify sequential search optimization technique used by BEopt: Finds minimum-cost building designs at different
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akyol, Bora A.; Allwardt, Craig H.; Beech, Zachary W.
VOLTTRON is a flexible, reliable, and scalable platform for distributed control and sensing. VOLTTRON serves in four primary roles: •A reference platform for researchers to quickly develop control applications for transactive energy. •A reference platform with flexible data store support for energy analytics applications either in academia or in commercial enterprise. •A platform from which commercial enterprise can develop products without license issues and easily integrate into their product line. •An accelerator to drive industry adoption of transactive energy and advanced building energy analytics. Pacific Northwest National Laboratory, with funding from the U.S. Department of Energy’s Building Technologies Office, developedmore » and maintains VOLTTRON as an open-source community project. VOLTTRON source code includes agent execution software; agents that perform critical services that enable and enhance VOLTTRON functionality; and numerous agents that utilize the platform to perform a specific function (fault detection, demand response, etc.). The platform supports energy, operational, and financial transactions between networked entities (equipment, organizations, buildings, grid, etc.) and enhance the control infrastructure of existing buildings through the use of open-source device communication, control protocols, and integrated analytics.« less
Lucero, Boris; Saracini, Chiara; Muñoz-Quezada, María Teresa; Mendez-Bustos, Pablo; Mora, Marco
2018-06-14
The Laboratory of the Neuropsychology and Cognitive Neurosciences Research Center (CINPSI Neurocog), located in the "Technological Park" building of the Catholic University of Maule (Universidad Católica del Maule, UCM) campus in Talca, Chile, has been established as "Psychology Lab" recently in July, 2016. Our lines of work include basic and applied research. Among the basic research, we study executive functions, decision-making, and spatial cognition. In the applied field, we have studied neuropsychological and neurobehavioral effects of pesticides exposure, among other interests. One of our aims is to develop collaboration both national and internationally. It is important to mention that to date there are only few psychology laboratories and research centers in Chile involved with the fields of neuropsychology and neurosciences. Thus, this scientific effort could be a groundbreaking initiative to develop specific knowledge in this area locally and interculturally through its international collaborations.
Ketchum, S M
1991-01-01
The high-pressure work environment of the clinical laboratory presents significant challenges for managers. Often thrust into supervisory roles without formal management training, laboratory managers must find ways to delegate tasks, mediate conflict, minimize office politics, and build effective teams out of employees who may be quite diverse in their experience levels, motivation levels, and cultural backgrounds. This article explores the concept of situational leadership, which was developed by Ken Blanchard and Paul Hersey, and its applicability within the clinical laboratory. This practical paradigm involves matching one of four distinct management styles to the four development levels of employees. Each leadership style is explained, along with guidelines for giving performance feedback to employees, so that managers can evaluate their own supervisory styles. Finally, step-by-step recommendations for coping with the four management roles of delegator, referee, influencer, and team builder are presented.
Environmental Sustainability and Mold Hygiene in Buildings
Ng, Tsz Wai; Lai, Ka Man
2018-01-01
Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management. PMID:29617339
Environmental Sustainability and Mold Hygiene in Buildings.
Wu, Haoxiang; Ng, Tsz Wai; Wong, Jonathan Wc; Lai, Ka Man
2018-04-04
Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management.
The Building Blocks of Materials: Gathering Knowledge at the Molecular Level
NASA Technical Reports Server (NTRS)
2003-01-01
Two start-up positions were created within SD46 to pursue developments in the rapidly expanding areas of biomineralization and nano-technology. As envisioned by Dr. Sandor Lehoczy, the new laboratories to be developed must have the capacity to investigate not only processes associated with the self-assembly of molecules but also the examination of self-assembled structures. For these purposes, laboratories capable of performing the intended function, particularly light scattering spectroscopy and atomic force microscopy were created. What follows then are recent advances arising from the development of these new laboratories. With the implementation of the Atomic Force Microscopy Facility, examples of investigations that determine a correlation between the molecular structure of materials and their macroscopic physical properties are provided. In addition, examples of investigations with particular emphasis on the physical properties of protein crystals, at the molecular level, and subsequent macroscopic characteristics are as provided. Finally, progress in fabrication of technology at the nano-scale levels at the developmental stage is also presented.
1. BUILDING 8814, NORTH FRONT AND WEST SIDE. BUILDING 8832, ...
1. BUILDING 8814, NORTH FRONT AND WEST SIDE. BUILDING 8832, TEST STAND 1-E, IN LEFT DISTANCE. Looking southeast. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunker 1-D-3, Test Area 1-125, northwest end of Altair Boulevard, Boron, Kern County, CA
ETR HEAT EXCHANGER BUILDING, TRA644. DETAIL OF SOUTH SIDE BUILDING ...
ETR HEAT EXCHANGER BUILDING, TRA-644. DETAIL OF SOUTH SIDE BUILDING INSET. DEMINERALIZER WING AT RIGHT. CAMERA FACING NORTH. INL NEGATIVE NO. HD46-36-2. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayeski, N.; Armstrong, Peter; Alvira, M.
2011-11-30
KGS Buildings LLC (KGS) and Pacific Northwest National Laboratory (PNNL) have developed a simplified control algorithm and prototype low-lift chiller controller suitable for model-predictive control in a demonstration project of low-lift cooling. Low-lift cooling is a highly efficient cooling strategy conceived to enable low or net-zero energy buildings. A low-lift cooling system consists of a high efficiency low-lift chiller, radiant cooling, thermal storage, and model-predictive control to pre-cool thermal storage overnight on an optimal cooling rate trajectory. We call the properly integrated and controlled combination of these elements a low-lift cooling system (LLCS). This document is the final report formore » that project.« less
Building a Better Grid, in Partnership with the OMNETRIC Group and Siemens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waight, Jim; Grover, Shailendra; Wiedetz, Clark
In collaboration with Siemens and the National Renewable Energy Laboratory (NREL), OMNETRIC Group developed a distributed control hierarchy—based on an open field message bus (OpenFMB) framework—that allows control decisions to be made at the edge of the grid. The technology was validated and demonstrated at NREL’s Energy Systems Integration Facility.
Improving and Assessing Student Hands-On Laboratory Skills through Digital Badging
ERIC Educational Resources Information Center
Hensiek, Sarah; DeKorver, Brittland K.; Harwood, Cynthia J.; Fish, Jason; O'Shea, Kevin; Towns, Marcy
2016-01-01
Building on previous success with a digital pipet badge, an evidence-centered design approach was used to develop new digital badges for measuring the volume of liquids with a buret and making a solution in a volumetric flask. These badges were implemented and assessed in two general chemistry courses. To earn the badges, students created videos…
The Exposure Related Dose Estimating Model (ERDEM) is a PBPK/PD modeling system that was developed by EPA's National Exposure Research Laboratory (NERL). The ERDEM framework provides the flexibility either to use existing models and to build new PBPK and PBPK/PD models to address...
NREL Research Team Wins R&D 100 Award | News | NREL
performance PV modules for large-scale solar power plants, commercial and residential buildings, and off-grid Laboratory (NREL) and First Solar have been selected to receive a 2003 R&D 100 award from R&D Magazine for developing a new process for depositing semiconductor layers onto photovoltaic (PV) modules
ERIC Educational Resources Information Center
Zumwalt, Ann C.; Lufler, Rebecca S.; Monteiro, Joseph; Shaffer, Kitt
2010-01-01
Active learning exercises were developed to allow advanced medical students to revisit and review anatomy in a clinically meaningful context. In our curriculum, students learn anatomy two to three years before they participate in the radiology clerkship. These educational exercises are designed to review anatomy content while highlighting its…
Incorporating a Watershed-Based Summary Field Exercise into an Introductory Hydrogeology Course
ERIC Educational Resources Information Center
Fryar, Alan E.; Thompson, Karen E.; Hendricks, Susan P.; White, David S.
2010-01-01
We have developed and implemented a summary field exercise for an introductory hydrogeology course without a laboratory section. This exercise builds on lectures and problem sets that use pre-existing field data. During one day in April, students measure hydraulic heads, stream and spring flow, and stream-bed seepage within the rural watershed of…
Cavallaro, Kathleen F.; Sandhu, Hardeep S.; Hyde, Terri B.; Johnson, Barbara W.; Fischer, Marc; Mayer, Leonard W.; Clark, Thomas A.; Pallansch, Mark A.; Yin, Zundong; Zuo, Shuyan; Hadler, Stephen C.; Diorditsa, Serguey; Hasan, A.S.M. Mainul; Bose, Anindya S.; Dietz, Vance
2016-01-01
Background Surveillance for acute flaccid paralysis with laboratory confirmation has been a key strategy in the global polio eradication initiative, and the laboratory platform established for polio testing has been expanded in many countries to include surveillance for cases of febrile rash illness to identify measles and rubella cases. Vaccine-preventable disease surveillance is essential to detect outbreaks, define disease burden, guide vaccination strategies and assess immunization impact. Vaccines now exist to prevent Japanese encephalitis (JE) and some etiologies of bacterial meningitis. Methods We evaluated the feasibility of expanding polio–measles surveillance and laboratory networks to detect bacterial meningitis and JE, using surveillance for acute meningitis-encephalitis syndrome in Bangladesh and China and acute encephalitis syndrome in India. We developed nine syndromic surveillance performance indicators based on international surveillance guidelines and calculated scores using supervisory visit reports, annual reports, and case-based surveillance data. Results Scores, variable by country and targeted disease, were highest for the presence of national guidelines, sustainability, training, availability of JE laboratory resources, and effectiveness of using polio–measles networks for JE surveillance. Scores for effectiveness of building on polio–measles networks for bacterial meningitis surveillance and specimen referral were the lowest, because of differences in specimens and techniques. Conclusions Polio–measles surveillance and laboratory networks provided useful infrastructure for establishing syndromic surveillance and building capacity for JE diagnosis, but were less applicable for bacterial meningitis. Laboratory-supported surveillance for vaccine-preventable bacterial diseases will require substantial technical and financial support to enhance local diagnostic capacity. PMID:25597940
A generalized predictive model for direct gain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Givoni, B.
In the correlational model for direct gain developed by the Los Alamos National Laboratory, a list of constants applicable to different types of buildings or passive solar systems was specified separately for each type. In its original form, the model was applicable only to buildings similar in their heat capacity, type of glazing, or night insulation to the types specified by the model. While maintaining the general form of the predictive equations, the new model, the predictive model for direct gain (PMDG), replaces the constants with functions dependent upon the thermal properties of the building, or the components of themore » solar system, or both. By this transformation, the LANL model for direct gain becomes a generalized one. The new model predicts the performance of buildings heated by direct gain with any heat capacity, glazing, and night insulation as functions of their thermophysical properties and climatic conditions.« less
Particle atlas of World Trade Center dust
Lowers, Heather; Meeker, Gregory P.
2005-01-01
The United States Environmental Protection Agency (EPA) has begun a reassessment of the presence of World Trade Center (WTC) dust in residences, public buildings, and office spaces in New York City, New York. Background dust samples collected from residences, public buildings, and office spaces will be analyzed by multiple laboratories for the presence of WTC dust. Other laboratories are currently studying WTC dust for other purposes, such as health effects studies. To assist in inter-laboratory consistency for identification of WTC dust components, this particle atlas of phases in WTC dust has been compiled.
Managing Science: Management for R&D Laboratories
NASA Astrophysics Data System (ADS)
Gelès, Claude; Lindecker, Gilles; Month, Mel; Roche, Christian
1999-10-01
A unique "how-to" manual for the management of scientific laboratories This book presents a complete set of tools for the management of research and development laboratories and projects. With an emphasis on knowledge rather than profit as a measure of output and performance, the authors apply standard management principles and techniques to the needs of high-flux, open-ended, separately funded science and technology enterprises. They also propose the novel idea that failure, and incipient failure, is an important measure of an organization's potential. From the management of complex, round-the-clock, high-tech operations to strategies for long-term planning, Managing Science: Management for R&D Laboratories discusses how to build projects with the proper research and development, obtain and account for funding, and deal with rapidly changing technologies, facilities, and trends. The entire second part of the book is devoted to personnel issues and the impact of workplace behavior on the various functions of a knowledge-based organization. Drawing on four decades of involvement with the management of scientific laboratories, the authors thoroughly illustrate their philosophy with real-world examples from the physics field and provide tables and charts. Managers of scientific laboratories as well as scientists and engineers expecting to move into management will find Managing Science: Management for R&D Laboratories an invaluable practical guide.
Capacity Building in the IAI Collaborative Research Network Program- Experience from CRN03
NASA Astrophysics Data System (ADS)
Luckman, B. H.
2007-05-01
In addition to their scientific agendas, IAI CRNs have the explicit goal of capacity building in Global Change science. CRN03 examined climate variability in the Americas with particular emphasis on tree-rings, involving collaboration between 3 US, 2 Canadian plus Argentinean and Chilean laboratories. New pioneer laboratories were also established in Mexico, Bolivia and Peru. With limited funding we believed that capacity building is best achieved by involving students and junior researchers in project work directly (about 100 in total) but we also undertook educational activities that augment this role. The most visible was the initiation of dendroecological fieldweeks in Latin America. These brought together 20-30 international students and junior researchers from many disciplines to work in small research teams led by experienced scientists. Over a 7-10 day period projects go from conception via field sampling and measurement to final presentations (and sometimes publication). Major fieldweeks (the first in Latin America) were organized in Argentina (2000), Mexico (2001) Chile (2003) and Brazil (2005) with smaller groups in Chile (2000), Bolivia (2001) and Canada (2002). Over 100 students attended (mainly funded by the CRN) from11 Latin American and Caribbean countries and instructors from 6 countries. These field weeks develop important national and international contacts for participants and also provided promotional material (including a 20 minute bilingual video) for further recruiting. Several students were also supported for travel to short courses in the USA or elsewhere. Given the distances involved, most research collaborations were bilateral between individuals or institutions, the strongest ones generally involving a senior laboratory or scientists with junior partners elsewhere. This has particularly enhanced international collaboration for the established Latin American laboratories by attracting researchers from regions not previously involved in tree-ring research. In all cases there has also been an increase in "within-country" collaboration for individual laboratories as their expertise has been recognized and they have provided training, dating and consultations for other projects.
1965-01-01
Workers at the Marshall Space Flight Center's (MSFC) Dynamic Test Stand install S-IB-200D, a dynamic test version of the Saturn IB launch vehicle's first stage, on January 11, 1965. MSFC Test Laboratory persornel assembled a complete Saturn IB to test the launch vehicle's structural soundness. Developed by the MSFC as an interim vehicle in MSFC's "building block" approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the manned lunar missions.
2017-12-08
Workers sign the banner marking the successful delivery of a liquid oxygen test tank, called Tardis, in the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
Magnuson, Matthew L; Satzger, R Duane; Alcaraz, Armando; Brewer, Jason; Fetterolf, Dean; Harper, Martin; Hrynchuk, Ronald; McNally, Mary F; Montgomery, Madeline; Nottingham, Eric; Peterson, James; Rickenbach, Michael; Seidel, Jimmy L; Wolnik, Karen
2012-05-01
Since the early 1990s, the FBI Laboratory has sponsored Scientific Working Groups to improve discipline practices and build consensus among the forensic community. The Scientific Working Group on the Forensic Analysis of Chemical, Biological, Radiological and Nuclear Terrorism developed guidance, contained in this document, on issues forensic laboratories encounter when accepting and analyzing unknown samples associated with chemical terrorism, including laboratory capabilities and analytical testing plans. In the context of forensic analysis of chemical terrorism, this guidance defines an unknown sample and addresses what constitutes definitive and tentative identification. Laboratory safety, reporting issues, and postreporting considerations are also discussed. Utilization of these guidelines, as part of planning for forensic analysis related to a chemical terrorism incident, may help avoid unfortunate consequences not only to the public but also to the laboratory personnel. 2011 American Academy of Forensic Sciences. Published 2011. This article is a U.S. Government work and is in the public domain in the U.S.A.
Cookstove Laboratory Research - Fiscal Year 2016 Report ...
This report provides an overview of the work conducted by the EPA cookstove laboratory research team in Fiscal Year 2016. The report describes research and activities including (1) ISO standards development, (2) capacity building for international testing and knowledge centers, (3) laboratory assessments of cookstove systems, (4) journal publications, and (5) cookstove events. The U.S. Environmental Protection Agency’s (EPA’s) cookstove laboratory research program was first developed to assist the EPA-led Partnership for Clean Indoor Air and is now part of the U.S. Government’s commitment to the Global Alliance for Clean Cookstoves (the Alliance). Goals of the program are to: (1) support the development of testing protocols and standards for cookstoves through ISO (International Organization for Standardization) TC (Technical Committee) 285: Clean Cookstoves and Clean Cooking Solutions, (2) support the development of international Regional Testing and Knowledge Centers (many sponsored by the Alliance) for scientifically evaluating and certifying cookstoves to international standards, and (3) provide an independent source of data to Alliance partners. This work supports EPA’s mission to protect human health and the environment. Household air pollution, mainly from solid-fuel cookstoves in the developing world, is estimated to cause approximately 4 million premature deaths per year, and emissions of black carbon and other pollutants from cookstoves aff
2014-03-10
ELEASA WILSON, KRAIG TERSIGNI, JUSTIN CARTLEDGE MISSION OPERATIONS LABORATORY - LABORATORY TRAINING COMPLEX (LTC), BUILDING 4663, EXPRESS RACK TRAINING, EMERALD BRICK (POWER DISTRIBUTION FOR EXPRESS RACK LAPTOP).
7. View of interior, EPA Farm Lab Building 1506 milk ...
7. View of interior, EPA Farm Lab Building 15-06 milk room, facing west - Nevada Test Site, Environmental Protection Agency Farm, Laboratory Building, Area 15, Yucca Flat, 10-2 Road near Circle Road, Mercury, Nye County, NV
6. View of interior, EPA Farm Lab Building 1506 milking ...
6. View of interior, EPA Farm Lab Building 15-06 milking area, facing northwest - Nevada Test Site, Environmental Protection Agency Farm, Laboratory Building, Area 15, Yucca Flat, 10-2 Road near Circle Road, Mercury, Nye County, NV
2. EXTERIOR VIEW LOOKING SOUTHEAST AT ELECTRIC FURNACE BUILDING AND ...
2. EXTERIOR VIEW LOOKING SOUTHEAST AT ELECTRIC FURNACE BUILDING AND ELECTRIC FURNACE OFFICE & CHEMICAL LABORATORY BUILDING. INGOT MOLDS IN RIGHT FOREGROUND. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Looking southwest, this photograph demonstrates the northeast corner of E ...
Looking southwest, this photograph demonstrates the northeast corner of E Building, with a glimpse of part of the east entrance - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH
An image, looking east into Room 112A, filled with technical ...
An image, looking east into Room 112A, filled with technical equipment pertinent to the building's recent use - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH
Conceptual design of new metrology laboratories for the National Physical Laboratory, United Kingdom
NASA Astrophysics Data System (ADS)
Manning, Christopher J.
1994-10-01
The National Physical Laboratory is planning to house the Division of Mechanical and Optical Metrology and the Division of Material Metrology in a new purpose built laboratory building on its site at Teddington, London, England. The scientific staff were involved in identifying and agreeing the vibration performance requirements of the conceptual design. This was complemented by an extensive surgery of vibration levels within the existing facilities and ambient vibration studies at the proposed site. At one end of the site there is significant vibration input from road traffic. Some of the test equipment is also in itself a source of vibration input. These factors, together with normal occupancy inputs, footfalls and door slams, and a highly serviced building led to vibration being dominant in influencing the structural form. The resulting structural concept comprises three separate structural elements for vibration and geotechnical reasons. The laboratories most sensitive to disturbance by vibration are located at the end of the site farthest from local roads on a massive ground bearing slab. Less sensitive laboratories and those containing vibration sources are located on a massive slab in deep, piled foundations. A common central plant area is located alongside on its own massive slab. Medium sensitivity laboratories and offices are located at first floor level on a reinforced concrete suspended floor of maximum stiffness per unit mass. The whole design has been such as to permit upgrading of areas, eg office to laboratory; laboratory to `high sensitivity' laboratory, to cater for changes in future use of the building.
Stals, M; Verhoeven, S; Bruggeman, M; Pellens, V; Schroeyers, W; Schreurs, S
2014-01-01
The Euratom BSS requires that in the near future (2015) the building materials for application in dwellings or buildings such as offices or workshops are screened for NORM nuclides. The screening tool is the activity concentration index (ACI). Therefore it is expected that a large number of building materials will be screened for NORM and thus require ACI determination. Nowadays, the proposed standard for determination of building material ACI is a laboratory analyses technique with high purity germanium spectrometry and 21 days equilibrium delay. In this paper, the B-NORM method for determination of building material ACI is assessed as a faster method that can be performed on-site, alternative to the aforementioned standard method. The B-NORM method utilizes a LaBr3(Ce) scintillation probe to obtain the spectral data. Commercially available software was applied to comprehensively take into account the factors determining the counting efficiency. The ACI was determined by interpreting the gamma spectrum from (226)Ra and its progeny; (232)Th progeny and (40)K. In order to assess the accuracy of the B-NORM method, a large selection of samples was analyzed by a certified laboratory and the results were compared with the B-NORM results. The results obtained with the B-NORM method were in good correlation with the results obtained by the certified laboratory, indicating that the B-NORM method is an appropriate screening method to assess building material ACI. The B-NORM method was applied to analyze more than 120 building materials on the Belgian market. No building materials that exceed the proposed reference level of 1 mSv/year were encountered. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Philipose, K.; Shenton, B.
2011-04-01
The Containment Buildings of CANDU Nuclear Generating Stations were designed to house nuclear reactors and process equipment and also to provide confinement of releases from a potential nuclear accident such as a Loss Of Coolant Accident (LOCA). To meet this design requirement, a post-tensioning system was designed to induce compressive stresses in the structure to counteract the internal design pressure. The CANDU reactor building at Gentilly-1 (G-1), Quebec, Canada (250 MWe) was built in the early 1970s and is currently in a decommissioned state. The structure at present is under surveillance and monitoring. In the year 2000, a field investigation was conducted as part of a condition assessment and corrosion was detected in some of the grouted post-tension cable strands. However, no further work was done at that time to determine the cause, nature, impact and extent of the corrosion. An investigation of the Gentilly-1 containment building is currently underway to assess the condition of grouted post-tensioning cables and reinforced concrete. At two selected locations, concrete and steel reinforcements were removed from the containment building wall to expose horizontal cables. Individual cable strands and reinforcement bars were instrumented and measurements were taken in-situ before removing them for forensic examination and destructive testing to determine the impact of ageing and corrosion. Concrete samples were also removed and tested in a laboratory. The purpose of the field investigation and laboratory testing, using this structure as a test bed, was also to collect material ageing data and to develop potential Nondestructive Examination (NDE) methods to monitor Containment Building Integrity. The paper describes the field work conducted and the test results obtained for concrete, reinforcement and post-tensioning cables.
Development of a Dielectric-Loaded Accelerator Test Facility Based on an X-Band Magnicon Amplifier
NASA Astrophysics Data System (ADS)
Gold, S. H.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.; Tantawi, S. G.; Nantista, C. D.; Hu, Y.; Du, X.; Tang, C.; Lin, Y.; Bruce, R. W.; Bruce, R. L.; Fliflet, A. W.; Lewis, D.
2006-01-01
The Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), are developing a dielectric-loaded accelerator (DLA) test facility powered by the 11.424-GHz magnicon amplifier that was developed jointly by NRL and Omega-P, Inc. Thus far, DLA structures developed by ANL have been tested at the NRL Magnicon Facility without injected electrons, including tests of alumina and magnesium calcium titanate structures at gradients up to ˜8 MV/m. The next step is to inject electrons in order to build a compact DLA test accelerator. The Accelerator Laboratory of Tsinghua University in Beijing, China has developed a 5-MeV electron injector for the accelerator, and SLAC is developing a means to combine the two magnicon output arms, and to drive the injector and an accelerator section with separate control of the power ratio and relative phase. Also, RWBruce Associates, working with NRL, is developing a means to join ceramic tubes to produce long accelerating sections using a microwave brazing process. The installation and commissioning of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year.
NREL Improves Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-01-01
This technical highlight describes NREL research to develop Building Energy Simulation Test for Existing Homes (BESTEST-EX) to increase the quality and accuracy of energy analysis tools for the building retrofit market. Researchers at the National Renewable Energy Laboratory (NREL) have developed a new test procedure to increase the quality and accuracy of energy analysis tools for the building retrofit market. The Building Energy Simulation Test for Existing Homes (BESTEST-EX) is a test procedure that enables software developers to evaluate the performance of their audit tools in modeling energy use and savings in existing homes when utility bills are available formore » model calibration. Similar to NREL's previous energy analysis tests, such as HERS BESTEST and other BESTEST suites included in ANSI/ASHRAE Standard 140, BESTEST-EX compares software simulation findings to reference results generated with state-of-the-art simulation tools such as EnergyPlus, SUNREL, and DOE-2.1E. The BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX includes building physics and utility bill calibration test cases. The diagram illustrates the utility bill calibration test cases. Participants are given input ranges and synthetic utility bills. Software tools use the utility bills to calibrate key model inputs and predict energy savings for the retrofit cases. Participant energy savings predictions using calibrated models are compared to NREL predictions using state-of-the-art building energy simulation programs.« less
Energy Savings Analysis of the Proposed NYStretch-Energy Code 2018
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bing; Zhang, Jian; Chen, Yan
This study was conducted by the Pacific Northwest National Laboratory (PNNL) in support of the stretch energy code development led by the New York State Energy Research and Development Authority (NYSERDA). In 2017 NYSERDA developed its 2016 Stretch Code Supplement to the 2016 New York State Energy Conservation Construction Code (hereinafter referred to as “NYStretch-Energy”). NYStretch-Energy is intended as a model energy code for statewide voluntary adoption that anticipates other code advancements culminating in the goal of a statewide Net Zero Energy Code by 2028. Since then, NYSERDA continues to develop the NYStretch-Energy Code 2018 edition. To support the effort,more » PNNL conducted energy simulation analysis to quantify the energy savings of proposed commercial provisions of the NYStretch-Energy Code (2018) in New York. The focus of this project is the 20% improvement over existing commercial model energy codes. A key requirement of the proposed stretch code is that it be ‘adoptable’ as an energy code, meaning that it must align with current code scope and limitations, and primarily impact building components that are currently regulated by local building departments. It is largely limited to prescriptive measures, which are what most building departments and design projects are most familiar with. This report describes a set of energy-efficiency measures (EEMs) that demonstrate 20% energy savings over ANSI/ASHRAE/IES Standard 90.1-2013 (ASHRAE 2013) across a broad range of commercial building types and all three climate zones in New York. In collaboration with New Building Institute, the EEMs were developed from national model codes and standards, high-performance building codes and standards, regional energy codes, and measures being proposed as part of the on-going code development process. PNNL analyzed these measures using whole building energy models for selected prototype commercial buildings and multifamily buildings representing buildings in New York. Section 2 of this report describes the analysis methodology, including the building types and construction area weights update for this analysis, the baseline, and the method to conduct the energy saving analysis. Section 3 provides detailed specifications of the EEMs and bundles. Section 4 summarizes the results of individual EEMs and EEM bundles by building type, energy end-use and climate zone. Appendix A documents detailed descriptions of the selected prototype buildings. Appendix B provides energy end-use breakdown results by building type for both the baseline code and stretch code in all climate zones.« less
GeoBrain Computational Cyber-laboratory for Earth Science Studies
NASA Astrophysics Data System (ADS)
Deng, M.; di, L.
2009-12-01
Computational approaches (e.g., computer-based data visualization, analysis and modeling) are critical for conducting increasingly data-intensive Earth science (ES) studies to understand functions and changes of the Earth system. However, currently Earth scientists, educators, and students have met two major barriers that prevent them from being effectively using computational approaches in their learning, research and application activities. The two barriers are: 1) difficulties in finding, obtaining, and using multi-source ES data; and 2) lack of analytic functions and computing resources (e.g., analysis software, computing models, and high performance computing systems) to analyze the data. Taking advantages of recent advances in cyberinfrastructure, Web service, and geospatial interoperability technologies, GeoBrain, a project funded by NASA, has developed a prototype computational cyber-laboratory to effectively remove the two barriers. The cyber-laboratory makes ES data and computational resources at large organizations in distributed locations available to and easily usable by the Earth science community through 1) enabling seamless discovery, access and retrieval of distributed data, 2) federating and enhancing data discovery with a catalogue federation service and a semantically-augmented catalogue service, 3) customizing data access and retrieval at user request with interoperable, personalized, and on-demand data access and services, 4) automating or semi-automating multi-source geospatial data integration, 5) developing a large number of analytic functions as value-added, interoperable, and dynamically chainable geospatial Web services and deploying them in high-performance computing facilities, 6) enabling the online geospatial process modeling and execution, and 7) building a user-friendly extensible web portal for users to access the cyber-laboratory resources. Users can interactively discover the needed data and perform on-demand data analysis and modeling through the web portal. The GeoBrain cyber-laboratory provides solutions to meet common needs of ES research and education, such as, distributed data access and analysis services, easy access to and use of ES data, and enhanced geoprocessing and geospatial modeling capability. It greatly facilitates ES research, education, and applications. The development of the cyber-laboratory provides insights, lessons-learned, and technology readiness to build more capable computing infrastructure for ES studies, which can meet wide-range needs of current and future generations of scientists, researchers, educators, and students for their formal or informal educational training, research projects, career development, and lifelong learning.
DEEP: Database of Energy Efficiency Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Tianzhen; Piette, Mary; Lee, Sang Hoon
A database of energy efficiency performance (DEEP) is a presimulated database to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 10 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER [sic] prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones.more » DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air conditioning, plug loads, and domestic hot war. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center (NERSC) of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of the CEC PIER project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users' decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct costly building energy audit.« less
2007-09-01
febrile illnesses, such as dengue fever , and through this project provided a field laboratory with training and equipment to conduct advanced...program Hospital and laboratory-based surveillance for hemorrhagic fever viruses in Ukraine Regional surveillance for influenza in the Middle East...build infectious disease surveillance capacity worldwide. Additionally, USAID supports CDC and the World Health Organization’s Regional Office for
131. ARAII Administration building (ARA613) floor plans for first and ...
131. ARA-II Administration building (ARA-613) floor plans for first and second floors. Includes roof plan. Shows use of rooms as offices, laboratory, conference room. F.C. Torkelson Company 842-area/SL-1-613-A-1. Date: October 1958. Ineel index code no. 070-0613-00-851-150718. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
ETR COMPLEX. CAMERA FACING SOUTH. FROM BOTTOM OF VIEW TO ...
ETR COMPLEX. CAMERA FACING SOUTH. FROM BOTTOM OF VIEW TO TOP: MTR, MTR SERVICE BUILDING, ETR CRITICAL FACILITY, ETR CONTROL BUILDING (ATTACHED TO ETR), ETR BUILDING (HIGH-BAY), COMPRESSOR BUILDING (ATTACHED AT LEFT OF ETR), HEAT EXCHANGER BUILDING (JUST BEYOND COMPRESSOR BUILDING), COOLING TOWER PUMP HOUSE, COOLING TOWER. OTHER BUILDINGS ARE CONTRACTORS' CONSTRUCTION BUILDINGS. INL NEGATIVE NO. 56-4105. Unknown Photographer, ca. 1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
COMPRESSOR BUILDING, TRA626. ELEVATIONS. WINDOWS. WALL SECTIONS. PUMICE BLOCK BUILDING ...
COMPRESSOR BUILDING, TRA-626. ELEVATIONS. WINDOWS. WALL SECTIONS. PUMICE BLOCK BUILDING HOUSED COMPRESSORS FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENTS. MTR-626-IDO-2S, 3/1952. INL INDEX NO. 531-0626-00-396-110535, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
This image, looking due south shows the central part of ...
This image, looking due south shows the central part of the north wing of the building, a 2 story facade. In the foreground are several utility chases which span this elevation of the building - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH
41. ARAIII Prototype assembly and evaluation building ARA630. West end ...
41. ARA-III Prototype assembly and evaluation building ARA-630. West end and south side of building. Camera facing northeast. Ineel photo no. 3-22. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
LOFT. "Exploded view" of loft containment building (TAN650), including control ...
LOFT. "Exploded view" of loft containment building (TAN-650), including control building (TAN-630). EG&G. February 1979. INEEL index code no. 036-010-65-220-209565 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Looking west, this interior photograph, taken in the second floor ...
Looking west, this interior photograph, taken in the second floor of E Building, demonstrates one of the typical corridors of the structure - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, B.K.; Hughes, K.R.; Danko, S.L.
1994-07-01
This report was prepared for the US Department of Energy (DOE) Office of Codes and Standards by the Pacific Northwest Laboratory (PNL) through its Building Energy Standards Program (BESP). The purpose of this task was to identify demand-side management (DSM) strategies for new construction that utilities have adopted or developed to promote energy-efficient design and construction. PNL conducted a survey of utilities and used the information gathered to extrapolate lessons learned and to identify evolving trends in utility new-construction DSM programs. The ultimate goal of the task is to identify opportunities where states might work collaboratively with utilities to promotemore » the adoption, implementation, and enforcement of energy-efficient building energy codes.« less
Building local human resources to implement SLMTA with limited donor funding: The Ghana experience
van der Puije, Beatrice; Bekoe, Veronica; Adukpo, Rowland; Kotey, Nii A.; Yao, Katy; Fonjungo, Peter N.; Luman, Elizabeth T.; Duh, Samuel; Njukeng, Patrick A.; Addo, Nii A.; Khan, Fazle N.; Woodfill, Celia J.I.
2014-01-01
Background In 2009, Ghana adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme in order to improve laboratory quality. The programme was implemented successfully with limited donor funding and local human resources. Objectives To demonstrate how Ghana, which received very limited PEPFAR funding, was able to achieve marked quality improvement using local human resources. Method Local partners led the SLMTA implementation and local mentors were embedded in each laboratory. An in-country training-of-trainers workshop was conducted in order to increase the pool of local SLMTA implementers. Three laboratory cohorts were enrolled in SLMTA in 2011, 2012 and 2013. Participants from each cohort attended in a series of three workshops interspersed with improvement projects and mentorship. Supplemental training on internal audit was provided. Baseline, exit and follow-up audits were conducted using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist. In November 2013, four laboratories underwent official SLIPTA audits by the African Society for Laboratory Medicine (ASLM). Results The local SLMTA team successfully implemented three cohorts of SLMTA in 15 laboratories. Seven out of the nine laboratories that underwent follow-up audits have reached at least one star. Three out of the four laboratories that underwent official ASLM audits were awarded four stars. Patient satisfaction increased from 25% to 70% and sample rejection rates decreased from 32% to 10%. On average, $40 000 was spent per laboratory to cover mentors’ salaries, SLMTA training and improvement project support. Conclusion Building in-country capacity through local partners is a sustainable model for improving service quality in resource-constrained countries such as Ghana. Such models promote country ownership, capacity building and the use of local human resources for the expansion of SLMTA. PMID:26937417
Building local human resources to implement SLMTA with limited donor funding: The Ghana experience.
Nkrumah, Bernard; van der Puije, Beatrice; Bekoe, Veronica; Adukpo, Rowland; Kotey, Nii A; Yao, Katy; Fonjungo, Peter N; Luman, Elizabeth T; Duh, Samuel; Njukeng, Patrick A; Addo, Nii A; Khan, Fazle N; Woodfill, Celia J I
2014-11-03
In 2009, Ghana adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme in order to improve laboratory quality. The programme was implemented successfully with limited donor funding and local human resources. To demonstrate how Ghana, which received very limited PEPFAR funding, was able to achieve marked quality improvement using local human resources. Local partners led the SLMTA implementation and local mentors were embedded in each laboratory. An in-country training-of-trainers workshop was conducted in order to increase the pool of local SLMTA implementers. Three laboratory cohorts were enrolled in SLMTA in 2011, 2012 and 2013. Participants from each cohort attended in a series of three workshops interspersed with improvement projects and mentorship. Supplemental training on internal audit was provided. Baseline, exit and follow-up audits were conducted using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist. In November 2013, four laboratories underwent official SLIPTA audits by the African Society for Laboratory Medicine (ASLM). The local SLMTA team successfully implemented three cohorts of SLMTA in 15 laboratories. Seven out of the nine laboratories that underwent follow-up audits have reached at least one star. Three out of the four laboratories that underwent official ASLM audits were awarded four stars. Patient satisfaction increased from 25% to 70% and sample rejection rates decreased from 32% to 10%. On average, $40 000 was spent per laboratory to cover mentors' salaries, SLMTA training and improvement project support. Building in-country capacity through local partners is a sustainable model for improving service quality in resource-constrained countries such as Ghana. Such models promote country ownership, capacity building and the use of local human resources for the expansion of SLMTA.
Energy Efficiency Building Systems Regional Innovation Cluster Initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krebs, Martha
The Consortium for Building Energy Innovation (CBEI) was established through a Funding Opportunity Announcement led by the U.S. Department of Energy, under a cooperative agreement managed by the National Energy Technology Laboratory. CBEI is led by The Pennsylvania State University and is composed of partners from academia, the private sector, and economic development agencies. The Consortium has included as many as 24 different partners over the five years, but 14 have been core to the work over the five year cooperative agreement. CBEI primarily focused on developing energy efficiency solutions for the small and medium commercial building market, with amore » focus on buildings less than 50,000 square feet. This market has been underserved by the energy efficiency industry, which has focused on larger commercial buildings where the scale of an individual retrofit lends itself to the use of sophisticated modeling tools and more advanced solutions. Owners/operators and retrofit providers for larger buildings have a greater level of understanding of, and experience with different solutions. In contrast, smaller commercial building retrofits, like residential retrofits, often have owners with less knowledge about energy management and less time to learn about it. This market segment is also served by retrofit providers that are smaller and often focused on particular building systems, e.g. heating, ventilation and air conditioning (HVAC), lighting, roofing, or insulation. The size of a smaller commercial building retrofit does not lend itself, from a cost perspective, to the application of multiple, sophisticated design and modeling tools, which means that they are less likely to have integrated solutions.« less
Dilly, Marc; Read, Emma K; Baillie, Sarah
Developing competence in clinical skills is important if graduates are to provide entry-level care, but it is dependent on having had sufficient hands-on practice. Clinical skills laboratories provide opportunities for students to learn on simulators and models in a safe environment and to supplement training with animals. Interest in facilities for developing veterinary clinical skills has increased in recent years as many veterinary colleges face challenges in training their students with traditional methods alone. For the present study, we designed a survey to gather information from established veterinary clinical skills laboratories with the aim of assisting others considering opening or expanding their own facility. Data were collated from 16 veterinary colleges in North America and Europe about the uses of their laboratory, the building and associated facilities, and the staffing, budgets, equipment, and supporting learning resources. The findings indicated that having a dedicated veterinary clinical skills laboratory is a relatively new initiative and that colleges have adopted a range of approaches to implementing and running the laboratory, teaching, and assessments. Major strengths were the motivation and positive characteristics of the staff involved, providing open access and supporting self-directed learning. However, respondents widely recognized the increasing demands placed on the facility to provide more space, equipment, and staff. There is no doubt that veterinary clinical skills laboratories are on the increase and provide opportunities to enhance student learning, complement traditional training, and benefit animal welfare.
ETR BUILDING, TRA642. SOUTH SIDE VIEW INCLUDES SOUTH SIDES OF ...
ETR BUILDING, TRA-642. SOUTH SIDE VIEW INCLUDES SOUTH SIDES OF ETR BUILDING (HIGH ROOF LINE); ELECTRICAL BUILDING (ONE-STORY, MADE OF PUMICE BLOCKS), TRA-648; AND HEAT EXCHANGER BUILDING (WITH BUILDING NUMBERS), TRA-644. NOTE PROJECTION OF ELECTRICAL BUILDING AT LEFT EDGE OF VIEW. CAMERA FACES NORTH. INL NEGATIVE NO. HD46-37-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Crease, Robert P.
2008-04-01
There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.
DEMINERALIZER BUILDING, TRA608. CAMERA IS ON RAW WATER TOWER AND ...
DEMINERALIZER BUILDING, TRA-608. CAMERA IS ON RAW WATER TOWER AND FACES WEST. STEAM PLANT, TRA-609, AT UPPER EDGE OF VIEW. ABSENCE OF ROOF EXPOSES FIVE-BAY STRUCTURE AND INTERIOR DIVISION OF SPACE. CORRIDOR AT WEST END OF BUILDING WILL SEPARATE LABORATORY AND OFFICE SPACE FROM POTABLE WATER TANKS. ALONG NORTH WALL ARE SPACES FOR CATION AND ANION EXCHANGE UNITS. PENTHOUSE WILL ENCLOSE DEGASSIFIER. TANK AT LEFT (SOUTH) OF BUILDING STORES DEMINERALIZED WATER. NOTE BRINE STORAGE PIT, TRA-631, AT RIGHT OF VIEW, ABOVE PAIR OF CAUSTIC STORAGE TANKS. NOTE TRENCHES FOR BURIED WATER PIPES. INL NEGATIVE NO. 2732. Unknown Photographer, 6/29/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Conditions for building a community of practice in an advanced physics laboratory
NASA Astrophysics Data System (ADS)
Irving, Paul W.; Sayre, Eleanor C.
2014-06-01
We use the theory of communities of practice and the concept of accountable disciplinary knowledge to describe how a learning community develops in the context of an upper-division physics laboratory course. The change in accountable disciplinary knowledge motivates students' enculturation into a community of practice. The enculturation process is facilitated by four specific structural features of the course and supported by a primary instructional choice. The four structural features are "paucity of instructor time," "all in a room together," "long and difficult experiments," and "same experiments at different times." The instructional choice is the encouragement of the sharing and development of knowledge and understanding by the instructor. The combination of the instructional choice and structural features promotes the development of the learning community in which students engage in authentic practices of a physicist. This results in a classroom community that can provide students with the opportunity to have an accelerated trajectory towards being a more central participant of the community of a practice of physicists. We support our claims with video-based observations of laboratory classroom interactions and individual, semistructured interviews with students about their laboratory experiences and physics identity.
NASA Astrophysics Data System (ADS)
Yuen, K.; Chang, G.; Basilio, R. R.; Hatfield, J.; Cox, E. L.
2017-12-01
The prevalence and availability of NASA remote sensing data over the last 40+ years have produced many opportunities for the development of science derived data applications. However, extending and systematically integrating the applications into decision support models and tools have been sporadic and incomplete. Despite efforts among the research communities and external partners, implementation challenges exist and still remain to be addressed. In order to effectively address the systemic gap between the research and applications communities, steps must be taken to effectively bridge that gap: specific goals, a clear plan, and a concerted and diligent effort are needed to produce the desired results. The Orbiting Carbon Observatory-2 (OCO-2) mission sponsored a pilot effort on science data applications with the specific intent of building strategic partnerships, so that organizations and individuals could effectively use OCO-2 data products for application development. The successful partnership with the USDA/ARS National Laboratory for Agriculture and the Environment (NLAE) has laid the foundation for: 1) requirements and lessons for establishing a strategic partnership for application development, 2) building opportunities and growing partnerships for new missions such as OCO-3, and 3) the development of a methodology and approach for integrating application development into a mission life cycle. This presentation will provide an overview of the OCO-2 pilot effort, deliverables, the methodology, implementation, and best practices.
Selecting a Control Strategy for Plug and Process Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobato, C.; Sheppy, M.; Brackney, L.
2012-09-01
Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the designmore » and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.« less
ETR HEAT EXCHANGER BUILDING, TRA644. METAL FRAME OF BUILDING GOES ...
ETR HEAT EXCHANGER BUILDING, TRA-644. METAL FRAME OF BUILDING GOES UP IN BACKGROUND AS WORKERS PLACE A SECTION OF WATER LINE THAT WILL CARRY SECONDARY COOLANT BETWEEN HEAT EXCHANGER BUILDING AND THE COOLING TOWER. INL NEGATIVE NO. 56-2205. Jack L. Anderson, Photographer, 6/28/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
2. Oblique view of EPA Farm Lab Building 1506 (with ...
2. Oblique view of EPA Farm Lab Building 15-06 (with slaughter addition at far left), facing southwest - Nevada Test Site, Environmental Protection Agency Farm, Laboratory Building, Area 15, Yucca Flat, 10-2 Road near Circle Road, Mercury, Nye County, NV
Laboratory Animal Facilities. Laboratory Design Notes.
ERIC Educational Resources Information Center
Jonas, Albert M.
1965-01-01
Design of laboratory animal facilities must be functional. Accordingly, the designer should be aware of the complex nature of animal research and specifically the type of animal research which will be conducted in a new facility. The building of animal-care facilities in research institutions requires special knowledge in laboratory animal…
1980-05-01
engineering ,ZteNo D R RPTE16 research w 9 laboratory COMPARISON OF BUILDING LOADS ANALYSIS AND SYSTEM THERMODYNAMICS (BLAST) AD 0 5 5,0 3COMPUTER PROGRAM...Building Loads Analysis and System Thermodynamics (BLAST) computer program. A dental clinic and a battalion headquarters and classroom building were...Building and HVAC System Data Computer Simulation Comparison of Actual and Simulated Results ANALYSIS AND FINDINGS
REACTOR SERVICE BUILDING, TRA635, CONTEXTUAL VIEW DURING CONSTRUCTION. CAMERA IS ...
REACTOR SERVICE BUILDING, TRA-635, CONTEXTUAL VIEW DURING CONSTRUCTION. CAMERA IS ATOP MTR BUILDING AND LOOKING SOUTHERLY. FOUNDATION AND DRAINS ARE UNDER CONSTRUCTION. THE BUILDING WILL BUTT AGAINST CHARGING FACE OF PLUG STORAGE BUILDING. HOT CELL BUILDING, TRA-632, IS UNDER CONSTRUCTION AT TOP CENTER OF VIEW. INL NEGATIVE NO. 8518. Unknown Photographer, 8/25/1953 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Spectral response data for development of cool coloured tile coverings
NASA Astrophysics Data System (ADS)
Libbra, Antonio; Tarozzi, Luca; Muscio, Alberto; Corticelli, Mauro A.
2011-03-01
Most ancient or traditional buildings in Italy show steep-slope roofs covered by red clay tiles. As the rooms immediately below the roof are often inhabited in historical or densely urbanized centres, the combination of low solar reflectance of tile coverings and low thermal inertia of either wooden roof structures or sub-tile insulation panels makes summer overheating a major problem. The problem can be mitigated by using tiles coated with cool colours, that is colours with the same spectral response of clay tiles in the visible, but highly reflecting in the near infrared range, which includes more than half of solar radiation. Cool colours can yield the same visible aspect of common building surfaces, but higher solar reflectance. Studies aimed at developing cool colour tile coverings for traditional Italian buildings have been started. A few coating solutions with the typical red terracotta colour have been produced and tested in the laboratory, using easily available materials. The spectral response and the solar reflectance have been measured and compared with that of standard tiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffer, Daniel; Winter, Kyle
A water repellent developed by researchers at the Department of Energy's Oak Ridge National Laboratory outperforms nature at its best and could open a floodgate of commercial possibilities. The super-water repellent (superhydrophobic) material, developed by John Simpson, is easy to fabricate and uses inexpensive base materials. The process could lead to the creation of a new class of water repellant products, including windshields, eyewear, clothing, building materials, road surfaces, ship hulls and self-cleaning coatings. The list of likely applications is virtually endless.
Schaeffer, Daniel; Winter, Kyle
2018-06-06
A water repellent developed by researchers at the Department of Energy's Oak Ridge National Laboratory outperforms nature at its best and could open a floodgate of commercial possibilities. The super-water repellent (superhydrophobic) material, developed by John Simpson, is easy to fabricate and uses inexpensive base materials. The process could lead to the creation of a new class of water repellant products, including windshields, eyewear, clothing, building materials, road surfaces, ship hulls and self-cleaning coatings. The list of likely applications is virtually endless.
2017-12-08
A liquid oxygen test tank was completed in the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida. A banner signing event marked the successful delivery of the tank called Tardis. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
2017-12-08
Inside the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida, workers in the lab hold a banner marking the successful delivery of a liquid oxygen test tank called Tardis. Engineers and technicians worked together to develop the tank to build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
2017-12-08
NASA Kennedy Space Center's Engineering Director Pat Simpkins signs the banner marking the successful delivery of a liquid oxygen test tank, called Tardis, in the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida. Engineers and technicians worked together to develop the tank and build it to support cryogenic testing at Johnson Space Center's White Stands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
ERIC Educational Resources Information Center
Shriberg, Michael; Harris, Kathryn
2012-01-01
Leading institutions of higher education are increasingly utilizing the campus as a laboratory not only for implementing "green projects" but also for developing the skill set of students to lead the deep organizational change necessary for sustainability. This case study of "Sustainability and the Campus" at the University of…
MEMS Stirling Cooler Development Update
NASA Technical Reports Server (NTRS)
Moran, Matthew E.; Wesolek, Danielle
2003-01-01
This presentation provides an update on the effort to build and test a prototype unit of the patented MEMS Stirling cooler concept. A micro-scale regenerator has been fabricated by Polar Thermal Technologies and is currently being integrated into a Stirling cycle simulator at Johns Hopkins University Applied Physics Laboratory. A discussion of the analysis, design, assembly, and test plans for the prototype will be presented.
3D engineered fiberboard : engineering analysis of a new building product
John F. Hunt; Jerrold E. Winandy
2003-01-01
In many forests across the United States, the high forest fuel loadings are contributing to our recent forest fire problems. Many fire-prone timber stands are generally far from traditional timber markets or the timber is not economically valuable enough to cover the costs of removal. To help address this problem, the USDA Forest Products Laboratory has developed a...
Ultrasonic Clothes Drying Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Viral; Momen, Ayyoub
Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE’s Building Technologies Office in 2014.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-18
... Emphasis Panel--Amyotrophic Lateral Sclerosis (ALS) Brain Bank, Notice of Meeting The Department of... Special Emphasis Panel--ALS Brain Bank will meet on July 23, 2013, from 9 a.m. until 4 p.m. in Building 57... VA ALS Brain Bank for its continued funding. The VA ALS Brain Bank is a project of high programmatic...
7. This photographic copy of an engineering drawing displays the ...
7. This photographic copy of an engineering drawing displays the building's floor plan in its 1995 arrangement, with rooms designated. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office, "Addition to Weigh & Control Bldg. E-35, Demolition, Floor and Roof Plans," drawing no. E35/3-0, October 5, 1983. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA
Interior. Balance room for chemistry laboratory. Storage room for glassware ...
Interior. Balance room for chemistry laboratory. Storage room for glassware and reference room with frequently used chemistry and chemical engineering texts. - Thomas A. Edison Laboratories, Building No. 2, Main Street & Lakeside Avenue, West Orange, Essex County, NJ
Building Skills with Reiterative Lab Projects.
ERIC Educational Resources Information Center
Marine, Susan Sonchik
2003-01-01
Introduces chemistry laboratories in which students have the opportunity to conduct laboratory projects in multiple sessions that promote planning, thinking, technical performance, and responsibility. Defines the process of experimentation and its applications to science laboratories and describes successful project applications. (YDS)
120. ARAI Expansion of ARA627 shop and maintenance building for ...
120. ARA-I Expansion of ARA-627 shop and maintenance building for new use as materials and metallurgy laboratory. Shows ground floor plan addition of gas analyzer room, fatigue testing room, microscope room, and offices. Idaho Nuclear Corporation 1230-ARA-627-A-5. Date: June 1970. Ineel index code no. 068-0627-00-400-154062. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Implementation science: the laboratory as a command centre.
Boeras, Debrah I; Nkengasong, John N; Peeling, Rosanna W
2017-03-01
Recent advances in point-of-care technologies to ensure universal access to affordable quality-assured diagnostics have the potential to transform patient management, surveillance programmes, and control of infectious diseases. Decentralization of testing can put tremendous stresses on fragile health systems if the laboratory is not involved in the planning, introduction, and scale-up strategies. The impact of investments in novel technologies can only be realized if these tests are evaluated, adopted, and scaled up within the healthcare system with appropriate planning and understanding of the local contexts in which these technologies will be used. In this digital age, the laboratory needs to take on the role of the Command Centre for technology introduction and implementation. Implementation science is needed to understand the political, cultural, economic, and behavioural context for technology introduction. The new paradigm should include: building a comprehensive system of laboratories and point-of-care testing sites to provide quality-assured diagnostic services with good laboratory-clinic interface to build trust in test results and linkage to care; building and coordinating a comprehensive national surveillance and communication system for disease control and global health emergencies; conducting research to monitor the impact of new tools and interventions on improving patient care.
RAMPART (TM): Risk Assessment Method-Property Analysis and Ranking Tool v.4.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carson, Susan D.; Hunter, Regina L.; Link, Madison D.
RAMPART{trademark}, Risk Assessment Method-property Analysis and Ranking Tool, is a new type of computer software package for the assessment of risk to buildings. RAMPART{trademark} has been developed by Sandia National Laboratories (SNL) for the U.S. General Services Administration (GSA). RAMPART {trademark} has been designed and developed to be a risk-based decision support tool that requires no risk analysis expertise on the part of the user. The RAMPART{trademark} user interface elicits information from the user about the building. The RAMPART{trademark} expert system is a set of rules that embodies GSA corporate knowledge and SNL's risk assessment experience. The RAMPART{trademark} database containsmore » both data entered by the user during a building analysis session and large sets of natural hazard and crime data. RAMPART{trademark} algorithms use these data to assess the risk associated with a given building in the face of certain hazards. Risks arising from five natural hazards (earthquake, hurricane, winter storm, tornado and flood); crime (inside and outside the building); fire and terrorism are calculated. These hazards may cause losses of various kinds. RAMPART{trademark} considers death, injury, loss of mission, loss of property, loss of contents, loss of building use, and first-responder loss. The results of each analysis are presented graphically on the screen and in a written report.« less
LPT. Shield test facility assembly and test building (TAN646), south ...
LPT. Shield test facility assembly and test building (TAN-646), south facade. Camera facing north. High-bay section is pool room. Single-story section at right is control building (TAN-645). Small metal building is post-1970 addition. INEEL negative no. HD-40-7-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Home and Building Energy Management Systems | Grid Modernization | NREL
Home and Building Energy Management Systems Home and Building Energy Management Systems NREL building assets and energy management systems can provide value to the grid. Photo of a pair of NREL researchers who received a record of invention for a home energy management system in a smart home laboratory
LOFT. Containment building entry, an adapted use of TAN624, which ...
LOFT. Containment building entry, an adapted use of TAN-624, which originated as the mobile test building for the ANP program. Camera facing north. Note four-rail track entered building stack at right of view. Date: March 2004. INEEL negative no. HD-39-4-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
A corridor on the first floor of the building, looking ...
A corridor on the first floor of the building, looking west, shows some of the typical interior finishes in this section. At the end of the hallway, the corridor turns right after entering the next adjacent structure - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH
Lima, Gustavo F; Freitas, Victor C G; Araújo, Renan P; Maitelli, André L; Salazar, Andrés O
2017-09-15
The pipeline inspection using a device called Pipeline Inspection Gauge (PIG) is safe and reliable when the PIG is at low speeds during inspection. We built a Testing Laboratory, containing a testing loop and supervisory system to study speed control techniques for PIGs. The objective of this work is to present and validate the Testing Laboratory, which will allow development of a speed controller for PIGs and solve an existing problem in the oil industry. The experimental methodology used throughout the project is also presented. We installed pressure transducers on pipeline outer walls to detect the PIG's movement and, with data from supervisory, calculated an average speed of 0.43 m/s. At the same time, the electronic board inside the PIG received data from odometer and calculated an average speed of 0.45 m/s. We found an error of 4.44%, which is experimentally acceptable. The results showed that it is possible to successfully build a Testing Laboratory to detect the PIG's passage and estimate its speed. The validation of the Testing Laboratory using data from the odometer and its auxiliary electronic was very successful. Lastly, we hope to develop more research in the oil industry area using this Testing Laboratory.
Freitas, Victor C. G.; Araújo, Renan P.; Maitelli, André L.; Salazar, Andrés O.
2017-01-01
The pipeline inspection using a device called Pipeline Inspection Gauge (PIG) is safe and reliable when the PIG is at low speeds during inspection. We built a Testing Laboratory, containing a testing loop and supervisory system to study speed control techniques for PIGs. The objective of this work is to present and validate the Testing Laboratory, which will allow development of a speed controller for PIGs and solve an existing problem in the oil industry. The experimental methodology used throughout the project is also presented. We installed pressure transducers on pipeline outer walls to detect the PIG’s movement and, with data from supervisory, calculated an average speed of 0.43 m/s. At the same time, the electronic board inside the PIG received data from odometer and calculated an average speed of 0.45 m/s. We found an error of 4.44%, which is experimentally acceptable. The results showed that it is possible to successfully build a Testing Laboratory to detect the PIG’s passage and estimate its speed. The validation of the Testing Laboratory using data from the odometer and its auxiliary electronic was very successful. Lastly, we hope to develop more research in the oil industry area using this Testing Laboratory. PMID:28914757
NASA Astrophysics Data System (ADS)
Saheb, Mandana; Chabas, Anne; Mertz, Jean-Didier; Rozenbaum, Olivier; Verney-Carron, Aurélie
2015-04-01
This project belongs to a specific work aiming at developing isotopic tools to better understand the alteration of materials used in the built cultural heritage. It is focused on the study of the alteration of limestone used in the facades of historic buildings subject to atmospheric polluted environment. Actually in the elevated parts of the buildings, water as rainfall (runoff or wet deposition) or in vapor form (condensation or dry deposition) is the main agent of alteration. Thus, the rock/water interactions need to be well understood to propose adapted solution to better preserve the buildings. To identify the water transfer within the porous limestone and locate the reaction preferential sites, two isotopic tracers (D and 18O) are used to monitor the alteration solution (D) and locate the zones containing the secondary phases (18O). The Saint-Maximin limestone used in many monuments in the suburbs of Paris (France) as a building and restoration stone has been specifically studied. Pristine materials, stones from monuments (monuments in the Paris area) and samples altered in laboratory constitute the analytical corpus to compare different stages of alteration. In a first step the stones are characterized at different scales to identify the alteration pattern (SEM-EDS, Raman microspectrometry, XRD, rugosimetry) and study the water transfers (X-ray tomography, mercury porosimetry, imbibition kinetics). The samples are then altered in the laboratory by realistic and controlled wet or dry deposition using isotopically labeled solutions to locate the reaction zones by SIMS. The multiscale characterization of the alteration pattern has allowed proposing alteration mechanisms linked to the properties of the stones and their location inside the building. Moreover, the location of the reactive zones inside the materials determined by the isotopic experiments helps examining the role of the evolution of porosity and formation of alteration products within the material, in order to estimate the alteration rate. This innovative methodology will contribute to improve the knowledge of stone alteration processes in order to develop appropriate conservation strategies for the buildings.
COMIS -- an international multizone air-flow and contaminant transport model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feustel, H.E.
1998-08-01
A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings andmore » Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.« less
5. View of interior, EPA Farm Lab Building 1506 slaughter ...
5. View of interior, EPA Farm Lab Building 15-06 slaughter addition (featuring cold slaughter area), facing north-northeast - Nevada Test Site, Environmental Protection Agency Farm, Laboratory Building, Area 15, Yucca Flat, 10-2 Road near Circle Road, Mercury, Nye County, NV
School Building Organisation in Greece.
ERIC Educational Resources Information Center
PEB Exchange, 2001
2001-01-01
Discusses the past and current organizational structure of Greece's School Building Organisation, a body established to work with government agencies in the design and construction of new buildings and the provisioning of educational equipment. Future planning to incorporate culture and creativity, sports, and laboratory learning in modern school…
3. BUILDING 8814, WEST SIDE AND SOUTH REAR, SHOWING BLAST ...
3. BUILDING 8814, WEST SIDE AND SOUTH REAR, SHOWING BLAST DOOR. BUILDING 8826 IS IN BACKGROUND. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunker 1-D-3, Test Area 1-125, northwest end of Altair Boulevard, Boron, Kern County, CA
Polychlorinated Biphenyl Sources, Emissions, and Environmental Levels in School Buildings
Building materials and components containing polychlorinated biphenyls (PCBs) were used in some U.S. school buildings until the late 1970s and may be present today. PCB emission rates from caulk and fluorescent light ballasts were measured in laboratory chambers. PCB concentrat...
Sonic-boom-induced building structure responses including damage.
NASA Technical Reports Server (NTRS)
Clarkson, B. L.; Mayes, W. H.
1972-01-01
Concepts of sonic-boom pressure loading of building structures and the associated responses are reviewed, and results of pertinent theoretical and experimental research programs are summarized. The significance of sonic-boom load time histories, including waveshape effects, are illustrated with the aid of simple structural elements such as beams and plates. Also included are discussions of the significance of such other phenomena as three-dimensional loading effects, air cavity coupling, multimodal responses, and structural nonlinearities. Measured deflection, acceleration, and strain data from laboratory models and full-scale building tests are summarized, and these data are compared, where possible, with predicted values. Damage complaint and claim experience due both to controlled and uncontrolled supersonic flights over communities are summarized with particular reference to residential, commercial, and historic buildings. Sonic-boom-induced building responses are compared with those from other impulsive loadings due to natural and cultural events and from laboratory simulation tests.
1943-07-21
Receptionist Mary Louise Gosney enjoys the new Administration Building at the NACA’s Aircraft Engine Research Laboratory. The Administration Building, which was located near the front entrance to the laboratory, opened in December 1942. The staff, which had spent the previous year working in temporary offices inside the hangar, quickly occupied the new building. Lab director Raymond Sharp, the upper management team, and administrative staff had offices in the Administration Building. The structure also contained the lab’s library and auditorium. Gosney was a Chicago native who started at the lab in November 1941. Gosney’s services included welcoming visitors, arranging tours, and arranging interviews with staff members. Gosney’s “Lobby Lines” column in the lab’s newsletter Wing Tips noted the coming and goings of notable visitors and staff members. In addition to her role as receptionist, Gosney also served as the clearance officer. She would later head the entire Administrative Services Division.
THE GREEN DORM: A SUSTAINABLE RESIDENCE AND LIVING LABORATORY FOR STANFORD UNIVERSITY
The Lotus Living Laboratory at Stanford University is exploring sustainable building technologies and sustainable living habits through the design, construction and operation of The Green Dorm, an innovative facility containing residential, laboratory and commons space. Both ...
10. Floor Layout of Thermal Hydraulics Laboratory, from The Thermal ...
10. Floor Layout of Thermal Hydraulics Laboratory, from The Thermal Hydraulics Laboratory at Hanford. General Electric Company, Hanford Atomic Products Operation, Richland, Washington, 1961. - D-Reactor Complex, Deaeration Plant-Refrigeration Buildings, Area 100-D, Richland, Benton County, WA
IET. Aerial view during construction, facing southwest. Control building (TAN620) ...
IET. Aerial view during construction, facing southwest. Control building (TAN-620) in center. Retaining wall in place on west side. Tank building (TAN-627) and fuel transfer pump building (TAN-625) north of control building. Shielded roadway not yet built. Foundation of stack at right edge of view. Date: November 24, 1954. INEEL negative no. 13198 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
A refuge for inorganic chemistry: Bunsen's Heidelberg laboratory.
Nawa, Christine
2014-05-01
Immediately after its opening in 1855, Bunsen's Heidelberg laboratory became iconic as the most modern and best equipped laboratory in Europe. Although comparatively modest in size, the laboratory's progressive equipment made it a role model for new construction projects in Germany and beyond. In retrospect, it represents an intermediate stage of development between early teaching facilities, such as Liebig's laboratory in Giessen, and the new 'chemistry palaces' that came into existence with Wöhler's Göttingen laboratory of 1860. As a 'transition laboratory,' Bunsen's Heidelberg edifice is of particular historical interest. This paper explores the allocation of spaces to specific procedures and audiences within the laboratory, and the hierarchies and professional rites of passage embedded within it. On this basis, it argues that the laboratory in Heidelberg was tailored to Bunsen's needs in inorganic and physical chemistry and never aimed at a broad-scale representation of chemistry as a whole. On the contrary, it is an example of early specialisation within a chemical laboratory preceding the process of differentiation into chemical sub-disciplines. Finally, it is shown that the relatively small size of this laboratory, and the fact that after ca. 1860 no significant changes were made within the building, are inseparably connected to Bunsen's views on chemistry teaching.
Contamination source review for Building E5485, Edgewood Area, Aberdeen Proving Ground, Maryland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billmark, K.A.; Hayes, D.C.; Draugelis, A.K.
1995-09-01
This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E5485 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, and collection of air samples. Building E5485 (APG designation) is located in the drainage basin of the west branch of Canal Creek in the Edgewood Area of APG. The building was constructed in 1922 and used asmore » a fan house for agent operations in Building E5487 from 1925 to 1966. Building E5485 was then used as a laboratory to support manufacturing and storage of flammable agents and chemical warfare agents from 1966 until 1967, when it was placed on the inactive list. Air quality samples were collected upwind, downwind, and inside Building E5485 in November 1994. Analytical results showed no distinguishable difference in hydrocarbon and chlorinated solvent levels between the two background samples and the sample collected inside Building E5485. These results indicate that Building E5485 is not a source of volatile organic compound contamination.« less
77 FR 15104 - Environmental Laboratory Advisory Board Membership
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
... sectors: Academia. Business and industry. Environmental laboratory commercial, municipal, small, other...; Excellent interpersonal, oral, and written communication and consensus-building skills; and Ability to serve...
Protein Laboratories in Single Location | Poster
By Andrew Stephen, Timothy Veenstra, and Gordon Whiteley, Guest Writers, and Ken Michaels, Staff Writer The Laboratory of Proteomics and Analytical Technologies (LPAT), Antibody Characterization Laboratory (ACL), and Protein Chemistry Laboratory (PCL), previously located on different floors or in different buildings, are now together on the first floor of C wing in the ATRF.
Guarner, Jeannette; Amukele, Timothy; Mehari, Meheretu; Gemechu, Tufa; Woldeamanuel, Yimtubezinash; Winkler, Anne M; Asrat, Daniel; Wilson, Michael L; del Rio, Carlos
2015-03-01
To describe a 4-day laboratory medicine course for clinicians given at Addis Ababa University, Ethiopia, designed to improve the use of laboratory-based diagnoses. Each day was dedicated to one of the following topics: hematology, blood bank/transfusion medicine and coagulation, chemistry, and microbiology. The course included lectures, case-based learning, laboratory tours, and interactive computer case-based homework. The same 12-question knowledge quiz was given before and after the course. Twenty-eight participants took the quiz before and 21 after completing the course. The average score was 5.28 (range, 2-10) for the initial quiz and 8.09 (range, 4-11) for the second quiz (P = .0001). Two of 12 and 8 of 12 questions were answered correctly by more than 60% of trainees on the initial and second quiz, respectively. Knowledge and awareness of the role of the laboratory increased after participation in the course. Understanding of laboratory medicine principles by clinicians will likely improve use of laboratory services and build capacity in Africa. Copyright© by the American Society for Clinical Pathology.
3. View of EPA Farm Lab Building 1506 (with sliding ...
3. View of EPA Farm Lab Building 15-06 (with sliding doors open to slaughter addition) and Sioux silo, facing north-northwest - Nevada Test Site, Environmental Protection Agency Farm, Laboratory Building, Area 15, Yucca Flat, 10-2 Road near Circle Road, Mercury, Nye County, NV
Mesa Community College at Red Mountain, Mesa, Arizona.
ERIC Educational Resources Information Center
Design Cost Data, 2002
2002-01-01
Describes the Desert Willow Library and Classroom Building, Mesquite Student Services and Administration Building, Palo Verde Science Laboratories and Classroom Building, and Ironwood Central Plant of the title college, including educational context and design goals. Includes a general description; information on the architect, construction team,…
A view looking northwest toward the southeast corner of the ...
A view looking northwest toward the southeast corner of the building. Just to the right of the corner is an indication of scale - an extended surveyor's rod - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH
Software Management for the NOνAExperiment
NASA Astrophysics Data System (ADS)
Davies, G. S.; Davies, J. P.; C Group; Rebel, B.; Sachdev, K.; Zirnstein, J.
2015-12-01
The NOvAsoftware (NOνASoft) is written in C++, and built on the Fermilab Computing Division's art framework that uses ROOT analysis software. NOνASoftmakes use of more than 50 external software packages, is developed by more than 50 developers and is used by more than 100 physicists from over 30 universities and laboratories in 3 continents. The software builds are handled by Fermilab's custom version of Software Release Tools (SRT), a UNIX based software management system for large, collaborative projects that is used by several experiments at Fermilab. The system provides software version control with SVN configured in a client-server mode and is based on the code originally developed by the BaBar collaboration. In this paper, we present efforts towards distributing the NOvA software via the CernVM File System distributed file system. We will also describe our recent work to use a CMake build system and Jenkins, the open source continuous integration system, for NOνASoft.
Andze, Gervais Ondobo; Namsenmo, Abel; Illunga, Benoit Kebella; Kazambu, Ditu; Delissaint, Dieula; Kuaban, Christopher; Mbopi-Kéou, Francois-Xavier; Gabsa, Wilfred; Mulumba, Leopold; Bangamingo, Jean Pierre; Ngulefac, John; Dahlke, Melissa; Mukanga, David; Nsubuga, Peter
2011-01-01
The Central African Field Epidemiology and Laboratory Training Program (CAFELTP) is a 2-year public health leadership capacity building training program. It was established in October 2010 to enhance capacity for applied epidemiology and public health laboratory services in three countries: Cameroon, Central African Republic, and the Democratic Republic of Congo. The aim of the program is to develop a trained public health workforce to assure that acute public health events are detected, investigated, and responded to quickly and effectively. The program consists of 25% didactic and 75% practical training (field based activities). Although the program is still in its infancy, the residents have already responded to six outbreak investigations in the region, evaluated 18 public health surveillance systems and public health programs, and completed 18 management projects. Through these various activities, information is shared to understand similarities and differences in the region leading to new and innovative approaches in public health. The program provides opportunities for regional and international networking in field epidemiology and laboratory activities, and is particularly beneficial for countries that may not have the immediate resources to host an individual country program. Several of the trainees from the first cohort already hold leadership positions within the ministries of health and national laboratories, and will return to their assignments better equipped to face the public health challenges in the region. They bring with them knowledge, practical training, and experiences gained through the program to shape the future of the public health landscape in their countries.
Ondobo Andze, Gervais; Namsenmo, Abel; Kebella Illunga, Benoit; Kazambu, Ditu; Delissaint, Dieula; Kuaban, Christopher; Mbopi-Kéou, Francois-Xavier; Gabsa, Wilfred; Mulumba, Leopold; Pierre Bangamingo, Jean; Ngulefac, John; Dahlke, Melissa; Mukanga, David; Nsubuga, Peter
2011-01-01
The Central African Field Epidemiology and Laboratory Training Program (CAFELTP) is a 2-year public health leadership capacity building training program. It was established in October 2010 to enhance capacity for applied epidemiology and public health laboratory services in three countries: Cameroon, Central African Republic, and the Democratic Republic of Congo. The aim of the program is to develop a trained public health workforce to assure that acute public health events are detected, investigated, and responded to quickly and effectively. The program consists of 25% didactic and 75% practical training (field based activities). Although the program is still in its infancy, the residents have already responded to six outbreak investigations in the region, evaluated 18 public health surveillance systems and public health programs, and completed 18 management projects. Through these various activities, information is shared to understand similarities and differences in the region leading to new and innovative approaches in public health. The program provides opportunities for regional and international networking in field epidemiology and laboratory activities, and is particularly beneficial for countries that may not have the immediate resources to host an individual country program. Several of the trainees from the first cohort already hold leadership positions within the ministries of health and national laboratories, and will return to their assignments better equipped to face the public health challenges in the region. They bring with them knowledge, practical training, and experiences gained through the program to shape the future of the public health landscape in their countries. PMID:22359692
A simple, low-cost, data logging pendulum built from a computer mouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gintautas, Vadas; Hubler, Alfred
Lessons and homework problems involving a pendulum are often a big part of introductory physics classes and laboratory courses from high school to undergraduate levels. Although laboratory equipment for pendulum experiments is commercially available, it is often expensive and may not be affordable for teachers on fixed budgets, particularly in developing countries. We present a low-cost, easy-to-build rotary sensor pendulum using the existing hardware in a ball-type computer mouse. We demonstrate how this apparatus may be used to measure both the frequency and coefficient of damping of a simple physical pendulum. This easily constructed laboratory equipment makes it possible formore » all students to have hands-on experience with one of the most important simple physical systems.« less
ADM. Service Building (TAN603). Elevations of all facades with door ...
ADM. Service Building (TAN-603). Elevations of all facades with door details and detail of kitchen. Section through garage area shows second level of steel decking. Equipment and laboratory furniture schedule. Ralph M. Parsons 902-2-ANP-603-A 44. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 033-0603-00-693-106719 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Derived concentration guideline levels for Argonne National Laboratory's building 310 area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamboj, S., Dr.; Yu, C ., Dr.
2011-08-12
The derived concentration guideline level (DCGL) is the allowable residual radionuclide concentration that can remain in soil after remediation of the site without radiological restrictions on the use of the site. It is sometimes called the single radionuclide soil guideline or the soil cleanup criteria. This report documents the methodology, scenarios, and parameters used in the analysis to support establishing radionuclide DCGLs for Argonne National Laboratory's Building 310 area.
1960-01-01
Marshall Space Flight Center (MSFC) workers hoist a dynamic test version of the S-IVB stage, the Saturn IB launch vehicle's second stage, into the Center's Dynamic Test Stand on January 18, 1965. MSFC Test Laboratory persornel assembled a complete Saturn IB to test the launch vehicle's structural soundness. Developed by the MSFC as an interim vehicle in MSFC's "building block" approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the manned lunar missions.
1965-01-01
Marshall Space Flight Center (MSFC) workers lower S-IB-200D, a dynamic test version of the Saturn IB launch vehicle's first stage (S-IB stage), into the Center's Dynamic Test Stand on January 12, 1965. Test Laboratory persornel assembled a complete Saturn IB to test the structural soundness of the launch vehicle. Developed by the MSFC as an interim vehicle in MSFC's "building block" approach to Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine large boosters and the Apollo spacecraft capabilities required for the manned lunar missions.
NASA Astrophysics Data System (ADS)
Fournier, Frederic
The learning environment created during this research/development constitutes a micro-laboratory allowing students at the secondary and collegial level to build a measurement system. This approach based on the concrete manufacture of measuring instruments showed that the student did not only acquire knowledge, but he developed a know-how in the technology of measuring systems and also a know-how and knowledge in experimental sciences. In conceptualizing and building his own measurement system, in a computer-assisted experimental environmental, the student performs a scientific investigation in which he must induce a causal relationship between the different variables at stake. He must then isolate this relationship by building a scheme for the control of the variables and model it in an algebraic and graphic form. We believe that this approach will allow the students to better understand the physical phenomena they will be measuring. The prototypes and software used to build these measuring instruments were evaluated and redesigned at the functional and didactic levels in order to offer a learning environment that respects in every way the competence approach and the integration between science and technology.
Modernizing confidence-building measures for the Biological Weapons Convention.
Koblentz, Gregory D; Chevrier, Marie Isabelle
2011-09-01
The Seventh Review Conference of the Biological Weapons Convention in December 2011 provides an opportunity to modernize the treaty to better address the challenges of the 21st century. The key to this modernization is to redesign the treaty's Confidence-Building Measures (CBMs), the only formal mechanism for increasing transparency and demonstrating compliance with the treaty, to address changes in the global scientific, health, and security environments since the end of the Cold War. The scope of the CBMs should be expanded beyond state-run biological warfare programs to encompass a broader array of threats to global security, such as biological terrorism, laboratory accidents, dual-use research, and disease pandemics. Modernizing the CBM mechanism to take into account these new risks would extend the transparency-enhancing benefits of CBMs to a range of new and important topics, such as biosafety, laboratory biosecurity, and dual-use research oversight; make the CBMs and the treaty itself more relevant to the concerns and priorities of more states; and build on progress made during the recent series of intersessional meetings. To accomplish this, the CBMs need to be revised to shift their focus from hardware, the dual-use capabilities relevant to the treaty, to software, the political and legal institutions that govern the development and use of these capabilities. A more modern CBM mechanism should encourage greater participation in the confidence-building process, improve international cooperation against the full spectrum of biological risks, and promote the goal of universal membership in the treaty.
ETR HEAT EXCHANGER BUILDING, TRA644. EAST SIDE. CAMERA FACING WEST. ...
ETR HEAT EXCHANGER BUILDING, TRA-644. EAST SIDE. CAMERA FACING WEST. NOTE COURSE OF PIPE FROM GROUND AND FOLLOWING ROOF OF BUILDING. MTR BUILDING IN BACKGROUND AT RIGHT EDGE OF VIEW. INL NEGATIVE NO. HD46-36-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
LOFT. Containment building (TAN650) detail. Camera facing east. Service building ...
LOFT. Containment building (TAN-650) detail. Camera facing east. Service building corner is at left of view above personnel access. Round feature at left of dome is tank that will contain borated water. Metal stack at right of view. Date: 1973. INEEL negative no. 73-1085 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
The Influence of Laboratory Safety on Capital Planning.
ERIC Educational Resources Information Center
Francis, Robert A.
1980-01-01
Discusses state and federal legislation concerning the handling of dangerous materials and its impact on the design of college and university buildings. Lists federal legislation affecting laboratory safety, the objectives of each act, and the influence of each act on laboratory safety. (IRT)
Porter, K.A.; Jaiswal, K.S.; Wald, D.J.; Greene, M.; Comartin, Craig
2008-01-01
The U.S. Geological Survey’s Prompt Assessment of Global Earthquake’s Response (PAGER) Project and the Earthquake Engineering Research Institute’s World Housing Encyclopedia (WHE) are creating a global database of building stocks and their earthquake vulnerability. The WHE already represents a growing, community-developed public database of global housing and its detailed structural characteristics. It currently contains more than 135 reports on particular housing types in 40 countries. The WHE-PAGER effort extends the WHE in several ways: (1) by addressing non-residential construction; (2) by quantifying the prevalence of each building type in both rural and urban areas; (3) by addressing day and night occupancy patterns, (4) by adding quantitative vulnerability estimates from judgment or statistical observation; and (5) by analytically deriving alternative vulnerability estimates using in part laboratory testing.
Valtonen, Ville
2017-01-01
A great variety of non-specific symptoms may occur in patients living or working in moisture-damaged buildings. In the beginning, these symptoms are usually reversible, mild, and present irritation of mucosa and increased morbidity due to respiratory tract infections and asthma-like symptoms. Later, the disease may become chronic and a patient is referred to a doctor where the assessment of dampness and mold hypersensitivity syndrome (DMHS) often presents diagnostic challenges. Currently, unanimously accepted laboratory tests are not yet available. Therefore, the diagnosis of DMHS is clinical and is based on the patient’s history and careful examination. In this publication, I reviewed contemporary knowledge on clinical presentations, laboratory methods, and clinical assessment of DMHS. From the literature, I have not found any proposed diagnostic clinical criteria. Therefore, I propose five clinical criteria to diagnose DMHS: (1) the history of mold exposure in water-damaged buildings, (2) increased morbidity to due infections, (3) sick building syndrome, (4) multiple chemical sensitivity, and (5) enhanced scent sensitivity. If all the five criteria are met, the patient has a very probable DMHS. To resolve the current problems in assigning correct DMHS diagnosis, we also need novel assays to estimate potential risks of developing DMHS. PMID:28848553
Valtonen, Ville
2017-01-01
A great variety of non-specific symptoms may occur in patients living or working in moisture-damaged buildings. In the beginning, these symptoms are usually reversible, mild, and present irritation of mucosa and increased morbidity due to respiratory tract infections and asthma-like symptoms. Later, the disease may become chronic and a patient is referred to a doctor where the assessment of dampness and mold hypersensitivity syndrome (DMHS) often presents diagnostic challenges. Currently, unanimously accepted laboratory tests are not yet available. Therefore, the diagnosis of DMHS is clinical and is based on the patient's history and careful examination. In this publication, I reviewed contemporary knowledge on clinical presentations, laboratory methods, and clinical assessment of DMHS. From the literature, I have not found any proposed diagnostic clinical criteria. Therefore, I propose five clinical criteria to diagnose DMHS: (1) the history of mold exposure in water-damaged buildings, (2) increased morbidity to due infections, (3) sick building syndrome, (4) multiple chemical sensitivity, and (5) enhanced scent sensitivity. If all the five criteria are met, the patient has a very probable DMHS. To resolve the current problems in assigning correct DMHS diagnosis, we also need novel assays to estimate potential risks of developing DMHS.
Chamber study of PCBemissions from caulking materials and ...
The emissions of polychlorinated biphenyl (PCB) congeners from 13 caulk samples were tested in a micro-chamber system. Twelve samples were from PCB-contaminated buildings and one was prepared in the laboratory. Nineteen light ballasts collected from buildings that represent 13 different models from five manufacturers were tested in 53-liter environmental chambers. The rates of PCB congener emissions from caulking materials and light ballasts were determined. Several factors that may have affected the emission rates were evaluated. The experimentally determined emission factors showed that, for a given PCB congener, there is a linear correlation between the emission factor and the concentration of the PCB congener in the source. Furthermore, the test results showed that an excellent log-linear correlation exists between the normalized emission factor and the vapor pressure (coefficient of determination, r2 ≥0.8846). The PCB congener emissions from ballasts at or near room temperature were relatively low with or without electrical load. However, the PCB congener emission rates increased significantly as the temperature increased. The results of this research provide new data and models for ranking the primary sources of PCBs and supports the development and refinement of exposure assessment models for PCBs. This study supplemented and complemented the field measurements in buildings conducted by U.S. EPA National Exposure Research Laboratory by providing a bette