Sample records for development miniplate irradiations

  1. CNEA/ANL collaboration program to develop an optimized version of DART validation and assessment by means of U{sub 3}Si{sub x} and U{sub 3}O{sub 8-}Al dispersed CNEA miniplate irradiation behavior.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solis, D.

    1998-10-16

    The DART code is based upon a thermomechanical model that can predict swelling, recrystallization, fuel-meat interdiffusion and other issues related with MTR dispersed FE behavior under irradiation. As a part of a common effort to develop an optimized version of DART, a comparison between DART predictions and CNEA miniplates irradiation experimental data was made. The irradiation took place during 1981-82 for U3O8 miniplates and 1985-86 for U{sub 3}Si{sub x} at Oak Ridge Research Reactor (ORR). The microphotographs were studied by means of IMAWIN 3.0 Image Analysis Code and different fission gas bubbles distributions were obtained. Also it was possible tomore » find and identify different morphologic zones. In both kinds of fuels, different phases were recognized, like particle peripheral zones with evidence of Al-U reaction, internal recrystallized zones and bubbles. A very good agreement between code prediction and irradiation results was found. The few discrepancies are due to local, fabrication and irradiation uncertainties, as the presence of U{sub 3}Si phase in U{sub 3}Si{sub 2} particles and effective burnup.« less

  2. Shutdown-induced tensile stress in monolithic miniplates as a possible cause of plate pillowing at very high burnup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Pavel G; Ozaltun, Hakan; Robinson, Adam Brady

    2014-04-01

    Post-irradiation examination of Reduced Enrichment for Research and Test Reactors (RERTR)-12 miniplates showed that in-reactor pillowing occurred in at least 4 plates, rendering performance of these plates unacceptable. To address in-reactor failures, efforts are underway to define the mechanisms responsible for in-reactor pillowing, and to suggest improvements to the fuel plate design and operational conditions. To achieve these objectives, the mechanical response of monolithic fuel to fission and thermally-induced stresses was modeled using a commercial finite element analysis code. Calculations of stresses and deformations in monolithic miniplates during irradiation and after the shutdown revealed that the tensile stress generated inmore » the fuel increased from 2 MPa to 100 MPa at shutdown. The increase in tensile stress at shutdown possibly explains in-reactor pillowing of several RERTR-12 miniplates irradiated to the peak local burnup of up to 1.11x1022 fissions/cm3 . This paper presents the modeling approach and calculation results, and compares results with post-irradiation examinations and mechanical testing of irradiated fuel. The implications for the safe use of the monolithic fuel in research reactors are discussed, including the influence of fuel burnup and power on the magnitude of the shutdown-induced tensile stress.« less

  3. Influence of phototherapies on the outcome of complete tibial fractures grafted or not with MTA: Raman spectroscopic study on rabbits

    NASA Astrophysics Data System (ADS)

    Pinheiro, Antônio L. B.; Soares, Luiz G. P.; da Silva, Aline C. P.; Santos, Nicole R. S.; da Silva, Anna Paula L. T.; Neves, Bruno Luiz R. C.; Soares, Amanda P.; Silveira, Landulfo

    2018-02-01

    The aim of the present study was to assess, by means of Raman spectroscopy, the repair of complete surgical tibial fractures fixed with wire osteosynthesis or miniplates treated or not with infrared laser (λ780 nm) or infrared LED (λ850 +/- 10 nm) lights, 142.8 J/cm2 per treatment, associated or not to the use of mineral trioxide aggregate (MTA) cement. Surgical fractures were created on 36 rabbits and fixed with WO or miniplates and some groups were grafted with MTA. Irradiated groups received lights at every other day for 15 days and sacrifice occurred after 30 days. The results showed that only irradiation with either laser or LED influenced the peaks of phosphate ( 960 cm-1) and carbonated ( 1,070 cm-1) hydroxyapatite. Collagen peak (1,450 cm-1) was influenced by both the use of MTA and irradiation with either laser or LED. It is concluded that the use of either laser or LED phototherapy associated to MTA cement was efficacious on improving the repair of complete tibial fractures treated with wire osteosynthesis or miniplates.

  4. IRRADIATION TESTING OF THE RERTR FUEL MINIPLATES WITH BURNABLE ABSORBERS IN THE ADVANCED TEST REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    I. Glagolenko; D. Wachs; N. Woolstenhulme

    2010-10-01

    Based on the results of the reactor physics assessment, conversion of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) can be potentially accomplished in two ways, by either using U-10Mo monolithic or U-7Mo dispersion type plates in the ATR fuel element. Both designs, however, would require incorporation of the burnable absorber in several plates of the fuel element to compensate for the excess reactivity and to flatten the radial power profile. Several different types of burnable absorbers were considered initially, but only borated compounds, such as B4C, ZrB2 and Al-B alloys, were selected for testing primarily duemore » to the length of the ATR fuel cycle and fuel manufacturing constraints. To assess and compare irradiation performance of the U-Mo fuels with different burnable absorbers we have designed and manufactured 28 RERTR miniplates (20 fueled and 8 non-fueled) containing fore-mentioned borated compounds. These miniplates will be tested in the ATR as part of the RERTR-13 experiment, which is described in this paper. Detailed plate design, compositions and irradiations conditions are discussed.« less

  5. Irradiation behavior of U 6Mn-Al dispersion fuel elements

    NASA Astrophysics Data System (ADS)

    Meyer, M. K.; Wiencek, T. C.; Hayes, S. L.; Hofman, G. L.

    2000-02-01

    Irradiation testing of U 6Mn-Al dispersion fuel miniplates was conducted in the Oak Ridge Research Reactor (ORR). Post-irradiation examination showed that U 6Mn in an unrestrained plate configuration performs similarly to U 6Fe under irradiation, forming extensive and interlinked fission gas bubbles at a fission density of approximately 3×10 27 m-3. Fuel plate failure occurs by fission gas pressure driven `pillowing' on continued irradiation.

  6. Effects of the foil flatness on the stress-strain characteristics of U10Mo alloy based monolithic mini-plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakan Ozaltun; Pavel Medvedev

    The effects of the foil flatness on stress-strain behavior of monolithic fuel mini-plates during fabrication and irradiation were studied. Monolithic plate-type fuels are a new fuel form being developed for research and test reactors to achieve higher uranium densities. This concept facilitates the use of low-enriched uranium fuel in the reactor. These fuel elements are comprised of a high density, low enrichment, U–Mo alloy based fuel foil encapsulated in a cladding material made of Aluminum. To evaluate the effects of the foil flatness on the stress-strain behavior of the plates during fabrication, irradiation and shutdown stages, a representative plate frommore » RERTR-12 experiments (Plate L1P756) was considered. Both fabrication and irradiation processes of the plate were simulated by using actual irradiation parameters. The simulations were repeated for various foil curvatures to observe the effects of the foil flatness on the peak stress and strain magnitudes of the fuel elements. Results of fabrication simulations revealed that the flatness of the foil does not have a considerable impact on the post fabrication stress-strain fields. Furthermore, the irradiation simulations indicated that any post-fabrication stresses in the foil would be relieved relatively fast in the reactor. While, the perfectly flat foil provided the slightly better mechanical performance, overall difference between the flat-foil case and curved-foil case was not significant. Even though the peak stresses are less affected, the foil curvature has several implications on the strain magnitudes in the cladding. It was observed that with an increasing foil curvature, there is a slight increase in the cladding strains.« less

  7. Postirradiation analysis of the latest high uranium density miniplate test: RERTR 8.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofman, G. L.; Kim, Y. S.; Rest, J.

    2008-01-01

    Results of destructive examination of fuel miniplates irradiated in the RERTR-8 test are discussed. Metallographic features of dispersion fuel containing fuel particles of U-7wt%Mo with 1wt% Ti or 2wt% Zr are analyzed. It is hypothesized that Zr, either as alloy addition or fission product, may have a destabilizing effect on fission gas behavior. The purpose of miniplate test RERTR-8 was to obtain irradiation performance data on monolithic fuel plates fabricated by friction bonding (FB) and isostatic hot pressing (HIP), as well as dispersion fuel plates that contain U-7Mo fuel particles alloyed with small amounts of Zr or Ti (see Fig.more » 1). The results of the monolithic plates destructively examined to date were presented at the 2007 RERTR meeting in Prague. This paper presents the first results on the dispersion plates with Ti and Zr additions to U-7Mo. The effect of Ti and Zr additions to U-7wt%Mo on the extent of fuel-aluminum interdiffusion, although measureable, is small in absolute terms because of the overwhelming effect of the 5% Si addition to the Al matrix. Ti additions to the U-7wt%Mo have no discernable effect on swelling behavior of the fuel. However, there are indications that the addition of Zr may have a destabilizing effect on fission gas behavior at high burnup.« less

  8. Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel M. Wachs; Richard G. Ambrosek; Gray Chang

    2006-10-01

    Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progressmore » toward element testing will be reviewed.« less

  9. Development of the neurocranium after transsutural fixing by new, resorbable poly-L-lactide miniplates. A comparison to fixing with the common titanium miniplates.

    PubMed

    Antikainen, T; Pernu, H; Törmälä, P; Kallioinen, M; Waris, T; Serlo, W

    1994-01-01

    The right coronal sutures of twelve (12) newborn rabbits were fixed with commercially available, self-reinforced poly-L-lactide miniplates, with eight (8) rabbits sham treated with titanium miniplate fixation as reference experiments, in order to demonstrate the possible effects on skull growth. After six (6) months follow-up, both types of plate were detected to have caused a similar asymmetry in the neurocranium. Therefore, in our opinion, fixing across growing sutures, even with the new biodegradable devices, should be avoided.

  10. The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with miniplates: a histological and histomorphometric study on rabbits.

    PubMed

    Pinheiro, Antonio L B; Aciole, Gilberth Tadeu Santos; Ramos, Thais Andrade; Gonzalez, Tayná Assunção; da Silva, Laís Nogueira; Soares, Luiz G Pinheiro; Aciole, Jouber Mateus Santos; dos Santos, Jean Nunes

    2014-01-01

    The aim of the present study was to assess, by light microscopy and histomorphometry, the repair of surgical fractures fixed with internal rigid fixation (IRF) treated or not with IR laser (λ780 nm, 50 mW, 4 × 4 J/cm(2) = 16 J/cm(2), ϕ = 0.5 cm(2), CW) associated or not to the use of hydroxyapatite and guided bone regeneration. Surgical tibial fractures were created under general anesthesia on 15 rabbits that were divided into 5 groups, maintained on individual cages, at day/night cycle, fed with solid laboratory pelted diet, and had water ad libidum. The fractures in groups II, III, IV, and V were fixed with miniplates. Animals in groups III and V were grafted with hydroxyapatite and GBR technique used. Animals in groups IV and V were irradiated at every other day during two weeks (4 × 4 J/cm(2), 16 J/cm(2) = 112 J/cm(2)). Observation time was that of 30 days. After animal death, specimens were taken, routinely processed to wax, cut and stained with HA and Sirius red, and used for histological assessment. The results of both analyses showed a better bone repair on all irradiated subjects especially when the biomaterial and GBR were used. In conclusion, the results of the present investigation are important clinically as they are suggestive that the association of hydroxyapatite, and laser light resulted in a positive and significant repair of complete tibial fractures treated with miniplates.

  11. The experiment of magnesium ECAP miniplate as alternative biodegradable material (on male white New Zealand rabbits)

    NASA Astrophysics Data System (ADS)

    Wiwanto, Siska; Sulistyani, Lilies Dwi; Latief, Fourier Dzar Eljabbar; Supriadi, Sugeng; Priosoeryanto, Bambang Pontjo; Latief, Benny Syariefsyah

    2018-02-01

    Study of biodegradations of Magnesium ECAP (Equal Channel Angular Pressing) miniplate in the osteosynthesis system has been used as a new material for plate and screw in oral and maxillofacial surgery. This miniplate and screw that were made of Magnesium ECAP were implanted in the femurs of New Zealand rabbits. The degradation process was detected through pocket gas that appeared in hard and soft tissues surrounding in the implanted miniplates and screws. From the changes on the tissues, we can assess the biodegradation process by measuring the gas pocket through micro-CT Scan. Upon the first month of study we euthanized the rabbits and made a micro-CT Scan to see how far the effect of the gas pocket was. Histological analyses were performed to investigate the local tissue response adjacent to the Magnesium ECAP miniplates. We analyzed the femur of a rabbit a month, three months, and five months after implantation. The result showed a degradation rate in the implanted Magnesium ECAP miniplate of 0.61±0.39 mm/year. Unlike the screws, miniplates have higher water content and blood flow than bone, therefore they degrade faster. This study shows promising results for further development of Magnesium ECAP and in the production of osteosynthesis material for rigid fixation in Oral and Maxillofacial skeleton.

  12. Efficacy of 3-Dimensional plates over Champys miniplates in mandibular anterior fractures

    PubMed Central

    Barde, Dhananjay H; Mudhol, Anupama; Ali, Fareedi Mukram; Madan, R S; Kar, Sanjay; Ustaad, Farheen

    2014-01-01

    Background: Mandibular fractures are treated surgically by either rigid or semi-rigid fixation, two techniques that reflect almost opposite concept of craniomaxillofacial osteosynthesis. The shortcomings of these fixations led to the development of 3 dimensional (3D) miniplates. This study was designed with the aim of evaluating the efficiency of 3D miniplate over Champys miniplate in anterior mandibular fractures. Materials & Methods: This study was done in 40 patients with anterior mandibular fractures. Group I consisting of 20 patients in whom 3D plates were used for fixation while in Group II consisting of other 20 patients, 4 holes straight plates were used. The efficacy of 3D miniplate over Champy’s miniplate was evaluated in terms of operating time, average pain, post operative infection, occlusion, wound dehiscence, post operative mobility and neurological deficit. Results: The mean operation time for Group II was more compared to Group I (statistically significant).There was significantly greater pain on day of surgery and at 2nd week for Group II patients but there was no significant difference between the two groups at 4th week. The post operative infection, occlusal disturbance, wound dehiscence, post operative mobility at facture site, neurological deficit was statistically insignificant (chi square test). Conclusion: The results of this study suggest that fixation of anterior mandibular fractures with 3D plates provides three dimensional stability and carries low morbidity and infection rates. The only probable limitation of these 3D plates may be excessive implant material, but they seem to be easy alternative to champys miniplate. How to cite the article: Barde DH, Mudhol A, Ali FM, Madan RS, Kar S, Ustaad F. Efficacy of 3-Dimensional plates over Champys miniplates in mandibular anterior fractures. J Int Oral Health 2014;6(1):20-6. PMID:24653598

  13. Use of miniplates as a method for orthodontic anchorage: a case report.

    PubMed

    Peres, Fernando Gianzanti; Padovan, Luis Eduardo Marques; Kluppel, Leandro Eduardo; Albuquerque, Gustavo Calvalcanti; Souza, Paulo Cesar Ulson de; Claudino, Marcela

    2016-01-01

    Temporary anchorage devices (TADs) have been developed to be used as direct adjuncts in orthodontic treatment and have facilitated treatment of more complex orthodontic cases, including patients with dental impaction. This clinical case reports the applicability of TADs in the orthodontic treatment of a patient with impacted mandibular second molars. Surgical and orthodontic procedures related to the use of miniplates were also discussed in this study. The use of temporary anchorage devices, such as miniplates, can be suggested as an alternative to treat patients with impacted mandibular second molars.

  14. Use of miniplates as a method for orthodontic anchorage: a case report

    PubMed Central

    Peres, Fernando Gianzanti; Padovan, Luis Eduardo Marques; Kluppel, Leandro Eduardo; Albuquerque, Gustavo Calvalcanti; de Souza, Paulo Cesar Ulson; Claudino, Marcela

    2016-01-01

    ABSTRACT Introduction: Temporary anchorage devices (TADs) have been developed to be used as direct adjuncts in orthodontic treatment and have facilitated treatment of more complex orthodontic cases, including patients with dental impaction. Objectives: This clinical case reports the applicability of TADs in the orthodontic treatment of a patient with impacted mandibular second molars. Surgical and orthodontic procedures related to the use of miniplates were also discussed in this study. Conclusions: The use of temporary anchorage devices, such as miniplates, can be suggested as an alternative to treat patients with impacted mandibular second molars. PMID:27901235

  15. A Comparative Study of 3-Dimensional Titanium Versus 2-Dimensional Titanium Miniplates for Open Reduction and Fixation of Mandibular Parasymphysis Fracture.

    PubMed

    Mittal, Yogesh; Varghese, K George; Mohan, S; Jayakumar, N; Chhag, Somil

    2016-03-01

    Three dimensional titanium plating system was developed by Farmand in 1995 to meet the requirements of semi rigid fixation with lesser complication. The purpose of this in vivo prospective study was to evaluate and compare the clinical effectiveness of three dimensional and two dimensional Titanium miniplates for open reduction and fixation of mandibular parasymphysis fracture. Thirty patients with non-comminuted mandibular parasymphysis fractures were divided randomly into two equal groups and were treated with 2 mm 3D and 2D miniplate system respectively. All patients were systematically monitored at 1st, 2nd, 3rd, 6th week, 3rd and 6th month postoperatively. The outcome parameters recorded were severity of pain, infection, mobility, occlusion derangement, paresthesia and implant failure. The data so collected was analyzed using independent t test and Chi square test (α = .05). The results showed that one patient in each group had post-operative infection, occlusion derangement and mobility (p > .05). In Group A, one patient had paresthesia while in Group B, two patients had paresthesia (p > .05). None of the patients in both the groups had implant failure. There was no statistically significant difference between 3D and 2D miniplate system in all the recorded parameters at all the follow-ups (p > .05). 3D miniplates were found to be better than 2D miniplates in terms of cost, ease of surgery and operative time. However, 3D miniplates were unfavorable for cases where fracture line was oblique and in close proximity to mental foramen, where they were difficult to adapt and more chances for tooth-root damage and inadvertent injury to the mental nerve due to traction.

  16. In vivo surface analysis of titanium and stainless steel miniplates and screws.

    PubMed

    Matthew, I R; Frame, J W; Browne, R M; Millar, B G

    1996-12-01

    This study was undertaken to characterize the surfaces of Champy titanium and stainless steel miniplates and screws that had been used to stabilize fractures of the mandible in an animal model. Miniplates and screws were retrieved at 4, 12, and 24 weeks after surgery. Low-vacuum scanning electron microscopy (SEM) of autoclaved unused (control) and test miniplates from the same production batches was undertaken. Energy-dispersive X-ray (EDX) analysis was used to identify compositional variations of the miniplate surface, and Vickers hardness testing was performed. At autopsy, clinical healing of all fractures was noted. SEM analysis indicated no perceptible difference in the surface characteristics of the miniplates at all time intervals. Aluminium and silicon deposits were identified by EDX analysis over the flat surfaces. There was extensive damage to some screw heads. It is concluded that there were no significant changes in the surface characteristics of miniplates retrieved up to 24 weeks after implantation in comparison with controls. Damage to the screws during insertion due to softness of the materials may render their removal difficult. There was no evidence to support the routine removal of titanium or stainless steel miniplates because of surface corrosion up to 6 months after implantation.

  17. Progress on RERTR activities in Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balart, S.; Calzetta, O.; Cristini, P.

    2008-07-15

    Since last RERTR meeting, several tasks involving RERTR activities continued deploying in Argentina: through an agreement between CNEA and US-DoE final steps in the RA-6 reactor core conversion from HEU to LEU are taking place; by means of a return campaign of 42 US origin SNF in the frame of the US-SNF FRR program; an effective minimization of HEU inventory is close to be accomplished; development of a LEU dispersed U-Mo fuel prototype, to be irradiated in a high flux reactor in the frame of the ARG/4/092 IAEA's Technical Cooperation project is progressing; very high density monolithic U-Mo miniplates andmore » plates using MEU and LEU fuel with Zry-4 cladding were developed to be irradiated as a part of the RERTR program irradiation experiment; atomistic modeling prediction (BFS techniques and first principles) enabled to find some trends on the interaction phases; diffusion couples tests under X-ray synchrotron analysis allowed the characterization of several phases involving U-Mo(-Zr) / Al(-Si); finally CNEA continued spreading high quality LEU technology for fission RI production by means of agreements with different producers interested on HEU-LEU conversion. (author)« less

  18. A simple customized surgical guide for orthodontic miniplates with tube.

    PubMed

    Paek, Janghyun; Su, Ming-Jeaun; Kwon, Soon-Yong; Kim, Seong-Hun; Chung, Kyu-Rhim; Nelson, Gerald

    2012-09-01

    This article reports the use of a customized surgical guide for simple and precise C-tube plate placement with minimized incision. Patients who were planning to have orthodontic miniplate treatment because of narrow interradicular space were recruited for this study. A combined silicone and stainless steel wire surgical guide for the C-tube was fabricated on the cast model. The taller wire of the positioning guide is used to accurately start the incision. The incision guide-wire position is verified by placing the miniplate on the coronal horizontal wire to confirm that the incision will coordinate with the screw holes. Because the miniplate is firmly held in place, there is no risk of the miniplate anchoring screws (diameter, 1.5 mm; length, 4 mm) sliding on the bone surface during placement with a manual hand driver. The surgical guide was placed on the clinical site, and it allowed precise placement of the miniplate with minimum incision and preventing from slippage or path-of-insertion angulation errors that might interfere with accurate placement. Customized surgical guide enables precise planning for miniplate positions in anatomically complex sites.

  19. Release of metal in vivo from stressed and nonstressed maxillofacial fracture plates and screws.

    PubMed

    Matthew, I R; Frame, J W

    2000-07-01

    To analyze the release of metal into the adjacent tissues from stressed and nonstressed titanium and stainless steel miniplates and screws. Two miniplates were inserted into the cranial vaults of 12 beagle dogs while they were under general endotracheal anesthesia. One miniplate was shaped to fit the curvature of the skull (control). Another miniplate, made of the same material, was bent in a curve until the midpoint was raised 3 mm above the ends. Screws were inserted and tightened until the plate conformed to the skull curvature, creating stresses in the system. Four animals (2 each, having titanium or stainless steel plates and screws) were killed after 4, 12, and 24 weeks. Metallosis of adjacent soft tissues was assessed qualitatively. Miniplates and screws were removed, and adjacent soft tissue and bone was excised. Titanium, iron, chromium, nickel, and aluminum levels were assayed by ultraviolet/visible light and atomic absorption spectrophotometry. Nonparametric statistical methods were used for data analysis. There was no clear relationship between pigmentation of soft tissue adjacent to the miniplates and screws and the concentrations of metal present. The data did not demonstrate any consistent differences in the concentrations of metallic elements next to stressed and nonstressed (control) miniplates and screws of either material. Stresses arising through poor contouring of miniplates do not appear to influence the extent of release of metal into the adjacent tissues.

  20. Strength of titanium intramedullary implant versus miniplate fixation of mandibular condyle fractures.

    PubMed

    Frake, Paul C; Howell, Rebecca J; Joshi, Arjun S

    2012-07-01

    To test the strength of internal fixation of mandibular condyle fractures repaired with titanium miniplates versus titanium intramedullary implants. Prospective laboratory experimentation in urethane mandible models and human cadaveric mandibles. Materials testing laboratory at an academic medical center. Osteotomies of the mandibular condyle were created in 40 urethane hemimandible models and 24 human cadaveric specimens. Half of the samples in each group were repaired with traditional miniplates, and the other half were repaired with intramedullary titanium implants. Anteroposterior and mediolateral loads were applied to the samples, and the displacement was measured with reference to the applied force. Titanium intramedullary implants demonstrated statistically significant improved strength and stiffness versus miniplates in the urethane model experimental groups. Despite frequent plastic deformation and mechanical failures of the miniplates, a 1.6-mm-diameter titanium intramedullary pin did not mechanically fail in any of the cases. Intramedullary implantation failures were due to secondary fracture of the adjacent cortical bone or experimental design limitations including rotation of the smooth pin implant. Mechanical implant failures that were encountered with miniplate fixation were not seen with titanium intramedullary implants. These intramedullary implants provide stronger and more rigid fixation of mandibular condyle fractures than miniplates in this in vitro model.

  1. Miniplate With a Bendable C-Tube Head Allows the Clinician to Alter Biomechanical Advantage in Extremely Complicated Anatomic Structure.

    PubMed

    Seo, Kyung Won; Iskenderoglu, Nur Serife; Hwang, Eui Hwan; Chung, Kyu-Rhim; Kim, Seong-Hun

    2017-05-01

    This article reports C-tube miniplates as a practical temporary anchorage device choice to treat open bite patients with maxillary sinus pneumatization. The C-tube components are titanium anchor plates and monocortical screws that are basically similar to any other miniplate systems, but it has the unique characteristic of the tube head to be malleable. The manipulation of the head part is easy due to the composition of pure titanium. The I-shaped C-tube with 3 holes and T-shaped C-tube miniplates were placed above the apices of maxillary molars as an absolute anchorage system to intrude the posterior maxilla. The bending of the tube heads assisted in reduction of severe open bite patient with maxillary sinus pneumatization. Sinus perforation during placement of skeletal anchorage system weakens stability of the anchorage and further cause complications. Placement of titanium C-tube miniplates allowed reliable skeletal anchorage and avoided maxillary sinus perforation in patients with extreme pneumatizations. Simple bending of C-tube miniplates ensured increased orthodontic intrusion force without having to replace them, and eliminated consequences such as perforation of maxillary sinus, sinusitis, soft tissue irritation, or infection. Anatomic difficulties in the placement of temporary anchorage device can be easily managed by using the bendable C-tube miniplate. It can serve as a great alternative over miniscrews or regular miniplates with reduced risk of sinus perforation and ability to bend the head portion to control orthodontic vectors and forces.

  2. Ultrastructural analysis of metal particles released from stainless steel and titanium miniplate components in an animal model.

    PubMed

    Matthew, I R; Frame, J W

    1998-01-01

    Low-vacuum scanning electron microscopy (Ivac SEM) was used to characterize the appearance of metal particles released from stressed and unstressed Champy miniplates placed in dogs and to study the relationship of the debris to the surrounding tissues. Under general endotracheal anesthesia, two Champy miniplates (titanium or stainless steel) were placed on the frontal bone in an animal model. One miniplate was bent to fit the curvature of the frontal bone (unstressed) and another miniplate of the same material was bent in a curve until the midpoint was raised 3 mm above the ends. The latter miniplate adapted to the skull curvature under tension during screw insertion (stressed). The miniplates and surrounding tissues were retrieved after intervals of 4, 12, and 24 weeks. Decalcified sections were prepared and examined by light microscopy and Ivac SEM. Under Ivac SEM examination, the titanium particles had a smooth, polygonal outline. Stainless steel particles were typically spherical, with numerous small projections on the surface. Most particles were 1 to 10 microns in diameter. The tissue response to the particles was variable; some particles were covered by fibrous connective tissue or enclosed by bone, and others were intracellular. The metal particles released from stressed or unstressed Champy miniplates were similar, and this was related to their source of origin and duration within the tissues. The tissue response to the particles appeared to depend on their location.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Mary Ann; Dombrowski, David E.; Clarke, Kester Diederik

    U-10 wt. % Mo (U-10Mo) alloys are being developed as low enrichment monolithic fuel for the CONVERT program. Optimization of processing for the monolithic fuel is being pursued with the use of electrical discharge machining (EDM) under CONVERT HPRR WBS 1.2.4.5 Optimization of Coupon Preparation. The process is applicable to manufacturing experimental fuel plate specimens for the Mini-Plate-1 (MP-1) irradiation campaign. The benefits of EDM are reduced machining costs, ability to achieve higher tolerances, stress-free, burr-free surfaces eliminating the need for milling, and the ability to machine complex shapes. Kerf losses are much smaller with EDM (tenths of mm) comparedmore » to conventional machining (mm). Reliable repeatability is achievable with EDM due to its computer-generated machining programs.« less

  4. Swelling of U-7Mo/Al-Si dispersion fuel plates under irradiation - Non-destructive analysis of the AFIP-1 fuel plates

    NASA Astrophysics Data System (ADS)

    Wachs, D. M.; Robinson, A. B.; Rice, F. J.; Kraft, N. C.; Taylor, S. C.; Lillo, M.; Woolstenhulme, N.; Roth, G. A.

    2016-08-01

    Extensive fuel-matrix interactions leading to plate pillowing have proven to be a significant impediment to the development of a suitable high density low-enriched uranium molybdenum alloy (U-Mo) based dispersion fuel for high power applications in research reactors. The addition of silicon to the aluminum matrix was previously demonstrated to reduce interaction layer growth in mini-plate experiments. The AFIP-1 project involved the irradiation, in-canal examination, and post-irradiation examination of two fuel plates. The irradiation of two distinct full size, flat fuel plates (one using an Al-2wt%Si matrix and the other an Al-4043 (∼4.8 wt% Si) matrix) was performed in the INL ATR reactor in 2008-2009. The irradiation conditions were: ∼250 W/cm2 peak Beginning Of Life (BOL) power, with a ∼3.5e21 f/cm3 peak burnup. The plates were successfully irradiated and did not show any pillowing at the end of the irradiation. This paper reports the results and interpretation of the in-canal and post-irradiation non-destructive examinations that were performed on these fuel plates. It further compares additional PIE results obtained on fuel plates irradiated in contemporary campaigns in order to allow a complete comparison with all results obtained under similar conditions. Except for a brief indication of accelerated swelling early in the irradiation of the Al-2Si plate, the fuel swelling is shown to evolve linearly with the fission density through the maximum burnup.

  5. Modified Miniplates for Temporary Skeletal Anchorage in Orthodontics: Placement and Removal Surgeries

    PubMed Central

    Cornelis, Marie A.; Scheffler, Nicole R.; Mahy, Pierre; Siciliano, Sergio; De Clerck, Hugo J.; Tulloch, J.F. Camilla

    2009-01-01

    Purpose Skeletal anchorage systems are increasingly used in orthodontics. This article describes the techniques of placement and removal of modified surgical miniplates used for temporary orthodontic anchorage and reports surgeons’ perceptions of their use. Patients and Methods We enrolled 97 consecutive orthodontic patients having miniplates placed as an adjunct to treatment. A total of 200 miniplates were placed by 9 oral surgeons. Patients and surgeons completed questionnaires after placement and removal surgeries. Results Fifteen miniplates needed to be removed prematurely. Antibiotics and anti-inflammatories were generally prescribed after placement but not after removal surgery. Most surgeries were performed with the patient under local anesthesia. Placement surgery lasted on average between 15 and 30 minutes per plate and was considered by the surgeons to be very easy to moderately easy. The surgery to remove the miniplates was considered easier and took less time. The patients’ chief complaint was swelling, lasting on average 5.3 ± 2.8 days after placement and 4.5 ± 2.6 days after removal. Conclusions Although miniplate placement/removal surgery requires the elevation of a flap, this was considered an easy and relatively short surgical procedure that can typically be performed with the patient under local anesthesia without complications, and it may be considered a safe and effective adjunct for orthodontic treatment. PMID:18571028

  6. Maxillary Protraction With Intermaxillary Elastics to Miniplates Versus Bone-Anchored Face-Mask Therapy in Cleft Lip and Palate Patients.

    PubMed

    Jahanbin, Arezoo; Kazemian, Mozhgan; Eslami, Neda; Pouya, Iman Saeedi

    2016-07-01

    Cleft lip and palate patients usually have deficient maxilla due to postsurgical scars. The aim this study was to compare the effectiveness of miniplates-anchored face-mask therapy versus intermaxillary elastics to miniplates for maxillary traction in cleft lip and palate patients. This clinical trial included 11 prepubertal patients with cleft lip and palate. Initially, a w-arch expander was cemented and activated 3 mm per month to overcorrect the crossbite. Then, the patients were divided into 2 groups: mini-plate-anchored face-mask (n = 5): 2 miniplates were placed in the maxilla and the patients were instructed to wear a face-mask for 12 to 14 hours/per day. Intermaxillary elastics to miniplates (n = 6): 2 miniplates were inserted in the maxilla; 1 on each side and 2 miniplates were placed in the anterior mandible on both sides. Intermaxillary elastics with a force of 250 g per side were attached to the hooks. Cephalometric parameters before treatment (T1) and after achieving positive overjet (T2) were compared between the 2 groups. Fisher exact, paired, and independent t tests were used for statistical comparison. At T1 or T2 there was not a significant difference between the 2 groups in the skeletal, dental, and soft tissue variables. According to results of our preliminary study, intermaxillary elastics to miniplates might have a promising effect as an alternative for face mask therapy in maxillary protraction of cleft lip and palate patients.

  7. Metallic fragments on the surface of miniplates and screws before insertion.

    PubMed

    Ray, M S; Matthew, I R; Frame, J W

    1999-02-01

    Particulate metal fragments have been identified histologically within the tissues adjacent to miniplates and screws after they have been removed. These were thought to have been caused by corrosion and degradation of the metal. However, the particles may have originated from rough edges or from protuberances left on the metal surface after cutting and machining during manufacture, and subsequently become detached. This study was undertaken to analyse the incidence and distribution of metal fragments on the surface of miniplates and screws before use. Fifteen miniplates and 60 screws were examined by stereomicroscopy and scanning electron microscopy. Rough metal edges or protuberances were identified on over half the samples, mostly in the countersink area of screw holes on the mini-plates. Fragments were detected within some of the cruciform screw heads and on some screw threads. We conclude that metal protuberances are present on the surface of mini-plate components when they are received from the manufacturer. There is a risk that the fragments might be detached and deposited into the tissues during insertion.

  8. Custom-made prefabricated titanium miniplates in Le Fort I osteotomies: principles, procedure and clinical insights.

    PubMed

    Philippe, B

    2013-08-01

    This paper describes a new type of miniplate system that is designed and custom made during virtual surgery planning based on an individual patient's osteotomy. These miniplates are prefabricated with commercially pure porous titanium using direct metal laser sintering. The principles that guide the conception and production of this new miniplate are presented. The surgical procedure from the stage of virtual surgery planning until the final Le Fort I osteotomy and bone fixation are described using a case example. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Treatment of a skeletal Class II malocclusion using fixed functional appliance with miniplate anchorage

    PubMed Central

    Celikoglu, Mevlut; Unal, Tuba; Bayram, Mehmet; Candirli, Celal

    2014-01-01

    Based on our literature search, we found that the use of miniplate anchorage with Forsus fatigue-resistance device (FRD) has not yet been reported. Therefore, the aim of the present case report was to present the treatment of a patient with skeletal Class II malocclusion with mandibular retrusion using Forsus FRD with miniplate anchorage. Fixed appliances with 0.022-inch slots were attached to the maxillary teeth and after 8 months of the leveling and alignment of the upper arch, 0.019 × 0.025-inch stainless steel archwire was inserted and cinched back. Two weeks after the placement of the miniplates bilaterally at the symphysis of the mandible, Forsus FRD was adjusted to the miniplates with a 35-mm length of rod chosen. Nine months after the skeletal anchored Forsus worn, Class I canine and molar relations were achieved and overjet was eliminated. PMID:24966783

  10. Fully customized placement of orthodontic miniplates: a novel clinical technique

    PubMed Central

    2014-01-01

    Introduction The initial stability and survival rate of orthodontic mini-implants are highly dependent on the amount of cortical bone at their insertion site. In areas with limited bone availability, mini-plates are preferred to provide effective skeletal anchorage. The purpose of this paper was to present a new clinical technique for the insertion of mini-plates. Methods In order to apply this new technique, a cone-beam image of the insertion area is required. A software (Galaxy Sirona, Bensheim, Germany) is used to construct a three-dimensional image of the scanned area and to virtually determine the exact location of the mini-plate as well as the position of the fixation screws. A stereolithographic model (STL) is then created by means of a three-dimensional scanner. Prior to its surgical insertion, the bone plate is adapted to the stereo-lithographic model. Finally, a custom transfer jig is fabricated in order to assist with accurate placement of the mini-plate intra-operatively. Results The presented technique minimizes intra-operative decision making, because the final position of the bone plate is determined pre-surgically. This significantly reduces the duration of the surgical procedure and improves its outcome. Conclusions A novel method for surgical placement of orthodontic mini-plates is presented. The technique facilitates accurate adaptation of mini-plates and insertion of retaining surgical screws; thereby enabling clinicians to more confidently increase the use of bone plates, especially in anatomical areas where the success of non-osseointegrated mini-screws is less favorable. PMID:24886597

  11. Peculiarities of Employment of Polymeric Miniplates for Mandibular Osteosynthesis: A Preliminary Study

    PubMed Central

    Vares, Yan

    2013-01-01

    Searching for new materials for bone substitution, fixation, and reconstruction is a challenging task that attracts scientists and researchers of different fields of medicine. During the last few decades, much interest has been paid to polymeric materials, polyethylene in particular. The aim of this study is to present generalizations about our own experience in the employment of polyethylene miniplates for the surgical treatment of mandibular fractures. Ninety patients with 139 uni- and bilateral mandibular fractures in different locations were involved. Treatment modalities included open reduction and internal fixation with self-made polyethylene miniplates of straight, T-shaped, Y-shaped, and X-shaped configurations and titanium screws. In 88 (97.8%) cases of surgical treatment of mandibular fractures using polymer miniplates, good anatomical and functional results were achieved. Regardless of the necessity for improvement of some mechanical properties of polyethylene, the results obtained in our clinical investigation allow us to recommend polyethylene miniplates for routine practice. PMID:24436731

  12. Experimental analysis of internal rigid fixation osteosynthesis performed with titanium bone screw and plate systems.

    PubMed

    Righi, E; Carta, M; Bruzzone, A A; Lonardo, P M; Marinaro, E; Pastorino, A

    1996-02-01

    The authors report the results of an experimental analysis performed on titanium miniplates and screws in order to gain a better understanding of dynamic forces in internal rigid fixation. Ten segments of bovine scapula were prepared. Osteotomies were carried out along the minor axis, following which five were fixed with four hole straight miniplates and the other five with six hole double-Y miniplates. Each sample was fastened in a special clamp adapted to a tension test machine and shearing force was applied. Force versus time was recorded and the 50 bone fragments were examined by a pathologist. On the basis of the test results, two simple computer models were developed. No significant difference was evident between the mechanical and computed tests. The most critical sections were located near the hole proximal to the osteotomy and the microscopic findings confirmed this. On the basis of the experimental results, the authors propose a new plate design in which the area subject to most stress, proximal to the bone section, would be of miniplate thickness, the distal aspect being thinner as in a microplate. It is suggested that this design would provide sufficient stability and a high degree of anatomical adjustment of the system.

  13. Stability of maxillary position after Le Fort I osteotomy using self-reinforced biodegradable poly-70L/30DL-lactide miniplates and screws.

    PubMed

    Kim, Bong Chul; Padwa, Bonnie L; Park, Hyung-Sik; Jung, Young-Soo

    2011-05-01

    The purpose of this study was to evaluate the stability of Le Fort I osteotomy using self-reinforced biodegradable poly-70L/30DL-lactide miniplates and screws. Nineteen patients who had Le Fort I osteotomy and internal fixation using self-reinforced biodegradable poly-70L/30DL-lactide miniplates and screws were evaluated both radiographically and clinically. Changes in maxillary position after operation were documented 1 week, 1, 3, 6 mo, and/or 1-yr postoperatively with lateral cephalometric tracings. Complications of the self-reinforced biodegradable poly-70L/30DL-lactide miniplates and screws were evaluated by follow-up roentgenograms and clinical observation. A mixed model analysis for repeated measures was used for statistical analysis. Maxillary position was stable after operation with no change between time points (P > .05). There were no complications with the self-reinforced biodegradable poly-70L/30DL-lactide miniplates and screws. Internal fixation of the maxilla after Le Fort I osteotomy with self-reinforced biodegradable poly-70L/30DL-lactide miniplates and screws is a reliable method for maintaining the postoperative maxillary position after Le Fort I osteotomy. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Use of monocortical miniplates for the intraoral treatment of mandibular fractures.

    PubMed

    Chiodo, Thomas A; Milles, Maano

    2009-03-01

    Fixation of mandibular fractures using rigid hardware has gained wide acceptance over the past 3 decades. The goal of rigid internal fixation is to allow for fracture healing with limited, or no, time in maxillo-mandibular fixation. There has been significant evolution in plate and screw materials and design over the past 30 years. The term miniplate is used to describe a fracture plate with a screw diameter of 2.0 mm or less. With correct diagnosis and understanding of the forces affecting mandible fractures, miniplates can be applied transorally in various situations, allowing for less invasive treatment with open reduction of mandible fractures. This article describes the use of monocortical miniplates for the intraoral treatment of mandibular fractures.

  15. [Guided maxillofacial surgery: Simulation and surgery aided by stereolithographic guides and custom-made miniplates.

    PubMed

    Philippe, B

    2013-08-05

    We present a new model of guided surgery, exclusively using computer assistance, from the preoperative planning of osteotomies to the actual surgery with the aid of stereolithographic cutting guides and osteosynthetic miniplates designed and made preoperatively, using custom-made titanium miniplates thanks to direct metal laser sintering. We describe the principles that guide the designing and industrial manufacturing of this new type of osteosynthesis miniplates. The surgical procedure is described step-by-step using several representative cases of dento-maxillofacial dysmorphosis. The encouraging short-term results demonstrate the wide range of application of this new technology for cranio-maxillofacial surgery, whatever the type of osteotomy performed, and for plastic reconstructive surgery. Copyright © 2013. Published by Elsevier Masson SAS.

  16. Functional and radiologic outcome of open reduction and internal fixation of condylar head and neck fractures using miniplate or microplate system.

    PubMed

    Xie, Si-Tian; Singhal, Dhruv; Chen, Chien-Tzung; Chen, Yu-Ray

    2013-12-01

    Although the appropriate management of condylar process fractures after miniplate or microplate fixation has been described, there has been no comparative analysis of these plating systems. A retrospective review of patients who underwent open reduction and internal fixation (ORIF) of condylar head or neck fractures at our institution from January 2000 through August 2010 identified 70 patients. Of these, 38 were treated with microplates and 32 with miniplates. The primary functional and radiographic results were the maximal mouth opening and condylar bone resorption, respectively. The rates of complications, including malocclusion, chin deviation, temporomandibular joint complaints, and facial nerve palsy, were recorded. The maximal mouth opening was larger in the microplate group than in the miniplate group throughout the follow-up period; this difference was statistically significant 12 (P = 0.020), 18 (P = 0.026), and 24 (P = 0.032) months after ORIF. Similarly, the radiographic scores for bone resorption and condyle morphology were significantly better in the microplate group than in the miniplate group throughout the follow-up period [6 (P = 0.011), 12 (P = 0.035), 24 (P = 0.026), and 48 (P = 0.040) months after ORIF]. Moreover, patients who underwent miniplate fixation experienced a significantly higher incidence of temporomandibular joint click than those who underwent microplate fixation (P = 0.014). Microplates limit dissection, providing excellent fixation for intracapsular condylar head fractures, and also provide adequate rigidity for fixation of condylar neck fractures. Microplate fixation of condylar head and neck fractures yielded excellent functional and radiographic results. The rates of complications after microplate fixation were equal to or less than those in the miniplate group. Prospective studies are needed to confirm these findings.

  17. Effect of stress evolution on microstructural behavior in U-Mo/Al dispersion fuel [Effect of stress on microstructural evolution in U-Mo/Al dispersion fuel

    DOE PAGES

    Jeong, G. Y.; Kim, Yeon Soo; Jamison, L. M.; ...

    2017-02-20

    U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes such as deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling caused by a combination of fuel particle swelling and interaction layer growth. Five miniplates with well-recorded fabrication data and irradiation conditions were selected, and their PIE data was analyzed. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. Using the simulation results shear stress, effective stress and hydrostatic stress exerted on both themore » fuel particles and the Al matrix were determined. The effects of fabrication and irradiation variables on stress-induced microstructural evolutions, such as pore growth in the interaction layers and Al matrix rupture, were investigated. The observed microstructural changes were consistent with the calculated stress distribution in the meat.« less

  18. Effect of stress evolution on microstructural behavior in U-Mo/Al dispersion fuel [Effect of stress on microstructural evolution in U-Mo/Al dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, G. Y.; Kim, Yeon Soo; Jamison, L. M.

    U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes such as deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling caused by a combination of fuel particle swelling and interaction layer growth. Five miniplates with well-recorded fabrication data and irradiation conditions were selected, and their PIE data was analyzed. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. Using the simulation results shear stress, effective stress and hydrostatic stress exerted on both themore » fuel particles and the Al matrix were determined. The effects of fabrication and irradiation variables on stress-induced microstructural evolutions, such as pore growth in the interaction layers and Al matrix rupture, were investigated. The observed microstructural changes were consistent with the calculated stress distribution in the meat.« less

  19. Three-dimensional finite element analysis of a newly designed onplant miniplate anchorage system.

    PubMed

    Liu, Lin; Qu, Yin-Ying; Jiang, Li-Jun; Zhou, Qian; Tang, Tian-Qi

    2016-06-01

    The purpose of this research was to evaluate the structural stress and deformation of a newly designed onplant miniplate anchorage system compared to a standard anchorage system. A bone block integrated with a novel miniplate and fixation screw system was simulated in a three-dimensional model and subjected to force at different directions. The stress distribution and deformation of the miniplate system and cortical bone were evaluated using the three-dimensional finite element method. The results showed that the stress on the plate system and bone was linearly proportional to the force magnitude and was higher when the force was in a vertical direction (Y-axis). Stress and deformation values of the two screws (screw 1 and 2) were asymmetric when the force was added along Y-axis and was greater in screw 1. The highest deformation value of the screws was 7.5148 μm, much smaller than the limit value. The load was decreased for each single miniscrew, and the ability of the new anchorage system to bear the load was also enhanced to some degree. It was suggested that the newly designed onplant miniplate anchorage system is effective, easily implanted and minimally invasive.

  20. Comparison of titanium and biodegradable miniplates for fixation of mandibular fractures.

    PubMed

    Lee, Hyo-Bin; Oh, Ji-Su; Kim, Su-Gwan; Kim, Hak-Kyun; Moon, Seong-Yong; Kim, Young-Kyun; Yun, Pil-Young; Son, Jun-Sik

    2010-09-01

    The purpose of the present study was to compare the use of biodegradable miniplates and titanium miniplates for the fixation of mandibular fractures. BioSorb FX biodegradable plates and screws and titanium miniplates were used in 91 patients (65 males and 26 females; age range 11 to 69 years) for the treatment of mandibular fractures. The clinical and radiographic findings were recorded at 1, 3, 6, and 12 months after surgery. The overall complication rate was 4.41%. In the biodegradable plate group, infection occurred in 2 cases (4.26%) and was resolved by incision and drainage and antibiotics. In the titanium plate group, infection occurred in 1 case and plate fracture in 1 case (4.56%). The fractured plate was removed, and a new titanium miniplate was applied using a trocar. The infection was resolved with antibiotics. No adverse tissue reactions, malocclusions, or malunions occurred during the observation period. Our results have shown that the rate of morbidity is very low with the use of biodegradable plates and titanium plates, suggesting that biodegradable and titanium plates have the potential for successful use in the fixation of mandibular fractures. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.

  1. Treatment of mandibular angle fracture with a 2mm, 3 dimensional rectangular grid compression miniplates: A prospective clinical study.

    PubMed

    Mansuri, Samir; Abdulkhayum, Abdul Mujeeb; Gazal, Giath; Hussain, Mohammed Abid Zahir

    2013-12-01

    Surgical treatment of fracture mandible using an internal fixation has changed in the last decades to achieve the required rigidity, stability and immediate restoration of function. The aim of the study was to do a Prospective study of 10 patients to determine the efficacy of rectangular grid compression miniplates in mandibular fractures. This study was carried out using 2.0 rectangular grid compression miniplates and 8 mm multidirectional screws as a rigid internal fixation in 10 patients without post operative intermaxillary fixation (IMF). Follow up was done for period of 6 months. All fractures were healed with an absolute stability in post operative period. None of the patient complained of post operative difficulty in occlusion. Within the limits of this study, it can be concluded that rectangular grid compression miniplates was rigid, reliable and thus can be recommended for the treatment of mandibular angle fractures. How to cite this article: Mansuri S, Abdulkhayum AM, Gazal G, Hussain MA. Treatment of mandibular angle fracture with a 2mm, 3 dimensional rectangular grid compression miniplates: A prospective clinical study. J Int Oral Health 2013;5(6):93-100 .

  2. A Comparison of Implants Used in Open-Door Laminoplasty: Structural Rib Allografts Versus Metallic Miniplates.

    PubMed

    Tabaraee, Ehsan; Mummaneni, Praveen; Abdul-Jabbar, Amir; Shearer, David; Roy, Esha; Amin, Beejal; Ames, Christopher; Burch, Shane; Deviren, Vedat; Berven, Sigurd; Hu, Serena; Chou, Dean; Tay, Bobby K

    2017-06-01

    A retrospective case-controlled study. Open-door laminoplasty has been successfully used to address cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament. Two common implants include rib allograft struts and metallic miniplates. The goals of this study were to compare outcomes, complications, and costs associated with these 2 implants. A retrospective review was done on 51 patients with allograft struts and 55 patients with miniplates. Primary outcomes were neck visual analog scale (VAS) pain scores and Nurick scores. Secondary outcomes included length of the procedure, estimated blood loss, rates of complications, and the direct costs associated with the surgery and inpatient hospitalization. There were no differences in demographic characteristics, diagnoses, comorbidities, and preoperative outcome scores between the 2 treatment groups. Mean follow-up was 27 months. The postoperative neck VAS scores and Nurick scores improved significantly from baseline to final follow-up for both groups, but there was no difference between the 2 groups. The average length of operation (161 vs. 136 min) and number of foraminotomies (2.7 vs. 1.3) were higher for the allograft group (P=0.007 and 0.0001, respectively). Among the miniplate group, there was no difference in complications but a trend for less neck pain for patients treated without hard collar at final follow-up (1.8 vs. 2.3, P=0.52). The mean direct costs of hospitalization for the miniplate group were 15% higher. Structural rib allograft struts and metallic miniplates result in similar improvements in pain and functional outcome scores with no difference in the rate of complications in short-term follow-up. Potential benefits of using a plate include shorter procedure length and less need for postoperative immobilization. When costs of bracing and operative time are included, the difference in cost between miniplates and allograft struts is negligible.

  3. Evaluation of the effects of skeletal anchoraged Forsus FRD using miniplates inserted on mandibular symphysis: A new approach for the treatment of Class II malocclusion.

    PubMed

    Unal, Tuba; Celikoglu, Mevlut; Candirli, Celal

    2015-05-01

    To evaluate the skeletal, dentoalveolar, and soft tissue effects of the Forsus Fatigue Resistant Device (FRD) appliance with miniplate anchorage for the treatment of skeletal Class II malocclusion. The prospective clinical study group included 17 patients (11 girls and 6 boys; mean age 12.96 ± 1.23 years) with Class II malocclusion due to mandibular retrusion and treated with skeletal anchoraged Forsus FRD. After 0.019 × 0.025-inch stainless steel archwire was inserted and cinched back in the maxillary arch, two miniplates were placed bilaterally on the mandibular symphysis. Then, the Forsus FRD EZ2 appliance was adjusted to the miniplates without leveling the mandibular arch. The changes in the leveling and skeletal anchoraged Forsus FRD phases were evaluated by means of the Paired and Student's t-tests using the cephalometric lateral films. The success rate of the miniplates was found to be 91.5% (38 of 42 miniplates). The mandible significantly moved forward (P < .001) and caused a significant restraint in the sagittal position of the maxilla (P < .001). The overjet correction (-5.11 mm) was found to be mainly by skeletal changes (A-VRL, -1.16 mm and Pog-VRL, 2.62 mm; approximately 74%); the remaining changes were due to the dentoalveolar contributions. The maxillary and mandibular incisors were significantly retruded (P < .001). This new approach was an effective method for treating skeletal Class II malocclusion due to the mandibular retrusion via a combination of skeletal and dentoalveolar changes.

  4. Virtually fabricated guide for placement of the C-tube miniplate.

    PubMed

    Paek, Janghyun; Jeong, Do-Min; Kim, Yong; Kim, Seong-Hun; Chung, Kyu-Rhim; Nelson, Gerald

    2014-05-01

    This paper introduces a virtually planned and stereolithographically fabricated guiding system that will allow the clinician to plan carefully for the best location of the device and to achieve an accurate position without complications. The scanned data from preoperative dental casts were edited to obtain preoperative 3-dimensional (3D) virtual models of the dentition. After the 3D virtual models were repositioned, the 3D virtual surgical guide was fabricated. A surgical guide was created onscreen, and then these virtual guides were materialized into real ones using the stereolithographic technique. Whereas the previously described guide required laboratory work to be performed by the orthodontist, our technique is more convenient because the laboratory work is done remotely by computer-aided design/computer-aided manufacturing technology. Because the miniplate is firmly held in place as the patient holds his or her mandibular teeth against the occlusal pad of the surgical guide, there is no risk that the miniscrews can slide on the bone surface during placement. The software program (2.5-dimensional software) in this study combines 2-dimensional cephalograms with 3D virtual dental models. This software is an effective and efficient alternative to 3D software when 3D computed tomography data are not available. To confidently and safely place a miniplate with screw fixation, a simple customized guide for an orthodontic miniplate was introduced. The use of a custom-made, rigid guide when placing miniplates will minimize complications such as vertical mislocation or slippage of the miniplate during placement. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  5. Miniplate for osteosynthesis in a 9-year-old with symphysis fracture: clinical report.

    PubMed

    Srinivasan, Ila; Kumar, Naveen; Jaganathan, Udhya; Bhandari, Arihant

    2013-09-01

    Osteosynthesis using minimum material in pediatric mandibular fractures is the key, due to the limited space available in the mandible, especially in the mental foramen and apical region. There is an important role of open reduction and rigid internal fixation in re-establishing facial height, width and projection. During the early years of growth and development, there is a high osteogenic potential of the bones. The thick periosteum allows for rapid consolidation and remodeling at the site of fracture. Primary teeth have short, bulbous crowns which compromise stable maxillomandibular fixation during fracture reduction and stabilization using traditional methods. Further, stability of the fractured segments may be hampered because of the displaced or mobile permanent anterior teeth in the mixed dentition along the line of fracture. This clinical report outlines the use of miniplate with monocortical screws in a 9-year-old boy with symphysis fracture. How to cite this article: Srinivasan I, Kumar N, Jaganathan U, Bhandari A. Miniplate for Osteosynthesis in a 9-Year-Old with Symphysis Fracture: Clinical Report. Int J Clin Pediatr Dent 2013;6(3):213-216.

  6. Effects of the foil flatness on irradiation performance of U10Mo monolithic mini-plates

    DOE PAGES

    Ozaltun, Hakan; Medvedev, Pavel G.; Rabin, Barry H.

    2015-09-03

    Monolithic plate-type fuels comprise of a high density, low enrichment, U10Mo fuel foil encapsulated in a cladding material. This concept generates several fabrication challenges such as flatness, centering or thickness variation. There are concerns, if these parameters have implications on overall performance. To investigate these inquiries, the effects of the foil flatness were studied. For this, a representative plate was simulated for an ideal case. The simulations were repeated for additional cases with various foil curvatures to evaluate the effects on the irradiation performance. The results revealed that the stresses and strains induced by fabrication process are not affected bymore » the flatness of the foil. Furthermore, fabrication stresses in the foil are relieved relatively fast in the reactor. The effects of the foil flatness on peak irradiation stressstrains are minimal. There is a slight increase in temperature for the case with maximum curvature. The major impact is on the displacement characteristics. Furthermore, while the case with a flat foil produces a symmetrical swelling, if the foil is curved, more swelling occurs on the thin-cladding side and the plate bows during irradiation.« less

  7. Effects of the shape of the foil corners on the irradiation performance of U10Mo alloy based monolithic mini-plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozaltun, Hakan; Medvedev, Pavel G

    2015-06-01

    Monolithic plate-type fuel is a fuel form being developed for high performance research and test reactors to minimize the use of enriched material. These fuel elements are comprised of a high density, low enrichment, U-Mo alloy based fuel foil, sandwiched between Zirconium liners and encapsulated in Aluminum cladding. The use of a high density fuel in a foil form presents a number of fabrication and operational concerns, such as: foil centering, flatness of the foil, fuel thickness variation, geometrical tilting, foil corner shape etc. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance havemore » been evaluated. As a part of these series of sensitivity studies, the shape of the foil corners were studied. To understand the effects of the corner shapes of the foil on thermo-mechanical performance of the plates, a behavioral model was developed for a selected plate from RERTR-12 experiments (Plate L1P785). Both fabrication and irradiation processes were simulated. Once the thermo-mechanical behavior the plate is understood for the nominal case, the simulations were repeated for two additional corner shapes to observe the changes in temperature, displacement and stress-strain fields. The results from the fabrication simulations indicated that the foil corners do not alter the post-fabrication stress-strain magnitudes. Furthermore, the irradiation simulations revealed that post-fabrication stresses of the foil would be relieved very quickly in operation. While, foils with chamfered and filleted corners yielded stresses with comparable magnitudes, they are slightly lower in magnitudes, and provided a more favorable mechanical response compared with the foil with sharp corners.« less

  8. A novel approach for treatment of skeletal Class II malocclusion: Miniplates-based skeletal anchorage.

    PubMed

    Al-Dumaini, Abdullsalam Abdulqawi; Halboub, Esam; Alhammadi, Maged Sultan; Ishaq, Ramy Abdul Rahman; Youssef, Mohamed

    2018-02-01

    The objective of this study was to evaluate the effect of a new approach-bimaxillary miniplates-based skeletal anchorage-in the treatment of skeletal Class II malocclusion compared with untreated subjects. The study (miniplates) group comprised 28 patients (14 boys, 14 girls) with skeletal Class II malocclusion due to mandibular retrusion, with a mean age of 11.83 years. After 0.017 × 0.025-in stainless steel archwires were placed in both arches, 4 miniplates were fixed bilaterally, 2 in the maxillary anterior areas and 2 in the mandibular posterior areas, and used for skeletal treatment with elastics. Twenty-four Class II untreated subjects (11 boys, 13 girls), with a mean age of 11.75 years, were included as controls. Skeletal and dental changes were evaluated using pretreatment and posttreatment or observational lateral cephalometric radiographs. The treatment changes were compared with the growth changes observed in the control group using independent t tests. Compared with the minimal changes induced by growth in the control group, the skeletal changes induced by miniplates were more obvious. The mandibular length increased significantly (3 mm), and the mandible moved forward, with a significant restraint in the sagittal position of the maxilla (P <0.001). The overjet correction (-4.26 mm) was found to be a net result of skeletal changes (A-Y-axis = -1.18 mm and B-Y-axis = 3.83 mm). The mandibular plane was significantly decreased by 2.75° (P <0.001). This new technique, bimaxillary miniplates-based skeletal anchorage, is an effective method for treating patients with skeletal Class II malocclusions through obvious skeletal, but minimal dentoalveolar, changes. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  9. Replacing a failed mini-implant with a miniplate to prevent interruption during orthodontic treatment.

    PubMed

    Lee, Jin-Hwa; Choo, Hyeran; Kim, Seong-Hun; Chung, Kyu-Rhim; Giannuzzi, Lucille A; Ngan, Peter

    2011-06-01

    When mini-implants fail during orthodontic treatment, there is a need to have a backup plan to either replace the failed implant in the adjacent interradicular area or wait for the bone to heal before replacing the mini-implant. We propose a novel way to overcome this problem by replacement with a miniplate so as not to interrupt treatment or prolong treatment time. The indications, advantages, efficacy, and procedures for switching from a mini-implant to a miniplate are discussed. Two patients who required replacement of failed mini-implants are presented. In the first patient, because of the proximity of the buccal vestibule to the mini-implant, it was decided to replace the failed mini-implant by an I-shaped C-tube miniplate. In the second patient, radiolucencies were found around the failed mini-implants, making the adjacent alveolar bone unavailable for immediate placement of another mini-implant. In addition, the maxillary sinus pneumatization was expanded deeply into the interradicular spaces; this further mandated an alternative placement site. One failed mini-implant was examined under a scanning electron microscope for bone attachment. Treatment was completed in both patients after replacement with miniplates without interrupting the treatment mechanics or prolonging the treatments. Examination under the scanning electron microscope showed partial bone growth into the coating pores and titanium substrate interface even after thorough cleaning and sterilization. Replacement with a miniplate is a viable solution for failed mini-implants during orthodontic treatment. The results from microscopic evaluation of the failed mini-implant suggest that stringent guidelines are needed for recycling used mini-implants. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  10. Bone repair in mandibular body osteotomy after using 2.0 miniplate system – histological and histometric analysis in dogs

    PubMed Central

    Sverzut, Cássio Edvard; Lucas, Marina Amaral; Sverzut, Alexander Tadeu; Trivellato, Alexandre Elias; Beloti, Marcio Mateus; Rosa, Adalberto Luiz; de Oliveira, Paulo Tambasco

    2008-01-01

    The objective of this study was to evaluate the bone repair along a mandibular body osteotomy after using a 2.0 miniplate system. Nine adult mongrel dogs were subjected to unilateral continuous defect through an osteotomy between the mandibular 3rd and 4th premolars. Two four-hole miniplates were placed in accordance with the Arbeitgeimeinschaft für Osteosynthesefragen Manual. Miniplates adapted to the alveolar processes were fixed monocortically with 6.0-mm-length titanium alloy self-tapping screws, whereas miniplates placed near the mandible bases were fixed bicortically. At 2, 6 and 12 weeks, three dogs were sacrificed per period, and the osteotomy sites were removed, divided into three thirds (Tension Third, TT; Intermediary Third, IT; Compression Third, CT) and prepared for conventional and polarized light microscopy. At 6 weeks, while the CT repaired faster and showed bone union by woven bone formation, the TT and IT exhibited a ligament-like fibrous connective tissue inserted in, and connecting, newly formed woven bone overlying the parent lamellar bone edges. At 12 weeks, bone repair took place at all thirds. Histometrically, proportions of newly formed bone did not alter at TT, IT and CT, whereas significantly enhanced bone formation was observed for the 12-week group, irrespective of the third. The results demonstrated that although the method used to stabilize the mandibular osteotomy allowed bone repair to occur, differences in the dynamics of bone healing may take place along the osteotomy site, depending on the action of tension and compression forces generated by masticatory muscles. PMID:18336526

  11. Orthodontic miniplate with tube as an efficient tool for borderline cases.

    PubMed

    Chung, Kyu-Rhim; Kim, Seong-Hun; Kang, Yoon-Goo; Nelson, Gerald

    2011-04-01

    An orthodontic miniplate tube device, the C-tube, was designed for use in patients for whom a conventional miniscrew is not suitable, such as those with narrow interradicular spaces, extended maxillary sinuses, dilacerated roots, or severe alveolar bone loss. After local anesthesia, 2 parallel horizontal incisions are made in the area of placement, and the periosteum is elevated. The C-tube is slipped under the mucosal flap and fixed with self-drilling miniscrews (diameter, 1.5 mm; length, 4 mm). Because the screws are short, there is adequate retention in the alveolar plate, and the clinician can avoid the increased morbidity of anchoring to the zygomatic buttress. This makes placement possible with superficial anesthesia. A small rolled tube at the head part can act as an orthodontic tube and accommodate archwires or as a hook to attach orthodontic elastics. However, in some patients with pneumatization or systemic diseases, such as diabetes mellitus, or in heavy smokers, cross-type C-tubes with longer miniscrews are recommend for better stability. This new type of orthodontic miniplate can be an effective alternative to conventional 1-component screws or miniplates in complex situations. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  12. Prototype of a silicon nitride ceramic-based miniplate osteofixation system for the midface.

    PubMed

    Neumann, Andreas; Unkel, Claus; Werry, Christoph; Herborn, Christoh U; Maier, Horst R; Ragoss, Christian; Jahnke, Klaus

    2006-06-01

    The favorable properties of silicon nitride (Si3N4) ceramics, such as high mean strength level and fracture toughness, suggest biomedical use as an implant material. Minor reservations about the biocompatibility of Si3N4 ceramics were cleared up by previous in vitro and in vivo investigations. A Si3N4 prototype minifixation system was manufactured and implanted for osteosynthesis of artificial frontal bone defects in 3 minipigs. After 3 months, histological sections, computed tomography (CT) scans, and magnetic resonance imaging (MRI) scans were obtained. Finite element modeling (FEM) was used to simulate stresses and strains on Si3N4 miniplates and screws to calculate survival probabilities. Si3N4 miniplates and screws showed satisfying intraoperative workability. There was no implant loss, displacement, or fracture. Bone healing was complete in all animals. The formation of new bone was observed in direct contact to the implants. The implants showed no artifacts on CT and MRI scanning. FEM simulation confirmed the mechanical reliability of the screws, whereas simulated plate geometries regarding pullout forces at maximum load showed limited safety in a bending situation. Si3N4 ceramics show a good biocompatibility outcome both in vitro and in vivo. In ENT surgery, this ceramic may serve as a biomaterial for osteosynthesis (eg, of the midface including reconstruction the floor of the orbit and the skull base). To our knowledge, this is the first introduction of a ceramic-based miniplate-osteofixation system. Advantages compared with titanium are no risk of implantation to bone with mucosal attachment, no need for explantation, and no interference with radiologic imaging. Disadvantages include the impossibility of individual bending of the miniplates.

  13. Finite element analysis of three patterns of internal fixation of fractures of the mandibular condyle.

    PubMed

    Aquilina, Peter; Chamoli, Uphar; Parr, William C H; Clausen, Philip D; Wroe, Stephen

    2013-06-01

    The most stable pattern of internal fixation for fractures of the mandibular condyle is a matter for ongoing discussion. In this study we investigated the stability of three commonly used patterns of plate fixation, and constructed finite element models of a simulated mandibular condylar fracture. The completed models were heterogeneous in the distribution of bony material properties, contained about 1.2 million elements, and incorporated simulated jaw-adducting musculature. Models were run assuming linear elasticity and isotropic material properties for bone. This model was considerably larger and more complex than previous finite element models that have been used to analyse the biomechanical behaviour of differing plating techniques. The use of two parallel 2.0 titanium miniplates gave a more stable configuration with lower mean element stresses and displacements over the use of a single miniplate. In addition, a parallel orientation of two miniplates resulted in lower stresses and displacements than did the use of two miniplates in an offset pattern. The use of two parallel titanium plates resulted in a superior biomechanical result as defined by mean element stresses and relative movement between the fractured fragments in these finite element models. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. Interactive planning of miniplates

    NASA Astrophysics Data System (ADS)

    Gall, Markus; Reinbacher, Knut; Wallner, Jürgen; Stanzel, Jan; Chen, Xiaojun; Schwenzer-Zimmerer, Katja; Schmalstieg, Dieter; Egger, Jan

    2017-03-01

    In this contribution, a novel method for computer aided surgery planning of facial defects by using models of purchasable MedArtis Modus 2.0 miniplates is proposed. Implants of this kind, which belong to the osteosynthetic material, are commonly used for treating defects in the facial area. By placing them perpendicular on the defect, the miniplates are fixed on the healthy bone, bent with respect to the surface, to stabilize the defective area. Our software is able to fit a selection of the most common implant models to the surgeon's desired position in a 3D computer model. The fitting respects the local surface curvature and adjusts direction and position in any desired way. Conventional methods use Computed Tomography (CT) scans to generate STereoLithic (STL) models serving as bending template for the implants or use a bending tool during the surgery for readjusting the implant several times. Both approaches lead to undesirable expenses in time. With our visual planning tool, surgeons are able to pre-plan the final implant within just a few minutes. The resulting model can be stored in STL format, which is the commonly used format for 3D printing. With this technology, surgeons are able to print the implant just in time or use it for generating a bending tool, both leading to an exactly bent miniplate.

  15. Assessment of Nuclear Fuels using Radiographic Thickness Measurement Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhammad Abir; Fahima Islam; Hyoung Koo Lee

    2014-11-01

    The Convert branch of the National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI) focuses on the development of high uranium density fuels for research and test reactors for nonproliferation. This fuel is aimed to convert low density high enriched uranium (HEU) based fuel to high density low enriched uranium (LEU) based fuel for high performance research reactors (HPRR). There are five U.S. reactors that fall under the HPRR category, including: the Massachusetts Institute of Technology Reactor (MITR), the National Bureau of Standards Reactor (NBSR), the Missouri University Research Reactor (UMRR), the Advanced Test Reactor (ATR), and the Highmore » Flux Isotope Reactor (HFIR). U-Mo alloy fuel phase in the form of either monolithic or dispersion foil type fuels, such as ATR Full-size In center flux trap Position (AFIP) and Reduced Enrichment for Research and Test Reactor (RERTR), are being designed for this purpose. The fabrication process1 of RERTR is susceptible to introducing a variety of fuel defects. A dependable quality control method is required during fabrication of RERTR miniplates to maintain the allowable design tolerances, therefore evaluating and analytically verifying the fabricated miniplates for maintaining quality standards as well as safety. The purpose of this work is to analyze the thickness of the fabricated RERTR-12 miniplates using non-destructive technique to meet the fuel plate specification for RERTR fuel to be used in the ATR.« less

  16. Miniplates and mini-implants: bone remodeling as their biological foundation1

    PubMed Central

    Consolaro, Alberto

    2015-01-01

    Abstract The tridimensional network formed by osteocytes controls bone design by coordinating cell activity on trabecular and cortical bone surfaces, especially osteoblasts and clasts. Miniplates and mini-implants provide anchorage, allowing all other orthodontic and orthopedic components, albeit afar, to deform and stimulate the network of osteocytes to command bone design remodeling upon "functional demand" established by force and its vectors. By means of transmission of forces, whether near or distant, based on anchorage provided by miniplates, it is possible to change the position, shape and size as well as the relationship established between the bones of the jaws. Understanding bone biology and the continuous remodeling of the skeleton allows the clinician to perform safe and accurate rehabilitation treatment of patients, thus increasing the possibilities and types of intervention procedures to be applied in order to restore patient's esthetics and function. PMID:26691966

  17. Orthodontic camouflage of skeletal Class III malocclusion with miniplate: a case report

    PubMed Central

    Farret, Marcel Marchiori; Farret, Milton M. Benitez; Farret, Alessandro Marchiori

    2016-01-01

    ABSTRACT Introduction: Skeletal Class III malocclusion is often referred for orthodontic treatment combined with orthognathic surgery. However, with the aid of miniplates, some moderate discrepancies become feasible to be treated without surgery. Objective: To report the case of a 24-year-old man with severe skeletal Angle Class III malocclusion with anterior crossbite and a consequent concave facial profile. Methods: The patient refused to undergo orthognathic surgery; therefore, orthodontic camouflage treatment with the aid of miniplates placed on the mandibular arch was proposed. Results: After 18 months of treatment, a Class I molar and canine relationship was achieved, while anterior crossbite was corrected by retraction of mandibular teeth. The consequent decrease in lower lip fullness and increased exposure of maxillary incisors at smiling resulted in a remarkable improvement of patient's facial profile, in addition to an esthetically pleasing smile, respectively. One year later, follow-up revealed good stability of results. PMID:27653269

  18. Orthodontic camouflage of skeletal Class III malocclusion with miniplate: a case report.

    PubMed

    Farret, Marcel Marchiori; Farret, Milton M Benitez; Farret, Alessandro Marchiori

    2016-01-01

    Skeletal Class III malocclusion is often referred for orthodontic treatment combined with orthognathic surgery. However, with the aid of miniplates, some moderate discrepancies become feasible to be treated without surgery. To report the case of a 24-year-old man with severe skeletal Angle Class III malocclusion with anterior crossbite and a consequent concave facial profile. The patient refused to undergo orthognathic surgery; therefore, orthodontic camouflage treatment with the aid of miniplates placed on the mandibular arch was proposed. After 18 months of treatment, a Class I molar and canine relationship was achieved, while anterior crossbite was corrected by retraction of mandibular teeth. The consequent decrease in lower lip fullness and increased exposure of maxillary incisors at smiling resulted in a remarkable improvement of patient's facial profile, in addition to an esthetically pleasing smile, respectively. One year later, follow-up revealed good stability of results.

  19. [Miniplate internal fixation and autogenous iliac bone graft in surgical treatment of old metatarsal fractures].

    PubMed

    Pan, Hao; Yu, Guangrong; Xiong, Wen; Zhao, Zhiming; Ding, Fan; Zheng, Qiong; Kan, Wushen

    2011-07-01

    To summarize the experience of treating old metatarsal fractures with surgery methods of miniplate internal fixation and autogenous iliac bone. Between May 2009 and July 2010, 7 patients with old metatarsal fractures were treated surgically, including 5 multi-metatarsal fractures and 2 single metatarsal fractures. There were 5 males and 2 females aged from 25 to 43 years (mean, 33 years). The time from fracture to operation was 4-12 weeks. The X-ray films showed that a small amount of callus formed at both broken ends with shortening, angulation, or rotation displacement. The surgical treatments included open reduction, internal fixation by miniplate, and autogenous iliac bone graft (1.5-2.5 cm(3)). The external plaster fixation was used in all patients for 4 to 6 weeks postoperatively (mean, 5 weeks). All incisions healed by first intention. The 7 patients were followed up 8-18 months (mean, 13.5 months). The clinical fracture healing time was 6 to 12 weeks postoperatively (mean, 8.4 weeks). No pain of planta pedis occurred while standing and walking. The American Orthopaedic Foot and Ankle Society (AOFAS) mesopedes and propodium score was 75-96 (mean, 86.4). It has the advantages of reliable internal fixation, high fracture healing rate, less complications to treat old metatarsal fractures with surgery methods of miniplate internal fixation and autogenous iliac bone graft, so it is an effective treatment method.

  20. USHPRR FUEL FABRICATION PILLAR: FABRICATION STATUS, PROCESS OPTIMIZATIONS, AND FUTURE PLANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wight, Jared M.; Joshi, Vineet V.; Lavender, Curt A.

    The Fuel Fabrication (FF) Pillar, a project within the U.S. High Performance Research Reactor Conversion program of the National Nuclear Security Administration’s Office of Material Management and Minimization, is tasked with the scale-up and commercialization of high-density monolithic U-Mo fuel for the conversion of appropriate research reactors to use of low-enriched fuel. The FF Pillar has made significant steps to demonstrate and optimize the baseline co-rolling process using commercial-scale equipment at both the Y-12 National Security Complex (Y-12) and BWX Technologies (BWXT). These demonstrations include the fabrication of the next irradiation experiment, Mini-Plate 1 (MP-1), and casting optimizations at Y-12.more » The FF Pillar uses a detailed process flow diagram to identify potential gaps in processing knowledge or demonstration, which helps direct the strategic research agenda of the FF Pillar. This paper describes the significant progress made toward understanding the fuel characteristics, and models developed to make informed decisions, increase process yield, and decrease lifecycle waste and costs.« less

  1. Comparative biomechanical evaluation of mono-cortical osteosynthesis systems for condylar fractures using photoelastic stress analysis.

    PubMed

    Christopoulos, Panos; Stathopoulos, Panagiotis; Alexandridis, Constantinos; Shetty, Vivek; Caputo, Angelo

    2012-10-01

    Fractures of the condyle account for 20-30% of all mandibular fractures, and are therefore one of the most common facial injuries. Precise evaluation of the mechanical stresses that develop in a fractured mandible is essential, particularly for the testing of systems currently used for stabilisation of the condylar fragment. Photoelastic stress analysis can be used to visualise alterations in the strain that is induced in the mandible by a fracture, and in the osteosynthesis materials used to stabilise it. This method, used on currently used osteosynthesis materials, showed that stabilisation of a subcondylar fracture with a single miniplate does not provide enough stability, whereas the use of two miniplates - properly positioned - offers sufficient stability in all loading conditions. A microplate may be used as a tension-resisting plate with equally good results. Copyright © 2011 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. [3-D finite element modeling of internal fixation of mandibular mental fracture and the design of boundary constraints].

    PubMed

    Luo, Xiaohui; Wang, Hang; Fan, Yubo

    2007-04-01

    This study was aimed to develop a 3-D finite element (3-D FE) model of the mental fractured mandible and design the boundary constrains. The CT images from a health volunteer were used as the original information and put into ANSYS program to build a 3-D FE model. The model of the miniplate and screw which were used for the internal fixation was established by Pro/E. The boundary constrains of different muscle loadings were used to simulate the 3 functional conditions of the mandible. A 3-D FE model of mental fractured mandible under the miniplate-screw internal fixation system was constructed. And by the boundary constraints, the 3 biting conditions were simulated and the model could serve as a foundation on which to analyze the biomechanical behavior of the fractured mandible.

  3. Effects of cleft type, facemask anchorage method, and alveolar bone graft on maxillary protraction: a three-dimensional finite element analysis.

    PubMed

    Yang, Il-Hyung; Chang, Young-Il; Kim, Tae-Woo; Ahn, Sug-Joon; Lim, Won-Hee; Lee, Nam-Ki; Baek, Seung-Hak

    2012-03-01

    To investigate biomechanical effects of cleft type (unilateral/bilateral cleft lip and palate), facemask anchorage method (tooth-borne and miniplate anchorage), and alveolar bone graft on maxillary protraction. Three-dimensional finite element analysis with application of orthopedic force (30° downward and forward to the occlusal plane, 500 g per side). Computed tomography data from a 13.5-year-old girl with maxillary hypoplasia. Eight three-dimensional finite element models were fabricated according to cleft type, facemask anchorage method, and alveolar bone graft. Initial stress distribution and displacement after force application were analyzed. Unilateral cleft lip and palate showed an asymmetric pattern in stress distribution and displacement before alveolar bone graft and demonstrated a symmetric pattern after alveolar bone graft. However, bilateral cleft lip and palate showed symmetric patterns in stress distribution and displacement before and after alveolar bone graft. In both cleft types, the graft extended the stress distribution area laterally beyond the infraorbital foramen. For both unilateral and bilateral cleft lip and palate, a facemask with a tooth-borne anchorage showed a dentoalveolar effect with prominent stress distribution and displacement on the upper canine point. In contrast, a facemask with miniplate anchorage exhibited an orthopedic effect with more favorable stress distribution and displacement on the middle maxilla point. In addition, the facemask with a miniplate anchorage showed a larger stress distribution area and sutural stress values than did the facemask with a tooth-borne anchorage. The pterygopalatine and zygomatico-maxillary sutures showed the largest sutural stress values with a facemask with a miniplate anchorage and after alveolar bone grafting, respectively. In this three-dimensional finite element analysis, it would be more advantageous to perform maxillary protraction using a facemask with a miniplate anchorage than a facemask with a tooth-borne anchorage and after alveolar bone graft rather than before alveolar bone graft, regardless of cleft type.

  4. The Redox Balance in Erythrocytes, Plasma, and Periosteum of Patients with Titanium Fixation of the Jaw

    PubMed Central

    Borys, Jan; Maciejczyk, Mateusz; Krȩtowski, Adam J.; Antonowicz, Bozena; Ratajczak-Wrona, Wioletta; Jabłońska, Ewa; Załęski, Piotr; Waszkiel, Danuta; Ładny, Jerzy R.; Żukowski, Piotr; Zalewska, Anna

    2017-01-01

    Titanium miniplates and screws are commonly used for fixation of jaw fractured or osteotomies. Despite the opinion of their biocompatibility, in clinical practice symptoms of chronic inflammation around the fixation develop in some patients, even many years after the application of miniplates and screws. The cause of these complications is still an unanswered question. Taking into account that oxidative stress is one of the toxic action of titanium, we have evaluated the antioxidant barrier as well as oxidative stress in the erythrocytes, plasma and periosteum covering the titanium fixation of the jaw. The study group was composed of 32 patients aged 20–30 with inserted miniplates and screws. The antioxidant defense: catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase-1 (SOD1), uric acid (UA), total antioxidant capacity (TAC), as well as oxidative damage products: advanced oxidation protein products (AOPP), advanced glycation end products (AGE), dityrosine, kynurenine, N-formylkynurenine, tryptophan, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), total oxidant status (TOS), and oxidative status index (OSI) were evaluated. SOD1 activity (↓37%), and tryptophan levels (↓34%) showed a significant decrease while AOPP (↑25%), TOS (↑80%) and OSI (↑101%) were significantly elevated in maxillary periosteum of patients who underwent bimaxillary osteotomies as compared to the control group. SOD-1 (↓55%), TAC (↓58.6%), AGE (↓60%) and N-formylkynurenine (↓34%) was statistically reduced while AOPP (↑38%), MDA (↑29%), 4-HNE (↑114%), TOS (↑99%), and OSI (↑381%) were significantly higher in the mandibular periosteum covering miniplates/screw compared with the control tissues. There were no correlations between antioxidants and oxidative stress markers in the periosteum of all patients and the blood. As exposure to the Ti6Al4V titanium alloy leads to disturbances of redox balance in the periosteum surrounding titanium implants of the maxilla and the mandible so antioxidant supplementation should be recommended to the patients undergoing treatment of dentofacial deformities with the use of titanium implants. The results we obtained may also indicate a need to improve the quality of titanium jaw fixations through increase of TiO2 passivation layer thickness or to develop new, the most highly biodegradable materials for their production. PMID:28638348

  5. Long-term stability of soft tissue changes in anterior open bite adults treated with zygomatic miniplate-anchored maxillary posterior intrusion.

    PubMed

    Marzouk, Eiman S; Kassem, Hassan E

    2018-03-01

    To evaluate soft tissue changes and their long-term stability in skeletal anterior open bite adults treated by maxillary posterior teeth intrusion using zygomatic miniplates and premolar extractions. Lateral cephalograms of 26 patients were taken at pretreatment (T1), posttreatment (T2), 1 year posttreatment (T3), and 4 years posttreatment (T4). At the end of treatment, the soft tissue facial height and profile convexity were reduced. The lips increased in length and thickness, with backward movement of the upper lip and forward movement of the lower lip. The total relapse rate ranged from 20.2% to 31.1%. At 4 years posttreatment, 68.9% to 79.8% of the soft tissue treatment effects were stable. The changes in the first year posttreatment accounted for approximately 70% of the total relapse. Soft tissue changes following maxillary posterior teeth intrusion with zygomatic miniplates and premolar extractions appear to be stable 4 years after treatment.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkes, Douglas E.; Senor, David J.; Casella, Andrew M.

    Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. The current paper extends a failure model originally developed for UO2-stainless steel dispersion fuels and used currently available thermal-mechanical property information for the materials ofmore » interest in the current proposed design. A number of fabrication and irradiation parameters were investigated to understand the conditions at which failure of the matrix, classified as pore formation in the matrix, might occur. The results compared well with experimental observations published as part of the Reduced Enrichment for Research and Test Reactors (RERTR)-6 and -7 mini-plate experiments. Fission rate, a function of the 235U enrichment, appeared to be the most influential parameter in premature failure, mainly as a result of increased interaction layer formation and operational temperature, which coincidentally decreased the yield strength of the matrix and caused more rapid fission gas production and recoil into the surrounding matrix material. Addition of silicon to the matrix appeared effective at reducing the rate of interaction layer formation and can extend the performance of a fuel plate under a certain set of irradiation conditions, primarily moderate heat flux and burnup. Increasing the dispersed fuel particle diameter may also be effective, but only when combined with other parameters, e.g., lower enrichment and increased Si concentration. The model may serve as a valuable tool in initial experimental design.« less

  7. CAD-CAM plates versus conventional fixation plates for primary mandibular reconstruction: A biomechanical in vitro analysis.

    PubMed

    Rendenbach, Carsten; Sellenschloh, Kay; Gerbig, Lucca; Morlock, Michael M; Beck-Broichsitter, Benedicta; Smeets, Ralf; Heiland, Max; Huber, Gerd; Hanken, Henning

    2017-11-01

    CAD/CAM reconstruction plates have become a viable option for mandible reconstruction. The aim of this study was to determine whether CAD/CAM plates provide higher fatigue strength compared with conventional fixation systems. 1.0 mm miniplates, 2.0 mm conventional locking plates (DePuy Synthes, Umkirch, Germany), and 2.0 mm CAD/CAM plates (Materialise, Leuven, Belgium/DePuy Synthes) were used to reconstruct a polyurethane mandible model (Synbone, Malans, CH) with cortical and cancellous bone equivalents. Mastication was simulated via cyclic dynamic testing using a universal testing machine (MTS, Bionix, Eden Prairie, MN, USA) until material failure reached a rate of 1 Hz with increasing loads on the left side. No significant difference was found between the groups until a load of 300 N. At higher loads, vertical displacement differed increasingly, with a poorer performance of miniplates (p = 0.04). Plate breakage occurred in miniplates and conventional locking plates. Screw breakage was recorded as the primary failure mechanism in CAD/CAM plates. Stiffness was significantly higher with the CAD/CAM plates (p = 0.04). CAD/CAM plates and reconstruction plates provide higher fatigue strength than miniplates, and stiffness is highest in CAD/CAM systems. All tested fixation methods seem sufficiently stable for mandible reconstruction. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. Evaluation of long-term stability of skeletal anterior open bite correction in adults treated with maxillary posterior segment intrusion using zygomatic miniplates.

    PubMed

    Marzouk, Eiman S; Kassem, Hassan E

    2016-07-01

    This study evaluated the long-term stability of maxillary molar intrusion and anterior open-bite correction in adults treated by maxillary posterior teeth intrusion with zygomatic miniplates. The sample included 26 skeletal anterior open-bite patients, who had maxillary posterior segment intrusion with zygomatic miniplates. Lateral cephalograms were taken at pretreatment, posttreatment, 1 year posttreatment, and 4 years posttreatment. The mean maxillary molar intrusion was 3.04 mm (P ≤0.01), and the mean bite closure was 6.93 mm (P ≤0.01). The intruded maxillary molars relapsed by 10.20% in the first year after treatment and by 13.37% by 4 years after treatment. Overbite relapsed by 8.19% and 11.18% after 1 year and 4 years posttreatment, respectively. The first year after treatment accounted for 76.29% and 73.2% of the total relapses of molar intrusion and overbite, respectively. The 4-year posttreatment relapse amounts of maxillary molar intrusion and overbite were positively correlated with the amount of pretreatment maxillary molar height and the initial open-bite severity, respectively, but negatively correlated with the amounts of maxillary molar intrusion and open-bite correction gained by treatment. Molar intrusion with zygomatic miniplates appears to be stable 4 years after treatment. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  9. A customized fixation plate with novel structure designed by topological optimization for mandibular angle fracture based on finite element analysis.

    PubMed

    Liu, Yun-Feng; Fan, Ying-Ying; Jiang, Xian-Feng; Baur, Dale A

    2017-11-15

    The purpose of this study was to design a customized fixation plate for mandibular angle fracture using topological optimization based on the biomechanical properties of the two conventional fixation systems, and compare the results of stress, strain and displacement distributions calculated by finite element analysis (FEA). A three-dimensional (3D) virtual mandible was reconstructed from CT images with a mimic angle fracture and a 1 mm gap between two bone segments, and then a FEA model, including volume mesh with inhomogeneous bone material properties, three loading conditions and constraints (muscles and condyles), was created to design a customized plate using topological optimization method, then the shape of the plate was referenced from the stress concentrated area on an initial part created from thickened bone surface for optimal calculation, and then the plate was formulated as "V" pattern according to dimensions of standard mini-plate finally. To compare the biomechanical behavior of the "V" plate and other conventional mini-plates for angle fracture fixation, two conventional fixation systems were used: type A, one standard mini-plate, and type B, two standard mini-plates, and the stress, strain and displacement distributions within the three fixation systems were compared and discussed. The stress, strain and displacement distributions to the angle fractured mandible with three different fixation modalities were collected, respectively, and the maximum stress for each model emerged at the mandibular ramus or screw holes. Under the same loading conditions, the maximum stress on the customized fixation system decreased 74.3, 75.6 and 70.6% compared to type A, and 34.9, 34.1, and 39.6% compared to type B. All maximum von Mises stresses of mandible were well below the allowable stress of human bone, as well as maximum principal strain. And the displacement diagram of bony segments indicated the effect of treatment with different fixation systems. The customized fixation system with topological optimized structure has good biomechanical behavior for mandibular angle fracture because the stress, strain and displacement within the plate could be reduced significantly comparing to conventional "one mini-plate" or "two mini-plates" systems. The design methodology for customized fixation system could be used for other fractures in mandible or other bones to acquire better mechanical behavior of the system and improve stable environment for bone healing. And together with SLM, the customized plate with optimal structure could be designed and fabricated rapidly to satisfy the urgent time requirements for treatment.

  10. Dentofacial effects of skeletal anchored treatment modalities for the correction of maxillary retrognathia.

    PubMed

    Sar, Cağla; Sahinoğlu, Zahire; Özçirpici, Ayça Arman; Uçkan, Sina

    2014-01-01

    The aim of this clinical study was to investigate the skeletal, dentoalveolar, and soft-tissue effects of 2 skeletal anchorage rationales for Class III treatment compared with an untreated Class III control group. Fifty-one subjects who were in the prepubertal or pubertal growth period were included in the study. In group 1 (n = 17), facemasks were applied from miniplates placed in the lateral nasal walls of the maxilla, and intermaxillary Class III elastics were applied from symphyseal miniplates to a bonded appliance on the maxilla in group 2 (n = 17). These skeletal anchored groups were compared with an untreated control group (n = 17). Lateral cephalometric radiographs were obtained at the beginning and the end of the observation periods in all groups and analyzed according to the structural superimposition method. Differences between the groups were assessed with the Wilcoxon signed rank test or the paired-samples t test. The treatment periods were 7.4 and 7.6 months in groups 1 and 2, respectively, and the untreated control group was observed for 7.5 months. The maxilla moved forward by 3.11 mm in group 1 and by 3.82 mm in group 2. The counterclockwise rotation of the maxilla was significantly less in group 1 compared with group 2 (P <0.01). The mandible showed clockwise rotation and was positioned downward and backward in the treatment groups, and it was significantly greater in group 2 compared with group 1 (P <0.01). Changes in the maxillary incisor measurements were negligible in group 1 compared with group 2. A significant amount of mandibular incisor retroclination was seen in group 1, and a significant proclination was seen in group 2. The maxillomandibular relationships and the soft-tissue profiles were improved remarkably in both treatment groups. The protocols of miniplates with facemasks and miniplates with Class III elastics offer valid alternatives to conventional methods in severe skeletal Class III patients. However, the 2 maxillary protraction protocols demonstrated significant skeletal and dentoalveolar effects. The miniplate with facemask protocol is preferred for patients with severe maxillary retrusion and a high-angle vertical pattern, whereas in patients with a decreased or normal vertical pattern and retroclined mandibular incisors, miniplates with Class III elastics can be the intraoral treatment option. Therefore, the exact indication of the procedure should be considered carefully. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  11. Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cols, H.; Cristini, P.; Marques, R.

    1997-08-01

    The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing highmore » enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.« less

  12. Modeling the Pore Formation Mechanism in UMo/AL Dispersion Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yeon Soo; Jamison, L.; Hofman, G.

    In UMo/Al dispersion fuel meat, pores formed in the ILs or at IL-Al interfaces tend to increase in size with irradiation, potentially limiting performance of this fuel. There has been no universally accepted mechanism for the formation and growth of this type of pore. However, there is a consensus that the stress state determined by meat swelling and fission- induced creep is one of the determinants, and fission gas availability at the pore site is another. Five dispersion RERTR miniplates that have well defined irradiation conditions and PIE data were selected for examination. Meat swelling and pore volume were measuredmore » in each plate. ABAQUS finite element analysis (FEA) package was utilized to obtain the time-dependent evolution of mechanical states in the plates while matching the measured meat swelling and creep. Interpretation of these results give insights on how to model a failure function – a predictor for large pore formation – using variables such as meat swelling, interaction layer growth, stress, and creep. This model can be used for optimizing fuel design parameters to reach the desired goal: meeting high power and performance reactor demand.« less

  13. Use of rectangular grid miniplates for fracture fixation at the mandibular angle.

    PubMed

    Hochuli-Vieira, Eduardo; Ha, Thi Khanh Linh; Pereira-Filho, Valfrido Antonio; Landes, Constantin Alexander

    2011-05-01

    The aim of this study was to evaluate the clinical outcome of patients with mandibular angle fractures treated by intraoral access and a rectangular grid miniplate with 4 holes and stabilized with monocortical screws. This study included 45 patients with mandibular angle fractures from the Department of Oral and Maxillofacial Surgery São Paulo State University, Araraquara, Brazil, and from the Clinic of Oral and Maxillofacial Surgery at the University of Frankfurt, Germany. The 45 fractures of the mandibular angle were treated with a rectangular grid miniplate of a 2.0-mm system by an intraoral approach with monocortical screws. Clinical evaluations were postoperatively performed at 15 and 30 days and 3 and 6 months, and the complications encountered were recorded and treated. The infection rate was 4.44% (2 patients), and in 1 patient it was necessary to replace hardware. This patient also had a fracture of the left mandibular body; 3 patients (6.66%) had minor occlusal changes that have been resolved with small occlusal adjustments. Before surgery, 15 patients (33.33%) presented with hypoesthesia of the inferior alveolar nerve; 4 (8.88%) had this change until the last clinical control, at 6 months. The rectangular grid miniplate used in this study was stable for the treatment of simple mandibular angle fractures through intraoral access, with low complication rates, easy handling, and easy adjustment, with a low cost. Concomitant mandibular fracture may increase the rate of complications. This plate should be indicated in fractures with sufficient interfragmentary contact. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Success rates of a skeletal anchorage system in orthodontics: A retrospective analysis.

    PubMed

    Lam, Raymond; Goonewardene, Mithran S; Allan, Brent P; Sugawara, Junji

    2018-01-01

    To evaluate the premise that skeletal anchorage with SAS miniplates are highly successful and predictable for a range of complex orthodontic movements. This retrospective cross-sectional analysis consisted of 421 bone plates placed by one clinician in 163 patients (95 female, 68 male, mean age 29.4 years ± 12.02). Simple descriptive statistics were performed for a wide range of malocclusions and desired movements to obtain success, complication, and failure rates. The success rate of skeletal anchorage system miniplates was 98.6%, where approximately 40% of cases experienced mild complications. The most common complication was soft tissue inflammation, which was amenable to focused oral hygiene and antiseptic rinses. Infection occurred in approximately 15% of patients where there was a statistically significant correlation with poor oral hygiene. The most common movements were distalization and intrusion of teeth. More than a third of the cases involved complex movements in more than one plane of space. The success rate of skeletal anchorage system miniplates is high and predictable for a wide range of complex orthodontic movements.

  15. Class II malocclusion with accentuated occlusal plane inclination corrected with miniplate: a case report

    PubMed Central

    Farret, Marcel Marchiori; Farret, Milton M. Benitez

    2016-01-01

    ABSTRACT Introduction: A canted occlusal plane presents an unesthetic element of the smile. The correction of this asymmetry has been typically considered difficult by orthodontists, as it requires complex mechanics and may sometimes even require orthognathic surgery. Objective: This paper outlines the case of a 29-year-old woman with Class II malocclusion, pronounced midline deviation and accentuated occlusal plane inclination caused by mandibular deciduous molar ankylosis. Methods: The patient was treated with a miniplate used to provide anchorage in order to intrude maxillary teeth and extrude mandibular teeth on one side, thus eliminating asymmetry. Class II was corrected on the left side by means of distalization, anchored in the miniplate as well. On the right side, maxillary first premolar was extracted and molar relationship was kept in Class II, while canines were moved to Class I relationship. The patient received implant-prosthetic rehabilitation for maxillary left lateral incisor and mandibular left second premolar. Results: At the end of treatment, Class II was corrected, midlines were matched and the canted occlusal plane was totally corrected, thereby improving smile function and esthetics. PMID:27409658

  16. Development of a Scale-up Tool for Pervaporation Processes

    PubMed Central

    Thiess, Holger; Strube, Jochen

    2018-01-01

    In this study, an engineering tool for the design and optimization of pervaporation processes is developed based on physico-chemical modelling coupled with laboratory/mini-plant experiments. The model incorporates the solution-diffusion-mechanism, polarization effects (concentration and temperature), axial dispersion, pressure drop and the temperature drop in the feed channel due to vaporization of the permeating components. The permeance, being the key model parameter, was determined via dehydration experiments on a mini-plant scale for the binary mixtures ethanol/water and ethyl acetate/water. A second set of experimental data was utilized for the validation of the model for two chemical systems. The industrially relevant ternary mixture, ethanol/ethyl acetate/water, was investigated close to its azeotropic point and compared to a simulation conducted with the determined binary permeance data. Experimental and simulation data proved to agree very well for the investigated process conditions. In order to test the scalability of the developed engineering tool, large-scale data from an industrial pervaporation plant used for the dehydration of ethanol was compared to a process simulation conducted with the validated physico-chemical model. Since the membranes employed in both mini-plant and industrial scale were of the same type, the permeance data could be transferred. The comparison of the measured and simulated data proved the scalability of the derived model. PMID:29342956

  17. Process spectroscopy in microemulsions—Raman spectroscopy for online monitoring of a homogeneous hydroformylation process

    NASA Astrophysics Data System (ADS)

    Paul, Andrea; Meyer, Klas; Ruiken, Jan-Paul; Illner, Markus; Müller, David-Nicolas; Esche, Erik; Wozny, Günther; Westad, Frank; Maiwald, Michael

    2017-03-01

    A major industrial reaction based on homogeneous catalysis is hydroformylation for the production of aldehydes from alkenes and syngas. Hydroformylation in microemulsions, which is currently under investigation at Technische Universität Berlin on a mini-plant scale, was identified as a cost efficient approach which also enhances product selectivity. Herein, we present the application of online Raman spectroscopy on the reaction of 1-dodecene to 1-tridecanal within a microemulsion. To achieve a good representation of the operation range in the mini-plant with regard to concentrations of the reactants a design of experiments was used. Based on initial Raman spectra partial least squares regression (PLSR) models were calibrated for the prediction of 1-dodecene and 1-tridecanal. Limits of predictions arise from nonlinear correlations between Raman intensity and mass fractions of compounds in the microemulsion system. Furthermore, the prediction power of PLSR models becomes limited due to unexpected by-product formation. Application of the lab-scale derived calibration spectra and PLSR models on online spectra from a mini-plant operation yielded promising estimations of 1-tridecanal and acceptable predictions of 1-dodecene mass fractions suggesting Raman spectroscopy as a suitable technique for process analytics in microemulsions.

  18. Update on mandibular condylar fracture management.

    PubMed

    Weiss, Joshua P; Sawhney, Raja

    2016-08-01

    Fractures of the mandibular condyle have provided a lasting source of controversy in the field of facial trauma. Concerns regarding facial nerve injury as well as reasonable functional outcomes with closed management led to a reluctance to treat with an open operative intervention. This article reviews how incorporating new technologies and surgical methods have changed the treatment paradigm. Multiple large studies and meta-analyses continue to demonstrate superior outcomes for condylar fractures when managed surgically. Innovations, including endoscopic techniques, three-dimensional miniplates, and angled drills provide increased options in the treatment of condylar fractures. The literature on pediatric condylar fractures is limited and continues to favor a more conservative approach. There continues to be mounting evidence in radiographic, quality of life, and functional outcome studies to support open reduction with internal fixation for the treatment of condylar fractures in patients with malocclusion, significant displacement, or dislocation of the temporomandibular joint. The utilization of three-dimensional trapezoidal miniplates has shown improved outcomes and theoretically enhanced biomechanical properties when compared with traditional fixation with single or double miniplates. Endoscopic-assisted techniques can decrease surgical morbidity, but are technically challenging, require skilled assistants, and utilize specialized equipment.

  19. Progress of the RERTR program in 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    2002-03-07

    This paper describes the 2001 progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners. Postirradiation examinations of microplates have continued to reveal excellent irradiation behavior of U-Mo dispersion fuels in a variety of compositions and irradiating conditions. Irradiation of two new batches of miniplates of greater sizes was completed in the ATR to investigate the swelling behavior of these fuels under prototypic conditions. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g/cm{sup 3} range. Qualificationmore » of the U-Mo dispersion fuels has been delayed by a patent issue involving KAERI. Test fuel elements with uranium density of 6 g/cm{sup 3} are being fabricated by BWXT and are expected to begin undergoing irradiation in the HFR-Petten reactor around March 2003, with a goal of qualifying this fuel by mid-2005. U-Mo fuel with uranium density of 8-9 g/cm{sup 3} is expected to be qualified by mid-2007. Final irradiation tests of LEU {sup 99}Mo targets in the RAS-GAS reactor at BATAN, in Indonesia, had to be postponed because of the 9/11 attacks, but the results collected to date indicate that these targets will soon be ready for commercial production. Excellent cooperation is also in progress with the CNEA in Argentina, MDSN/AECL in Canada, and ANSTO in Australia. Irradiation testing of five WWR-M2 tube-type fuel assemblies fabricated by the NZChK and containing LEU UO{sub 2} dispersion fuel was successfully completed within the Russian RERTR program. A new LEU U-Mo pin-type fuel that could be used to convert most Russian-designed research reactors has been developed by VNIINM and is ready for testing. Four additional shipments containing 822 spent fuel assemblies from foreign research reactors were accepted by the U.S. by September 30, 2001. Altogether, 4,562 spent fuel assemblies from foreign research reactors had been received by that date by the U.S. under the FRR SNF acceptance policy. The RERTR program is aggressively pursuing qualification of high-density LEU U-Mo dispersion fuels, with the dual goal of enabling further conversions and of developing a substitute for LEU silicide fuels that can be more easily disposed of after expiration of the U.S. FRR SNF Acceptance Program. As in the past, the success of the RERTR program will depend on the international friendship and cooperation that has always been its trademark.« less

  20. Domestic Aluminum Resources: Dilemmas of Development. Volume II. Appendixes II-VII. Detailed Agency Comments and GAO Response.

    DTIC Science & Technology

    1980-07-17

    31 Clay/hydrochloric acid, gas - induced crystallization 32 Clay/nitric acid evaporative crystallization 32 Clay/hydrochloric acid, evapora- tive...ALUMINA AND ALUMINUM TECHNOLOGIES 53 Evaluation of nonbauxitic alumina production processes 54 Clay/carbo-chlorination 54 Clay/hydrochloric acid, gas ...reports that the miniplant program is centered on a single process-- clay/hydrochloric acid- gas precipitation. The Bureau of Mines has not retreated

  1. Bone condition of the maxillary zygomatic process prior to orthodontic anchorage plate fixation.

    PubMed

    Präger, T M; Brochhagen, H G; Mischkowski, R; Jost-Brinkmann, P G; Müller-Hartwich, R

    2015-01-01

    The clinical success of orthodontic miniplates depends on the stability of the miniscrews used for fixation. For good stability, it is essential that the application site provides enough bone of good quality. This study was performed to analyze the amount of bone available for orthodontic miniplates in the zygomatic process of the maxilla. We examined 51 dental CT scans (Somatom Plus 4; Siemens, Erlangen, Germany) obtained from 51 fully dentate adult patients (mean age 24.0 ± 8.1 years; 27 male and 24 female) prior to third molar surgery. The amount of bone in the zygomatic process region at the level of the first molar root tips and at several other cranial levels as far as 15 mm from the root tips was measured Bone thickness at the root tip level averaged 4.1 ± 1.0 mm; the lowest value measured at this level in any of the patients was 2.7 mm. Bone thickness averaged 8.3 ± 1.0 mm at 15 mm cranial to the root tips; 6.9 mm was the lowest value. The zygomatic process appears to provide sufficient bone to accommodate screws for miniplate fixation. While some patients may possess a borderline amount of bone at more caudal levels, lack of volume is not a problem near the zygomatic bone.

  2. A new palatal distractor device for bodily movement of maxillary bones by rigid self-locking miniplates and screws system.

    PubMed

    Cortese, Antonio; Savastano, Mauro; Cantone, Antonio; Claudio, Pier Paolo

    2013-07-01

    A new palatal distractor device for bodily movement of the maxillary bones after complete segmented Le Fort I osteotomy for 1-stage transversal distraction and tridimensional repositioning on 1 patient is presented. The new distractor has an intrinsic tridimensional rigidity also in the fixation system by self-locking miniplates and screws for better control of the 2 maxillary fragments during distraction. Le Fort I distraction and repositioning procedure in association with a bilateral sagittal split osteotomy were performed on 1 patient with complete solution of the cross-bite and class III malocclusion. Results of dental and cephalometric analysis performed before surgery (T1), after surgery and distraction time (T2), and 18 months after surgery and orthodontic appliance removal (T3) are reported. No complications were encountered using the new distractor device. Advantages of this device and technique are presented including improved rigidity of both distraction (jackscrew) and fixation (4 self-locking miniplates and screws) systems resulting in complete control of the position of the 2 maxillary fragments during distraction and surgery. In addition, this new device allows resuming palatal distraction in the event of cross-bite relapse without causing dental-related problems or the risks of screw slackening.

  3. Comparison of strains produced by titanium and poly D, L-lactide Acid plating systems to in vitro forces.

    PubMed

    Chacon, Guillermo E; Dillard, Frederick Matt; Clelland, Nancy; Rashid, Robert

    2005-07-01

    To determine if a specific resorbable plating system provides similar fixation, in terms of strain distribution under load, to a titanium system when the Champy technique is applied for the treatment of a mandibular angle fracture. A formalin-fixed cadaver mandible was harvested just before the study. A bicortical osteotomy was then made using a diamond disc extending in an oblique direction in the area of the angle. It was then passively fixated with a 4-hole 2.0-mm miniplate. Two stacked rosette strain gauges were bonded to the mandible on either side of the fracture. Each rosette had 3 strain gauges arranged in specific degrees relative to each other. The mandible was then placed on a dynanometer and 30 lb loads were delivered on the ipsilateral molar. Static resistance was placed in the condylar neck region to simulate the glenoid fossa. Loading was repeated 10 times with a period of 3 minutes between loads. Measurements were recorded for each strain gauge after loads were in place for 30 seconds. The same process was repeated using a 4-hole 2.1-mm resorbable miniplate. The strains were then used to calculate the maximum and minimum strains for each rosette. Hooke's law was used to calculate the principal stresses. Differences were observed between the strain gauges for each individual plating system. There was variability within the resorbable plate measurements as shown by the standard deviation. Using the REML ANOVA test, a significant difference was found between the 2 materials. In this in vitro study, there were significant biomechanical differences observed between a 2.0-mm titanium miniplate and a 2.1-mm resorbable miniplate when used to treat a mandibular angle fracture following Champy's principles. Based on our finding, both systems cannot be used interchangeably for the treatment of mandibular angle fractures under the same clinical conditions.

  4. The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with miniplates: a Raman spectral study on rabbits.

    PubMed

    Pinheiro, Antonio L B; Santos, Nicole Ribeiro Silva; Oliveira, Priscila Chagas; Aciole, Gilberth Tadeu Santos; Ramos, Thais Andrade; Gonzalez, Tayná Assunção; da Silva, Laís Nogueira; Barbosa, Artur Felipe Santos; Silveira, Landulfo

    2013-02-01

    The aim of the present study was to assess, by Raman spectroscopy, the repair of surgical fractures fixed with internal rigid fixation (IRF) treated or not with IR laser (λ780 nm, 50 mW, 4 × 4 J/cm(2) = 16 J/cm(2), ϕ = 0.5 cm(2), CW) associated or not to the use of hydroxyapatite and guided bone regeneration (GBR). Surgical tibial fractures were created under general anesthesia on 15 rabbits that were divided into five groups, maintained on individual cages, at day/night cycle, fed with solid laboratory pelted diet and had water ad libitum. The fractures in groups II, III, IV and V were fixed with miniplates. Animals in groups III and V were grafted with hydroxyapatite and GBR technique used. Animals in groups IV and V were irradiated at every other day during 2 weeks (4 × 4 J/cm(2), 16 J/cm(2) = 112 J/cm(2)). Observation time was that of 30 days. After animal death, specimens were taken and kept in liquid nitrogen and used for Raman spectroscopy. Raman spectroscopy showed significant differences between groups (p < 0.001). Basal readings showed mean value of 1,234 ± 220.1. Group internal rigid fixation + biomaterial + laser showed higher readings (3,521 ± 2,670) and group internal rigid fixation + biomaterial the lowest (212.2 ± 119.8). In conclusion, the results of the present investigation are important clinically as spectral analysis of bone component evidenced increased levels of CHA on fractured sites by using the association of laser light to a ceramic graft.

  5. Unsuccessful Treatment of Atrophic Mandible Fracture by Use of Improper Materials.

    PubMed

    de Moraes Ferreira, Ana Carulina Rezende; Garcia Junior, Idelmo Rangel; Silva, Adalberto Novaes; de Carvalho Reis, Erik Neiva Ribeiro; Pires, Willian Ricardo; Bonardi, João Paulo; Borba, Alexandre Meireles

    2016-06-01

    Fractures of atrophic mandibles are present on the day by day of buccomaxillofacial surgeons. Mandible atrophy occurs due to tooth loss, which over time induces bone resorption leading to a fragile and susceptible to fracture structure. This paper reports the case of a patient victim of face trauma resulting in atrophic mandible fracture with treatment failure through the use of shared load miniplate. Therefore, a new treatment was performed with miniplate of system 2.4 along with bone graft. After 6 months, the patient was rehabilitated with implant-supported prosthesis installation. It is concluded that for successful treatment of atrophic mandible fractures, the use of rigid plates is necessary, allowing an excellent rehabilitation of the stomatognathic system.

  6. Short circuit in deep brain stimulation.

    PubMed

    Samura, Kazuhiro; Miyagi, Yasushi; Okamoto, Tsuyoshi; Hayami, Takehito; Kishimoto, Junji; Katano, Mitsuo; Kamikaseda, Kazufumi

    2012-11-01

    The authors undertook this study to investigate the incidence, cause, and clinical influence of short circuits in patients treated with deep brain stimulation (DBS). After the incidental identification of a short circuit during routine follow-up, the authors initiated a policy at their institution of routinely evaluating both therapeutic impedance and system impendence at every outpatient DBS follow-up visit, irrespective of the presence of symptoms suggesting possible system malfunction. This study represents a report of their findings after 1 year of this policy. Implanted DBS leads exhibiting short circuits were identified in 7 patients (8.9% of the patients seen for outpatient follow-up examinations during the 12-month study period). The mean duration from DBS lead implantation to the discovery of the short circuit was 64.7 months. The symptoms revealing short circuits included the wearing off of therapeutic effect, apraxia of eyelid opening, or dysarthria in 6 patients with Parkinson disease (PD), and dystonia deterioration in 1 patient with generalized dystonia. All DBS leads with short circuits had been anchored to the cranium using titanium miniplates. Altering electrode settings resulted in clinical improvement in the 2 PD cases in which patients had specific symptoms of short circuits (2.5%) but not in the other 4 cases. The patient with dystonia underwent repositioning and replacement of a lead because the previous lead was located too anteriorly, but did not experience symptom improvement. In contrast to the sudden loss of clinical efficacy of DBS caused by an open circuit, short circuits may arise due to a gradual decrease in impedance, causing the insidious development of neurological symptoms via limited or extended potential fields as well as shortened battery longevity. The incidence of short circuits in DBS may be higher than previously thought, especially in cases in which DBS leads are anchored with miniplates. The circuit impedance of DBS should be routinely checked, even after a long history of DBS therapy, especially in cases of miniplate anchoring.

  7. Screw-Wire Osteo-Traction: An Adjunctive or Alternative Method of Anatomical Reduction of Multisegment Midfacial Fractures? A Description of Technique and Prospective Study of 40 Patients

    PubMed Central

    O'Regan, Barry; Devine, Maria; Bhopal, Sats

    2013-01-01

    Stable anatomical fracture reduction and segment control before miniplate fixation can be difficult to achieve in comminuted midfacial fractures. Fracture mobilization and reduction methods include Gillies elevation, malar hook, and Dingman elevators. No single method is used universally. Disadvantages include imprecise segment alignment and poor segment stability/control. We have employed screw-wire osteo-traction (SWOT) to address this problem. A literature review revealed two published reports. The aims were to evaluate the SWOT technique effectiveness as a fracture reduction method and to examine rates of revision fixation and plate removal. We recruited 40 consecutive patients requiring open reduction and internal fixation of multisegment midfacial fractures (2009–2012) and employed miniplate osteosynthesis in all patients. SWOT was used as a default reduction method in all patients. The rates of successful fracture reduction achieved by SWOT alone or in combination and of revision fixation and plate removal, were used as outcome indices of the reduction method effectiveness. The SWOT technique achieved satisfactory anatomical reduction in 27/40 patients when used alone. Other reduction methods were also used in 13/40 patients. No patient required revision fixation and three patients required late plate removal. SWOT can be used across the midface fracture pattern in conjunction with other methods or as a sole reduction method before miniplate fixation. PMID:24436763

  8. Maxillary distraction osteogenesis in cleft lip and palate patients with skeletal anchorage.

    PubMed

    Minami, Katsuhiro; Mori, Yoshihide; Tae-Geon, Kwon; Shimizu, Hidetaka; Ohtani, Miyuki; Yura, Yoshiaki

    2007-03-01

    Maxillary distraction osteogenesis with the rigid external distraction (RED) system has been used to treat cleft lip and palate (CLP) patients with severe maxillary hypoplasia. We introduce maxillary distraction osteogenesis for CLP patients with skeletal anchorage adapted on a stereolithographic model. Six maxillary deficiency CLP patients treated according to our CLP treatment protocol had undergone maxillary distraction osteogenesis. In all patients, computed tomography (CT) images were recorded preoperatively, and the data were transferred to a workstation. Three-dimensional skeletal structures were reconstructed with CT data sets, and a stereolithographic model was produced. On the stereolithographic model, miniplates were adapted to the surface of maxilla beside aperture piriforms. The operation performed involved a high Le Fort I osteotomy with pterygomaxillary disjunction. Miniplates were fixed to the maxillary segment with three or four screws and used for anchorage of the RED system. Retraction of the maxillary segment was initiated after 1 week. The accuracy of the stereolithographic models was enough to adapt the miniplates so that there was no need to readjust the plates during surgery. Postoperative cephalometric analysis showed that the direction of the retraction was almost parallel to the palatal plane, and dental compensation did not occur. We performed maxillary distraction osteogenesis with skeletal anchorage adapted on the stereolithographic models. Excellent esthetic outcome and skeletal advancement were achieved without dentoalveolar compensations.

  9. Miniplate with a bendable C-tube head allows the clinician to alter biomechanical advantage without physically moving the skeletal anchorage device.

    PubMed

    Seo, Kyung-Won; Ahn, Hyo-Won; Kim, Seong-Hun; Chung, Kyu-Rhim; Nelson, Gerald

    2014-01-01

    This article introduces a binary function of a miniplate with a bendable C-tube head used in corticotomy-assisted segment intrusion. The advantage of the device is that the point of force application can be altered without having to move the miniplate or place an additional anchorage device. Cases for this study were selected from patients who received perisegmental corticotomy with compression osteogenesis (Speedy Surgical Orthodontics) for segmental intrusion. For the skeletal anchorage on patients who received Speedy Surgical Orthodontics for posterior segment intrusion to improve on severe open bite correction, the C-tube was placed on the buccal wall of the maxilla for traction of orthopedic force as a temporary skeletal anchorage. The C-tube head portion is made with titanium grade II, which makes bending easy with a Weingart plier. This adjustment regains distance and range needed to continue intrusion of posterior segment. As an alternative to orthognathic surgery to correct a severe open bite, perisegmental corticotomy combined with orthopedic force application from a temporary skeletal anchorage device can be used. The corticotomy-assisted segment intrusion is a 2-stage procedure: first, the corticotomy is performed in the palate and 2 weeks later in the buccal alveolus. A C-plate was placed in the midpalatal area, and a C-tube was placed apical to the buccal corticotomy site. Elastics were used with orthopedic forces to induce compression osteogenesis. As the intrusion took place, the elastic stretched, and resultant force and range in the buccal segment decreased. The C-tube head was adjusted by bending to gain more distance, reviving the elastic force on the posterior segment until desired intrusion was accomplished. The miniplate with a bendable C-tube head serves for temporary skeletal anchorage of orthopedic traction force to achieve segmental intrusion and has the advantage that the bendable head can be adjusted to improve the force application for intrusion without having to move or place another temporary skeletal anchorage device.

  10. An in vitro evaluation of rigid internal fixation techniques for sagittal split ramus osteotomies: setback surgery.

    PubMed

    Brasileiro, Bernardo Ferreira; Grotta-Grempel, Rafael; Ambrosano, Glaucia Maria Bovi; Passeri, Luis Augusto

    2012-04-01

    The aim of this study was to evaluate the biomechanical features of 3 different methods of rigid internal fixation for sagittal split ramus osteotomy for mandibular setback in vitro. Sixty polyurethane replicas of human hemimandibles were used as substrates, simulating a 5-mm setback surgery by sagittal split ramus osteotomy. These replicas served to reproduce 3 different techniques of fixation, including 1) a 4-hole plate and 4 monocortical screws (miniplate group), 2) a 4-hole plate and 4 monocortical screws with 1 additional bicortical positional screw (hybrid group), and 3) 3 bicortical positional screws in a traditional inverted-L pattern (inverted-L group). After fixation, hemimandibles were adapted to a test support and subjected to lateral torsional forces on the buccal molar surface and vertical cantilever loading on the incisal edge with an Instron 4411 mechanical testing unit. Peak loadings at 1, 3, 5, and 10 mm of displacement were recorded. Means and standard deviation were analyzed using analysis of variance and Tukey test with a 5% level of significance, and failures during tests were recorded. Regardless of the amount of displacement and direction of force, the miniplate group always showed the lowest load peak scores (P < .01) compared with the other fixation techniques. The hybrid group demonstrated behavior similar to the inverted-L group in lateral and vertical forces at any loading displacement (P > .05). Molar load tests required more force than incisal load tests to promote the same displacement in the mandibular setback model (P < .05). For mandibular setback surgery of 5 mm, this study concluded that the fixation technique based on the miniplate group was significantly less rigid than the fixation observed in the hybrid and inverted-L groups. Mechanically, adding 1 bicortical positional screw in the retromolar region in the miniplate technique may achieve the same stabilization offered by inverted-L fixation for mandibular sagittal split ramus osteotomy setback surgery in vitro. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  11. [Effectiveness of arthroscopic treatment of anterior cruciate ligament tibial eminence avulsion fracture with non-absorbable suture fixation combined with mini-plate].

    PubMed

    Wang, Suiyuan; Xiao, Yang; Tong, Zuoming; Li, Guiqiu; Jiang, Juhua; Yao, Jinghui; Wu, Zhiyong; Li, Tengfei; Wu, Qun

    2013-09-01

    To evaluate the surgical techniques and effectiveness of arthroscopic treatment of anterior cruciate ligament (ACL) tibial eminence avulsion fracture with non-absorbable suture fixation combined with the miniplate. Between January 2009 and March 2012, 32 patients with ACL tibial eminence avulsion fractures were treated. There were 18 males and 14 females, aged 12-40 years (mean, 17.5 years). The injury causes included traffic accident injury in 15 cases, sport injury in 6 cases, and falling injury in 11 cases. The time from injury to operation ranged 7-18 days with an average of 9.5 days. Before operation, the results of Lachman test were all positive; the Lysholm score was 52.13 +/- 4.22 and the International Knee Documentation Committee (IKDC) score was 44.82 +/- 2.44. According to Meyers-McKeever classification criteria, there were 12 cases of type II and 20 cases of type III. After arthroscopic poking reduction of fracture, tibial eminence avulsion fractures were fixed with the Ethibond non-absorbable sutures bypass figure-of-eight tibial tunnel combined with the metacarpal and phalangeal mini-plate. Primary healing was obtained in all incisions; no joint infection or skin necrosis occurred after operation. All patients were followed up with an average time of 22.4 months (range, 12-50 months). The patients showed negative Lachman test at 12 weeks after operation. Except 3 patients having knee extension limitation at last follow-up, the knee extension range of motion (ROM) was normal in the other patients; the knee flexion ROM was normal in all patients. The Lysholm score and IKDC score were significantly improved to 94.19 +/- 0.93 and 94.35 +/- 1.22 at last follow-up, showing significant differences when compared with preoperative values (t = 55.080, P = 0.000; t = 101.715, P = 0.000). The arthroscopic treatment of ACL tibial eminence avulsion fracture with Ethibond non-absorbable suture fixation combined with mini-plate is an effective procedure with the advantages of minimal trauma, reliable fixation, and satisfactory recovery of the knee joint function.

  12. Two-Dimensional Mapping of the Calculated Fission Power for the Full-Size Fuel Plate Experiment Irradiated in the Advanced Test Reactor

    NASA Astrophysics Data System (ADS)

    Chang, G. S.; Lillo, M. A.

    2009-08-01

    The National Nuclear Security Administrations (NNSA) Reduced Enrichment for Research and Test Reactors (RERTR) program assigned to the Idaho National Laboratory (INL) the responsibility of developing and demonstrating high uranium density research reactor fuel forms to enable the use of low enriched uranium (LEU) in research and test reactors around the world. A series of full-size fuel plate experiments have been proposed for irradiation testing in the center flux trap (CFT) position of the Advanced Test Reactor (ATR). These full-size fuel plate tests are designated as the AFIP tests. The AFIP nominal fuel zone is rectangular in shape having a designed length of 21.5-in (54.61-cm), width of 1.6-in (4.064-cm), and uniform thickness of 0.014-in (0.03556-cm). This gives a nominal fuel zone volume of 0.482 in3 (7.89 cm3) per fuel plate. The AFIP test assembly has two test positions. Each test position is designed to hold 2 full-size plates, for a total of 4 full-size plates per test assembly. The AFIP test plates will be irradiated at a peak surface heat flux of about 350 W/cm2 and discharged at a peak U-235 burn-up of about 70 at.%. Based on limited irradiation testing of the monolithic (U-10Mo) fuel form, it is desirable to keep the peak fuel temperature below 250°C to achieve this, it will be necessary to keep plate heat fluxes below 500 W/cm2. Due to the heavy U-235 loading and a plate width of 1.6-in (4.064-cm), the neutron self-shielding will increase the local-to-average-ratio (L2AR) fission power near the sides of the fuel plates. To demonstrate that the AFIP experiment will meet the ATR safety requirements, a very detailed 2-dimensional (2D) Y-Z fission power profile was evaluated in order to best predict the fuel plate temperature distribution. The ability to accurately predict fuel plate power and burnup are essential to both the design of the AFIP tests as well as evaluation of the irradiated fuel performance. To support this need, a detailed MCNP Y-Z mini-plate fuel model was developed. The Y-Z model divides each fuel plate into 30 equal intervals in both the Y and Z directions. The MCNP-calculated results and the detailed Y-Z fission power mapping were used to help design the AFIP fuel test assembly to demonstrate that the AFIP test assembly thermal-hydraulic limits will not exceed the ATR safety limits.

  13. Mini-Implants in the Anchorage Armamentarium: New Paradigms in the Orthodontics

    PubMed Central

    Yamaguchi, Masaru; Inami, Toshihiro; Ito, Ko; Kasai, Kazutaka; Tanimoto, Yasuhiro

    2012-01-01

    Paradigms have started to shift in the orthodontic world since the introduction of mini-implants in the anchorage armamentarium. Various forms of skeletal anchorage, including miniscrews and miniplates, have been reported in the literature. Recently, great emphasis has been placed on the miniscrew type of temporary anchorage device (TAD). These devices are small, are implanted with a relatively simple surgical procedure, and increase the potential for better orthodontic results. Therefore, miniscrews not only free orthodontists from anchorage-demanding cases, but they also enable clinicians to have good control over tooth movement in 3 dimensions. The miniplate type also produces significant improvements in treatment outcomes and has widened the spectrum of orthodontics. The purpose of this paper is to update clinicians on the current concepts and versatile uses and clinical applications of skeletal anchorage in orthodontics. PMID:22719763

  14. Chin plate with a detachable C-tube head serves for both osteotomy fixation and orthodontic anchorage.

    PubMed

    Seo, Kyung-Won; Nahm, Kyung-Yen; Kim, Seong-Hun; Chung, Kyu-Rhim; Nelson, Gerald

    2013-07-01

    This article reports the dual function of a double-Y miniplate with a detachable C-tube head (C-chin plate; Jin Biomed Co., Bucheon, Korea) used to fixate an anterior segmental osteotomy and provide skeletal anchorage during orthodontic tooth movement. Cases were selected for this study from patients who underwent anterior segmental osteotomy under local anesthesia. A detachable C-tube head portion was combined with a double-Y chin plate. The double-Y chin plates were fixated between the osteotomy segments and the mandibular base with screws in a conventional way. The C-tube head portion exited the tissue near the mucogingival junction. Biocreative Chin Plates were placed on the anterior segmental osteotomy sites. The device allowed 3 points of fixation: 1, minor postosteotomy vertical adjustment of the segment during healing; 2, minor shift of the midline during healing; and 3, to serve as temporary skeletal anchorage device during the post-anterior segmental osteotomy orthodontic treatment. When tooth movement goals are accomplished, the C-tube head of the chin plate can be easily detached from the fixation miniplate by twisting the head using a Weingart plier under local anesthesia. This dual-purpose device spares the patient from the need for 2 separate installations for stabilization of osteotomy segments. The dual-purpose double-Y miniplate combined with a C-tube head (Biocreative Chin Plate) provided versatile application of 3 points of post-osteotomy fixation and of temporary skeletal anchorage for orthodontic tooth movement.

  15. Skeletal Class lll severe openbite treatment using implant anchorage.

    PubMed

    Sakai, Yuichi; Kuroda, Shingo; Murshid, Sakhr A; Takano-Yamamoto, Teruko

    2008-01-01

    A female patient with a skeletal Class III severe anterior openbite was treated using miniplates as the anchorage. The patient was 15 years and 10 months of age when she reported to our university hospital with a chief complaint of anterior openbite and reversed occlusion. The patient had an anterior openbite with an overjet of -3.0 mm and overbite of -5.0 mm and a Class III molar relationship. The cephalometric analysis showed a skeletal Class III relationship (ANB 0 degrees ). After the extraction of the bilateral mandibular third molars, miniplates were placed in the mandibular external oblique line. The mandibular dentition was retracted using elastic chain and miniplates. After treatment, an Angle Class I molar relationship was achieved and overjet and overbite had become 2.0 mm and 1.5 mm. A good facial appearance and occlusal relationship were obtained. The total active orthodontic treatment period was 23 months. Wrap-around type retainers were placed on both jaws and a lingual bonded retainer was also attached in the mandibular incisors. After 1 year of retention, the occlusion was stable, and a good facial profile was also retained. The mandibular deviation to the left was improved and the strain in the circumoral musculature during lip closure disappeared. An appropriate interincisal relationship was achieved by the uprighting of mandibular dentition without changing the vertical intermaxillary relationship. A panoramic radiograph showed no marked root resorption. Our results suggest that implant anchorage is useful for correction of skeletal Class III severe anterior openbite cases.

  16. Orthodontic retreatment using anchorage with miniplate to camouflage a Class III skeletal pattern.

    PubMed

    Farret, Marcel Marchiori

    2016-06-01

    This manuscript describes the treatment of a 27-year-old patient who was previously treated with two maxillary first premolar extractions. The patient had skeletal Class III malocclusion, Class III canine relationship, anterior crossbite, and a concave profile. As the patient refused orthognathic surgery, a miniplate was used on the right side of the lower arch as an anchorage unit after the extraction of mandibular first premolars, aiding the retraction of anterior teeth. At the end of treatment, anterior crossbite was corrected, in which first molars and canines were in a Class I relationship, and an excellent intercuspation was reached. Furthermore, patient's profile remarkably improved as a result of mandibular incisor retraction. A 30-month follow-up showed good stability of the results obtained. This case was presented to the Brazilian Board of Orthodontics and Dentofacial Orthopedics (BBO) as one of the requirements to become diplomate by the BBO.

  17. Orthodontic retreatment using anchorage with miniplate to camouflage a Class III skeletal pattern

    PubMed Central

    Farret, Marcel Marchiori

    2016-01-01

    ABSTRACT This manuscript describes the treatment of a 27-year-old patient who was previously treated with two maxillary first premolar extractions. The patient had skeletal Class III malocclusion, Class III canine relationship, anterior crossbite, and a concave profile. As the patient refused orthognathic surgery, a miniplate was used on the right side of the lower arch as an anchorage unit after the extraction of mandibular first premolars, aiding the retraction of anterior teeth. At the end of treatment, anterior crossbite was corrected, in which first molars and canines were in a Class I relationship, and an excellent intercuspation was reached. Furthermore, patient's profile remarkably improved as a result of mandibular incisor retraction. A 30-month follow-up showed good stability of the results obtained. This case was presented to the Brazilian Board of Orthodontics and Dentofacial Orthopedics (BBO) as one of the requirements to become diplomate by the BBO. PMID:27409659

  18. Effects of miniplate anchored and conventional Forsus Fatigue Resistant Devices in the treatment of Class II malocclusion.

    PubMed

    Turkkahraman, Hakan; Eliacik, Sule Kocabas; Findik, Yavuz

    2016-11-01

    To compare the skeletal, dentoalveolar, and soft tissue effects of the miniplate anchored Forsus Fatigue Resistant Device (FRD) and the conventional Forsus FRD in the treatment of Class II malocclusion. The study was carried out with 30 patients (10 girls, 20 boys). In the MA-Forsus group, 15 patients (2 girls, 13 boys) were treated with a miniplate anchored Forsus FRD for 9.40 ± 2.25 months. In the C-Forsus group, 15 patients (8 girls, 7 boys) were treated with a conventional Forsus FRD for 9.46 ± 0.81 months. A total of 16 measurements were calculated and statistically analyzed to find intragroup and intergroup differences. Statistically significant differences were found between the groups in IMPA, SN/Occ, SN/GoGn, overjet, overbite, and Li-S measurements (P < .05). In the C-Forsus group, a substantial amount of lower incisor protrusion was observed, whereas retrusion was found in the MA-Forsus group (P < .001). The mandible rotated backward in the MA-Forsus group, whereas it remained unchanged in the C-Forsus group (P < .05). Reductions in overjet (P < .001) and overbite were greater in the C-Forsus group (P < .05). Stimulation of mandibular growth and inhibition of maxillary growth were achieved in both treatment groups. In the C-Forsus group, a substantial amount of lower incisor protrusion was observed, whereas retrusion of lower incisors was found in the MA-Forsus group. The MA-Forsus group was found to be more advantageous as it had no dentoalveolar side effects on mandibular dentition.

  19. Evaluation of Two Miniplate Systems and Figure-of-eight Bandages for Stabilization of Experimentally Induced Ulnar and Radial Fractures in Pigeons ( Columba livia ).

    PubMed

    Bennert, Beatrice M; Kircher, Patrick R; Gutbrod, Andreas; Riechert, Juliane; Hatt, Jean-Michel

    2016-06-01

    Although plate fixation has advantages over other fixation methods for certain indications, it is rarely used in avian surgery, especially in birds that weigh less than 1000 g. Exceptionally small plating systems for these birds are required, which are relatively expensive and difficult to insert. To study avian fracture healing after repair using miniplates, we evaluated 2 steel miniplate systems in 27 pigeons ( Columba livia ) divided into 4 groups. In each pigeon, the left ulna and radius were transected and the ulna was repaired with a bone plate. In groups A and B, a 1.3-mm adaption plate was applied without and with a figure-of-eight bandage; in groups C and D, a 1.0-mm compression plate was applied without and with a bandage, respectively. Healing was evaluated with radiographs after 3, 14, and 28 days; flight tests were conducted after 14, 21, and 28 days; and the wing was macroscopically examined after euthanasia of birds on day 28. Fractures healed without bending or distortion of the plate in all 27 birds, and no significant differences in healing were found between treatment groups. At the end of the study, 23 pigeons (85.2%) showed good or very good flight ability. Results show the 1.3-mm adaption plate and the 1.0-mm compression plate meet the requirements for avian osteosynthesis and can be recommended for fracture repair of the ulna or other long bones in birds weighing less than 500 g. The application of a figure-of-eight bandage might be beneficial in fracture healing.

  20. Revisiting the stability of mini-implants used for orthodontic anchorage.

    PubMed

    Yao, Chung-Chen Jane; Chang, Hao-Hueng; Chang, Jenny Zwei-Chieng; Lai, Hsiang-Hua; Lu, Shao-Chun; Chen, Yi-Jane

    2015-11-01

    The aim of this study is to comprehensively analyze the potential factors affecting the failure rates of three types of mini-implants used for orthodontic anchorage. Data were collected on 727 mini-implants (miniplates, predrilled titanium miniscrews, and self-drilling stainless steel miniscrews) in 220 patients. The factors related to mini-implant failure were investigated using a Chi-square test for univariate analysis and a generalized estimating equation model for multivariate analysis. The failure rate for miniplates was significantly lower than for miniscrews. All types of mini-implants, especially the self-drilling stainless steel miniscrews, showed decreased stability if the previous implantation had failed. The stability of predrilled titanium miniscrews and self-drilling stainless steel miniscrews were comparable at the first implantation. However, the failure rate of stainless steel miniscrews increased at the second implantation. The univariate analysis showed that the following variables had a significant influence on the failure rates of mini-implants: age of patient, type of mini-implant, site of implantation, and characteristics of the soft tissue around the mini-implants. The generalized estimating equation analysis revealed that mini-implants with miniscrews used in patients younger than 35 years, subjected to orthodontic loading after 30 days and implanted on the alveolar bone ridge, have a significantly higher risk of failure. This study revealed that once the dental surgeon becomes familiar with the procedure, the stability of orthodontic mini-implants depends on the type of mini-implant, age of the patient, implantation site, and the healing time of the mini-implant. Miniplates are a more feasible anchorage system when miniscrews fail repeatedly. Copyright © 2014. Published by Elsevier B.V.

  1. Angular Stable Miniplate Fixation of Chronic Unstable Scaphoid Nonunion.

    PubMed

    Schormans, Philip M J; Brink, Peter R G; Poeze, Martijn; Hannemann, Pascal F W

    2018-02-01

    Background  Around 5 to 15% of all scaphoid fractures result in nonunion. Treatment of long-lasting scaphoid nonunion remains a challenge for the treating surgeon. Healing of scaphoid nonunion is essential for prevention of scaphoid nonunion advanced collapse and the subsequent predictable pattern of radiocarpal osteoarthritis. Purpose  The purpose of this study was to investigate the feasibility of fixation of the scaphoid nonunion with a volar angular stable miniplate and cancellous bone grafting. We hypothesized that this technique could be successful, even in patients with previous surgery for nonunion and in patients with a long duration of nonunion. Patients and Methods  A total of 21 patients enrolled in a single-center prospective cohort study. Healing of nonunion was assessed on multiplanar computed tomography scan of the wrist at a 3-month interval. Functional outcome was assessed by measuring grip strength, range of motion, and by means of the patient-rated wrist and hand evaluation (PRWHE) questionnaire. Results  During follow-up, 19 out of 21 patients (90%) showed radiological healing of the nonunion. The range of motion did not improve significantly. Postoperative PRWHE scores decreased by 34 points. Healing occurred regardless of the length of time of the nonunion (range: 6-183 months) and regardless of previous surgery (38% of patients). Conclusion  Volar angular stable miniplate fixation with autologous cancellous bone grafting is a successful technique for the treatment of chronic unstable scaphoid nonunion, even in patients with long-lasting nonunion and in patients who underwent previous surgery for a scaphoid fracture. Rotational interfragmentary stability might be an important determining factor for the successful treatment of unstable scaphoid nonunion. Level of Evidence  Level IV.

  2. Evaluation of surgical treatment in mandibular condyle fractures.

    PubMed

    Vesnaver, Aleš; Ahčan, Uroš; Rozman, Janez

    2012-12-01

    In the past, fractures of the mandibular condylar process were, as a rule, treated conservatively. At the Department of Maxillofacial and Oral Surgery of the University Medical Centre Ljubljana, Slovenia, our doctrine was changed in 2002 on the basis of preliminary results and reports in the literature, and these fractures were started to be treated surgically by open reduction and internal fixation with miniplates and screws, which led to good results and a shorter rehabilitation period. The goal of this study was to determine the safety and efficiency of surgical treatment, as well as to compare long-term results of surgical and conservative treatment, as objectively as possible. Two groups of patients, which had all sustained a unilateral, extra-articular mandibular condyle fracture, were compared. In the test group, there were 42 surgically treated patients, and in the control group, 20 conservatively treated patients. Clinical parameters and X-ray images were assessed in both groups and compared by the two tailed Student t test, and in case of attributive variables by the χ(2) test. Within the surgically treated group, postoperative and intraoperative complications were noted: temporary facial nerve palsy, development of a parotid salivary fistula, disturbance of auricle sensibility due to injury of the greater auricular nerve, miniplate fracture, as well as intraoperative bleeding, postoperative haematoma formation, infection, reoperation due to fragment malposition and other complications. Postoperative scars were also assessed. Statistically significant differences between the surgically and conservatively treated patients were found when comparing clinical parameters as well as X-ray images, the results being better in the surgically treated group. Complications of surgical treatment were also noted, the most important among them temporary paresis of facial nerve branches, which occurred in 10 patients (24%). Plate fractures occurred in five patients (12%), in four of them miniplates of sizes less than 2.0mm were used. There were no cases of significant intraoperative bleeding, two cases (5%) required drainage of postoperative haematomas, and one patient (2%) experienced a mild postoperative infection, which was easily controlled with amoxicillin with clavulanic acid. The scar was hidden best if a facelift incision was used, and a hypertrophic scar developed in only one patient (2%). Results of surgical treatment of condylar process fractures are superior to the results of conservative treatment, and the procedure is safe with the transparotid surgical approach and adequate surgical technique. Copyright © 2011 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  3. Status and progress of the RERTR program in the year 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    2000-09-28

    This paper describes the progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners during the year 2000 and discusses the main activities planned for the year 2001. The past year was characterized by important accomplishments and events for the RERTR program. Four additional shipments containing 503 spent fuel assemblies from foreign research reactors were accepted by the U.S. Altogether, 3,740 spent fuel assemblies from foreign research reactors have been received by the U.S. under the acceptance policy. Postirradiation examinations of three batches of microplates have continued to reveal excellentmore » irradiation behavior of U-MO dispersion fuels in a variety of compositions and irradiating conditions. h-radiation of two new batches of miniplates of greater sizes is in progress in the ATR to investigate me swelling behavior of these fuels under prototypic conditions. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g /cm{sup 3} range. Qualification of the U-MO dispersion fuels is proceeding on schedule. Test fuel elements with 6 gU/cm{sup 3} are being fabricated by BWXT and are scheduled to begin undergoing irradiation in the HFR-Petten in the spring of 2001, with a goal of qualifying this fuel by the end of 2003. U-Mo with 8-9 gU/cm{sup 3} is planned to be qualified by the end of 2005. Joint LEU conversion feasibility studies were completed for HFR-Petten and for SAFARI-1. Significant improvements were made in the design of LEU metal-foil annular targets that would allow efficient production of fission {sup 99}Mo. Irradiations in the RAS-GAS reactor showed that these targets can formed from aluminum tubes, and that the yield and purity of their product from the acidic process were at least as good as those from the HEU Cintichem targets. Progress was made on irradiation testing of LEU UO{sub 2} dispersion fuel and on LEU conversion feasibility studies in the Russian RERTR program. Conversion of the BER-11reactor in Berlin, Germany, was completed and conversion of the La Reins reactor in Santiago, Chile, began. These are exciting times for the program. In the fuel development area, the RERTR program is aggressively pursuing qualification of high-density LEU U-Mo dispersion fuels, with the dual goal of enabling fi.uther conversions and of developing a substitute for LEU silicide fuels that can be more easily disposed of after expiration of the FRR SNF Acceptance Program. The {sup 99}Mo effort has reached the point where it appears feasible for all the {sup 99}Mo producers of the world to agree jointly to a common course of action leading to the elimination of HEU use in their processes. As in the past, the success of the RERTR program will depend on the international friendship and cooperation that has always been its trademark.« less

  4. Evaluating the Effect of Minimizing Screws on Stabilization of Symphysis Mandibular Fracture by 3D Finite Element Analysis.

    PubMed

    Kharmanda, Ghias; Kharma, Mohamed-Yaser

    2017-06-01

    The objective of this work is to integrate structural optimization and reliability concepts into mini-plate fixation strategy used in symphysis mandibular fractures. The structural reliability levels are next estimated when considering a single failure mode and multiple failure modes. A 3-dimensional finite element model is developed in order to evaluate the ability of reducing the negative effect due to the stabilization of the fracture. Topology optimization process is considered in the conceptual design stage to predict possible fixation layouts. In the detailed design stage, suitable mini-plates are selected taking into account the resulting topology and different anatomical considerations. Several muscle forces are considered in order to obtain realistic predictions. Since some muscles can be cut or harmed during the surgery and cannot operate at its maximum capacity, there is a strong motivation to introduce the loading uncertainties in order to obtain reliable designs. The structural reliability is carried out for a single failure mode and multiple failure modes. The different results are validated with a clinical case of a male patient with symphysis fracture. In this case while use of the upper plate fixation with four holes, only two screws were applied to protect adjacent vital structure. This behavior does not affect the stability of the fracture. The proposed strategy to optimize bone plates leads to fewer complications and second surgeries, less patient discomfort, and shorter time of healing.

  5. The change of amyloplasts structure and composition of storage starch in potato minitubers during imitated microgravity

    NASA Astrophysics Data System (ADS)

    Nedukha, O. M.; Kordyum, E. L.; Martyn, G. M.; Schnyukova, E. I.

    Potato was designated for food production in the controlled ecological life-support system CELSS because its tubers as it is known contain starch and significant protein content and are edible food after the long-term storage We used the cultivation of potato miniplants under influence of long-term horizontal clinorotation 2 rev min which imitated microgravity as a model for the technology of potato food production in the CELSS The aim of our work was to determine content and composition storage starch as well as amyloplast ultrastructure of storage parenchyma cells in potato minitubers formed under long-term to 6 weeks slow horizontal clinorotation 2 rpm Minitubers developed from axillary buds of potato miniplants growing in the aseptic stationary conditions and under clinorotation Methods of scanning and transmission electron microscopy were used for the study of surface and ultrastructure of amyloplasts the biochemical method by Hovenkamp-Hermelink et al 1988 - for study of starch composition Some differences were observed in amyloplast structure under clinorotation namely increased volume of starch grains in plastid decreased stroma volume changed structure of envelope membranes in comparison with the stationary control Besides an appearance of fraction of gigantic amyloplasts in central layers of parenchyma was observed under clinorotation after 4 weeks of growth The total starch content increased and reached to 219 5 - 4 1 mg g FW at 6 weeks of clinorotation it was 167 5 - 5 6 mg g FW in the control minitubers A ratio of

  6. Cervical Hemilaminoplasty with Miniplates in Long Segment Intradural Extramedullary Ependymoma: Case Report and Technical Note.

    PubMed

    Oral, Sukru; Tumturk, Abdulfettah; Kucuk, Ahmet; Menku, Ahmet

    2018-01-01

    The surgical approaches for spinal tumors, to a great extent, have been developed in accordance with the developments in medical technology. Today, many surgical techniques are implemented as anterior, anterolateral, posterior, posterolateral and combined approaches. Due to its low morbidity, the posterior approach is the more preferred one. Laminectomy is a widely used technique, especially in neoplastic lesions. However, following laminectomy, there are numerous complications such as instability, kyphotic deformity and scar formation. In this paper, the excision of a tumor that was located intradural-extramedullary at the C3-C7 level with the cervical hemilaminoplasty technique is described. A 47-year-old female patient presented to our clinic with increasing complaints of neck and left arm pain, left arm numbness and searing pain for the last 10 years. On examination, hypoesthesia at the C4-7 dermatomes in the left upper extremity, an increase in deep tendon reflexes, and bilateral positive Hoffmann reflexes were observed. C3-C7 laminae were opened unilaterally on the right side with a midline skin incision. The laminae were drilled with a high-speed drill to provide a wide opening, both on the midline obliquely and from the border of the lamina-facet joint. After the tumor was totally excised, hemilaminae were placed into the previous position and reconstructed with mini-plates and screws. Cervical hemilaminoplasty provides a wide field of vision in tumor surgery of this region. Besides, the reconstruction of hemilaminae is important for stability. As the integrity of the spinal canal is preserved during reoperations of this region, the risk of complications is decreased.

  7. Anterior management of C2 fractures using miniplate fixation: outcome, function and quality of life in a case series of 15 patients.

    PubMed

    Franke, Axel; Bieler, Dan; Wern, Rebecca; Trotzke, Tim; Hentsch, Sebastian; Kollig, Erwin

    2018-06-01

    The classification systems by Anderson and D'Alonzo, Effendi, Benzel and others have limitations when it comes to morphologically categorising fractures of the second cervical vertebral body (C2) that present with or without an additional fracture of the dens or with or without an extension of the fracture line into the vertebral arch and displacement. Currently, there are no definitive recommendations for the treatment of fractures at the junction of the dens with the vertebral body of C2 on the basis of outcome and stability data. Depending on patient anatomy, either anterior or posterior approaches can be used to fuse C1 and C2 and to achieve definitive surgical stabilisation. The anterior management of C2 fractures without C1-C2 fusion has the theoretical advantage that it preserves rotational motion at this motion segment and that the anterior approach is associated with lower morbidity. In the study presented here, we followed up a group of our patients who underwent anterior miniplate fixation for C2 fractures. Fifteen patients underwent fixation of C2 fractures with titanium miniplates (Medartis Hand fixation system, 2.0 or 2.3 mm) that were placed using a submental approach. To our knowledge, this construct has not yet been described in the literature. Where necessary, this procedure was combined with screw fixation of the dens as described by Böhler. We retrospectively analysed operative reports and medical records, evaluated the patients' health status using the Short Form (36) Health Survey (SF-36), and performed clinical follow-up examinations. From January 2009 to June 2015, 226 traumatic lesions of the cervical spine were managed at our institution in the inpatient setting. Ninety-two patients underwent conservative treatment. Of the 134 cases that required surgery for fractures and instability, 67 involved the C0-C3 motion segments. In 15 patients, stability was achieved using an anterior miniplate or miniscrews alone (n = 4) or in addition to other techniques (n = 11). Anderson and D'Alonzo type II and III dens fractures with involvement of the body or lateral mass of C2 accounted for eight cases. Effendi type II body fractures with or without instability were seen in four cases. There was no perioperative mortality and morbidity in this patient group. All fractures healed and stability was achieved in all cases. No patient had neurological deficits or required revision surgery. An assessment of postoperative quality of life showed that 11 patients (7 men, 4 women) with a mean age of 57 (± 5.3) years reached an SF-36 score that was normal for their age group after a mean period of 33 (± 6.3) months following their injury. Compared to a group of healthy subjects, the patients had a range of motion that was limited only at the extremes. In patients with appropriate indications, anterior fixation with miniplates alone or additionally is a further useful treatment option in the management of fractures at the junction of the dens with the vertebral body of C2. Since this type of treatment preserves motion at the C1-C2 motion segment after fracture healing and since an anterior approach is associated with less surgical trauma than posterior instrumentation, the technique presented here should be included in a discussion on (surgical) treatment options. These slides can be retrieved under Electronic Supplementary Material.

  8. A new technique for cranioplasty with L-shaped titanium plates and combination ceramic implants composed of hydroxyapatite and tricalcium phosphate (Ceratite).

    PubMed

    Miyake, H; Ohta, T; Tanaka, H

    2000-02-01

    The use of hydroxyapatite-based ceramics for cranioplasties has recently increased in Japan, because of the good cosmetic outcomes, biocompatibility, strength, osteoconductive properties, and lack of risk of disease transmission associated with these materials. However, miniplate fixation has not been possible for ceramic implants. We describe a new technique for miniplate fixation of ceramic implants. Combination ceramic implants composed of hydroxyapatite and tricalcium phosphate (Ceratite; NGK Spark Plug Co., Aichi, Japan) were used for cranioplasties. A slot and a pair of holes were cut in each Ceratite implant, for use as a fixation unit. We have also developed a new L-shaped titanium plate (HOMS Engineering Inc., Nagano, Japan) that fits into the fixation unit. We first insert an L-shaped titanium plate through the slot from the back surface of the Ceratite implant. We then bend the plate outward at the front surface of the Ceratite implant and fix it to the cranium of the patient with titanium screws. The Ceratite implant is usually firmly fixed to the cranium of the patient with three L-shaped titanium plates. Using L-shaped titanium plates and Ceratite implants, we successfully performed cranioplasties for seven patients with cranial defects resulting from external decompression craniotomies. The Ceratite implant exactly fit the bone window for each patient. Surgical maneuvers were simple and easy for all patients, permitting shorter operating times. All Ceratite implants were firmly fixed, and no postoperative infections have occurred. Our new technique for cranioplasty is simple and allows rigid fixation of Ceratite implants.

  9. [The use of titanium nickelide devices in treating fractures of the zygomatico-orbital complex].

    PubMed

    Medvedev, Iu A; Sivolapov, K A

    1993-01-01

    The authors analyze the results of surgical treatment of 78 patients with zygomatico-orbital injuries. Mini-cramps and mini-plates of titanium nickelide with thermomechanical memory were employed for fracture fixation. Surgical strategy based on osteosynthesis with the use of such devices provides a reliable fixation of bone fragments and makes the operation less traumatic.

  10. Computer-aided position planning of miniplates to treat facial bone defects

    PubMed Central

    Wallner, Jürgen; Gall, Markus; Chen, Xiaojun; Schwenzer-Zimmerer, Katja; Reinbacher, Knut; Schmalstieg, Dieter

    2017-01-01

    In this contribution, a software system for computer-aided position planning of miniplates to treat facial bone defects is proposed. The intra-operatively used bone plates have to be passively adapted on the underlying bone contours for adequate bone fragment stabilization. However, this procedure can lead to frequent intra-operatively performed material readjustments especially in complex surgical cases. Our approach is able to fit a selection of common implant models on the surgeon’s desired position in a 3D computer model. This happens with respect to the surrounding anatomical structures, always including the possibility of adjusting both the direction and the position of the used osteosynthesis material. By using the proposed software, surgeons are able to pre-plan the out coming implant in its form and morphology with the aid of a computer-visualized model within a few minutes. Further, the resulting model can be stored in STL file format, the commonly used format for 3D printing. Using this technology, surgeons are able to print the virtual generated implant, or create an individually designed bending tool. This method leads to adapted osteosynthesis materials according to the surrounding anatomy and requires further a minimum amount of money and time. PMID:28817607

  11. [Osteosynthesis in facial bones: silicon nitride ceramic as material].

    PubMed

    Neumann, A; Unkel, C; Werry, C; Herborn, C U; Maier, H R; Ragoss, C; Jahnke, K

    2006-12-01

    The favorable properties of silicon nitride (Si3N4) ceramic, such as high stability and biocompatibility suggest its biomedical use as an implant material. The aim of this study was to test its suitability for osteosynthesis. A Si3N4 prototype minifixation system was manufactured and implanted for osteosynthesis of artificial frontal bone defects in three minipigs. After 3 months, histological sections, CT and MRI scans were obtained. Finite element modeling (FEM) was used to simulate stresses and strains on Si3N4 miniplates and screws to calculate survival probabilities. Si3N4 miniplates and screws showed satisfactory intraoperative workability. There was no implant loss, displacement or fracture. Bone healing was complete in all animals and formation of new bone was observed in direct contact to the implants. Si3N4 ceramic showed a good biocompatibility outcome both in vitro and in vivo. This ceramic may serve as biomaterial for osteosynthesis, e.g. of the midface including reconstruction of the floor of the orbit and the skull base. Advantages compared to titanium are no risk of implantation to bone with mucosal attachment, no need for explantation, no interference with radiological imaging.

  12. Computer-aided position planning of miniplates to treat facial bone defects.

    PubMed

    Egger, Jan; Wallner, Jürgen; Gall, Markus; Chen, Xiaojun; Schwenzer-Zimmerer, Katja; Reinbacher, Knut; Schmalstieg, Dieter

    2017-01-01

    In this contribution, a software system for computer-aided position planning of miniplates to treat facial bone defects is proposed. The intra-operatively used bone plates have to be passively adapted on the underlying bone contours for adequate bone fragment stabilization. However, this procedure can lead to frequent intra-operatively performed material readjustments especially in complex surgical cases. Our approach is able to fit a selection of common implant models on the surgeon's desired position in a 3D computer model. This happens with respect to the surrounding anatomical structures, always including the possibility of adjusting both the direction and the position of the used osteosynthesis material. By using the proposed software, surgeons are able to pre-plan the out coming implant in its form and morphology with the aid of a computer-visualized model within a few minutes. Further, the resulting model can be stored in STL file format, the commonly used format for 3D printing. Using this technology, surgeons are able to print the virtual generated implant, or create an individually designed bending tool. This method leads to adapted osteosynthesis materials according to the surrounding anatomy and requires further a minimum amount of money and time.

  13. Prediction of changes due to mandibular autorotation following miniplate-anchored intrusion of maxillary posterior teeth in open bite cases.

    PubMed

    Kassem, Hassan E; Marzouk, Eiman S

    2018-05-14

    Prediction of the treatment outcome of various orthodontic procedures is an essential part of treatment planning. Using skeletal anchorage for intrusion of posterior teeth is a relatively novel procedure for the treatment of anterior open bite in long-faced subjects. Data were analyzed from lateral cephalometric radiographs of a cohort of 28 open bite adult subjects treated with intrusion of the maxillary posterior segment with zygomatic miniplate anchorage. Mean ratios and regression equations were calculated for selected variables before and after intrusion. Relative to molar intrusion, there was approximately 100% vertical change of the hard and soft tissue mention and 80% horizontal change of the hard and soft tissue pogonion. The overbite deepened two folds with 60% increase in overjet. The lower lip moved forward about 80% of the molar intrusion. Hard tissue pogonion and mention showed the strongest correlations with molar intrusion. There was a general agreement between regression equations and mean ratios at 3 mm molar intrusion. This study attempted to provide the clinician with a tool to predict the changes in key treatment variables following skeletally anchored maxillary molar intrusion and autorotation of the mandible.

  14. Progress and status of the IAEA coordinated research project: production of Mo-99 using LEU fission or neutron activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, Ira N.; Adelfang, Pablo; Ramamoorthy, Natesan

    2008-07-15

    Since late 2004, the IAEA has developed and implemented a Coordinated Research Project (CRP) to assist countries interested in initiating indigenous, small-scale production of Mo-99 to meet local nuclear medicine requirements. The objective of the CRP is to provide interested countries with access to non-proprietary technologies and methods to produce Mo-99 using LEU foil or LEU mini-plate targets, or for the utilization of n,gamma neutron activation, e.g. through the use of gel generators. The project has made further progress since the RERTR 2006 meeting, with a Technical Workshop on Operational Aspects of Mo99 Production held 28-30 November 2006 in Viennamore » and the Second Research Coordination Meeting held in Bucharest, Romania 16-20 April 2007. The paper describes activities carried out as noted above, and as well as the provision of LEU foils to a number of participants, and the progress by a number of groups in preparing for LEU target assembly and disassembly, irradiation, chemical processing, and waste management. The participants' progress in particular on thermal hydraulics computations required for using LEU targets is notable, as also the progress in gel generator plant operations in India and Kazakhstan. Poland has joined as a new research agreement holder and an application by Egypt to be a contract holder is undergoing internal review in the IAEA and is expected to be approved. The IAEA has also participated in several open meetings of the U.S. National Academy of Sciences Study on Producing Medical Radioisotopes without HEU, which will also be discussed in the paper. (author)« less

  15. Technical Modifications for Intraoral Quadrangular Le Fort II Osteotomy.

    PubMed

    Klug, Clemens; Cede, Julia

    2017-02-01

    The intraoral quadrangular Le Fort II osteotomy (IQLFIIO) represents a reliable surgical method in cases of midfacial deficiency with good functional, esthetic, and stable long-term results. In this technical note, we present 3 surgical modifications to previous reports: 1) inferior orbital rim osteotomy by angulated piezosurgical instruments, thereby avoiding the use of chisels in the orbital region; 2) osteosynthetic fixation only laterally at the zygomatic buttress with 2 L-shaped miniplates, thus avoiding paranasal osteosynthesis; and 3) advancement step camouflage in the lateral infraorbital region with a compound mass of autologous bone chips and fibrin glue with the intention to reduce bone block-associated side effects. Thirteen consecutive patients presenting with midfacial deficiency and Class III malocclusion were treated by IQLFIIO and mandibular osteotomy. In all cases, osteotomy and consecutive down fracture could be conducted as planned using the piezotome. No atypical fractures were encountered. No cases of infraorbital nerve anesthesia developed. Midfacial hypesthesia was found in 54% of the operated sides after 3 months, in 23% after 6 months, and in 13% after 12 months. The 5-month postoperative 3-dimensional scans revealed osseous healing at the infraorbital advancement step. Our results suggest that IQLFIIO can be conducted fully without chisels in the orbital region. Implementation of piezosurgery in IQLFIIO allows for safe bone cutting in the orbital region. Two miniplates and step camouflage with fibrin glue-stabilized bone chips were sufficient for osseous healing. Future studies will focus on quantitative soft to hard tissue changes that occur with IQLFIIO advancement. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Custom-Machined Miniplates and Bone-Supported Guides for Orthognathic Surgery: A New Surgical Procedure.

    PubMed

    Brunso, Joan; Franco, Maria; Constantinescu, Thomas; Barbier, Luis; Santamaría, Joseba Andoni; Alvarez, Julio

    2016-05-01

    Several surgical strategies exist to improve accuracy in orthognathic surgery, but ideal planning and treatment have yet to be described. The purpose of this study was to present and assess the accuracy of a virtual orthognathic positioning system (OPS), based on the use of bone-supported guides for placement of custom, highly rigid, machined titanium miniplates produced using computer-aided design and computer-aided manufacturing technology. An institutional review board-approved prospective observational study was designed to evaluate our early experience with the OPS. The inclusion criteria were as follows: adult patients who were classified as skeletal Class II or III patients and as candidates for orthognathic surgery or who were candidates for maxillomandibular advancement as a treatment for obstructive sleep apnea. Reverse planning with computed tomography and modeling software was performed. Our OPS was designed to avoid the use of intermaxillary fixation and occlusal splints. The minimum follow-up period was 1 year. Six patients were enrolled in the study. The custom OPS miniplates fit perfectly with the anterior buttress of the maxilla and the mandible body surface intraoperatively. To evaluate accuracy, the postoperative 3-dimensional reconstructed computed tomography image and the presurgical plan were compared. In the maxillary fragments that underwent less than 6 mm of advancement, the OPS enabled an SD of 0.14 mm (92% within 1 mm) at the upper maxilla and 0.34 mm (86% within 1 mm) at the mandible. In the case of great advancements of more than 10 mm, the SD was 1.33 mm (66% within 1 mm) at the upper maxilla and 0.67 mm (73% within 1 mm) at the mandibular level. Our novel OPS was safe and well tolerated, providing positional control with considerable surgical accuracy. The OPS simplified surgery by being independent of support from the opposite maxilla and obviating the need for classic intermaxillary occlusal splints. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Treatment of traumatic infra orbital nerve paresthesia

    PubMed Central

    Lone, Parveen Akhter; Singh, R. K.; Pal, U. S.

    2012-01-01

    This study was done to find out the role of topiramate therapy in infraorbital nerve paresthesia after miniplate fixation in zygomatic complxex fractures. A total 2 cases of unilateral zygomatic complex fracture, 2-3 weeks old with infra orbital nerve paresthesia were slected. Open reduction and plating was done in frontozygomaticregion. Antiepileptic drug tab topiramate was given in therapeutic doses and dose was increased slowly until functional recovery was noticed. PMID:23833503

  18. Congenital cervical kyphosis in an infant with Ehlers-Danlos syndrome.

    PubMed

    Kobets, Andrew J; Komlos, Daniel; Houten, John K

    2018-07-01

    Ehler-Danlos syndome (EDS) refers to a group of heritable connective tissue disorders; rare manifestations of which are cervical kyphosis and clinical myelopathy. Surgical treatment is described for the deformity in the thoracolumbar spine in adolescents but not for infantile cervical spine. Internal fixation for deformity correction in the infantile cervical spine is challenging due to the diminutive size of the bony anatomy and the lack of spinal instrumentation specifically designed for young children. We describe the first case of successful surgical treatment in an infant with a high cervical kyphotic deformity in EDS. A 15-month-old female with EDS presented with several months of regression in gross motor skills in all four extremities. Imaging demonstrated 45° of kyphosis from the C2-4 levels with spinal cord compression. Corrective surgery consisted of a C3 corpectomy and C2-4 anterior fusion with allograft block and anterior fixation with dual 2 × 2 hole craniofacial miniplates, supplemented by C2-4 posterior fusion using four craniofacial miniplates fixated to the lamina. Radiographs at 20 months post-surgery demonstrated solid fusion both anteriorly and posteriorly with maintenance of correction. Ehlers-Danlos syndrome may present in the pediatric population with congenital kyphosis from cervical deformity in addition to the more commonly seen thoracolumbar deformities.

  19. Design and finite element analysis of micro punch CNC machine modeling for medical devices

    NASA Astrophysics Data System (ADS)

    Pranoto, Sigiet Haryo; Mahardika, Muslim

    2018-03-01

    Research on micromanufacturing has been conducted. Miniaturization and weight reduction of various industrial products continue to be developed, machines with high accuracy and good quality of machining results are needed recently. This research includes design and simulation of Micro Punch CNC Machine using Abaqus with pneumatic system. This article concern of modeling simulation of punching miniplate titanium with 0.6 MPa of pressure and 500 µm of thickness. This study explaining von misses stress, safety factor and displacement analysis while the machine had the load of punching. The result gives the reaction forced of punching is 0.5 MPa on punch tip and maximum displacement is 3.237 × 10-1 mm. The safety factor is over than 12, and considered it safe for manufacturing process.

  20. The Metacarpal Locked Intramedullary Nail: Comparative Biomechanical Evaluation of New Implant Design for Metacarpal Fractures.

    PubMed

    Boonyasirikool, Chinnakart; Tanakeatsakul, Sakkarin; Niempoog, Sunyarn

    2015-04-01

    The optimal fixation of metacarpal fracture should provide sufficient stability to permit early functionfor all types of fracture. However; it must preserve surrounding soft tissue during application and not require secondary removal due to its prominence. The prototype of metacarpal locked intramedullary nail (MCLN) was designed by our institute aiming to achieve those allfeatures. To biomechanically test our newly designed, locked metacarpal nail and compare with common current available fixation methods. Thirty chicken humeri were devided into 3 groups (n = 1 per group) according tofixation techniques: MCLN, 1.5 mm miniplate (Synthes), and Kirschner wire. After complete fixation, all specimens were osteotomized at mid-shaft creating transverse fractures. Five specimens from each group were tested by load of failure under axial compression, and another five under bending force. In axial compression model, the loads tofailure in MCLN group was greatest (460 ± 17 N), which was significant higher than the Kirschner wire group. The MCLN group also showed the highest load to failure in bending test (341 ± 10 N). This value reaches statistical significance when compared with plate and Kirschner wire groups. The MCLN construct provided higher stability than miniplate and Kirschner wire fixation both in axial and bending mode. Together with the minimally invasive and soft tissue-friendly design concept, this study suggests that MCLN is promising fixation option for metacarpal fracture.

  1. Assessing bone volume for orthodontic miniplate fixation below the maxillary frontal process.

    PubMed

    Präger, T M; Brochhagen, H G; Mischkowski, R; Jost-Brinkmann, P-G; Müller-Hartwich, R

    2014-09-01

    The maxillary bone below the frontal process is used for orthodontic anchorage; indications have included skeletally anchored protraction of the maxilla for treating Class III malocclusions or the intrusion of teeth in patients with a deep bite. This study was conducted to assess the condition of bone before cortically implanting miniplates in that area of the maxilla. A total of 51 thin-sliced computed tomography scans of 51 fully-dentate adult patients (mean age 24.0 ± 8.1 years; 27 men and 24 women) obtained prior to third-molar osteotomy were evaluated. Study parameters included total bone thickness, thickness of the facial cortical plate, and width of the nasal maxillary buttress. All these parameters were measured at different vertical levels. The bone volume adjacent to the piriform aperture was most pronounced at the basal level and decreased progressively toward more cranial levels. The basal bone structure had a mean total thickness of 7.8 mm, facial cortical plate thickness of 1.9 mm, and nasal maxillary buttress width of 9.2 mm. At 16 mm cranial to the aperture base, these values fell to 5.6 mm, 1.3 mm, and 5.8 mm, respectively. These bone measurements suggest that screws 7 mm in length can be inserted at the base level of the piriform aperture and screws 5 mm long at the cranial end of the bone.

  2. Miniplate-Aided Mandibular Dentition Distalization as a Camouflage Treatment of a Class III Malocclusion in an Adult.

    PubMed

    Hakami, Zaki; Chen, Po Jung; Ahmida, Ahmad; Janakiraman, Nandakumar; Uribe, Flavio

    2018-01-01

    This case report describes orthodontic camouflage treatment for a 32-year-old African American male patient with Class III malocclusion. The treatment included nonextraction, nonsurgical orthodontic camouflage by en masse distalization of the mandibular teeth using skeletal anchorage devices. The total treatment time was 23 months. Normal overjet and overbite with Class I occlusion were obtained despite the compensated dentition to the skeletal malocclusion. His smile esthetics was significantly improved at the completion of his treatment.

  3. Miniplate-Aided Mandibular Dentition Distalization as a Camouflage Treatment of a Class III Malocclusion in an Adult

    PubMed Central

    Chen, Po Jung; Ahmida, Ahmad; Janakiraman, Nandakumar; Uribe, Flavio

    2018-01-01

    This case report describes orthodontic camouflage treatment for a 32-year-old African American male patient with Class III malocclusion. The treatment included nonextraction, nonsurgical orthodontic camouflage by en masse distalization of the mandibular teeth using skeletal anchorage devices. The total treatment time was 23 months. Normal overjet and overbite with Class I occlusion were obtained despite the compensated dentition to the skeletal malocclusion. His smile esthetics was significantly improved at the completion of his treatment. PMID:29721340

  4. [Latest trends in the surgical management of mandibular condyle fractures in France, 2005-2012].

    PubMed

    Trost, O; Péron, J-M

    2013-12-01

    The surgical treatment of mandibular condylar fractures is commonly performed. We had for aim to present the latest trends in the surgical management of condylar fractures in France, between 2005 and 2012. A survey was performed among the 49 members of the French college of oral and maxillofacial surgeons between January and September 2012, with a questionnaire sent by email. We analyzed the therapeutic management, the surgical indications; the techniques used according to the fracture, and the postoperative treatment protocols. The data was compared to that of a similar study performed in 2005. The overall reply rate was 86%. Low subcondylar fractures were operated on in all institutions (100%), compared to 76% in 2005. The most popular technique was the high submandibular approach with intraoral miniplate fixation osteosynthesis. High subcondylar and diacapitular fractures were operated on in respectively 82% and 35% of the cases compared to 29% and 10% in 2005 with various surgical techniques and postoperative management. French maxillofacial surgeons operated on more mandibular condylar fractures in 2012 than in 2005. As observed in 2005, the lower and the more dislocated the fractures were, the more they were operated on. The high submandibular approach has become the most popular approach. The use of miniplates for bone fixation has become common. Diacapitular fractures were usually treated functionally. The postoperative management varied greatly from one team to the other. Copyright © 2013. Published by Elsevier Masson SAS.

  5. Treatment effects of skeletally anchored Forsus FRD EZ and Herbst appliances: A retrospective clinical study.

    PubMed

    Celikoglu, Mevlut; Buyuk, Suleyman Kutalmis; Ekizer, Abdullah; Unal, Tuba

    2016-03-01

    To evaluate the skeletal, dentoalveolar, and soft tissue effects of the Forsus FRD appliance with miniplate anchorage inserted in the mandibular symphyses and to compare the findings with a well-matched control group treated with a Herbst appliance for the correction of a skeletal Class II malocclusion due to mandibular retrusion. The sample consisted of 32 Class II subjects divided into two groups. Group I consisted of 16 patients (10 females and 6 males; mean age, 13.20 ± 1.33 years) treated using the Forsus FRD EZ appliance with miniplate anchorage inserted in the mandibular symphyses. Group II consisted of 16 patients (9 females and 7 males; mean age, 13.56 ± 1.27 years) treated using the Herbst appliance. Seventeen linear and 10 angular measurements were performed to evaluate and compare the skeletal, dentoalveolar, and soft tissue effects of the appliances using paired and Student's t-tests. Both appliances were effective in correcting skeletal class II malocclusion and showed similar skeletal and soft tissue changes. The maxillary incisor was statistically significantly more retruded in the skeletally anchored Forsus FRD group (P < .01). The mandibular incisor was retruded in the skeletally anchored Forsus FRD group (-4.09° ± 5.12°), while it was protruded in the Herbst group (7.50° ± 3.98°) (P < .001). Although both appliances were successful in correcting the skeletal Class II malocclusion, the skeletally anchored Forsus FRD EZ appliance did so without protruding the mandibular incisors.

  6. Surgical repositioning of the premaxilla with bone graft in 50 bilateral cleft lip and palate patients.

    PubMed

    Carlini, João L; Biron, Cassia; Gomes, Kelston Ulbricht; Da Silva, Rafael M

    2009-04-01

    The aim of this study was to evaluate a modified surgical technique for premaxilla repositioning with concomitant autogenous bone grafting in bilateral trans-foramen cleft lip and palate patients. The study included 50 bilateral trans-foramen cleft lip and palate patients. Bone graft was harvested from the mandibular symphysis in 24 patients. Whenever more grafting was necessary, the iliac crest bone was used as the donor site (26 patients). The premaxilla was displaced by rupturing the bone and the palatine mucosa, and repositioned in a more adequate position using a surgical guide. The premaxilla and the grafts were fixed with miniplates and screws or screws only. The surgical guide was kept in place for 2 months, whereas the miniplates and screws were removed after 6 months, together with the complete bilateral lip and nose repair. Follow-up examinations were performed at 3, 6, and 12 months by means of periapical and occlusal radiographs, and by clinical examination. Thereafter, the patients were referred for completion of the orthodontic treatment. Overall, in 48 cases (96%) the treatment achieved total graft integration, with complete closure of the bucconasal and palatal fistulas, and premaxilla stability (either at first surgery or after reoperation). In the remaining 2 patients (4%), the treatment failed, due to necrosis of the premaxilla. The procedure is complex and involves risk. However, the patient's social inclusion, especially at the addressed age group, is the best benefit achieved.

  7. Impairment of wound healing after operative treatment of mandibular fractures, and the influence of dexamethasone.

    PubMed

    Snäll, Johanna; Kormi, Eeva; Lindqvist, Christian; Suominen, Anna Liisa; Mesimäki, Karri; Törnwall, Jyrki; Thorén, Hanna

    2013-12-01

    Our aim was to clarify the incidence of impaired wound healing after open reduction and ostheosynthesis of mandibular fractures, and to find out whether the use of dexamethasone during the operation increased the risk. Patients were drawn from a larger group of healthy adult dentate patients who had participated in a single-blind, randomised study, the aim of which was to clarify the benefits of operative dexamethasone after treatment of facial fractures. The present analysis comprised 41 patients who had had open reduction and fixation of mandibular fractures with titanium miniplates and monocortical screws through one or 2 intraoral approaches. The outcome variable was impaired healing of the wound. The primary predictive variable was the perioperative use of dexamethasone; other potential predictive variables were age, sex, smoking habit, type of fracture, delay in treatment, and duration of operation. Wound healing was impaired in 13/41 patients (32%) (13/53 of all fractures). The incidence among patients who were given dexamethasone and those who were not did not differ significantly. Only age over 25 was significantly associated with delayed healing (p=0.02). The use of dexamethasone 30 mg perioperatively did not significantly increase the risk of impaired wound healing in healthy patients with clinically uninfected mandibular fractures fixed with titanium miniplates through an intraoral approach. Older age is a significant predictor of impaired healing, which emphasises the importance of thorough anti-infective care in these patients during and after the operation. Copyright © 2013 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Study of diffusion bond development in 6061 aluminum and its relationship to future high density fuels fabrication.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokofiev, I.; Wiencek, T.; McGann, D.

    1997-10-07

    Powder metallurgy dispersions of uranium alloys and silicides in an aluminum matrix have been developed by the RERTR program as a new generation of proliferation-resistant fuels. Testing is done with miniplate-type fuel plates to simulate standard fuel with cladding and matrix in plate-type configurations. In order to seal the dispersion fuel plates, a diffusion bond must exist between the aluminum coverplates surrounding the fuel meat. Four different variations in the standard method for roll-bonding 6061 aluminum were studied. They included mechanical cleaning, addition of a getter material, modifications to the standard chemical etching, and welding methods. Aluminum test pieces weremore » subjected to a bend test after each rolling pass. Results, based on 400 samples, indicate that at least a 70% reduction in thickness is required to produce a diffusion bond using the standard rollbonding method versus a 60% reduction using the Type II method in which the assembly was welded 100% and contained open 9mm holes at frame corners.« less

  9. [Process strategy for ethanol production from lignocellulose feedstock under extremely low water usage and high solids loading conditions].

    PubMed

    Zhang, Jian; Chu, Deqiang; Yu, Zhanchun; Zhang, Xiaoxi; Deng, Hongbo; Wang, Xiusheng; Zhu, Zhinan; Zhang, Huaiqing; Dai, Gance; Bao, Jie

    2010-07-01

    The massive water and steam are consumed in the production of cellulose ethanol, which correspondingly results in the significant increase of energy cost, waster water discharge and production cost as well. In this study, the process strategy under extremely low water usage and high solids loading of corn stover was investigated experimentally and computationally. The novel pretreatment technology with zero waste water discharge was developed; in which a unique biodetoxification method using a kerosene fungus strain Amorphotheca resinae ZN1 to degrade the lignocellulose derived inhibitors was applied. With high solids loading of pretreated corn stover, high ethanol titer was achieved in the simultaneous saccharification and fermentation process, and the scale-up principles were studied. Furthermore, the flowsheet simulation of the whole process was carried out with the Aspen plus based physical database, and the integrated process developed was tested in the biorefinery mini-plant. Finally, the core technologies were applied in the cellulose ethanol demonstration plant, which paved a way for the establishment of an energy saving and environment friendly technology of lignocellulose biotransformation with industry application potential.

  10. Evaluation of Vertical Bone Regeneration Using Block and Particulate Forms of Bio-Oss Bone Graft: A Histologic Study in the Rabbit Mandible.

    PubMed

    Veis, Alexander; Dabarakis, Nikolaos; Koutrogiannis, Christos; Barlas, Irodis; Petsa, Elina; Romanos, Georgios

    2015-06-01

    The aim of the present study was to evaluate histologically vertical bone regeneration outcomes after using bovine bone graft material in block and granular forms. The buccal bony plates of the outer mandibles of 10 New Zealand rabbits received Bio-Oss blocks that were immobilized using orthopedic mini-plates, and another 10 received granular forms that were gently packed and stabilized into the custom-made perforated metallic cubes. The mean graft area (GA), new bone area (NBA), bone-to-graft contact (BGC), and maximum vertical height reached by the new bone development (MVH) were histometrically evaluated and showed no significant differences between 2 graft types. The new bone was observed mostly close to the basal bone and developed penetrating the trabecular scaffold in the form of seams that covered the intralumen surfaces of the block type graft, while in the granular graft type the new bone was observed to grow between the graft particles usually interconnecting them. Either form of Bio-Oss was capable of providing considerable vertical bone augmentation.

  11. Surgical treatment of mandibular condyle fractures using the retromandibular anterior transparotid approach and a triangular-positioned double miniplate osteosynthesis technique: A clinical and radiological evaluation of 124 fractures.

    PubMed

    Dalla Torre, Daniel; Burtscher, Doris; Widmann, Gerlig; Pichler, Albina; Rasse, Michael; Puelacher, Wolfgang

    2015-07-01

    Different modalities have been described regarding the treatment of mandibular condyle fractures. The most advantageous and safest one is still a topic of discussion. The present analysis describes the combination of a retromandibular, transparotideal approach combined to a triangular-positioned double-miniplate osteosynthesis, with a special regard for the patients' long term outcomes. Clinical data of 102 patients with 124 condyle fractures treated with the mentioned surgical procedure were evaluated. Functional parameters such as the maximal interincisal distance, deviations/deflections, facial nerve function, occlusion as well as complications regarding the parotid gland, osteosynthesis, and esthetics were evaluated 1 week, 2 weeks, 3 months, and 6 months postoperatively. The mean maximal interincisal distance ranged from 38 mm after 1 week to 45 mm after 6 months. Deviations/deflections were seen in 22.5% of the cases 1 week postoperatively and decreased to 2% at 6 months postoperatively. A temporary facial palsy was diagnosed in 3.9% during the first follow-up, whereas no impairment was recorded after 3 or 6 months. At the same time, no patient had occlusional disturbances or complications regarding the parotid gland or the osteosynthesis 6 months postoperatively. Direct fracture visualization and a stable three-dimensional fracture stabilization are the main advantages of the presented combination of a surgical approach and osteosynthesis technique. Additionally, the absence of long-term complications confirms the safety of the procedure. Therefore, it may be considered as a successful treatment option for mandibular condyle fractures. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  12. Comparison of short-term effects between face mask and skeletal anchorage therapy with intermaxillary elastics in patients with maxillary retrognathia.

    PubMed

    Ağlarcı, Cahide; Esenlik, Elçin; Fındık, Yavuz

    2016-06-01

    The aim of this study was to compare the short-term dental and skeletal effects of a face mask (FM) with those of skeletal anchorage (SA) therapy with intermaxillary elastics in prepubertal patients with skeletal Class III malocclusion. Fifty patients with skeletal Class III malocclusion and maxillary deficiency were divided into two groups. In the FM group, an FM was applied by a bite plate with a force of 400g for each side. In the SA group, mini-plates were placed between mandibular lateral incisors and canines, and mini-implants were inserted between maxillary second premolars and first molars. A bite plate was inserted into the upper arch, and Class III elastics were applied with a force of 200g between each mini-plate and mini-implant. Mean treatment durations were 0.52±0.09 years for FM and 0.76±0.09 years for SA. After the treatment, statistically significant increases in SNA°, ANB°, A-y, 1-NA, SnGoGn°, Co-A, Co-Gn, and A-Nperp, and reductions in SNB° and FH┴N-Pg were observed in both groups, and these changes were similar in both groups. In the FM group, 1-NB decreased significantly, and in the SA group, it increased significantly (P < 0.05). The undesired dentoalveolar effects of the FM treatment were eliminated with SA treatment, except with regard to lower incisor inclination. Favourable skeletal outcomes can be achieved by SA therapies, which could be an alternative to the extraoral appliances frequently applied to treat skeletal Class III patients with maxillary deficiency. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Targeted traction of impacted teeth with C-tube miniplates.

    PubMed

    Chung, Kyu-Rhim; Kim, Yong; Ahn, Hyo-Won; Lee, Dongjoo; Yang, Dong-Min; Kim, Seong-Hun; Nelson, Gerald

    2014-09-01

    Orthodontic traction of impacted teeth has typically been performed using full fixed appliance as anchorage against the traction force. This conventional approach can be difficult to apply in the mixed dentition if the partial fixed appliance offers an insufficient anchor unit. In addition, full fixed appliance can induce unwanted movement of adjacent teeth. This clinical report presents 3 cases where impacted teeth were recovered in the mixed or transitional dentition with skeletal anchorage on the opposite arch without full fixed appliance. Instead, intermaxillary traction was used to bring the impacted teeth into position. With this approach, side effects on teeth and periodontal tissues adjacent to the impaction were minimized.

  14. Clinical efficacy of open reduction and semirigid internal fixation in management of displaced pediatric mandibular fractures: a series of 10 cases and surgical guidelines.

    PubMed

    Joshi, Samir; Kshirsagar, Rajesh; Mishra, Akshay; Shah, Rahul

    2015-01-01

    To evaluate the efficacy of open reduction and semirigid internal fixation in the management of displaced pediatric mandibular fractures. Ten patients with displaced mandibular fractures treated with 1.5 mm four holed titanium mini-plate and 4 mm screws which were removed within four month after surgery. All cases showed satisfactory bone healing without any growth disturbance. Open reduction and rigid internal fixation (ORIF) with 1.5 mm titanium mini- plates and 4 mm screws is a reliable and safe method in treatment of displaced paediatric mandibular fractures.

  15. Facial fractures caused by less-lethal rubber bullet weapons: case series report and literature review.

    PubMed

    Amaral, Marcio Bruno Figueiredo; Bueno, Sebastião Cristian; Abdala, Icaro Buchholz; da Silveira, Roger Lanes

    2017-09-01

    The present study aims to describe three cases of patients inflicted by rubber bullets with severe facial fractures. In addition, a review of English-language literature involving facial fractures by rubber bullets from 1975 to 2016 was performed. This current study demonstrated that the use of the LLRBW is unsafety even when applied by police enforcements exclusively. Management of facial fractures caused by LLRBW is done in a usual manner with closed or open reduction associated with bone mini-plates or reconstruction plates when indicated. Special initial wound care should be done to avoid secondary infection and additional procedures.

  16. Comparative evaluation of maxillary protraction with or without skeletal anchorage.

    PubMed

    Sar, Cağla; Arman-Özçırpıcı, Ayça; Uçkan, Sina; Yazıcı, A Canan

    2011-05-01

    The aim of this prospective clinical study was to evaluate the skeletal, dentoalveolar, and soft-tissue effects of maxillary protraction with miniplates compared with conventional facemask therapy and an untreated Class III control group. Forty-five subjects who were in prepubertal or pubertal skeletal growth periods were included in the study and divided into 3 groups of 15 patients each. All subjects had skeletal and dental Class III malocclusions with maxillary deficiency, vertically normal growth pattern, anterior crossbite, Angle Class III molar relationship, normal or increased overbite, and retrusive nasomaxillary complex. Before maxillary protraction, rapid maxillary expansion with a bonded appliance was performed in both treatment groups. In the first group (MP+FM), consisting of 5 girls and 10 boys (mean age, 10.91 years), facemasks were applied from 2 titanium miniplates surgically placed laterally to the apertura piriformis regions of the maxilla. The second group (FM) of 7 girls and 8 boys (mean age, 10.31 years) received maxillary protraction therapy with conventional facemasks applied from hooks of the rapid maxillary expansion appliance. The third group of 8 girls and 7 boys (mean age, 10.05 years) was the untreated control group. Lateral cephalometric films were obtained at the beginning and end of treatment or observation in all groups and analyzed according to a structural superimposition method. Measurements were evaulated statistically with Wilcoxon and Kruskal-Wallis tests. Treatment periods were 6.78 and 9.45 months in the MP+FM and FM groups, respectively, and the observation period in the control group was 7.59 months. The differences were significant between the 3 groups (P <0.05) and the MP+FM and FM groups (P <0.001). The maxilla moved forward for 2.3 mm in the MP+FM group and 1.83 mm in the FM group with maxillary protraction. The difference was significant between 2 groups (P <0.001). The protraction rates were 0.45 mm per month in the MP+FM group and 0.24 mm per month in the FM group (P <0.001). The maxilla showed anterior rotation after facemask therapy in the FM group (P <0.01); there was no significant rotation in the MP+FM group. Posterior rotation of the mandible and increased facial height were more evident in the FM group compared with the MP+FM group (P <0.01). Both the maxilla and the mandible moved forward significantly in the control group. Protrusion and mesialization of the maxillary teeth in the FM group were eliminated in the MP+FM group. The maxillomandibular relationships and the soft-tissue profile were improved remarkably in both treatment groups. The undesired effects of conventional facemask therapy were reduced or eliminated with miniplate anchorage, and efficient maxillary protraction was achieved in a shorter treatment period. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  17. EFFECTS OF IN VITRO RADIOCOBALT IRRADIATION OF RABBIT OVA ON SUBSEQUENT DEVELOPMENT IN VIVO WITH SPECIAL REFERENCE TO THE IRRADIATION OF MATERNAL ORGANISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, M.C.; Hunt, D.M.

    Fertilized rabbit ova recovered one to six days after mating were irradiated in vitro from a radiocobalt source and then transplanted into recipient animals. When examined 22 to 28 days later 44, 33, 8 and 0% of ova irradiated respectively at 50, 100, 1,000 and 5,000 r developed into apparently normal fetuses without external or internal malformation. No significant differential sensitivity was apparent in ova irradiated at different ages. It was found further that 34, 36, 19 and 10% of two-, 4-, and 6-day ova irradiated respectively in vitro at 200, 400, 600, and 800 r developed into "normal" fetuses.more » Again no malformation of fetuses and no differential radiosensitivity between ova of different ages were observed. Following whole body irradiation at 400 r, it was found that 40% of non-irradiated ova developed into normal fetuses when transplanted into recipient animals that had been irradiated (vs. 36% in the irradiation of ova alone). However, only 17% of estimated ova developed into "normal" fetuses when pregnant rabbits were irradiated 2, 4 or 6 days after insemination (vs. 64% in the control). It appears that irradiation of the maternal organism influences embryonic development and that irradiation of pregnant animals exerts a combination of ill effects, on the ova and on their environment. Cytological study of irradiated blastocysts revealed no chromosomal breakage immediately after irradiation. Chromosomal abnormalities, fragmentation and condensation of chromatin were observed during the culture of irradiated blastocysts in accordance with the dosages applied. From this study it is concluded that (1) although 50 r may affect embryonic development, there seems to be no differential effect up to 400 r, above which greater prenatal death occurs; (2) before implantation, irradiated ova either die or develop into apparently normal fetuses and there is no evidence of differential radiosensitivity at various stages of development; (3) irradiation of the maternal organism alone also affects embryonic development; and (4) radiation damage affects a fundamental biological system which leads to the nuclear damage and failure of mitosis, and the death of ova. (auth)« less

  18. Low cost silicon solar array project. Task 1: Establishment of the feasibility of a process capable of low cost, high volume production of silane, SiH4

    NASA Technical Reports Server (NTRS)

    Breneman, W. C.; Mui, J. Y. P.

    1976-01-01

    The kinetics of the redistribution of dichlorosilane and trichlorosilane vapor over a tertiary amine ion exchange resin catalyst were investigated. The hydrogenation of SiCl4 to form HSiCl3 and the direct synthesis of H2SiCl2 from HCl gas and metallurgical silicon metal were also studied. The purification of SiH4 using activated carbon adsorbent was studied along with a process for storing SiH4 absorbed on carbon. The latter makes possible a higher volumetric efficiency than compressed gas storage. A mini-plant designed to produce ten pounds per day of SiH4 is described.

  19. Transfer of free fillet lateral arm flap for facial reconstruction.

    PubMed

    Bayram, Fazli Cengiz; Dadaci, Mehmet; Ince, Bilsev; Altuntas, Zeynep

    2014-07-01

    We describe a 16-year-old male patient who had a major right facial degloving injury resulting in a soft-tissue defect with exposed zygoma as well as temporal and frontal bones. Multiple operations were undertaken in a staged manner for reconstruction. Lateral arm free fillet flap transfer was initially performed with fixation of bones with miniplates, which is followed by flap debulking, lateral canthopexy, scalp tissue expansion for hairline reconstruction, as well as ear reconstruction with costal cartilage and local flap techniques. After a follow-up period of 2 years, a good and impressive reconstructive result was achieved through the use of multiple contemporary reconstructive procedures after a successful free fillet flap transfer from an amputated part.

  20. Pediatric mandibular fractures treated by rigid internal fixation.

    PubMed

    Wong, G B

    1993-09-01

    Mandibular fractures in the pediatric patient population are relatively uncommon. These patients present with their own unique treatment requirements. Most fractures have been treated conservatively by dental splints. Closed reduction techniques with maxillomandibular fixation (MMF) in very young children can pose several concerns, including cooperation, compliance and adequate nutritional intake. Rigid internal fixation of unstable mandibular fractures using miniplates and screws circumvents the need for MMF and allows immediate jaw mobilization. At major pediatric trauma institutions, there has been an increasing trend toward the use of this treatment when open reduction is necessary. This article presents a report of a five-year-old child who presented with bilateral mandibular fractures and was treated by rigid internal fixation and immediate mandibular mobilization.

  1. Renal effects of renal x irradiation and induced autoallergic glomerulonephritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rappaport, D.S.; Casarett, G.W.

    1979-09-01

    This study was conducted to determine what influence a single large x-ray exposure of kidney has on the development and course of an experimental autoallergic glomerulonephritis (EAG) in rats. EAG was induced in female Sprague-Dawley rats by immunization with Bordetella pertussis vaccine and homogenate of homologous kidney tissue and Freund's complete adjuvant. Progressive arteriolonephrosclerosis (ANS) was observed in right (irradiated) kidneys following unilateral renal irradiation (1500 rad). Rats were either immunized, sham-immunized, irradiated, sham-irradiated, or both immunized and irradiated. Light and immunofluorescent microscopic observation, urine protein content, and kidney weights were evaluated. In immunized-irradiated animals the effects of irradiation andmore » immunization were largely additive. Immunization did not considerably influence the development and course of ANS and irradiation did not considerably influence the development and course of EAG.« less

  2. ATF Neutron Irradiation Program Irradiation Vehicle Design Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geringer, J. W.; Katoh, Yutai; Howard, Richard H.

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post irradiation examination and characterizationmore » of irradiated materials and the shipment of irradiated materials to Japan. This report discusses the conceptual design, the development and irradiation of the test vehicles.« less

  3. Biological effects of ultraviolet irradiation on bees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Es`kov, E.K.

    1995-09-01

    The influence of natural solar and artificial ultraviolet irradiation on developing bees was studied. Lethal exposures to irradiation at different stages of development were determined. The influence of irradiation on the variability of the morphometric features of bees was revealed. 5 refs., 1 fig.

  4. Simulation model for electron irradiated IGZO thin film transistors

    NASA Astrophysics Data System (ADS)

    Dayananda, G. K.; Shantharama Rai, C.; Jayarama, A.; Kim, Hyun Jae

    2018-02-01

    An efficient drain current simulation model for the electron irradiation effect on the electrical parameters of amorphous In-Ga-Zn-O (IGZO) thin-film transistors is developed. The model is developed based on the specifications such as gate capacitance, channel length, channel width, flat band voltage etc. Electrical parameters of un-irradiated IGZO samples were simulated and compared with the experimental parameters and 1 kGy electron irradiated parameters. The effect of electron irradiation on the IGZO sample was analysed by developing a mathematical model.

  5. Comminuted mandibular fracture in child victim of dog bite.

    PubMed

    de Carvalho, Matheus Furtado; Hardtke, Luiz Augusto Paixão; de Souza, Max Filipe Cota; de Oliveira Araujo, Vasco

    2012-08-01

    Dog bites represent lesions commonly found in Hospital Emergency Clinic. This type of lesion may cause severe harm to patients, but it rarely affects the underlying bone structure causes facial fracture. This study aims to illustrate a rare clinical case in which a pediatric patient presented a comminuted fracture in the mandible which evolved into a unilateral avulsion of the mandibular condyle, body fractures as well as a mandibular ramus and hemiface that had been deformed, with multiple lacerations and loss of soft-tissue mass. Intermaxillary fixation was performed using the Ivy method, followed by internal rigid fixation using miniplates and screws in attempt to reconstruct the child's mandible. After 2 years of follow-up, a satisfactory esthetics and functional results could be observed. © 2011 John Wiley & Sons A/S.

  6. Open bite: diagnosis, treatment and stability.

    PubMed

    Matsumoto, Mírian Aiko Nakane; Romano, Fábio Lourenço; Ferreira, José Tarcísio Lima; Valério, Rodrigo Alexandre

    2012-01-01

    Open bite has fascinated Orthodontics due to the difficulties regarding its treatment and maintenance of results. This anomaly has distinct characteristics that, in addition to the complexity of multiple etiological factors, have aesthetic and functional consequences. Within this etiological context, several types of mechanics have been used in open bite treatment, such as palatal crib, orthopedic forces, occlusal adjustment, orthodontic camouflage with or without extraction, orthodontic intervention using mini-implants or mini-plates, and even orthognathic surgery. An accurate diagnosis and etiological determination are always the best guides to establish the objectives and the ideal treatment plan for such a malocclusion. This report describes two cases of open bite. At the end of the treatment, both patients had their canines and molars in Class I occlusion, normal overjet and overbite, and stability during the posttreatment period.

  7. Dose controlled low energy electron irradiator for biomolecular films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S. V. K., E-mail: svkk@tifr.res.in; Tare, Satej T.; Upalekar, Yogesh V.

    2016-03-15

    We have developed a multi target, Low Energy Electron (LEE), precise dose controlled irradiator for biomolecular films. Up to seven samples can be irradiated one after another at any preset electron energy and dose under UHV conditions without venting the chamber. In addition, one more sample goes through all the steps except irradiation, which can be used as control for comparison with the irradiated samples. All the samples are protected against stray electron irradiation by biasing them at −20 V during the entire period, except during irradiation. Ethernet based communication electronics hardware, LEE beam control electronics and computer interface weremore » developed in house. The user Graphical User Interface to control the irradiation and dose measurement was developed using National Instruments Lab Windows CVI. The working and reliability of the dose controlled irradiator has been fully tested over the electron energy range of 0.5 to 500 eV by studying LEE induced single strand breaks to ΦX174 RF1 dsDNA.« less

  8. Effect of x-ray irradiation on the physical and chemical quality of America red globe grape

    USDA-ARS?s Scientific Manuscript database

    The use of irradiation as a phytosanitary treatment has expanded in recent years. It plays important roles in developed and developing countries, facilitating international trade in irradiated fresh fruit. To evaluate the potential of X-ray irradiation as a quarantine treatment for ‘America Red Glob...

  9. Establishment and development of irradiation technology industry in Shenzhen

    NASA Astrophysics Data System (ADS)

    Shou-yi, Lu

    1993-07-01

    This paper discusses the establishment and development of radiation processing—the new technology industry in Shenzhen special economic zone, China, from importing a complete set of irradiation equipment to establishing an industrial system of irradiation commercialization. Through the organization of irradiation production, the safety operation of the equipment, the development of irradiation products, the pioneering of technical markets, the increase of economic benefit and the reveal of social benefit, the irradiation technology industry in Shenzhen has formed a productive capacity of 1 million curies of Cobalt-60 just in a few years. This shows a bright future of the new technical industry. This paper also points out that the radiation sterilization is a ripe and practical technology in the present irradiation technology industry. The academic circles and industrial circles in the world now should closely cooperate to make the superior sterilization technology convinced by the public. The appropriate administrative measures should be taken to make it extended and popularized. This not only increases the level of social medical health, but also urges the irradiation technology to have an outstanding development in commercialization.

  10. Inability of populations of Callosobruchus maculatus to develop tolerance to exposures of acute gamma irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brower, J.H.

    1974-03-01

    The reproductive capacity and resistance to an acute dose of gamma irradiation were determined for populations of Callosobruchus maculatus treated with substerilizing doses of irradiation each generation for 30 generations. Reproductive capacity was decreased by an ancestral history of irradiation, the reduction being positively correlated with both the size of dose per generation and the number of ancestral generations treated. Irradiation of the selected populations with an acute dose revealed no increase in tolerance, even after 30 generations. In general, the greater the amount of accumulated ancestral exposure to irradiation, the greater the sensitivity to further irradiation. The ability tomore » develop a tolerance to ionizing irradiation may not be a general phenomenon in insects. (auth)« less

  11. First metatarsal-phalangeal joint arthrodesis: a biomechanical assessment of stability.

    PubMed

    Politi, Joel; John, Hayes; Njus, Glen; Bennett, Gordon L; Kay, David B

    2003-04-01

    First metatarsal phalangeal joint (MTP) arthrodesis is a commonly performed procedure for the treatment of hallux rigidus, severe and recurrent bunion deformities, rheumatoid arthritis and other less common disorders of the joint. There are different techniques of fixation of the joint to promote arthrodesis including oblique lag screw fixation, lag screw and dorsal plate fixation, crossed Kirschner wires, dorsal plate fixation alone and various types of external fixation. Ideally the fixation method should be reproducible, lead to a high rate of fusion, and have a low incidence of complications. In the present study, we compared the strength of fixation of five commonly utilized techniques of first MTP joint arthrodesis. These were: 1. Surface excision with machined conical reaming and fixation with a 3.5 mm cortical interfragmentary lag screw. 2. Surface excision with machined conical reaming and fixation with crossed 0.062 Kirschner wires. 3. Surface excision with machined conical reaming and fixation with a 3.5 mm cortical lag screw and a four hole dorsal miniplate secured with 3.5 mm cortical screws. 4. Surface excision with machined conical reaming and fixation with a four hole dorsal miniplate secured with 3.5 mm cortical screws and no lag screw. 5. Planar surface excision and fixation with a single oblique 3.5 mm interfragmentary cortical lag screw. Testing was done on an Instron materials testing device loading the first MTP joint in dorsiflexion. Liquid metal strain gauges were placed over the joint and micromotion was detected with varying loads and cycles. The most stable technique was the combination of machined conical reaming and an oblique interfragmentary lag screw and dorsal plate. This was greater than two times stronger than an oblique lag screw alone. Dorsal plate alone and Kirschner wire fixation were the weakest techniques. First MTP fusion is a commonly performed procedure for the treatment of a variety of disorders of the first MTP joint. The most stable technique for obtaining fusion in this study was the combination of an oblique lag screw and a dorsal plate. This should lead to higher rates of arthrodesis.

  12. 77 FR 34367 - Proposed Subsequent Arrangement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... reactors, and a research reactor, at the Post Irradiation Examination Facility (PIEF), the Irradiated.../2011, ``Post-Irradiation Examination and R&D Programs Using Irradiated Fuels at KAERI,'' dated June... fuel elements for post-irradiation examination and for research, development and manufacture of DUPIC...

  13. Is it possible to avoid hypopituitarism after irradiation of pituitary adenomas by the Leksell gamma knife?

    PubMed

    Marek, Josef; Jezková, Jana; Hána, Václav; Krsek, Michal; Bandúrová, L'ubomíra; Pecen, Ladislav; Vladyka, Vilibald; Liscák, Roman

    2011-02-01

    Radiation therapy is one of the treatment options for pituitary adenomas. The most common side effect associated with Leksell gamma knife (LGK) irradiation is the development of hypopituitarism. The aim of this study was to verify that hypopituitarism does not develop if the maximum mean dose to pituitary is kept under 15 Gy and to evaluate the influence of maximum distal infundibulum dose on the development of hypopituitarism. We followed the incidence of hypopituitarism in 85 patients irradiated with LGK in 1993-2003. The patients were divided in two subgroups: the first subgroup followed prospectively (45 patients), irradiated with a mean dose to pituitary <15 Gy; the second subgroup followed retrospectively 1993-2001 and prospectively 2001-2009 (40 patients), irradiated with a mean dose to pituitary >15 Gy. Serum TSH, free thyroxine, testosterone or 17β-oestradiol, IGF1, prolactin and cortisol levels were evaluated before and every 6 months after LGK irradiation. Hypopituitarism after LGK irradiation developed only in 1 out of 45 (2.2%) patients irradiated with a mean dose to pituitary <15 Gy, in contrast to 72.5% patients irradiated with a mean dose to pituitary >15 Gy. The radiation dose to the distal infundibulum was found as an independent factor of hypopituitarism with calculated maximum safe dose of 17 Gy. Keeping the mean radiation dose to pituitary under 15 Gy and the dose to the distal infundibulum under 17 Gy prevents the development of hypopituitarism following LGK irradiation.

  14. Application of gamma irradiation on eggs, active and quiescence stages of Tetranychus urticae Koch as a quarantine treatment of cut flowers

    NASA Astrophysics Data System (ADS)

    Osouli, Sh.; Ziaie, F.; Haddad Irani Nejad, K.; Moghaddam, M.

    2013-09-01

    Tetranychus urticae Koch (Tetranychidae) is amongst the most serious pests of cut flowers and ornamentals. In this research the effects of gamma irradiation on different biological stages (including quiescent stages) of this pest have been studied. Irradiation at the doses of 250, 250, 200, 250, 200, 350 and 300 Gy causes sterility of females who were able to reach to adult stage from eggs, larva, protochrysalis, protonymph, deutochrysalis, deutonymph and teliochrysalis stages, respectively. The irradiation caused a decrease in percentage of mites entering the adult stage, developed the adult mite's longevity, number of laid eggs per adult female emerged from irradiated immature stages, and finally a retardation of embryonic and post-embryonic development. The sex ratio of the adult mites resulted from irradiated immature stages was biased towards females through increase of dose. The adult mites developed from irradiated two-day old eggs, three-day old eggs, larva, protochrysalis and deutochrysalis at 100, 350, 300, 350 and 350 Gy, respectively, were 100% females. In general the females resulted from irradiated quiescent stages have shown a high sensitivity to characteristics like eggs hatchability percentage and the emerged adult's sex ratio. On the other hand with regard to percentage of immature mites developed to adult stages, longevity of adult males and females, number of eggs laid by females and the time needed to complete their development, teliochrysalis has been the most tolerant stage. Also a 300 Gy dose could cause sterility in females irradiated at deutonymph stage and mated with adult males irradiated before mating and prevent their eggs to be hatched. In conclusion the most tolerance stages of this mite for most of characteristics was generally the most developed ones and a dose of around 300 Gy could be a phytosanitary irradiation treatment for Tetranychus urticae Koch.

  15. Focal exposure of limited lung volumes to high-dose irradiation down-regulated organ development-related functions and up-regulated the immune response in mouse pulmonary tissues.

    PubMed

    Kim, Bu-Yeo; Jin, Hee; Lee, Yoon-Jin; Kang, Ga-Young; Cho, Jaeho; Lee, Yun-Sil

    2016-01-27

    Despite the emergence of stereotactic body radiotherapy (SBRT) for treatment of medically inoperable early-stage non-small-cell lung cancer patients, the molecular effects of focal exposure of limited lung volumes to high-dose radiation have not been fully characterized. This study was designed to identify molecular changes induced by focal high-dose irradiation using a mouse model of SBRT. Central areas of the mouse left lung were focally-irradiated (3 mm in diameter) with a single high-dose of radiation (90 Gy). Temporal changes in gene expression in the irradiated and non-irradiated neighboring lung regions were analyzed by microarray. For comparison, the long-term effect (12 months) of 20 Gy radiation on a diffuse region of lung was also measured. The majority of genes were down-regulated in the focally-irradiated lung areas at 2 to 3 weeks after irradiation. This pattern of gene expression was clearly different than gene expression in the diffuse region of lungs exposed to low-dose radiation. Ontological and pathway analyses indicated these down-regulated genes were mainly associated with organ development. Although the number was small, genes that were up-regulated after focal irradiation were associated with immune-related functions. The temporal patterns of gene expression and the associated biological functions were also similar in non-irradiated neighboring lung regions, although statistical significance was greatly reduced when compared with those from focally-irradiated areas of the lung. From network analysis of temporally regulated genes, we identified inter-related modules associated with diverse functions, including organ development and the immune response, in both the focally-irradiated regions and non-irradiated neighboring lung regions. Focal exposure of lung tissue to high-dose radiation induced expression of genes associated with organ development and the immune response. This pattern of gene expression was also observed in non-irradiated neighboring areas of lung tissue, indicating a global lung response to focal high-dose irradiation.

  16. [Osteosynthesis in the Surgical Treatment of Prognathism: State of The Art].

    PubMed

    Durão, Nuno; Amarante, José

    2017-03-31

    Prognathism is a common skeletal facial abnormality, associated with class III malocclusion, often with repercussions in quality of life. In addition to orthodontic treatment, sagittal split ramus osteotomy is the most common technique for its correction, and segment osteosynthesis is an important element of the post-surgical outcome. A search for relevant literature was conducted in the PubMed/MEDLINE database and in other relevant sources. The stability of different fixation methods, their repercussions on inferior alveolar nerve lesions, and the type of material are among the most researched subjects. Recent research about the type of osteosynthesis applied in the sagittal split ramus osteotomy for mandibular setback is discussed. Miniplates appear to be the better option for fixation of sagittal split osteotomy for mandibular setback. Bioabsorbable osteosynthesis may be an acceptable alternative to titanium.

  17. Camouflage of a high-angle skeletal Class II open-bite malocclusion in an adult after mini-implant failure during treatment.

    PubMed

    Franzotti Sant'Anna, Eduardo; Carneiro da Cunha, Amanda; Paludo Brunetto, Daniel; Franzotti Sant'Anna, Claudia

    2017-03-01

    The treatment of skeletal anterior open-bite malocclusion requires complex orthodontic planning that considers its multifactorial etiology, treatment limitations, and high relapse rates. This case report illustrates a successful treatment approach for a skeletal high-angle Class II malocclusion in an adult with a severe open bite. The treatment consisted of a high-pull headgear therapy after mini-implants failure during fixed orthodontic therapy. Adequate esthetics and function were achieved. Despite its low probability, the unexpected event of mini-implant loosening during complex treatments should be considered. Therefore, classic orthodontic mechanics should be established, especially when treating patients for whom invasive procedures such as miniplates or orthognathic surgery are not available options. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  18. Recent advances in fixation of the craniomaxillofacial skeleton.

    PubMed

    Meslemani, Danny; Kellman, Robert M

    2012-08-01

    Fixation of the craniomaxillofacial skeleton is an evolving aspect for facial plastic, oral and maxillofacial, and plastic surgery. This review looks at the recent advances that aid in reduction and fixation of the craniomaxillofacial skeleton. More surgeons are using resorbable plates for craniomaxillofacial fixation. A single miniplate on the inferior border of the mandible may be sufficient to reduce and fixate an angle fracture. Percutaneous K-wires may assist in plating angle fractures. Intraoperative computed tomography (CT) may prove to be useful for assessing reduction and fixation. Resorbable plates are becoming increasingly popular in orthognathic surgery and facial trauma surgery. There are newer operative techniques for fixating the angle of the mandible. Also, the utilization of the intraoperative CT provides immediate feedback for accurate reduction and fixation. Prebent surgical plates save operative time, decrease errors, and provide more accurate fixation.

  19. Relief of Headache by Cranioplasty After Skull Base Surgery

    PubMed Central

    Fetterman, Bruce L.; Lanman, Todd H.; House, John W.

    1997-01-01

    Headache after skull base surgery can cause profound morbidity in certain patients, resulting in significant impairment of their quality of life. Several methods to prevent postoperative headache have been described, including a modification of the skin/muscle incision replacing the craniotomy bone flap replacing the bone flap and filling in the residual defect with methyl methacrylate, using hydroxyapatite cement (HAC) to fill the craniectomy defect, and wiring hardened methyl methacrylate (MMA) into the defect. Ten patients with severe headache following craniectomy for a posterior fossa lesion underwent cranioplasty with MMA, which was placed exactly within the craniectomy defect and secured rigidly with miniplates and screws. The headache decreased in severity in all patients and resolved completely in 90%. Also, 78% of patients with dizziness improved. The procedure and its effect on headache and dizziness will be described. PMID:17171000

  20. Near-infrared laser irradiation improves the development of mouse pre-implantation embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoo, Masaki; Mori, Miho

    The aim of the present study was to assess the effects of near-infrared laser irradiation on the in vitro development of mouse embryos. Female ICR mice were superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin (hCG), and mated with male mice. Two-cell stage embryos were collected 40 h after administering hCG and cultured in M16 medium. Two-cell embryos (0 h after culture), 8-cell embryos (approx. 30 h after culture), morula (approx. 48 h after culture), and blastocysts (approx. 73 h after culture) were irradiated at 904 nm for 60 s. These embryos were cultured in a time-lapse monitoring system and the timing ofmore » blastocyst hatching was evaluated. Some of the irradiated blastocysts were transferred to the uterine horns of pseudopregnant recipients immediately after irradiation. Pregnancy rates, and offspring growth and fertility, were evaluated. Near-infrared laser irradiation increased the speed of in vitro mouse embryo development. In irradiated blastocysts, hatching was faster than in control (non-irradiated) blastocysts (18.4 vs. 28.2 h, P < 0.05). When 195 irradiated blastocysts were transferred to 18 pseudopregnant mice, all became pregnant and 92 (47.2%) normal-looking pups were born alive. When 182 control blastocysts were transferred to 17 pseudopregnant mice, 14 (82.4%) became pregnant and 54 (29.7%) normal-looking pups were born alive. The growth trajectories (up to 5 weeks) of offspring from irradiated blastocysts were similar to those from control blastocysts. Second generation offspring from transplanted animals were all fertile. These results indicate that near-infrared laser irradiation improves the quality of mouse embryo development in vitro, and increases the live birth rate without affecting the normality of the offspring. Thus, the near-infrared laser method may enhance the quality of embryos and contribute to improvements in reproductive technologies in mammals. - Highlights: • Irradiation of blastocysts with a near-infrared laser improves embryo development. • Irradiation of blastocysts increases the live birth rate after embryo transfer. • Irradiation of blastocysts did not affect the normality of the pups. • Near-infrared laser irradiation may be useful to enhance the quality of embryos. • This study may contribute to improvements in reproductive technologies in mammals.« less

  1. A nanotube based electron microbeam cellular irradiator for radiobiology research

    PubMed Central

    Bordelon, David E.; Zhang, Jian; Graboski, Sarah; Cox, Adrienne; Schreiber, Eric; Zhou, Otto Z.; Chang, Sha

    2008-01-01

    A prototype cellular irradiator utilizing a carbon nanotube (CNT) based field emission electron source has been developed for microscopic image-guided cellular region irradiation. The CNT cellular irradiation system has shown great potential to be a high temporal and spatial resolution research tool to enable researchers to gain a better understanding of the intricate cellular and intercellular microprocesses occurring following radiation deposition, which is essential to improving radiotherapy cancer treatment outcomes. In this paper, initial results of the system development are reported. The relationship between field emission current, the dose rate, and the dose distribution has been investigated. A beam size of 23 μm has been achieved with variable dose rates of 1–100 Gy∕s, and the system dosimetry has been measured using a radiochromic film. Cell irradiation has been demonstrated by the visualization of H2AX phosphorylation at DNA double-strand break sites following irradiation in a rat fibroblast cell monolayer. The prototype single beam cellular irradiator is a preliminary step to a multipixel cell irradiator that is under development. PMID:19123587

  2. STATUS OF TRISO FUEL IRRADIATIONS IN THE ADVANCED TEST REACTOR SUPPORTING HIGH-TEMPERATURE GAS-COOLED REACTOR DESIGNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Michael; Petti, D. A.; Palmer, Joe

    2016-11-01

    The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experimentsmore » are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the control and monitoring systems are very similar. The final experiment, AGR-5/6/7, is scheduled to begin irradiation in early summer 2017.« less

  3. SU-E-T-266: Development of Evaluation System of Optimal Synchrotron Controlling Parameter for Spot Scanning Proton Therapy with Multiple Gate Irradiations in One Operation Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, T; Fujii, Y; Hitachi Ltd., Hitachi-shi, Ibaraki

    2015-06-15

    Purpose: We have developed a gated spot scanning proton beam therapy system with real-time tumor-tracking. This system has the ability of multiple-gated irradiation in a single synchrotron operation cycle controlling the wait-time for consecutive gate signals during a flat-top phase so that the decrease in irradiation efficiency induced by irregular variation of gate signal is reduced. Our previous studies have shown that a 200 ms wait-time is appropriate to increase the average irradiation efficiency, but the optimal wait-time can vary patient by patient and day by day. In this research, we have developed an evaluation system of the optimal wait-timemore » in each irradiation based on the log data of the real-time-image gated proton beam therapy (RGPT) system. Methods: The developed system consists of logger for operation of RGPT system and software for evaluation of optimal wait-time. The logger records timing of gate on/off, timing and the dose of delivered beam spots, beam energy and timing of X-ray irradiation. The evaluation software calculates irradiation time in the case of different wait-time by simulating the multiple-gated irradiation operation using several timing information. Actual data preserved in the log data are used for gate on and off time, spot irradiation time, and time moving to the next spot. Design values are used for the acceleration and deceleration times. We applied this system to a patient treated with the RGPT system. Results: The evaluation system found the optimal wait-time of 390 ms that reduced the irradiation time by about 10 %. The irradiation time with actual wait-time used in treatment was reproduced with accuracy of 0.2 ms. Conclusion: For spot scanning proton therapy system with multiple-gated irradiation in one synchrotron operation cycle, an evaluation system of the optimal wait-time in each irradiation based on log data has been developed. Funding Support: Japan Society for the Promotion of Science (JSPS) through the FIRST Program.« less

  4. Advanced solar irradiances applied to satellite and ionospheric operational systems

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Schunk, Robert; Eccles, Vince; Bouwer, Dave

    Satellite and ionospheric operational systems require solar irradiances in a variety of time scales and spectral formats. We describe the development of a system using operational grade solar irradiances that are applied to empirical thermospheric density models and physics-based ionospheric models used by operational systems that require a space weather characterization. The SOLAR2000 (S2K) and SOLARFLARE (SFLR) models developed by Space Environment Technologies (SET) provide solar irradiances from the soft X-rays (XUV) through the Far Ultraviolet (FUV) spectrum. The irradiances are provided as integrated indices for the JB2006 empirical atmosphere density models and as line/band spectral irradiances for the physics-based Ionosphere Forecast Model (IFM) developed by the Space Environment Corporation (SEC). We describe the integration of these irradiances in historical, current epoch, and forecast modes through the Communication Alert and Prediction System (CAPS). CAPS provides real-time and forecast HF radio availability for global and regional users and global total electron content (TEC) conditions.

  5. Irradiation Tests Supporting LEU Conversion of Very High Power Research Reactors in the US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolstenhulme, N. E.; Cole, J. I.; Glagolenko, I.

    The US fuel development team is developing a high density uranium-molybdenum alloy monolithic fuel to enable conversion of five high-power research reactors. Previous irradiation tests have demonstrated promising behavior for this fuel design. A series of future irradiation tests will enable selection of final fuel fabrication process and provide data to qualify the fuel at moderately-high power conditions for use in three of these five reactors. The remaining two reactors, namely the Advanced Test Reactor and High Flux Isotope Reactor, require additional irradiation tests to develop and demonstrate the fuel’s performance with even higher power conditions, complex design features, andmore » other unique conditions. This paper reviews the program’s current irradiation testing plans for these moderately-high irradiation conditions and presents conceptual testing strategies to illustrate how subsequent irradiation tests will build upon this initial data package to enable conversion of these two very-high power research reactors.« less

  6. Late orthopedic effects in children with Wilms' tumor treated with abdominal irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rate, W.R.; Butler, M.S.; Robertson, W.W. Jr.

    1991-01-01

    Between 1970 and 1984, 31 children with biopsy-proven Wilms' tumor received nephrectomy, chemotherapy, and abdominal irradiation and were followed beyond skeletal maturity. Three patients (10%) developed late orthopedic abnormalities requiring intervention. Ten children received orthovoltage irradiation, and all cases requiring orthopedic intervention or developing a scoliotic curve of greater than 20 degrees were confined to this group, for a complication frequency of 50%. Those children who developed a significant late orthopedic abnormality (SLOA) as defined were treated to a higher median dose (2,890 cGy) and a larger field size (150 cm2) than those who did not (2,580 cGy and 120more » cm2). Age at irradiation, sex, and initial stage of disease did not appear to influence the risk of developing an SLOA. No child who received megavoltage irradiation developed an SLOA despite treatment up to 4,000 cGy or to field sizes of 400 cm2. We conclude that modern radiotherapy techniques rarely lead to significant late orthopedic abnormalities previously associated with abdominal irradiation in children with Wilms' tumor.« less

  7. Inhibition of the CXCL12/CXCR4-Axis as Preventive Therapy for Radiation-Induced Pulmonary Fibrosis

    PubMed Central

    Shu, Hui-Kuo G.; Yoon, Younghyoun; Hong, Samuel; Xu, Kaiming; Gao, Huiying; Hao, Chunhai; Torres-Gonzalez, Edilson; Nayra, Cardenes; Rojas, Mauricio; Shim, Hyunsuk

    2013-01-01

    Background A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. Methodology/Principal Findings The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. Conclusions/Significance CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation. PMID:24244561

  8. Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis.

    PubMed

    Shu, Hui-Kuo G; Yoon, Younghyoun; Hong, Samuel; Xu, Kaiming; Gao, Huiying; Hao, Chunhai; Torres-Gonzalez, Edilson; Nayra, Cardenes; Rojas, Mauricio; Shim, Hyunsuk

    2013-01-01

    A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation.

  9. Irradiation of northwest agricultural products

    NASA Astrophysics Data System (ADS)

    Eakin, D. E.; Tingey, G. I.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect ocntrol procedures are developed and followed. Due to the recognized potential benefits of irradiation, this program was conducted to evaluate the benefits of using irradiation on Northwest agricultural products. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  10. The clinical presentation and management of zygomatic complex fractures in a Nigeria Teaching Hospital.

    PubMed

    Anyanechi, C E; Charles, E A; Saheeb, B D; Birch, D S

    2012-01-01

    Fractures of the zygomatic complex occur worldwide and are a component part of injuries that can be sustained in the maxillofacial region. The objective was to analyze the clinical presentation and management ofzygomatic complex fractures. This was a prospective study carried out over a period of five years at the University of Calabar Teaching Hospital, Nigeria. Data documented were patients' age, gender, time of presentation, cause and type of fracture, associated head and maxillofacial injuries, clinical features, types of plain radiographs, treatment methods, duration of follow-up and complications. Majority of the patients (n = 81, 63.3%) were in their third and fourth decades of life while the male to female ratio was 20.3:1. Road traffic accident (n = 111, 86.7%) was the most common cause of fracture. Fractures of the zygomatic complex alone (n = 105, 82.0%) were more common than isolated fractures of the arch (n = 13, 10.2%) and combined fractures of the zygomatic complex and arch (n = 10, 7.8%). While multi-disciplinary approach to treatment is important, majority of the fractures were treated by simple elevation and transosseous wire osteosynthesis. Delay in presentation, associated injuries and non-availability of mini-plating technique contributed to the development of complications.

  11. Total body calcium analysis. [neutron irradiation

    NASA Technical Reports Server (NTRS)

    Lewellen, T. K.; Nelp, W. B.

    1974-01-01

    A technique to quantitate total body calcium in humans is developed. Total body neutron irradiation is utilized to produce argon 37. The radio argon, which diffuses into the blood stream and is excreted through the lungs, is recovered from the exhaled breath and counted inside a proportional detector. Emphasis is placed on: (1) measurement of the rate of excretion of radio argon following total body neutron irradiation; (2) the development of the radio argon collection, purification, and counting systems; and (3) development of a patient irradiation facility using a 14 MeV neutron generator. Results and applications are discussed in detail.

  12. Fuel Cycle Research and Development Accident Tolerant Fuels Series 1 (ATF-1) Irradiation Testing FY 2016 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Core, Gregory Matthew

    This report contains a summary of irradiation testing of Fuel Cycle Research and Development (FCRD) Accident Tolerant Fuels Series 1 (ATF 1) experiments performed at Idaho National Laboratory (INL) in FY 2016. ATF 1 irradiation testing work performed in FY 2016 included design, analysis, and fabrication of ATF-1B drop in capsule ATF 1 series experiments and irradiation testing of ATF-1 capsules in the ATR.

  13. US-RERTR Advanced Fuel Development Plans : 1999.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, M. K.

    1998-10-22

    Twelve fuel alloys were included in the very-high-density RERTR-1 and RERTR-2 microplate irradiation experiments. Experience gained during fabrication and results from the post-irradiation examination of these fuels has allowed us to narrow the focus of our fuel development efforts in preparation for the next set of irradiation experiments. Specific technical problems in both the areas of fuel fabrication and irradiation performance remain to be addressed. Examples of these are powder fabrication, fuel phase gamma stability versus density, and fuel-matrix interaction. In order to more efficiently address metal alloy fuel performance issues, work will continue on establishing a theoretical basis formore » alloy stability and metal alloy dispersion fuel irradiation performance. Plans to address these fuel development issues in the coming year will be presented.« less

  14. Development of remote welding techniques for in-pile IASCC capsules and evaluation of material integrity on capsules for long irradiation period

    NASA Astrophysics Data System (ADS)

    Shibata, A.; Nakano, J.; Ohmi, M.; Kawamata, K.; Nakagawa, T.; Tsukada, T.

    2012-03-01

    To simulate irradiation assisted stress corrosion cracking (IASCC) behavior by in-pile experiments, it is necessary to irradiate specimens up to a neutron fluence that is higher than the IASCC threshold fluence. Pre-irradiated specimens must be relocated from pre-irradiation capsules to in-pile capsules. Hence, a remote welding machine has been developed. And the integrity of capsule housing for a long term irradiation was evaluated by tensile tests in air and slow strain rate tests in water. Two type specimens were prepared. Specimens were obtained from the outer tubes of capsule irradiated to 1.0-3.9 × 1026 n/m2 (E > 1 MeV). And specimens were irradiated in a leaky capsule to 0.03-1.0 × 1026 n/m2. Elongation more than 15% in tensile test at 423 K was confirmed and no IGSCC fraction was shown in SSRT at 423 K which was estimated as temperature at the outer tubes of the capsule under irradiation.

  15. Skeletal anchorage for intrusion of bimaxillary molars in a patient with skeletal open bite and temporomandibular disorders

    PubMed Central

    Iwasa, Akihiko; Horiuchi, Shinya; Kinouchi, Nao; Izawa, Takashi; Hiasa, Masahiro; Kawai, Nobuhiko; Yasue, Akihiro; Hassan, Ali H.; Tanaka, Eiji

    2017-01-01

    The treatment of severe skeletal anterior open bite is extremely difficult in adults, and orthognathic surgery is generally selected for its treatment. We report the case of an 18-year-old adult patient with skeletal anterior open bite and temporomandibular disorders who was successfully treated using temporary anchorage devices. She had an open bite of −2.0 mm and an increased facial height. Miniplates were implanted in both the maxilla and mandible, and molar intrusion resulted in counterclockwise rotation of the mandible over a period of 12 months. After active treatment, her upper and lower first molars were intruded by approximately 2 mm and her overbite became +2.5 mm. Her retrognathic profile improved with counterclockwise rotation of the mandible. Orthodontic treatment aided with skeletal anchorage is beneficial for intrusion of bimaxillary molars in patients with anterior open bite. PMID:29119097

  16. AGR-1 Compact 1-3-1 Post-Irradiation Examination Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul Andrew

    The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport (INL 2015). A seriesmore » of fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously (Grover, Petti, and Maki 2010, Maki 2009).« less

  17. AGR-1 Compact 5-3-1 Post-Irradiation Examination Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul; Harp, Jason; Winston, Phil

    The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance, and fission product transport (INL 2015). A series ofmore » fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously.« less

  18. Thalidomide Ameliorates Inflammation and Vascular Injury but Aggravates Tubular Damage in the Irradiated Mouse Kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharpfenecker, Marion, E-mail: m.scharpfenecker@nki.nl; Floot, Ben; Russell, Nicola S.

    Purpose: The late side effects of kidney irradiation include vascular damage and fibrosis, which are promoted by an irradiation-induced inflammatory response. We therefore treated kidney-irradiated mice with the anti-inflammatory and angiogenesis-modulating drug thalidomide in an attempt to prevent the development of late normal tissue damage and radiation nephropathy in the mouse kidney. Methods and Materials: Kidneys of C57Bl/6 mice were irradiated with a single dose of 14 Gy. Starting from week 16 after irradiation, the mice were fed with thalidomide-containing chow (100 mg/kg body weight/day). Gene expression and kidney histology were analyzed at 40 weeks and blood samples at 10, 20, 30, andmore » 40 weeks after irradiation. Results: Thalidomide improved the vascular structure and vessel perfusion after irradiation, associated with a normalization of pericyte coverage. The drug also reduced infiltration of inflammatory cells but could not suppress the development of fibrosis. Irradiation-induced changes in hematocrit and blood urea nitrogen levels were not rescued by thalidomide. Moreover, thalidomide worsened tubular damage after irradiation and also negatively affected basal tubular function. Conclusions: Thalidomide improved the inflammatory and vascular side effects of kidney irradiation but could not reverse tubular toxicity, which probably prevented preservation of kidney function.« less

  19. Near-infrared laser irradiation improves the development of mouse pre-implantation embryos.

    PubMed

    Yokoo, Masaki; Mori, Miho

    2017-05-27

    The aim of the present study was to assess the effects of near-infrared laser irradiation on the in vitro development of mouse embryos. Female ICR mice were superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin (hCG), and mated with male mice. Two-cell stage embryos were collected 40 h after administering hCG and cultured in M16 medium. Two-cell embryos (0 h after culture), 8-cell embryos (approx. 30 h after culture), morula (approx. 48 h after culture), and blastocysts (approx. 73 h after culture) were irradiated at 904 nm for 60 s. These embryos were cultured in a time-lapse monitoring system and the timing of blastocyst hatching was evaluated. Some of the irradiated blastocysts were transferred to the uterine horns of pseudopregnant recipients immediately after irradiation. Pregnancy rates, and offspring growth and fertility, were evaluated. Near-infrared laser irradiation increased the speed of in vitro mouse embryo development. In irradiated blastocysts, hatching was faster than in control (non-irradiated) blastocysts (18.4 vs. 28.2 h, P < 0.05). When 195 irradiated blastocysts were transferred to 18 pseudopregnant mice, all became pregnant and 92 (47.2%) normal-looking pups were born alive. When 182 control blastocysts were transferred to 17 pseudopregnant mice, 14 (82.4%) became pregnant and 54 (29.7%) normal-looking pups were born alive. The growth trajectories (up to 5 weeks) of offspring from irradiated blastocysts were similar to those from control blastocysts. Second generation offspring from transplanted animals were all fertile. These results indicate that near-infrared laser irradiation improves the quality of mouse embryo development in vitro, and increases the live birth rate without affecting the normality of the offspring. Thus, the near-infrared laser method may enhance the quality of embryos and contribute to improvements in reproductive technologies in mammals. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. ATF Neutron Irradiation Program Technical Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geringer, J. W.; Katoh, Yutai

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post-irradiation examination and characterization ofmore » irradiated materials and the shipment of irradiated materials to JAEA in Japan. This report discusses the technical plan of the experimental study.« less

  1. Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.

    PubMed

    Ganguly, Mohit; Miller, Stephanie; Mitra, Kunal

    2015-11-01

    Short pulse lasers with pulse durations in the range of nanoseconds and shorter are effective in the targeted delivery of heat energy for precise tissue heating and ablation. This photothermal therapy is useful where the removal of cancerous tissue sections is required. The objective of this paper is to use finite element modeling to demonstrate the differences in the thermal response of skin tissue to short-pulse and continuous wave laser irradiation in the initial stages of the irradiation. Models have been developed to validate the temperature distribution and heat affected zone during laser irradiation of excised rat skin samples and live anesthetized mouse tissue. Excised rat skin samples and live anesthetized mice were subjected to Nd:YAG pulsed laser (1,064 nm, 500 ns) irradiation of varying powers. A thermal camera was used to measure the rise in surface temperature as a result of the laser irradiation. Histological analyses of the heat affected zone created in the tissue samples due to the temperature rise were performed. The thermal interaction of the laser with the tissue was quantified by measuring the thermal dose delivered by the laser. Finite element geometries of three-dimensional tissue sections for continuum and vascular models were developed using COMSOL Multiphysics. Blood flow was incorporated into the vascular model to mimic the presence of discrete blood vessels and contrasted with the continuum model without blood perfusion. The temperature rises predicted by the continuum and the vascular models agreed with the temperature rises observed at the surface of the excised rat tissue samples and live anesthetized mice due to laser irradiation respectively. The vascular model developed was able to predict the cooling produced by the blood vessels in the region where the vessels were present. The temperature rise in the continuum model due to pulsed laser irradiation was higher than that due to continuous wave (CW) laser irradiation in the initial stages of the irradiation. The temperature rise due to pulsed and CW laser irradiation converged as the time of irradiation increased. A similar trend was observed when comparing the thermal dose for pulsed and CW laser irradiation in the vascular model. Finite element models (continuum and vascular) were developed that can be used to predict temperature rise and quantify the thermal dose resulting from laser irradiation of excised rat skin samples and live anesthetized mouse tissue. The vascular model incorporating blood perfusion effects predicted temperature rise better in the live animal tissue. The models developed demonstrated that pulsed lasers caused greater temperature rise and delivered a greater thermal dose than CW lasers of equal average power, especially during the initial transients of irradiation. This analysis will be beneficial for thermal therapy applications where maximum delivery of thermal dose over a short period of time is important. © 2015 Wiley Periodicals, Inc.

  2. Radiation disinfestation of food and agricultural products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moy, J.H.

    1985-01-01

    This book presents the papers given at a conference on the radiodisinfestation of food and crops. Topics considered at the conference included food irradiation's impact of the US Agency for International Development, FDA regulations, irradiation as a quarantine treatment, quality attributes of irradiated fruits, low-dose irradiation, cesium 137 as a radiation source, radiosterilization, economic feasibility, marketing, consumer acceptance, and the packaging of irradiated products.

  3. Linear accelerator: a reproducible, efficacious and cost effective alternative for blood irradiation.

    PubMed

    Shastry, Shamee; Ramya, B; Ninan, Jefy; Srinidhi, G C; Bhat, Sudha S; Fernandes, Donald J

    2013-12-01

    The dedicated devices for blood irradiation are available only at a few centers in developing countries thus the irradiation remains a service with limited availability due to prohibitive cost. To implement a blood irradiation program at our center using linear accelerator. The study is performed detailing the specific operational and quality assurance measures employed in providing a blood component-irradiation service at tertiary care hospital. X-rays generated from linear accelerator were used to irradiate the blood components. To facilitate and standardize the blood component irradiation, a blood irradiator box was designed and fabricated in acrylic. Using Elekta Precise Linear Accelerator, a dose of 25 Gy was delivered at the centre of the irradiation box. Standardization was done using five units of blood obtained from healthy voluntary blood donors. Each unit was divided to two parts. One aliquot was subjected to irradiation. Biochemical and hematological parameters were analyzed on various days of storage. Cost incurred was analyzed. Progressive increase in plasma hemoglobin, potassium and lactate dehydrogenase was noted in the irradiated units but all the parameters were within the acceptable range indicating the suitability of the product for transfusion. The irradiation process was completed in less than 30 min. Validation of the radiation dose done using TLD showed less than ± 3% variation. This study shows that that the blood component irradiation is within the scope of most of the hospitals in developing countries even in the absence of dedicated blood irradiators at affordable cost. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The calculated influence of atmospheric conditions on solar cell ISC under direct and global solar irradiances

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L.

    1987-01-01

    Calculations of the influence of atmospheric conditions on solar cell short-circuit current (Isc) are made using a recently developed computer model for solar spectral irradiance distribution. The results isolate the dependence of Isc on changes in the spectral irradiance distribution without the direct influence of the total irradiance level. The calculated direct normal irradiance and percent diffuse irradiance are given as a reference to indicate the expected irradiance levels. This method can be applied to the calibration of photovoltaic reference cells. Graphic examples are provided for amorphous silicon and monocrystalline silicon solar cells under direct normal and global normal solar irradiances.

  5. INCIDENCE OF PULMONARY AND SKIN METASTASES IN WOMEN WITH BREAST CANCER WHO RECEIVED POSTOPERATIVE IRRADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dao, T.L.; Kovaric, J.

    1962-07-01

    The effect of x-ray treatment (total dose of 4500 r over a 3-week period) was evaluated in 354 patients, some of whom had previously undergone mastectomy. In clinically and pathologically comparable cases, ipsilateral pulmonary iaetastases and skin metastases in patients who had radical mastectomy were 14 and 34%, respectively, whereas in patients who received irradiation after mastectomy, incidences of metastases at those 2 sites were 37 and 52%. A similar change of patterns of metastases in lungs and skin was also observed in patients who have had simple mastectomy and irradiation. The increase in the incidence of ipsilateral skin andmore » pulmonary metastases is ascribed to the effect of irradiation, and the observations strongly support the postulate that irradiation favors development of metastases in the lungs. The fact that metastases developed in the skin within the portals of irradiation, and in the ipsilateral lung in the same patients, is evidence that the lymphatic and vascular obstructions due to fibrosis contribute to the development of the metastases in these tissues. The different patterns of skin and lung metastases in nonirradiated patients render additional support to the theory. The incidence of these injuries in 50 irradiated patients was: 18 had permanent disability of the upper extremities; 14 had necrosis of the bones with fractures of the clavicle and ribs; 25 had initial pneumonitis and subsequently pulmonary fibrosis; and 40 had skin changes, ranging from desquamation to ulceration. No significant difference was demonstrated in the survival of patients with cancer of the breast who received radical irradiation in addition to mastectomy. Furthermore, irradiation may favor the development of metastases in the lungs and skin, and cause disabling injuries. (TCO)« less

  6. Neurocytotoxic effects of iron-ions on the developing brain measured in vivo using medaka (Oryzias latipes), a vertebrate model

    PubMed Central

    Yasuda, Takako; Oda, Shoji; Yasuda, Hiroshi; Hibi, Yusuke; Anzai, Kazunori; Mitani, Hiroshi

    2011-01-01

    Purpose: Exposure to heavy-ion radiation is considered a critical health risk on long-term space missions. The developing central nervous system (CNS) is a highly radiosensitive tissue; however, the biological effects of heavy-ion radiation, which are greater than those of low-linear energy transfer (LET) radiation, are not well studied, especially in vivo in intact organisms. Here, we examined the effects of iron-ions on the developing CNS using vertebrate organism, fish embryos of medaka (Oryzias latipes). Materials and methods: Medaka embryos at developmental stage 28 were irradiated with iron-ions at various doses of 0-1.5 Gy. At 24 h after irradiation, radiation-induced apoptosis was examined using an acridine orange (AO) assay and histo-logically. To estimate the relative biological effectiveness (RBE), we quantified only characteristic AO-stained rosette-shaped apoptosis in the developing optic tectum (OT). At the time of hatching, morphological abnormalities in the irradiated brain were examined histologically. Results: The dose-response curve utilizing an apoptotic index for the iron-ion irradiated embryos was much steeper than that for X-ray irradiated embryos, with RBE values of 3.7-4.2. Histological examinations of irradiated medaka brain at 24 h after irradiation showed AO-positive rosette-shaped clusters as aggregates of condensed nuclei, exhibiting a circular hole, mainly in the marginal area of the OT and in the retina. However, all of the irradiated embryos hatched normally without apparent histological abnormalities in their brains. Conclusion: Our present study indicates that the medaka embryo is a useful model for evaluating neurocytotoxic effects on the developing CNS induced by exposure to heavy iron-ions relevant to the aerospace radiation environment. PMID:21770703

  7. Measuring Broadband IR Irradiance in the Direct Solar Beam and Recent Developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike

    2016-12-14

    Solar and atmospheric science radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference which is maintained by Absolute Cavity Radiometers (ACRs). An ACR is an open cavity with no window, developed to measure the extended broadband spectrum of the terrestrial direct solar beam irradiance that extends beyond the ultraviolet and infrared bands; i.e. below 0.2 um and above 50 um, respectively. On the other hand, the pyranometers and pyrheliometers were developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to the spectralmore » range of approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers, which measure the atmospheric longwave irradiance, are also used for solar and atmospheric science applications and calibrated with traceability to a consensus reference, yet they are calibrated during nighttime only, because no consensus reference has been established for the daytime longwave irradiance. This poster describes a method to measure the broadband longwave irradiance in the terrestrial direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The described method is used to measure the irradiance from sunrise to sunset; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 with an estimated uncertainty of 1.5 Wm-2, for a solar zenith angle range from 80 degrees to 16 degrees, respectively. Recent development shows that there is greater than 1.1 percent bias in measuring shortwave solar irradiance.« less

  8. Food irradiation: regulatory aspects in the Asia and Pacific region

    NASA Astrophysics Data System (ADS)

    Luckman, Gary James

    2002-03-01

    Irradiation treatment of food is becoming an increasingly accepted processing option for countries in the Asia Pacific region wishing to meet growing sanitary and phytosanitary requirements in international trade. There remain however, large differences between the regulatory requirements in the countries in this region. This paper gives an outline on existing food irradiation regulations in the separate countries of the Asia Pacific region. New developments such as the recent decision by the Australia New Zealand Food Authority to start assessing applications for food irradiation treatment are discussed. Australia's intention to regulate the export of food treated by irradiation will also be outlined. Details of the decision to harmonise food irradiation regulations by 13 countries in the Asia Pacific region based on conformance with Codex requirements is outlined. The likelihood of other Asia Pacific countries enacting similar harmonisation of their regulations will be examined. Future development such as certification of irradiation as a sanitary treatment for food are discussed. The expected result of these initiatives is a likely increase in irradiated foods traded within the Asia Pacific region.

  9. Preliminary investigations on a new method of retaining the colour of shucked cockles ( Anadara Granosa), and the extension of shelflife by gamma irradiation and vacuum packing

    NASA Astrophysics Data System (ADS)

    Ng, Cher Siang; Low, Lai Kim; Chia, Lawrence H. L.

    Live cockles were incubated in atmospheres containing different concentrations of carbon monoxide. Since CO combines more readily with myoglobin and haemoglobin than oxygen, the formation of in vivo deoxygenated haemoglobins and post mortem formation of methaemoglobin were retarded by the more stable carboxyhaemoglobin (HbCO). The bright red colour of the stable HbCO is retained during storage, giving the desired colour to the cockles. The colour of normal, chilled cockle meat deteriorated after 3 days ice storage while those treated with 50 and 100% CO retained the bright deep orange colour up to 10 days storage. Irradiation caused faster colour deterioration in both CO and non-CO treated samples. Vacuum packing influenced the colour of the cockles with irradiation and with CO treatments. In non-CO treated, irradiated samples, the effect of vacuum packing was not obvious. In CO treated, irradiated samples, vacuum packing retarded the deterioration of colour. Odour developments were influenced by irradiation, vacuum packing and storage temperature, and were not influenced by CO treatments. Irradiation suppressed the development of odour for the first 11 days storage (0°C) while vacuum packing depressed the odour by lowering its intensity instead. Odour development was slowed down by lowering the storage temperature. The odour of shucked cockles was rejected within one day at room temperature (26-28°C) while at 0°C the odour of the shucked cockles was still acceptable after 10 days. Suitable chemical indices for quality are K value and TVBN. Treatment with CO did not influence the K value development. Vacuum packing produced the highest K values after 19 days storage (0°C), while irradiated samples had higher K values than non-irradiated samples. The TVBN increased with storage and is an indicator of the odour development. The use of CO treatment extended the shelflife of the cockles based on appearance. A combination of CO treatment, vacuum packing, ice storage and irradiation extended the shelflife to beyond 18 days, based on odour, colour, and overall appearance.

  10. RESISTANCE TO X-IRRADIATION BY EMBRYONIC CELLS OF THE LIMB-BUDS OF TADPOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, B.M.; Ewell, L.M.

    1959-01-01

    Both total-body irradiation and shielding of the trunk were used to study the effects of x irradiation from 1000 to 30000 r upon the limb-buds of Bufo boreas and Hyla regilla tadpoles. The object was to test the view that the younger the cells the more sensitive they are to irradiation. The answer is negative. If there is any special susceptibility of these undifferentiated cells it should appear at levels far below the 30000 r maximum employed. A sharp distinction is made between the very susceptible mitotic cells and the resistant non-dividing embryonic cells that have been accumulated in suchmore » numbers that they may rapidly differentiate into the characteristic limb tissues under the stimulus of the thyroid hormone. Many irradiated ectoderm cells were changed to form bizarre excrescences but were not destroyed. Unicellular cuthneous gland cells continued to arise even after the heaviest irradiation. Irradiated tadpoles with hind limb-buds from 0.6 mm down to 0.2 mm length were unable to develop normal limbs. This capacity was propontional to the number of non-dividing embryonic cells stored at the time of irradiation. Irradiation of 5000, equal degree but the rapidity was greatest in the cases of higher dosage. Not only did these levels of irradiation fail to destroy the non-dividing embryonic cells but they did not effect their pre-deterrmined specificity nor modify their capacity for subsequent differentiation and growth. Exposure to a thyroxin solution caused the hind limb-buds without visible differentiation of cells to grow from a length of 0.8 or 0.9 mm or 1.0 mm at the time of irradiation to a length of as much as 5.0 mm in the course of 7 days. Development of thigh, shank, ankle, and toes was complete. Microscopic studies showed characteristic tissues such as cartilage, connective tissue, and muscle, developed to a comparable degree in control and irradiated specimens. (auth)« less

  11. [Status of the development of electron spin resonance measurement for the detection of irradiated food].

    PubMed

    Helle, N; Linke, B; Mager, M; Schreiber, G; Bögl, K W

    1992-09-01

    Electron spin resonance spectroscopy can be used for the detection of irradiation of various groups of foodstuffs. The results of ESR-measurements on irradiated meat and fish and fresh fruit, as well as dried fruit, spices and nuts as performed by the food irradiation laboratory of the German Federal Health Office are summarized in this report. For the detection of irradiated meat and fish, we examined the bones. Using the results from 10 different animal bones, we were able to develop an official method according to the German law section 35 LMBG. A similar routine method for fish will be established in 1992 (at the moment, an intercomparison with German food control laboratories is in progress). Irradiated dried fruit can be identified easily, because unirradiated samples give no ESR-spectra, while irradiated fruit show a partially resolved spectrum, which is caused by radiation induced sugar radicals. Interestingly, the structure of the resulting spectra is not identical for all irradiated species of fruit. We found three different types of ESR-spectra for irradiated dried fruit. Irradiated nutshells show an ESR-spectrum which reveals two additional lines (from cellulose-radicals) beside the main signal, while unirradiated samples show only the main signal. An official method for identifying irradiated nuts will be proposed in 1992. Irradiation specific ESR-signals of the cellulose radical were not only found for nutshells but also for fresh fruit and some spices, while most of the irradiated spices and herbs could not be identified by ESR-measurements.

  12. Influence of electron beam irradiation on growth of Phytophthora cinnamomi and its control in substrates

    NASA Astrophysics Data System (ADS)

    MigdaŁ, Wojciech; Orlikowski, Leszek B.; Ptaszek, Magdalena; Gryczka, Urszula

    2012-08-01

    Very extensive production procedure, especially in plants growing under covering, require methods, which would allow quick elimination or substantial reduction of populations of specific pathogens without affecting the growth and development of the cultivated plants. Among soil-borne pathogens, the Phytophthora species are especially dangerous for horticultural plants. In this study, irradiation with electron beam was applied to control Phytophthora cinnamomi. The influence of irradiation dose on the reduction of in vitro growth and the population density of the pathogen in treated peat and its mixture with composted pine bark (1:1), as well as the health of Chamaecyparis lawsoniana and Lavandula angustifolia plants were evaluated. Application of irradiation at a dose of 1.5 kGy completely inhibited the in vitro development of P. cinnamomi. This irradiation effect was connected with the disintegration of the hyphae and spores of the species. Irradiation of peat and its mixture with composted pine bark with 10 kGy resulted in the inhibition of stem base rot development in Ch. lawsoniana. Symptoms of the disease were not observed when the substrates were treated with 15 kGy. In the case of L. angustifolia, stem root rot was not observed on cuttings transplanted to infected peat irradiated at a dose of 10 kGy. Irradiation of the horticultural substrates did not affect plant growth.

  13. Gas-Cooled Reactor Programs annual progress report for period ending December 31, 1973. [HTGR fuel reprocessing, fuel fabrication, fuel irradiation, core materials, and fission product distribution; GCFR fuel irradiation and steam generator modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten, P.R.; Coobs, J.H.; Lotts, A.L.

    1976-04-01

    Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grande, T.; Bueren, J.A.

    We have investigated whether a relatively low dose of 500 mGy of X rays given as a single acute irradiation at different stages of pre-and postnatal development induces significant changes in the content of femoral hematopoietic progenitores during a 1-year period after irradiation. Data obtained show that, in the case of 4-day-old embryos as well as in 2-day, 8-day and 12-week-old mice, this dose is below the threshold capable of inducing a long-term impairment of hematopoiesis in the mouse. Nevertheless, in mice irradiated at the 13th or the 17th day postconception, a hematopoietic dysfunction consisting of a significant reduction inmore » the proportion of femoral granulocyte-macrophage colony-forming units (CFU-GM) was manifested 1 year after irradiation. Our study confirms that, for most stages of development in the mouse, a single acute X irradiation of 500 mGy is below the threshold dose capable of inducing deterministic effects in the mouse hematopoietic system, although it reveals the induction of a significant impairment in the CFU-GM population when irradiation is given at the late stages of embryonic development. 24 refs., 4 figs.« less

  15. TUNABLE IRRADIATION TESTBED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootan, David W.; Casella, Andrew M.; Asner, David M.

    PNNL has developed and continues to develop innovative methods for characterizing irradiated materials from nuclear reactors and particle accelerators for various clients and collaborators around the world. The continued development of these methods, in addition to the ability to perform unique scientific investigations of the effects of radiation on materials could be greatly enhanced with easy access to irradiation facilities. A Tunable Irradiation Testbed with customized targets (a 30 MeV, 1mA cyclotron or similar coupled to a unique target system) is shown to provide a much more flexible and cost-effective source of irradiating particles than a test reactor or isotopicmore » source. The configuration investigated was a single shielded building with multiple beam lines from a small, flexible, high flux irradiation source. Potential applications investigated were the characterization of radiation damage to materials applicable to advanced reactors, fusion reactor, legacy waste, (via neutron spectra tailored to HTGR, molten salt, LWR, LMR, fusion environments); 252Cf replacement; characterization of radiation damage to materials of interest to High Energy Physics to enable the neutrino program; and research into production of short lived isotopes for potential medical and other applications.« less

  16. Food irradiation in the UK and the European Directive

    NASA Astrophysics Data System (ADS)

    Woolston, John

    2000-03-01

    Food irradiation in the UK has been authorised since the early 1990s. In principle it is possible to irradiate a wide range of foods for a variety of purposes. In practice food irradiation is virtually non-existent. The structure of food retailing in the UK, a continual stream of food safety scares and a developing public 'crisis of confidence' in the food producer/supply chain have combined to make the future for food irradiation look bleak. The new European Directive on Food Irradiation is unlikely to alter this outlook.

  17. The use of 2-dodecylcyclobutanone for the identification of irradiated chicken meat and eggs

    NASA Astrophysics Data System (ADS)

    Stevenson, M. H.; Crone, A. V. J.; Hamilton, J. T. G.; McMurray, C. H.

    1993-07-01

    A procedure has been developed for the detection of 2-alkylcyclobutanones which are useful markers for the identification of irradiated chicken meat and liquid whole egg. The compounds appear to be specific for irradiation since they are not generated by cooking, packing in vacuum or CO 2 and are sufficiently stable to be detected throughout the shelf-life of these products. As the irradiation dose increases there is a linear increase in the amount of these compounds formed in chicken meat and so the method has potential for the estimation of irradiation dose. The procedure developed should be applicable for the identification of a range of foods of varying fat and fatty acid composition.

  18. Recent Advancements in the Numerical Simulation of Surface Irradiance for Solar Energy Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit; Deline, Chris

    This paper briefly reviews the National Renewable Energy Laboratory's recent efforts on developing all-sky solar irradiance models for solar energy applications. The Fast All-sky Radiation Model for Solar applications (FARMS) utilizes the simulation of clear-sky transmittance and reflectance and a parameterization of cloud transmittance and reflectance to rapidly compute broadband irradiances on horizontal surfaces. FARMS delivers accuracy that is comparable to the two-stream approximation, but it is approximately 1,000 times faster. A FARMS-Narrowband Irradiance over Tilted surfaces (FARMS-NIT) has been developed to compute spectral irradiances on photovoltaic (PV) panels in 2002 wavelength bands. Further, FARMS-NIT has been extended for bifacialmore » PV panels.« less

  19. Complete Report on the Development of Welding Parameters for Irradiated Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, Greg; Sutton, Benjamin J.; Tatman, Jonathan K.

    The advanced welding facility at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory, which was conceived to enable research and development of weld repair techniques for nuclear power plant life extension, is now operational. The development of the facility and its advanced welding capabilities, along with the model materials for initial welding trials, were funded jointly by the U.S. Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program, the Electric Power Research Institute, Long Term Operations Program and the Welding and Repair Technology Center, with additional support from Oak Ridge National Laboratory. Welding of irradiatedmore » materials was initiated on November 17, 2017, which marked a significant step in the development of the facility and the beginning of extensive welding research and development campaigns on irradiated materials that will eventually produce validated techniques and guidelines for weld repair activities carried out to extend the operational lifetimes of nuclear power plants beyond 60 years. This report summarizes the final steps that were required to complete weld process development, initial irradiated materials welding activities, near-term plans for irradiated materials welding, and plans for post-weld analyses that will be carried out to assess the ability of the advanced welding processes to make repairs on irradiated materials.« less

  20. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent plastic strains are reduced; and (3) the maximum first principal stresses for certain burnup at the matrix or the cladding are lower than the ones without the hardening effect, and the differences are found to increase with burnup; and the variation rules of the interfacial stresses are similar.

  1. Meso-scale modeling of irradiated concrete in test reactor

    DOE PAGES

    Giorla, Alain B.; Vaitová, M.; Le Pape, Yann; ...

    2015-10-18

    In this paper, we detail a numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale. Irradiation experiments in test reactor (Elleuch et al.,1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damagemore » around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al.,2015). In conclusion, the proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.« less

  2. Intracranial meningiomas related to external cranial irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spallone, A.; Gagliardi, F.M.; Vagnozzi, R.

    1979-08-01

    Three cases are presented of meningiomas following small-dose external cranial irradiation in which several features clearly indicate a causal relationship between radiotherapy and tumor development. The length of the latent period separates meningiomas following high-dose irradiation from those which followed small-dose irradiation. Therefore the oncogenic mechanism seems to act differently in the two groups. This demonstration that multiple meningiomas can occur in patients irradiated for Tinea capitis should enable other similar cases to be recognized.

  3. UV-Induced Triggering of a Biomechanical Initiation Switch within Collagen Promotes Development of a Melanoma-Permissive Microenvironment in the Skin

    DTIC Science & Technology

    2013-09-01

    part, on the generation of reactive oxygen species. Surprisingly, while cell adhesion to UVB -irradiated MatrigelTM and collagen was higher than that to...non-irradiated substrates, migration was significantly inhibited. Moreover, UVB -induced cell adhesion to irradiated substrates was not significantly...altered by irradiation of these substrates in the presence of SOD suggesting that UVB -irradiation may cause exposure of a distinct subset of the

  4. Development, Production and Validation of the NOAA Solar Irradiance Climate Data Record

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Lean, J.; Pilewskie, P.; Snow, M. A.; Lindholm, D. M.

    2015-12-01

    A new climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), including source code and supporting documentation is now publicly available as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program. Daily and monthly averaged values of TSI and SSI, with associated time and wavelength dependent uncertainties, are estimated from 1882 to the present with yearly averaged values since 1610, updated quarterly for the foreseeable future. The new Solar Irradiance Climate Data Record, jointly developed by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL), is constructed from solar irradiance models that determine the changes from quiet Sun conditions when bright faculae and dark sunspots are present on the solar disk. The magnitudes of the irradiance changes that these features produce are determined from linear regression of the proxy Mg II index and sunspot area indices against the approximately decade-long solar irradiance measurements made by instruments on the SOlar Radiation and Climate Experiment (SORCE) spacecraft. We describe the model formulation, uncertainty estimates, operational implementation and validation approach. Future efforts to improve the uncertainty estimates of the Solar Irradiance CDR arising from model assumptions, and augmentation of the solar irradiance reconstructions with direct measurements from the Total and Spectral Solar Irradiance Sensor (TSIS: launch date, July 2017) are also discussed.

  5. The sterile insect technique for the management of the spotted wing drosophila, Drosophila suzukii: Establishing the optimum irradiation dose

    PubMed Central

    Brodeur, Jacques; Fournier, François; Martel, Véronique; Vreysen, Marc; Cáceres, Carlos; Firlej, Annabelle

    2017-01-01

    The spotted wing drosophila Drosophila suzukii Matsumura (Diptera: Drosophilidae), a pest of berries stone fruits, invaded North America and Europe in 2008. Current control methods rely mainly on insecticides. The sterile insect technique (SIT) has potential as an additional control tactic for the integrated management of D. suzukii. As a step towards the development of the SIT, this study aimed at finding the optimum irradiation dose to sterilize D. suzukii under controlled laboratory conditions. Four-day-old D. suzukii pupae were irradiated 12 to 24 hours prior to adult emergence in a 60Co Gamma Cell 220 and in a 137Cs Gamma Cell 3000 with doses of 30, 50, 70, 80, 90, 100 or 120 Gy. Emergence rate (88.1%), percent of deformed flies (4.0%) and survival curves were not affected by the tested irradiation doses. However, some reproductive parameters of the flies were affected by irradiation. Females irradiated with a dose of 50 Gy or more had almost no fecundity. When non-irradiated females were mated with irradiated males, egg hatch decreased exponentially with irradiation dose from 82.6% for the untreated control males to 4.0% for males irradiated with 120 Gy. Mortality of F1 individuals from the irradiated treatment also occurred during larval and pupal stages, with an egg to adult survival of 0.2%. However, descendants produced by the irradiated generation were fertile. These results are an encouraging first experimental step towards the development of the SIT for the management of D. suzukii populations. PMID:28957331

  6. PIE on Safety-Tested Loose Particles from Irradiated Compact 4-4-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Gerczak, Tyler J.; Morris, Robert Noel

    2016-04-01

    Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High Temperature Gas-cooled Reactors (HTGRs). This work is sponsored by the Department of Energy Office of Nuclear Energy (DOE-NE) through the Advanced Reactor Technologies (ART) Office under the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. The AGR-1 experiment was the first in a series of TRISO fuel irradiation tests initiated in 2006. The AGR-1 TRISO particles and fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 using laboratory-scale equipment and irradiated for 3 years in themore » Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. Post-irradiation examination was performed at INL and ORNL to study how the fuel behaved during irradiation, and to test fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing and post-safety testing PIE conducted at ORNL on loose particles extracted from irradiated AGR-1 Compact 4-4-2.« less

  7. Ion-Neutron Irradiated BOR60 Sample Preparation and Characterization: Nuclear Science User Facility 2017 Milestone Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linton, Kory D.; Parish, Chad M.; Smith, Quinlan B.

    2017-09-01

    This document outlines the results obtained by Oak Ridge National Laboratory (ORNL) in collaboration with the University of Michigan-led Consolidated Innovative Nuclear Research project, “Feasibility of combined ion-neutron irradiation for accessing high dose levels.” In this reporting period, neutron irradiated were prepared and shipped to the University of Michigan for subsequent ion irradiation. The specimens were returned to ORNL’s Low Activation Materials Development and Analysis facility, prepared via focused ion beam for examination using scanning/transmission electron microscopy (S/TEM), and then examined using S/TEM to measure the as-irradiated microstructure. This report briefly summarizes the S/TEM results obtained at ORNL’s Low Activationmore » Materials Development and Analysis facility.« less

  8. Problems in radiation embryology. Sixteenth year progress report, July 1, 1972-June 30, 1973

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1973-01-01

    Progress is reported in the following areas: (1) the effect of embryonic irradiation on adult life expectancy, adult pathology and leukemia induction; (2) the effect of embryonic irradiation on biochemical and physiological processes in the adult organism; (3) attempts specifically to irradiate the developing rat yolk sac; (4) the effect of x-irradiating the rat embryo on the first day of gestation; and (5) determination of the threshold exposure for malformation induction in irradiated embryos. (ACR)

  9. Effects of ultraviolet light on Hymenolepis diminuta ova and cysticercoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGavock, W.D.; Howard, K.E.

    The ova and cysticercoids of Hymenolepis diminuta were exposed to a 2537 A wave length of ultraviolet light for various time periods. Development was extremely impaired in the cysts which had been irradiated for 30 and 60 minutes. When these were administered to the final host no tapeworms developed. From 113 intermediate host beetle larvae fed with irradiated ova, only three cysticercoids were recovered. Development was impaired in both cases and the infective rate of irradiated ova and cysts of the least exposed groups was lower than that of the controls.

  10. Effects of temperature and irradiance on early development of Chondrus ocellatus Holm (Gigartinaceae, Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Zhao, Peng; Wang, Gaoge; Li, Dapeng; Wang, Jicheng; Duan, Delin

    2010-05-01

    Chondrus is a type of commercially produced red seaweed that widely used for food and carrageen extraction. Although the natural life history of the alga had been well understood, the factors influencing development of the tetraspore and carpospore remain poorly understood. In the perspective of seedling resources, the regulation of early development is crucial for the seedling nursing; therefore, it is necessary to understand the physiological influences during its early development. In this study, we studied the effects of temperature and irradiance on the early development of Chondrus ocellatus Holm under laboratory conditions. The released tetraspores and carpospores were cultivated at different temperatures (10-28°C) and irradiances (10, 60 μmol photons m-2s-1) with a photoperiod of 12L:12D. The results indicate that both tetraspores and carpospores are tolerant to temperatures of 10-25°C, and have the highest relative growth rate at 20°C. Irradiance variances influenced the growth of the discoid crusts, and the influence was more significant with increasing temperature; 60 μmol photons m-2s-1 was more suitable than 10 μmol photons m-2s-1. The optimum temperature and irradiance for the development of seedlings was 20°C and 60 μmol photons m-2s-1, respectively.

  11. Guide to solar reference spectra and irradiance models

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    The international standard for determining solar irradiances was published by the International Standards Organization (ISO) in May 2007. The document, ISO 21348 Space Environment (natural and artificial) - Process for determining solar irradiances, describes the process for representing solar irradiances. We report on the next progression of standards work, i.e., the development of a guide that identifies solar reference spectra and irradiance models for use in engineering design or scientific research. This document will be produced as an AIAA Guideline and ISO Technical Report. It will describe the content of the reference spectra and models, uncertainties and limitations, technical basis, data bases from which the reference spectra and models are formed, publication references, and sources of computer code for reference spectra and solar irradiance models, including those which provide spectrally-resolved lines as well as solar indices and proxies and which are generally recognized in the solar sciences. The document is intended to assist aircraft and space vehicle designers and developers, heliophysicists, geophysicists, aeronomers, meteorologists, and climatologists in understanding available models, comparing sources of data, and interpreting engineering and scientific results based on different solar reference spectra and irradiance models.

  12. US RERTR FUEL DEVELOPMENT POST IRRADIATION EXAMINATION RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. B. Robinson; D. M. Wachs; D. E. Burkes

    2008-10-01

    Post irradiation examinations of irradiated RERTR plate type fuel at the Idaho National Laboratory have led to in depth characterization of fuel behavior and performance. Both destructive and non-destructive examination capabilities at the Hot Fuels Examination Facility (HFEF) as well as recent results obtained are discussed herein. New equipment as well as more advanced techniques are also being developed to further advance the investigation into the performance of the high density U-Mo fuel.

  13. Detrimental effects of electron beam irradiation on the cowpea bruchid Callosobruchus maculatus.

    PubMed

    Sang, Wen; Speakmon, Mickey; Zhou, Lan; Wang, Yu; Lei, Chaoliang; Pillai, Suresh D; Zhu-Salzman, Keyan

    2016-04-01

    Electron beam (eBeam) irradiation technology is an environmentally friendly, chemical-free alternative for disinfesting insect pests of stored grains. The underlying hypothesis is that specific doses of eBeam will have defined detrimental effects on the different life stages. We evaluated the effects of eBeam exposure in a range of doses (0.03-0.12 kGy) on the development of the cowpea bruchid (Callosobruchus maculatus) at various stages of its life cycle. Differential radiosensitivity was detected during egg development. Early and intermediate stages of eggs never hatched after exposure to a dose of 0.03 kGy, whereas a substantial portion of black-headed (i.e. late) eggs survived irradiation even at 0.12 kGy. However, further development of the hatched larvae was inhibited. Although midgut protein digestion remained intact, irradiated larvae (0.06 kGy or higher) failed to develop into normal living adults; rather, they died as pupae or abnormally eclosed adults, suggesting a detrimental effect of eBeam on metamorphosis. Emerged irradiated pupae had shorter longevity and were unable to produce any eggs at 0.06 kGy or higher. At this dose range, eggs laid by irradiated adults were not viable. eBeam treatment shortened adult longevity in a dose-dependent manner. Reciprocal crosses indicated that females were more sensitive to eBeam exposure than their male counterparts. Dissection of the female reproductive system revealed that eBeam treatment prevented formation of oocytes. eBeam irradiation has very defined effects on cowpea bruchid development and reproduction. A dose of 0.06 kGy could successfully impede cowpea burchid population expansion. This information can be exploited for post-harvest insect control of stored grains. © 2015 Society of Chemical Industry.

  14. DEVELOPMENT AND COURSE OF SYPHILIS IN IRRADIATED ORGANISM (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepanov, P.S.

    1963-07-01

    Experiments with 20 male rabbits weighing 1900 to 2650 g infected intrascrotally with viable Treponema (1.4 to 1.5 mil. microbes) and exposed to 800 r of radiation showed: a much shorter incubation period in irradiated and infected animals, a typical course of syphilitic infection (along with early signs of induration and serumpositive reaction, the later negative serum reaction appeared earlier in irradiated rabbits than in controls), a more prolonged induration produced a longer contagion and communicability period, and, finally, due to the weakened resistance the infected and irradiated organisms developed bacteremia that proved fatal in some cases. (R.V.J.)

  15. Industrial uses of radiation processing in Belgium

    NASA Astrophysics Data System (ADS)

    Lacroix, J. P.

    Since 1979, the Irradiation Department of IRE, in conjunction with universities and the industrial sector, has set up an extensive programme of research, development and promotion of the radiation process applied to cross-linking and polymerization of plastics, to waste treatment and to food preservation. Starting from scratch, it is thanks to our research in this last-mentioned field that we have been able to develop and to increase the application of the irradiation process within the food industry. At present, two irradiation facilities of a total design capacity of 2.5 10 6 Ci irradiate 24 hours per day mostly for the agro-industry.

  16. World Market Development and Consumer Acceptance of Irradiation Technology

    PubMed Central

    Maherani, Behnoush; Hossain, Farah; Criado, Paula; Ben-Fadhel, Yosra; Salmieri, Stephane; Lacroix, Monique

    2016-01-01

    Food irradiation is an efficient technology that can be used to ensure food safety by eliminating insects and pathogens to prolong the shelf life. The process could be applied to fresh or frozen products without affecting the nutritional value. Presently more than 60 countries have adopted the technology. However, the technology adaptation differs from one country to another and, in some cases, consumers’ misunderstanding and lack of acceptance may hinder the technology adaptation process. This review summarizes the development of irradiation treatment worldwide and consumer attitudes towards the introduction of this technology. Also, the wholesomeness, beneficial effects, and regulation of irradiation are assessed. PMID:28231173

  17. Environmental application of gamma technology: Update on the Canadian sludge irradiator

    NASA Astrophysics Data System (ADS)

    Swinwood, Jean F.; Fraser, Frank M.

    1993-10-01

    Waste treatment and disposal technologies have recently been subjected to increasing public and regulatory scrutiny. Concern for the environment and a heightened awareness of potential health hazards that could result from insufficient or inappropriate waste handling methods have combined to push waste generators in their search for new treatment alternatives. Gamma technology can offer a new option for the treatment of potentially infectious wastes, including municipal sewage sludge. Sewage sludge contains beneficial plant nutrients and a high organic component that make it ideal as a soil conditioning agent or fertilizer bulking material. It also carries potentially infectious microorganisms which limit opportunities for beneficial recycling of sludges. Gamma irradiation-disinfection of these sludges offers a reliable, fast and efficient method for safe sludge recycling. Nordion International's Market Development Division was created in 1987 as part of a broad corporate reorganization. It was given an exclusive mandate to develop new applications of gamma irradiation technology and markets for these new applications. Nordion has since explored and developed opportunities in food irradiation, pharmaceutical/cosmetic products irradiation, biomedical waste sterilization, airline waste disinfection, and sludge disinfection for recycling. This paper focuses on the last of these -a proposed sludge recycling facility that incorporates a cobalt 60 sludge irradiator.

  18. Advanced Electron Microscopy and Micro analytical technique development and application for Irradiated TRISO Coated Particles from the AGR-1 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Rooyen, Isabella Johanna; Lillo, Thomas Martin; Wen, Haiming

    2017-01-01

    A series of up to seven irradiation experiments are planned for the Advanced Gas Reactor (AGR) Fuel Development and Quantification Program, with irradiation completed at the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for the first experiment (i.e., AGR-1) in November 2009 for an effective 620 full power days. The objective of the AGR-1 experiment was primarily to provide lessons learned on the multi-capsule test train design and to provide early data on fuel performance for use in fuel fabrication process development and post-irradiation safety testing data at high temperatures. This report describes the advanced microscopy and micro-analysismore » results on selected AGR-1 coated particles.« less

  19. Anisotropic pyrochemical microetching of poly(tetrafluoroethylene) initiated by synchrotron radiation-induced scission of molecule bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Akinobu, E-mail: yamaguti@lasti.u-hyogo.ac.jp, E-mail: utsumi@lasti.u-hyogo.ac.jp; Kido, Hideki; Utsumi, Yuichi, E-mail: yamaguti@lasti.u-hyogo.ac.jp, E-mail: utsumi@lasti.u-hyogo.ac.jp

    2016-02-01

    We developed a process for micromachining polytetrafluoroethylene (PTFE): anisotropic pyrochemical microetching induced by synchrotron X-ray irradiation. X-ray irradiation was performed at room temperature. Upon heating, the irradiated PTFE substrates exhibited high-precision features. Both the X-ray diffraction peak and Raman signal from the irradiated areas of the substrate decreased with increasing irradiation dose. The etching mechanism is speculated as follows: X-ray irradiation caused chain scission, which decreased the number-average degree of polymerization. The melting temperature of irradiated PTFE decreased as the polymer chain length decreased, enabling the treated regions to melt at a lower temperature. The anisotropic pyrochemical etching process enabledmore » the fabrication of PTFE microstructures with higher precision than simultaneously heating and irradiating the sample.« less

  20. Antiradiation Vaccine: Technology Development Of Prophylaxis, Prevention And Treatment Of Biological Consequences And Complications After Neutron Irradiation.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    Introduction: Neutrons irradiation produce a unique biological effectiveness compare to different types of radiation because their ability to create a denser trail of ionized atoms in biological living tissues[Straume 1982; Latif et al.2010; Katz 1978; Bogatyrev 1982]. The efficacy of an Anti-Radiation Vaccine for the prophylaxis, prevention and therapy of acute radiation pathology was studied in a neutron exposure facility. The biological effects of fast neutrons include damage of central nervous system and cardiovascular system with development of Acute Cerebrovascular and Cardiovascular forms of acute radiation pathology. After irradiation by high doses of fast neutron, formation of neurotoxins, hematotoxins,cytotoxins forming from cell's or tissue structures. High doses of Neutron Irradiation generate general and specific toxicity, inflammation reactions. Current Acute Medical Management and Methods of Radiation Protection are not effective against moderate and high doses of neutron irradiation. Our experiments demonstrate that Antiradiation Vaccine is the most effective radioprotectant against high doses of neutron-radiation. Radiation Toxins(biological substances with radio-mimetic properties) isolated from central lymph of gamma-irradiated animals could be working substance with specific antigenic properties for vaccination against neutron irradiation. Methods: Antiradiation Vaccine preparation standard - mixture of a toxoid form of Radiation Toxins - include Cerebrovascular RT Neurotoxin, Cardiovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins were isolated from the central lymph of gamma-irradiated animals with different forms of Acute Radiation Syndromes - Cerebrovascular, Cardiovascular, Gastrointestinal, Hematopoietic forms. Devices for Y-radiation were "Panorama","Puma". Neutron exposure was accomplished at the Department of Research Institute of Nuclear Physics, Dubna, Russia. The neutrons irradiation generated in a canal of Research Reactor BBP-M and BBP-M. Mixed neutron beam contained 95% of fast neutron irradiation and 5% of gamma-irradiation. Neutron energy - 1.98 - 2.30 Me V energy. Dose - 10.7 Gy., 0.22 Gy-min. Scheme of experiments: Rabbits from all groups were irradiated in a canal of Research Reactor together. Group A: control-5 rabbits; Group B:placebo-5 rabbits; Group C: radioprotectant Cystamine (50 mg-kg)-5 rabbits, 15 minutes before irradiation Group D:Radio-protectant Mexamine (10 mg-kg)-5 rabbits { 15 minutes before irradiation; Group E: Antiradiation Vaccine: subcutaneus administration or I-M - 2 ml of active substance , 20 days before irradiation. Results: Control Group A - 100% mortality within the next two hours after neutron irradiation with clinical symptoms of acute cerebrovascular syndrome. Group B - 100% mortality less than two hours following irradiation. Group C - 100% mortality within 8-10 hours after irradiation. Group D - 100% mortality within 8-11 hours after irradiation. In Groups A - D the development of extremely severe form of Acute Radiation Cerebrovascular Syndrome produced rapid death. Group E - 100% mortality within 240 hours ( 9|10 days) following neutron irradiation with animals exhibiting cardiovascular, cerebrovascular and gastrointestinal clinical symptoms. Discussion: A pre-irradiation vaccination with Antiradiation Vaccine is effective against mild and even high doses of neutron radiation. Vaccination with antiradiation Vaccine prolonged survival time of rabbits, exposed to a high dose LD100, of neutron radiation: from two hours (control) up to 11 days. We also postulate that radiation toxins,isolated from lymph of gamma-irradiated animals are likely similar to structure of radiation toxins circulated in blood and lymph of neutron irradiated animals. Toxico-kinetics and toxico-dynamics of radiation toxins of after neutron-irradiation were quite unique and distinguished from different types of radiation

  1. Antiradiation Vaccine: Technology Development- Radiation Tolerance,Prophylaxis, Prevention And Treatment Of Clinical Presentation After Heavy Ion Irradiation.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    Introduction: Research in the field of biological effects of heavy charged particles is necessary for both heavy-ion therapy (hadrontherapy) and protection from the exposure to galactic cosmic radiation in long-term manned space missions.[Durante M. 2004] In future crew of long-term manned missions could operate in exremely high hadronic radiation areas of space and will not survive without effective radiation protection. An Antiradiation Vaccine (AV) must be an important part of a countermeasures regimen for efficient radiation protection purposes of austronauts-cosmonauts-taukonauts: immune-prophylaxis and immune-therapy of acute radiation toxic syndromes developed after heavy ion irradiation. New technology developed (AV) for the purposes of radiological protection and improvement of radiation tolerance and it is quite important to create protective immune active status which prevent toxic reactions inside a human body irradiated by high energy hadrons.[Maliev V. et al. 2006, Popov D. et al.2008]. High energy hadrons produce a variety of secondary particles which play an important role in the energy deposition process, and characterise their radiation qualities [Sato T. et al. 2003] Antiradiation Vaccine with specific immune-prophylaxis by an anti-radiation vaccine should be an important part of medical management for long term space missions. Methods and experiments: 1. Antiradiation vaccine preparation standard, mixture of toxoid form of Radiation Toxins [SRD-group] which include Cerebrovascular RT Neurotoxin, Cardiovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins of Radiation Determinant Group isolated from the central lymph of gamma-irradiated animals with Cerebrovascular, Cardiovascular, Gastro-intestinal, Hematopoietic forms of ARS. Devices for radiation are "Panorama", "Puma". 2. Heavy ion exposure was accomplished at Department of Research Institute of Nuclear Physics, Dubna, Russia. The heavy ions irradiation was generated in heavy ion (Fe56) accelerator - UTI. Heavy Ion linear transfer energy - 2000- 2600 KeV -mkm, 600 MeV -92U. Absorbed Dose - 3820 Rad. Experimental Design: Rabbits from all groups were irradiated by heavy ion accelerator. Group A: control-10 rabbits; Group B: placebo-5 rabbits; Group C: Radioprotectant Cystamine (50 mg-kg)-5 rabbits, 15 minutes before irradiation - 5 rabbits; Group D: Radioprotectant Gammafos (Amifostine 400mg -kg ) - 5 rabbits; Group E: Antiradiation Vaccine: subcutaneus administration or IM - 2 ml of active substance, 14 days before irradiation Results: Group A 100% mortality within two hours after heavy ion irradiation with clinical symptoms of Acute Cerebro- and Cardio-Vascular Radiation syndromes. Group B 100% mortality within 15 hours following irradiation. Group C 100% mortality within 14-15 hours after irradiation. Group D 100% mortality within 15-16 hours after irradiation. In groups A- D registered the development of acute radiation cerebrovascular and cardiovascular syndromes and also extensive burns. of skin produced rapid death. Group E -100% mortality in 280-290 hours (12 days) following heavy ion irradiation with animals exhibiting a combination or individual forms of Acute Cerebrovascular, Cardiovascular, and Gastrointestinal forms and focal skin burns. Discussion Antiradiation vaccine and immune-prophylaxis is an effective method of neutralization of Radiation Toxins. Vaccination before irradiation extended survival time after irradiation with heavy ions from two hours up to 300 hours. Clinical signs, clinical features, symptoms were somewhat attenuated. Degree of clinical forms of Acute Radiation Syndromes were diminished in their clinical manifestation and severity. Groups A-D demonstrated extremely severe level of Cerebrovascular and Cardiovascular forms of Acute Radiation Syndromes and lethality 100% was registered in short time after irradiation. Radiation induced burns in this groups (with Cutaneous sub-syndrome of ARS - Degree 4, that diffuse deep into soft tissues with extensive and total dysfunction and muscle involvement developed. Animals from group E - Radioprotectant Antiradiation Vaccine demonstrated later development of moderate-severe form forms of Cerebrovascular and Cardiovascular forms of ARS and survival time of irradiated animals was prolonged. Cutaneous sub-syndrome developed in Degree 3 or Degree 2-3. Our results have demonstrated potential radioprotection efficacy of immune-prophylaxis with Antiradiation Vaccine against high doses heavy ion irradiation.

  2. Preservation of chromosomal integrity in murine spermatozoa derived from gonocytes and spermatogonial stem cells surviving prenatal and postnatal exposure to γ-rays in mice.

    PubMed

    Watanabe, Hiroyuki; Kohda, Atsushi; Komura, Jun-Ichiro; Tateno, Hiroyuki

    2017-07-01

    Pre- and postnatal male mice were acutely (659-690 mGy/min) and continuously (0.303 mGy/min) exposed to 2 Gy γ-rays to evaluate spermatogenic potential and chromosome damage in their germ cells as adults. Acute irradiation on Days 15.5, 16.5, and 17.5 post-coitus affected testicular development, as a result of massive quiescent gonocyte loss; the majority of the seminiferous tubules in these testes were devoid of germ cells. Acute irradiation on Days 18.5 and 19.5 post-coitus had less effect on testicular development and spermatogenesis, even though germ cells were quiescent gonocytes on these days. Adverse effects on testicular development and spermatogenesis were observed following continuous irradiation between Days 14.5 and 19.5 post-coitus. Exposure to acute and continuous postnatal irradiation after the differentiation of spermatogonial stem cells and spermatogonia resulted in nearly all of the seminiferous tubules exhibiting spermatogenesis. Neither acute nor continuous irradiation was responsible for the increased number of multivalent chromosomes in primary-spermatocyte descendents of the exposed gonocytes. In contrast, a significant increase in cells with multivalent chromosomes was observed following acute irradiation on Days 4 and 11 post-partum. No significant increases in unstable structural chromosomal aberrations or aneuploidy in spermatozoa were observed, regardless of cell stage at irradiation or the radiation dose-rate. Thus, murine germ cells that survive prenatal and postnatal irradiation can restore spermatogenesis and produce viable spermatozoa without chromosome damage. These findings may provide a better understanding of reproductive potential following accidental, environmental, or therapeutic irradiation during the prenatal and postnatal periods in humans. © 2017 Wiley Periodicals, Inc.

  3. The effect of gamma-irradiation conditions on the immunogenicity of whole-inactivated Influenza A virus vaccine.

    PubMed

    David, Shannon C; Lau, Josyane; Singleton, Eve V; Babb, Rachelle; Davies, Justin; Hirst, Timothy R; McColl, Shaun R; Paton, James C; Alsharifi, Mohammed

    2017-02-15

    Gamma-irradiation, particularly an irradiation dose of 50kGy, has been utilised widely to sterilise highly pathogenic agents such as Ebola, Marburg Virus, and Avian Influenza H5N1. We have reported previously that intranasal vaccination with a gamma-irradiated Influenza A virus vaccine (γ-Flu) results in cross-protective immunity. Considering the possible inclusion of highly pathogenic Influenza strains in future clinical development of γ-Flu, an irradiation dose of 50kGy may be used to enhance vaccine safety beyond the internationally accepted Sterility Assurance Level (SAL). Thus, we investigated the effect of irradiation conditions, including high irradiation doses, on the immunogenicity of γ-Flu. Our data confirm that irradiation at low temperatures (using dry-ice) is associated with reduced damage to viral structure compared with irradiation at room temperature. In addition, a single intranasal vaccination with γ-Flu irradiated on dry-ice with either 25 or 50kGy induced seroconversion and provided complete protection against lethal Influenza A challenge. Considering that low temperature is expected to reduce the protein damage associated with exposure to high irradiation doses, we titrated the vaccine dose to verify the efficacy of 50kGy γ-Flu. Our data demonstrate that exposure to 50kGy on dry-ice is associated with limited effect on vaccine immunogenicity, apparent only when using very low vaccine doses. Overall, our data highlight the immunogenicity of influenza virus irradiated at 50kGy for induction of high titre antibody and cytotoxic T-cell responses. This suggests these conditions are suitable for development of γ-Flu vaccines based on highly pathogenic Influenza A viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A method for estimating direct normal solar irradiation from satellite data for a tropical environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janjai, Serm

    In order to investigate a potential use of concentrating solar power technologies and select an optimum site for these technologies, it is necessary to obtain information on the geographical distribution of direct normal solar irradiation over an area of interest. In this work, we have developed a method for estimating direct normal irradiation from satellite data for a tropical environment. The method starts with the estimation of global irradiation on a horizontal surface from MTSAT-1R satellite data and other ground-based ancillary data. Then a satellite-based diffuse fraction model was developed and used to estimate the diffuse component of the satellite-derivedmore » global irradiation. Based on this estimated global and diffuse irradiation and the solar radiation incident angle, the direct normal irradiation was finally calculated. To evaluate its performance, the method was used to estimate the monthly average hourly direct normal irradiation at seven pyrheliometer stations in Thailand. It was found that values of monthly average hourly direct normal irradiation from the measurements and those estimated from the proposed method are in reasonable agreement, with a root mean square difference of 16% and a mean bias of -1.6%, with respect to mean measured values. After the validation, this method was used to estimate the monthly average hourly direct normal irradiation over Thailand by using MTSAT-1R satellite data for the period from June 2005 to December 2008. Results from the calculation were displayed as hourly and yearly irradiation maps. These maps reveal that the direct normal irradiation in Thailand was strongly affected by the tropical monsoons and local topography of the country. (author)« less

  5. Tolerance of canine anastomoses to intraoperative radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tepper, J.E.; Sindelar, W.; Travis, E.L.

    1983-07-01

    Radiation has been given intraoperatively to various abdominal structures in dogs, using a fixed horizontal 11 MeV electron beam at the Armed Forces Radiobiologic Research Institute. Animals were irradiated with single doses of 2000, 3000 and 4500 rad to a field which extended from the bifurcation of the aorta to the rib cage. All animals were irradiated during laparotomy under general anesthesia. Because the clinical use of intraoperative radiotherapy in cancer treatment will occasionally require irradiation of anastomosed large vessels and blind loops of bowel, the tolerance of aortic anastomoses and the suture lines of blind loops of jejunum tomore » irradiation were studied. Responses in these experiments were scored at times up to one year after irradiation. In separate experiments both aortic and intestinal anastomoses were performed on each animal for evaluation of short term response. The dogs with aortic anastomoses showed adequate healing at all doses with no evidence of suture line weakening. On long-term follow-up one animal (2000 rad) had stenosis at the anastomosis and one animal (4500 rad) developed an arteriovenous fistula. Three of the animals that had an intestinal blind loop irradiated subsequently developed intussusception, with the irradiated loop acting as the lead point. One week after irradiation, bursting pressure of an intestinal blind loop was normal at 3000 rad, but markedly decreased at 4500 rad. No late complications were noted after the irradiation of the intestinal anastomosis. No late complicatons were observed after irradiation of intestinal anastomoses, but one needs to be cautious with regards to possible late stenosis at the site of an irradiated vascular anastomosis.« less

  6. DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages.

    PubMed

    Fatehi, A N; Bevers, M M; Schoevers, E; Roelen, B A J; Colenbrander, B; Gadella, B M

    2006-01-01

    The main goal of this study was to investigate whether and at what level damage of paternal DNA influences fertilization of oocytes and early embryonic development. We hypothesized that posttesticular sperm DNA damage will only marginally affect sperm physiology due to the lack of gene expression, but that it will affect embryo development at the stage that embryo genome (including the paternal damaged DNA) expression is initiated. To test this, we artificially induced sperm DNA damage by irradiation with x- or gamma rays (doses of 0-300 Gy). Remarkably, sperm cells survived the irradiation quite well and, when compared with nonirradiated cells, sperm motility and integrity of plasma membrane, acrosome, and mitochondria were not altered by this irradiation treatment. In contrast, a highly significant logarithmic relation between irradiation dose and induced DNA damage to sperm cells was found by both terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) and the acridin orange assay. Despite the DNA damage, irradiated sperm cells did not show any sign of apoptosis (nuclear fragmentation, depolarization of inner mitochondrial membranes, or phospholipid scrambling) and were normally capable of fertilizing oocytes, as there was no reduction in cleavage rates when compared with nonirradiated sperm samples up to irradiation doses of less than 10 Gy. Further embryonic development was completely blocked as the blastocyst rates at days 7 and 9 dropped from 28% (nonirradiated sperm) to less than 3% by greater than 2.5-Gy-irradiated sperm. This block in embryonic development was accompanied with the initiation of apoptosis after the second or third cleavage. Specific signs of apoptosis, such as nuclear fragmentation and aberrations in spindle formation, were observed in all embryos resulting from in vitro fertilization with irradiated sperm (irradiation doses >1.25 Gy). The results show that sperm DNA damage does not impair fertilization of the oocyte or completion of the first 2-3 cleavages, but blocks blastocyst formation by inducing apoptosis. Embryos produced by assisted reproductive techniques (ART) could have incorporated aberrant paternal DNA (frequently detected in sperm of sub/infertile males). Analogously, in the present work, we discuss the possibility of following embryo development of oocytes fertilized by ART through the blastocyst stage before embryo transfer into the uterus in order to reduce risks of reproductive failure.

  7. Schistosoma mansoni: radiation dose and morphologic integrity of schistosomules as factors for an effective cryopreserved live vaccine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, F.A.; Stirewalt, M.; Leef, J.L.

    1984-01-01

    The effectiveness of a cryopreserved, irradiated schistosomule vaccine against an homologous Schistosoma mansoni cercarial challenge was tested in C57B1/6 mice. Highly significant levels of protection developed consistently when mice were immunized with the vaccine irradiated at 10-20 Krad, i.e., doses below that considered optimal for irradiated cercariae (50 Krad). Cryopreserved schistosomules irradiated at 10 or 20 Krad induced greater levels of protection than did schistosomules irradiated at 2, 5, 30, or 50 Krad. Protective immunity developed as early as 3 weeks post-immunization. When immunizing inocula were injected at various times post-thaw, or when schistosomule subpopulations of normal-appearing, damaged or deadmore » organisms were injected, those populations which had appeared to sustain the least degree of damage were those most capable of stimulating protective immunity. These findings highlight the hazards of extrapolating conditions considered standard for an irradiated cercarial vaccine to one in which cryopreservation, for storage of the schistosomules, is an added stress.« less

  8. High doses of gamma radiation suppress allergic effect induced by food lectin

    NASA Astrophysics Data System (ADS)

    Vaz, Antônio F. M.; Souza, Marthyna P.; Vieira, Leucio D.; Aguiar, Jaciana S.; Silva, Teresinha G.; Medeiros, Paloma L.; Melo, Ana M. M. A.; Silva-Lucca, Rosemeire A.; Santana, Lucimeire A.; Oliva, Maria L. V.; Perez, Katia R.; Cuccovia, Iolanda M.; Coelho, Luana C. B. B.; Correia, Maria T. S.

    2013-04-01

    One of the most promising areas for the development of functional foods lies in the development of effective methods to reduce or eliminate food allergenicity, but few reports have summarized information concerning the progress made with food irradiation. In this study, we investigated the relationship between allergenicity and molecular structure of a food allergen after gamma irradiation and evaluate the profile of the allergic response to irradiated allergens. Cramoll, a lectin isolated from a bean and used as a food allergen, was irradiated and the possible structural changes were accompanied by spectrofluorimetry, circular dichroism and microcalorimetry. Subsequently, sensitized animals subjected to intragastric administration of non-irradiated and irradiated Cramoll were treated for 7 days. Then, body weight, leukocytes, cytokine profiles and histological parameters were also determined. Cramoll showed complete inhibition of intrinsic activity after high radiation doses. Changes in fluorescence and CD spectra with a simultaneous collapse of the tertiary structure followed by a pronounced decrease of native secondary structure were observed after irradiation. After oral challenge, sensitized mice demonstrate an association between Cramoll intake, body weight loss, eosinophilia, lymphocytic infiltrate in the gut and Eotaxin secretion. Irradiation significantly reduces, according to the dose, the effects observed by non-irradiated food allergens. We confirm that high-dose radiation may render protein food allergens innocuous by irreversibly compromising their molecular structure.

  9. The Effects of Stellar Irradiation on Gravitational Instabilities in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Cai, Kai; Durisen, R. H.; Zhu, Z.

    2009-01-01

    It has been suggested that giant protoplanets form in protoplanetary disks when the disks undergo rapid cooling and fragment into dense Jupiter-mass clumps under the disks' own self-gravity. Previous three-dimensional simulations of protoplanetary disks investigated the effects of envelope irradiation on the development of gravitational instabilities (GIs) in such disks. We found that the irradiation tends to suppress the nonlinear amplitude of GIs and no dense clumps form, arguing against direct formation of giant planets by disk instability in irradiated disks (Cai et al. 2008). In this work, by utilizing an improved radiative cooling scheme in the optically thin regions, we present some preliminary results from simulations with a variable irradiation temperature that mimics the effects of stellar irradiation. Comparisons with results from an envelope-irradiated disk suggest that stellar irradiation may be more effective in suppressing GIs than envelope irradiation.

  10. Low dose irradiation facilitates hepatocellular carcinoma genesis involving HULC.

    PubMed

    Li, Yuan; Ge, Chang; Feng, Guoxing; Xiao, Huiwen; Dong, Jiali; Zhu, Changchun; Jiang, Mian; Cui, Ming; Fan, Saijun

    2018-03-24

    Irradiation exposure positive correlates with tumor formation, such as breast cancer and lung cancer. However, whether low dose irradiation induces hepatocarcinogenesis and the underlying mechanism remain poorly defined. In the present study, we reported that low dose irradiation facilitated the proliferation of hepatocyte through up-regulating HULC in vitro and in vivo. Low dose irradiation exposure elevated HULC expression level in hepatocyte. Deletion of heightened HULC erased the cells growth accelerated following low dose irradiation exposure. CDKN1, the neighbor gene of HULC, was down-regulated by overexpression of HULC following low dose irradiation exposure via complementary base pairing, resulting in promoting cell cycle process. Thus, our findings provide new insights into the mechanism of low dose irradiation-induced hepatocarcinogenesis through HULC/CDKN1 signaling, and shed light on the potential risk of low dose irradiation for the development of hepatocellular carcinoma in pre-clinical settings. © 2018 Wiley Periodicals, Inc.

  11. New solar irradiances for use in space research

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Bouwer, D.; Jones, A.

    Space environment research applications require solar irradiances in a variety of time scales and spectral formats We describe the development of research grade modeled solar irradiances using four models and systems that are also used for space weather operations The four models systems include SOLAR2000 S2K SOLARFLARE SFLR APEX and IDAR which are used by Space Environment Technologies SET to provide solar irradiances from the soft X-rays through the visible spectrum SFLR uses the GOES 0 1--0 8 nm X-rays in combination with a Mewe model subroutine to provide 0 1--30 0 nm irradiances at 0 1 nm spectral resolution at 1 minute time resolution and in a 6-hour XUV--EUV spectral solar flare evolution forecast with a 7 minute latency and a 2 minute cadence These irradiances have been calibrated with the SORCE XPS observations and we report on the inclusion of these irradiances in the S2K model There are additional developments with S2K that we discuss particularly the method by which S2K is emerging as a hybrid model empirical plus physics-based and real-time data integration platform Numerous new solar indices have been recently developed for the operations community and we describe their inclusion in S2K The APEX system is a real-time data retrieval system developed under contract to the University of Southern California Space Sciences Center SSC to provide SOHO SEM data processing and distribution SSC provides the updated SEM data to the research community and SET provides the operational data to the space operations community We

  12. Late effects of childhood cancer treatment: severe hypertriglyceridaemia, central obesity, non alcoholic fatty liver disease and diabetes as complications of childhood total body irradiation.

    PubMed

    Rajendran, R; Abu, E; Fadl, A; Byrne, C D

    2013-08-01

    Childhood cancer survivors may develop a number of endocrine complications linked to organ failure, such as hypogonadism, diabetes and growth hormone deficiency. However, increasing evidence now suggests that total body irradiation treatment, specifically, is linked with future risk of insulin resistance, hepatic steatosis and dyslipidaemia, possibly because total body irradiation affects adipocyte differentiation and impairs subcutaneous adipose tissue depot expansion during times of positive energy balance. We describe a 20-year-old woman who developed pancreatitis with severe hypertriglyceridaemia (serum triglycerides > 300 mmol/l) that required plasmapheresis. She had received total body irradiation prior to her bone marrow transplant at age 6 years for relapsed acute lymphoblastic leukaemia. She developed ovarian failure at age 12 years. At age 15 years she was noted to have hyperglycaemia, increased blood pressure, hepatic steatosis and mild hypertriglyceridaemia. She presented with severe hypertriglyceridaemia and eruptive xanthoma, and developed pancreatitis 12 h after admission. She was treated with plasmapheresis and intravenous insulin and made an excellent recovery. We implicate and discuss total body irradiation as the major contributing factor to her severe hypertriglyceridaemia, compounded by worsening glycaemic control, oestrogen deficiency and a changing adult lifestyle. Children who have received total body irradiation are at risk of diabetes and an exaggerated form of the metabolic syndrome with hypertriglyceridaemia, which can be life-threatening. We suggest that survivors of total body irradiation treatment require careful lifelong monitoring of their metabolic status. © 2013 The Authors. Diabetic Medicine © 2013 Diabetes UK.

  13. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrixmore » composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing« less

  14. Spectral irradiance standard for the ultraviolet - The deuterium lamp

    NASA Technical Reports Server (NTRS)

    Saunders, R. D.; Ott, W. R.; Bridges, J. M.

    1978-01-01

    A set of deuterium lamps is calibrated as spectral irradiance standards in the 200-350-nm spectral region utilizing both a high accuracy tungsten spectral irradiance standard and a newly developed argon mini-arc spectral radiance standard. The method which enables a transfer from a spectral radiance to a spectral irradiance standard is described. The following characteristics of the deuterium lamp irradiance standard are determined: sensitivity to alignment; dependence on input power and solid angle; reproducibility; and stability. The absolute spectral radiance is also measured in the 167-330-nm region. Based upon these measurements, values of the spectral irradiance below 200 nm are obtained through extrapolation.

  15. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  16. A new multipurpose gamma-irradiation facility

    NASA Astrophysics Data System (ADS)

    Huebner, G.

    In the past 3 yr much work has been done in the G.D.R. on food irradiation. The experiments have shown that this treatment gives favourable results in many products such as spices, onions, potatoes, chicken, animal feeds, fodder yeast, drugs and vaccines. Economic aspects of food irradiation require the effective use of an irradiation plant and cobalt-60. Therefore, a new multipurpose irradiation facility was developed, applicable as an onion irradiator with a capacity of about 15 ton/h and for the simultaneous irradiation of different products (spices, animal feed, chicken, etc.) in closed product ☐es with a size of 1.2 m x 1.0 m x 1.2 m. A microcomputer controls the transport of product ☐es around the gamma sources.

  17. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, K. G.; Wetteland, C. J.; Cao, G.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiationmore » of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.« less

  18. Developmental inhibition of gamma irradiation on the peach fruit moth Carposina sasakii (Lepidoptera: Carposinidae)

    NASA Astrophysics Data System (ADS)

    Ryu, Jihoon; Ahn, Jun-Young; Sik Lee, Seung; Lee, Ju-Woon; Lee, Kyeong-Yeoll

    2015-01-01

    Ionizing irradiation is a useful technique for disinfestation under plant quarantine as well as post-harvest management. Effects of gamma irradiation treatment were tested on different developmental events of Carposina sasakii, which is a serious pest of various orchard crops. Apple fruits infested by C. sasakii were irradiated by gamma rays ranging from 0 to 300 Gy. Inhibition rates were determined on behavioral events related to development, including larval exit from apples, cocoon formation, adult eclosion, and oviposition. Failure rates of all these developmental events increased with increasing doses of irradiation. Rates of larval exit from apples and cocoon formation decreased to 13.2% and 1.7%, respectively, at 300 Gy. However, the adult eclosion rate decreased to 5.4% at 100 Gy and was completely inhibited at doses greater than 150 Gy. LD99 values for the inhibition of cocoon formation and adult emergence was estimated into 313.4 and 191.0 Gy. Furthermore, adults developed from irradiated larvae completely failed to lay eggs. Thus, irradiation of infested apples at doses of 200 Gy and higher completely inhibited the next generation of C. sasakii. Our results suggest that gamma irradiation treatment would be a promising technique for the control of C. sasakii.

  19. Progress of food irradiation in the United States

    NASA Astrophysics Data System (ADS)

    Derr, D. D.; Engeljohn, D. L.; Griffin, R. L.

    1995-02-01

    Irradiated foods have not yet made a significant impact in the United States marketplace. What progress has occurred to facilitate their commercialization? Irradiated produce has been sold in small quantities since 1992 and irradiated poultry was introduced in the marketplace in 1993. Federal inspection of irradiated commodities has settled into a regular routine. What must occur to further expand irradiated foods in the marketplace? Petitions to permit irradiation of red meats and seafood are being considered by the Food and Drug Administration (FDA) and a petition to permit the irradiation of shell eggs is being prepared for submission to FDA. In addition, the U.S. Department of Agriculture (USDA) has accelerated efforts to develop the policies and regulatory structure needed to facilitate the approval of new irradiation treatments for imported plant products regulated by quarantine. When will greater commercialization occur? More positive coverage to food irradiation in recent months by both the trade and popular press indicates a change in attitude towards irradiated foods by both consumers and the food industry. Finally, actual consumer response to available irradiated foods casts a favorable light on the potential for increased marketing of value-added irradiated foods.

  20. Irradiation for quarantine control of the invasive light brown apple moth, Epiphyas

    USDA-ARS?s Scientific Manuscript database

    The effects of irradiation on egg, larval, and pupal development, and adult reproduction in light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), were examined. Eggs, neonates, early instars, late instars, early pupae and late pupae were irradiated at target doses of 60, ...

  1. Anaplastic carcinoma of the thyroid in a population irradiated for Hodgkin Disease, 1910-1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getaz, E.P.; Shimaoka, K.

    Post-irradiation carcinoma of the thyroid is usually histologically well-differentiated. In general, those subjects who developed carcinoma had been exposed to low-to-moderate doses of irradiation for benign conditions. We reviewed the charts of 520 patients with Hodgkin's disease seen at Roswell Park Memorial Institute, and found 2 cases of anaplastic carcinoma amongst other thyroidal abnormalities. The existing reports of post-irradiation carcinoma are reviewed and suggestions are made for the management of heavily irradiated, potentially cured patients with Hodgkin's disease.

  2. Food irradiation: Technology transfer in Asia, practical experiences

    NASA Astrophysics Data System (ADS)

    Kunstadt, Peter; Eng, P.

    1993-10-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.

  3. Skeletal effects of megavoltage irradiation in survivors of Wilms' tumor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heaston, D.K.; Libshitz, H.I.; Chan, R.C.

    1979-09-01

    The skeletal effects of megavoltage irradiation (/sup 60/Co) in 25 long term survivors of Wilms' tumor are described. In general, the changes seen with megavoltage irradiation are as frequent but not as severe as those previously reported after orthovoltage irradiation. Vertebral body changes generally occur within 5 years after irradiation. Scoliosis and/or kyphosis do not usually develop until after five years postirradiation. Kyphotic curves tend to progress after the adolescent growth spurt while scoliotic curves do not. Other bony and nonosseous changes are detailed.

  4. Status and progress of the RERTR program in the year 2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.; Nuclear Engineering Division

    2003-01-01

    One of the most important events affecting the RERTR program during the past year was the decision by the U.S. Department of Energy to request the U.S. Congress to significantly increase RERTR program funding. This decision was prompted, at least in part, by the terrible events of September 11, 2001, and by a high-level U.S./Russian Joint Expert Group recommendation to immediately accelerate RERTR program activities in both countries, with the goal of converting all the world's research reactors to low-enriched fuel at the earliest possible time, and including both Soviet-designed and United States-designed research reactors. The U.S. Congress is expectedmore » to approve this request very soon, and the RERTR program has prepared itself well for the intense activities that the 'Accelerated RERTR Program' will require. Promising results have been obtained in the development of a fabrication process for monolithic LEU U-Mo fuel. Most existing and future research reactors could be converted to LEU with this fuel, which has a uranium density between 15.4 and 16.4 g/cm{sup 3} and yielded promising irradiation results in 2002. The most promising method hinges on producing the monolithic meat by cold-rolling a thin ingot produced by casting. The aluminum clad and the meat are bonded by friction stir welding and the cladding surface is finished by a light cold roll. This method can be applied to the production of miniplates and appears to be extendable to the production of full-size plates, possibly with intermediate anneals. Other methods planned for investigation include high temperature bonding and hot isostatic pressing. The progress achieved within the Russian RERTR program, both for the traditional tube-type elements and for the new 'universal' LEU U-Mo pin-type elements, promises to enable soon the conversion of many Russian-designed research and test reactors. Irradiation testing of both fuel types with LEU U-Mo dispersion fuels has begun. Detailed studies are in progress to define the feasibility of converting each Russian-designed research and test reactor to either fuel type. The plan for the Accelerated RERTR Program is structured to achieve LEU conversion of all HEU research reactors supplied by the United States and Russia during the next nine years. This effort will address, in addition to the fuel development and qualification, the analyses and performance/economic/safety evaluations needed to implement the conversions. In combination with this over-arching goal, the RERTR program plans to achieve at the earliest possible date qualification of LEU U-Mo dispersion fuels with uranium densities of 6 g/cm{sup 3} and 7 g/cm{sup 3}. Reactors currently using or planning to use LEU silicide fuel will rely on this fuel after termination of the FRRSNFA program, because it is acceptable to COGEMA for reprocessing. Qualification of LEU U-Mo dispersion fuels has suffered some unavoidable delays but, to accelerate it as much as possible, the RERTR program, the French CEA, and the Australian ANSTO have agreed to jointly pursue a two-element qualification test of LEU U-Mo dispersion fuel with uranium density of 7.0 g/cm{sup 3} to be performed in the Osiris reactor during 2004. The RERTR program also intends to eliminate all obstacles to the utilization of LEU in targets for isotope production, so that this important function can be performed without the need for weapons-grade materials. All of us, working together as we have for many years, can ensure that all these goals will be achieved. By promoting the efficiency and safety of research reactors while eliminating the traffic in weapons-grade uranium, we can prevent the possibility that some of this material might fall in the wrong hands. Few causes can be more deserving of our joint efforts.« less

  5. Antiradiation vaccine: Technology and development of prophylaxis, prevention and treatment of biological consequences from Heavy Ion irradiation.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Vecheslav

    Introduction: An anti-radiation vaccine could be an important part of a countermeasures reg-imen for effective radioprotection, immunoprophylaxis and immunotherapy of the acute radi-ation syndromes (ARS) after gamma-irradiation, neutron irradiation or heavy ion irradiation. Reliable protection of non-neoplastic regions of patients with different forms of cancer which undergo to heavy ion therapy ( e.g. Hadron-therapy) can significantly extend the efficiency of the therapeutic course. The protection of cosmonauts astronauts from the heavy ion ra-diation component of space radiation with specific immunoprophylaxis by the anti-radiation vaccine may be an important part of medical management for long term space missions. Meth-ods and experiments: 1. The Antiradiation Vaccine preparation -standard (mixture of toxoid form of Radiation Toxins -SRD-group) which include Cerebrovascular RT Neurotoxin, Car-diovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins Specific Radiation Determinant Group were isolated from a central lymph of gamma-irradiated animals with Cerebrovascular, Cardiovascular, Gastrointestiinal, Hematopoi-etic forms of ARS. Devices for γ-radiation are "Panorama", "Puma". 2. Heavy ion exposure was accomplished at Department of Scientific Research Institute of Nuclear Physics, Dubna, Russia. The heavy ions irradiation was generated in heavy ion (Fe56) accelerator -UTI. Heavy Ion linear transfer energy -2000-2600 KeV mkm, 600 MeV U. Absorbed Dose -3820 Rad. 3. Experimental Design: Rabbits from all groups were irradiated by heavy ion accelerator. Group A -control -10 rabbits; Group B -placebo -5 rabbits; Group C -radioprotectant Cystamine (50 mg kg)-5 rabbits, 15 minutes before irradiation -5 rabbits; Group D -radioprotectant Gammafos (Amifostine -400mg kg ), -5 rabbits; Group E -Antiradiation Vaccine: subcuta-neus administration or IM -2 ml of active substance, 14 days before irradiation -5 rabbits. 4. Results: Group A -100% mortality within two hours after heavy ion irradiation with clinical symptoms of the acute cerebrovascular and cardiovascular syndromes. Group B -100% mortal-ity within 15 hours following irradiation. Group C -100% mortality within 14-15 hours after irradiation. Group D -100% mortality within 15-16 hours after irradiation. In groups A-D, development of the acute radiation cerebrovascular and cardiovascular syndromes as well as ex-tensive burns of skin caused rapid death. Group E -100% mortality in 280-290 hours (12 days) following heavy ion irradiation while animals were exhibiting a combination or individual forms of the acute cerebrovascular, cardiovascular, and gastrointestinal forms and focal skin burns. Discussion: The Antiradiation Vaccine (ARV) and specific immune-prophylaxis are an effective method of neutralization of Radiation Toxins. Vaccination with the ARV significantly extended the survival time after irradiation with heavy ions from two hours up to 300 hours. Clinical signs, clinical features, symptoms were somewhat attenuated. Degree of clinical forms of the Acute Radiation Syndromes were diminished in their severity. Groups A-D demonstrated an extremely severe degree (Degree 4) of Cerebrovascular and Cardiovascular forms of the Acute Radiation Syndromes and lethality 100% was registered in a short time after irradiation. Radi-ation induced burns in this groups (with Cutaneous sub-syndrome of ARS -Degree 4) that were deep with extensive and total dysfunction and possible muscle involvement developed. Animals from group E -Radioprotectant -anti-radiation vaccine had demonstrated later development of the severe Degree 3 or even Degree 2-3 forms of Cerebrovascular and Cardiovascular forms of the ARS and a survival time of irradiated animals was significantly prolonged. Cutaneous sub-syndrome developed in Degree 3 or Degree 2-3. Our results have demonstrated the potential radioprotection efficacy of specific immune-prophylaxis with the Antiradiation vaccine against heavy ion irradiation.

  6. Soda-lime-silica glass for radiation dosimetry.

    PubMed

    Ezz-Eldin, F M; Abdel-Rehim, F; Abdel-Azim, A A; Ahmed, A A

    1994-07-01

    The color developed in a commercially available soda-lime-silica glass when subjected to gamma-irradiation and the stability of such radiation-induced color were studied to test its sensitivity to small doses of gamma-rays (0.0-27 kGy). After irradiation, two absorption bands developed at 400 and 620 nm. The former band exhibited a stronger absorption than the later one. The intensity of both bands showed a gradual increase with increasing irradiation dose and a gradual decrease with increasing fading time after irradiation. The development of these bands is associated with the generation of defects at nonbridging oxygen atoms in the glass lattice and hole centers. The results obtained suggest that this glass simulated the Z of compact bone in terms of gamma rays absorption properties over broad radiation spectra (0.1 to 10 MeV).

  7. Evaluation of selected chemical processes for production of low-cost silicon, phases 1 and 2

    NASA Technical Reports Server (NTRS)

    Blocher, J. M.; Browning, M. F.

    1978-01-01

    A miniplant, consisting of a 5 cm-diameter fluidized-bed reactor and associated equipment was used to study the deposition parameters, temperature, reactant composition, seed particle size, bed depth, reactant throughput, and methods of reactant introduction. It was confirmed that the permissible range of fluidized-bed temperature was limited at the lower end by zinc condensation (918 C) and at higher temperatures by rapidly decreasing conversion efficiency. Use of a graded bed temperature was shown to increase the conversion efficiency over that obtained in an isothermal bed. Other aspects of the process such as the condensation and fused-salt electrolysis of the ZnCl2 by-product for recycle of zinc and chlorine were studied to provide information required for design of a 50 MT/year experimental facility. In view of the favorable technical and economic indications obtained, it was recommended that construction and operation of the 50 MT/year experimental facility be implemented.

  8. Miniplate fixation of Le Fort I osteotomies.

    PubMed

    Rosen, H M

    1986-12-01

    The use of rigid, internal, three-dimensional fixation using vitallium bone plates in 28 consecutive Le Fort I osteotomies is presented. A minimum follow-up period of 6 months was required for inclusion in this patient group. Maxillary movements included advancements (17), intrusions (9), lengthenings (5), and retrusions (2). The majority of maxillae were moved in more than one plane of space. Technical details, complications, and relapse potential are discussed. Advantages of rigid plate fixation include marked reductions in the length of intermaxillary fixation with light training elastics only. Immediate postoperative airway problems are thereby eliminated. Six months of follow-up would appear to indicate a low potential for osseous relapse when compared to wire osteosynthesis, regardless of the direction of maxillary movement. The major disadvantage is the decreased ability of postoperative orthodontics to move dento-osseous segments if skeletal occlusal disharmony persists postoperatively. For this reason, close attention to preoperative planning and operative technique is critical for the success of this fixation method.

  9. Cleft maxillary distraction versus orthognathic surgery--which one is more stable in 5 years?

    PubMed

    Chua, Hannah Daile P; Hägg, Margareta Bendeus; Cheung, Lim Kwong

    2010-06-01

    The objective of this study was to compare the long-term stability of distraction osteogenesis (DO) and conventional orthognathic surgery (CO) in patients with cleft lip and palate (CLP). CLP patients requiring maxillary advancement of 4 to 10 mm were randomized and assigned to either CO or DO. In the CO group, the maxilla was fully mobilized to the preplanned position and fixed using titanium miniplates. In the DO group, the maxilla was mobilized to a limited extent and distractors were fixed on each side of the maxilla. Serial lateral cephalographs were taken for the assessment of stability at different postoperative periods up to 5 years. In the CO group, the maxilla relapsed backward and upward, whereas in the DO group, it advanced more forward and downward over 5 years. Distraction of the cleft maxilla can achieve better long-term skeletal stability in maintaining its advanced position than CO. Copyright 2010 Mosby, Inc. All rights reserved.

  10. Long-term follow-up of early cleft maxillary distraction.

    PubMed

    Park, Young-Wook; Kwon, Kwang-Jun; Kim, Min-Keun

    2016-12-01

    Most of cleft lip and palate patients have the esthetic and functional problems of midfacial deficiencies due to innate developmental tendency and scar tissues from repeated operations. In these cases, maxillary protraction is required for the harmonious facial esthetics and functional occlusion. A 7-year old boy had been diagnosed as severe maxillary constriction due to unilateral complete cleft lip and palate. The author tried to correct the secondary deformity by early distraction osteogenesis with the aim of avoiding marked psychological impact from peers of elementary school. From 1999 to 2006, repeated treatments, which consisted of Le Fort I osteotomy and face mask distraction, and complementary maxillary protraction using miniplates were performed including orthodontics. But, final facial profile was not satisfactory, which needs compromising surgery. The result of this study suggests that if early distraction treatment is performed before facial skeletal growth is completed, an orthognathic surgery or additional distraction may be needed later. Maxillofacial plastic and reconstructive surgeons should notify this point when they plan early distraction treatment for cleft maxillary deformity.

  11. [Maxillo-facial surgery in skeletal Class II: repercussions on the temporo-mandibular joints].

    PubMed

    Manière-Ezvan, Armelle; Savoldelli, Charles; Busson, Floriant; Oueiss, Arlette; Orthlieb, Jean-Daniel

    2016-03-01

    These interventions usually aimed at the correction of the skeletal discrepancy by mandibular retrognatism with an advancement of the distal portion of the mandible after mandibular osteotomy. The position of the condyle is determined during the osteosynthesis with miniplates. Condyles are set back in relation with the supine position of the patient and the weakness of his (her) curarized muscle. All studies show that surgery of mandibular advancement causes a lateral, torque and backward movement of the condyles, all harmful to the condyles. Factors that predispose to condylar resorption are "the patient": a woman, young (between 15 and 40), high mandibular angle, with a history of temporo-mandibular disorders and surgical overload applied to the condyles. What are the possible solutions to avoid failures? Patient preparation before surgery and surgery simulation with an articulator, condylar position control during surgery, working with surgeons to achieve a condylar portion stabilization system (with the CAD), quickly set up a mobilization of the mandible by physiotherapy. © EDP Sciences, SFODF, 2016.

  12. Effects of gamma irradiation as a quarantine treatment on development of codling moth larvae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burditt, A.K. Jr.; Moffitt, H.R.; Hungate, F.P.

    1985-03-01

    Codling moth, Cydia pomonella (L.), larvae were exposed to gamma radiation at doses upto 160 Gy. Following irradiation the larvae were permited further development, pupation and adult emergence. The number of adults emerging, mature larvae and pupae present were determined. Data from these studies will be used to predict doses of gamma irradiation required as a quarantine treatment to prevent emergence of codling moth adults from fruit infested by larvae. 5 refs., 1 tab.

  13. High-dose irradiated food: Current progress, applications, and prospects

    NASA Astrophysics Data System (ADS)

    Feliciano, Chitho P.

    2018-03-01

    Food irradiation as an established and mature technology has gained more attention in the food industry for ensuring food safety and quality. Primarily used for phytosanitary applications, its use has been expanded for developing various food products for varied purposes (e.g. ready-to-eat & ready-to-cook foods, hospital diets, etc.). This paper summarized and analyzed the recent progress and application of high-dose irradiation and discussed its prospects in the field of food product development, its safety and quality.

  14. Developments and potential of radiation processing in the Philippines

    NASA Astrophysics Data System (ADS)

    Singson, C.; Carmona, C.

    This paper describes the research and development activities in three areas of radiation processing, namely: food irradiation, medical product sterilization and wood plastic combination. Plans and efforts exerted to acquire a larger gamma source to augment our present 5,000 curie source are discussed. Cost estimates for a radiation facility is presented on the basis of the market potential of food irradiation and medical product sterilization. Existing local industries that can benefit from the adaptation of irradiation technology in their processing requirements is described.

  15. Advances on simultaneous desulfurization and denitrification using activated carbon irradiated by microwaves.

    PubMed

    Ma, Shuang-Chen; Gao, Li; Ma, Jing-Xiang; Jin, Xin; Yao, Juan-Juan; Zhao, Yi

    2012-06-01

    This paper describes the research background and chemistry of desulfurization and denitrification technology using microwave irradiation. Microwave-induced catalysis combined with activated carbon adsorption and reduction can reduce nitric oxide to nitrogen and sulfur dioxide to sulfur from flue gas effectively. This paper also highlights the main drawbacks of this technology and discusses future development trends. It is reported that the removal of sulfur dioxide and nitric oxide using microwave irradiation has broad prospects for development in the field of air pollution control.

  16. Actinometric measurement of solar ultraviolet and development of a weighted solar UV integral. [photochemical reaction rate determination

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Coulbert, C.

    1978-01-01

    An actinometer has been developed to measure outdoor irradiance in the range 295-400 nm. Actinometric measurements of radiation are based on determination of photochemical reaction rates for reactions of known quantum efficiency. Actinometers have the advantage of providing irradiance data over surfaces of difficult accessibility; in addition, actinometrically determined irradiance data are wavelength weighted and therefore provide a useful means of assessing the degradation rates of polymers employed in solar energy systems.

  17. Effects of irradiation on the microstructure of U-7Mo dispersion fuel with Al-2Si matrix

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K.; Ross Finlay, M.

    2012-06-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.

  18. Post-irradiation examination of prototype Al-64 wt% U{sub 3}Si{sub 2} fuel rods from NRU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sears, D.F.; Primeau, M.F.; Buchanan, C.

    1997-08-01

    Three prototype fuel rods containing Al-64 wt% U{sub 3}Si{sub 2} (3.15 gU/cm{sup 3}) have been irradiated to their design burnup in the NRU reactor without incident. The fuel was fabricated using production-scale equipment and processes previously developed for Al-U{sub 3}Si fuel fabrication at Chalk River Laboratories, and special equipment developed for U{sub 3}Si{sub 2} powder production and handling. The rods were irradiated in NRU up to 87 at% U-235 burnup under typical driver fuel conditions; i.e., nominal coolant inlet temperature 37{degrees}C, inlet pressure 654 kPa, mass flow 12.4 L/s, and element linear power ratings up to 73 kW/m. Post-irradiation examinationsmore » showed that the fuel elements survived the irradiation without defects. Fuel core diametral increases and volumetric swelling were significantly lower than that of Al-61 wt% U{sub 3}Si fuel irradiated under similar conditions. This irradiation demonstrated that the fabrication techniques are adequate for full-scale fuel manufacture, and qualified the fuel for use in AECL`s research reactors.« less

  19. Development of radiation indicators to distinguish between irradiated and non-irradiated herbal medicines using HPLC and GC-MS.

    PubMed

    Kim, Min Jung; Ki, Hyeon A; Kim, Won Young; Pal, Sukdeb; Kim, Byeong Keun; Kang, Woo Suk; Song, Joon Myong

    2010-09-01

    The effects of high dose γ-irradiation on six herbal medicines were investigated using gas chromatography-mass spectrometry (GC/MS) and high-performance liquid chromatography (HPLC). Herbal medicines were irradiated at 0-50 kGy with (60)Co irradiator. HPLC was used to quantify changes of major components including glycyrrhizin, cinnamic acid, poncirin, hesperidin, berberine, and amygdalin in licorice, cinnamon bark, poncirin immature fruit, citrus unshiu peel, coptis rhizome, and apricot kernel. No significant differences were found between gamma-irradiated and non-irradiated samples with regard to the amounts of glycyrrhizin, berberine, and amygdalin. However, the contents of cinnamic acid, poncirin, and hesperidin were increased after irradiation. Volatile compounds were analyzed by GC/MS. The relative proportion of ketone in licorice was diminished after irradiation. The relative amount of hydrocarbons in irradiated cinnamon bark and apricot kernel was higher than that in non-irradiated samples. Therefore, ketone in licorice and hydrocarbons in cinnamon bark and apricot kernel can be considered radiolytic markers. Three unsaturated hydrocarbons, i.e., 1,7,10-hexadecatriene, 6,9-heptadecadiene, and 8-heptadecene, were detected only in apricot kernels irradiated at 25 and 50 kGy. These three hydrocarbons could be used as radiolytic markers to distinguish between irradiated (>25 kGy) and non-irradiated apricot kernels.

  20. SU-C-BRB-01: Development of Dynamic Gimbaled X-Ray Head Swing Irradiation Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, T; Miyabe, Y; Yokota, K

    Purpose: The Vero4DRT has a unique gimbaled x-ray head with rotating around orthogonal two axes. The purpose of this study was to develop a new irradiation technique using the dynamic gimbaled x-ray head swing function. Methods: The Vero4DRT has maximum field size of 150Χ150 mm2. The expanded irradiation field (expanded-field) for the longitudinal direction which is vertical to the MLC sliding direction, was created by the MLC motion and the gimbaled x-ray head rotation. The gimbaled x-ray head was rotated ± 35 mm, and the expanded-field size was set as 150Χ220 mm2. To irradiate uniform dose distribution, the diamond-shaped radiationmore » field was created and continuously moved for the longitudinal direction. It was achieved by combination of opening and closing of the MLC and gimbal swing rotation. To evaluate dosimetric characteristic of the expanded-field, films inserted in water-equivalent phantoms at 100 mm depth were irradiated and the field size, penumbra, flatness and symmetry were analyzed.In addition, the expanded-field irradiation technique was applied to virtual wedge irradiation. Wedged beam was acquired with the delta–shaped radiation field. 150Χ 220 mm2 fields with 15, 30, 45, and 60 degree wedge were examined. The wedge angles were measured with irradiated film and compared with assumed wedge angles. Results: The field size, penumbra, flatness and symmetry of the expanded-field were 150.0 mm, 8.1–8.4 mm, 2.8% and −0.8% for the lateral direction and 220.1 mm, 6.3–6.4 mm, 3.2% and −0.4% for the longitudinal direction at 100 mm depth. The measured wedge angles were 15.1, 30.2, 45.2 and 60.2 degrees. The differences between assumed and measured angles were within 0.2 degrees. Conclusion: A new technique of the gimbal swing irradiation was developed. To extend applied targets, especially for whole breast irradiation, the expanded-field and virtual wedge irradiations would be effective.« less

  1. Current understanding of the effects of enviromental and irradiation variables on RPV embrittlement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odette, G.R.; Lucas, G.E.; Wirth, B.

    1997-02-01

    Radiation enhanced diffusion at RPV operating temperatures around 290{degrees}C leads to the formation of various ultrafine scale hardening phases, including copper-rich and copper-catalyzed manganese-nickel rich precipitates. In addition, defect cluster or cluster-solute complexes, manifesting a range of thermal stability, develop under irradiation. These features contribute directly to hardening which in turn is related to embrittlement, manifested as shifts in Charpy V-notch transition temperature. Models based on the thermodynamics, kinetics and micromechanics of the embrittlement processes have been developed; these are broadly consistent with experiment and rationalize the highly synergistic effects of most important irradiation (temperature, flux, fluence) and metallurgical (copper,more » nickel, manganese, phosphorous and heat treatment) variables on both irradiation hardening and recovery during post-irradiation annealing. A number of open questions remain which can be addressed with a hierarchy of new theoretical and experimental tools.« less

  2. Modeling the natural UV irradiation and comparative UV measurements at Moussala BEO (BG)

    NASA Astrophysics Data System (ADS)

    Tyutyundzhiev, N.; Angelov, Ch; Lovchinov, K.; Nitchev, Hr; Petrov, M.; Arsov, T.

    2018-03-01

    Studies of and modeling the impact of natural UV irradiation on the human population are of significant importance for human activity and economics. The sharp increase of environmental problems – extraordinary temperature changes, solar irradiation abnormalities, icy rains – raises the question of developing novel means of assessing and predicting potential UV effects. In this paper, we discuss new UV irradiation modeling based on recent real-time measurements at Moussala Basic Environmental Observatory (BEO) on Moussala Peak (2925 m ASL) in Rila Mountain, Bulgaria, and highlight the development and initial validation of portable embedded devices for UV-A, UV-B monitoring using open-source software architecture, narrow bandpass UV sensors, and the popular Arduino controllers. Despite the high temporal resolution of the VIS and UV irradiation measurements, the results obtained reveal the need of new assumptions in order to minimize the discrepancy with available databases.

  3. Neutron Focusing Mirrors for Neutron Radiography of Irradiated Nuclear Fuel at Idaho National Laboratory

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh K.; Wu, Huarui; Abir, Muhammad; Giglio, Jeffrey; Khaykovich, Boris

    Post irradiation examination (PIE) of samples irradiated in nuclear reactors is a challenging but necessary task for the development on novel nuclear power reactors. Idaho National Laboratory (INL) has neutron radiography capabilities, which are especially useful for the PIE of irradiated nuclear fuel. These capabilities are limited due to the extremely high gamma-ray radiation from the irradiated fuel, which precludes the use of standard digital detectors, in turn limiting the ability to do tomography and driving the cost of the measurements. In addition, the small 250 kW Neutron Radiography Reactor (NRAD) provides a relatively weak neutron flux, which leads to low signal-to-noise ratio. In this work, we develop neutron focusing optics suitable for the installation at NRAD. The optics would separate the sample and the detector, potentially allowing for the use of digital radiography detectors, and would provide significant intensity enhancement as well. The optics consist of several coaxial nested Wolter mirrors and is suited for polychromatic thermal neutron radiation. Laboratory Directed Research and Development program of Idaho National Laboratory.

  4. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong

    2018-04-01

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature- and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS). The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code.

  5. THE EFFECT OF X-RAY IRRADIATION ON THE COURSE OF VACCINAL PROCESS CAUSED BY THE ADMINISTRATION OF LIVING BRUCELLOSIS VACCINE TO ANIMALS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevtsova, Z.V.

    1959-10-01

    Investigations were conducted on white rats irradiated at doses of 300 to 600 r and guinea pigs irradiated at doses of 150 to 250 r. It appeared that immunizition with vaccinal brucella culture it the height of radiation sickness increases the death rate of the irradiated animals. As demonstrated by bacteriological examination, development of generalized vaccinal process in the irradiated and immunized animals pursued the same course as in the immunized non- irradiated animals. This procoss was manifested in the dissemination of brucella vaccinal strain in various organs. However the irradiated animals become cleared of the vaccinal culture at amore » somewhat slower rate than in the non-irradiated ones. in guinea pigs, irradiated privious to vaccination there was a slower formation of agglutinins with lower titre than in control non-irradiated animals. Opsonic phagocytic blood index was somewhat lower only in the animals irradiated 24 hours previous to the vaccination. When irradiating white rats 24 hours or 10 days in advance or 24 hours after the vaccination, a delay in the agglutinin production has been observed during the first days following the vaccination. (auth)« less

  6. In-Pile Tests for IASCC Growth Behavior of Irradiated 316L Stainless Steel under Simulated BWR Condition in JMTR

    NASA Astrophysics Data System (ADS)

    Chimi, Yasuhiro; Kasahara, Shigeki; Ise, Hideo; Kawaguchi, Yoshihiko; Nakano, Junichi; Nishiyama, Yutaka

    The Japan Atomic Energy Agency (JAEA) has an in-pile irradiation test plan to evaluate in-situ effects of neutron/γ-ray irradiation on stress corrosion crack (SCC) growth of irradiated stainless steels using the Japan Materials Testing Reactor (JMTR). SCC growth rate and its dependence on electrochemical corrosion potential (ECP) are different between in-pile test and post irradiation examination (PIE). These differences are not fully understood because of a lack of in-pile data. This paper presents a systematic review on SCC growth data of irradiated stainless steels, an in-pile test plan for crack growth of irradiated SUS316L stainless steel under simulated BWR conditions in the JMTR, and the development of the in-pile test techniques.

  7. Pristine and γ-irradiated halloysite reinforced epoxy nanocomposites - Insight study

    NASA Astrophysics Data System (ADS)

    Saif, Muhammad Jawwad; Naveed, Muhammad; Zia, Khalid Mahmood; Asif, Muhammad

    2016-10-01

    The present study focuses on development of epoxy system reinforced with naturally occurring halloysite nanotubes (HNTs). A comparative study is presented describing the performance of pristine and γ-irradiated HNTs in an epoxy matrix. The γ-irradiation treatment was used for structural modification of natural pristine HNTs under air sealed environment at different absorbed doses and subsequently these irradiated HNTs were incorporated in epoxy resin with various wt% loadings. The consequences of γ-irradiation on HNTs were studied by FTIR and X-ray diffraction analysis (XRD) in terms of changes in functional groups and crystalline characteristics. An improvement is observed in mechanical properties and crack resistance of composites reinforced with γ-irradiated HNTs. The irradiated HNTs imparted an improved flexural and tensile strength/modulus along with better thermal performance.

  8. Irradiation application for color removal and purification of green tea leaves extract

    NASA Astrophysics Data System (ADS)

    Jo, Cheorun; Son, Jun Ho; Lee, Hyun Ja; Byun, Myung Woo

    2003-02-01

    Gamma irradiation was introduced to develop a new processing method for brighter-colored green tea leaves extract without changes of physiological activities. Dried green tea leaves were purchased and extracted by 70% ethanol solution and irradiated at 0, 5, 10, and 20 kGy with gamma rays. Hunter color L-value increased and a- and b-value decreased by irradiation, resulting in bright yellow from dark brown. There was no difference in radical scavenging and tyrosinase inhibition effect by irradiation. The irradiation effect in the solution disappeared during storage for 3 weeks at room temperature but vitamin C addition was effective in reducing the color change. Results indicated that irradiation may be a good technology to remove undesirable color in green tea leaves extract.

  9. Identification of irradiated pepper with the level of hydrogen gas as a probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dohmaru, T.; Furuta, M.; Katayama, T.

    1989-12-01

    A novel method to detect whether or not a particular pepper has been irradiated has been developed which is based on the fact that H2 is formed in organic substances irradiated with ionizing radiation. Following gamma irradiation, black and white peppers were ground to powder in a gastight ceramic mill. By gas-chromatographic analysis of the gas in the mill, we observed that H2 had been released from the irradiated pepper grains. Curves plotting the H2 content vs storage time at storage temperatures of 7, 22, and 30 degrees C showed that the higher the temperatures, the smaller the H2 content,more » and that identification of irradiated pepper was possible for 2-4 months after 10 kGy irradiation.« less

  10. Production of ochratoxin A by Aspergillus ochraceus NRRL-3174 before and after exposures to 60Co irradiation.

    PubMed Central

    Applegate, K L; Chipley, J R

    1976-01-01

    Spores from the toxigenic organism Aspergillus ochraceus NRRL-3174 were exposed to specific levels of gamma irradiation and then allowed to germinate on selected media. Increases in ochratoxin A production by irradiated, compared to non-irradiated, spores were observed after inoculation of spores onto a cracked red wheat or into a synthetic liquid medium. Variations in daily ochratoxin production were also observed for control and irradiated spore-derived cultures developing on both media, with maximum toxin production varying from 7 to 11 days of incubation. The most notable increases in ochratoxin A production occurred from cultures developing from spores having been irradiated with 10, 25, or 50 krad. Exposures to 400 or 600 krad resulted in complete inhibition of spore germination and, consequently, no ochratoxin production. Of the two substrates used, wheat and synthetic, the quantities of ochratoxin A produced were significantly lower in the synthetic media than on the natural substrate. Higher and more rapid toxin production occurred from spores having been irradiated with 10, 25, 50, and 100 krad than occurred from the non-irradiated control spores when grown on synthetic media. Cultures derived from spores having been exposed to 10, 25, 50, and 100 krad produced significantly higher levels of ochratoxin A after 8 days of incubation on natural substrate than did the controls. Analysis of variance revealed that substrate, length of incubation, as well as irradiation levels all affected the time required to produce maximum levels of ochratoxin A. PMID:938031

  11. How to improve the irradiation conditions for the International Fusion Materials Irradiation Facility

    NASA Astrophysics Data System (ADS)

    Daum, Eric

    2000-12-01

    The accelerator-based intense D-Li neutron source International Fusion Materials Irradiation Facility (IFMIF) provides very suitable irradiation conditions for fusion materials development with the attractive option of accelerated irradiations. Investigations show that a neutron moderator made of tungsten and placed in the IFMIF test cell can further improve the irradiation conditions. The moderator softens the IFMIF neutron spectrum by enhancing the fraction of low energy neutrons. For displacement damage, the ratio of point defects to cascades is more DEMO relevant and for tritium production in Li-based breeding ceramic materials it leads to a preferred production via the 6Li(n,t) 4He channel as it occurs in a DEMO breeding blanket.

  12. Image irradiance distribution in the 3MI wide field of view polarimeter

    NASA Astrophysics Data System (ADS)

    Gabrieli, Riccardo; Bartoli, Alessandro; Maiorano, Michele; Bruno, Umberto; Olivieri, Monica; Calamai, Luciano; Manolis, Ilias; Labate, Demetrio

    2015-09-01

    The Multi-Viewing, Multi-Channel, Multi-Polarisation Imager (3MI) is an imaging radiometer for the ESA/Eumetsat MeteOp-SG programme. Based on the heritage of the POLDER/PARASOL instrument, 3MI is designed to collect global observations of the top-of-atmosphere polarised bi-directional reflectance distribution function in 12 spectral bands, by observing the same target from multiple views using a pushbroom scanning concept. The demanding challenge of the 3MI optical design is represented by the polarisation and image irradiance fall-off (throughput uniformity) requirements. In a generic optical system, the image irradiance fall-off is a function of: target radiance distribution and polarisation, entrance pupil size and optical transmittance variations across the field of view (FOV), distortion and vignetting. In most applications these aspects can be considered as independent; however, when high image irradiance uniformity is required, they have to be considered as linked together. This is particularly true in case of a wide FOV polarimeter as 3MI is. In order to properly account for these aspects, an irradiance fall-off analytical model has been developed in the frame of 3MI Optics Pre-Development (OPD), whose aim is to mitigate any technological risks associated with the 3MI instrument development. It is shown how it is possible to control the image irradiance distribution acting on optical design parameters (e.g. distortion and entrance pupil size variation with FOV). Moreover, the impact of polarisation performances on irradiance fall-off is discussed.

  13. Measuring Broadband IR Irradiance in the Direct Solar Beam and Recent Development

    NASA Astrophysics Data System (ADS)

    Reda, I.; Andreas, A.; Dooraghi, M.; Habte, A.; Sengupta, M.; Kutchenreiter, M.

    2016-12-01

    Solar and atmospheric science radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to consensus Reference, which is maintained by Absolute Cavity Radiometers (ACRs). An ACR is an open cavity with no window, and developed to measure extended broadband spectrum of the terrestrial direct solar beam irradiance, extends beyond the ultraviolet and infrared bands; i.e. below 0.2 µm and above 50 µm, respectively. On the other hand, the pyranometers and pyrheliometers were developed to measure broadband shortwave irradiance from approximately 0.3 µm to 3 µm, while the present photovoltaic cells are limited to the spectral range of approximately 0.3 µm to 1 µm. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and calibrated with traceability to consensus Reference, yet they are calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster describes a method to measure the broadband longwave irradiance in the terrestrial direct solar beam from 3 µm to 50 µm, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The described method is used to measure the irradiance from sunrise to sunset; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 with an estimated uncertainty of 1.5 Wm-2, for a solar zenith angle range from 80° to 16°, respectively.

  14. A model to predict the risk of lethal nasopharyngeal necrosis after re-irradiation with intensity-modulated radiotherapy in nasopharyngeal carcinoma patients.

    PubMed

    Yu, Ya-Hui; Xia, Wei-Xiong; Shi, Jun-Li; Ma, Wen-Juan; Li, Yong; Ye, Yan-Fang; Liang, Hu; Ke, Liang-Ru; Lv, Xing; Yang, Jing; Xiang, Yan-Qun; Guo, Xiang

    2016-06-29

    For patients with nasopharyngeal carcinoma (NPC) who undergo re-irradiation with intensity-modulated radiotherapy (IMRT), lethal nasopharyngeal necrosis (LNN) is a severe late adverse event. The purpose of this study was to identify risk factors for LNN and develop a model to predict LNN after radical re-irradiation with IMRT in patients with recurrent NPC. Patients who underwent radical re-irradiation with IMRT for locally recurrent NPC between March 2001 and December 2011 and who had no evidence of distant metastasis were included in this study. Clinical characteristics, including recurrent carcinoma conditions and dosimetric features, were evaluated as candidate risk factors for LNN. Logistic regression analysis was used to identify independent risk factors and construct the predictive scoring model. Among 228 patients enrolled in this study, 204 were at risk of developing LNN based on risk analysis. Of the 204 patients treated, 31 (15.2%) developed LNN. Logistic regression analysis showed that female sex (P = 0.008), necrosis before re-irradiation (P = 0.008), accumulated total prescription dose to the gross tumor volume (GTV) ≥145.5 Gy (P = 0.043), and recurrent tumor volume ≥25.38 cm(3) (P = 0.009) were independent risk factors for LNN. A model to predict LNN was then constructed that included these four independent risk factors. A model that includes sex, necrosis before re-irradiation, accumulated total prescription dose to GTV, and recurrent tumor volume can effectively predict the risk of developing LNN in NPC patients who undergo radical re-irradiation with IMRT.

  15. Mortality, size of the gonads, and ultrastructure of primordial germ cell in chick embryos treated with gamma-irradiation or injected with donor cells.

    PubMed

    Maeda, T; Clark, M E; Etches, R J

    1998-06-01

    The effects of injection and/or gamma-irradiation prior to injection on mortality, size of the gonads, and ultrastructure of primordial germ cell (PGC) were examined after 5 d of incubation. The mortality of embryos injected with donor cells was significantly higher than that of control and irradiated embryos. All irradiated embryos were alive, although their development was delayed compared to those not exposed to irradiation. The size of the gonads of embryos injected with donor cells were similar to those of control embryos, however, the size of the gonads in irradiated embryos was significantly smaller than those of control embryos. The number of PGC in the gonads was significantly decreased by irradiation. There was no notable effect of irradiation or injection on the nuclei and cytoplasmic organelles in PGC.

  16. Radiation preservation and test marketing of fruits and vegetables

    NASA Astrophysics Data System (ADS)

    Zhicheng, Xu; Dong, Cai; Fuying, He; Deyao, Zhao

    1993-07-01

    To develop the technology for radiation preservation of fruits and vegetables, many varieties of fruits and vegetables had been researched. Results showed that the low dose irradiation is useful to preservation of fruits and vegetables. On the besis of research, 1900 tons garlic, 950 tons onion, 500 tons potatoes, 710 tons apples and 1000 kg litchi had been irradiated in commercial scale. The quality control standards of irradiated garlic, onion and potato had been established and used for commercial scale irradiation. In order to collect consumers in store response to irradiated foods, a special counter was set up for selling irradiated apples in Nan Jing Road (W), Shanghai. 634 sheets of consumer in-store respense investigation forms have been returned and analysed. These results showed that when consumer understands the benefit of irradiation preservation such as higher quality, greater safety, longer shelf-live, wide product availability, or good prices for value, consumer would willingly buy irradiated food.

  17. Development of a PET cyclotron based irradiation setup for proton radiobiology

    NASA Astrophysics Data System (ADS)

    Ghithan, Sharif; Crespo, Paulo; do Carmo, S. J. C.; Ferreira Marques, Rui; Fraga, F. A. F.; Simões, Hugo; Alves, Francisco; Rachinhas, P. J. B. M.

    2015-02-01

    An out-of-yoke irradiation setup using the proton beam from a cyclotron that ordinary produces radioisotopes for positron emission tomography (PET) has been developed, characterized, calibrated and validated. The current from a 20 μm thick aluminum transmission foil is readout by home-made transimpedance electronics, providing online dose information. The main monitoring variables, delivered in real-time, include beam current, integrated charge and dose rate. Hence the dose and integrated current delivered at a given instant to an experimental setup can be computer-controlled with a shutter. In this work, we report on experimental results and Geant4 simulations of a setup which exploits for the first time the 18 MeV proton beam from a PET cyclotron to irradiate a selected region of a target using the developed irradiation system. By using this system, we are able to deliver a homogeneous beam on targets with 18 mm diameter, allowing to achieve the controlled irradiation of cell cultures located in biological multi-well dishes of 16 mm diameter. We found that the magnetic field applied inside the cyclotron plays a major role for achieving the referred to homogeneity. The quasi-Gaussian curve obtained by scanning the magnet current and measuring the corresponding dose rate must be measured before any irradiation procedure, with the shutter closed. At the optimum magnet current, which corresponds to the center of the Gaussian, a homogenous dose is observed over the whole target area. Making use of a rotating disk with a slit of 0.5 mm at a radius of 150 mm, we could measure dose rates on target ranging from 500 mGy/s down to 5 mGy/s. For validating the developed irradiation setup, several Gafchromic® EBT2 films were exposed to different values of dose. The absolute dose in the irradiated films were assessed in the 2D film dosimetry system of the Department of Radiotherapy of Coimbra University Hospital Center with a precision better than 2%. In the future, we plan to irradiate small animals, cell cultures, or other materials or samples.

  18. Report on the Progress of Weld Development of Irradiated Materials at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Miller, Roger G.; Chen, Jian

    This report summarizes recent welding activities on irradiated alloys in the advanced welding facility at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory and the development of post-weld characterization capabilities and procedures that will be critical for assessing the ability of the advanced welding processes housed within the facility to make successful repairs on irradiated alloys. This facility and its capabilities were developed jointly by the U.S. Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program (and the Welding and Repair Technology Center), with additionalmore » support from Oak Ridge National Laboratory. The significant, on-going effort to weld irradiated alloys with high Helium concentrations and comprehensively analyze the results will eventually yield validated repair techniques and guidelines for use by the nuclear industry in extending the operational lifetimes of nuclear power plants.« less

  19. Verification of the new detection method for irradiated spices based on microbial survival by collaborative blind trial

    NASA Astrophysics Data System (ADS)

    Miyahara, M.; Furuta, M.; Takekawa, T.; Oda, S.; Koshikawa, T.; Akiba, T.; Mori, T.; Mimura, T.; Sawada, C.; Yamaguchi, T.; Nishioka, S.; Tada, M.

    2009-07-01

    An irradiation detection method using the difference of the radiation sensitivity of the heat-treated microorganisms was developed as one of the microbiological detection methods of the irradiated foods. This detection method is based on the difference of the viable cell count before and after heat treatment (70 °C and 10 min). The verification by collaborative blind trial of this method was done by nine inspecting agencies in Japan. The samples used for this trial were five kinds of spices consisting of non-irradiated, 5 kGy irradiated, and 7 kGy irradiated black pepper, allspice, oregano, sage, and paprika, respectively. As a result of this collaboration, a high percentage (80%) of the correct answers was obtained for irradiated black pepper and allspice. However, the method was less successful for irradiated oregano, sage, and paprika. It might be possible to use this detection method for preliminary screening of the irradiated foods but further work is necessary to confirm these findings.

  20. A reflection model for eclipsing binary stars

    NASA Technical Reports Server (NTRS)

    Wood, D. B.

    1973-01-01

    A highly accurate reflection model has been developed which emphasizes efficiency of computer calculation. It is assumed that the heating of the irradiated star must depend upon the following properties of the irradiating star: (1) effective temperature; (2) apparent area as seen from a point on the surface of the irradiated star; (3) limb darkening; and (4) zenith distance of the apparent centre as seen from a point on the surface of the irradiated star. The algorithm eliminates the need to integrate over the irradiating star while providing a highly accurate representation of the integrated bolometric flux, even for gravitationally distorted stars.

  1. Microstructural evolution of neutron irradiated 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric

    The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.

  2. Microstructural evolution of neutron irradiated 3C-SiC

    DOE PAGES

    Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric; ...

    2017-03-18

    The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.

  3. Image-guided total marrow and total lymphatic irradiation using helical tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheiss, Timothy E.; Wong, Jeffrey; Liu, An

    2007-03-15

    Purpose: To develop a treatment technique to spare normal tissue and allow dose escalation in total body irradiation (TBI). We have developed intensity-modulated radiotherapy techniques for the total marrow irradiation (TMI), total lymphatic irradiation, or total bone marrow plus lymphatic irradiation using helical tomotherapy. Methods and Materials: For TBI, we typically use 12 Gy in 10 fractions delivered at an extended source-to-surface distance (SSD). Using helical tomotherapy, it is possible to deliver equally effective doses to the bone marrow and lymphatics while sparing normal organs to a significant degree. In the TMI patients, whole body skeletal bone, including the ribsmore » and sternum, comprise the treatment target. In the total lymphatic irradiation, the target is expanded to include the spleen and major lymph node areas. Sanctuary sites for disease (brain and testes) are included when clinically indicated. Spared organs include the lungs, esophagus, parotid glands, eyes, oral cavity, liver, kidneys, stomach, small and large intestine, bladder, and ovaries. Results: With TBI, all normal organs received the TBI dose; with TMI, total lymphatic irradiation, and total bone marrow plus lymphatic irradiation, the visceral organs are spared. For the first 6 patients treated with TMI, the median dose to organs at risk averaged 51% lower than would be achieved with TBI. By putting greater weight on the avoidance of specific organs, greater sparing was possible. Conclusion: Sparing of normal tissues and dose escalation is possible using helical tomotherapy. Late effects such as radiation pneumonitis, veno-occlusive disease, cataracts, neurocognitive effects, and the development of second tumors should be diminished in severity and frequency according to the dose reduction realized for the organs at risk.« less

  4. Development of a MeV proton beam irradiation system.

    PubMed

    Park, Bum-Sik; Cho, Yong-Sub; Hong, In-Seok

    2008-02-01

    A proton beam irradiation system for the application of the MeV class proton beam, such as an implantation for a power semiconductor device and a smart-cut technology for a semiconductor production process, has been developed. This system consists of a negative ion source, an Einzel lens for a low energy beam transport, accelerating tubes, a gas stripper, a Cockroft-Walton high voltage power supply with 1 MV, a vacuum pumping system, and a high pressure insulating gas system. The negative hydrogen ion source is based on TRIUMF's design. Following the tandem accelerator, a pair of magnets is installed for raster scanning of the MeV proton beam to obtain a uniform irradiation pattern on the target. The system is 7 m long from the ion source to the target and is optimized for the proton beam irradiation. The details of the system development will be described.

  5. Characterization of Neutron Transmutation Doped (NTD) Ge for low temperature sensor development

    NASA Astrophysics Data System (ADS)

    Mathimalar, S.; Singh, V.; Dokania, N.; Nanal, V.; Pillay, R. G.; Pal, S.; Ramakrishnan, S.; Shrivastava, A.; Maheshwari, Priya; Pujari, P. K.; Ojha, S.; Kanjilal, D.; Jagadeesan, K. C.; Thakare, S. V.

    2015-02-01

    Development of NTD Ge sensors has been initiated for low temperature (mK) thermometry in The India-based TIN detector (TIN.TIN). NTD Ge sensors are prepared by thermal neutron irradiation of device grade Ge samples at Dhruva reactor, BARC, Mumbai. Detailed measurements have been carried out in irradiated samples for estimating the carrier concentration and fast neutron induced defects. The Positron Annihilation Lifetime Spectroscopy (PALS) measurements indicated monovacancy type defects for all irradiated samples, while Channeling studies employing RBS with 2 MeV alpha particles, revealed no significant defects in the samples exposed to fast neutron fluence of ∼ 4 ×1016 /cm2 . Both PALS and Channeling studies have shown that vacuum annealing at 600 °C for ∼ 2 h is sufficient to recover the damage in the irradiated samples, thereby making them suitable for the sensor development.

  6. Postharvest irradiation treatment for quarantine control of the invasive Lobesia botrana (Lepidoptera: Tortricidae)

    USDA-ARS?s Scientific Manuscript database

    The effects of irradiation on egg, larval, and pupal development in European grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae), were examined. Eggs, neonates, third instars, fifth instars, and early and late stage pupae were irradiated at target doses of 50, 100, 150, or 200 Gy or left untr...

  7. Schistosoma mansoni: interactive effects of irradiation and cryopreservation on parasite maturation and immunization of mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, E.R.; Dobinson, A.R.

    1984-06-01

    Mechanically transformed schistosomula of Schistosoma mansoni were irradiated with levels of 60Co irradiation between 2.5 and 54 krad, cryopreserved by the two-step addition of ethanediol and rapid cooling technique, and were injected intramuscularly into groups of mice which were perfused 40 days later. The schistosomula were either irradiated and then cryopreserved (IC) or cryopreserved and then irradiated in the frozen state (CI). Development into adult worms was prevented with 4 krad for IC schistosomula, but for CI schistosomula a small number of worms (1.6%) was recovered using 8.8 krad. A dose of 4 krad was sufficient to prevent development ofmore » unfrozen controls (I), but for schistosomula irradiated while exposed to ethanediol (EI), a dose of 7 krad was required. Using the different protocols, the peak levels of protection against a challenge infection were achieved with 9 (IC) and 16 krad (CI), compared to 20 krad for unfrozen schistosomula (I) reported previously. The highest level of protection (65%) was achieved with CI schistosomula. Possible interactions between the radioprotective and damaging effects of cryopreservation are discussed.« less

  8. Chloroplast Growth and Replication in Germinating Spinach Cotyledons following Massive γ-Irradiation of the Seed

    PubMed Central

    Rose, Ray; Possingham, John

    1976-01-01

    Spinach seeds (Spinacia oleracea L.) given massive doses of γ-irradiation (500 krad) germinate and form a seedling with two green cotyledons and a radicle, but develop no further. Irradiated cotyledons show no increase in cell number or total DNA over a 7-day period in the light, while in control cotyledons there is a small increase in cell number and large increases in total DNA and chloroplast number. The chloroplasts of irradiated cotyledons are delayed in their division, become greatly enlarged and contain large amounts of starch. The whole population of chloroplasts subsequently undergoes a wave of division. The daughter chloroplasts show normal thylakoid development, but have some abnormal structural features caused by the radiation stress. Information on the effect of X-irradiation, ultraviolet irradiation, and 5-fluorodeoxyuridine on chloroplast replication and on chloroplast and nuclear DNA synthesis was obtained from cultured spinach leaf discs. It appears that chloroplast replication is more resistant to ionizing radiation than cell division and can proceed in the absence of nuclear DNA synthesis and greatly reduced chloroplast DNA synthesis. Images PMID:16659421

  9. The irradiation-induced microstructural development and the role of γ' on void formation in Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Kato, Takahiko; Nakata, Kiyotomo; Masaoka, Isao; Takahashi, Heishichiro; Takeyama, Taro; Ohnuki, Soumei; Osanai, Hisashi

    1984-05-01

    The microstructural development for Inconel X-750, N1-13 at%A1, and Ni-11.5 at%Si alloys during irradiation was investigated. These alloys were previously heat-treated at temperatures of 723-1073 K, and γ' precipitates were produced. Irradiation was performed in a high voltage electron microscope (1000 kV) in the temperature range 673-823 K. In the case of solution-treated Inconel, interstitial dislocation loops were formed initially, while voids were nucleated after longer times. When the Inconel specimen containing a high number density of small γ' was irradiated, dislocation loops were formed in both the matrix and precipitate-matrix interface. The loops formed on the interface scarcely grew during irradiation. On the other hand, for the Ni-Al alloy fine γ' nucleated during irradiation, the large γ' precipitated by pre-aging, dissolved. A similar resolution process was also observed in Ni-Si alloy. Furthermore, in the Ni-Si alloy precipitates of γ' formed preferentially at interstitial dislocation loops and both specimen surfaces.

  10. PIE on Safety-Tested AGR-1 Compact 5-1-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Morris, Robert Noel; Baldwin, Charles A.

    Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High-Temperature Gas-cooled Reactors (HTGRs). AGR-1 was the first in a series of TRISO fuel irradiation experiments initiated in 2006 under the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program; this work continues to be funded by the Department of Energy's Office of Nuclear Energy as part of the Advanced Reactor Technologies (ART) initiative. AGR-1 fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 and irradiated for three years in the Idaho National Laboratory (INL) Advanced Test Reactormore » (ATR) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. PIE is being performed at INL and ORNL to study how the fuel behaved during irradiation, and to examine fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing of irradiated AGR-1 Compact 5-1-1 in the ORNL Core Conduction Cooldown Test Facility (CCCTF) and post-safety testing PIE.« less

  11. Effect of Irradiation and Test System on Development of Tetanus Antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benenson, A. S.; Shively, J. N.; Vivona, S.

    1963-03-01

    Whole-body irradiation of dogs immunized with an alum precipitated tetanus toxoid results in a delay in appearance of antitoxin of the first toxoid us administered after radiation. Dogs irradiated 30 days after a first dose of toxoid and receiving a booster injection 24 hours after irradiation presented a good antitoxin response when measured by the hemagglutination test. However, a poor antibody response was found if the antitoxin was measured by the toxin neutralization techniques.

  12. Report on FY16 Low-dose Metal Fuel Irradiation and PIE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmondson, Philip D.

    2016-09-01

    This report gives an overview of the efforts into the low-dose metal fuel irradiation and PIE as part of the Fuel Cycle Research & Development (FCRD) Advanced Fuels Campaign (AFC) milestone M3FT-16OR020303031. The current status of the FCT and FCRP irradiation campaigns are given including a description of the materials that have been irradiated, analysis of the passive temperature monitors, and the initial PIE efforts of the fuel samples.

  13. Ion irradiation testing and characterization of FeCrAl candidate alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderoglu, Osman; Aydogan, Eda; Maloy, Stuart Andrew

    2014-10-29

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels. This effort involves development of fuel cladding materials that will be resistant to oxidizing environments for extended period of time such as loss of coolant accident. Ferritic FeCrAl alloys are among the promising candidates due to formation of a stable Al₂O₃ oxide scale. In addition to being oxidation resistant, these promising alloys need to be radiation tolerant under LWR conditions (maximum dose of 10-15 dpa at 250 – 350°C). Thus, in addition to a number of commerciallymore » available alloys, nuclear grade FeCrAl alloys developed at ORNL were tested using high energy proton irradiations and subsequent characterization of irradiation hardening and damage microstructure. This report summarizes ion irradiation testing and characterization of three nuclear grade FeCrAl cladding materials developed at ORNL and four commercially available Kanthal series FeCrAl alloys in FY14 toward satisfying FCRD campaign goals.« less

  14. A hybrid system for solar irradiance specification

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Bouwer, S.

    2006-12-01

    Space environment research and space weather operations require solar irradiances in a variety of time scales and spectral formats. We describe the development of solar irradiance characterization using four models and systems that are also used for space weather operations. The four models/systems include SOLAR2000 (S2K), SOLARFLARE (SFLR), APEX, and IDAR, which are used by Space Environment Technologies (SET) to provide solar irradiances from the soft X-rays through the visible spectrum. SFLR uses the GOES 0.1 0.8 nm X-rays in combination with a Mewe model subroutine to provide 0.1 30.0 nm irradiances at 0.1 nm spectral resolution, at 1 minute time resolution, and in a 6-hour XUV EUV spectral solar flare evolution forecast with a 7 minute latency and a 2 minute cadence. These irradiances have been calibrated with the SORCE XPS observations and we report on the inclusion of these irradiances into the S2K model. The APEX system is a real-time data retrieval system developed in conjunction with the University of Southern California Space Sciences Center (SSC) to provide SOHO SEM data processing and distribution. SSC provides the updated SEM data to the research community and SET provides the operational data to the space operations community. We describe how the SOHO SEM data, and especially the new S10.7 index, is being integrated directly into the S2K model for space weather operations. The IDAR system has been developed by SET to extract coronal hole boundaries, streamers, coronal loops, active regions, plage, network, and background (internetwork) features from solar images for comparison with solar magnetic features. S2K, SFLR, APEX, and IDAR outputs are integrated through the S2K solar irradiance platform that has become a hybrid system, i.e., a system that is able to produce irradiances using different processes, including empirical and physics-based models combined with real-time data integration.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledney, G.D.; Madonna, G.S.; Elliott, T.B.

    When host antimicrobial defenses are severely compromised by radiation or trauma in conjunction with radiation, death from sepsis results. To evaluate therapies for sepsis in radiation casualties, the authors developed models of acquired and induced bacterial infections in irradiated and irradiated-wounded mice. Animals were exposed to either a mixed radiation field of equal proportions of neutrons and gamma rays (n/gamma = 1) from a TRIGA reactor or pure gamma rays from 60 (Co sources). Skin wounds (15% of total body surface area) were inflicted under methoxyflurane anesthesia 1 h after irradiation. In all mice, wounding after irradiation decreased resistance tomore » infection. Treatments with the immunomodulator synthetic trehalose dicorynomycolate (S-TDCM) before or after mixed neutron-gamma irradiation or gamma irradiation increased survival. Therapy with S-TDCM for mice irradiated with either a mixed field or gamma rays increased resistance to Klebsiella pneumoniae-induced infections.« less

  16. Forecast Method of Solar Irradiance with Just-In-Time Modeling

    NASA Astrophysics Data System (ADS)

    Suzuki, Takanobu; Goto, Yusuke; Terazono, Takahiro; Wakao, Shinji; Oozeki, Takashi

    PV power output mainly depends on the solar irradiance which is affected by various meteorological factors. So, it is required to predict solar irradiance in the future for the efficient operation of PV systems. In this paper, we develop a novel approach for solar irradiance forecast, in which we introduce to combine the black-box model (JIT Modeling) with the physical model (GPV data). We investigate the predictive accuracy of solar irradiance over wide controlled-area of each electric power company by utilizing the measured data on the 44 observation points throughout Japan offered by JMA and the 64 points around Kanto by NEDO. Finally, we propose the application forecast method of solar irradiance to the point which is difficulty in compiling the database. And we consider the influence of different GPV default time on solar irradiance prediction.

  17. Development of new techniques of using irradiation in the genetic improvement of warm season grasses and an assessment of the genetic and cytogenetic effects. Progress report, November 1, 1977--October 31, 1978. [Pearl millet, Bermuda-grass, and coastcross

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanna, W.W.; Burton, G.W.

    1978-05-01

    Progress is reported on plant breeding programs for the genetic improvement of warm season grasses using irradiation as a tool. Data are included from studies on alteration of the protein quantity and quality in pearl millet grain by irradiation and mutation breeding; the effects of nitrogen and genotype on pearl millet grain; the effects of seed size on quality in pearl millet; irradiation breeding of sterile triploid turf Bermuda grasses; irradiation breeding of sterile coastcross-1, a forage grass, to increase winter hardiness; use of irradiation to induce resistance to rust disease; and an economic assessment of irradiation-induced mutants for plantmore » breeding programs.« less

  18. Cost effective alternative to low irradiance measurements

    NASA Technical Reports Server (NTRS)

    Oleary, Scott T.

    1988-01-01

    Martin Marietta's Space Simulation Laboratory (SSL) has a Thermal Environment Simulator (TES) with 56 individually controlled heater zones. The TES has a temperature range of approximately minus 129 C to plus 149 C. Because of the ability of TES to provide complex irradiance distributions, it is necessary to be able to measure a wide range of irradiance levels. SSL currently uses ambient temperature controlled radiometers with the capacity to measure sink irradiance levels of approximately 42.6 mw/sq cm, sink temperature equals 21 C and up. These radiometers could not be used to accurately measure the lower irradiance levels of the TES. Therefore, it was necessary to obtain a radiometer or develop techniques which could be used to measure lower irradiance levels.

  19. Combined Effects of Temperature and Irradiation on Concrete Damage

    DOE PAGES

    Le Pape, Yann; Giorla, Alain; Sanahuja, Julien

    2016-01-01

    Aggregate radiation-induced volumetric expansion (RIVE) is a predominant mechanism in the formation of mechanical damage in the hardened cement paste (hcp) of irradiated concrete under fast-neutron flux (Giorla et al. 2015). Among the operating conditions difference between test reactors and light water reactors (LWRs), the difference of irradiation flux and temperature is significant. While a temperature increase is quite generally associated with a direct, or indirect (e.g., by dehydration) loss of mechanical properties (Maruyama et al. 2014), we found that it causes a partial annealing of irradiation amorphization of α-quartz, hence, reducing RIVE rate. Based on data collected by Bykovmore » et al. (1981), an incremental RIVE model coupling neutron fluence and temperature is developed. The elastic properties and coefficient of thermal expansion (CTE) of irradiated polycrystalline quartz are interpreted through analytical homogenization of experimental data on irradiated α-quartz published by Mayer and Lecomte (1960). Moreover, the proposed model, implemented in the meso-scale simulation code AMIE, is compared to experimental data obtained on ordinary concrete made of quartz/quartzite aggregate (Dubrovskii et al. 1967). Substantial discrepancy, in terms of damage and volumetric expansion developments, is found when comparing irradiation scenarios assuming constant flux and temperature, as opposed to more realistic test reactor operation conditions.« less

  20. Simulated Fission Gas Behavior in Silicide Fuel at LWR Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin; Mo, Kun; Yacout, Abdellatif

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U 3Si 2) at LWR conditions needs to be well-understood. However, existing experimental post-irradiation examination (PIE) data are limited to the research reactor conditions, which involve lower fuel temperature compared to LWR conditions. This lack of appropriate experimental data significantly affects the development of fuel performance codes that can precisely predict the microstructure evolution and property degradation at LWR conditions, and therefore evaluate the qualification of U 3Si 2 as an AFT for LWRs. Considering the high cost,more » long timescale, and restrictive access of the in-pile irradiation experiments, this study aims to utilize ion irradiation to simulate the inpile behavior of the U 3Si 2 fuel. Both in situ TEM ion irradiation and ex situ high-energy ATLAS ion irradiation experiments were employed to simulate different types of microstructure modifications in U 3Si 2. Multiple PIE techniques were used or will be used to quantitatively analyze the microstructure evolution induced by ion irradiation so as to provide valuable reference for the development of fuel performance code prior to the availability of the in-pile irradiation data.« less

  1. Concurrent in situ ion irradiation transmission electron microscope

    DOE PAGES

    Hattar, K.; Bufford, D. C.; Buller, D. L.

    2014-08-29

    An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.

  2. Laboratory simulation of irradiation-induced dielectric breakdown in spacecraft charging

    NASA Technical Reports Server (NTRS)

    Yadlowsky, E. J.; Churchill, R. J.; Hazelton, R. C.

    1980-01-01

    The discharging of dielectric samples irradiated by a beam of monoenergetic electrons is investigated. The development of a model, or models, which describe the discharge phenomena occuring on the irradiated dielectric targets is discussed. The electrical discharge characteristics of irradiated dielectric samples are discussed and the electrical discharge paths along dielectric surfaces and within the dielectric material are determined. The origin and destination of the surface emitted particles is examined and the charge and energy balance in the system is evaluated.

  3. Estimation of pedestrian level UV exposure under trees

    Treesearch

    Richard H. Grant; Gordon M. Heisler; Wei Gao

    2002-01-01

    Trees influence the amount of solar UV radiation that reaches pedestrians. A three-dimensional model was developed to predict the ultraviolet-B (UV-B) irradiance fields in open-tree canopies where the spacing between trees is equal to or greater than the width of individual tree crowns. The model predicted the relative irradiance (fraction of above-canopy irradiance)...

  4. Comparison between the Strength Levels of Baseline Nuclear-Grade Graphite and Graphite Irradiated in AGC-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Mark Christopher

    2015-07-01

    This report details the initial comparison of mechanical strength properties between the cylindrical nuclear-grade graphite specimens irradiated in the second Advanced Graphite Creep (AGC-2) experiment with the established baseline, or unirradiated, mechanical properties compiled in the Baseline Graphite Characterization program. The overall comparative analysis will describe the development of an appropriate test protocol for irradiated specimens, the execution of the mechanical tests on the AGC-2 sample population, and will further discuss the data in terms of developing an accurate irradiated property distribution in the limited amount of irradiated data by leveraging the considerably larger property datasets being captured in themore » Baseline Graphite Characterization program. Integrating information on the inherent variability in nuclear-grade graphite with more complete datasets is one of the goals of the VHTR Graphite Materials program. Between “sister” specimens, or specimens with the same geometry machined from the same sub-block of graphite from which the irradiated AGC specimens were extracted, and the Baseline datasets, a comprehensive body of data will exist that can provide both a direct and indirect indication of the full irradiated property distributions that can be expected of irradiated nuclear-grade graphite while in service in a VHTR system. While the most critical data will remain the actual irradiated property measurements, expansion of this data into accurate distributions based on the inherent variability in graphite properties will be a crucial step in qualifying graphite for nuclear use as a structural material in a VHTR environment.« less

  5. A comparative study on the effects of electron beam irradiation on imidacloprid-resistant and -susceptible Aphis gossypii (Hemiptera: Aphididae)

    NASA Astrophysics Data System (ADS)

    Yun, Seung-Hwan; Koo, Hyun-Na; Lee, Seon-Woo; Kim, Hyun Kyung; Kim, Yuri; Han, Bumsoo; Kim, Gil-Hah

    2015-07-01

    The melon and cotton aphid, Aphis gossypii, is a polyphagous insect pest. This study compared the development, reproduction, DNA damage, recovery, and gene expression in imidacloprid-resistant (IMI-R) and -susceptible (S) strains of A. gossypii by electron beam irradiation. When 1st instar nymphs were irradiated with 100 Gy, the fecundity (nymphs of F1 generation) of the resultant adults were completely inhibited. When adults were irradiated with 200 Gy, the number of total 1st instar nymphs produced per adult was 3.0±1.7 and 1.9±1.4 in the S and IMI-R strains, respectively, but adult development was completely suppressed. However, electron beam irradiation did not affect adult longevity in either the S or IMI-R strain. There was no statistically significant difference between the effect of irradiation on the S and IMI-R strains. Therefore, electron beam irradiation at 200 Gy could be used as a phytosanitary irradiation treatment for both S and IMI-R strains of A. gossypii. The DNA damage caused by electron beam irradiation was evaluated by an alkaline comet assay. Exposure to an electron beam (50 Gy) induced DNA damage that was repaired to a similar level as the untreated control group (0 Gy) over time. However, at more than 100 Gy, the DNA damage was not completely repaired. The expression of P450, HSP70, cuticle protein, and elongation factor genes were higher in the IMI-R strain than in the S strain.

  6. Melatonin and roentgen irradiation-induced acute radiation enteritis in Albino rats: an animal model.

    PubMed

    Hussein, Mahmoud R; Abu-Dief, Eman E; Kamel, Esam; Abou El-Ghait, Amal T; Abdulwahed, Saad Rezk; Ahmad, Mohamed H

    2008-11-01

    Roentgen irradiation can affect normal cells, especially the rapidly growing ones such as the mucosal epithelial cells of the small intestine. The small intestine is the most radiosensitive gastrointestinal organ and patients receiving radiotherapy directed to the abdomen or pelvis may develop radiation enteritis. Although roentgen rays are widely used for both imaging and therapeutic purposes, our knowledge about the morphological changes associated with radiation enteritis is lacking. This study tries to tests the hypothesis that "the intake of melatonin can minimize the morphological features of cell damage associated with radiation enteritis". We performed this investigation to test our hypothesis and to examine the possible radioprotective effects of melatonin in acute radiation enteritis. To achieve these goals, an animal model consisting of 60 Albino rats was established. The animals were divided into five groups: Group 1, non-irradiated; Group 2, X-ray irradiated (X-ray irradiation, 8 Grays); Group 3, X-ray irradiated-pretreated with solvent (ethanol and phosphate buffered saline); Group 4, non-irradiated-group treated with melatonin, and Group 5, X-ray irradiated-pretreated with melatonin. The small intestines were evaluated for gross (macroscopic), histological, morphometric (light microscopy), and ultrastructural changes (transmission electron microscopy). We found morphological variations among the non-irradiated-group, X-ray irradiated-group and X-ray irradiated-intestines of the animals pretreated with melatonin. The development of acute radiation enteritis in X-ray irradiated-group (Groups 2 and 3) was associated with symptoms of enteritis (diarrhea and abdominal distention) and histological features of mucosal injury (mucosal ulceration, necrosis of the epithelial cells). There was a significant reduction of the morphometric parameters (villous count, villous height, crypt height and villous/crypt height ratio). Moreover, the ultrastructural features of cell damage were evident including: apoptosis, lack of parallel arrangement of the microvilli, loss of the covering glycocalyx, desquamation of the microvilli, vacuolation of the apical parts of the cells, dilatation of the rough endoplasmic reticulum, and damage of the mitochondrial cristae. In the non-irradiated-group and in X-ray irradiated-intestines of the animals pretreated with melatonin (Group 5), these changes were absent and the intestinal mucosal structure was preserved. Administration of melatonin prior to irradiation can protect the intestine against X-rays destructive effects, i.e. radiation enteritis. The clinical applications of these observations await further studies.

  7. Ocular toxoplasmosis in immunosuppressed nonhuman primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, G.N.; O'Connor, G.R.; Diaz, R.F.

    1988-06-01

    To investigate the role of cellular immunodeficiency in recurrent toxoplasmic retinochoroiditis, six Cynomolgus monkeys (Macaca fascicularis) with healed toxoplasmic lesions of the retina were immunosuppressed by total lymphoid irradiation. Three months prior to irradiation 30,000 Toxoplasma gondii organisms of the Beverley strain had been inoculated onto the macula of eye in each monkey via a pars plana approach. Toxoplasmic retinochoroiditis developed in each animal, and lesions were allowed to heal without treatment. During total lymphoid irradiation animals received 2000 centigrays (cGy) over a 7-week period. Irradiation resulted in an immediate drop in total lymphocyte counts and decreased ability to stimulatemore » lymphocytes by phytohemagglutinin. Weekly ophthalmoscopic examinations following irradiation failed to show evidence of recurrent ocular disease despite persistent immunodeficiency. Four months after irradiation live organisms were reinoculated onto the nasal retina of the same eye in each animal. Retinochoroidal lesions identical to those seen in primary disease developed in five of six animals. Toxoplasma organisms therefore were able to proliferate in ocular tissue following the administration of immunosuppressive therapy. This study fails to support the hypothesis that cellular immunodeficiency alone will initiate recurrent toxoplasmic retinochoroiditis. Results suggest that reactivation of disease from encysted organisms involves factors other than suppression of Toxoplasma proliferation. If reactivation occurs by other mechanisms, however, cellular immunodeficiency then may allow development of extensive disease.« less

  8. Effects of gamma-irradiation on cotyledon cell separation and pectin solubilisation in hard-to-cook cowpeas.

    PubMed

    Jombo, Talknice Z; Minnaar, Amanda; Taylor, John Rn

    2018-03-01

    Cowpeas stored under high temperature and humidity develop the hard-to-cook defect (HTC). This defect greatly increases cooking times and energy costs. To better understand the mechanisms involved in the HTC defect development, the effects of gamma-irradiation on cotyledon cellular structure and pectin solubility in two cowpea cultivars with different susceptibility to HTC defect were investigated. Gamma-irradiation decreased cotyledon cell wall thickness, increased cell size, and intercellular spaces in both cowpea cultivars and reduced cooking time of the less HTC susceptible cultivar. However, it did not reverse the HTC defect in the susceptible cultivar. Gamma-irradiation also increased the levels of cold water- and hot water-soluble pectin. The irradiation effects were thus mainly due to hydrolysis of pectin fractions in the cell walls. However, chelator-soluble pectin (CSP) solubility was not affected. As the cell wall changes brought about by gamma-irradiation were associated with pectin solubilisation, this supports the phytate-phytase-pectin theory as a major cause of the HTC defect. However, the non-reversal of the defect in HTC susceptible cowpeas and the absence of an effect on CSP indicate that other mechanisms are involved in HTC defect development in cowpeas, possibly the formation of alkali-soluble, ester bonded pectins. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Measuring Broadband IR Irradiance in the Direct Solar Beam (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, I.; Konings, J.; Xie, Y.

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 micrometers and 50 micrometers, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 micrometers to 3 micrcometers, while the present photovoltaic cells are limited to approximately 0.3 micrometers to 1 micrometers. The broadband mismatch of ACR versusmore » such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and calibrated with traceability to consensus reference, yet calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 micrometers to 50 micrometers, as first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degres to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.« less

  10. Use of LiDAR for calculating solar irradiance on roofs and façades of buildings at city scale: Methodology, validation, and analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Liang; Xu, Hao; Li, Shuyi; Chen, Yanming; Zhang, Fangli; Li, Manchun

    2018-04-01

    As the rate of urbanization continues to accelerate, the utilization of solar energy in buildings plays an increasingly important role in sustainable urban development. For this purpose, we propose a LiDAR-based joint approach for calculating the solar irradiance incident on roofs and façades of buildings at city scale, which includes a methodology for calculating solar irradiance, the validation of the proposed method, and analysis of its application. The calculation of surface irradiance on buildings may then inform photovoltaic power generation simulations, architectural design, and urban energy planning. Application analyses of the proposed method in the experiment area found that: (1) Global and direct irradiations vary significantly by hour, day, month and season, both following the same trends; however, diffuse irradiance essentially remains unchanged over time. (2) Roof irradiation, but not façade irradiation, displays distinct time-dependent patterns. (3) Global and direct irradiations on roofs are highly correlated with roof aspect and slope, with high global and direct irradiations observed on roofs of aspect 100-250° and slopes of 0-60°, whereas diffuse irradiation on roofs is only affected by roof slope. (4) The façade of a building receives higher levels of global and direct irradiations if facing southeast, south, and southwest; however, diffuse irradiation remains constant regardless of façade orientation.

  11. Spectral irradiance measurement and actinic radiometer calibration for UV water disinfection

    NASA Astrophysics Data System (ADS)

    Sperfeld, Peter; Barton, Bettina; Pape, Sven; Towara, Anna-Lena; Eggers, Jutta; Hopfenmüller, Gabriel

    2014-12-01

    In a joint project, sglux and PTB investigated and developed methods and equipment to measure the spectral and weighted irradiance of high-efficiency UV-C emitters used in water disinfection plants. A calibration facility was set up to calibrate the microbicidal irradiance responsivity of actinic radiometers with respect to the weighted spectral irradiance of specially selected low-pressure mercury and medium-pressure mercury UV lamps. To verify the calibration method and to perform on-site tests, spectral measurements were carried out directly at water disinfection plants in operation. The weighted microbicidal irradiance of the plants was calculated and compared to the measurements of various actinic radiometers.

  12. Association of adult respiratory distress syndrome (ARDS) with thoracic irradiation (RT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byhardt, R.W.; Abrams, R.; Almagro, U.

    1988-12-01

    The authors report two cases of apparent adult respiratory distress syndrome (ARDS) following limited thoracic irradiation for lung cancer. Respiratory failure followed rapidly after irradiation with diffuse bilateral infiltrates, both in and out of the irradiated volume along with progressive hypoxemia unresponsive to oxygen management. Other potential causes of lung injury such as lymphangitic tumor, cardiac failure, and infections were excluded by both premortem and postmortem examination. Autopsy findings in both irradiated and unirradiated volumes of lung were consistent with hyaline membrane changes. The possible relationship between radiation therapy to limited lung volumes and the development of adult respiratory distressmore » syndrome is discussed.« less

  13. Proton irradiation of malignant melanoma of the ciliary body.

    PubMed Central

    Gragoudas, E S; Goitein, M; Koehler, A; Wagner, M S; Verhey, L; Tepper, J; Suit, H D; Schneider, R J; Johnson, K N

    1979-01-01

    This is our first case of malignant melanoma of the ciliary body treated with proton beam irradiation, a technique that we developed for irradiating choroidal melanomas. After 21 months of follow-up no growth of the tumour has been observed, and shrinkage of the tumour was noted on the follow-up photographs and by ultrasonography. The 32P uptake test, which was positive before treatment, turned negative 14 months after irradiation. The described technique of proton beam irradiation might offer an alternative for the treatment of ciliary body melanomas when the present techniques of iridocyclectomy cannot be applied because of the size of the lesion. Images PMID:106873

  14. Control of continuous irradiation injury on potatoes with daily temperature cycling

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Bennett, S. M.; Cao, W.

    1990-01-01

    Two controlled-environment experiments were conducted to determine the effects of temperature fluctuations under continuous irradiation on growth and tuberization of two potato (Solanum tuberosum L.) cultivars, Kennebec and Superior. These cultivars had exhibited chlorotic and stunted growth under continuous irradiation and constant temperatures. The plants were grown for 4 weeks in the first experiment and for 6 weeks in the second experiment. Each experiment was conducted under continuous irradiation of 400 micromoles per square meter per second of photosynthetic photon flux and included two temperature treatments: constant 18 degrees C and fluctuating 22 degrees C/14 degrees C on a 12-hour cycle. A common vapor pressure deficit of 0.62 kilopascal was maintained at all temperatures. Plants under constant 18 degrees C were stunted and had chlorotic and abscised leaves and essentially no tuber formation. Plants grown under the fluctuating temperature treatment developed normally, were developing tubers, and had a fivefold or greater total dry weight as compared with those under the constant temperature. These results suggest that a thermoperiod can allow normal plant growth and tuberization in potato cultivars that are unable to develop effectively under continuous irradiation.

  15. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature-and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS).The code was validatedmore » using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code. (c) 2018 Elsevier B.V. All rights reserved.« less

  16. Performance of the HIMAC beam control system using multiple-energy synchrotron operation

    NASA Astrophysics Data System (ADS)

    Mizushima, K.; Furukawa, T.; Iwata, Y.; Hara, Y.; Saotome, N.; Saraya, Y.; Tansho, R.; Sato, S.; Fujimoto, T.; Shirai, T.; Noda, K.

    2017-09-01

    Multiple-energy synchrotron operation was developed to realize fast 3D scanning irradiation for carbon-ion radiotherapy. This type of operation can output various carbon-ion beams with different energies in a single synchrotron cycle. The beam control system used in this kind of operation was developed to quickly provide the beam energy and intensity required from the irradiation control system. The performance of the system was verified by experimental tests. The system could output beams of 197 different energies in 63 s. The beam intensity could be controlled for all the output beams without large ripples or overshooting. The experimental test of irradiation for prostate cancer treatment was also successfully performed, and the test results proved that our system can greatly reduce the irradiation time.

  17. Microstructural stability of a self-ion irradiated lanthana-bearing nanostructured ferritic steel

    NASA Astrophysics Data System (ADS)

    Pasebani, Somayeh; Charit, Indrajit; Burns, Jatuporn; Alsagabi, Sultan; Butt, Darryl P.; Cole, James I.; Price, Lloyd M.; Shao, Lin

    2015-07-01

    Thermally stable nanofeatures with high number density are expected to impart excellent high temperature strength and irradiation stability in nanostructured ferritic steels (NFSs) which have potential applications in advanced nuclear reactors. A lanthana-bearing NFS (14LMT) developed via mechanical alloying and spark plasma sintering was used in this study. The sintered samples were irradiated by Fe2+ ions to 10, 50 and 100 dpa at 30 °C and 500 °C. Microstructural and mechanical characteristics of the irradiated samples were studied using different microscopy techniques and nanoindentation, respectively. Overall morphology and number density of the nanofeatures remained unchanged after irradiation. Average radius of nanofeatures in the irradiated sample (100 dpa at 500 °C) was slightly reduced. A notable level of irradiation hardening and enhanced dislocation activity occurred after ion irradiation except at 30 °C and ⩾50 dpa. Other microstructural features like grain boundaries and high density of dislocations also provided defect sinks to assist in defect removal.

  18. Multiple ion beam irradiation for the study of radiation damage in materials

    NASA Astrophysics Data System (ADS)

    Taller, Stephen; Woodley, David; Getto, Elizabeth; Monterrosa, Anthony M.; Jiao, Zhijie; Toader, Ovidiu; Naab, Fabian; Kubley, Thomas; Dwaraknath, Shyam; Was, Gary S.

    2017-12-01

    The effects of transmutation produced helium and hydrogen must be included in ion irradiation experiments to emulate the microstructure of reactor irradiated materials. Descriptions of the criteria and systems necessary for multiple ion beam irradiation are presented and validated experimentally. A calculation methodology was developed to quantify the spatial distribution, implantation depth and amount of energy-degraded and implanted light ions when using a thin foil rotating energy degrader during multi-ion beam irradiation. A dual ion implantation using 1.34 MeV Fe+ ions and energy-degraded D+ ions was conducted on single crystal silicon to benchmark the dosimetry used for multi-ion beam irradiations. Secondary Ion Mass Spectroscopy (SIMS) analysis showed good agreement with calculations of the peak implantation depth and the total amount of iron and deuterium implanted. The results establish the capability to quantify the ion fluence from both heavy ion beams and energy-degraded light ion beams for the purpose of using multi-ion beam irradiations to emulate reactor irradiated microstructures.

  19. 14 MeV Neutron Irradiation Effect on Superconducting Magnet Materials for Fusion Device

    NASA Astrophysics Data System (ADS)

    Nishimura, A.; Hishinuma, Y.; Seo, K.; Tanaka, T.; Muroga, T.; Nishijima, S.; Katagiri, K.; Takeuchi, T.; Shindo, Y.; Ochiai, K.; Nishitani, T.; Okuno, K.

    2006-03-01

    As a large-scale plasma experimental device is planned and designed, the importance of investigations on irradiation effect of 14 MeV neutron increases and an experimental database is desired to be piled up. Recently, intense streaming of fast neutron from ports are reported and degradation of superconducting magnet performance is anticipated. To investigate the pure neutron effect on superconducting magnet materials, a cryogenic target system was newly developed and installed at Fusion Neutronics Source in Japan Atomic Energy Research Institute. Although production rate of 14 MeV neutron is not large, only 14 MeV neutron can be supplied to irradiation test without gamma ray. Copper wires, superconducting wires, glass fiber reinforced composites are irradiated and the irradiation effects are characterized. At the same time, sensors for measuring temperature and magnetic field are irradiated and their performance was investigated after irradiation. This paper presents outline of the cryogenic target system and some irradiation test results.

  20. Effects of Irradiation on the Microstructure of U-7Mo Dispersion Fuel with Al-2Si Matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Adam B. Robinson

    2012-06-01

    The Reduced Enrichment for Research and Test Reactor program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt% Si added to the matrix, fuel plates were tested to medium burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fissionmore » rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, high fission rate) was performed in the RERTR-9A, RERTR-9B and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth of the fuel/matrix interaction layer (FMI), which was present in the samples to some degree after fabrication, during irradiation; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation more Si diffuses from the matrix to the FMI layer/matrix interface, and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.« less

  1. WE-EF-BRA-10: Prophylactic Cranial Irradiation Reduces the Incidence of Brain Metastasis in a Mouse Model of Metastatic Breast Cancerr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D; Debeb, B; Larson, R

    Purpose: Prophylactic cranial irradiation (PCI) is a clinical technique used to reduce the incidence of brain metastasis and improve overall survival in select patients with acute lymphoblastic leukemia and small-cell lung cancer. We examined whether PCI could benefit breast cancer patients at high risk of developing brain metastases. Methods: We utilized our mouse model in which 500k green fluorescent protein (GFP)-labeled breast cancer cells injected into the tail vein of SCID/Beige mice resulted in brain metastases in approximately two-thirds of untreated mice. To test the efficacy of PCI, one set of mice was irradiated five days after cell injection withmore » a single fraction of 4-Gy (two 2-Gy opposing fields) whole-brain irradiation on the XRAD 225Cx small-animal irradiator. Four controls were included: a non-irradiated group, a group irradiated two days prior to cell injection, and two groups irradiated 3 or 6 weeks after cell injection. Mice were sacrificed four and eight weeks post-injection and were evaluated for the presence of brain metastases on a fluorescent stereomicroscope. Results: The incidence of brain metastasis in the non-irradiated group was 77% and 90% at four and eight weeks, respectively. The PCI group had a significantly lower incidence, 20% and 30%, whereas the other three control groups had incidence rates similar to the non-treated control (70% to 100%). Further, the number of metastases and the metastatic burden were also significantly lower in the PCI group compared to all other groups. Conclusion: The timing of irradiation to treat subclinical disease is critical, as a small dose of whole-brain irradiation given five days after cell injection abrogated tumor burden by greater than 90%, but had no effect when administered twenty-one days after cell injection. PCI is likely to benefit breast cancer patients at high risk of developing brain metastases and should be strongly considered in the clinic.« less

  2. Irradiation treatment of minimally processed carrots for ensuring microbiological safety

    NASA Astrophysics Data System (ADS)

    Ashraf Chaudry, Muhammad; Bibi, Nizakat; Khan, Misal; Khan, Maazullah; Badshah, Amal; Jamil Qureshi, Muhammad

    2004-09-01

    Minimally processed fruits and vegetables are very common in developed countries and are gaining popularity in developing countries due to their convenience and freshness. However, minimally processing may result in undesirable changes in colour, taste and appearance due to the transfer of microbes from skin to the flesh. Irradiation is a well-known technology for elimination of microbial contamination. Food irradiation has been approved by 50 countries and is being applied commercially in USA. The purpose of this study was to evaluate the effect of irradiation on the quality of minimally processed carrots. Fresh carrots were peeled, sliced and PE packaged. The samples were irradiated (0, 0.5, 1.0, 2.0, 2.5, 3.0 kGy) and stored at 5°C for 2 weeks. The samples were analyzed for hardness, organoleptic acceptance and microbial load at 0, 7th and 15th day. The mean firmness of the control and all irradiated samples remained between 4.31 and 4.42 kg of force, showing no adverse effect of radiation dose. The effect of storage (2 weeks) was significant ( P< 0.05) with values ranging between 4.28 and 4.39 kg of force. The total bacterial counts at 5°C for non-irradiated and 0.5 kGy irradiated samples were 6.3×10 5 cfu/g, 3.0×10 2 and few colonies(>10) in all other irradiated samples(1.0, 2.0, 2.5 and 3.0 kGy) after 2 weeks storage. No coliform or E. coli were detected in any of the samples (radiated or control) immediately after irradiation and during the entire storage period in minimally processed carrots. A dose of 2.0 kGy completely controlled the fungal and bacterial counts. The irradiated samples (2.0 kGy) were also acceptable sensorially.

  3. [Ultrahigh dose-rate, "flash" irradiation minimizes the side-effects of radiotherapy].

    PubMed

    Favaudon, V; Fouillade, C; Vozenin, M-C

    2015-10-01

    Pencil beam scanning and filter free techniques may involve dose-rates considerably higher than those used in conventional external-beam radiotherapy. Our purpose was to investigate normal tissue and tumour responses in vivo to short pulses of radiation. C57BL/6J mice were exposed to bilateral thorax irradiation using pulsed (at least 40 Gy/s, flash) or conventional dose-rate irradiation (0.03 Gy/s or less) in single dose. Immunohistochemical and histological methods were used to compare early radio-induced apoptosis and the development of lung fibrosis in the two situations. The response of two human (HBCx-12A, HEp-2) tumour xenografts in nude mice and one syngeneic, orthotopic lung carcinoma in C57BL/6J mice (TC-1 Luc+), was monitored in both radiation modes. A 17 Gy conventional irradiation induced pulmonary fibrosis and activation of the TGF-beta cascade in 100% of the animals 24-36 weeks post-treatment, as expected, whereas no animal developed complications below 23 Gy flash irradiation, and a 30 Gy flash irradiation was required to induce the same extent of fibrosis as 17 Gy conventional irradiation. Cutaneous lesions were also reduced in severity. Flash irradiation protected vascular and bronchial smooth muscle cells as well as epithelial cells of bronchi against acute apoptosis as shown by analysis of caspase-3 activation and TUNEL staining. In contrast, the antitumour effectiveness of flash irradiation was maintained and not different from that of conventional irradiation. Flash irradiation shifted by a large factor the threshold dose required to initiate lung fibrosis without loss of the antitumour efficiency, suggesting that the method might be used to advantage to minimize the complications of radiotherapy. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  4. Benign and malignant thyroid neoplasms after childhood irradiation for Tinea capitis. [X-ray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ron, E.; Modan, B.

    1980-07-01

    The incidence of all thyroid surgery was studied among 10,842 persons whose thyroid glands had been exposed in childhood to an average dose of 9 rads of x-radiation during treatment for tinea capitis and among 2 matched control groups. A statistically significant increased risk for both benign and malignant neoplasms was found in the exposed group. The excess risk was 8.3 cases/year/rad/million population. There were no differences in other surgical conditions between the irradiated and nonirradiated groups. Persons irradiated under age 6 years had the highest excess risk for developing carcinomas. The incidence of thyroid neoplasms was approximately threefold highermore » in women than in men among the irradiated persons and among the controls, but the relative risk for the irradiated group of women was greater than the addition of the relative risks of the other groups. Low-dose radiation is instrumental in the development of both benign and malignant thyroid neoplasms.« less

  5. Thyroid and associated polyglandular neoplasms in patients who received head and neck irradiation during childhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, A.D.

    One hundred fifty-one patients with a history of childhood irradiation to the head, neck, and thorax had neck explorations (142 for cold thyroid nodules and 9 for hypercalcemia). Fifty-nine of the patients had thyroid carcinoma, and associated glandular tumors were found in 20 others. In addition, 6 female patients developed breast carcinoma; 4 of these women also had thyroid carcinoma. In this series, 48.6% of the patients irradiated for acne and 36.4% with tonsil and adenoid irradiation developed thyroid carcinoma, but only 10.5% with thymic irradiation did so. It is suggested that the workup on these patients include not onlymore » complete thyroid and parathyroid testing, but also a careful examination of all salivary glands, both major and minor. Women should have thorough breast examinations and should perhaps be followed as if they were in the potentially high-risk breast group. When thyroid surgery is performed, a total thyroidectomy is recommended.« less

  6. Assessment of the effect of wave device application on morphological changes in organs and cells of irradiated animals.

    PubMed

    Bebeshko, V; Homolyako, I; Grynchyshyn, V

    2017-12-01

    To study the effect of the Device for wave influence on biological objects on the prevention of the development of acute radiation sickness and chronic radiation syndrome in vivo. The studies were performed on white rats irradiated at a dose of 8 Gy. The experimental group of irradiated rats was treated with a wave Device (Patent of Ukraine No. 53568) once, for 2.5 min, 1.5 h after irradiation. Their organs were processed by standard histologic methods. In the demagnetized rats, dystrophic changes in cells and tissues of liver, lungs, kidneys, brain, bone marrow and spleen were insignificant in 60 days compared to the control non-demagnetized group of animals. The Device reduced the magnetic charge of magneto-containing elements and their compounds in the organism of the irradiated animals, and decreased the formation of reactive oxygen species, which play a key role in the development of radiation-induced diseases.

  7. Traveling reference spectroradiometer for routine quality assurance of spectral solar ultraviolet irradiance measurements.

    PubMed

    Gröbner, Julian; Schreder, Josef; Kazadzis, Stelios; Bais, Alkiviadis F; Blumthaler, Mario; Görts, Peter; Tax, Rick; Koskela, Tapani; Seckmeyer, Gunther; Webb, Ann R; Rembges, Diana

    2005-09-01

    A transportable reference spectroradiometer for measuring spectral solar ultraviolet irradiance has been developed and validated. The expanded uncertainty of solar irradiance measurements with this reference spectroradiometer, based on the described methodology, is 8.8% to 4.6%, depending on the wavelength and the solar zenith angle. The accuracy of the spectroradiometer was validated by repeated site visits to two European UV monitoring sites as well as by regular comparisons with the reference spectroradiometer of the European Reference Centre for UV radiation measurements in Ispra, Italy. The spectral solar irradiance measurements of the Quality Assurance of Spectral Ultraviolet Measurements in Europe through the Development of a Transportable Unit (QASUME) spectroradiometer and these three spectroradiometers have agreed to better than 6% during the ten intercomparison campaigns held from 2002 to 2004. If the differences in irradiance scales of as much as 2% are taken into account, the agreement is of the order of 4% over the wavelength range of 300-400 nm.

  8. Various approaches in EPR identification of gamma-irradiated plant foodstuffs: A review.

    PubMed

    Aleksieva, Katerina I; Yordanov, Nicola D

    2018-03-01

    Irradiation of food in the world is becoming a preferred method for their sterilization and extending their shelf life. For the purpose of trade with regard to the rights of consumers is necessary marking of irradiated foodstuffs, and the use of appropriate methods for unambiguous identification of radiation treatment. One-third of the current standards of the European Union to identify irradiated foods use the method of the Electron Paramagnetic Resonance (EPR) spectroscopy. On the other hand the current standards for irradiated foods of plant origin have some weaknesses that led to the development of new methodologies for the identification of irradiated food. New approaches for EPR identification of radiation treatment of herbs and spices when the specific signal is absent or disappeared after irradiation are discussed. Direct EPR measurements of dried fruits and vegetables and different pretreatments for fresh samples are reviewed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [The commonest therapeutic methods for laser irradiation of blood].

    PubMed

    Moskvin, S V; Konchugova, T V; Khadartsev, A А

    2017-12-05

    One of the most widely employed methods of laser therapy is laser irradiation of blood (LIB). There are two modifications of this technique, one being intravenous low-intensity laser irradiation of blood (ILIB), the other non-invasive blood irradiation(NLIB). The two methods have been developing independently since either has its advantages and disadvantages. The present article was designed to review the main currently available techniques for laser irradiation of blood which are presented in the form of tables (charts). Replacing the UV irradiation of blood with UV lamps by laser ultraviolet irradiation of blood (LUVIB®) has made it possible to significantly simplify the technique and enhanced its efficiency. The most effective options for ILIB are the combined techniques: ILIB-635 + LUVIB® and ILIB-525 + LUVIB. The most effective technique for ELIB is believed to be the use of low-intensity pulsed laser light with a wavelength of 635 nm and output power up to 40 W.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasebani, Somayeh; Charit, Indrajit; Burns, Jatuporn

    Thermally stable nanofeatures with high number density are expected to impart excellent high temperature strength and irradiation stability in nanostructured ferritic steels (NFSs) which have potential applications in advanced nuclear reactors. A lanthana-bearing NFS (14LMT) developed via mechanical alloying and spark plasma sintering was used in this study. The sintered samples were irradiated by Fe 2+ ions to 10, 50 and 100 dpa at 30 °C and 500 °C. Microstructural and mechanical characteristics of the irradiated samples were studied using different microscopy techniques and nanoindentation, respectively. Overall morphology and number density of the nanofeatures remained unchanged after irradiation. Average radiusmore » of nanofeatures in the irradiated sample (100 dpa at 500 °C) was slightly reduced. A notable level of irradiation hardening and enhanced dislocation activity occurred after ion irradiation except at 30 °C and ≥50 dpa. Other microstructural features like grain boundaries and high density of dislocations also provided defect sinks to assist in defect removal.« less

  11. Fatigue behavior of type 316 stainless steel following neutron irradiation inducing helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossbeck, M.L.; Liu, K.C.

    1980-01-01

    Since a tokamak fusion reactor operates in a cyclic mode, thermal stresses will result in fatigue in structural components, especially the first wall and blanket. Type 316 stainless steel in the 20% cold-worked condition has been irradiated in the HFIR in order to introduce helium as well as displacement damage. A miniature hourglass specimen was developed for the reactor irradiations and subsequent fully reversed low cycle fatigue testing. For material irradiated and tested at 430/sup 0/C in vacuum to a damage level of 7 to 15 dpa and containing 200 to 1000 appm He, a reduction in life by amore » factor of 3 to 10 was observed. An attempt was made to predict irradiated fatigue life by fitting data from irradiated material to a power law equation similar to the universal slopes equation and using ductility ratios from tensile tests to modify the equation for irradiated material.« less

  12. Backscattering measuring system for optimization of intravenous laser irradiation dose

    NASA Astrophysics Data System (ADS)

    Rusina, Tatyana V.; Popov, V. D.; Melnik, Ivan S.; Dets, Sergiy M.

    1996-11-01

    Intravenous laser blood irradiation as an effective method of biostimulation and physiotherapy becomes a more popular procedure. Optimal irradiation conditions for each patient are needed to be established individually. A fiber optics feedback system combined with conventional intravenous laser irradiation system was developed to control of irradiation process. The system consists of He-Ne laser, fiber optics probe and signal analyzer. Intravenous blood irradiation was performed in 7 healthy volunteers and 19 patients with different diseases. Measurements in vivo were related to in vitro blood irradiation which was performed in the same conditions with force-circulated venous blood. Comparison of temporal variations of backscattered light during all irradiation procedures has shown a strong discrepancy on optical properties of blood in patients with various health disorders since second procedure. The best cure effect was achieved when intensity of backscattered light was constant during at least five minutes. As a result, the optical irradiation does was considered to be equal 20 minutes' exposure of 3 mW He-Ne laser light at the end of fourth procedure.

  13. Facilities for studing radiation damage in nonmetals during irradiation

    NASA Astrophysics Data System (ADS)

    Levy, P. W.

    1984-08-01

    Two facilities were developed for making optical absorption, luminescence and other measurements on a single sample before, during and after irradiation. One facility uses Co-60 gamma rays and the other 0.5 to 3 MeV electrons from an accelerator. Optical relays function as spectrophotometers, luminescence detectors, etc. All radiation sensitive components are outside of walk-in irradiation chambers; all measurement control and data recording is computerized. Irradiations are made at controlled temperatures between 5 K and 900 C. The materials studied include glasses, quartz, alkali halides (especially natural rock salt), organic crystals, etc. As determined from color center measurements the damage formation rate in all materials studied at 25 C or above is strongly temperature dependent. The defect concentration during irradiation is usually much greater than that measured after irradiation. The fraction of defects annealing after irradiation and the annealing rate usually increases as the irradiation temperature increases. The completed studies demonstrate that, in most cases, the extent of maximum damage and the damage formation and annealing kinetics can be determined only by making measurements during irradiation.

  14. Thermophysical property and pore structure evolution in stressed and non-stressed neutron irradiated IG-110 nuclear graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Lance; Contescu, Christian I.; Byun, Thak Sang

    2016-08-01

    The nuclear graphite, IG-110, was irradiated with and without a compressive load of 5 MPa at ~400 *C up to 9.3E25 n/m2 (E > 0.1 MeV). Following irradiation physical properties were studied to compare the effect of graphite irradiation on microstructure developed under compression and in stress-free conditions. Properties included: dimensional change, thermal conductivity, dynamic modulus, and CTE. The effect of stress on open internal porosity was determined through nitrogen adsorption. The IG-110 graphite experienced irradiation-induced creep that is differentiated from irradiation-induced swelling. Irradiation under stress resulted in somewhat greater thermal conductivity and coefficient of thermal expansion. While a significantmore » increase in dynamic modulus occurs, no differentiation between materials irradiated with and without compressive stress was observed. Nitrogen adsorption analysis suggests a difference in pore evolution in the 0.3e40 nm range for graphite irradiated with and without stress, but this evolution is seen to be a small contributor to the overall dimensional change.« less

  15. Thermophysical property and pore structure evolution in stressed and non-stressed neutron irradiated IG-110 nuclear graphite

    DOE PAGES

    Snead, Lance L.; Contescu, C. I.; Byun, T. S.; ...

    2016-04-23

    The nuclear graphite, IG-110, was irradiated with and without a compressive load of 5 MPa at ~400 C up to 9.3x10 25 n/m 2 (E>0.1 MeV.) Following irradiation physical properties were studied to compare the effect of graphite irradiation on microstructure developed under compression and in stress-free condition. Properties included: dimensional change, thermal conductivity, dynamic modulus, and CTE. The effect of stress on open internal porosity was determined through nitrogen adsorption. The IG-110 graphite experienced irradiation-induced creep that is differentiated from irradiation-induced swelling. Irradiation under stress resulted in somewhat greater thermal conductivity and coefficient of thermal expansion. While a significantmore » increase in dynamic modulus occurs, no differentiation between materials irradiated with and without compressive stress was observed. Nitrogen adsorption analysis suggests a difference in pore evolution in the 0.3-40 nm range for graphite irradiated with and without stress, but this evolution is seen to be a small contributor to the overall dimensional change.« less

  16. ESR spectroscopy for detecting gamma-irradiated dried vegetables and estimating absorbed doses

    NASA Astrophysics Data System (ADS)

    Kwon, Joong-Ho; Chung, Hyung-Wook; Byun, Myung-Woo

    2000-03-01

    In view of an increasing demand for food irradiation technology, the development of a reliable means of detection for the control of irradiated foods has become necessary. Various vegetable food materials (dried cabbage, carrot, chunggyungchae, garlic, onion, and green onion), which can be legally irradiated in Korea, were subjected to a detection study using ESR spectroscopy. Correlation coefficients ( R2) between absorbed doses (2.5-15 kGy) and their corresponding ESR signals were identified from ESR signals. Pre-established threshold values were successfully applied to the detection of 54 coded unknown samples of dried clean vegetables ( chunggyungchae, Brassica camestris var. chinensis), both non-irradiated and irradiated. The ESR signals of irradiated chunggyungchae decreased over a longer storage time, however, even after 6 months of ambient storage, these signals were still distinguishable from those of non-irradiated samples. The most successful estimates of absorbed dose (5 and 8 kGy) were obtained immediately after irradiation using a quadratic fit with average values of 4.85 and 8.65 kGy being calculated.

  17. Construction and validation of a psychometric scale to measure awareness on consumption of irradiated foods.

    PubMed

    Rusin, Tiago; Araújo, Wilma Maria Coelho; Faiad, Cristiane; Vital, Helio de Carvalho

    2017-01-01

    Although food irradiation has been used to ensure food safety, most consumers are unaware of the basic concepts of irradiation, misinterpreting information and demonstrating a negative attitude toward food items treated with ionizing radiation. This research is aimed at developing a tool to assess the awareness on the consumption of irradiated food. The sample was composed by employees from different social classes and school levels of Brazilian universities, who reflect the end-users of the irradiated foods, representative of the views of lay consumers. The total number of respondents was 614. In order to assess the Awareness Scale on Consumption of Irradiated Foods (ASCIF), an instrument has been developed and submitted to semantic tests and judge's validation. The instrument, that included 32 items, contemplated four construct factors: concepts (6 items), awareness (10 items), labeling (7 items) and safety of Irradiated foods (9 items). The data were collected by electronic means, through the site . By using exploratory factorial analysis (EFA) 4 factors have been found. They summarize the 31 items included. These factors account for 64.32% of the variance of the items and the internal consistency of the factors has been deemed good. An Exploratory Structural Equation Modeling (ESEM) was conducted to evaluate the factor structure of the instrument. The proposed instrument has been found to meet consistency criteria as an efficient tool for indicating assessing potential challenges and opportunities for the irradiated food markets.

  18. Carotid intima-media thickness in young survivors of childhood cancer.

    PubMed

    Krawczuk-Rybak, Maryna; Tomczuk-Ostapczuk, Monika; Panasiuk, Anna; Goscik, Elzbieta

    2017-02-01

    Radiotherapy (RT) and some chemotherapy regimens are known risk factors predisposing to the development of premature arterial disease. Vascular ultrasound measurement of carotid intima-media thickness (IMT) is a non-invasive technique, useful to detect early subclinical symptoms of atherosclerosis that can appear in the paediatric population. We analysed the influence of chemotherapy and moderate doses of head or neck irradiation in childhood cancer survivors on the possibility of premature carotid artery disease. Ultrasound measurements of the intima-media thickness (IMT) in the common carotid artery (CCA), bulb and internal carotid artery (ICA) were performed in 74 young cancer survivors and in 48 age- and sex-matched controls. In the whole study group, we observed higher IMT in all positions as compared with the control, except for comparable thickness in the CCA (bilaterally). We failed to find any differences in IMT between irradiated and non-irradiated females. In irradiated males, all IMT measurements on the right side were higher than in non-irradiated patients. There was no effect of body mass index, blood pressure, serum cholesterol, triglycerides, fibrinogen and thyroid hormones on IMT. In the irradiated group, a positive correlation was observed between IMT in the right bulb and the post-radiation time. Anticancer treatment during childhood, especially including irradiation to the mediastinum, head or neck, affects the IMT, particularly in males. This suggests a possible role of irradiation in the premature development of carotid artery disease. © 2016 The Royal Australian and New Zealand College of Radiologists.

  19. Construction and validation of a psychometric scale to measure awareness on consumption of irradiated foods

    PubMed Central

    2017-01-01

    Although food irradiation has been used to ensure food safety, most consumers are unaware of the basic concepts of irradiation, misinterpreting information and demonstrating a negative attitude toward food items treated with ionizing radiation. This research is aimed at developing a tool to assess the awareness on the consumption of irradiated food. The sample was composed by employees from different social classes and school levels of Brazilian universities, who reflect the end-users of the irradiated foods, representative of the views of lay consumers. The total number of respondents was 614. In order to assess the Awareness Scale on Consumption of Irradiated Foods (ASCIF), an instrument has been developed and submitted to semantic tests and judge’s validation. The instrument, that included 32 items, contemplated four construct factors: concepts (6 items), awareness (10 items), labeling (7 items) and safety of Irradiated foods (9 items). The data were collected by electronic means, through the site . By using exploratory factorial analysis (EFA) 4 factors have been found. They summarize the 31 items included. These factors account for 64.32% of the variance of the items and the internal consistency of the factors has been deemed good. An Exploratory Structural Equation Modeling (ESEM) was conducted to evaluate the factor structure of the instrument. The proposed instrument has been found to meet consistency criteria as an efficient tool for indicating assessing potential challenges and opportunities for the irradiated food markets. PMID:29220375

  20. Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard H.

    2016-08-19

    FeCrAl oxide-dispersion strengthened (ODS) alloys are an attractive sub-set alloy class of the more global FeCrAl material class for nuclear applications due to their high-temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary post-irradiation examination (PIE) on these irradiated specimens have shown good radiation tolerance at elevated temperatures (≥330°C) but possible radiation-induced hardening and embrittlement at irradiations of 200°C tomore » a damage level of 1.9 displacement per atom (dpa). Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.« less

  1. Emulation of reactor irradiation damage using ion beams

    DOE PAGES

    Was, G. S.; Jiao, Z.; Getto, E.; ...

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less

  2. Report Summarizing the Effort Required to Initiate Welding of Irradiated Materials within the Welding Cubicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, Greg; Sutton, Benjamin J.; Tatman, Jonathan K.

    The advanced welding facility within a hot cell at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory (ORNL), which has been jointly funded by the U.S. Department of Energy (DOE), Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program and the Welding and Repair Technology Center, is in the final phase of development. Research and development activities in this facility will involve direct testing of advanced welding technologies on irradiated materials in order to address the primary technical challenge of helium induced cracking that can arise when conventionalmore » fusion welding techniques are utilized on neutron irradiated stainless steels and nickel-base alloys. This report details the effort that has been required since the beginning of fiscal year 2017 to initiate welding research and development activities on irradiated materials within the hot cell cubicle, which houses welding sub-systems that include laser beam welding (LBW) and friction stir welding (FSW) and provides material containment within the hot cell.« less

  3. Recent advances and issues in development of silicon carbide composites for fusion applications

    NASA Astrophysics Data System (ADS)

    Nozawa, T.; Hinoki, T.; Hasegawa, A.; Kohyama, A.; Katoh, Y.; Snead, L. L.; Henager, C. H., Jr.; Hegeman, J. B. J.

    2009-04-01

    Radiation-resistant advanced silicon carbide (SiC/SiC) composites have been developed as a promising candidate of the high-temperature operating advanced fusion reactor. With the completion of the 'proof-of-principle' phase in development of 'nuclear-grade' SiC/SiC composites, the R&D on SiC/SiC composites is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in (1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, (2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and (3) irradiation effects are specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength are specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.

  4. An electron spin resonance study of some gamma-irradiated fruits

    NASA Astrophysics Data System (ADS)

    Maloney, Darren R.; Tabner, Brian J.; Tabner, Vivienne A.

    The ESR spectra of the seeds, skins and stalks of unirradiated and γ-irradiated Chilean white grapes have been obtained and the results compared to those previously reported for Cape black grapes. The high degree of reproducibility of the spectra obtained from the stalks of different varieties of grapes suggest that ESR spectroscopy could form the basis of a viable test to determine their irradiation history. The condition of the stalk prior to irradiation has been found to have little effect on the resulting spectra. The spectra from the stalks, skins and seeds of unirradiated and γ-irradiated apples, peers and cherries have also been examined. Although most of the spectra from irradiated components exhibit extra features, they are sometimes short-lived and restrict the development of ESR as a viable test.

  5. THE INFLUENCE OF ANTITUBERCULOUS VACCINATION ON THE COURSE OF THE TUBERCULOUS PROCESS IN CHRONIC IRRADIATION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khudushina, T.A.

    1961-10-01

    Preliminary antituberculosis vaccination of tuberculosisinfected rabbits subjected to protracted x irradiation (10 r daily) yields a positive effect only during the first stages of irradiation. Disturbance of specific antituberculous immunity occurs in the process of development of chronic radiation sickness. At this period the tuberculous process acquires a marked exudative-necrotic character. (auth)

  6. Magnetic resonance thermometry for monitoring photothermal effects of interstitial laser irradiation

    NASA Astrophysics Data System (ADS)

    Goddard, Jessica; Jose, Jessnie; Figueroa, Daniel; Le, Kelvin; Liu, Hong; Nordquist, Robert E.; Hode, Tomas; Chen, Wei R.

    2012-03-01

    Selective photothermal interaction using dye-assisted non-invasive laser irradiation has limitations when treating deeper tumors or when the overlying skin is heavily pigmented. We developed an interstitial laser irradiation method to induce the desired photothermal effects. An 805-nm near-infrared laser with a cylindrical diffuser was used to treat rat mammary tumors by placing the active tip of the fiber inside the target tumors. Three different power settings (1.0 to 1.5 watts) were applied to treat animal tumors with an irradiation duration of 10 minutes. The temperature distributions of the treated tumors were measured by a 7.1-Tesla magnetic resonance imager using proton resonance frequency (PRF) method. Three-dimensional temperature profiles were reconstructed and assessed using PRF. This is the first time a 7.1-Tesla magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. This study provides a basic understanding of the photothermal interaction needed to control the thermal damage inside tumor using interstitial laser irradiation. It also shows that PRF can be used effectively in monitoring photothermal interaction. Our long-term goal is to develop a PRF-guided laser therapy for cancer treatment.

  7. Mitigation of lung injury after accidental exposure to radiation.

    PubMed

    Mahmood, J; Jelveh, S; Calveley, V; Zaidi, A; Doctrow, S R; Hill, R P

    2011-12-01

    There is a serious need to develop effective mitigators against accidental radiation exposures. In radiation accidents, many people may receive nonuniform whole-body or partial-body irradiation. The lung is one of the more radiosensitive organs, demonstrating pneumonitis and fibrosis that are believed to develop at least partially because of radiation-induced chronic inflammation. Here we addressed the crucial questions of how damage to the lung can be mitigated and whether the response is affected by irradiation to the rest of the body. We examined the widely used dietary supplement genistein given at two dietary levels (750 or 3750 mg/kg) to Fischer rats irradiated with 12 Gy to the lung or 8 Gy to the lung + 4 Gy to the whole body excluding the head and tail (whole torso). We found that genistein had promising mitigating effects on oxidative damage, pneumonitis and fibrosis even at late times (36 weeks) when drug treatment was initiated 1 week after irradiation and stopped at 28 weeks postirradiation. The higher dose of genistein showed no greater beneficial effect. Combined lung and whole-torso irradiation caused more lung-related severe morbidity resulting in euthanasia of the animals than lung irradiation alone.

  8. THE RESPONSE OF X-IRRADIATED LIMBS OF ADULT URODELES TO NORMAL TISSUE GRAFTS. I. EFFECTS OF AUTOGRAFTS OF SIXTY-DAY FOREARM REGENERATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson, B.D.

    1963-06-01

    Results are reported of autoplastic transplantation of parts of nonirradiated, regenerated forelimb to the contralateral x-irradiated forelimb in adult Triturus viridescens. The right forelimbs were exposed to various doses of localized irradiation (1000 to 5000 r) followed by amputation of both left and right forelimbs through the mid forearm. Left limbs regenerated normally, but irradiated right limbs failed to exhibit any significant degree of regenerative activity over a 3-month period. Both forelimbs were reamputated through the distal humerus and observed for an additional two months. Left limbs produced normal regenerates, but irradiated right limbs gave no gross evidence of regenerationmore » at any of the radiation dose levels. Normal left regenerates were reamputated immediately distal to the elbow on the 60th day after the second amputation; the severed forearm was trimmed with scissors along anterior and posterior borders and denuded of skin over its proximal half, leaving an essentially complete forearm region as a normal autograft. This was implanted into the irradiated right upper arm stump, after ablation of the distal half of its humerus, with normal proximodistal polarity in all cases. The irradiated stump was reamputated through the distal portion of the implanted normal autograft two weeks after implantation, and was observed for four months. Periodic gross observations showed that over 90% of irradiated upper arms formed regenerates at a rate which paralleled that of nonirradiated controls. However, regenerates formed on irradiated upper arms exhibited a restriction of morphogenetic capacity, only 60% attaining 3- and 4-digit stages. Most of the morphologically more complex regenerates which developed on the irradiated upper arm stumps manifested left limb asymmetry despite their formation on right irradiated stumps, suggesting a relation between the asymmetry of the normal graft and that of the resulting regenerate. All regenerates which developed on irradiated upper arms showed marked deficiencies in the restoration of a complete proximodistal structural pattern appropriate to the level of amputation through the irradiated stump. However, the actual pattern produced was appropriate to the level of amputation through the implanted normal autograft. These findings support the hypothesis that normal grafts promote the formation of regenerates on irradiated limbs through the autonomous developmental activity of the transected graft. (BBB)« less

  9. A model of the photosynthetically available and usable irradiance in the sea

    NASA Technical Reports Server (NTRS)

    Collins, Donald J.; Davis, Curtiss O.; Booth, C. Rockwell; Kiefer, Dale A.; Stallings, Casson

    1988-01-01

    A theoretical model describing the depth dependence of the solar irradiance available to phytoplankton for photosynthesis is developed for waters classified as Case I by Jerlov (1976). The techniques used to account for the effects of incident solar irradiance, pigment concentration, and the spectral diffuse attentuation coefficient are described; an expression for the photosynthetically usable irradiance is derived; and particular attention is given to the specific diffuse absorption coefficient for chlorophyll (Morel, 1978). The relationships among the primary model parameters are shown in graphs.

  10. Isolation and Characterization of Orientia tsutsugamushi from Rodents Captured following a Scrub Typhus Outbreak at a Military Training Base, Bothong District, Chonburi Province, Central Thailand

    DTIC Science & Technology

    2011-01-01

    pended in M199 medium (Grand Island Biological Company [GIBCO), Grand Island, NY), and subsequently exposed to 3,000-rad irradiation in 60Co gamma... irradiator (Atomic Energy of Canada, Ltd., Ottawa, Canada). Irradiated L-929 cells were dispensed into three 50-cm2 flasks to develop a monolayer...monolayers of irradiated L-929 cells. Inoculated cells were incubated at room temperature for 1 hour on a shaker and then the BHI supernatant was dis

  11. Optimization of radiation treatment of ginger ( Zingiber officinale) rhizomes using response surface methodology

    NASA Astrophysics Data System (ADS)

    Nketsia-Tabiri, Josephine

    1998-06-01

    The effects of pre-irradiation storage time (7-21 days), radiation dose (0-75 Gy) and post-irradiation storage time (2-20 weeks) on sprouting, wrinkling and weight loss of ginger was investigated using a central composite rotatable design. Predictive models developed for all three responses were highly significant. Weight loss and wrinkling decreased as pre-irradiation storage time increased. Dose and post-irradiation storage time had significant interactive effects on weight loss and sprouting. Processing conditions for achieving minimal sprouting resulted in maximum weight loss and wrinkling.

  12. AGR-1 Irradiation Test Final As-Run Report, Rev. 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collin, Blaise P.

    2015-01-01

    This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel processmore » development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39 x 10 25 n/m 2 (E >0.18 MeV). We’ll say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below 10 -7 with only one capsule significantly exceeding this value. A maximum R/B of around 2 x 10 -7 was reached at the end of the irradiation in Capsule 5. Several shakedown issues were encountered and resolved during the first three cycles. These include the repair of minor gas line leaks; repair of faulty gas line valves; the need to position moisture monitors in regions of low radiation fields for proper functioning; the enforcement of proper on-line data storage and backup, the need to monitor thermocouple performance, correcting for detector spectral gain shift, and a change in the mass flow rate range of the neon flow controllers.« less

  13. Fibrinogen deficiency suppresses the development of early and delayed radiation enteropathy

    PubMed Central

    Wang, Junru; Pathak, Rupak; Garg, Sarita; Hauer-Jensen, Martin

    2017-01-01

    AIM To determine the mechanistic role of fibrinogen, a key regulator of inflammation and fibrosis, in early and delayed radiation enteropathy. METHODS Fibrinogen wild-type (Fib+/+), fibrinogen heterozygous (Fib+/-), and fibrinogen knockout (Fib-/-) mice were exposed to localized intestinal irradiation and assessed for early and delayed structural changes in the intestinal tissue. A 5-cm segment of ileum of mice was exteriorized and exposed to 18.5 Gy of x-irradiation. Intestinal tissue injury was assessed by quantitative histology, morphometry, and immunohistochemistry at 2 wk and 26 wk after radiation. Plasma fibrinogen level was measured by enzyme-linked immunosorbent assay. RESULTS There was no difference between sham-irradiated Fib+/+ and Fib+/- mice in terms of fibrinogen concentration in plasma and intestinal tissue, intestinal histology, morphometry, intestinal smooth muscle cell proliferation, and neutrophil infiltration. Therefore, Fib+/- mice were used as littermate controls. Unlike sham-irradiated Fib+/+ and Fib+/- mice, no fibrinogen was detected in the plasma and intestinal tissue of sham-irradiated Fib-/- mice. Moreover, fibrinogen level was not elevated after irradiation in the intestinal tissue of Fib-/- mice, while significant increase in intestinal fibrinogen level was noticed in irradiated Fib+/+ and Fib+/- mice. Importantly, irradiated Fib-/- mice exhibited substantially less overall intestinal structural injury (RIS, P = 0.000002), intestinal wall thickness (P = 0.003), intestinal serosal thickness (P = 0.009), collagen deposition (P = 0.01), TGF-β immunoreactivity (P = 0.03), intestinal smooth muscle proliferation (P = 0.046), neutrophil infiltration (P = 0.01), and intestinal mucosal injury (P = 0.0003), compared to irradiated Fib+/+ and Fib+/- mice at both 2 wk and 26 wk. CONCLUSION These data demonstrate that fibrinogen deficiency directly attenuates development of early and delayed radiation enteropathy. Fibrinogen could be a novel target in treating intestinal damage. PMID:28765691

  14. Carbon ion radiotherapy performed as re-irradiation using active beam delivery in patients with tumors of the brain, skull base and sacral region.

    PubMed

    Combs, Stephanie E; Kalbe, Adriana; Nikoghosyan, Anna; Ackermann, Benjamin; Jäkel, Oliver; Haberer, Thomas; Debus, Jürgen

    2011-01-01

    To asses carbon ion radiation therapy (RT) performed as re-irradiation in 28 patients with recurrent tumors. Twenty-eight patients were treated with carbon ion RT as re-irradiation for recurrent chordoma and chondrosarcoma of the skull base (n=16 and n=2), one chordoma and one chondrosarcoma of the os sacrum, high-risk meningioma (n=3), adenoid-cystic carcinoma (n=4) as well as one SCCHN. All patients were treated using active raster scanning, and treatment planning was performed on CT- and MRI-basis. All patients were followed prospectively during follow-up. In all patients re-irradiation could be applied safely without interruptions. For skull base tumors, local tumor control after re-irradiation was 92% at 24 months and 64% at 36 months. Survival after re-irradiation was 86% at 24 months, and 43% at 60 months. In all three meningiomas treated with C12 for re-irradiation, the tumor recurrence was located within the former RT-field. Two patients developed tumor progression at 6 months, and in one patient the tumor remained stable for 67 months. In patients with head-and-neck tumors, three patients developed local tumor progression at 12, 24 and 29 months after re-irradiation. Median local progression-free survival was 24 months. For sacral tumors, re-irradiation offered palliation with tumor control for 24 and 36 months. Due to the physical characteristics particle therapy offers a new treatment modality in cases with tumor recurrences. With carbon ions, the additional biological benefits may be exploited for long-term tumor control. Further evaluation in a larger patients' cohort will be performed in the future. Copyright © 2010. Published by Elsevier Ireland Ltd.

  15. Survival after total body irradiation: Effects of irradiation of exteriorized small intestine. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vriesendorp, H.M.; Vigneulle, R.M.; Kitto, G.

    1993-12-31

    Rats receiving lethal irradiation to their exteriorized small intestine with pulsed 18 MVp bremsstrahlung radiation live about 4 days longer than rats receiving a dose of total-body irradiation (TBI) causing intestinal death. The LD50 for intestinal irradiation is approximately 6 Gy higher than the LD50 for intestinal death after TBI. Survival time after exteriorized intestinal irradiation can be decreased, by adding abdominal irradiation. Adding thoracic or pelvic irradiation does not alter survival time. Shielding of large intestine improves survival after irradiation of the rest of the abdomen while the small intestine is also shielded. The kinetics of histological changes inmore » small intestinal tissues implicate the release of humoral factors after irradiation of the abdomen. Radiation injury develops faster in the first (proximal) 40 cm of the small intestine and is expressed predominantly as shortening in villus height. In the last (distal) 40 cm of the small intestine, the most pronounced radiation effect is a decrease in the number of crypts per millimeter. Irradiation (20 Gy) of the proximal small intestine causes 92 % mortality (median survival 10 days). Irradiation (20 Gy) of the distal small intestine causes 27% mortality (median survival > 30 days). In addition to depletion of crypt stem cells in the small intestine, other issues (humoral factors, irradiated subsection of the small intestine and shielding of the large intestine) appear to influence radiation-induced intestinal mortality.« less

  16. Effect of X-irradiation on the stomach of the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breiter, N.; Trott, K.R.; Sassy, T.

    1989-10-01

    A model for localized 300 kV X-irradiation of the rat stomach was developed. After irradiation with single doses, three distinct gastric disorders were observed which occurred at different latency times. Acute death 2-3 weeks after irradiation was caused by an erosive and ulcerative gastritis and occurred in all animals given 28.5 Gy without diet, in 17% of the animals given 28.5 Gy plus diet, and in 13% of the animals given 23 Gy. Subacute to chronic fatal disorders 4 weeks to 7 months after irradiation were seen as stomach dilatation and gastroparesis, associated with the replacement of the normal gastricmore » mucosa by a hyperkeratinized multilayered squamous epithelium. These disorders occurred in 40-100% of the animals after doses between 16 Gy and 28.5 Gy (+diet). An ED 50 value of 19.2 Gy (16.5-21.2 Gy, 95% confidence interval) was calculated for this gastroparesis. Late gastric obstruction exceeding 7 months after irradiation was seen in the rats because of profound changes in the gastric wall in 13-18% of the animals after doses between 23 Gy and 14 Gy. In animals surviving these three periods, an atrophic mucosa and intestinal metaplasia developed. From functional and morphohistological studies, it can be concluded that there are differences in the pathogenesis of the fatal radiation damage for each of these periods after irradiation.« less

  17. The design of an irradiator for the continuous processing of liquid latex

    NASA Astrophysics Data System (ADS)

    Reuter, O.; Langley, R.; Zn, Wan Manshol Bin W.

    1998-06-01

    This paper presents anew design concept for a gamma irradiation plant for the continuous processing of pumpable liquids. Typical applications of such a plant include ∗ the irradiation vulcanisation of natural latex rubber ∗ disinfection of municipal sewage sludge for agricultural use ∗ sterilisation of liquids in the pharmaceutical and cosmetics industries ∗ industrial processing of bulk liquids The authors describe the design and operation of the latex irradiator now operating on a small production scale in Malaysia and proposed developments. The design allows irradiation processing to be carried out under an inert or other gaseous environment. State-of-the-art computer control system ensures the fully automatic processing operation needed by industrial computers.

  18. Research and Engineering Operation, Irradiation Processing Department monthly record report, May 1965

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrose, T.W.

    1965-06-04

    Process and development activities reported include: depleted uranium irradiations, thoria irradiation, and hot die sizing. Reactor engineering activities include: brittle fracture of 190-C tanks, increased graphite temperature limits for the F reactor, VSR channel caulking, K reactor downcomer flow, zircaloy hydriding, and ribbed zircaloy process tubes. Reactor physics activities include: thoria irradiations, E-D irradiations, boiling protection with the high speed scanner, and in-core flux monitoring. Radiological engineering activities include: radiation control, classification, radiation occurrences, effluent activity data, and well car shielding. Process standards are listed, along with audits, and fuel failure experience. Operational physics and process physics studies are presented.more » Lastly, testing activities are detailed.« less

  19. Action of ionizing radiation on epoxy resins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van de Voorde, M. E.

    1970-12-01

    The resistance of classical and experimental epoxy resins to irradiation was studied. The resistance to irradiation of epoxy resins of diverse compositions as well as the development of resins having a radioresistance that approaches that of certain ceramics are discussed. Sources of irradiation and the techniques of dosimetry used are described. The structures of certain epoxy resins and of hardeners are given. The preparation of these resins and their physical properties is described. The effects of radiation on epoxy resins, as well as conditions of irradiation, and suggested mechanisms for degradation of the irradiated resins are discussed. The relationship betweenmore » chemical structure of the resins and their physical properties is evaluated. (115 references) (JCB)« less

  20. Development of medicine-intended isotope production technologies at Yerevan Physics Institute

    NASA Astrophysics Data System (ADS)

    Avetisyan, Albert; Avagyan, Robert; Kerobyan, Ivetta; Dallakyan, Ruben; Harutyunyan, Gevorg; Melkonyan, Aleksandr

    2015-05-01

    Accelerator-based 99mTc and 123I isotopes production technologies were created and developed at A.Alikhanyan National Science Laboratory (former Yerevan Physics Institute - YerPhI). The method involves the irradiation of natural molybdenum (for 99mTc production) and natural xenon (for 123I production) using high-intensity bremsstrahlung photons from the electron beam of the LUE50 linear electron accelerator located at the YerPhI. We have developed and tested the extraction of 99mTc and 123I from the irradiated natural MoO3 and natural Xe, respectively. The production method has been developed and shown to be successful. The current activity is devoted to creation and development of the technology of direct production 99mTc on the 100Mo as target materials using the proton beam from an IBA C18/18 cyclotron. The proton cyclotron C18/18 (producer - IBA, Belgium) was purchased and will be installed nearby AANL (YerPhI) till end 2014. The 18 MeV protons will be used to investigate accelerator-based schemes for the direct production of 99mTc. Main topics of studies will include experimental measurement of 99mTc production yield for different energies of protons, irradiation times, intensities, development of new methods of 99mTc extraction from irradiated materials, development of target preparation technology, development of target material recovery methods for multiple use and others.

  1. Correlation of Hsp110 expression with caspase-3 and -9 during apoptosis induced by in vivo embryonic exposition to retinoic acid or irradiation in early mouse craniofacial development.

    PubMed

    Gashegu, J; Vanmuylder, N; Philippson, C; Choa-Duterre, M; Rooze, M; Louryan, S

    2006-05-01

    To analyze the expression and role of three proteins (HSP110, caspase-3 and caspase-9) during craniofacial development. Seven pregnant C57Bl/6J mice received, by force-feeding at gestation day 9 (E9), 80 mg/kg of all-trans retinoic acid mixed to sesame oil. Seven pregnant NMRI mice received two grays irradiation at the same gestation day. Control mice of both strains (seven mice for each strain) were not submitted to any treatment. Embryos were obtained at various stages after exposition (3, 6, 12 and 24 h), fixed, dehydrated and embedded. Coronal sections (5 microm) were made. Slide staining occurred alternatively using anti-Hsp110, anti-caspase-3 and anti-caspase-9 immunohistochemistry. Expression of HSP110, caspase-3 and caspase-9 was found in cells of well-known locations of programmed cell death. After retinoic acid exposure, expressions were increased especially in neural crest cells of mandibular and hyoid arches. Quantification of positive cells shows that caspase-9 and Hsp110 were expressed before caspase-3. After irradiation, the expression of the three proteins quickly increased with a maximum 3 h after irradiation. For all three models of apoptosis (physiological, retinoic-induced and irradiation-induced) HSP110 positive cells were more numerous than caspase-3 positive cells. Caspase-3 positive cells were more numerous than caspase-9 positive cells especially in mesectodermal irradiation-induced apoptotic cells. The findings show a potential function of HSP110 in apoptosis during embryo development. Caspase-3-expressing cells are more numerous than cells expressing caspase-9, especially irradiation-induced apoptotic neural crest cells. This suggests that other caspases, still to be identified, may activate caspase-3 in this model.

  2. Effects of prenatal X-irradiation on postnatal testicular development and function in the Wistar rat: development/teratology/behavior/radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensh, R.P.; Brent, R.L.

    1988-11-01

    It is evident that significant permanent tissue hypoplasia can be produced following radiation exposure late in fetal development. Because two organs, brain and testes, are developmentally and functionally interrelated, it was of interest to determine whether fetal testicular hypoplasia was a primary or a secondary effect of fetal brain irradiation. Twenty-four pregnant Wistar strain rats were randomly assigned to one of four groups, and a laparotomy was performed on day 18 of gestation. The fetuses received sham irradiation, whole body irradiation, or only head/thorax or pelvic body irradiation at a dosage level of 1.5 Gy. Mothers were allowed to delivermore » and raise their offspring until postnatal day 30, when the offspring were weaned. At 60 days of age, 74 male offspring were allowed to mate with colony control females of similar age until successful insemination or until the males reached 90 days of age, when they were killed. Testes were weighed and processed for histologic examination. Direct radiation of testes, due to whole body or pelvic exposure, resulted in testicular growth retardation and significantly reduced spermatogenesis. Breeding activity of the males and the percent of positive inseminations were also slightly reduced. However, a significant percentage of male offspring receiving direct testicular radiation did produce offspring. Head/thorax-only irradiation did not adversely affect testicular growth or spermatogenesis. Therefore, the use of histologic analysis as the sole determinant of infertility may be misleading. This study indicates that testicular growth retardation and an increased infertility rate result from direct prenatal exposure of rat testes to X-radiation and are not necessarily mediated via X-irradiation effects on the central nervous system.« less

  3. Late radiation side-effects in three patients undergoing parotid irradiation for benign disease.

    PubMed

    Armour, A; Ghanna, P; O'Rielly, B; Habeshaw, T; Symonds, P

    2000-01-01

    We report three patients in whom standard radiation therapy was given and serious late radiation damage was seen. The first patient suffered recurrent parotiditis and a parotid fistula. He was treated initially with 20 Gy in ten fractions via a 300 kV field. Further irradiation was required 1 year later and 40 Gy was given in 2 Gy fractions by an oblique anterior and posterior wedged photon pair. Ten years later he developed localized temporal bone necrosis. The second patient, with pleomorphic salivary adenoma, developed localized temporal bone necrosis 6 years after 60 Gy had been given using standard fractionation and technique. The third patient received 55 Gy in 25 fractions for a pleomorphic salivary adenoma and after 3 years developed temporal bone necrosis. Sixteen years later the same patient developed cerebellar and brainstem necrosis. All patients developed chronic persistent infection during or shortly after the radiation therapy, which increased local tissue sensitivity to late radiation damage. As a result, severe bone, cerebellar and brainstem necrosis was observed at doses that are normally considered safe. We therefore strongly recommend that any infection in a proposed irradiated area should be treated aggressively, with surgical debridement if necessary, before radiotherapy is administered, or that infection developing during or after irradiation is treated promptly.

  4. Assessment of simulated high-dose partial-body irradiation by PCC-R assay.

    PubMed

    Romero, Ivonne; García, Omar; Lamadrid, Ana I; Gregoire, Eric; González, Jorge E; Morales, Wilfredo; Martin, Cécile; Barquinero, Joan-Francesc; Voisin, Philippe

    2013-09-01

    The estimation of the dose and the irradiated fraction of the body is important information in the primary medical response in case of a radiological accident. The PCC-R assay has been developed for high-dose estimations, but little attention has been given to its applicability for partial-body irradiations. In the present work we estimated the doses and the percentage of the irradiated fraction in simulated partial-body radiation exposures at high doses using the PCC-R assay. Peripheral whole blood of three healthy donors was exposed to doses from 0-20 Gy, with ⁶⁰Co gamma radiation. To simulate partial body irradiations, irradiated and non-irradiated blood was mixed to obtain proportions of irradiated blood from 10-90%. Lymphocyte cultures were treated with Colcemid and Calyculin-A before harvest. Conventional and triage scores were performed for each dose, proportion of irradiated blood and donor. The Papworth's u test was used to evaluate the PCC-R distribution per cell. A dose-response relationship was fitted according to the maximum likelihood method using the frequencies of PCC-R obtained from 100% irradiated blood. The dose to the partially irradiated blood was estimated using the Contaminated Poisson method. A new D₀ value of 10.9 Gy was calculated and used to estimate the initial fraction of irradiated cells. The results presented here indicate that by PCC-R it is possible to distinguish between simulated partial- and whole-body irradiations by the u-test, and to accurately estimate the dose from 10-20 Gy, and the initial fraction of irradiated cells in the interval from 10-90%.

  5. Characterisation of the epithermal neutron irradiation facility at the Portuguese research reactor using MCNP.

    PubMed

    Beasley, D G; Fernandes, A C; Santos, J P; Ramos, A R; Marques, J G; King, A

    2015-05-01

    The radiation field at the epithermal beamline and irradiation chamber installed at the Portuguese Research Reactor (RPI) at the Campus Tecnológico e Nuclear of Instituto Superior Técnico was characterised in the context of Prompt Gamma Neutron Activation Analysis (PGNAA) applications. Radiographic films, activation foils and thermoluminescence dosimeters were used to measure the neutron fluence and photon dose rates in the irradiation chamber. A fixed-source MCNPX model of the beamline and chamber was developed and compared to measurements in the first step towards planning a new irradiation chamber. The high photon background from the reactor results in the saturation of the detector and the current facility configuration yields an intrinsic insensitivity to various elements of interest for PGNAA. These will be addressed in future developments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effects of Radiation on the Microbiota and Intestinal Inflammatory Disease

    DTIC Science & Technology

    2016-09-01

    focal (GI tract) irradiation of mice on the bacterial and fungal microbiota. We have identified substantial changes in intestinal microbial...minimal acute symptoms, will develop long-term consequences of irradiation including permanent changes to bowel function and intestinal fibrosis, which...mice exposed to total body irradiation (TBI) or focal radiation to the GI tract. Timeline Status Site 1 (Stephen Shiao, MD, PhD) Site 2

  7. Irradiation at Different Fetal Stages Results in Different Translocation Frequencies in Adult Mouse Thyroid Cells

    DOE PAGES

    Hamasaki, K.; Landes, R. D.; Noda, A.; ...

    2016-10-01

    While it is generally believed that fetuses are at high risk of developing cancers, including leukemia, after low doses of radiation, it has been reported that atomic bomb survivors exposed in utero did not show a dose response for translocations in blood T lymphocytes when they were examined at approximately 40 years of age. Subsequent mouse studies confirmed that animals irradiated during the fetal stage did not show evidence of radiation effects in lymphocytes and bone marrow cells when they were examined after reaching adulthood. However, in a study of rat mammary epithelial cells, radiation effects were clearly observed aftermore » fetal irradiation. These results indicate that the fate of chromosome aberrations induced in a fetus could vary among different tissues. Here we report on translocation frequencies in mouse thyroid cells, which were irradiated at different stages of fetal development. Cytogenetic examination was then conducted using fluorescence in situ hybridization (FISH) painting of chromosomes 1 and 3. Adult mice, 2 Gy X-ray irradiated at 15.5-day-old fetuses (E15.5), showed a higher translocation frequency (30/1,155 or 25.3 x 10 -3) than nonirradiated adult controls (0/1,007 or 0.1 x 10 -3), and was near that experienced by irradiated mothers and non-pregnant adult females (43/1,244 or 33.7 x 10 -3). These results are consistent with those seen in rat mammary cells. However, when fetuses were irradiated at an earlier stage of development (E6.5) before thyroid organogenesis, the resulting observed translocation frequency was much lower (3/502 or 5.8 x 10 -3) than that in E15.5 mice. These results suggest that after fetal irradiation, tissue stem cells record radiation effects primarily when the exposure occurs in cells that have been integrated into tissue. Embryonic stem cells that have been damaged prior to integration into the niche may undergo negative selection due to apoptosis, mitotic death or stem cell-niche cell interactions. The implications of these results in interpreting cancer risks after fetal irradiation are also discussed.« less

  8. Radiation associated tumors following therapeutic cranial radiation

    PubMed Central

    Chowdhary, Abhineet; Spence, Alex M.; Sales, Lindsay; Rostomily, Robert C.; Rockhill, Jason K.; Silbergeld, Daniel L.

    2012-01-01

    Background: A serious, albeit rare, sequel of therapeutic ionizing radiotherapy is delayed development of a new, histologically distinct neoplasm within the radiation field. Methods: We identified 27 cases, from a 10-year period, of intracranial tumors arising after cranial irradiation. The original lesions for which cranial radiation was used for treatment included: tinea capitis (1), acute lymphoblastic leukemia (ALL; 5), sarcoma (1), scalp hemangioma (1), cranial nerve schwannoma (1) and primary (13) and metastatic (1) brain tumors, pituitary tumor (1), germinoma (1), pinealoma (1), and unknown histology (1). Dose of cranial irradiation ranged from 1800 to 6500 cGy, with a mean of 4596 cGy. Age at cranial irradiation ranged from 1 month to 43 years, with a mean of 13.4 years. Results: Latency between radiotherapy and diagnosis of a radiation-induced neoplasm ranged from 4 to 47 years (mean 18.8 years). Radiation-induced tumors included: meningiomas (14), sarcomas (7), malignant astrocytomas (4), and medulloblastomas (2). Data were analyzed to evaluate possible correlations between gender, age at irradiation, dose of irradiation, latency, use of chemotherapy, and radiation-induced neoplasm histology. Significant correlations existed between age at cranial irradiation and development of either a benign neoplasm (mean age 8.5 years) versus a malignant neoplasm (mean age 20.3; P = 0.012), and development of either a meningioma (mean age 7.0 years) or a sarcoma (mean age 27.4 years; P = 0.0001). There was also a significant positive correlation between latency and development of either a meningioma (mean latency 21.8 years) or a sarcoma (mean latency 7.7 years; P = 0.001). The correlation between dose of cranial irradiation and development of either a meningioma (mean dose 4128 cGy) or a sarcoma (mean dose 5631 cGy) approached significance (P = 0.059). Conclusions: Our study is the first to show that younger patients had a longer latency period and were more likely to have lower-grade lesions (e.g. meningiomas) as a secondary neoplasm, while older patients had a shorter latency period and were more likely to have higher-grade lesions (e.g. sarcomas). PMID:22629485

  9. Fibrosarcoma of the mandible following supravoltage irradiation. Report of a case.

    PubMed

    Moloy, P J; Kowal, K A; Siegel, W M

    1989-10-01

    Supravoltage irradiation is commonly thought not to be carcinogenic. Several recent studies question this concept, as does our case report. A 50-year-old woman with stage 1 squamous carcinoma of the left side of the tongue was treated in 1973 with 73 Gy of supravoltage irradiation. Twelve years later a painful, ulcerated lesion that eventually was shown to be fibrosarcoma developed in the contralateral mandible. The fibrosarcoma in this case fulfills all criteria for diagnosing radiation-induced neoplasia and demonstrates that supravoltage irradiation, like other forms of irradiation, can cause malignancy. The occasional occurrence of sarcoma should be recalled during follow-up of patients treated with supravoltage radiation. Similarly, the possibility of radiation-induced tumors should be considered in planning treatment for younger patients with tumors that can be treated equally well by surgery or irradiation.

  10. Upgrade of Irradiation Test Capability of the Experimental Fast Reactor Joyo

    NASA Astrophysics Data System (ADS)

    Sekine, Takashi; Aoyama, Takafumi; Suzuki, Soju; Yamashita, Yoshioki

    2003-06-01

    The JOYO MK-II core was operated from 1983 to 2000 as fast neutron irradiation bed. In order to meet various requirements for irradiation tests for development of FBRs, the JOYO upgrading project named MK-III program was initiated. The irradiation capability in the MK-III core will be about four times larger than that of the MK-II core. Advanced irradiation test subassemblies such as capsule type subassembly and on-line instrumentation rig are planned. As an innovative reactor safety system, the irradiation test of Self-Actuated Shutdown System (SASS) will be conducted. In order to improve the accuracy of neutron fluence, the core management code system was upgraded, and the Monte Carlo code and Helium Accumulation Fluence Monitor (HAFM) were applied. The MK-III core is planned to achieve initial criticality in July 2003.

  11. Proliferative effect of green light emitting diode irradiation on chicken fibroblasts in hyperglycaemic circumstances: a preliminary in vitro study

    NASA Astrophysics Data System (ADS)

    Vinck, Elke; Cagnie, Barbara; Declercq, Heidi; Cornelissen, Ria; Cambier, Dirk

    2004-09-01

    A reduced mortality due to hyperglycaemia was noted since the development of insulin treatment for type I diabetes and various oral hypoglycaemic agents for type II diabetes. Nevertheless the chronic metabolic disorder, Diabetes Mellitus, remains an important cause of morbidity and mortality due to a series of common secondary metabolic complications. Patients with diabetes have an increased tendency to develop infections of the skin. Healing of skin lesions in diabetics evolves often relatively slow and the lesions tend to be more severe than in non-diabetics. Endeavouring to accelerate the healing process of skin lesions in diabetic patients, this preliminary in vitro study investigates the efficacy of green Light Emitting Diode (LED) irradiation on fibroblast proliferation of cells in hyperglycaemic circumstances. In an attempt to imitate the diabetic environment, embryonic chicken fibroblasts were cultured in hyperglycaemic medium (30.000mg Glucose per litre Hanks Medium). LED irradiation was performed three consecutive days with a wavelength of 540 nm and a power output of 10 mW, at 0,6 cm distance from the fibroblasts. Each treatment lasted 3 minutes, resulting in a surface energy density of 0,2 J/cm2. Statistical analysis revealed that LED irradiation at the applied parameters induced a higher rate of proliferation in hyperglycaemic circumstances after irradiation than in the same circumstances without irradiation. Regarding these results the effectiveness of green LED irradiation on cells in hyperglycaemic circumstances is proven. To ensure the effectiveness and to evaluate the value of LED irradiation in vivo, further research is required.

  12. Irradiation with x-rays of the energy 18 MV induces radioactivity in transfusion blood: Proposal of a safe method using 6 MV.

    PubMed

    Frentzel, Katharina; Badakhshi, Harun

    2016-12-01

    To prevent a fatal transfusion-associated graft-versus-host disease, it is recommended to irradiate transfusion blood and blood components with ionizing radiation. Using x-rays from a linear accelerator of the radiotherapy department is an accepted alternative to gamma irradiation devices of the blood bank and to the orthovoltage units that are replacing the gamma irradiators today. However, the use of high energy x-rays may carry a potential risk of induced radioactivity. The objective of this study was to investigate the effect of two different energy levels, 6 and 18 MV, which are executed in routine clinical settings. The research question was if induced radioactivity occurs at one of these standard energy levels. The authors aimed to give a proposal for a blood irradiation procedure that certainly avoids induced radioactivity. For this study, the authors developed a blood bag phantom, irradiated it with x-ray energies of 6 and 18 MV, and measured the induced radioactivity in a well counter. Thereafter, the same irradiation and measuring procedure was performed with a unit of packed red blood cells. A feasible clinical procedure was developed using 6 MV and an acrylic box. With the irradiation planning system XiO, the authors generated an irradiation protocol for the linear accelerator Siemens ONCOR Anvant-Garde. Both measurement setups showed that there was induced radioactivity for 18 MV but not for 6 MV. The induced radioactivity for 18 MV was up to 190 times the background. This is significant and of clinical relevance especially since there are newborn and fetal blood recipients for whom every radiation exposure has to be strictly avoided. The irradiation of blood with x-rays from a linear accelerator of the radiotherapy department is safe and feasible, but by the current state of scientific knowledge, the authors recommend to use an x-ray energy of 6 MV or less to avoid induced radioactivity in transfusion blood.

  13. Broadband radiometric LED measurements

    NASA Astrophysics Data System (ADS)

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-09-01

    At present, broadband radiometric LED measurements with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  14. Luminescence properties after X-ray irradiation for dosimetry

    NASA Astrophysics Data System (ADS)

    Hong, Duk-Geun; Kim, Myung-Jin

    2016-05-01

    To investigate the luminescence characteristics after exposure to X-ray radiation, we developed an independent, small X-ray irradiation system comprising a Varian VF-50J mini X-ray generator, a Pb collimator, a delay shutter, and an Al absorber. With this system, the apparent dose rate increased linearly to 0.8 Gy/s against the emission current for a 50 kV anode potential when the shutter was delayed for an initial 4 s and the Al absorber was 300 µm thick. In addition, an approximately 20 mm diameter sample area was irradiated homogeneously with X rays. Based on three-dimensional (3D) thermoluminescence (TL) spectra, the small X-ray irradiator was considered comparable to the conventional 90Sr/90Y beta source even though the TL intensity from beta irradiation was higher than that from X-ray irradiation. The single aliquot regenerative (SAR) growth curve for the small X-ray irradiator was identical to that for the beta source. Therefore, we concluded that the characteristics of the small X-ray irradiator and the conventional 90Sr/90Y beta source were similar and that X ray irradiation had the potential for being suitable for use in luminescence dosimetry.

  15. Comparison of the Changes in the Visible and Infrared Irradiance Observed by the SunPhotometers on EURECA to the UARS Total Solar and UV Irradiances

    NASA Technical Reports Server (NTRS)

    Pap, Judit

    1995-01-01

    Solar irradiance in the near-UV (335 nm), visible (500 nm) and infrared (778 nm) spectral bands has been measured by the SunPhotometers developed at the World Radiation Center, Davos, Switzerland on board the European Retrievable Carrier between August 1992 and May 1993. Study of the variations in the visible and infrared irradiance is important for both solar and atmospheric physics. The purpose of this paper is to examine the temporal variations observed in the visible and infrared spectral bands after eliminating the trend in the data mainly related to instrument degradation. The effect of active regions in these spectral irradiances is clearly resolved. Variations in the visible and infrared irradiances are compared to total solar irradiance observed by the SOVA2 radiometer on the EURECA platform and by the ACRIMII radiometer on UARS as well as to UV observations of the UARS and NOAA9 satellites. The space-borne spectral irradiance observations are compared to the photometric sunspot deficit and CaII K irradiance measured at the San Fernando Observatory, California State University at Northridge in order to study the effect of active regions in detail.

  16. A Model for Precise and Uniform Pelvic- and Limb-Sparing Abdominal Irradiation to Study the Radiation-Induced Gastrointestinal Syndrome in Mice Using Small Animal Irradiation Systems.

    PubMed

    Brodin, N Patrik; Velcich, Anna; Guha, Chandan; Tomé, Wolfgang A

    2017-01-01

    Currently, no readily available mitigators exist for acute abdominal radiation injury. Here, we present an animal model for precise and homogenous limb-sparing abdominal irradiation (LSAIR) to study the radiation-induced gastrointestinal syndrome (RIGS). The LSAIR technique was developed using the small animal radiation research platform (SARRP) with image guidance capabilities. We delivered LSAIR at doses between 14 and 18 Gy on 8- to 10-week-old male C57BL/6 mice. Histological analysis was performed to confirm that the observed mortality was due to acute abdominal radiation injury. A steep dose-response relationship was found for survival, with no deaths seen at doses below 16 Gy and 100% mortality at above 17 Gy. All deaths occurred between 6 and 10 days after irradiation, consistent with the onset of RIGS. This was further confirmed by histological analysis showing clear differences in the number of regenerative intestinal crypts between animals receiving sublethal (14 Gy) and 100% lethal (18 Gy) radiation. The developed LSAIR technique provides uniform dose delivery with a clear dose response, consistent with acute abdominal radiation injury on histological examination. This model can provide a useful tool for researchers investigating the development of mitigators for accidental or clinical high-dose abdominal irradiation.

  17. Project of electro-cyclotron resonance ion source test-bench for material investigation.

    PubMed

    Kulevoy, T V; Chalykh, B B; Kuibeda, R P; Kropachev, G N; Ziiatdinova, A V

    2014-02-01

    Development of new materials for future energy facilities with higher operating efficiency is a challenging and crucial task. However, full-scale testing of radiation hardness for reactor materials is quite sophisticated and difficult as it requires long session of reactor irradiation; moreover, induced radioactivity considerably complicates further investigation. Ion beam irradiation does not have such a drawback; on the contrary, it has certain advantages. One of them is high speed of defect formation. Therefore, it provides a useful tool for modeling of different radiation damages. Improved understanding of material behavior under high dose irradiation will probably allow to simulate reactor irradiation close to real conditions and to make an adequate estimation of material radiation hardness. Since 2008 in Institute for Theoretical and Experimental Physics, the ion beam irradiation experiments are under development at the heavy ion radio frequency quadrupole linac and very important results are obtained already [T. V. Kulevoy et al., in Proceedings of the International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, IAEA Vienna, Austria, 2009, http://www.pub.iaea.org/MTCD/publications/PDF/P1433_CD/darasets/papers/ap_p5_07.pdf]. Nevertheless, the new test bench based on electro-cyclotron resonance ion source and high voltage platform is developed. The project of the test bench is presented and discussed.

  18. Project of electro-cyclotron resonance ion source test-bench for material investigation

    NASA Astrophysics Data System (ADS)

    Kulevoy, T. V.; Chalykh, B. B.; Kuibeda, R. P.; Kropachev, G. N.; Ziiatdinova, A. V.

    2014-02-01

    Development of new materials for future energy facilities with higher operating efficiency is a challenging and crucial task. However, full-scale testing of radiation hardness for reactor materials is quite sophisticated and difficult as it requires long session of reactor irradiation; moreover, induced radioactivity considerably complicates further investigation. Ion beam irradiation does not have such a drawback; on the contrary, it has certain advantages. One of them is high speed of defect formation. Therefore, it provides a useful tool for modeling of different radiation damages. Improved understanding of material behavior under high dose irradiation will probably allow to simulate reactor irradiation close to real conditions and to make an adequate estimation of material radiation hardness. Since 2008 in Institute for Theoretical and Experimental Physics, the ion beam irradiation experiments are under development at the heavy ion radio frequency quadrupole linac and very important results are obtained already [T. V. Kulevoy et al., in Proceedings of the International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, IAEA Vienna, Austria, 2009, http://www.pub.iaea.org/MTCD/publications/PDF/P1433_CD/darasets/papers/ap_p5_07.pdf]. Nevertheless, the new test bench based on electro-cyclotron resonance ion source and high voltage platform is developed. The project of the test bench is presented and discussed.

  19. The effects of pre-emptive low-dose X-ray irradiation on MIA induced inflammatory pain in rats

    NASA Astrophysics Data System (ADS)

    Hahm, Suk-Chan; Lee, Go-Eun; Kim, Eun-Hye; Kim, Junesun; Lee, Taewoong; Lee, Wonho

    2013-07-01

    This study was performed to determine the effect of pre-emptive low-dose irradiation on the development of inflammatory pain and to characterize the potential mechanisms underlying this effect in osteoarthritis (OA) animal model. Whole-body X-irradiations with 0.1, 0.5, 1 Gy or sham irradiations were performed for 3 days before the induction of ostearthritis with monosodium iodoacetate (MIA) (40 µl, in saline) into the right knee joint in male Sprague Dawley rats. Behavioral tests for arthritic pain including evoked and non-evoked pain were conducted before and after MIA injection and inducible nitric-oxide synthase (iNOS) expression level was measured by western blot. Low-dose radiation significantly prevented the development of mechanical allodynia and thermal hyperalgesia and reduction in weight bearing that is regarded as a behavioral signs of non-evoked pain following MIA injection. Low-dose radiation significantly inhibited the increase in iNOS expression after MIA injection in spinal L3-5 segments in rat. These data suggest that low-dose X-irradiation is able to prevent the development of arthritic pain through modulation of iNOS expression in the spinal cord dorsal horn. Thus, low-dose radiotherapy could be substituted in part for treatment with drugs for patients with chronic inflammatory disease in clinical setting.

  20. Texture evolution and mechanical behaviour of irradiated face-centred cubic metals

    NASA Astrophysics Data System (ADS)

    Chen, L. R.; Xiao, X. Z.; Yu, L.; Chu, H. J.; Duan, H. L.

    2018-02-01

    A physically based theoretical model is proposed to investigate the mechanical behaviour and crystallographic texture evolution of irradiated face-centred cubic metals. This model is capable of capturing the main features of irradiated polycrystalline materials including irradiation hardening, post-yield softening and plasticity localization. Numerical results show a good agreement with experimental data for both unirradiated and irradiated stress-strain relationships. The study of crystallographic texture reveals that the initial randomly distributed texture of unirradiated metals under tensile loading can evolve into a mixture of [111] and [100] textures. Regarding the irradiated case, crystallographic texture develops in a different way, and an extra part of [110] texture evolves into [100] and [111] textures. Thus, [100] and [111] textures become dominant more quickly compared with those of the unirradiated case for the reason that [100] and [111]-oriented crystals have higher strength, and their plastic deformation behaviours are more active than other oriented crystals. It can be concluded that irradiation-induced defects can affect both the mechanical behaviour and texture evolution of metals, both of which are closely related to irradiation hardening.

  1. Structural responses of metallic glasses under neutron irradiation.

    PubMed

    Yang, L; Li, H Y; Wang, P W; Wu, S Y; Guo, G Q; Liao, B; Guo, Q L; Fan, X Q; Huang, P; Lou, H B; Guo, F M; Zeng, Q S; Sun, T; Ren, Y; Chen, L Y

    2017-12-01

    Seeking nuclear materials that possess a high resistance to particle irradiation damage is a long-standing issue. Permanent defects, induced by irradiation, are primary structural changes, the accumulation of which will lead to structural damage and performance degradation in crystalline materials served in nuclear plants. In this work, structural responses of neutron irradiation in metallic glasses (MGs) have been investigated by making a series of experimental measurements, coupled with simulations in ZrCu amorphous alloys. It is found that, compared with crystalline alloys, MGs have some specific structural responses to neutron irradiation. Although neutron irradiation can induce transient vacancy-like defects in MGs, they are fully annihilated after structural relaxation by rearrangement of free volumes. In addition, the rearrangement of free volumes depends strongly on constituent elements. In particular, the change in free volumes occurs around the Zr atoms, rather than the Cu centers. This implies that there is a feasible strategy for identifying glassy materials with high structural stability against neutron irradiation by tailoring the microstructures, the systems, or the compositions in alloys. This work will shed light on the development of materials with high irradiation resistance.

  2. Effect of electron beam irradiation on thermal and crystallization behavior of PP/EPDM blend

    NASA Astrophysics Data System (ADS)

    Balaji, Anand Bellam; Ratnam, Chantara Thevy; Khalid, Mohammad; Walvekar, Rashmi

    2017-12-01

    The irradiation stability of ethylene-propylene diene terpolymer (EPDM)/ polypropylene (PP) blends is studied in an attempt to develop radiation compatible PP/EPDM blends suitable for medical applications. The PP/EPDM blends with mixing ratios of 80/20, 50/50/ 20/80 were prepared in an internal mixer at 165 °C and a rotor speed of 50 rpm followed by compression molding. The blends and the individual components were irradiated using 3.0 MeV electron beam (EB) accelerator at doses ranging from 0 to 100 kGy in air and room temperature. Later, the PP/EPDM blends were subjected to gel content, thermal stability, crystallization and dynamic mechanical properties before and after irradiation. Results revealed that the irradiation-induced crosslinking in the PP/EPDM blend increases with the increasing irradiation dose and the EPDM content in the blend. However, the thermal stability of the blends did not show any significant changes upon irradiation. The dynamic mechanical analysis shows that the EPDM rich blend has higher compatibility than PP dominant blends. A further improvement in the blend compatibility found to be achieved upon irradiation.

  3. Food irradiation: Technology transfer to developing countries

    NASA Astrophysics Data System (ADS)

    Kunstadt, Peter

    This paper discusses Nordion's experiences to-date with the Food Irradiation Project in Thailand (1987-1990). This project will enable the Government of Thailand and the Thai food industry to benefit from established Canadian technology in food irradiation. It includes the design and the construction in Thailand of a multipurpose irradiation facility, similar to the Canadian Irradiation Centre. In addition Canada provides the services, for extended periods of time, of construction and installation management and experts in facility operation, maintenance and training. The Technology Transfer component is a major part of the overall Thai Food Irradiation Project. Its purpose is to familiarize Thai government and industry personnel with Canadian requirements in food regulations and distribution and to conduct market and consumer tests of selected Thai irradiated food products in Canada, once the products have Canadian regulatory approval. On completion of this project, Thailand will have the necessary facility, equipment and training to continue to provide leadership in food irradiation research, as well as scientific and technical support to food industries not only in Thailand by also in the ASEAN region.

  4. Mechanical property degradation of high crystalline SiC fiber–reinforced SiC matrix composite neutron irradiated to ~100 displacements per atom

    DOE PAGES

    Koyanagi, Takaaki; Nozawa, Takashi; Katoh, Yutai; ...

    2017-12-20

    For the development of silicon carbide (SiC) materials for next-generation nuclear structural applications, degradation of material properties under intense neutron irradiation is a critical feasibility issue. This paper evaluated the mechanical properties and microstructure of a chemical vapor infiltrated SiC matrix composite, reinforced with a multi-layer SiC/pyrolytic carbon–coated Hi-Nicalon TM Type S SiC fiber, following neutron irradiation at 319 and 629 °C to ~100 displacements per atom. Both the proportional limit stress and ultimate flexural strength were significantly degraded as a result of irradiation at both temperatures. After irradiation at 319 °C, the quasi-ductile fracture behavior of the nonirradiated compositemore » became brittle, a result that was explained by a loss of functionality of the fiber/matrix interface associated with the disappearance of the interphase due to irradiation. Finally, the specimens irradiated at 629 °C showed increased apparent failure strain because the fiber/matrix interphase was weakened by irradiation-induced partial debonding.« less

  5. Phytosanitary irradiation - Development and application

    NASA Astrophysics Data System (ADS)

    Hallman, Guy J.; Loaharanu, Paisan

    2016-12-01

    Phytosanitary irradiation, the use of ionizing radiation to disinfest traded agricultural commodities of regulated pests, is a growing use of food irradiation that has great continued potential for increase in commercial application. In 2015 approximately 25,000 t of fresh fruits and vegetables were irradiated globally for phytosanitary purposes. Phytosanitary irradiation has resulted in a paradigm shift in phytosanitation in that the final burden of proof of efficacy of the treatment has shifted from no live pests upon inspection at a port of entry (as for all previous phytosanitary treatments) to total dependence on certification that the treatment for target pests is based on adequate science and is commercially conducted and protected from post-treatment infestation. In this regard phytosanitary irradiation is managed more like a hazard analysis and critical control point (HACCP) approach more consistent with food safety than phytosanitation. Thus, phytosanitary irradiation offers a more complete and rigorous methodology for safeguarding than other phytosanitary measures. The role of different organizations in achieving commercial application of phytosanitary irradiation is discussed as well as future issues and applications, including new generic doses.

  6. Gamma radiation effects on commercial Mexican bread making wheat flour

    NASA Astrophysics Data System (ADS)

    Agúndez-Arvizu, Z.; Fernández-Ramírez, M. V.; Arce-Corrales, M. E.; Cruz-Zaragoza, E.; Meléndrez, R.; Chernov, V.; Barboza-Flores, M.

    2006-04-01

    Gamma irradiation is considered to be an alternative method for food preservation to prevent food spoilage, insect infestation and capable of reducing the microbial load. In the present investigation, commercial Mexican bread making wheat flour was irradiated at 1.0 kGy using a 60C Gammabeam 651 PT irradiator facility. No changes were detected in moisture, protein and ashes in gamma irradiated samples as compared to those of non-irradiated samples. Slight radiation effects were observed in the alveogram values and farinograph properties; the falling number decreased 11%, the absorption as well as the mixing tolerance were practically unchanged by irradiation. An increase of 15% in the stability value and a 29% in the dough development time were observed. Also the deformation energy decreased 7% with no change at all in the tenacity/extensibility factor. Total aerobic, yeast and mold counts were reduced 96%, 25% and 75%; respectively by the irradiation process. The obtained results confirm that gamma irradiation is effective in reducing the microbial load in bread making wheat flour without a significant change in the physicochemical and baking properties.

  7. THE EFFECT OF SINGLE IRRADIATION OF RABBITS IN THE LAST DAYS OF PREGNANCY ON THE FUNCTIONAL CONDITIONS OF FETUSES (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, N.A.

    1959-01-01

    At the end of pregnancy (24th to 27th day) rabbits were subjected to a single total x-ray irradiation of 600 r or to irradiation of the anterior pad of the body of 1200 r. The reaction of the fetuses to asphyxia caused by ligature of the umbilical cords was studied 24 and 72 hours after the irradiation: the time to the first asphyxiated inspiration, the number of respirations, and the time to the last respiratory movement (the characteristics of the condition of the respiratory centers) and the length of life. Both total irradiation and the irradiation of the anterior partmore » of the animal body increased the excitation of the fetal respiratory centers, which was replaced by depression in 72 hours. The delay in the fetal development can be noticed by their weight in 72 hours. These data demonstrate that the changes in the condition of the organism after the irradiation have an injurious effect on the fetuses (even on those which were not subjected to direct irradiation). (auth)« less

  8. Back-irradiation photonic sintering for defect-free high-conductivity metal patterns on transparent plastic

    NASA Astrophysics Data System (ADS)

    Kwak, Ji Hye; Chun, Su Jin; Shon, Chae-Hwa; Jung, Sunshin

    2018-04-01

    Photonic sintering has attracted considerable attention for printed electronics. It irradiates high-intensity light onto the front surface of metal nanoparticle patterns, which often causes defects such as delamination, cavities, and cracks in the patterns. Here, a back-irradiation photonic sintering method is developed for obtaining defect-free high-conductivity metal patterns on a transparent plastic substrate, through which high-intensity light is irradiated onto the back surface of the patterns for a few milliseconds. Ag patterns back-irradiated with ˜10.0 J cm-2 are defect-free in contrast to front-irradiated patterns and exhibited an electrical conductivity of ˜2.3 × 107 S m-1. Furthermore, real-time high-speed observation reveals that the mechanisms that generate defects in the front-irradiated patterns and prevent defects in the back-irradiated patterns are closely related to vapor trapping. In contrast to the latter, in the former, vapor is trapped and delaminates the patterns from the substrate because the front of the patterns acts as a barrier to vapor venting.

  9. Mechanical property degradation of high crystalline SiC fiber–reinforced SiC matrix composite neutron irradiated to ~100 displacements per atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanagi, Takaaki; Nozawa, Takashi; Katoh, Yutai

    For the development of silicon carbide (SiC) materials for next-generation nuclear structural applications, degradation of material properties under intense neutron irradiation is a critical feasibility issue. This paper evaluated the mechanical properties and microstructure of a chemical vapor infiltrated SiC matrix composite, reinforced with a multi-layer SiC/pyrolytic carbon–coated Hi-Nicalon TM Type S SiC fiber, following neutron irradiation at 319 and 629 °C to ~100 displacements per atom. Both the proportional limit stress and ultimate flexural strength were significantly degraded as a result of irradiation at both temperatures. After irradiation at 319 °C, the quasi-ductile fracture behavior of the nonirradiated compositemore » became brittle, a result that was explained by a loss of functionality of the fiber/matrix interface associated with the disappearance of the interphase due to irradiation. Finally, the specimens irradiated at 629 °C showed increased apparent failure strain because the fiber/matrix interphase was weakened by irradiation-induced partial debonding.« less

  10. THE QUESTION "RECOVERY SPEED OR RESISTANCE INCREASE" OF THE X-IRRADIATED SKIN OF FROGS (RANA ESCULENTA) IN SMALL FRACTIONATION (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, C.; Lorenz, W.

    1959-01-01

    Sixty-one frogs (Rana esculenta) were irradiated in urethan anesthesia. The right upper leg was irradiated with a surface dose of 12,000 r. The left upper legs of the same animals were irradiated subsequently with a surface dose of 2 times 6000 r, respectively 3 times 4000 r at intervals of 1, 3, 6, 24, or 72 hours. The single irradiation of 12,000 r caused changes of the pigentation and formation of ulcers after 3 weeks. After 8 weeks 35 out of 61 animals had formation of ulcers. The first tendency for healing was observed after 10 weeks. By the usemore » of divided doses of 3 times 4000 r or 2 tirees 6000 r, with intervals as short as one hour, the effect of the irradiation caused less damage, probably due to increased resistence, which may have developed during the intervals between irradiations. (auth)« less

  11. TEM in situ micropillar compression tests of ion irradiated oxide dispersion strengthened alloy

    NASA Astrophysics Data System (ADS)

    Yano, K. H.; Swenson, M. J.; Wu, Y.; Wharry, J. P.

    2017-01-01

    The growing role of charged particle irradiation in the evaluation of nuclear reactor candidate materials requires the development of novel methods to assess mechanical properties in near-surface irradiation damage layers just a few micrometers thick. In situ transmission electron microscopic (TEM) mechanical testing is one such promising method. In this work, microcompression pillars are fabricated from a Fe2+ ion irradiated bulk specimen of a model Fe-9%Cr oxide dispersion strengthened (ODS) alloy. Yield strengths measured directly from TEM in situ compression tests are within expected values, and are consistent with predictions based on the irradiated microstructure. Measured elastic modulus values, once adjusted for the amount of deformation and deflection in the base material, are also within the expected range. A pillar size effect is only observed in samples with minimum dimension ≤100 nm due to the low inter-obstacle spacing in the as received and irradiated material. TEM in situ micropillar compression tests hold great promise for quantitatively determining mechanical properties of shallow ion-irradiated layers.

  12. Qualitative and Quantitative Assessment of Sewage Sludge by Gamma Irradiation with Pasteurization as a Tool for Hygienization

    NASA Astrophysics Data System (ADS)

    Priyadarshini, J.; Roy, P. K.; Mazumdar, A.

    2014-01-01

    In this research work, management of sewage sludge disposal on agricultural soils is addressed. The increasing amount of sewage sludge and more legislative regulation of its disposal have stimulated the need for developing new technologies to recycle sewage sludge efficiently. The research was structured along two main avenues, namely, the efficacy of the irradiation process for removing enteric pathogenic microorganisms and the potential of irradiated sludge as a soil amendment. This study investigated how application of irradiation with heat treatment reduced pathogens in sewage sludge. Raw and pasteurised Sewage sludge was treated at different dose treatment of 1.5, 3 and 5 kilogray (kGy) gamma irradiation individually and for 3 kGy sufficiency was achieved. Decrease in irradiation dose from 5 to 3 kGy was observed for pasteurised sludge resulting in saving of radiation energy. The presence of heavy metals in untreated sewage sludge has raised concerns, which decreases after irradiation.

  13. X-ray radiation and development inhibition of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)

    NASA Astrophysics Data System (ADS)

    Kim, Junheon; Jung, Soon-Oh; Jang, Sin Ae; Kim, Jeongmin; Park, Chung Gyoo

    2015-10-01

    Effect of X-ray radiation on the development inhibition was evaluated for all stages of the life cycle of Helicoverpa armigera to determine a radiation dose for potential quarantine treatment against the insect. ED99 values for inhibition of hatching, pupation, and adult emergence from irradiated eggs were 413, 210, and 154 Gy, respectively. ED99 values for inhibition of pupation and adult emergence from irradiated larvae were 221 and 167 Gy, respectively. Pupa was the most tolerant to X-ray radiation. ED99 value for inhibition of adult emergence from irradiated pupae was as high as 2310 Gy, whereas that for inhibition of F1 egg hatching was only 66 Gy. ED99 value for inhibition of hatching of F1 eggs which were laid by irradiated adults was estimated to 194 Gy. X-ray irradiation against H. armigera is recommended as an alternative method to methyl bromide fumigation for phytosanitary treatments during quarantine. X-ray radiation dose of 200 Gy is proposed as a potential quarantine treatment dose for H. armigera eggs and larvae.

  14. Application of X-Ray Computer Tomography for Observing the Central Void Formations and the Fuel Pin Deformations of Irradiated FBR Fuel Assemblies

    NASA Astrophysics Data System (ADS)

    Katsuyama, Kozo; Nagamine, Tsuyoshi; Furuya, Hirotaka

    2010-10-01

    In order to observe the structural change in the interior of irradiated fuel assemblies, a non-destructive post-irradiation examination (PIE) technique using X-ray computer tomography (X-ray CT) was developed. This X-ray CT technique was applied to observe the central void formations and fuel pin deformations of fuel assemblies which had been irradiated at high linear heat rating. The central void sizes in all fuel pins were measured on five cross sections of the core fuel column as a parameter for evaluating fuel thermal performance. In addition, the fuel pin deformations were analyzed from X-ray CT images obtained along the axial direction of a fuel assembly at the same separation interval. A dependence of void size on the linear heat rating was seen in the fuel assembly irradiated at high linear heat rating. In addition, significant undulations of the fuel pin were observed along the axial direction, coinciding with the wrapping wire pitch in the core fuel column. Application of the developed technique should provide enhanced resolution of measurements and simplify fuel PIEs.

  15. Study of evaporating the irradiated graphite in equilibrium low-temperature plasma

    NASA Astrophysics Data System (ADS)

    Bespala, E. V.; Novoselov, I. Yu.; Pavlyuk, A. O.; Kotlyarevskiy, S. G.

    2018-01-01

    The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137Cs, 60Co, 90Sr, 36Cl, and 3H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems "irradiated graphite-argon" and "irradiated graphite-helium" for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant 137Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.

  16. Experimental design and analysis for irradiation of SiC/SiC composite tubes under a prototypic high heat flux

    NASA Astrophysics Data System (ADS)

    Petrie, Christian M.; Koyanagi, Takaaki; McDuffee, Joel L.; Deck, Christian P.; Katoh, Yutai; Terrani, Kurt A.

    2017-08-01

    The purpose of this work is to design an irradiation vehicle for testing silicon carbide (SiC) fiber-reinforced SiC matrix composite cladding materials under conditions representative of a light water reactor in order to validate thermo-mechanical models of stress states in these materials due to irradiation swelling and differential thermal expansion. The design allows for a constant tube outer surface temperature in the range of 300-350 °C under a representative high heat flux (∼0.66 MW/m2) during one cycle of irradiation in an un-instrumented ;rabbit; capsule in the High Flux Isotope Reactor. An engineered aluminum foil was developed to absorb the expansion of the cladding tubes, due to irradiation swelling, without changing the thermal resistance of the gap between the cladding and irradiation capsule. Finite-element analyses of the capsule were performed, and the models used to calculate thermal contact resistance were validated by out-of-pile testing and post-irradiation examination of the foils and passive SiC thermometry. Six irradiated cladding tubes (both monoliths and composites) were irradiated and subsequently disassembled in a hot cell. The calculated temperatures of passive SiC thermometry inside the capsules showed good agreement with temperatures measured post-irradiation, with two calculated temperatures falling within 10 °C of experimental measurements. The success of this design could lead to new opportunities for irradiation applications with materials that suffer from irradiation swelling, creep, or other dimensional changes that can affect the specimen temperature during irradiation.

  17. Experimental design and analysis for irradiation of SiC/SiC composite tubes under a prototypic high heat flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrie, Christian M.; Koyanagi, Takaaki; McDuffee, Joel L.

    The purpose of this work is to design an irradiation vehicle for testing silicon carbide (SiC) fiber-reinforced SiC matrix composite cladding materials under conditions representative of a light water reactor in order to validate thermo-mechanical models of stress states in these materials due to irradiation swelling and differential thermal expansion. The design allows for a constant tube outer surface temperature in the range of 300–350 °C under a representative high heat flux (~0.66 MW/m 2) during one cycle of irradiation in an un-instrumented “rabbit” capsule in the High Flux Isotope Reactor. An engineered aluminum foil was developed to absorb themore » expansion of the cladding tubes, due to irradiation swelling, without changing the thermal resistance of the gap between the cladding and irradiation capsule. Finite-element analyses of the capsule were performed, and the models used to calculate thermal contact resistance were validated by out-of-pile testing and post-irradiation examination of the foils and passive SiC thermometry. Six irradiated cladding tubes (both monoliths and composites) were irradiated and subsequently disassembled in a hot cell. The calculated temperatures of passive SiC thermometry inside the capsules showed good agreement with temperatures measured post-irradiation, with two calculated temperatures falling within 10 °C of experimental measurements. Furthermore, the success of this design could lead to new opportunities for irradiation applications with materials that suffer from irradiation swelling, creep, or other dimensional changes that can affect the specimen temperature during irradiation.« less

  18. Irradiation of fish fillets: Relation of vapor phase reactions to storage quality

    USGS Publications Warehouse

    Spinelli, J.; Dollar, A.M.; Wedemeyer, G.A.; Gallagher, E.C.

    1969-01-01

    Fish fillets irradiated under air, nitrogen, oxygen, or carbon dioxide atmospheres developed rancidlike flavors when they were stored at refrigerated temperatures. Packing and irradiating under vacuum or helium prevented development of off-flavors during storage.Significant quantities of nitrate and oxidizing substances were formed when oxygen, nitrogen, or air were present in the vapor or liquid phases contained in a Pyrex glass model system exposed to ionizing radiation supplied by a 60Co source. It was demonstrated that the delayed flavor changes that occur in stored fish fillets result from the reaction of vapor phase radiolysis products and the fish tissue substrates.

  19. Effects of Radiation on the Microbiota and Intestinal Inflammatory Disease

    DTIC Science & Technology

    2016-09-01

    completion of initial experiments investigating the effect of whole body and focal (GI tract) irradiation of mice on the bacterial and fungal microbiota. We...acute symptoms, will develop long-term consequences of irradiation including permanent changes to bowel function and intestinal fibrosis, which can...exposed to total body irradiation (TBI) or focal radiation to the GI tract. Timeline Status Site 1 (Stephen Shiao, MD, PhD) Site 2

  20. Relationship of oxygen dose to angiogenesis induction in irradiated tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marx, R.E.; Ehler, W.J.; Tayapongsak, P.

    1990-11-01

    This study was accomplished in an irradiated rabbit model to assess the angiogenic properties of normobaric oxygen and hyperbaric oxygen as compared with air-breathing controls. Results indicated that normobaric oxygen had no angiogenic properties above normal revascularization of irradiated tissue than did air-breathing controls (p = 0.89). Hyperbaric oxygen demonstrated an eight- to ninefold increased vascular density over both normobaric oxygen and air-breathing controls (p = 0.001). Irradiated tissue develops a hypovascular-hypocellular-hypoxic tissue that does not revascularize spontaneously. Results failed to demonstrate an angiogenic effect of normobaric oxygen. It is suggested that oxygen in this sense is a drug requiringmore » hyperbaric pressures to generate therapeutic effects on chronically hypovascular irradiated tissue.« less

  1. The nature of compensatory and restorative processes in the livers of animals irradiated during hypokinesia

    NASA Technical Reports Server (NTRS)

    Chernov, I. P.; Trusova, L. V.

    1981-01-01

    The nature of postirradiation repair in the livers of rats irradiated during hypokinesia is investigated. Hepatocyte population counts, mitotic activity, binuclear cell content, and karyometric studies were done to ascertain the effects of combined hypokinesia and radiation. Hypokinesia is shown to change the nature and rate of post-irradiation changes in the liver, the effect varying with the timing of irradiation relative to the length of hypokinesia. It is concluded that the changes in the compensatory and restorative processes are caused by stress developed in response to isolation and restricted mobility. By changing neuroendocrine system activity, the stress stimulates cell and tissue repair mechanisms at a certain stage essential to the body's reaction of subsequent irradiation.

  2. Development of a Radial Deconsolidation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmreich, Grant W.; Montgomery, Fred C.; Hunn, John D.

    2015-12-01

    A series of experiments have been initiated to determine the retention or mobility of fission products* in AGR fuel compacts [Petti, et al. 2010]. This information is needed to refine fission product transport models. The AGR-3/4 irradiation test involved half-inch-long compacts that each contained twenty designed-to-fail (DTF) particles, with 20-μm thick carbon-coated kernels whose coatings were deliberately fabricated such that they would crack under irradiation, providing a known source of post-irradiation isotopes. The DTF particles in these compacts were axially distributed along the compact centerline so that the diffusion of fission products released from the DTF kernels would be radiallymore » symmetric [Hunn, et al. 2012; Hunn et al. 2011; Kercher, et al. 2011; Hunn, et al. 2007]. Compacts containing DTF particles were irradiated at Idaho National Laboratory (INL) at the Advanced Test Reactor (ATR) [Collin, 2015]. Analysis of the diffusion of these various post-irradiation isotopes through the compact requires a method to radially deconsolidate the compacts so that nested-annular volumes may be analyzed for post-irradiation isotope inventory in the compact matrix, TRISO outer pyrolytic carbon (OPyC), and DTF kernels. An effective radial deconsolidation method and apparatus appropriate to this application has been developed and parametrically characterized.« less

  3. Principles and practices of irradiation creep experiment using pressurized mini-bellows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, Thak Sang; Li, Meimei; Snead, Lance Lewis

    2013-01-01

    This article is to describe the key design principles and application practices of the newly developed in-reactor irradiation creep testing technology using pressurized mini-bellows. Miniature creep test frames were designed to fit into the high flux isotope reactor (HFIR) rabbit capsule whose internal diameter is slightly less than 10 mm. The most important consideration for this in-reactor creep testing technology was the ability of the small pressurized metallic bellows to survive irradiation at elevated temperatures while maintaining applied load to the specimen. Conceptual designs have been developed for inducing tension and compression stresses in specimens. Both the theoretical model andmore » the in-furnace test confirmed that a gas-pressurized bellows can produce high enough stress to induce irradiation creep in subsize specimens. Discussion focuses on the possible stress range in specimens induced by the miniature gas-pressurized bellows and the limitations imposed by the size and structure of thin-walled bellows. A brief introduction to the in-reactor creep experiment for graphite is provided to connect to the companion paper describing the application practices and irradiation creep data. An experimental and calculation procedure to obtain in-situ applied stress values from post irradiation in-furnace force measurements is also presented.« less

  4. Fatal hemorrhagic cystitis induced by pelvic irradiation and cyclophosphamide therapy. Case reports and review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, W.E.; Keldahl, L.R.

    The potent cytotoxic drug cyclophosphamide has been used extensively for neoplastic and non-neoplastic diseases. Patients taking this drug may have received or may be receiving pelvic irradiation concurrently. This report describes two patients who developed fatal hemorrhagic cystitis induced by pelvic irradiation and cyclophosphamide therapy. Etiology, incidence, pathologic descriptions, and diagnostic and therapeutic aspects of this entity are described. The incidence and risk of serious, life-threatening bladder hemorrhage from cyclophosphamide therapy is increased by prior or concurrent pelvic irradiation. Alternative cytotoxic, non-urotoxic chemotherapy should be used in these high-risk patients.

  5. Fish and food preservation by radiation in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, M.M.

    1985-01-01

    Bangladesh Atomic Energy Commission (BAEC) has been engaged for the last two decades in research and development activities in food irradiation and has been actively participating in research projects under the Regional Project in Food Irradiation (RPFI) of the RCA countries since its inception. The Institute of Food and Radiation Biology (IFRB) of the Commission has been using since 1979 a 50,000 curie Cobalt-60 gamma source (Gamma beam-650) for R and D and pilot-scale studies on food irradiation. The present status of food irradiation and its prospects of commercial introduction in Bangladesh are described.

  6. Combined treatment using irradiation and heat: Susceptibility of bacillus, salmonella, staphylococcus and clostridium

    NASA Astrophysics Data System (ADS)

    Vincent, F.; Tibi, A.; Goury, V.; Darbord, J. C.

    The development of irradiation for food preservation is dependant on good process for choosing the doses. The reduction of the doses is particularly suitable, not only for the cost, but for organoleptic qualities of food. Many studies have demonstrated that Bacillus, Salmonella, Staphylococcus and Clostridium species are frequently isolated from food. The objective of this work is to prove the efficiency of combined treatments using irradiation and temperature (80°C), to reduce the dose of irradiation and the organoleptic alterations of food. The results are dependant on environmental conditions of the bacteria.

  7. GROWTH AND DEVELOPMENT OF MICE OFFSPRING AFTER IRRADIATION IN UTERO WITH 2,450-MHZ MICROWAVES

    EPA Science Inventory

    Mice offspring irradiated in utero with 2,450-MHz radio-frequency (RF) radiation at 0 or 28 mW/cm. sq. (whole-body averaged specific absorption rate = 0 or 16.5 W/kg) for 100 minutes daily on days 6 through 17 of gestation were evaluated for maturation and development on days 1, ...

  8. Concept development of X-ray mass thickness detection for irradiated items upon electron beam irradiation processing

    NASA Astrophysics Data System (ADS)

    Qin, Huaili; Yang, Guang; Kuang, Shan; Wang, Qiang; Liu, Jingjing; Zhang, Xiaomin; Li, Cancan; Han, Zhiwei; Li, Yuanjing

    2018-02-01

    The present project will adopt the principle and technology of X-ray imaging to quickly measure the mass thickness (wherein the mass thickness of the item =density of the item × thickness of the item) of the irradiated items and thus to determine whether the packaging size and inside location of the item will meet the requirements for treating thickness upon electron beam irradiation processing. The development of algorithm of X-ray mass thickness detector as well as the prediction of dose distribution have been completed. The development of the algorithm was based on the X-ray attenuation. 4 standard modules, Al sheet, Al ladders, PMMA sheet and PMMA ladders, were selected for the algorithm development. The algorithm was optimized until the error between tested mass thickness and standard mass thickness was less than 5%. Dose distribution of all energy (1-10 MeV) for each mass thickness was obtained using Monte-carlo method and used for the analysis of dose distribution, which provides the information of whether the item will be penetrated or not, as well as the Max. dose, Min. dose and DUR of the whole item.

  9. Food Irradiation: Is It Safe and Wholesome?

    ERIC Educational Resources Information Center

    Rebus, Shirley

    1990-01-01

    Addresses some of the major issues of food irradiation with respect to safety and wholesomeness, including formation of radiolytic products, effects on nutrients, prevention of food-borne illness, development of radiation-resistant bacteria, and formation of afaltoxins. (Author)

  10. THE EFFECT OF IONIZING RADIATION ON THE DEVELOPMENT OF IMMUNITY TO TETANUS AND TYPHOID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shabarov, I.A.

    1958-01-01

    The general x-ray irradiation of mice (550 r) 2 days before immunization caused a marked fall in antitoxic (anti-tetanus) and in antibacterial (anti- typhoid) immunity. The immunity developing after the mice had been vaccinated (with 3 injections of tetravalent vaccine and 2 injections of crude toxoid) during a period when they exhibited marked symptoms of radiation sickness was only greater than the natural resistance of nonimmunized healthy mice to injections of tetanus toxin and to infection with typhoid bacilli. When mice were immunized 2 days after general irradiation with purified adsorbed toxoid the immunogenic properties of which greatly exceed thosemore » of ordinary crude toxoid, they exhibited a higher degree of antitoxic immunity than was obtained with ordinary toxoid; however, the difference in the immunological efficacy of these two preparations was less marked in the irradiated animals than in animals which had not been irradiated. (auth)« less

  11. Canadian experience in irradiation and testing of MOX fuel

    NASA Astrophysics Data System (ADS)

    Yatabe, S.; Floyd, M.; Dimayuga, F.

    2018-04-01

    Experimental irradiation and performance testing of Mixed OXide (MOX) fuel at the Canadian Nuclear Laboratories (CNL) has taken place for more than 40 years. These experiments investigated MOX fuel behaviour and compared it with UO2 behaviour to develop and verify fuel performance models. This article compares the performance of MOX of various concentrations and homogeneities, under different irradiation conditions. These results can be applied to future fuel designs. MOX fuel irradiated by CNL was found to be comparable in performance to similarly designed and operated UO2 fuel. MOX differs in behaviour from UO2 fuel in several ways. Fission-gas release, grain growth and the thickness of zirconium oxide on the inner sheath appear to be related to MOX fuel homogeneity. Columnar grains formed at the pellet centre begin to develop at lower powers in MOX than in UO2 fuel.

  12. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Fernandez, Luis

    2010-09-10

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the acceleratorsmore » are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.« less

  13. [The use of Foley catheter in reconstructive procedures involving the middle third of the facial skeleton].

    PubMed

    Medvedev, Yu A; Petruk, P S; Shamanaeva, L S; Volkova, V A; Davidov, A R

    2016-01-01

    The aim of this study was to improve the efficiency of surgical treatment of patients with fractures involving zygomatico-orbital complex and maxillary sinus through the use of Foley catheter. 352 patients with fractures of the middle third of the facial skeleton were treated at the Departments of Oral & Maxillofacial Surgery in Novokuznetsk Institute and I.M. Sechenov First MSMU. All patients underwent open reduction and osteosynthesis using extramedullary titanium mini-plates and NiTi mini-clamps. In the cases with large bone defects additional reconstructive techniques were used such as replantation of bone fragments and endoprosthesis with NiTi implants. For the purpose of drainage and retention Foley catheter was placed in the cavity of the maxillary sinus after the surgical procedure. We obtained good and satisfactory results in the majority of clinical cases. The use of Foley catheter was found to be very effective for the post-operative drainage and hemostasis of the maxillary sinus and in cases involving the use of fixation implant in the reconstructive surgeries in the middle third of the face.

  14. Three-dimensional assessment of maxillary changes associated with bone anchored maxillary protraction

    PubMed Central

    Nguyen, Tung; Cevidanes, Lucia; Cornelis, Marie A.; Heymann, Gavin; de Paula, Leonardo K.; De Clerck, Hugo

    2013-01-01

    Introduction Bone-anchored maxillary protraction has been shown to be an effective treatment modality for the correction of Class III malocclusions. The purpose of this study was to evaluate 3-dimensional changes in the maxilla, the surrounding hard and soft tissues, and the circummaxillary sutures after bone-anchored maxillary protraction treatment. Methods Twenty-five consecutive skeletal Class III patients between the ages of 9 and 13 years (mean, 11.10 ± 1.1 years) were treated with Class III intermaxillary elastics and bilateral miniplates (2 in the infrazygomatic crests of the maxilla and 2 in the anterior mandible). Cone-beam computed tomographs were taken before initial loading and 1 year out. Three-dimensional models were generated from the tomographs, registered on the anterior cranial base, superimposed, and analyzed by using color maps. Results The maxilla showed a mean forward displacement of 3.7 mm, and the zygomas and the maxillary incisors came forward 3.7 and 4.3 mm, respectively. Conclusions This treatment approach produced significant orthopedic changes in the maxilla and the zygomas in growing Class III patients. PMID:22133943

  15. Evaluation of selected chemical processes for production of low-cost silicon, phase 2

    NASA Technical Reports Server (NTRS)

    Blocher, J. M., Jr.; Browning, M. F.; Wilson, W. J.; Carmichael, D. C.

    1977-01-01

    Potential designs for an integrated fluidized-bed reactor/zinc vaporizer/SiCl4 preheater unit are being considered and heat-transfer calculations have been initiated on versions of the zinc vaporizer section. Estimates of the cost of the silicon prepared in the experimental facility have been made for projected capacities of 25, 50, 75, and 100 metric ton of silicon. A 35 percent saving is obtained in going from 25 metric ton/year to the 50 metric ton/year level. This analysis, coupled with the recognition that use of two reactors in the 50 metric ton/year version allows for continued operation (at reduced capacity) with one reactor shut down, has resulted in a recommendation for adoption of an experimental facility capacity of 50 metric ton/year or greater. At this stage, the change to a larger size facility would not increase the design costs appreciably. In the experimental support program, the effects of seed bed particle size and depth were studied, and operation of the miniplant with a new zinc vaporizer was initiated, revealing the need for modification of the latter.

  16. CERTAIN SPECIFIC FEATURES OF THE HIGHER NERVOUS ACTIVITY OF FULLY GROWN ANIMALS IRRADIATED ANTENATALLY WITH IONIZING RADIATION. I. THE INFLUENCE OF IONIZING RADIATION ON THE OFFSPRING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piontkovskii, I.A.

    1958-09-01

    Irradiation of pregnant female aniamals and women with ionizing radiation may cause the appearance of a variety of congenital deformities in the offspring and may interfere with their postnatal development. L. Hicks points out the particular sensitivity of the nervous system of the embryo to ionizing radiation. Thus irradiation of rats on the 9th, 11th, 12th, and 13th days of prenatal development may cause, in addition to somatic deformities, anencephaly (on the 9th day), hydrocephaly (on the 11th day), microcephaly (on the 12th13th day), failure of development of the subcortical structures, the corpora callosa and so on. The influence ofmore » ionizing radiation on the nervous system during antenatal irradiation has been studied mainly morphologically. There are no indications in the literature of the state of the higher nervous activity of fully grown animals exposed at various periods of their antenatal development to the action of ionizing radiation. The effect of ionizing radiation, applied in various doses and at different stages of embryonic development, on the state of the higher nervous activity of animals was studied. (auth)« less

  17. Analysis of localised dose distribution in human body by Monte Carlo code system for photon irradiation.

    PubMed

    Ohnishi, S; Odano, N; Nariyama, N; Saito, K

    2004-01-01

    In usual personal dosimetry, whole body irradiation is assumed. However, the opportunity of partial irradiation is increasing and the tendencies of protection quantities caused under those irradiation conditions are different. The code system has been developed and effective dose and organ absorbed doses have been calculated in the case of horizontal narrow photon beam irradiated from various directions at three representative body sections, 40, 50 and 60 cm originating from the top of the head. This work covers 24 beam directions, each 15 degrees angle ranging from 0 degrees to 345 degrees, three energy levels, 45 keV, 90 keV and 1.25 MeV, and three beam diameters of 1, 2 and 4 cm. These results show that the beam injected from diagonally front or other specific direction causes peak dose in the case of partial irradiation.

  18. Study of penile circulation before and after radiation in patients with prostate cancer and its effect on impotence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, B.

    1985-06-01

    Decrease in penile blood flow has been implicated as the cause of erectile impotence in patients receiving pelvic irradiation. To determine any changes in the penile circulation secondary to pelvic irradiation, the authors measured the penile blood flow before and 6-9 months following completion of irradiation in six patients with prostate cancer. None of these patients had hormonal manipulation. The non-invasive techniques of Penile Brachial Index (PBI) and Penile Flow Index (PFI) were used to study penile circulation. Two patients developed impotence 2 to 4 1/2 months following completion of irradiation. There was no significant change in penile blood flowmore » following irradiation in any of the six patients studied. The etiology of post-irradiation impotence is probably multifactorial and it may be an oversimplification to attribute it to a single organic cause.« less

  19. Photocarrier Radiometry for Non-contact Evaluation of Monocrystalline Silicon Solar Cell Under Low-Energy (< 200 keV) Proton Irradiation

    NASA Astrophysics Data System (ADS)

    Oliullah, Md.; Liu, J. Y.; Song, P.; Wang, Y.

    2018-06-01

    A three-layer theoretical model is developed for the characterization of the electronic transport properties (lifetime τ, diffusion coefficient D, and surface recombination velocity s) with energetic particle irradiation on solar cells using non-contact photocarrier radiometry. Monte Carlo (MC) simulation is carried out to obtain the depth profiles of the proton irradiation layer at different low energies (< 200 keV). The monocrystalline silicon (c-Si) solar cells are investigated under different low-energy proton irradiation, and the carrier transport parameters of the three layers are obtained by best-fitting of the experimental results. The results show that the low-energy protons have little influence on the transport parameters of the non-irradiated layer, but high influences on both of the p and n-region irradiation layers which are consisted of MC simulation.

  20. Development of an expanded-field irradiation technique using a gimbaled x-ray head

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Tomohiro; Miyabe, Yuki, E-mail: miyabe@kuhp.kyoto-u.ac.jp; Yamada, Masahiro

    2014-10-15

    Purpose: The Vero4DRT has a maximum field size of 150.0 × 150.0 mm. The purpose of the present study was to develop expanded-field irradiation techniques using the unique gimbaled x-ray head of the Vero4DRT and to evaluate the dosimetric characteristics thereof. Methods: Two techniques were developed. One features gimbal swing irradiation and multiple static segments consisting of four separate fields exhibiting 2.39° gimbal rotation around two orthogonal axes. The central beam axis for each piecewise-field is shifted 40 mm from the isocenters of the left–right (LR) and superior–inferior (SI) directions, and, thus, the irradiation field size is expanded to 230.8 × 230.8 mm. Adjacentmore » regions were created at the isocenter (a center-adjacent expandedfield) and 20 mm from the isocenter (an off-adjacent expandedfield). The field gaps or overlaps of combined piecewise-fields were established by adjustment of gimbal rotation and movement of the multileaf collimator (MLC). Another technique features dynamic segment irradiation in which the beam is delivered while rotating the gimbal. The dose profile is controlled by a combination of gimbal swing motion and opening and closing of the MLC. This enabled the authors to expand the irradiation field on the LR axis because the direction of MLC motion is parallel to that axis. A field 220.6 × 150.0 mm in dimensions was configured and examined. To evaluate the dosimetric characteristics of the expandedfields, films inserted into water-equivalent phantoms at depths of 50, 100, and 150 mm were irradiated and field sizes, penumbrae, flatness, and symmetry analyzed. In addition, the expanded-field irradiation techniques were applied to intensity-modulated radiation therapy (IMRT). A head-and-neck IMRT field, created using a conventional Linac (the Varian Clinac iX), was reproduced employing an expanded-field of the Vero4DRT. The simulated dose distribution for the expanded-IMRT field was compared to the measured dose distribution. Results: The field sizes, penumbrae, flatness, and symmetry of the center- and off-adjacent expanded-fields were 230.2–232.1 mm, 6.8–10.7 mm, 2.3%–5.1%, and −0.5% to −0.4%, respectively, at a depth of 100 mm. Similarly, the field sizes, penumbrae, flatness, and symmetry of dynamic segment irradiation on the LR axis were 219.2 mm, 6.0–6.2 mm, 3.4%, and −0.1%, respectively, at a depth of 100 mm. In the area of expanded-IMRT dose distribution, the passing rate of 5% dose difference was 85.8% between measurements and simulation, and the 3%/3 mm gamma passing rate was 96.4%. Conclusions: Expanded-field irradiation techniques were developed using a gimbaled x-ray head. The techniques effectively extend target areas, as required when whole-breast irradiation or head-and-neck IMRT is contemplated.« less

  1. The development and clinical use of a beam ON-LINE PET system mounted on a rotating gantry port in proton therapy.

    PubMed

    Nishio, Teiji; Miyatake, Aya; Ogino, Takashi; Nakagawa, Keiichi; Saijo, Nagahiro; Esumi, Hiroyasu

    2010-01-01

    To verify the usefulness of our developed beam ON-LINE positron emission tomography (PET) system mounted on a rotating gantry port (BOLPs-RGp) for dose-volume delivery-guided proton therapy (DGPT). In the proton treatment room at our facility, a BOLPs-RGp was constructed so that a planar PET apparatus could be mounted with its field of view covering the iso-center of the beam irradiation system. Activity measurements were performed in 48 patients with tumors of the head and neck, liver, lungs, prostate, and brain. The position and intensity of the activity were measured using the BOLPs-RGp during the 200 s immediately after the proton irradiation. The daily measured activity images acquired by the BOLPs-RGp showed the proton irradiation volume in each patient. Changes in the proton-irradiated volume were indicated by differences between a reference activity image (taken at the first treatment) and the daily activity-images. In the case of head-and-neck treatment, the activity distribution changed in the areas where partial tumor reduction was observed. In the case of liver treatment, it was observed that the washout effect in necrotic tumor cells was slower than in non-necrotic tumor cells. The BOLPs-RGp was developed for the DGPT. The accuracy of proton treatment was evaluated by measuring changes of daily measured activity. Information about the positron-emitting nuclei generated during proton irradiation can be used as a basis for ensuring the high accuracy of irradiation in proton treatment.

  2. Genetically mediated Nf1 loss in mice promotes diverse radiation-induced tumors modeling second malignant neoplasms

    PubMed Central

    Choi, Grace; Huang, Brian; Pinarbasi, Emile; Braunstein, Steve E.; Horvai, Andrew E.; Kogan, Scott; Bhatia, Smita; Faddegon, Bruce; Nakamura, Jean L.

    2013-01-01

    Second malignant neoplasms (SMNs) are therapy-induced malignancies and a growing problem in cancer survivors, particularly survivors of childhood cancers. The lack of experimental models of SMNs has limited understanding of their pathogenesis. It is currently not possible to predict or prevent this devastating late complication. Individuals with Neurofibromatosis I (NF1) are at increased risk of developing therapy-induced cancers for unclear reasons. To model SMNs, we replicated clinical radiotherapy and delivered fractionated abdominal irradiation to Nf1+/− and wildtype mice. Similar to irradiated cancer survivors, irradiated wildtype and Nf1+/− mice developed diverse in-field malignancies. In Nf1+/− mice, fractionated irradiation promoted both classical NF1-associated malignancies and malignancies unassociated with the NF1 syndrome but typical of SMNs. Nf1 heterozygosity potentiated the mutagenic effects of irradiation, as evidenced by the significantly reduced survival after irradiation and tumor development that was often characterized by synchronous primary tumors. Interestingly, diverse radiation-induced tumors arising in wildtype and Nf1+/− mice shared a genetic signature characterized by monoallelic loss of Nf1 and the adjacent Trp53 allele. These findings implicate Nf1 loss as mediating tumorigenesis in a broad range of cell types and organs extending beyond the classical NF1 tumor histologies. Examining clinical SMN samples, we found LOH of NF1 in SMNs from non-NF1 patients. Nf1 heterozygosity confers broad susceptibility to genotoxin-induced tumorigenesis and this paradigm serves as an experimental platform for future studies of SMNs. PMID:23071067

  3. Hodgkin's disease: thyroid dysfunction following external irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, K.; Shimaoka, K.

    1981-01-01

    The thyroid gland is commonly included in the field of radiation therapy for patients with malignant lymphoma and with head and neck tumors. The radiation dose for malignant diseases varies considerably depending on the purpose of treatment and the institutional policies. A substantial number of these patients are developing subclinical and clinical hypothyroidism. The risk of developing hypothyroidism after a moderate radiation dose of 2000 to 4500 rads has been reported to be 10 to 20 percent. In addition, subclinical hypothyroidism is induced further in one third of the patients. There are also suggestions that external irradiation of the thyroidmore » gland in patients with malignant lymphomas, as well as internal irradiation with radioiodine of the normal and hyperthyroid human thyroid glands, would induce elevations of serum antithyroid autoantibody titers. However, only a few cases of Graves disease following irradiation to the thyroid gland have been reported. We encountered a young woman who received radiation therapy to the mantle field for her Hodgkin's disease and developed hypothyroxinemia without overt signs and symptoms of hypothyroidism, followed by appearance of nodular goiter and then full-blown Graves disease.« less

  4. [Bioelectrical activity of the myocardium in children born to parents irradiated during the Chernobyl disaster with isolated abnormal chords of the left ventricle].

    PubMed

    Kondrashova, V H

    2010-01-01

    A total 156 children of the main group (children born to parents irradiated during the Chernobyl disaster), who according to echocardiography revealed a different number of isolated abnormal chords of the left ventricle, 20 healthy children, 24 children of nosological control group and 50 children of referent group have been observed. It was found that isolated AHLV in children born to irradiated parents, was associated with changes in standard ECG, reflecting the presence of arrhythmias or predictors of their development. No significant differences in subgroups of children with different number of isolated AHLV have been established. Children with isolated AHLV born to parents irradiated during the Chernobyl accident, as all patients with minor structural anomalies of the heart, should be refered to a risk group in connection with the possibility of the development, in the first place, ventricular extrasystoles, paroxysmal ventricular tachycardia. Early diagnosis of isolated AHLV will allow to assess the outlook for further course of the disease and develop a plan of treatment and preventive measures.

  5. On the Detectability of Acoustic Waves Induced Following Irradiation by a Radiotherapy Linear Accelerator.

    PubMed

    Hickling, Susannah; Leger, Pierre; El Naqa, Issam

    2016-02-11

    Irradiating an object with a megavoltage photon beam generated by a clinical radiotherapy linear accelerator (linac) induces acoustic waves through the photoacoustic effect. The detection and characterization of such acoustic waves has potential applications in radiation therapy dosimetry. The purpose of this work was to gain insight into the properties of such acoustic waves by simulating and experimentally detecting them in a well-defined system consisting of a metal block suspended in a water tank. A novel simulation workflow was developed by combining radiotherapy Monte Carlo and acoustic wave transport simulation techniques. Different set-up parameters such as photon beam energy, metal block depth, metal block width, and metal block material were varied, and the simulated and experimental acoustic waveforms showed the same relative amplitude trends and frequency variations for such setup changes. The simulation platform developed in this work can easily be extended to other irradiation situations, and will be an invaluable tool for developing a radiotherapy dosimetry system based on the detection of the acoustic waves induced following linear accelerator irradiation.

  6. Hypothyroidism after x irradiation to the neck: three case reports and a brief review of the literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, R.A.; Corrigan, D.F.; Wartofsky, L.

    1976-05-01

    Three patients who developed hypothyroidism after x irradiation to the neck are presented. The first two cases demonstrate that patients can develop clinical and chemical hypothyroidism after a very short interval following radiotherapy. Hypothyroidism developed in the first patient in the absence of surgical manipulation of the neck, or a large iodine load 4 months after receiving 6800 rad of x-ray therapy to his neck for carcinoma of the larynx. The second patient developed hypothyroidism approximately 6 months after his radiotherapy for carcinoma of the esophagus. Both of these patients demonstrated high titers of serum antithyroid antibodies. A third patientmore » with Hodgkin's disease did not manifest clinical symptoms and signs of hypothyroidism until 6 years after radiation therapy. These cases demonstrate the variability of onset of hypothyroidism after radiotherapy and emphasize the need for careful evaluation of thyroid function before and after neck irradiation.« less

  7. High resolution laser beam induced current images under trichromatic laser radiation: approximation to the solar irradiation.

    PubMed

    Navas, F J; Alcántara, R; Fernández-Lorenzo, C; Martín-Calleja, J

    2010-03-01

    A laser beam induced current (LBIC) map of a photoactive surface is a very useful tool when it is necessary to study the spatial variability of properties such as photoconverter efficiency or factors connected with the recombination of carriers. Obtaining high spatial resolution LBIC maps involves irradiating the photoactive surface with a photonic beam with Gaussian power distribution and with a low dispersion coefficient. Laser emission fulfils these characteristics, but against it is the fact that it is highly monochromatic and therefore has a spectral distribution different to solar emissions. This work presents an instrumental system and procedure to obtain high spatial resolution LBIC maps in conditions approximating solar irradiation. The methodology developed consists of a trichromatic irradiation system based on three sources of laser excitation with emission in the red, green, and blue zones of the electromagnetic spectrum. The relative irradiation powers are determined by either solar spectrum distribution or Planck's emission formula which provides information approximate to the behavior of the system if it were under solar irradiation. In turn, an algorithm and a procedure have been developed to be able to form images based on the scans performed by the three lasers, providing information about the photoconverter efficiency of photovoltaic devices under the irradiation conditions used. This system has been checked with three photosensitive devices based on three different technologies: a commercial silicon photodiode, a commercial photoresistor, and a dye-sensitized solar cell. These devices make it possible to check how the superficial quantum efficiency has areas dependent upon the excitation wavelength while it has been possible to measure global incident photon-to-current efficiency values approximating those that would be obtained under irradiation conditions with sunlight.

  8. Influence of thermal and radiation effects on microstructural and mechanical properties of Nb-1Zr

    NASA Astrophysics Data System (ADS)

    Leonard, Keith J.; Busby, Jeremy T.; Zinkle, Steven J.

    2011-07-01

    The microstructural changes and corresponding effects on mechanical properties, electrical resistivity and density of Nb-1Zr were examined following neutron irradiation up to 1.8 dpa at temperatures of 1073, 1223 and 1373 K and compared with material thermally aged for similar exposure times of ˜1100 h. Thermally driven changes in the development of intragranular and grain boundary precipitate phases showed a greater influence on mechanical and physical properties compared to irradiation-induced defects for the examined conditions. Initial formation of the zirconium oxide precipitates was identified as cubic structured plates following a Baker-Nutting orientation relationship to the β-Nb matrix, with particles developing a monoclinic structure on further growth. Tensile properties of the Nb-1Zr samples showed increased strength and reduced elongation following aging and irradiation below 1373 K, with the largest tensile and hardness increases following aging at 1098 K. Tensile properties at 1373 K for the aged and irradiated samples were similar to that of the as-annealed material. Total elongation was lower in the aged material due to a strain hardening response, rather than a weak strain softening observed in the irradiated materials due in part to an irregular distribution of the precipitates in the irradiated materials. Though intergranular fracture surfaces were observed on the 1248 K aged tensile specimens, the aged and irradiated material showed uniform elongations >3% and total elongation >12% for all conditions tested. Cavity formation was observed in material irradiated to 0.9 dpa at 1073 and 1223 K. However, since void densities were estimated to be below 3 × 10 17 m -3 these voids contributed little to either mechanical strengthening of the material or measured density changes.

  9. Localized comedo formation after cobalt irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myskowski, P.L.; Safai, B.

    1981-10-01

    Following Cobalt-60 irradiation for a left frontotemporal tumor, a 61-year-old woman developed comedones on the forehead. These changes responded to conventional acne therapy with retinoic acid. Multiple acneigenic factors were implicated in the pathogenesis of her lesions.

  10. EXPEDITIOUS SYNTHESIS OF IONIC LIQUIDS USING ULTRASOUND AND MICROWAVE IRRADIATION

    EPA Science Inventory

    Environmentally friendlier preparations of ionic liquids have been developed that proceed expeditiously under the influence of microwave or ultrasound irradiation conditions using neat reactants, alkylimidazoles and alkyl halides. A number of useful ionic liquids have been prepar...

  11. Bone necrosis and tumor induction following experimental intraoperative irradiation.

    PubMed

    Powers, B E; Gillette, E L; McChesney, S L; LeCouteur, R A; Withrow, S J

    1989-09-01

    The bone of the lumbar vertebrae of 153 dogs was examined 2 and 5 years after intraoperative irradiation (IORT), fractionated external beam irradiation (EBRT), or the combination. Groups of dogs received 15 to 55 Gy IORT only, 10 to 47.5 Gy IORT combined with 50 Gy EBRT in 2 Gy fractions or 60 to 80 Gy EBRT in 30 fractions. Six MeV electrons were used for IORT, and EBRT was done using photons from a 6 MV linear accelerator. The paraaortic region was irradiated and the ventral part of the lumbar vertebrae was in the 90% isodose level. Two years after irradiation, the dose causing significant bone necrosis as determined by at least 50% empty lacunae in the vertebral cortex was 38.2 Gy IORT alone and 32.5 Gy IORT combined with EBRT. Five years after irradiation, the dose causing 50% empty lacunae was 28.5 Gy IORT only and 14.4 Gy IORT combined with EBRT. The ED50 for lesions of the ventral vertebral artery was 21.7 Gy IORT only and 20.1 Gy IORT combined with 50 Gy EBRT 2 years after irradiation and 27.0 Gy IORT only and 20.0 Gy IORT combined with 50 Gy EBRT 5 years after irradiation. All lesions after EBRT only were mild. Eight dogs developed osteosarcomas 4 to 5 years after irradiation, one at 47.5 Gy IORT only and the remainder at 25.0 Gy IORT and above combined with 50 Gy EBRT. In conclusion, the extent of empty lacunae, indicating bone necrosis, was more severe 5 years after irradiation than after 2 years. The effect of 50 Gy EBRT in 2 Gy fractions was equivalent to about 6 Gy IORT 2 years after irradiation and to about 14 Gy 5 years after irradiation. Based on these estimates, IORT doses of 10 to 15 Gy have an effect 5 times or greater than the amount given in 2 Gy fractions. Osteosarcomas occurred in 21% of dogs which received doses greater than 25 Gy IORT. Doses of 15 to 20 Gy IORT in combination with 50 Gy EBRT in 2 Gy fractions may be near the tolerance level for late developing bone injury.

  12. The LASP Interactive Solar IRradiance Datacenter (LISIRD)

    NASA Astrophysics Data System (ADS)

    Pankratz, C. K.; Lindholm, D. M.; Snow, M.; Knapp, B.; Woodraska, D.; Templeman, B.; Woods, T. N.; Eparvier, F. G.; Fontenla, J.; Harder, J.; McClintock, W. E.

    2007-12-01

    The Laboratory for Atmospheric and Space Physics (LASP) has been making space-based measurements of solar irradiance for many decades, and thus has established an extensive catalog of past and ongoing space- based solar irradiance measurements. In order to maximize the accessibility and usability of solar irradiance data and information from multiple missions, LASP is developing the LASP Interactive Solar IRradiance Datacenter (LISIRD) to better serve the needs of researchers, educators, and the general public. This data center is providing interactive and direct access to a comprehensive set of solar spectral irradiance measurements from the soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as state-of-the-art measurements of Total Solar Irradiance (TSI). LASP researchers are also responsible for an extensive set of solar irradiance models and historical solar irradiance reconstructions, which will also be accessible via this data center over time. LISIRD currently provides access to solar irradiance data sets from the SORCE, TIMED-SEE, UARS-SOLSTICE, and SME instruments, spanning 1981 to the present, as well as a Lyman Alpha composite that is available from 1947 to the present. LISIRD also provides data products of interest to the space weather community, whose needs demand high time cadence and near real-time data delivery. This poster provides an overview of the LISIRD system, summarizes the data sets currently available, describes future plans and capabilities, and provides details on how to access solar irradiance data through LISIRD's various interfaces.

  13. Reactive oxygen species production in mitochondria of human gingival fibroblast induced by blue light irradiation.

    PubMed

    Yoshida, Ayaka; Yoshino, Fumihiko; Makita, Tetsuya; Maehata, Yojiro; Higashi, Kazuyoshi; Miyamoto, Chihiro; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Takahashi, Osamu; Lee, Masaichi Chang-il

    2013-12-05

    In recent years, it has become well known that the production of reactive oxygen species (ROS) induced by blue-light irradiation causes adverse effects of photo-aging, such as age-related macular degeneration of the retina. Thus, orange-tinted glasses are used to protect the retina during dental treatment involving blue-light irradiation (e.g., dental resin restorations or tooth bleaching treatments). However, there are few studies examining the effects of blue-light irradiation on oral tissue. For the first time, we report that blue-light irradiation by quartz tungsten halogen lamp (QTH) or light-emitting diode (LED) decreased cell proliferation activity of human gingival fibroblasts (HGFs) in a time-dependent manner (<5 min). Additionally, in a morphological study, the cytotoxic effect was observed in the cell organelles, especially the mitochondria. Furthermore, ROS generation induced by the blue-light irradiation was detected in mitochondria of HGFs using fluorimetry. In all analyses, the cytotoxicity was significantly higher after LED irradiation compared with cytotoxicity after QTH irradiation. These results suggest that blue light irradiation, especially by LED light sources used in dental aesthetic treatment, might have adverse effects on human gingival tissue. Hence, this necessitates the development of new dental aesthetic treatment methods and/or techniques to protect HGFs from blue light irradiation during dental therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Radiographic findings after treatment with balloon brachytherapy accelerated partial breast irradiation.

    PubMed

    Ibrahim, Nafisa B; Anandan, Srividya; Hartman, Audrey L; McSweeney, Michelle; Chun, Jeanette; McKee, Andrea; Yang, Rebecca; Kim, Cathleen

    2015-01-01

    The use of accelerated partial breast irradiation (APBI) following breast-conserving surgery is rapidly gaining popularity as an alternative to whole-breast irradiation (WBI) in selected patients with early-stage breast cancer. Although data on the long-term effectiveness and safety of APBI accelerated partial breast irradiation are still being gathered, the shorter treatment course and narrowed radiation target of APBI accelerated partial breast irradiation provide an attractive alternative for carefully selected patients. These patients include those with relatively small tumors (≤3 cm), negative or close margins, and negative sentinel lymph nodes. Possible long-term complications include telangiectasia and the development of a palpable mass at the lumpectomy site. Mammographic findings in patients who have undergone APBI accelerated partial breast irradiation are distinct from those in patients who have undergone conventional WBI whole-breast irradiation . The most common post-APBI accelerated partial breast irradiation radiographic findings include formation of seromas at the lumpectomy site, focal parenchymal changes such as increased trabeculation and parenchymal distortion, fat necrosis, and skin changes such as thickening or retraction. Given the continued evolution of breast cancer treatment, it is important that radiologists have a comprehensive understanding of APBI accelerated partial breast irradiation in terms of rationale, patient selection criteria, common postprocedural radiographic findings (and how they differ from post-WBI whole-breast irradiation findings), and advantages and potential complications. RSNA, 2015

  15. Effect of gamma-ray irradiation on the unloaded animal model

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Il; Yoon, Min-Chul; Sung, Nak-Yoon; Kim, Jae-Hun; Jong Lee, Yun; Lee, Ki-Soo; Choi, In-Ho; Nam, Gung Uk; Lee, Ju-Woon

    During the space flight, human beings encountered the extreme conditions such as the cosmic ray irradiation and microgravity. There have been developed the animal models to simulate the microgravity condition in laboratory, but no study was carried out to investigate the combined effect of microgravity and exposure to irradiation. In this study, it was examined the effect of gamma irradiation on the suspension model. Rats were divided into four groups, Group I was loaded and not exposed to gamma irradiation, Group 2 was unloaded and not exposed, Group 3 was loaded and exposed to gamma irradiation at the dose of 50 mSV, and Group 4 was unloaded and exposed to gamma irradiation at the same dose. It was measured body, muscles and tissues weights and the biological analysis and the hematological response in blood samples were conducted. Anti-gravity tissue weight was only changed between loading and un-loading condition. However, there was no difference between irradiation exposed and not exposed unloaded groups. To know the difference of protein expression in anti-gravity tissues, 2 dimensional electrophoresis was performed. It has been found that the expression levels of several proteins were different by unloading condition and by irradiation exposed condition, respectively. These results provided the information on the combined effect of irradiation and microgravity to simulate space flight, and could be useful to search the candidate material for the countermeasure against space environment.

  16. Effects of Normothermic Conditioned Microwave Irradiation on Cultured Cells Using an Irradiation System with Semiconductor Oscillator and Thermo-regulatory Applicator

    PubMed Central

    Asano, Mamiko; Sakaguchi, Minoru; Tanaka, Satoshi; Kashimura, Keiichiro; Mitani, Tomohiko; Kawase, Masaya; Matsumura, Hitoshi; Yamaguchi, Takako; Fujita, Yoshikazu; Tabuse, Katsuyoshi

    2017-01-01

    We investigated the effects of microwave irradiation under normothermic conditions on cultured cells. For this study, we developed an irradiation system constituted with semiconductor microwave oscillator (2.45 GHz) and thermos-regulatory applicator, which could irradiate microwaves at varied output powers to maintain the temperature of cultured cells at 37 °C. Seven out of eight types of cultured cells were killed by microwave irradiation, where four were not affected by thermal treatment at 42.5 °C. Since the dielectric properties such as ε’, ε” and tanδ showed similar values at 2.45 GHz among cell types and media, the degree of microwave energy absorbed by cells might be almost the same among cell types. Thus, the vulnerability of cells to microwave irradiation might be different among cell types. In HL-60 cells, which were the most sensitive to microwave irradiation, the viability decreased as irradiation time and irradiation output increased; accordingly, the decrease in viability was correlated to an increase in total joule. However, when a high or low amount of joules per minute was supplied, the correlation between cellular viability and total joules became relatively weak. It is hypothesized that kinds of cancer cells are efficiently killed by respective specific output of microwave under normothermic cellular conditions. PMID:28145466

  17. UV solar irradiance in observations and the NRLSSI and SATIRE-S models

    NASA Astrophysics Data System (ADS)

    Yeo, K. L.; Ball, W. T.; Krivova, N. A.; Solanki, S. K.; Unruh, Y. C.; Morrill, J.

    2015-08-01

    Total solar irradiance and UV spectral solar irradiance has been monitored since 1978 through a succession of space missions. This is accompanied by the development of models aimed at replicating solar irradiance by relating the variability to solar magnetic activity. The Naval Research Laboratory Solar Spectral Irradiance (NRLSSI) and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) models provide the most comprehensive reconstructions of total and spectral solar irradiance over the period of satellite observation currently available. There is persistent controversy between the various measurements and models in terms of the wavelength dependence of the variation over the solar cycle, with repercussions on our understanding of the influence of UV solar irradiance variability on the stratosphere. We review the measurement and modeling of UV solar irradiance variability over the period of satellite observation. The SATIRE-S reconstruction is consistent with spectral solar irradiance observations where they are reliable. It is also supported by an independent, empirical reconstruction of UV spectral solar irradiance based on Upper Atmosphere Research Satellite/Solar Ultraviolet Spectral Irradiance Monitor measurements from an earlier study. The weaker solar cycle variability produced by NRLSSI between 300 and 400 nm is not evident in any available record. We show that although the method employed to construct NRLSSI is principally sound, reconstructed solar cycle variability is detrimentally affected by the uncertainty in the SSI observations it draws upon in the derivation. Based on our findings, we recommend, when choosing between the two models, the use of SATIRE-S for climate studies.

  18. Modeling thermal and irradiation-induced swelling effects on the integrity of Ti3SiC2/SiC joints

    NASA Astrophysics Data System (ADS)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2017-11-01

    Previously, results for CVD-SiC joined by a solid state displacement reaction to form a dual-phase SiC/MAX phase joint subsequently irradiated at 800 °C to 5 dpa indicated some cracking in the joint. This paper elucidates the cracking origin by developing a model that accounts for differential thermal expansion and irradiation-induced swelling between the substrate and joint materials by using a continuum damage mechanics approach with support from micromechanical modeling. Damage accumulation in joined specimens irradiated at four temperatures (300 °C, 400 °C, 500 °C and 800 °C) is analyzed. We assume the experimental irradiation dose is sufficient to cause saturation swelling in SiC. The analyses indicate that the SiC/MAX joint survives irradiation-induced swelling at all the irradiation temperatures considered. The joint experiences only minor damage when heated to and irradiated at 800 °C as well as cooling to room temperature. The prediction agrees with the experimental findings available for this case. However, the joint heated to 300 °C suffers severe damage during irradiation-induced swelling at this temperature, and additional damage after cooling to room temperature. Irradiation at 400 °C and subsequent cooling to room temperature produced similar damage to the irradiation 300 °C case, but to a lesser extent. The joint heated to 500 °C and irradiated at this temperature suffered only very minor damage, but further moderate damage occurred after cooling to room temperature.

  19. Modeling thermal and irradiation-induced swelling effects on the integrity of Ti 3SiC 2/SiC joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    Previously, results for CVD-SiC joined by a solid state displacement reaction to form a dual-phase SiC/MAX phase joint subsequently irradiated at 800 °C to 5 dpa indicated some cracking in the joint. Here, this paper elucidates the cracking origin by developing a model that accounts for differential thermal expansion and irradiation-induced swelling between the substrate and joint materials by using a continuum damage mechanics approach with support from micromechanical modeling. Damage accumulation in joined specimens irradiated at four temperatures (300 °C, 400 °C, 500 °C and 800 °C) is analyzed. We assume the experimental irradiation dose is sufficient to causemore » saturation swelling in SiC. The analyses indicate that the SiC/MAX joint survives irradiation-induced swelling at all the irradiation temperatures considered. The joint experiences only minor damage when heated to and irradiated at 800 °C as well as cooling to room temperature. The prediction agrees with the experimental findings available for this case. However, the joint heated to 300 °C suffers severe damage during irradiation-induced swelling at this temperature, and additional damage after cooling to room temperature. Irradiation at 400 °C and subsequent cooling to room temperature produced similar damage to the irradiation 300 °C case, but to a lesser extent. Finally, the joint heated to 500 °C and irradiated at this temperature suffered only very minor damage, but further moderate damage occurred after cooling to room temperature.« less

  20. Modeling thermal and irradiation-induced swelling effects on the integrity of Ti 3SiC 2/SiC joints

    DOE PAGES

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2017-09-08

    Previously, results for CVD-SiC joined by a solid state displacement reaction to form a dual-phase SiC/MAX phase joint subsequently irradiated at 800 °C to 5 dpa indicated some cracking in the joint. Here, this paper elucidates the cracking origin by developing a model that accounts for differential thermal expansion and irradiation-induced swelling between the substrate and joint materials by using a continuum damage mechanics approach with support from micromechanical modeling. Damage accumulation in joined specimens irradiated at four temperatures (300 °C, 400 °C, 500 °C and 800 °C) is analyzed. We assume the experimental irradiation dose is sufficient to causemore » saturation swelling in SiC. The analyses indicate that the SiC/MAX joint survives irradiation-induced swelling at all the irradiation temperatures considered. The joint experiences only minor damage when heated to and irradiated at 800 °C as well as cooling to room temperature. The prediction agrees with the experimental findings available for this case. However, the joint heated to 300 °C suffers severe damage during irradiation-induced swelling at this temperature, and additional damage after cooling to room temperature. Irradiation at 400 °C and subsequent cooling to room temperature produced similar damage to the irradiation 300 °C case, but to a lesser extent. Finally, the joint heated to 500 °C and irradiated at this temperature suffered only very minor damage, but further moderate damage occurred after cooling to room temperature.« less

  1. Broadband Radiometric LED Measurements

    PubMed Central

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2017-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed. PMID:28649167

  2. Broadband Radiometric LED Measurements.

    PubMed

    Eppeldauer, G P; Cooksey, C C; Yoon, H W; Hanssen, L M; Podobedov, V B; Vest, R E; Arp, U; Miller, C C

    2016-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  3. Detailed measurements of local thickness changes for U-7Mo dispersion fuel plates with Al-3.5Si matrix after irradiation at different powers in the RERTR-9B experiment

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Williams, Walter; Robinson, Adam; Wachs, Dan; Moore, Glenn; Crawford, Doug

    2017-10-01

    The Materials Management and Minimization program is developing fuel designs to replace highly enriched fuel with fuels of low enrichment. Swelling is an important irradiation behavior that needs to be well understood. Data from high resolution thickness measurements performed on U-7Mo dispersion fuel plates with Al-Si alloy matrices that were irradiated at high power is sparse. This paper reports the results of detailed thickness measurements performed on two dispersion fuel plates that were irradiated at relatively high power to high fission densities in the Advanced Test Reactor in the same RERTR-9B experiment. Both plates were irradiated to similar fission densities, but one was irradiated at a higher power than the other. The goal of this work is to identify any differences in the swelling behavior when fuel plates are irradiated at different powers to the same fission densities. Based on the results of detailed thickness measurments, more swelling occurs when a U-7Mo dispersion fuel with Al-3.5Si matrix is irradiated to a high fission density at high power compared to one irradiated at a lower power to high fission density.

  4. Evaluation of the limulus amoebocyte lysate test in conjunction with a gram negative bacterial plate count for detecting irradiation of chicken

    NASA Astrophysics Data System (ADS)

    Scotter, Susan L.; Wood, Roger; McWeeny, David J.

    A study to evaluate the potential of the Limulus amoebocyte lysate (LAL) test in conjuction with a Gram negative bacteria (GNB) plate count for detecting the irradiation of chicken is described. Preliminary studies demonstrated that chickens irradiated at an absorbed dose of 2.5 kGy could be differentiated from unirradiated birds by measuring levels of endotoxin and of numbers of GNB on chicken skin. Irradiated birds were found to have endotoxin levels similar to those found in unirradiated birds but significantly lower numbers of GNB. In a limited study the test was found to be applicable to birds from different processors. The effect of temperature abuse on the microbiological profile, and thus the efficacy of the test, was also investigated. After temperature abuse, the irradiated birds were identifiable at worst up to 3 days after irradiation treatment at the 2.5 kGy level and at best some 13 days after irradiation. Temperature abuse at 15°C resulted in rapid recovery of surviving micro-organisms which made differentiation of irradiated and unirradiated birds using this test unreliable. The microbiological quality of the bird prior to irradiation treatment also affected the test as large numbers of GNB present on the bird prior to irradiation treatment resulted in larger numbers of survivors. In addition, monitoring the developing flora after irradiation treatment and during subsequent chilled storage also aided differentiation of irradiated and unirradiated birds. Large numbers of yeasts and Gram positive cocci were isolated from irradiated carcasses whereas Gram negative oxidative rods were the predominant spoilage flora on unirradiated birds.

  5. Seeing Is Believing: Effective Components of Professional Development Training for County Extension Educators on an Innovation Perceived as Risky--Food Irradiation

    ERIC Educational Resources Information Center

    Thompson, B. M.; Schielack, J. F.; Vestal, T. A.

    2004-01-01

    Decades of research have provided evidence that food irradiation is a safe technology that can decrease the incidence of foodborne diseases; however, adoption of this technology has been slow. The purpose of our study was to qualitatively explore the effectiveness of various components of a professional development training on family and consumer…

  6. The measurement of solar spectral irradiances at wavelengths between 40 and 4000 A

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1983-01-01

    Two 1/8-meter Ebert-Fastie spectrometers were refurbished and upgraded in order to measure the solar spectral irradiances between 1160 A and 3100 A. An evacuated 1/4-meter normal-incidence spectrometer was also fabricated for spectral irradiance measurements over the wavelength range from 1250 A to 250 A. Procedures were developed for the calibration of all three instruments utilizing standards at the National Bureau of Standards. The two 1/8-meter spectrometers were flown to measure the solar spectral irradiances near solar maximum on two different dates. Data from these flights were analyzed. The performance of the spectrometers, and the results of an analysis of the variabilities of the solar spectral irradiances over the solar cycles 20 and 21 are discussed.

  7. Modeling the irradiance and temperature rependence of photovoltaic modules in PVsyst

    DOE PAGES

    Sauer, Kenneth J.; Roessler, Thomas; Hansen, Clifford W.

    2014-11-10

    In order to reliably simulate the energy yield of photovoltaic (PV) systems, it is necessary to have an accurate model of how the PV modules perform with respect to irradiance and cell temperature. Building on previous work that addresses the irradiance dependence, two approaches to fit the temperature dependence of module power in PVsyst have been developed and are applied here to recent multi-irradiance and -temperature data for a standard Yingli Solar PV module type. The results demonstrate that it is possible to match the measured irradiance and temperature dependence of PV modules in PVsyst. As a result, improvements inmore » energy yield prediction using the optimized models relative to the PVsyst standard model are considered significant for decisions about project financing.« less

  8. Status Report on Irradiation Capsules Containing Welded FeCrAl Specimens for Radiation Tolerance Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard H.

    2016-02-26

    This status report provides the background and current status of a series of irradiation capsules, or “rabbits”, that were designed and built to test the contributions of microstructure, composition, damage dose, and irradiation temperature on the radiation tolerance of candidate FeCrAl alloys being developed to have enhanced weldability and radiation tolerance. These rabbits will also test the validity of using an ultra-miniature tensile specimen to assess the mechanical properties of irradiated FeCrAl base metal and weldments. All rabbits are to be irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) to damage doses up tomore » ≥15 dpa at temperatures between 200-550°C.« less

  9. Reconstruction of solar UV irradiance since 1974

    NASA Astrophysics Data System (ADS)

    Krivova, N. A.; Solanki, S. K.; Wenzler, T.; Podlipnik, B.

    2009-09-01

    Variations of the solar UV irradiance are an important driver of chemical and physical processes in the Earth's upper atmosphere and may also influence global climate. Here we reconstruct solar UV irradiance in the range 115-400 nm over the period 1974-2007 by making use of the recently developed empirical extension of the Spectral And Total Irradiance Reconstruction (SATIRE) models employing Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) data. The evolution of the solar photospheric magnetic flux, which is a central input to the model, is described by the magnetograms and continuum images recorded at the Kitt Peak National Solar Observatory between 1974 and 2003 and by the Michelson Doppler Imager instrument on SOHO since 1996. The reconstruction extends the available observational record by 1.5 solar cycles. The reconstructed Ly-α irradiance agrees well with the composite time series by Woods et al. (2000). The amplitude of the irradiance variations grows with decreasing wavelength and in the wavelength regions of special interest for studies of the Earth's climate (Ly-α and oxygen absorption continuum and bands between 130 and 350 nm) is 1-2 orders of magnitude stronger than in the visible or if integrated over all wavelengths (total solar irradiance).

  10. Pollen and spores as biological recorders of past ultraviolet irradiance.

    NASA Astrophysics Data System (ADS)

    Fraser, Wesley; Jardine, Phillip; Lomax, Barry; Sephton, Mark; Shanahan, Timothy; Miller, Charlotte; Gosling, William

    2017-04-01

    Ultraviolet (UV) irradiance from the Sun is a key driver of climatic and biotic change. UV irradiance modulates processes in the stratosphere, and influences the biosphere from ecosystem-level through to the largest scale patterns of diversification and extinction. Yet our understanding of UV irradiance is limited to the present; no validated empirical method exists to reconstruct UV flux over long, geologically relevant timescales. Here, we show that a recently developed proxy for UV irradiance based on spore and pollen chemistry can be used over long (100,000 years) timescales. First, we demonstrate spatial variation in spore and pollen chemistry correlate with known latitudinal solar irradiance gradients. Second, using this relationship we provide a reconstruction of past changes in solar irradiance based on the pollen record obtained from Lake Bosumtwi in Ghana. Variations in the chemistry of grass pollen from the Lake Bosumtwi record show a link to multiple orbital precessional cycles (19-21,000 years). By providing a unique, local proxy for broad spectrum solar irradiance, the chemical analysis of spores and pollen offers unprecedented opportunities to decouple solar variability, climate and vegetation change through geologic time and a new proxy with which to probe the Earth system.

  11. Ceramography of Irradiated tristructural isotropic (TRISO) Fuel from the AGR-2 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, Francine Joyce; Stempien, John Dennis

    2016-09-01

    Ceramography was performed on cross sections from four tristructural isotropic (TRISO) coated particle fuel compacts taken from the AGR-2 experiment, which was irradiated between June 2010 and October 2013 in the Advanced Test Reactor (ATR). The fuel compacts examined in this study contained TRISO-coated particles with either uranium oxide (UO2) kernels or uranium oxide/uranium carbide (UCO) kernels that were irradiated to final burnup values between 9.0 and 11.1% FIMA. These examinations are intended to explore kernel and coating morphology evolution during irradiation. This includes kernel porosity, swelling, and migration, and irradiation-induced coating fracture and separation. Variations in behavior within amore » specific cross section, which could be related to temperature or burnup gradients within the fuel compact, are also explored. The criteria for categorizing post-irradiation particle morphologies developed for AGR-1 ceramographic exams, was applied to the particles in the AGR-2 compacts particles examined. Results are compared with similar investigations performed as part of the earlier AGR-1 irradiation experiment. This paper presents the results of the AGR-2 examinations and discusses the key implications for fuel irradiation performance.« less

  12. JOYO-1 Irradiation Test Campaign Technical Close-out, For Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Borges

    2006-01-31

    The JOYO-1 irradiation testing was designed to screen the irradiation performance of candidate cladding, structural and reflector materials in support of space reactor development. The JOYO-1 designation refers to the first of four planned irradiation tests in the JOYO reactor. Limited irradiated material performance data for the candidate materials exists for the expected Prometheus-1 duration, fluences and temperatures. Materials of interest include fuel element cladding and core materials (refractory metal alloys and silicon carbide (Sic)), vessel and plant structural materials (refractory metal alloys and nickel-base superalloys), and control and reflector materials (BeO). Key issues to be evaluated were long termmore » microstructure and material property stability. The JOYO-1 test campaign was initiated to irradiate a matrix of specimens at prototypical temperatures and fluences anticipated for the Prometheus-1 reactor [Reference (1)]. Enclosures 1 through 9 describe the specimen and temperature monitors/dosimetry fabrication efforts, capsule design, disposition of structural material irradiation rigs, and plans for post-irradiation examination. These enclosures provide a detailed overview of Naval Reactors Prime Contractor Team (NRPCT) progress in specific areas; however, efforts were in various states of completion at the termination of NRPCT involvement with and restructuring of Project Prometheus.« less

  13. Pollen and spores as biological recorders of past ultraviolet irradiance

    NASA Astrophysics Data System (ADS)

    Jardine, Phillip E.; Fraser, Wesley T.; Lomax, Barry H.; Sephton, Mark A.; Shanahan, Timothy M.; Miller, Charlotte S.; Gosling, William D.

    2016-12-01

    Solar ultraviolet (UV) irradiance is a key driver of climatic and biotic change. Ultraviolet irradiance modulates stratospheric warming and ozone production, and influences the biosphere from ecosystem-level processes through to the largest scale patterns of diversification and extinction. Yet our understanding of ultraviolet irradiance is limited because no method has been validated to reconstruct its flux over timescales relevant to climatic or biotic processes. Here, we show that a recently developed proxy for ultraviolet irradiance based on spore and pollen chemistry can be used over long (105 years) timescales. Firstly we demonstrate that spatial variations in spore and pollen chemistry correlate with known latitudinal solar irradiance gradients. Using this relationship we provide a reconstruction of past changes in solar irradiance based on the pollen record from Lake Bosumtwi in Ghana. As anticipated, variations in the chemistry of grass pollen from the Lake Bosumtwi record show a link to multiple orbital precessional cycles (19-21 thousand years). By providing a unique, local proxy for broad spectrum solar irradiance, the chemical analysis of spores and pollen offers unprecedented opportunities to decouple solar variability, climate and vegetation change through geologic time and a new proxy with which to probe the Earth system.

  14. Evaluation of instant cup noodle, irradiated for immuno-compromised patients

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Hye; Kim, Jae-Kyung; Park, Jae-Nam; Yoon, Young-Min; Sung, Nak-Yun; Kim, Jae-Hun; Song, Beom-Seok; Yook, Hong-Sun; Kim, Byeong-Keun; Lee, Ju-Woon

    2012-08-01

    In the present study, initial microbial load of instant cup noodle (ICN) was investigated and gamma irradiation applied to develop immuno-compromised patients food for their safe consumption. The initial microbial population of dried vegetable and meat, and noodle was below the detection limit (1 log CFU/g); however, that of seasoning powder was just above 4 log CFU/g. Moreover, rehydrated-ICN with water at 100 °C still show above 3 log CFU/g of microbial load, which indicates the need for an additional process to control microbial safety of the seasoning powder. The total aerobic bacteria in seasoning powder and rehydrated-ICN could be controlled with 17 kGy gamma irradiation. This result referred 17 kGy gamma irradiation could reach 'practical sterility' of ICN. The overall difference in sensory properties between the non-irradiated and irradiated ICN was insignificant. Thus, gamma irradiation could improve the microbial quality of ICN, and reduce the risk of infection posed by the seasoning powder, without any adverse effects on their sensory quality. These results suggest that gamma-irradiated ICN can be used as a snack food for immuno-compromised patients.

  15. SU-F-T-670: From the OR to the Radiobiology Lab: The Journey of a Small X-Ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, J; The University of Sydney, Sydney, NSW; The University of Newcastle, Newcastle, NSW

    Purpose: Irradiation of small animal tumor models within laboratories is vital to radiobiological experiments. Often the animals are not able to be brought back into the lab after being taken out for irradiation. Cell biology laboratories benefit from irradiation capability available around the clock without regard to patient load in an associated radiotherapy clinic. Commercial systems are available, but bulky and expensive. Methods: An intraoperative kV irradiation system (IntraBeam™) designed to deliver spherical dose distributions to surgical cavities has been repurposed for the irradiation of cell plates and small laboratory animals. An applicator has been altered to allow for simple,more » open fields. Special collimators are being developed. BEAMnrc Monte Carlo simulations with the “NRC swept BEAM” source model have been performed to characterize the dose distributions, to develop optimal collimators and as basis for dose prescription. Measurements with radiochromic film and with an ionization chamber were performed to characterize the beam and to validate the simulations. Results: Using its highest setting (50 kV and 40 µA) the x-ray unit is capable of delivering dose rates over 1 Gy/min homogeneously to standard cell plates even without an optimized collimator. Smaller areas (tumors in animals) can be irradiated with significantly higher dose rates (> 20 Gy/min) depending on distance of the source to the tumor. The HVL was found to be 0.21 mm Al which means the shielding requirements for the device are easily achievable in the lab. Conclusion: A mobile irradiation facility is feasible. It will allow easier access to radiation for radiobiology experiments. The modified system is versatile in that for cell plates homogenous irradiations can be achieved through distance from the source, while for high dose rate small field irradiations the source can be brought in close proximity to the target.« less

  16. Tumor Induction in Mice After Localized Single- or Fractionated-Dose Irradiation: Differences in Tumor Histotype and Genetic Susceptibility Based on Dose Scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmondson, Elijah F., E-mail: elijah.edmondson@colostate.edu; Hunter, Nancy R.; Weil, Michael M.

    2015-07-15

    Purpose: To investigate differences in tumor histotype, incidence, latency, and strain susceptibility in mice exposed to single-dose or clinically relevant, fractioned-dose γ-ray radiation. Methods and Materials: C3Hf/Kam and C57BL/6J mice were locally irradiated to the right hindlimb with either single large doses between 10 and 70 Gy or fractionated doses totaling 40 to 80 Gy delivered at 2-Gy/d fractions, 5 d/wk, for 4 to 8 weeks. The mice were closely evaluated for tumor development in the irradiated field for 800 days after irradiation, and all tumors were characterized histologically. Results: A total of 210 tumors were induced within the radiation field in 788 mice. Anmore » overall decrease in tumor incidence was observed after fractionated irradiation (16.4%) in comparison with single-dose irradiation (36.1%). Sarcomas were the predominant postirradiation tumor observed (n=201), with carcinomas occurring less frequently (n=9). The proportion of mice developing tumors increased significantly with total dose for both single-dose and fractionated schedules, and latencies were significantly decreased in mice exposed to larger total doses. C3Hf/Kam mice were more susceptible to tumor induction than C57BL/6J mice after single-dose irradiation; however, significant differences in tumor susceptibilities after fractionated radiation were not observed. For both strains of mice, osteosarcomas and hemangiosarcomas were significantly more common after fractionated irradiation, whereas fibrosarcomas and malignant fibrous histiocytomas were significantly more common after single-dose irradiation. Conclusions: This study investigated the tumorigenic effect of acute large doses in comparison with fractionated radiation in which both the dose and delivery schedule were similar to those used in clinical radiation therapy. Differences in tumor histotype after single-dose or fractionated radiation exposures provide novel in vivo evidence for differences in tumor susceptibility among stromal cell populations.« less

  17. AGC-2 Irradiation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, David Thomas; Windes, William; Swank, W. David

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor (VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor (HTGR) designs.[ , ] Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphites have been developed and are considered suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core components within a commercial reactor, a completemore » properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data related to the life limiting effects of irradiation creep on key physical properties of the NGNP candidate graphites. Based on experience with previous graphite core components, the phenomenon of irradiation induced creep within the graphite has been shown to be critical to the total useful lifetime of graphite components. Irradiation induced creep occurs under the simultaneous application of high temperatures, neutron irradiation, and applied stresses within the graphite components. Significant internal stresses within the graphite components can result from a second phenomenon—irradiation induced dimensional change. In this case, the graphite physically changes i.e., first shrinking and then expanding with increasing neutron dose. This disparity in material volume change can induce significant internal stresses within graphite components. Irradiation induced creep relaxes these large internal stresses, thus reducing the risk of crack formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal stress, thus allowing the components longer useful lifetimes within the core. Determining the irradiation creep rates of nuclear grade graphites is critical for determining the useful lifetime of graphite components and is a major component of the Advanced Graphite Creep (AGC) experiment.« less

  18. Acute Cerebrovascular Radiation Syndrome: Radiation Neurotoxicity , mechanisms of CNS radiation injury, advanced countermeasures for Radiation Protection of Central Nervous System.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key words: Cerebrovascular Acute Radiation Syndrome (Cv ARS), Radiation Neurotoxins (RNT), Neurotransmitters, Radiation Countermeasures, Antiradiation Vaccine (ArV), Antiradiation Blocking Antibodies, Antiradiation Antidote. Psychoneuroimmunology, Neurotoxicity. ABSTRACT: To review the role of Radiation Neurotoxins in triggering, developing of radiation induced central nervous system injury. Radiation Neurotoxins - rapidly acting blood toxic lethal agent, which activated after irradiation and concentrated, circulated in interstitial fluid, lymph, blood with interactions with cell membranes, receptors and cell compartments. Radiation Neurotoxins - biological molecules with high enzymatic activity and/or specific lipids and activated or modified after irradiation. The Radiation Neurotoxins induce increased permeability of blood vessels, disruption of the blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier and developing severe disorder of blood macro- and micro-circulation. Principles of Radiation Psychoneuro-immunology and Psychoneuro-allergology were applied for determination of pathological processes developed after irradiation or selective administration of Radiation Neurotoxins to radiation naïve mammals. Effects of radiation and exposure to radiation can develop severe irreversible abnormalities of Central Nervous System, brain structures and functions. Antiradiation Vaccine - most effective, advanced methods of protection, prevention, mitigation and treatment and was used for of Acute Radiation Syndromes and elaboration of new technology for immune-prophylaxis and immune-protection against ϒ, Heavy Ion, Neutron irradiation. Results of experiments suggested that blocking, antitoxic, antiradiation antibodies can significantly reduce toxicity of Radiation Toxins. New advanced technology include active immune-prophylaxis with Antiradiation Vaccine and Antiradiation therapy that included specific blocking antibodies to Radiation Neurotoxins. Antiradiation Vaccine and Antiradiation IgG preparations - prospective effective antidote/countermeasure for ϒ-irradiation, heavy ions irradiation, neutron irradiation. Recommendations for treatment and immune-prophylaxis of CNS injury, induced by radiation, were proposed. Specific immune therapy and specific immune prophylaxis reduce symptoms of ACvRS. This manuscript summarizes the results of experiments and considering possibility for blocking toxicological mechanisms of action of Radiation and Radiation Neurotoxins and prevention or diminishing clinical signs of injury of CNS. Experimental data suggest that Antiradiation vaccine and Antiradiation IgG with specific antibodies to Radiation Neurotoxins, Cytotoxins protect CNS against high doses of radiation.

  19. Pubertal development and final height after autologous bone marrow transplantation for acute lymphoblastic leukemia.

    PubMed

    Frisk, P; Arvidson, J; Gustafsson, J; Lönnerholm, G

    2004-01-01

    We describe pubertal development and growth in 17 children who underwent bone marrow transplantation (BMT), including total body irradiation (TBI) for ALL. Seven children also received cranial irradiation (CI) and five boys testicular irradiation. All underwent transplantation before (n=15) or at the beginning of (n=2) puberty and reached a final height (FH). Puberty started spontaneously in all boys not given testicular irradiation. All boys who received testicular irradiation developed hypergonadotrophic hypogonadism. Puberty started spontaneously in two girls and was induced with increasing doses of ethinylestradiol in two girls. In two girls, a low dose of ethinylestradiol was given until menarche. In one girl with early onset of puberty and short stature, puberty was blocked with a GnRH analogue. The standard deviation score for height decreased significantly from BMT to FH, both in the children who received TBI only (-1.1, P=0.005) as well as in those given additional CI (-1.7, P=0.027). Most of the loss occurred during puberty. In all, 10 children received growth hormone (GH) treatment. CI, young age at BMT, and short duration of GH treatment were predictors of height loss after BMT. Although limited by the small and heterogeneous sample, our study supports the use of early GH treatment in children with decelerating growth rate and low GH levels.

  20. Development of the compact proton beam therapy system dedicated to spot scanning with real-time tumor-tracking technology

    NASA Astrophysics Data System (ADS)

    Umezawa, Masumi; Fujimoto, Rintaro; Umekawa, Tooru; Fujii, Yuusuke; Takayanagi, Taisuke; Ebina, Futaro; Aoki, Takamichi; Nagamine, Yoshihiko; Matsuda, Koji; Hiramoto, Kazuo; Matsuura, Taeko; Miyamoto, Naoki; Nihongi, Hideaki; Umegaki, Kikuo; Shirato, Hiroki

    2013-04-01

    Hokkaido University and Hitachi Ltd. have started joint development of the Gated Spot Scanning Proton Therapy with Real-Time Tumor-Tracking System by integrating real-time tumor tracking technology (RTRT) and the proton therapy system dedicated to discrete spot scanning techniques under the "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)". In this development, we have designed the synchrotron-based accelerator system by using the advantages of the spot scanning technique in order to realize a more compact and lower cost proton therapy system than the conventional system. In the gated irradiation, we have focused on the issues to maximize irradiation efficiency and minimize the dose errors caused by organ motion. In order to understand the interplay effect between scanning beam delivery and target motion, we conducted a simulation study. The newly designed system consists of the synchrotron, beam transport system, one compact rotating gantry treatment room with robotic couch, and one experimental room for future research. To improve the irradiation efficiency, the new control function which enables multiple gated irradiations per synchrotron cycle has been applied and its efficacy was confirmed by the irradiation time estimation. As for the interplay effect, we confirmed that the selection of a strict gating width and scan direction enables formation of the uniform dose distribution.

  1. EXPEDITIOUS SOLVENT-FREE ORGANIC SYNTHESES USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes involve the exposure of neat reactants to microwave (MW) irradiation in the presence of supported reagents or catalysts on mineral oxides. Recent developments are described and the salient features of these high yield protocol...

  2. Effect of gamma irradiation on ethylene propylene diene terpolymer rubber composites

    NASA Astrophysics Data System (ADS)

    Abou Zeid, M. M.; Rabie, S. T.; Nada, A. A.; Khalil, A. M.; Hilal, R. H.

    2008-01-01

    Composites of ethylene propylene dine terpolymer rubber (EPDM), high density polyethylene (HDPE) and ground tire rubber powder (GTR) at different ratios were subjected to gamma irradiation at various doses up to 250 kGy. The physical, mechanical and thermal properties were investigated as a function of irradiation dose and blend composition. Gamma irradiation led to a significant improvement in the properties for all blend compositions. The results indicate that the improvement in properties is inversely proportional to the substituted ratio of GTR, attributed to the development of an interfacial adhesion between GTR and blend components. The results were confirmed by examining the fracture surfaces by scanning electron microscopy.

  3. Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum.

    PubMed

    Jiang, Chuang-Dao; Wang, Xin; Gao, Hui-Yuan; Shi, Lei; Chow, Wah Soon

    2011-03-01

    Leaf anatomy of C3 plants is mainly regulated by a systemic irradiance signal. Since the anatomical features of C4 plants are different from that of C3 plants, we investigated whether the systemic irradiance signal regulates leaf anatomical structure and photosynthetic performance in sorghum (Sorghum bicolor), a C4 plant. Compared with growth under ambient conditions (A), no significant changes in anatomical structure were observed in newly developed leaves by shading young leaves alone (YS). Shading mature leaves (MS) or whole plants (S), on the other hand, caused shade-leaf anatomy in newly developed leaves. By contrast, chloroplast ultrastructure in developing leaves depended only on their local light conditions. Functionally, shading young leaves alone had little effect on their net photosynthetic capacity and stomatal conductance, but shading mature leaves or whole plants significantly decreased these two parameters in newly developed leaves. Specifically, the net photosynthetic rate in newly developed leaves exhibited a positive linear correlation with that of mature leaves, as did stomatal conductance. In MS and S treatments, newly developed leaves exhibited severe photoinhibition under high light. By contrast, newly developed leaves in A and YS treatments were more resistant to high light relative to those in MS- and S-treated seedlings. We suggest that (1) leaf anatomical structure, photosynthetic capacity, and high-light tolerance in newly developed sorghum leaves were regulated by a systemic irradiance signal from mature leaves; and (2) chloroplast ultrastructure only weakly influenced the development of photosynthetic capacity and high-light tolerance. The potential significance of the regulation by a systemic irradiance signal is discussed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamasaki, K.; Landes, R. D.; Noda, A.

    While it is generally believed that fetuses are at high risk of developing cancers, including leukemia, after low doses of radiation, it has been reported that atomic bomb survivors exposed in utero did not show a dose response for translocations in blood T lymphocytes when they were examined at approximately 40 years of age. Subsequent mouse studies confirmed that animals irradiated during the fetal stage did not show evidence of radiation effects in lymphocytes and bone marrow cells when they were examined after reaching adulthood. However, in a study of rat mammary epithelial cells, radiation effects were clearly observed aftermore » fetal irradiation. These results indicate that the fate of chromosome aberrations induced in a fetus could vary among different tissues. Here we report on translocation frequencies in mouse thyroid cells, which were irradiated at different stages of fetal development. Cytogenetic examination was then conducted using fluorescence in situ hybridization (FISH) painting of chromosomes 1 and 3. Adult mice, 2 Gy X-ray irradiated at 15.5-day-old fetuses (E15.5), showed a higher translocation frequency (30/1,155 or 25.3 x 10 -3) than nonirradiated adult controls (0/1,007 or 0.1 x 10 -3), and was near that experienced by irradiated mothers and non-pregnant adult females (43/1,244 or 33.7 x 10 -3). These results are consistent with those seen in rat mammary cells. However, when fetuses were irradiated at an earlier stage of development (E6.5) before thyroid organogenesis, the resulting observed translocation frequency was much lower (3/502 or 5.8 x 10 -3) than that in E15.5 mice. These results suggest that after fetal irradiation, tissue stem cells record radiation effects primarily when the exposure occurs in cells that have been integrated into tissue. Embryonic stem cells that have been damaged prior to integration into the niche may undergo negative selection due to apoptosis, mitotic death or stem cell-niche cell interactions. The implications of these results in interpreting cancer risks after fetal irradiation are also discussed.« less

  5. Early changes in vascular reactivity in response to 56Fe irradiation in ApoE-/- mice

    NASA Astrophysics Data System (ADS)

    White, C. Roger; Yu, Tao; Gupta, Kiran; Babitz, Stephen K.; Black, Leland L.; Kabarowski, Janusz H.; Kucik, Dennis F.

    2015-03-01

    Epidemiological studies have established that radiation from a number of terrestrial sources increases the risk of atherosclerosis. The accelerated heavy ions in the galacto-cosmic radiation (GCR) that astronauts will encounter on in space, however, interact very differently with tissues than most types of terrestrial radiation, so the health consequences of exposure on deep-space missions are not clear. We demonstrated earlier that 56Fe, an important component of cosmic radiation, accelerates atherosclerotic plaque development. In the present study, we examined an earlier, pro-atherogenic event that might be predictive of later atherosclerotic disease. Decreased endothelium-dependent vasodilation is a prominent manifestation of vascular dysfunction that is thought to predispose humans to the development of structural vascular changes that precede the development of atherosclerotic plaques. To test the effect of heavy-ion radiation on endothelium-dependent vasodilation, we used the same ApoE-/- mouse model in which we previously demonstrated the pro-atherogenic effect of 56Fe on plaque development. Ten week old male ApoE mice (an age at which there is little atherosclerotic plaque in the descending aorta) were exposed to 2.6 Gy 56Fe. The mice were then fed a normal diet and housed under standard conditions. At 4-5 weeks post-irradiation, aortic rings were isolated and endothelial-dependent relaxation was measured. Relaxation in response to acetylcholine was significantly impaired in irradiated mice compared to age-matched, un-irradiated mice. This decrease in vascular reactivity following 56Fe irradiation occurred eight weeks prior to the development of statistically significant exacerbation of aortic plaque formation and may contribute to the formation of later atherosclerotic lesions.

  6. Development of bioactive coatings based on γ-irradiated proteins to preserve strawberries

    NASA Astrophysics Data System (ADS)

    Vu, K. D.; Hollingsworth, R. G.; Salmieri, S.; Takala, P. N.; Lacroix, M.

    2012-08-01

    Gamma irradiation was applied for creating cross-linked proteins to enhance the physicochemical properties of edible films made of calcium caseinate, whey protein isolate and glycerol. The characteristics of γ irradiated cross-linked proteins were analyzed by Fourier Transform Infrared spectroscopy. A second derivative spectra exhibited changes in band intensities that were correlated to an increase of β-sheet structure and a decrease of α-helix and unordered fractions of γ irradiated-cross-linked proteins as compared to the control without irradiation. Furthermore, on addition of methylcellulose to the irradiated protein matrix it was found that it has potential in enhancing the puncture strength and has no detrimental effect on water vapor permeability of protein based films. Finally, these film formulations were used as bioactive edible coatings containing natural antimicrobial agents (limonene and peppermint) to preserve the shelf life of fresh strawberries during storage. The bioactive coatings containing peppermint was found to be more efficient as preserving coatings than the formulations containing limonene. Irradiated proteins/methylcellulose/peppermint formulation had only 40% of decay at day 8 while it was 65% for the control.

  7. Irradiation of municipal sludge for agricultural use

    NASA Astrophysics Data System (ADS)

    Ahlstrom, Scott B.

    Research has demonstrated that irradiation is an effective means for reducing pathogens in sewage sludge to levels where sludge reuse in public areas meets criteria for protection of the public health. Complementary research has demonstrated the value of the irradiated sludge in both agronomic and animal science applications. The benefits of sludge application to cropland are well documented. The irradiation process does not increase the extractability and plant uptake of a broad range of nutrients and heavy metals from sludge-amended soils. However, it does eliminate the hazards associated with pathogen contamination when applying sludge to agricultural land. Irradiated sludge has also been evaluated as a supplemental foodstuff for cattle and sheep. The data indicate that products derived from raw sewage may have a substantial nutritive value for ruminant animals. Irradiation of sewage sludge is a practical means of sludge disinfection. Where a highly disinfected sludge is required, it should be considered as a viable sludge management alternative. Evaluation of sludge irradiation technology and its associated costs must be done with consideration of other sludge treatment processes to develop an acceptable sludge management system.

  8. Nanoindentation of ion-irradiated reactor pressure vessel steels - model-based interpretation and comparison with neutron irradiation

    NASA Astrophysics Data System (ADS)

    Röder, F.; Heintze, C.; Pecko, S.; Akhmadaliev, S.; Bergner, F.; Ulbricht, A.; Altstadt, E.

    2018-04-01

    Ion-irradiation-induced hardening is investigated on six selected reactor pressure vessel (RPV) steels. The steels were irradiated with 5 MeV Fe2+ ions at fluences ranging from 0.01 to 1.0 displacements per atom (dpa) and the induced hardening of the surface layer was probed with nanoindentation. To separate the indentation size effect and the substrate effect from the irradiation-induced hardness profile, we developed an analytic model with the plastic zone of the indentation approximated as a half sphere. This model allows the actual hardness profile to be retrieved and the measured hardness increase to be assigned to the respective fluence. The obtained values of hardness increase vs. fluence are compared for selected pairs of samples in order to extract effects of the RPV steel composition. We identify hardening effects due to increased levels of copper, manganese-nickel and phosphorous. Further comparison with available neutron-irradiated conditions of the same heats of RPV steels indicates pronounced differences of the considered effects of composition for irradiation with neutrons vs. ions.

  9. Ion beam radiation effects on natural halite crystals

    NASA Astrophysics Data System (ADS)

    Arun, T.; Ram, S. S.; Karthikeyan, B.; Ranjith, P.; Ray, D. K.; Rout, B.; Krishna, J. B. M.; Sengupta, Pranesh; Parlapalli, Venkata Satyam

    2017-10-01

    Halites are one of the interesting material due to its color variations. Natural halites whose color ranges from transparent to dark blue were studied by UV-VIS and Raman spectroscopy. The halite crystals were irradiated with 3 MeV proton micro-beam (∼20 μm beam width with ∼80 PA beam current) for 10 and 90 min to study the radiation damage. After 10 mins of irradiation, small spot developed on the surface of transparent halite crystal whereas after 90 mins of irradiation the spot spread inside the bulk leading to a brown coloration (20 μm initial size to ∼2.0 mm final size). The irradiated portion and the un-irradiated portion of the halites was characterized by Raman spectroscopic technique. The variation in the population density was observed from the UV-Vis spectra. The change in the Raman band intensities was observed for transparent, blue colored and proton beam irradiation halites. Such variation of spectroscopic characteristics due to proton irradiation suggests that the halite can be used for the radiation monitoring.

  10. New fixed-point mini-cell to investigate thermocouple drift in a high-temperature environment under neutron irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurie, M.; Vlahovic, L.; Rondinella, V.V.

    Temperature measurements in the nuclear field require a high degree of reliability and accuracy. Despite their sheathed form, thermocouples subjected to nuclear radiations undergo changes due to radiation damage and transmutation that lead to significant EMF drift during long-term fuel irradiation experiment. For the purpose of a High Temperature Reactor fuel irradiation to take place in the High Flux Reactor Petten, a dedicated fixed-point cell was jointly developed by LNE-Cnam and JRC-IET. The developed cell to be housed in the irradiation rig was tailor made to quantify the thermocouple drift during the irradiation (about two year duration) and withstand highmore » temperature (in the range 950 deg. C - 1100 deg. C) in the presence of contaminated helium in a graphite environment. Considering the different levels of temperature achieved in the irradiation facility and the large palette of thermocouple types aimed at surveying the HTR fuel pebble during the qualification test both copper (1084.62 deg. C) and gold (1064.18 deg. C) fixed-point materials were considered. The aim of this paper is to first describe the fixed-point mini-cell designed to be embedded in the reactor rig and to discuss the preliminary results achieved during some out of pile tests as much as some robustness tests representative of the reactor scram scenarios. (authors)« less

  11. Sperm nuclear expansion and meiotic maturation in normal and gynogenetic eggs of the scallop, Chlamys farreri

    NASA Astrophysics Data System (ADS)

    Pan, Ying; Li, Qi; Yu, Ruihai; Wang, Rucai

    2008-02-01

    Sperm nuclear expansion, meiosis and the association of the male and female pronuclei leading to the four-cell stage in normal Chlamys farreri eggs were observed under a fluorescence microscope. The effects of ultraviolet (UV) irradiation on the fertilizing sperm were also examined. Both normal and UV-irradiated sperm nuclei enlarged at three distinct phases (phase A, metaphase I; phase B, polar body formation; and phase C, female pronuclear development and expansion) that were temporally correlated with meiotic process of the maternal chromosomes. Sperm nuclei underwent a rapid, initial enlargement during phase A, but condensed slightly during phase B, then re-enlarged during phase C. The effects of UV irradiation were not apparent during transformation of the sperm nucleus into a male pronucleus, and there was not any apparent effect on meiotic maturation and development of the female pronucleus. However, the rate of expansion of the UV-irradiated sperm nuclei and the size of male pronuclei were reduced apparently. Unlike the female pronucleus, the male pronucleus derived from sperm genome inactivated by UV irradiation did not form chromosomes, but became a dense chromatin body (DCB). At mitotic anaphase, DCB did not participate in the karyokinesis of the first cleavage as evidenced by chromosomal nondisjunction, demonstrating the effectiveness of using UV irradiation to induce gynogenetic scallop embryos.

  12. Physical and engineering aspect of carbon beam therapy

    NASA Astrophysics Data System (ADS)

    Kanai, Tatsuaki; Kanematsu, Nobuyuki; Minohara, Shinichi; Yusa, Ken; Urakabe, Eriko; Mizuno, Hideyuki; Iseki, Yasushi; Kanazawa, Mitsutaka; Kitagawa, Atsushi; Tomitani, Takehiro

    2003-08-01

    Conformal irradiation system of HIMAC has been up-graded for a clinical trial using a technique of a layer-stacking method. The system has been developed for localizing irradiation dose to target volume more effectively than the present irradiation dose. With dynamic control of the beam modifying devices, a pair of wobbler magnets, and multileaf collimator and range shifter, during the irradiation, more conformal radiotherapy can be achieved. The system, which has to be adequately safe for patient irradiations, was constructed and tested from a viewpoint of safety and the quality of the dose localization realized. A secondary beam line has been constructed for use of radioactive beam in heavy-ion radiotherapy. Spot scanning method has been adapted for the beam delivery system of the radioactive beam. Dose distributions of the spot beam were measured and analyzed taking into account of aberration of the beam optics. Distributions of the stopped positron-emitter beam can be observed by PET. Pencil beam of the positron-emitter, about 1 mm size, can also be used for measurements ranges of the test beam in patients using positron camera. The positron camera, consisting of a pair of Anger-type scintillation detectors, has been developed for this verification before treatment. Wash-out effect of the positron-emitter was examined using the positron camera installed. In this report, present status of the HIMAC irradiation system is described in detail.

  13. Acute radiation risk models

    NASA Astrophysics Data System (ADS)

    Smirnova, Olga

    Biologically motivated mathematical models, which describe the dynamics of the major hematopoietic lineages (the thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems) in acutely/chronically irradiated humans are developed. These models are implemented as systems of nonlinear differential equations, which variables and constant parameters have clear biological meaning. It is shown that the developed models are capable of reproducing clinical data on the dynamics of these systems in humans exposed to acute radiation in the result of incidents and accidents, as well as in humans exposed to low-level chronic radiation. Moreover, the averaged value of the "lethal" dose rates of chronic irradiation evaluated within models of these four major hematopoietic lineages coincides with the real minimal dose rate of lethal chronic irradiation. The demonstrated ability of the models of the human thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems to predict the dynamical response of these systems to acute/chronic irradiation in wide ranges of doses and dose rates implies that these mathematical models form an universal tool for the investigation and prediction of the dynamics of the major human hematopoietic lineages for a vast pattern of irradiation scenarios. In particular, these models could be applied for the radiation risk assessment for health of astronauts exposed to space radiation during long-term space missions, such as voyages to Mars or Lunar colonies, as well as for health of people exposed to acute/chronic irradiation due to environmental radiological events.

  14. Development of Continuum-Atomistic Approach for Modeling Metal Irradiation by Heavy Ions

    NASA Astrophysics Data System (ADS)

    Batgerel, Balt; Dimova, Stefka; Puzynin, Igor; Puzynina, Taisia; Hristov, Ivan; Hristova, Radoslava; Tukhliev, Zafar; Sharipov, Zarif

    2018-02-01

    Over the last several decades active research in the field of materials irradiation by high-energy heavy ions has been worked out. The experiments in this area are labor-consuming and expensive. Therefore the improvement of the existing mathematical models and the development of new ones based on the experimental data of interaction of high-energy heavy ions with materials are of interest. Presently, two approaches are used for studying these processes: a thermal spike model and molecular dynamics methods. The combination of these two approaches - the continuous-atomistic model - will give the opportunity to investigate more thoroughly the processes of irradiation of materials by high-energy heavy ions. To solve the equations of the continuous-atomistic model, a software package was developed and the block of molecular dynamics software was tested on the heterogeneous cluster HybriLIT.

  15. Leukemia patient-derived lymphoblastoid cell lines exhibit increased induction of leukemia-associated transcripts following high-dose irradiation.

    PubMed

    Spencer, A; Granter, N

    1999-09-01

    Improvement in diagnostic cytogenetic techniques has led to the recognition of an increasing number of leukemia-associated chromosomal translocations and inversions. These genetic lesions frequently are associated with the disruption of putative transcription factors and the production of hybrid transcripts that are implicated in leukemogenesis. Epidemiologic evidence suggests that some, but not all, individuals with a history of gamma-irradiation exposure are at increased risk of developing chronic myeloid leukemia (CML). CML is characterized by the Philadelphia chromosome and transcription of the resulting hybrid BCR-ABL gene. Utilizing the leukemia-associated BCR-ABL p210 transcript as a marker, we sought differences in the induction of illegitimate genetic recombination following high-dose gamma-irradiation of karyotypically normal lymphoblastoid cell lines (LCL) derived from individuals with and without a history of myeloid leukemias. Six LCL [4 leukemia patient derived [2 acute myeloid leukemia and 2 CML] and 2 from normal individuals were analyzed with reverse transcriptase polymerase chain reaction for BCR-ABL under stringent conditions following exposure to 0, 50, or 100 Gy of LET gamma-irradiation delivered via a Varian linear accelerator at 4 MV. Transcripts identical to disease-associated b2a2 and b3a2 transcripts were detected both spontaneously (background illegitimate genetic recombination) and following gamma-irradiation. Background BCR-ABL positivity was demonstrable in 4 of the 6 LCL, with no significant difference in detection between leukemic- and nonleukemic-derived LCL. Overall, increasing gamma-irradiation dose resulted in an increased frequency of BCR-ABL transcript detection (0 Gy vs 50 Gy vs 100 Gy,p = 0.0023, Chi-square test). Within the leukemic- but not the nonleukemic-derived LCL there was significantly greater BCR-ABL positivity after gamma-irradiation compared to unirradiated equivalents. Furthermore, the BCR-ABL positivity of both the AML- and CML-derived LCL after gamma-irradiation was significantly greater than that of the nonleukemic-derived LCL after gamma-irradiation. We speculate that this difference in the detection of illegitimate after gamma-irradiation recombination may be due to aberrant DNA double strand break repair mechanisms in individuals predisposed to the development of myeloid leukemias.

  16. Identifying cell and molecular stress after radiation in a three-dimensional (3-D) model of oral mucositis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambros, Maria Polikandritou, E-mail: mlambros@westernu.edu; Parsa, Cyrus; Mulamalla, HariChandana

    2011-02-04

    Research highlights: {yields} We irradiated a 3-D human oral cell culture of keratinocytes and fibroblasts with 12 and 2 Gy. {yields} 6 h after irradiation the histopathology and apoptosis of the 3-D culture were evaluated. Microarrays were used to assess the gene expression in the irradiated 3-D tissue. {yields} 12 Gy induced significant histopathologic changes and cellular apoptosis. {yields} 12 Gy significantly affected genes of the NF-kB pathway, inflammatory cytokines and DAMPs. -- Abstract: Mucositis is a debilitating adverse effect of chemotherapy and radiation treatment. It is important to develop a simple and reliable in vitro model, which can routinelymore » be used to screen new drugs for prevention and treatment of mucositis. Furthermore, identifying cell and molecular stresses especially in the initiation phase of mucositis in this model will help towards this end. We evaluated a three-dimensional (3-D) human oral cell culture that consisted of oral keratinocytes and fibroblasts as a model of oral mucositis. The 3-D cell culture model was irradiated with 12 or 2 Gy. Six hours after the irradiation we evaluated microscopic sections of the cell culture for evidence of morphologic changes including apoptosis. We used microarrays to compare the expression of several genes from the irradiated tissue with identical genes from tissue that was not irradiated. We found that irradiation with 12 Gy induced significant histopathologic effects including cellular apoptosis. Irradiation significantly affected the expression of several genes of the NF-kB pathway and several inflammatory cytokines, such as IL-1B, 1L-8, NF-kB1, and FOS compared to tissue that was not irradiated. We identified significant upregulation of several genes that belong to damage-associated molecular patterns (DAMPs) such as HMB1, S100A13, SA10014, and SA10016 in the 3-D tissues that received 12 Gy but not in tissues that received 2 Gy. In conclusion, this model quantifies radiation damage and this is an important first step towards the development 3-D tissue as a screening tool.« less

  17. Radiation Fibrosis of the Vocal Fold: From Man to Mouse

    PubMed Central

    Johns, Michael M.; Kolachala, Vasantha; Berg, Eric; Muller, Susan; Creighton, Frances X.; Branski, Ryan C.

    2013-01-01

    Objectives To characterize fundamental late tissue effects in the human vocal fold following radiation therapy. To develop a murine model of radiation fibrosis to ultimately develop both treatment and prevention paradigms. Design Translational study using archived human and fresh murine irradiated vocal fold tissue. Methods 1) Irradiated vocal fold tissue from patients undergoing laryngectomy for loss of function from radiation fibrosis were identified from pathology archives. Histomorphometry, immunohistochemistry, and whole-genome microarray as well as real-time transcriptional analyses was performed. 2) Focused radiation to the head and neck was delivered to mice in a survival fashion. One month following radiation, vocal fold tissue was analyzed with histomorphometry, immunohistochemistry, and real-time PCR transcriptional analysis for selected markers of fibrosis. Results Human irradiated vocal folds demonstrated increased collagen transcription with increased deposition and disorganization of collagen in both the thyroarytenoid muscle and the superficial lamina propria. Fibronectin were increased in the superficial lamina propria. Laminin decreased in the thyroarytenoid muscle. Whole genome microarray analysis demonstrated increased transcription of markers for fibrosis, oxidative stress, inflammation, glycosaminoglycan production and apoptosis. Irradiated murine vocal folds demonstrated increases in collagen and fibronectin transcription and deposition in the lamina propria. Transforming growth factor (TGF)-β increased in the lamina propria. Conclusion Human irradiated vocal folds demonstrate molecular changes leading to fibrosis that underlie loss of vocal fold pliability that occurs in patients following laryngeal irradiation. Irradiated murine tissue demonstrates similar findings, and this mouse model may have utility in creating prevention and treatment strategies for vocal fold radiation fibrosis. PMID:23242839

  18. The developmental toxicity and apoptosis in zebrafish eyes induced by carbon-ion irradiation.

    PubMed

    Zhou, Rong; Zhang, Hong; Wang, Zhenguo; Zhou, Xin; Si, Jing; Gan, Lu; Li, Jianzhen; Liu, Yang

    2015-10-15

    Heavy ions have become potentially radiotherapeutic tools. However, studies of the effects on development of normal organs were limited. Using a zebrafish model, this study investigated the potential developmental toxicity and cell apoptosis rates in eyes exposed to carbon-ion irradiation. Zebrafish embryos at 12h post-fertilization (hpf) were irradiated using (12)C(6+) ion beams at doses of 2, 4, and 8 Gy. The reactive oxygen species (ROS) concentration was detected using the dichlorofluorescein-diacetate at 24, 48, and 72 hpf. Apoptosis was assessed by acridine orange staining at 24, 48, and 72 hpf and was also detected using the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling assay, at 72 hpf. The expression of genes governing apoptosis was examined using real-time polymerase chain reaction at 24 hpf. Eye size was measured at 144 hpf. Ion irradiation with (12)C(6+) induced a significant increase in cell apoptosis at 24, 48 and 72 hpf. However, there was no significant increase in the ROS concentration at 24, 48, and 72 hpf. The proapoptotic genes, including P53, Bax, and Puma, were significantly upregulated. Two antiapoptotic genes, Mdm2 and Bcl-2, were significantly downregulated, and the expression levels of Capspase-9 and Caspase-3 were significantly increased. Microphthalmia was noted in the 8 Gy irradiated group. These results suggested that carbon-ion irradiation induced apoptosis through the p53 pathway in zebrafish eyes independent of ROS generation. Irradiation at high doses may disrupt eye development of zebrafish embryos. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Converging stereotactic radiotherapy using kilovoltage X-rays: experimental irradiation of normal rabbit lung and dose-volume analysis with Monte Carlo simulation.

    PubMed

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  20. Egg hatching response to a range of ultraviolet-B (UV-B) radiation doses for four predatory mites and the herbivorous spider mite Tetranychus urticae.

    PubMed

    Koveos, Dimitrios S; Suzuki, Takeshi; Terzidou, Anastasia; Kokkari, Anastasia; Floros, George; Damos, Petros; Kouloussis, Nikos A

    2017-01-01

    Egg hatchability of four predatory mites-Phytoseiulus persimilis Athias-Henriot, Iphiseius [Amblyseius] degenerans Berlese, Amblyseius swirskii Athias-Henriot, and Euseius finlandicus Oudemans (Acari: Phytoseiidae)-and the spider mite Tetranychus urticae Koch (Acari: Tetranychidae) was determined under various UV-B doses either in constant darkness (DD) or with simultaneous irradiation using white light. Under UV-B irradiation and DD or simultaneous irradiation with white light, the predator's eggs hatched in significantly lower percentages than in the control non-exposed eggs, which indicates deleterious effects of UV-B on embryonic development. In addition, higher hatchability percentages were observed under UV-B irradiation and DD in eggs of the predatory mites than in eggs of T. urticae. This might be caused by a higher involvement of an antioxidant system, shield effects by pigments or a mere shorter duration of embryonic development in predatory mites than in T. urticae, thus avoiding accumulative effects of UV-B. Although no eggs of T. urticae hatched under UV-B irradiation and DD, variable hatchability percentages were observed under simultaneous irradiation with white light, which suggests the involvement of a photoreactivation system that reduces UV-B damages. Under the same doses with simultaneous irradiation with white light, eggs of T. urticae displayed higher photoreactivation and were more tolerant to UV-B than eggs of the predatory mites. Among predators variation regarding the tolerance to UV-B effects was observed, with eggs of P. persimilis and I. degenerans being more tolerant to UV-B radiation than eggs of A. swirskii and E. finlandicus.

  1. Ophthalmic complications following megavoltage irradiation of the nasal and paranasal cavities in dogs.

    PubMed

    Roberts, S M; Lavach, J D; Severin, G A; Withrow, S J; Gillette, E L

    1987-01-01

    Megavoltage x-radiation was used to treat orbital nasal, and paranasal cavity malignant neoplasia in 29 dogs. In each instance, the globe and adnexal tissues were within the treatment portals (entry and/or exit). Doses administered to tumors ranged from 3,680 to 5,000 cGy. Ocular reactions after irradiation were classified as mild in 5 of 29 cases (17.2%) and severe in 17 of 29 cases (58.6%). No ocular complications were noticed in 7 of 29 cases (24.1%). Complications frequently noticed included severe keratitis (41%), mild conjunctivitis (34%), severe conjunctivitis (28%), cataract (28%), and keratoconjunctivitis sicca (24%). Ocular complications that developed were not life threatening, but posed a threat to visual function and patient quality of life. Treatment for the complications included control of bacterial infection, reduction of tissue inflammation, and ocular surface protection when tear film deficiencies were noticed. Mild complications represented acute effects of irradiation, and typically resolved. Severe complications developed both acutely and as late irradiation effects. Those attributed to late irradiation effects were more vision threatening and altered the quality of life more than did the early effects.

  2. Hyperfractionated or Accelerated Hyperfractionated Re-irradiation with ≥42 Gy in Combination with Paclitaxel for Secondary/Recurrent Head-and-Neck Cancer.

    PubMed

    Rades, Dirk; Bartscht, Tobias; Idel, Christian; Schild, Steven E; Hakim, Samer G

    2018-06-01

    Patients with secondary/ recurrent squamous cell head and neck cancer (SCCHN) have poor prognoses. Outcomes of re-irradiation with ≥42 Gy plus paclitaxel for secondary/recurrent SCCHN are herein presented. Two patients re-irradiated for secondary/recurrent SCCHN were evaluated. Patients received 44.4 Gy (2×1.2 Gy/day) or 42.0 Gy (2×1.5 Gy/day), respectively, plus concurrent paclitaxel (35 mg/m 2 weekly or 20 mg/m 2 twice per week). One patient developed a locoregional recurrence and additional metastases at 12 months after re-irradiation and died at 13 months. The other patient developed multiple bone metastases at 103 months and died at 104 months. Acute toxicities included grade 2 anemia and mucositis in both patients. Radiation dermatitis was grade 2 in one patient and grade 3 in the other. Re-irradiation with 42.0-44.4 Gy given twice daily plus paclitaxel was well tolerated and achieved a favorable response. The results need to be confirmed in a prospective trial. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. ENVIRONMENTALLY BENIGN ORGANIC TRANSFORMATIONS USING MICROWAVE IRRADIATION UNDER SOLVENT-FREE CONDITIONS

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes involve the exposure of neat reactants to microwave (MW) irradiation in the presence of supported reagents or catalysts on mineral oxides. Recent developments are described and the salient features of these high yield protocols...

  4. X-rays and photocarcinogenesis in hairless mice.

    PubMed

    Lerche, Catharina M; Philipsen, Peter A; Wulf, Hans Christian

    2013-08-01

    It is well known that excessive X-ray radiation can cause non-melanoma skin cancers. With the increased incidence of sun-related skin cancer there is a need to investigate the combination of sunlight and X-rays. Immunocompetent C3.Cg/TifBomTac mice (n = 298) were divided into 12 groups. Mice were irradiated with 12, 29 or 50 kV X-rays. The mice received a total dose of 45 Gy. They were irradiated with 3 SED simulated solar radiation (SSR) either before or after irradiation with X-rays. The groups irradiated with X-rays alone, 0, 3, 9 and 10 mice (0, 12, 29 and 50 kV, respectively) developed squamous cell carcinoma. In the groups irradiated with SSR after X-rays the development of tumours was significantly faster in the 50 kV group than in the corresponding control group (175 vs. 194 days, p < 0.001). In the groups irradiated with SSR prior to the X-ray radiation the development of tumours was significantly faster in the 29 and the 50 kV groups than in the corresponding control group (175 vs. 202 days, p < 0.001 and 158 vs. 202 days, p < 0.001, respectively). In conclusion, X-ray radiation alone is a weak carcinogen in hairless mice. There is an added carcinogenic effect if X-ray radiation is given on prior sun-exposed skin or if the skin is sun-exposed after X-rays. We still believe that X-ray radiation is a safe and effective therapy for various dermatological diseases but caution should be observed if a patient has severely sun-damaged skin or has a high-risk sun behaviour.

  5. Analysis of extreme summers and prior late winter/spring conditions in central Europe

    NASA Astrophysics Data System (ADS)

    Träger-Chatterjee, C.; Müller, R. W.; Bendix, J.

    2013-05-01

    Drought and heat waves during summer in mid-latitudes are a serious threat to human health and agriculture and have negative impacts on the infrastructure, such as problems in energy supply. The appearance of such extreme events is expected to increase with the progress of global warming. A better understanding of the development of extremely hot and dry summers and the identification of possible precursors could help improve existing seasonal forecasts in this regard, and could possibly lead to the development of early warning methods. The development of extremely hot and dry summer seasons in central Europe is attributed to a combined effect of the dominance of anticyclonic weather regimes and soil moisture-atmosphere interactions. The atmospheric circulation largely determines the amount of solar irradiation and the amount of precipitation in an area. These two variables are themselves major factors controlling the soil moisture. Thus, solar irradiation and precipitation are used as proxies to analyse extreme sunny and dry late winter/spring and summer seasons for the period 1958-2011 in Germany and adjacent areas. For this purpose, solar irradiation data from the European Center for Medium Range Weather Forecast 40-yr and interim re-analysis dataset, as well as remote sensing data are used. Precipitation data are taken from the Global Precipitation Climatology Project. To analyse the atmospheric circulation geopotential data at 850 hPa are also taken from the European Center for Medium Range Weather Forecast 40-yr and interim re-analysis datasets. For the years in which extreme summers in terms of high solar irradiation and low precipitation are identified, the previous late winter/spring conditions of solar irradiation and precipitation in Germany and adjacent areas are analysed. Results show that if the El Niño-Southern Oscillation (ENSO) is not very intensely developed, extremely high solar irradiation amounts, together with extremely low precipitation amounts during late winter/spring, might serve as precursor of extremely sunny and dry summer months to be expected.

  6. Development of a low-energy x-ray camera for the imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation for range estimation.

    PubMed

    Ando, Koki; Yamaguchi, Mitsutaka; Yamamoto, Seiichi; Toshito, Toshiyuki; Kawachi, Naoki

    2017-06-21

    Imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation is a possible method for measurement of the proton beam distribution in phantom. However, it is not clear that the method is used for range estimation of protons. For this purpose, we developed a low-energy x-ray camera and conducted imaging of the bremsstrahlung x-ray produced during irradiation of proton beams. We used a 20 mm  ×  20 mm  ×  1 mm finely grooved GAGG scintillator that was optically coupled to a one-inch square high quantum efficiency (HQE)-type position-sensitive photomultiplier tube to form an imaging detector. The imaging detector was encased in a 2 cm-thick tungsten container, and a pinhole collimator was attached to its camera head. After performance of the camera was evaluated, secondary electron bremsstrahlung x-ray imaging was conducted during irradiation of the proton beams for three different proton energies, and the results were compared with Monte Carlo simulation as well as calculated value. The system spatial resolution and sensitivity of the developed x-ray camera with 1.5 mm-diameter pinhole collimator were estimated to be 32 mm FWHM and 5.2  ×  10 -7 for ~35 keV x-ray photons at 100 cm from the collimator surface, respectively. We could image the proton beam tracks by measuring the secondary electron bremsstrahlung x-ray during irradiation of the proton beams, and the ranges for different proton energies could be estimated from the images. The measured ranges from the images were well matched with the Monte Carlo simulation, and slightly smaller than the calculated values. We confirmed that the imaging of the secondary electron bremsstrahlung x-ray emitted during proton irradiation with the developed x-ray camera has the potential to be a new tool for proton range estimations.

  7. [Modification of radiation damage to biological objects by lasers].

    PubMed

    Voskanian, K Sh; Vorozhzova, S V; Abrosimova, A N; Mitsyn, G V; Gaevskiĭ, V N

    2012-01-01

    A series of experiments had the purpose to study effects of gamma-rays 60Co (5 Gy) and the combined effects of laser 650 nm (1 mJ/cm2) and gamma-rays 60Co (5 Gy) on survivability, body mass, integument and mitotic index of marrow cells (MC) of young mice C57BL/6. Laser was applied to the mouse hairy back only. Ten months of gamma-irradiation brought death to 50% of mice; the combined irradiation killed only 30%. Starting on month six after gamma-irradiation, body mass was less in comparison with mice exposed to the combined irradiation. In addition, all mice lost body mass sharply before death. All gamma-irradiated mice were touched with grey over the period of 30 days; in 40 days, 10 of 20 mice had incipient local radiation alopecia on the back that passed fully within next month. However, all mice developed radiation ulcers on the fourth month since irradiation. Two mice formed also neck tumors. In 5 months tails fell off in 2 mice. Some grey streaks appeared on mice exposed to the combined irradiation 3 months later only; three mice remained black throughout the follow-up. Alopecia was found in three survivors in 5 months after irradiation. Mitotic activity of marrow cells obtained from mice on day 15 since exposure to lasing and combined irradiation was higher in comparison with cells from intact mice. In a year, the MC mitotic index was higher in mice exposed to the combined irradiation as compared with the gamma-irradiated mice.

  8. Effect of Class III bone anchor treatment on airway.

    PubMed

    Nguyen, Tung; De Clerck, Hugo; Wilson, Michael; Golden, Brent

    2015-07-01

    To compare airway volumes and minimum cross-section area changes of Class III patients treated with bone-anchored maxillary protraction (BAMP) versus untreated Class III controls. Twenty-eight consecutive skeletal Class III patients between the ages of 10 and 14 years (mean age, 11.9 years) were treated using Class III intermaxillary elastics and bilateral miniplates (two in the infra-zygomatic crests of the maxilla and two in the anterior mandible). The subjects had cone beam computed tomographs (CBCTs) taken before initial loading (T1) and 1 year out (T2). Twenty-eight untreated Class III patients (mean age, 12.4 years) had CBCTs taken and cephalograms generated. The airway volumes and minimum cross-sectional area measurements were performed using Dolphin Imaging 11.7 3D software. The superior border of the airway was defined by a plane that passes through the posterior nasal spine and basion, while the inferior border included the base of the epiglottis to the lower border of C3. From T1 to T2, airway volume from BAMP-treated subjects showed a statistically significant increase (1499.64 mm(3)). The area in the most constricted section of the airway (choke point) increased slightly (15.44 mm(2)). The airway volume of BAMP patients at T2 was 14136.61 mm(3), compared with 14432.98 mm(3) in untreated Class III subjects. Intraexaminer correlation coefficients values and 95% confidence interval values were all greater than .90, showing a high degree of reliability of the measurements. BAMP treatment did not hinder the development of the oropharynx.

  9. Research and development in pilot plant production of granular NPK fertilizer

    NASA Astrophysics Data System (ADS)

    Failaka, Muhamad Fariz; Firdausi, Nadia Zahrotul; Chairunnisa, Altway, Ali

    2017-05-01

    PT Pupuk Kaltim (Pupuk Kaltim) as one of the biggest fertilizer manufacturer in Indonesia, always striving to improve the product quality and achieve the optimal performance while facing the challenges of global competition NPK (Nitrogen, Phosphorus, Potassium) market. In order to continuously improve operations and processes of two units NPK compound plant, Pupuk Kaltim has successfully initiated a new facility which is referred to as a NPK pilot-scale research facility with design capacity of 30 kg/hr. This mini-plant is used to assist in the scale up of new innovations from laboratory research to better understand the effect of using new raw materials and experiment with process changes to improve quality and efficiency. The pilot installation is composed of the following main parts: mixer, screw feeder, granulator, dryer and cooler. The granulator is the equipment where NPK granules is formed by spraying appropriate steam and water onto raw materials in a rotating drum. The rotary dryer and cooler are intended for the drying process where temperature reduction and the final moisture are obtained. As a part of innovations project since 2014, the pilot plant has conducted many of experiments such as trials using Ammonium Sulfate (ZA) as a new raw material, alternative raw materials of Diammonium Phosphate (DAP), Potassium Chloride (KCl) and clay, and using a novel material of fly ash. In addition, the process engineering staff also conduct the trials of raw materials ratio so that an ideal formulation with lower cost can be obtained especially when it is applied in the existing full-scale plant.

  10. Potential value of Cs-137 capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloomster, C.H.; Brown, D.R.; Bruno, G.A.

    1985-04-01

    We determined the value of Cs-137 compared to Co-60 as a source for the irradiation of fruit (apples and cherries), pork and medical supplies. Cs-137, in the WESF capsule form, had a value of approximately $0.40/Ci as a substitute for Co-60 priced at approximately $1.00/Ci. The comparison was based on the available curies emitted from the surface of each capsule. We developed preliminary designs for fourteen irradiation facilities; seven were based on Co-60 and seven were based on Cs-137. These designs provided the basis for estimating capital and operating costs which, in turn, provided the basis for determining the valuemore » of Cs-137 relative to Co-60 in these applications. We evaluated the effect of the size of the irradiation facility on the value of Cs-137. The cost of irradiation is low compared to the value of the product. Irradiation of apples for disinfestation costs $.01 to .02 per pound. Irradiation for trichina-safe pork costs $.02 per pound. Irradiation of medical supplies for sterilization costs $.07 to .12 per pound. The cost of the irradiation source, either Co-60 or Cs-137, contributed only a minor amount to the total cost of irradiation, about 5% for the fruit and hog cases and about 20% for the medical supply cases. We analyzed the sensitivity of the irradiation costs and Cs-137 value to several key assumptions.« less

  11. Bystander effects in unicellular organisms.

    PubMed

    DeVeaux, Linda C; Durtschi, Lynn S; Case, Jonathan G; Wells, Douglas P

    2006-05-11

    Radiation-induced bystander effects have been seen in mammalian cells from diverse origins. These effects can be transmitted through the medium to cells not present at the time of irradiation. We have developed an assay for detecting bystander effects in the unicellular eukaryote, the fission yeast Schizosaccharomyces pombe. This assay allows maximal exposure of unirradiated cells to cells that have received electron beam irradiation. S. pombe cells were irradiated with 16-18 MeV electrons from a pulsed electron LINAC. When survival of the irradiated cells decreased to approximately 50%, forward-mutation to 2-deoxy-d-glucose resistance increased in the unirradiated bystander cells. Further increase in dose had no additional effect on this increase. In order to detect this response, it was necessary for the irradiated cell/unirradiated cell ratio to be high. Other cellular stresses, such as heat treatment, UV irradiation, and bleomycin exposure, also caused a detectable response in untreated cells grown with the treated cells. We discuss evolutionary implications of these results.

  12. Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production

    NASA Astrophysics Data System (ADS)

    Ribeiro, J.; Cavaglieri, L.; Vital, H.; Cristofolini, A.; Merkis, C.; Astoreca, A.; Orlando, J.; Carú, M.; Dalcero, A.; Rosa, C. A. R.

    2011-05-01

    The aim of this work was to study the effect of gamma radiation (2 kGy) on Aspergillus flavus and Aspergillus ochraceus ultrastructure. Moreover, the influence on aflatoxin B 1 and ochratoxin A production was also observed. Irradiated A. flavus strain showed a dull orangish colony while control strain showed the typical green color. Minor differences were observed on stipes, metulae and conidia size between control and irradiated A. flavus and A. ochraceus strains. Irradiated fungi showed ultrastructural changes on cell wall, plasmalema and cytoplasm levels. The levels of mycotoxins produced by irradiated strains were two times greater than those produced by control strains. Successive transferences of irradiated strains on malt extract agar allowed the fungus to recuperate morphological characteristics. Although minor changes in the fungal morphology were observed, ultrastructural changes at cell wall level and the increase of mycotoxin production ability were observed. Inappropriate storage of irradiated food and feed would allow the development of potentially more toxicogenic fungal propagules.

  13. Influence of heat, wind, and humidity on ultraviolet radiation injury.

    PubMed

    Owens, D W; Knox, J M

    1978-12-01

    We investigated the influence of heat, wind, and humidity on UVR-induced acute and chronic skin damage of experimental animals housed in environmental chambers and irradiated under controlled conditions. Hairless mice (strain HRS/J) irradiated after an increase of 10 degrees F in skin temperature had more skin damage than irradiated controls. Significantly more Swiss albino mice irradiated for 400 days while maintained at 90 degrees F developed tumors than did those receiving the same amount of UVR but maintained at room temperature. Mice exposed to UVR daily for 4 weeks while kept in wind of 7 mph had greater damage and slower recovery than animals irradiated but protected from wind. Wind also accelerated tumorigenesis in mice than received chronic UVR. Mice kept at 80% relative humidity and given a single dose of UVR had greater skin injury than animals irradiated while at 5% relative humidity. High midity also appears to accelerate skin cancer formation in animals that were exposed to chronic UVR.

  14. Porphyrin-laser photodynamic induction of focal brain necrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroop, W.G.; Battles, E.J.; Townsend, J.J.

    A noninvasive photodynamic method has been developed to produce focal brain necrosis using porphyrin activated in vivo with laser light. After peripheral injection of the photosensitive porphyrin derivative, Photofrin I, mice were irradiated on the posterior lateral aspect of the head through the intact depilated scalp with 632 nm argon-dye laser light. Animals were studied at one, two and seven days after irradiation. Blood-brain barrier damage was detected by the intravenous injection of Evans blue, horseradish peroxidase and heterologous immunoglobulins. At one and two days after irradiation, the lesions were characterized by extravasation of immunoglobulin and Evans blue, and bymore » edema, ischemia and infiltration by monocytes. On the seventh day after irradiation, the lesion was smaller than it had been two days after irradiation, and had reactive changes at its edges and coagulative necrosis at its center. Extravasation of Evans blue and immunoglobulin was markedly reduced by the seventh day after irradiation, but uptake of horseradish peroxidase by macrophages located at the periphery of the lesion was evident.« less

  15. Study on optimizing ultrasonic irradiation period for thick polycrystalline PZT film by hydrothermal method.

    PubMed

    Ohta, Kanako; Isobe, Gaku; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi

    2013-04-01

    The hydrothermal method utilizes a solution-based chemical reaction to synthesize piezoelectric thin films and powders. This method has a number of advantages, such as low-temperature synthesis, and high purity and high quality of the product. In order to promote hydrothermal reactions, we developed an ultrasonic assisted hydrothermal method and confirmed that it produces dense and thick lead-zirconate-titanate (PZT) films. In the hydrothermal method, a crystal growth process follows the nucleation process. In this study, we verified that ultrasonic irradiation is effective for the nucleation process, and there is an optimum irradiation period to obtain thicker PZT films. With this optimization, a 9.2-μm-thick PZT polycrystalline film was obtained in a single deposition process. For this film, ultrasonic irradiation was carried out from the beginning of the reaction for 18 h, followed by a 6 h deposition without ultrasonic irradiation. These results indicate that the ultrasonic irradiation mainly promotes the nucleation process. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy.

    PubMed

    Furukawa, Takuji; Inaniwa, Taku; Sato, Shinji; Tomitani, Takehiro; Minohara, Shinichi; Noda, Koji; Kanai, Tatsuaki

    2007-03-01

    A project to construct a new treatment facility as an extension of the existing heavy-ion medical accelerator in chiba (HIMAC) facility has been initiated for further development of carbon-ion therapy. The greatest challenge of this project is to realize treatment of a moving target by scanning irradiation. For this purpose, we decided to combine the rescanning technique and the gated irradiation method. To determine how to avoid hot and/or cold spots by the relatively large number of rescannings within an acceptable irradiation time, we have studied the scanning strategy, scanning magnets and their control, and beam intensity dynamic control. We have designed a raster scanning system and carried out a simulation of irradiating moving targets. The result shows the possibility of practical realization of moving target irradiation with pencil beam scanning. We describe the present status of our design study of the raster scanning system for the HIMAC new treatment facility.

  17. Plasmodium falciparum: attenuation by irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waki, S.; Yonome, I.; Suzuki, M.

    The effect of irradiation on the in vitro growth of Plasmodium falciparum was investigated. The cultured malarial parasites at selected stages of development were exposed to gamma rays and the sensitivity of each stage was determined. The stages most sensitive to irradiation were the ring forms and the early trophozoites; late trophozoites were relatively insensitive. The greatest resistance was shown when parasites were irradiated at a time of transition from the late trophozoite and schizont stages to young ring forms. The characteristics of radiosensitive variation in the parasite cycle resembled that of mammalian cells. Growth curves of parasites exposed tomore » doses of irradiation upto 150 gray had the same slope as nonirradiated controls but parasites which were exposed to 200 gray exhibited a growth curve which was less steep than that for parasites in other groups. Less than 10 organisms survived from the 10(6) parasites exposed to this high dose of irradiation; the possibility exists of obtaining radiation-attenuated P. falciparum.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, K.; Amano, K.

    Tabular data are shown for the oil content (0.2 to 7.7%) and corresponding browning of 22 species of Co/sup 60/ gamma irradiated fish fiesh; the development of browning of squid treated with ether and acetone prior to irradiation during a storage period at-7 to 8 deg C for 7 days and then 0 to 4.5 deg C; the absorption coefficient of an irradiated sugar solution at 270 m mu , yellow discoloration of the sugar solution by heating subsequent to irradiation, and the reflectance (40 to 43%) of sugar on radiation-induced browning of cooled fish; and pH values on themore » maximum absorption band and the intensity of the irradiated sugar solution, on yellow discoloration of the sugar solution by heating subsequent to gamma irradiation up to 2000 kr and on the radiation- induced browning the cause of discoloration because the discoloration was not affected by the presence of various sugars or intensified by an increase in the pH values. (OID)« less

  19. Preliminary analysis on the water quality index (WQI) of irradiated basic filter elements

    NASA Astrophysics Data System (ADS)

    Arif Abu Bakar, Asyraf; Muhamad Pauzi, Anas; Aziz Mohamed, Abdul; Syima Sharifuddin, Syazrin; Mohamad Idris, Faridah

    2018-01-01

    Simple water filtration system is needed in times of extreme floods. Clean water for sanitation at evacuation centres is essential and its production is possible by using the famous simple filtration system consisting of empty bottle and filter elements (sands, gravels, cotton/coffee filter). This research intends to study the effects of irradiated filter elements on the filtration effectiveness through experiments. The filter elements will be irradiated with gamma and neutron radiation using the facilities available at Malaysia Nuclear Agency. The filtration effectiveness is measured using the water quality index (WQI) that is developed in this study to reflect the quality of filtered water. The WQI of the filtered water using the system with irradiated filter elements is then compared with that of the system with non-irradiated filter elements. This preliminary analysis only focus on filtration element of silica sand. Results shows very nominal variation in in WQI after filtered by non-irradiated, gamma and neutron filter element (silica sand), where the hypothesis could not be affirmed.

  20. Definitive fractionated re-irradiation for local recurrence following stereotactic body radiotherapy for primary lung cancer.

    PubMed

    Yoshitake, Tadamasa; Shioyama, Yoshiyuki; Nakamura, Katsumasa; Sasaki, Tomonari; Ohga, Saiji; Shinoto, Makoto; Terashima, Kotaro; Asai, Kaori; Matsumoto, Keiji; Hirata, Hideki; Honda, Hiroshi

    2013-12-01

    To retrospectively evaluate the efficacy and safety of definitive fractionated re-irradiation for local recurrence following stereotactic body radiotherapy (SBRT) for primary lung cancer. Between April 2003 and December 2011, 398 patients with primary lung tumor underwent SBRT at the Kyushu University Hospital, and 46 out of these developed local recurrence after SBRT. Definitive fractionated re-irradiation was performed for 17 out of the 46 patients. The median dose of re-irradiation was 60 Gy/ 30 fractions. Concurrent chemotherapy was given to four patients. The median follow-up duration was 12.6 months. At one year post-re-irradiation, local progression-free survival was 33.8%; progression-free survival, 30.9%; cause-specific survival, 79.3%; and overall survival, 74.7%. No severe adverse events were observed during the follow-up. Definitive fractionated re-irradiation is thought to be a safe alternative therapy for local recurrence following SBRT, although its efficacy may be not entirely satisfactory.

Top