Ontology for Life-Cycle Modeling of Water Distribution Systems: Model View Definition
2013-06-01
Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) to develop a life-cycle building model have resulted in the...Laboratory (ERDC-CERL) to develop a life-cycle building model have resulted in the definition of a “core” building information model that contains...developed experimental BIM models us- ing commercial off-the-shelf (COTS) software. Those models represent three types of typical low-rise Army
Further Development of the PCRTM Model and RT Model Inter Comparison
NASA Technical Reports Server (NTRS)
Yang, Qiguang; Liu, Xu; Wu, Wan; Kizer, Susan
2015-01-01
New results for the development of the PCRTM model will be presented. The new results were used for IASI retrieval validation inter comparison and better results were obtained compare to other fast radiative transfer models.
Artificial heart development program. Volume I. System development. Phase III summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-01-01
The report documents efforts and results in the development of the power system portions of a calf implantable model of nuclear-powered artificial heart. The primary objective in developing the implantable model was to solve the packaging problems for total system implantation. The power systems portion is physically that portion of the implantable model between the Pu-238 heat sources and the blood pump ventricles. The work performed had two parallel themes. The first of these was the development of an integrated implantable model for bench and animal experiments plus design effort on a more advanced model. The second was research andmore » development on components of the system done in conjunction with the development of the implantable model and to provide technology for incorporation into advanced models plus support to implantations, at the University of Utah, of the systems blood pumping elements when driven by electric motor. The efforts and results of implantable model development are covered, mainly, in the text of the report. The research and development efforts and results are reported, primarily, in the appendices (Vol. 2).« less
Interpreting JEDI Results | Jobs and Economic Development Impact Models |
NREL Interpreting JEDI Results Interpreting JEDI Results The Jobs and Economic Development Impact (JEDI) models estimate the number of jobs and economic impacts associated with power generation Economic activity in input-output models is typically assessed in three categories. NREL's JEDI models
NASA Astrophysics Data System (ADS)
Bahtiar; Rahayu, Y. S.; Wasis
2018-01-01
This research aims to produce P3E learning model to improve students’ critical thinking skills. The developed model is named P3E, consisting of 4 (four) stages namely; organization, inquiry, presentation, and evaluation. This development research refers to the development stage by Kemp. The design of the wide scale try-out used pretest-posttest group design. The wide scale try-out was conducted in grade X of 2016/2017 academic year. The analysis of the results of this development research inludes three aspects, namely: validity, practicality, and effectiveness of the model developed. The research results showed; (1) the P3E learning model was valid, according to experts with an average value of 3.7; (2) The completion of the syntax of the learning model developed obtained 98.09% and 94.39% for two schools based on the assessment of the observers. This shows that the developed model is practical to be implemented; (3) the developed model is effective for improving students’ critical thinking skills, although the n-gain of the students’ critical thinking skills was 0.54 with moderate category. Based on the results of the research above, it can be concluded that the developed P3E learning model is suitable to be used to improve students’ critical thinking skills.
Hybrid LCA model for assessing the embodied environmental impacts of buildings in South Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Minho, E-mail: minmin40@hanmail.net; Hong, Taehoon, E-mail: hong7@yonsei.ac.kr; Ji, Changyoon, E-mail: chnagyoon@yonsei.ac.kr
2015-01-15
The assessment of the embodied environmental impacts of buildings can help decision-makers plan environment-friendly buildings and reduce environmental impacts. For a more comprehensive assessment of the embodied environmental impacts of buildings, a hybrid life cycle assessment model was developed in this study. The developed model can assess the embodied environmental impacts (global warming, ozone layer depletion, acidification, eutrophication, photochemical ozone creation, abiotic depletion, and human toxicity) generated directly and indirectly in the material manufacturing, transportation, and construction phases. To demonstrate the application and validity of the developed model, the environmental impacts of an elementary school building were assessed using themore » developed model and compared with the results of a previous model used in a case study. The embodied environmental impacts from the previous model were lower than those from the developed model by 4.6–25.2%. Particularly, human toxicity potential (13 kg C{sub 6}H{sub 6} eq.) calculated by the previous model was much lower (1965 kg C{sub 6}H{sub 6} eq.) than what was calculated by the developed model. The results indicated that the developed model can quantify the embodied environmental impacts of buildings more comprehensively, and can be used by decision-makers as a tool for selecting environment-friendly buildings. - Highlights: • The model was developed to assess the embodied environmental impacts of buildings. • The model evaluates GWP, ODP, AP, EP, POCP, ADP, and HTP as environmental impacts. • The model presents more comprehensive results than the previous model by 4.6–100%. • The model can present the HTP of buildings, which the previous models cannot do. • Decision-makers can use the model for selecting environment-friendly buildings.« less
Evaluation of Lightning Induced Effects in a Graphite Composite Fairing Structure. Parts 1 and 2
NASA Technical Reports Server (NTRS)
Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.
2011-01-01
Defining the electromagnetic environment inside a graphite composite fairing due to lightning is of interest to spacecraft developers. This paper is the first in a two part series and studies the shielding effectiveness of a graphite composite model fairing using derived equivalent properties. A frequency domain Method of Moments (MoM) model is developed and comparisons are made with shielding test results obtained using a vehicle-like composite fairing. The comparison results show that the analytical models can adequately predict the test results. Both measured and model data indicate that graphite composite fairings provide significant attenuation to magnetic fields as frequency increases. Diffusion effects are also discussed. Part 2 examines the time domain based effects through the development of a loop based induced field testing and a Transmission-Line-Matrix (TLM) model is developed in the time domain to study how the composite fairing affects lightning induced magnetic fields. Comparisons are made with shielding test results obtained using a vehicle-like composite fairing in the time domain. The comparison results show that the analytical models can adequately predict the test and industry results.
A toolbox and record for scientific models
NASA Technical Reports Server (NTRS)
Ellman, Thomas
1994-01-01
Computational science presents a host of challenges for the field of knowledge-based software design. Scientific computation models are difficult to construct. Models constructed by one scientist are easily misapplied by other scientists to problems for which they are not well-suited. Finally, models constructed by one scientist are difficult for others to modify or extend to handle new types of problems. Construction of scientific models actually involves much more than the mechanics of building a single computational model. In the course of developing a model, a scientist will often test a candidate model against experimental data or against a priori expectations. Test results often lead to revisions of the model and a consequent need for additional testing. During a single model development session, a scientist typically examines a whole series of alternative models, each using different simplifying assumptions or modeling techniques. A useful scientific software design tool must support these aspects of the model development process as well. In particular, it should propose and carry out tests of candidate models. It should analyze test results and identify models and parts of models that must be changed. It should determine what types of changes can potentially cure a given negative test result. It should organize candidate models, test data, and test results into a coherent record of the development process. Finally, it should exploit the development record for two purposes: (1) automatically determining the applicability of a scientific model to a given problem; (2) supporting revision of a scientific model to handle a new type of problem. Existing knowledge-based software design tools must be extended in order to provide these facilities.
Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1993-01-01
The period from Jan. 1993 thru Aug. 1993 is covered. The primary tasks during this period were the development of a single and multi-vibrational temperature preferential vibration-dissociation coupling model, the development of a normal shock nonequilibrium radiation-gasdynamic coupling model based upon the blunt body model, and the comparison of results obtained with these models with experimental data. In addition, an extensive series of computations were conducted using the blunt body model to develop a set of reference results covering a wide range of vehicle sizes, altitudes, and entry velocities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghil, M.; Kravtsov, S.; Robertson, A. W.
2008-10-14
This project was a continuation of previous work under DOE CCPP funding, in which we had developed a twin approach of probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs) to identify the predictable modes of climate variability and to investigate their impacts on the regional scale. We had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale GCM seasonal predictions. Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might influencemore » large-scale atmospheric circulation patterns on interannual and longer time scales; we had found similar patterns in a hybrid coupled ocean-atmosphere-sea-ice model. The goal of the this continuation project was to build on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean-atmosphere modes. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM results; and, observational studies of decadal and multi-decadal natural climate results, informed by ICM results.« less
Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1991-01-01
The primary tasks performed are: (1) the development of a second order local thermodynamic nonequilibrium (LTNE) model for atoms; (2) the continued development of vibrational nonequilibrium models; and (3) the development of a new multicomponent diffusion model. In addition, studies comparing these new models with previous models and results were conducted and reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Francfort; Kevin Morrow; Dimitri Hochard
2007-02-01
This report documents efforts to develop a computer tool for modeling the economic payback for comparative airport ground support equipment (GSE) that are propelled by either electric motors or gasoline and diesel engines. The types of GSE modeled are pushback tractors, baggage tractors, and belt loaders. The GSE modeling tool includes an emissions module that estimates the amount of tailpipe emissions saved by replacing internal combustion engine GSE with electric GSE. This report contains modeling assumptions, methodology, a user’s manual, and modeling results. The model was developed based on the operations of two airlines at four United States airports.
Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S; Barbosa-Cánovas, Gustavo V; Liu, Fang
2017-07-01
Development and selection of model foods is a critical part of microwave thermal process development, simulation validation, and optimization. Previously developed model foods for pasteurization process evaluation utilized Maillard reaction products as the time-temperature integrators, which resulted in similar temperature sensitivity among the models. The aim of this research was to develop additional model foods based on different time-temperature integrators, determine their dielectric properties and color change kinetics, and validate the optimal model food in hot water and microwave-assisted pasteurization processes. Color, quantified using a * value, was selected as the time-temperature indicator for green pea and garlic puree model foods. Results showed 915 MHz microwaves had a greater penetration depth into the green pea model food than the garlic. a * value reaction rates for the green pea model were approximately 4 times slower than in the garlic model food; slower reaction rates were preferred for the application of model food in this study, that is quality evaluation for a target process of 90 °C for 10 min at the cold spot. Pasteurization validation used the green pea model food and results showed that there were quantifiable differences between the color of the unheated control, hot water pasteurization, and microwave-assisted thermal pasteurization system. Both model foods developed in this research could be utilized for quality assessment and optimization of various thermal pasteurization processes. © 2017 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Dahdouh, S.; Varsier, N.; Nunez Ochoa, M. A.; Wiart, J.; Peyman, A.; Bloch, I.
2016-02-01
Numerical dosimetry studies require the development of accurate numerical 3D models of the human body. This paper proposes a novel method for building 3D heterogeneous young children models combining results obtained from a semi-automatic multi-organ segmentation algorithm and an anatomy deformation method. The data consist of 3D magnetic resonance images, which are first segmented to obtain a set of initial tissues. A deformation procedure guided by the segmentation results is then developed in order to obtain five young children models ranging from the age of 5 to 37 months. By constraining the deformation of an older child model toward a younger one using segmentation results, we assure the anatomical realism of the models. Using the proposed framework, five models, containing thirteen tissues, are built. Three of these models are used in a prospective dosimetry study to analyze young child exposure to radiofrequency electromagnetic fields. The results lean to show the existence of a relationship between age and whole body exposure. The results also highlight the necessity to specifically study and develop measurements of child tissues dielectric properties.
SSME structural dynamic model development
NASA Technical Reports Server (NTRS)
Foley, M. J.; Tilley, D. M.; Welch, C. T.
1983-01-01
A mathematical model of the Space Shuttle Main Engine (SSME) as a complete assembly, with detailed emphasis on LOX and High Fuel Turbopumps is developed. The advantages of both complete engine dynamics, and high fidelity modeling are incorporated. Development of this model, some results, and projected applications are discussed.
NASA Astrophysics Data System (ADS)
Anisimov, K. N.; Loginov, A. M.; Gusev, M. P.; Zarubin, S. V.; Nikonov, S. V.; Krasnov, A. V.
2017-12-01
This paper presents the results of physical modelling of the mould powder skull in the gap between an ingot and the mould. Based on the results obtained from this and previous works, the mathematical model of mould powder behaviour in the gap and its influence on formation of surface defects was developed. The results of modelling satisfactorily conform to the industrial data on ingot surface defects.
Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM
2013-12-01
UNCLASSIFIED Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM Stefano Wahono Aerospace...Georgia Institute of Technology. The OpenFOAM predicted result was also shown to compare favourably with ANSYS Fluent predictions. RELEASE...UNCLASSIFIED Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM Executive Summary The Infrared
VMT-based traffic impact assessment : development of a trip length model.
DOT National Transportation Integrated Search
2010-06-01
This report develops models that relate the trip-lengths to the land-use characteristics at : the trip-ends (both production- and attraction-ends). Separate models were developed by trip : purpose. The results indicate several statistically significa...
Orion Active Thermal Control System Dynamic Modeling Using Simulink/MATLAB
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Yuko, James
2010-01-01
This paper presents dynamic modeling of the crew exploration vehicle (Orion) active thermal control system (ATCS) using Simulink (Simulink, developed by The MathWorks). The model includes major components in ATCS, such as heat exchangers and radiator panels. The mathematical models of the heat exchanger and radiator are described first. Four different orbits were used to validate the radiator model. The current model results were compared with an independent Thermal Desktop (TD) (Thermal Desktop, PC/CAD-based thermal model builder, developed in Cullimore & Ring (C&R) Technologies) model results and showed good agreement for all orbits. In addition, the Orion ATCS performance was presented for three orbits and the current model results were compared with three sets of solutions- FloCAD (FloCAD, PC/CAD-based thermal/fluid model builder, developed in C&R Technologies) model results, SINDA/FLUINT (SINDA/FLUINT, a generalized thermal/fluid network-style solver ) model results, and independent Simulink model results. For each case, the fluid temperatures at every component on both the crew module and service module sides were plotted and compared. The overall agreement is reasonable for all orbits, with similar behavior and trends for the system. Some discrepancies exist because the control algorithm might vary from model to model. Finally, the ATCS performance for a 45-hr nominal mission timeline was simulated to demonstrate the capability of the model. The results show that the ATCS performs as expected and approximately 2.3 lb water was consumed in the sublimator within the 45 hr timeline before Orion docked at the International Space Station.
Larkindale, Jane; Abresch, Richard; Aviles, Enrique; Bronson, Abby; Chin, Janice; Furlong, Pat; Gordish-Dressman, Heather; Habeeb-Louks, Elizabeth; Henricson, Erik; Kroger, Hans; Lynn, Charles; Lynn, Stephen; Martin, Dana; Nuckolls, Glen; Rooney, William; Romero, Klaus; Sweeney, Lee; Vandenborne, Krista; Walter, Glenn; Wolff, Jodi; Wong, Brenda; McDonald, Craig M; Duchenne Regulatory Science Consortium Imaging-Dmd Consortium And The Cinrg Investigators, Members Of The
2017-01-12
The Duchenne Regulatory Science Consortium (D-RSC) was established to develop tools to accelerate drug development for DMD. The resulting tools are anticipated to meet validity requirements outlined by qualification/endorsement pathways at both the U.S. Food and Drug Administration (FDA) and European Medicines Administration (EMA), and will be made available to the drug development community. The initial goals of the consortium include the development of a disease progression model, with the goal of creating a model that would be used to forecast changes in clinically meaningful endpoints, which would inform clinical trial protocol development and data analysis. Methods: In April of 2016 the consortium and other experts met to formulate plans for the development of the model. Conclusions: Here we report the results of the meeting, and discussion as to the form of the model that we plan to move forward to develop, after input from the regulatory authorities.
NASA Astrophysics Data System (ADS)
Junk, S.
2016-08-01
Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.
Review and developments of dissemination models for airborne carbon fibers
NASA Technical Reports Server (NTRS)
Elber, W.
1980-01-01
Dissemination prediction models were reviewed to determine their applicability to a risk assessment for airborne carbon fibers. The review showed that the Gaussian prediction models using partial reflection at the ground agreed very closely with a more elaborate diffusion analysis developed for the study. For distances beyond 10,000 m the Gaussian models predicted a slower fall-off in exposure levels than the diffusion models. This resulting level of conservatism was preferred for the carbon fiber risk assessment. The results also showed that the perfect vertical-mixing models developed herein agreed very closely with the diffusion analysis for all except the most stable atmospheric conditions.
Reliable results from stochastic simulation models
Donald L., Jr. Gochenour; Leonard R. Johnson
1973-01-01
Development of a computer simulation model is usually done without fully considering how long the model should run (e.g. computer time) before the results are reliable. However construction of confidence intervals (CI) about critical output parameters from the simulation model makes it possible to determine the point where model results are reliable. If the results are...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit
2016-06-01
Transposition models are widely used in the solar energy industry to simulate solar radiation on inclined photovoltaic (PV) panels. These transposition models have been developed using various assumptions about the distribution of the diffuse radiation, and most of the parameterizations in these models have been developed using hourly ground data sets. Numerous studies have compared the performance of transposition models, but this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty using high-resolution ground measurements in the plane of array. Our results suggest that the amount of aerosol optical depthmore » can affect the accuracy of isotropic models. The choice of empirical coefficients and the use of decomposition models can both result in uncertainty in the output from the transposition models. It is expected that the results of this study will ultimately lead to improvements of the parameterizations as well as the development of improved physical models.« less
A New Model for Temperature Jump at a Fluid-Solid Interface
Shu, Jian-Jun; Teo, Ji Bin Melvin; Chan, Weng Kong
2016-01-01
The problem presented involves the development of a new analytical model for the general fluid-solid temperature jump. To the best of our knowledge, there are no analytical models that provide the accurate predictions of the temperature jump for both gas and liquid systems. In this paper, a unified model for the fluid-solid temperature jump has been developed based on our adsorption model of the interfacial interactions. Results obtained from this model are validated with available results from the literature. PMID:27764230
NASA Astrophysics Data System (ADS)
Roushangar, Kiyoumars; Mehrabani, Fatemeh Vojoudi; Shiri, Jalal
2014-06-01
This study presents Artificial Intelligence (AI)-based modeling of total bed material load through developing the accuracy level of the predictions of traditional models. Gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS)-based models were developed and validated for estimations. Sediment data from Qotur River (Northwestern Iran) were used for developing and validation of the applied techniques. In order to assess the applied techniques in relation to traditional models, stream power-based and shear stress-based physical models were also applied in the studied case. The obtained results reveal that developed AI-based models using minimum number of dominant factors, give more accurate results than the other applied models. Nonetheless, it was revealed that k-fold test is a practical but high-cost technique for complete scanning of applied data and avoiding the over-fitting.
A Leadership Identity Development Model: Applications from a Grounded Theory
ERIC Educational Resources Information Center
Komives, Susan R.; Mainella, Felicia C.; Longerbeam, Susan D.; Osteen, Laura; Owen, Julie E.
2006-01-01
This article describes a stage-based model of leadership identity development (LID) that resulted from a grounded theory study on developing a leadership identity (Komives, Owen, Longerbeam, Mainella, & Osteen, 2005). The LID model expands on the leadership identity stages, integrates the categories of the grounded theory into the LID model, and…
Development of Aspen: A microanalytic simulation model of the US economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pryor, R.J.; Basu, N.; Quint, T.
1996-02-01
This report describes the development of an agent-based microanalytic simulation model of the US economy. The microsimulation model capitalizes on recent technological advances in evolutionary learning and parallel computing. Results are reported for a test problem that was run using the model. The test results demonstrate the model`s ability to predict business-like cycles in an economy where prices and inventories are allowed to vary. Since most economic forecasting models have difficulty predicting any kind of cyclic behavior. These results show the potential of microanalytic simulation models to improve economic policy analysis and to provide new insights into underlying economic principles.more » Work already has begun on a more detailed model.« less
Ham, Joo-ho; Park, Hun-Young; Kim, Youn-ho; Bae, Sang-kon; Ko, Byung-hoon
2017-01-01
[Purpose] The purpose of this study was to develop a regression model to estimate the heart rate at the lactate threshold (HRLT) and the heart rate at the ventilatory threshold (HRVT) using the heart rate threshold (HRT), and to test the validity of the regression model. [Methods] We performed a graded exercise test with a treadmill in 220 normal individuals (men: 112, women: 108) aged 20–59 years. HRT, HRLT, and HRVT were measured in all subjects. A regression model was developed to estimate HRLT and HRVT using HRT with 70% of the data (men: 79, women: 76) through randomization (7:3), with the Bernoulli trial. The validity of the regression model developed with the remaining 30% of the data (men: 33, women: 32) was also examined. [Results] Based on the regression coefficient, we found that the independent variable HRT was a significant variable in all regression models. The adjusted R2 of the developed regression models averaged about 70%, and the standard error of estimation of the validity test results was 11 bpm, which is similar to that of the developed model. [Conclusion] These results suggest that HRT is a useful parameter for predicting HRLT and HRVT. PMID:29036765
Brake, M. R. W.
2015-02-17
Impact between metallic surfaces is a phenomenon that is ubiquitous in the design and analysis of mechanical systems. We found that to model this phenomenon, a new formulation for frictional elastic–plastic contact between two surfaces is developed. The formulation is developed to consider both frictional, oblique contact (of which normal, frictionless contact is a limiting case) and strain hardening effects. The constitutive model for normal contact is developed as two contiguous loading domains: the elastic regime and a transitionary region in which the plastic response of the materials develops and the elastic response abates. For unloading, the constitutive model ismore » based on an elastic process. Moreover, the normal contact model is assumed to only couple one-way with the frictional/tangential contact model, which results in the normal contact model being independent of the frictional effects. Frictional, tangential contact is modeled using a microslip model that is developed to consider the pressure distribution that develops from the elastic–plastic normal contact. This model is validated through comparisons with experimental results reported in the literature, and is demonstrated to be significantly more accurate than 10 other normal contact models and three other tangential contact models found in the literature.« less
TeleOperator/telePresence System (TOPS) Concept Verification Model (CVM) development
NASA Technical Reports Server (NTRS)
Shimamoto, Mike S.
1993-01-01
The development of an anthropomorphic, undersea manipulator system, the TeleOperator/telePresence System (TOPS) Concept Verification Model (CVM) is described. The TOPS system's design philosophy, which results from NRaD's experience in undersea vehicles and manipulator systems development and operations, is presented. The TOPS design approach, task teams, manipulator, and vision system development and results, conclusions, and recommendations are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bills, K.C.; Kress, R.L.; Kwon, D.S.
1994-12-31
This paper describes ORNL`s development of an environment for the simulation of robotic manipulators. Simulation includes the modeling of kinematics, dynamics, sensors, actuators, control systems, operators, and environments. Models will be used for manipulator design, proposal evaluation, control system design and analysis, graphical preview of proposed motions, safety system development, and training. Of particular interest is the development of models for robotic manipulators having at least one flexible link. As a first application, models have been developed for the Pacific Northwest Laboratory`s Flexible Beam Test Bed (PNL FBTB), which is a 1-Degree-of-Freedom, flexible arm with a hydraulic base actuator. ORNLmore » transferred control algorithms developed for the PNL FBTB to controlling IGRIP models. A robust notch filter is running in IGRIP controlling a full dynamics model of the PNL test bed. Model results provide a reasonable match to the experimental results (quantitative results are being determined) and can run on ORNL`s Onyx machine in approximately realtime. The flexible beam is modeled as six rigid sections with torsional springs between each segment. The spring constants were adjusted to match the physical response of the flexible beam model to the experimental results. The controller is able to improve performance on the model similar to the improvement seen on the experimental system. Some differences are apparent, most notably because the IGRIP model presently uses a different trajectory planner than the one used by ORNL on the PNL test bed. In the future, the trajectory planner will be modified so that the experiments and models are the same. The successful completion of this work provides the ability to link C code with IGRIP, thus allowing controllers to be developed, tested, and tuned in simulation and then ported directly to hardware systems using the C language.« less
GREET 1.5 : transportation fuel-cycle model. Vol. 1 : methodology, development, use, and results.
DOT National Transportation Integrated Search
1999-10-01
This report documents the development and use of the most recent version (Version 1.5) of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel...
Development and Validation of Linear Alternator Models for the Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Metscher, Jonathan F.; Lewandowski, Edward
2014-01-01
Two models of the linear alternator of the Advanced Stirling Convertor (ASC) have been developed using the Sage 1-D modeling software package. The first model relates the piston motion to electric current by means of a motor constant. The second uses electromagnetic model components to model the magnetic circuit of the alternator. The models are tuned and validated using test data and compared against each other. Results show both models can be tuned to achieve results within 7% of ASC test data under normal operating conditions. Using Sage enables the creation of a complete ASC model to be developed and simulations completed quickly compared to more complex multi-dimensional models. These models allow for better insight into overall Stirling convertor performance, aid with Stirling power system modeling, and in the future support NASA mission planning for Stirling-based power systems.
Development and Validation of Linear Alternator Models for the Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Metscher, Jonathan F.; Lewandowski, Edward J.
2015-01-01
Two models of the linear alternator of the Advanced Stirling Convertor (ASC) have been developed using the Sage 1-D modeling software package. The first model relates the piston motion to electric current by means of a motor constant. The second uses electromagnetic model components to model the magnetic circuit of the alternator. The models are tuned and validated using test data and also compared against each other. Results show both models can be tuned to achieve results within 7 of ASC test data under normal operating conditions. Using Sage enables the creation of a complete ASC model to be developed and simulations completed quickly compared to more complex multi-dimensional models. These models allow for better insight into overall Stirling convertor performance, aid with Stirling power system modeling, and in the future support NASA mission planning for Stirling-based power systems.
NASA Technical Reports Server (NTRS)
Goldsmith, V.; Morris, W. D.; Byrne, R. J.; Whitlock, C. H.
1974-01-01
A computerized wave climate model is developed that applies linear wave theory and shelf depth information to predict wave behavior as they pass over the continental shelf as well as the resulting wave energy distributions along the coastline. Reviewed are also the geomorphology of the Mid-Atlantic Continental Shelf, wave computations resulting from 122 wave input conditions, and a preliminary analysis of these data.
Modelling the degree of porosity of the ceramic surface intended for implants.
Stach, Sebastian; Kędzia, Olga; Garczyk, Żaneta; Wróbel, Zygmunt
2018-05-18
The main goal of the study was to develop a model of the degree of surface porosity of a biomaterial intended for implants. The model was implemented using MATLAB. A computer simulation was carried out based on the developed model, which resulted in a two-dimensional image of the modelled surface. Then, an algorithm for computerised image analysis of the surface of the actual oxide bioceramic layer was developed, which enabled determining its degree of porosity. In order to obtain the confocal micrographs of a few areas of the biomaterial, measurements were performed using the LEXT OLS4000 confocal laser microscope. The image analysis was carried out using MountainsMap Premium and SPIP. The obtained results allowed determining the input parameters of the program, on the basis of which porous biomaterial surface images were generated. The last part of the study involved verification of the developed model. The modelling method was tested by comparing the obtained results with the experimental data obtained from the analysis of surface images of the test material.
Kim, Marlene; Sedykh, Alexander; Chakravarti, Suman K.; Saiakhov, Roustem D.; Zhu, Hao
2014-01-01
Purpose Oral bioavailability (%F) is a key factor that determines the fate of a new drug in clinical trials. Traditionally, %F is measured using costly and time -consuming experimental tests. Developing computational models to evaluate the %F of new drugs before they are synthesized would be beneficial in the drug discovery process. Methods We employed Combinatorial Quantitative Structure-Activity Relationship approach to develop several computational %F models. We compiled a %F dataset of 995 drugs from public sources. After generating chemical descriptors for each compound, we used random forest, support vector machine, k nearest neighbor, and CASE Ultra to develop the relevant QSAR models. The resulting models were validated using five-fold cross-validation. Results The external predictivity of %F values was poor (R2=0.28, n=995, MAE=24), but was improved (R2=0.40, n=362, MAE=21) by filtering unreliable predictions that had a high probability of interacting with MDR1 and MRP2 transporters. Furthermore, classifying the compounds according to the %F values (%F<50% as “low”, %F≥50% as ‘high”) and developing category QSAR models resulted in an external accuracy of 76%. Conclusions In this study, we developed predictive %F QSAR models that could be used to evaluate new drug compounds, and integrating drug-transporter interactions data greatly benefits the resulting models. PMID:24306326
Development of a laboratory demonstration model active cleaning device
NASA Technical Reports Server (NTRS)
Shannon, R. L.; Gillette, R. B.
1975-01-01
A laboratory demonstration model of a device for removing contaminant films from optical surfaces in space was developed. The development of a plasma tube, which would produce the desired cleaning effects under high vacuum conditions, represented the major problem in the program. This plasma tube development is discussed, and the resulting laboratory demonstration-model device is described.
Larkindale, Jane; Abresch, Richard; Aviles, Enrique; Bronson, Abby; Chin, Janice; Furlong, Pat; Gordish-Dressman, Heather; Habeeb-Louks, Elizabeth; Henricson, Erik; Kroger, Hans; Lynn, Charles; Lynn, Stephen; Martin, Dana; Nuckolls, Glen; Rooney, William; Romero, Klaus; Sweeney, Lee; Vandenborne, Krista; Walter, Glenn; Wolff, Jodi; Wong, Brenda; McDonald, Craig M.; Duchenne Regulatory Science Consortium, Imaging-DMD Consortium and the CINRG Investigators, members of the
2017-01-01
Introduction: The Duchenne Regulatory Science Consortium (D-RSC) was established to develop tools to accelerate drug development for DMD. The resulting tools are anticipated to meet validity requirements outlined by qualification/endorsement pathways at both the U.S. Food and Drug Administration (FDA) and European Medicines Administration (EMA), and will be made available to the drug development community. The initial goals of the consortium include the development of a disease progression model, with the goal of creating a model that would be used to forecast changes in clinically meaningful endpoints, which would inform clinical trial protocol development and data analysis. Methods: In April of 2016 the consortium and other experts met to formulate plans for the development of the model. Conclusions: Here we report the results of the meeting, and discussion as to the form of the model that we plan to move forward to develop, after input from the regulatory authorities. PMID:28228973
Development of NASA's Models and Simulations Standard
NASA Technical Reports Server (NTRS)
Bertch, William J.; Zang, Thomas A.; Steele, Martin J.
2008-01-01
From the Space Shuttle Columbia Accident Investigation, there were several NASA-wide actions that were initiated. One of these actions was to develop a standard for development, documentation, and operation of Models and Simulations. Over the course of two-and-a-half years, a team of NASA engineers, representing nine of the ten NASA Centers developed a Models and Simulation Standard to address this action. The standard consists of two parts. The first is the traditional requirements section addressing programmatics, development, documentation, verification, validation, and the reporting of results from both the M&S analysis and the examination of compliance with this standard. The second part is a scale for evaluating the credibility of model and simulation results using levels of merit associated with 8 key factors. This paper provides an historical account of the challenges faced by and the processes used in this committee-based development effort. This account provides insights into how other agencies might approach similar developments. Furthermore, we discuss some specific applications of models and simulations used to assess the impact of this standard on future model and simulation activities.
Shift scheduling model considering workload and worker’s preference for security department
NASA Astrophysics Data System (ADS)
Herawati, A.; Yuniartha, D. R.; Purnama, I. L. I.; Dewi, LT
2018-04-01
Security department operates for 24 hours and applies shift scheduling to organize its workers as well as in hotel industry. This research has been conducted to develop shift scheduling model considering the workers physical workload using rating of perceived exertion (RPE) Borg’s Scale and workers’ preference to accommodate schedule flexibility. The mathematic model is developed in integer linear programming and results optimal solution for simple problem. Resulting shift schedule of the developed model has equally distribution shift allocation among workers to balance the physical workload and give flexibility for workers in working hours arrangement.
Kadiyala, Akhil; Kaur, Devinder; Kumar, Ashok
2013-02-01
The present study developed a novel approach to modeling indoor air quality (IAQ) of a public transportation bus by the development of hybrid genetic-algorithm-based neural networks (also known as evolutionary neural networks) with input variables optimized from using the regression trees, referred as the GART approach. This study validated the applicability of the GART modeling approach in solving complex nonlinear systems by accurately predicting the monitored contaminants of carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), sulfur dioxide (SO2), 0.3-0.4 microm sized particle numbers, 0.4-0.5 microm sized particle numbers, particulate matter (PM) concentrations less than 1.0 microm (PM10), and PM concentrations less than 2.5 microm (PM2.5) inside a public transportation bus operating on 20% grade biodiesel in Toledo, OH. First, the important variables affecting each monitored in-bus contaminant were determined using regression trees. Second, the analysis of variance was used as a complimentary sensitivity analysis to the regression tree results to determine a subset of statistically significant variables affecting each monitored in-bus contaminant. Finally, the identified subsets of statistically significant variables were used as inputs to develop three artificial neural network (ANN) models. The models developed were regression tree-based back-propagation network (BPN-RT), regression tree-based radial basis function network (RBFN-RT), and GART models. Performance measures were used to validate the predictive capacity of the developed IAQ models. The results from this approach were compared with the results obtained from using a theoretical approach and a generalized practicable approach to modeling IAQ that included the consideration of additional independent variables when developing the aforementioned ANN models. The hybrid GART models were able to capture majority of the variance in the monitored in-bus contaminants. The genetic-algorithm-based neural network IAQ models outperformed the traditional ANN methods of the back-propagation and the radial basis function networks. The novelty of this research is the development of a novel approach to modeling vehicular indoor air quality by integration of the advanced methods of genetic algorithms, regression trees, and the analysis of variance for the monitored in-vehicle gaseous and particulate matter contaminants, and comparing the results obtained from using the developed approach with conventional artificial intelligence techniques of back propagation networks and radial basis function networks. This study validated the newly developed approach using holdout and threefold cross-validation methods. These results are of great interest to scientists, researchers, and the public in understanding the various aspects of modeling an indoor microenvironment. This methodology can easily be extended to other fields of study also.
Parametric Modelling of As-Built Beam Framed Structure in Bim Environment
NASA Astrophysics Data System (ADS)
Yang, X.; Koehl, M.; Grussenmeyer, P.
2017-02-01
A complete documentation and conservation of a historic timber roof requires the integration of geometry modelling, attributional and dynamic information management and results of structural analysis. Recently developed as-built Building Information Modelling (BIM) technique has the potential to provide a uniform platform, which provides possibility to integrate the traditional geometry modelling, parametric elements management and structural analysis together. The main objective of the project presented in this paper is to develop a parametric modelling tool for a timber roof structure whose elements are leaning and crossing beam frame. Since Autodesk Revit, as the typical BIM software, provides the platform for parametric modelling and information management, an API plugin, able to automatically create the parametric beam elements and link them together with strict relationship, was developed. The plugin under development is introduced in the paper, which can obtain the parametric beam model via Autodesk Revit API from total station points and terrestrial laser scanning data. The results show the potential of automatizing the parametric modelling by interactive API development in BIM environment. It also integrates the separate data processing and different platforms into the uniform Revit software.
ERIC Educational Resources Information Center
Retnaningsih, Woro; Djatmiko; Sumarlam
2017-01-01
The research objective is to develop a model of Assessment for Learning (AFL) in Pragmatic course in IAIN Surakarta. The research problems are as follows: How did the lecturer develop a model of AFL? What was the form of assessment information used as the model of AFL? How was the results of the implementation of the model of assessment. The…
NASA Astrophysics Data System (ADS)
Zhang, Yaning; Xu, Fei; Li, Bingxi; Kim, Yong-Song; Zhao, Wenke; Xie, Gongnan; Fu, Zhongbin
2018-04-01
This study aims to validate the three-phase heat and mass transfer model developed in the first part (Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development). Experimental results from studies and experiments were used for the validation. The results showed that the correlation coefficients for the simulated and experimental water contents at different soil depths were between 0.83 and 0.92. The correlation coefficients for the simulated and experimental liquid water contents at different soil temperatures were between 0.95 and 0.99. With these high accuracies, the developed model can be well used to predict the water contents at different soil depths and temperatures.
NASA Technical Reports Server (NTRS)
Annett, Martin S.; Horta, Lucas G.; Jackson, Karen E.; Polanco, Michael A.; Littell, Justin D.
2012-01-01
Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber (DEA) under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. The presence of this energy absorbing device reduced the peak impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to a system-integrated finite element model of the test article developed in parallel with the test program. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests were conducted to evaluate the impact performances of various components and subsystems, including new crush tubes and the DEA blocks. Parameters defined for the system-integrated finite element model were determined from these tests. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the full-scale crash test without the DEA. This combination of heuristic and quantitative methods identified modeling deficiencies, evaluated parameter importance, and proposed required model changes. The multidimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were compared to test results and the original model results. There was a noticeable improvement in the pilot and copilot region, a slight improvement in the occupant model response, and an over-stiffening effect in the passenger region. One lesson learned was that this approach should be adopted early on, in combination with the building-block approaches that are customarily used, for model development and pretest predictions. Complete crash simulations with validated finite element models can be used to satisfy crash certification requirements, potentially reducing overall development costs.
Research and development activities in unified control-structure modeling and design
NASA Technical Reports Server (NTRS)
Nayak, A. P.
1985-01-01
Results of work sponsored by JPL and other organizations to develop a unified control/structures modeling and design capability for large space structures is presented. Recent analytical results are presented to demonstrate the significant interdependence between structural and control properties. A new design methodology is suggested in which the structure, material properties, dynamic model and control design are all optimized simultaneously. The development of a methodology for global design optimization is recommended as a long term goal. It is suggested that this methodology should be incorporated into computer aided engineering programs, which eventually will be supplemented by an expert system to aid design optimization. Recommendations are also presented for near term research activities at JPL. The key recommendation is to continue the development of integrated dynamic modeling/control design techniques, with special attention given to the development of structural models specially tailored to support design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Albert A.; Piepel, Gregory F.; Landmesser, S. M.
2013-11-13
This report is the last in a series of currently scheduled reports that presents the results from the High Level Waste (HLW) glass formulation development and testing work performed at the Vitreous State Laboratory (VSL) of the Catholic University of America (CUA) and the development of IHLW property-composition models performed jointly by Pacific Northwest National Laboratory (PNNL) and VSL for the River Protection Project-Waste Treatment and Immobilization Plant (RPP-WTP). Specifically, this report presents results of glass testing at VSL and model development at PNNL for Product Consistency Test (PCT), one-percent crystal fraction temperature (T1%), electrical conductivity (EC), and viscosity ofmore » HLW glasses. The models presented in this report may be augmented and additional validation work performed during any future immobilized HLW (IHLW) model development work. Completion of the test objectives is addressed.« less
Sheriff, R; Banks, A
2001-01-01
Organization change efforts have led to critically examining the structure of education and development departments within hospitals. This qualitative study evaluated an education and development model in an academic health sciences center. The model combines centralization and decentralization. The study results can be used by staff development educators and administrators when organization structure is questioned. This particular model maximizes the benefits and minimizes the limitations of centralized and decentralized structures.
Dependability modeling and assessment in UML-based software development.
Bernardi, Simona; Merseguer, José; Petriu, Dorina C
2012-01-01
Assessment of software nonfunctional properties (NFP) is an important problem in software development. In the context of model-driven development, an emerging approach for the analysis of different NFPs consists of the following steps: (a) to extend the software models with annotations describing the NFP of interest; (b) to transform automatically the annotated software model to the formalism chosen for NFP analysis; (c) to analyze the formal model using existing solvers; (d) to assess the software based on the results and give feedback to designers. Such a modeling→analysis→assessment approach can be applied to any software modeling language, be it general purpose or domain specific. In this paper, we focus on UML-based development and on the dependability NFP, which encompasses reliability, availability, safety, integrity, and maintainability. The paper presents the profile used to extend UML with dependability information, the model transformation to generate a DSPN formal model, and the assessment of the system properties based on the DSPN results.
Dependability Modeling and Assessment in UML-Based Software Development
Bernardi, Simona; Merseguer, José; Petriu, Dorina C.
2012-01-01
Assessment of software nonfunctional properties (NFP) is an important problem in software development. In the context of model-driven development, an emerging approach for the analysis of different NFPs consists of the following steps: (a) to extend the software models with annotations describing the NFP of interest; (b) to transform automatically the annotated software model to the formalism chosen for NFP analysis; (c) to analyze the formal model using existing solvers; (d) to assess the software based on the results and give feedback to designers. Such a modeling→analysis→assessment approach can be applied to any software modeling language, be it general purpose or domain specific. In this paper, we focus on UML-based development and on the dependability NFP, which encompasses reliability, availability, safety, integrity, and maintainability. The paper presents the profile used to extend UML with dependability information, the model transformation to generate a DSPN formal model, and the assessment of the system properties based on the DSPN results. PMID:22988428
Physics Based Model for Online Fault Detection in Autonomous Cryogenic Loading System
NASA Technical Reports Server (NTRS)
Kashani, Ali; Devine, Ekaterina Viktorovna P; Luchinsky, Dmitry Georgievich; Smelyanskiy, Vadim; Sass, Jared P.; Brown, Barbara L.; Patterson-Hine, Ann
2013-01-01
We report the progress in the development of the chilldown model for rapid cryogenic loading system developed at KSC. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The two-phase flow model of the chilldown is approximated as one-dimensional homogeneous fluid flow with no slip condition for the interphase velocity. The model is built using commercial SINDAFLUINT software. The results of numerical predictions are in good agreement with the experimental time traces. The obtained results pave the way to the application of the SINDAFLUINT model as a verification tool for the design and algorithm development required for autonomous loading operation.
Ahmad, Zulfiqar; Ashraf, Arshad; Fryar, Alan; Akhter, Gulraiz
2011-02-01
The integration of the Geographic Information System (GIS) with groundwater modeling and satellite remote sensing capabilities has provided an efficient way of analyzing and monitoring groundwater behavior and its associated land conditions. A 3-dimensional finite element model (Feflow) has been used for regional groundwater flow modeling of Upper Chaj Doab in Indus Basin, Pakistan. The approach of using GIS techniques that partially fulfill the data requirements and define the parameters of existing hydrologic models was adopted. The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient, and estimation of the groundwater budget of the aquifer. GIS is used for spatial database development, integration with a remote sensing, and numerical groundwater flow modeling capabilities. The thematic layers of soils, land use, hydrology, infrastructure, and climate were developed using GIS. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater flow modeling and integration and presentation of image processing and modeling results. The groundwater flow model was calibrated to simulate future changes in piezometric heads from the period 2006 to 2020. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The model results indicated a significant response in watertable due to external influential factors. The developed model provides an effective tool for evaluating better management options for monitoring future groundwater development in the study area.
Schulz, W.H.; Lidke, D.J.; Godt, J.W.
2008-01-01
Landslides in partially saturated colluvium on Seattle, WA, hillslopes have resulted in property damage and human casualties. We developed statistical models of colluvium and shallow-groundwater distributions to aid landslide hazard assessments. The models were developed using a geographic information system, digital geologic maps, digital topography, subsurface exploration results, the groundwater flow modeling software VS2DI and regression analyses. Input to the colluvium model includes slope, distance to a hillslope-crest escarpment, and escarpment slope and height. We developed different statistical relations for thickness of colluvium on four landforms. Groundwater model input includes colluvium basal slope and distance from the Fraser aquifer. This distance was used to estimate hydraulic conductivity based on the assumption that addition of finer-grained material from down-section would result in lower conductivity. Colluvial groundwater is perched so we estimated its saturated thickness. We used VS2DI to establish relations between saturated thickness and the hydraulic conductivity and basal slope of the colluvium. We developed different statistical relations for three groundwater flow regimes. All model results were validated using observational data that were excluded from calibration. Eighty percent of colluvium thickness predictions were within 25% of observed values and 88% of saturated thickness predictions were within 20% of observed values. The models are based on conditions common to many areas, so our method can provide accurate results for similar regions; relations in our statistical models require calibration for new regions. Our results suggest that Seattle landslides occur in native deposits and colluvium, ultimately in response to surface-water erosion of hillstope toes. Regional groundwater conditions do not appear to strongly affect the general distribution of Seattle landslides; historical landslides were equally dispersed within and outside of the area potentially affected by regional groundwater conditions.
Advanced Mirror & Modelling Technology Development
NASA Technical Reports Server (NTRS)
Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl
2014-01-01
The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.
Wang, Wenyi; Kim, Marlene T.; Sedykh, Alexander
2015-01-01
Purpose Experimental Blood–Brain Barrier (BBB) permeability models for drug molecules are expensive and time-consuming. As alternative methods, several traditional Quantitative Structure-Activity Relationship (QSAR) models have been developed previously. In this study, we aimed to improve the predictivity of traditional QSAR BBB permeability models by employing relevant public bio-assay data in the modeling process. Methods We compiled a BBB permeability database consisting of 439 unique compounds from various resources. The database was split into a modeling set of 341 compounds and a validation set of 98 compounds. Consensus QSAR modeling workflow was employed on the modeling set to develop various QSAR models. A five-fold cross-validation approach was used to validate the developed models, and the resulting models were used to predict the external validation set compounds. Furthermore, we used previously published membrane transporter models to generate relevant transporter profiles for target compounds. The transporter profiles were used as additional biological descriptors to develop hybrid QSAR BBB models. Results The consensus QSAR models have R2=0.638 for fivefold cross-validation and R2=0.504 for external validation. The consensus model developed by pooling chemical and transporter descriptors showed better predictivity (R2=0.646 for five-fold cross-validation and R2=0.526 for external validation). Moreover, several external bio-assays that correlate with BBB permeability were identified using our automatic profiling tool. Conclusions The BBB permeability models developed in this study can be useful for early evaluation of new compounds (e.g., new drug candidates). The combination of chemical and biological descriptors shows a promising direction to improve the current traditional QSAR models. PMID:25862462
Development of a subway operation incident delay model using accelerated failure time approaches.
Weng, Jinxian; Zheng, Yang; Yan, Xuedong; Meng, Qiang
2014-12-01
This study aims to develop a subway operational incident delay model using the parametric accelerated time failure (AFT) approach. Six parametric AFT models including the log-logistic, lognormal and Weibull models, with fixed and random parameters are built based on the Hong Kong subway operation incident data from 2005 to 2012, respectively. In addition, the Weibull model with gamma heterogeneity is also considered to compare the model performance. The goodness-of-fit test results show that the log-logistic AFT model with random parameters is most suitable for estimating the subway incident delay. First, the results show that a longer subway operation incident delay is highly correlated with the following factors: power cable failure, signal cable failure, turnout communication disruption and crashes involving a casualty. Vehicle failure makes the least impact on the increment of subway operation incident delay. According to these results, several possible measures, such as the use of short-distance and wireless communication technology (e.g., Wifi and Zigbee) are suggested to shorten the delay caused by subway operation incidents. Finally, the temporal transferability test results show that the developed log-logistic AFT model with random parameters is stable over time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Modeling of near wall turbulence and modeling of bypass transition
NASA Technical Reports Server (NTRS)
Yang, Z.
1992-01-01
The objectives for this project are as follows: (1) Modeling of the near wall turbulence: We aim to develop a second order closure for the near wall turbulence. As a first step of this project, we try to develop a kappa-epsilon model for near wall turbulence. We require the resulting model to be able to handle both near wall turbulence and turbulent flows away from the wall, computationally robust, and applicable for complex flow situations, flow with separation, for example, and (2) Modeling of the bypass transition: We aim to develop a bypass transition model which contains the effect of intermittency. Thus, the model can be used for both the transitional boundary layers and the turbulent boundary layers. We require the resulting model to give a good prediction of momentum and heat transfer within the transitional boundary and a good prediction of the effect of freestream turbulence on transitional boundary layers.
Model development for Ulysses and SOHO
NASA Technical Reports Server (NTRS)
Wu, S. T.
1993-01-01
The purpose of this research is to provide scientific expertise in solar physics and in the development and use of magnetohydrodynamic (MHD) models of coronal structures for the computation of Lyman alpha scattered radiation in these structures. The specific objectives will be to run MHD models with new boundary conditions and compute resulting scattered solar Lyman alpha intensities, guided by results from the first series of boundary conditions.
NASA Astrophysics Data System (ADS)
Matas, Richard; Syka, Tomáš; Luňáček, Ondřej
The article deals with a description of results from research and development of a radial compressor stage. The experimental compressor and used numerical models are briefly described. In the first part, the comparisons of characteristics obtained experimentally and by numerical simulations for stage with vaneless diffuser are described. In the second part, the results for stage with vanned diffuser are presented. The results are relevant for next studies in research and development process.
Modeling and experimental study of resistive switching in vertically aligned carbon nanotubes
NASA Astrophysics Data System (ADS)
Ageev, O. A.; Blinov, Yu F.; Ilina, M. V.; Ilin, O. I.; Smirnov, V. A.
2016-08-01
Model of the resistive switching in vertically aligned carbon nanotube (VA CNT) taking into account the processes of deformation, polarization and piezoelectric charge accumulation have been developed. Origin of hysteresis in VA CNT-based structure is described. Based on modeling results the VACNTs-based structure has been created. The ration resistance of high-resistance to low-resistance states of the VACNTs-based structure amounts 48. The correlation the modeling results with experimental studies is shown. The results can be used in the development nanoelectronics devices based on VA CNTs, including the nonvolatile resistive random-access memory.
Neural Networks for Hydrological Modeling Tool for Operational Purposes
NASA Astrophysics Data System (ADS)
Bhatt, Divya; Jain, Ashu
2010-05-01
Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. Runoff is generally computed using rainfall-runoff models. Computer based hydrologic models have become popular for obtaining hydrological forecasts and for managing water systems. Rainfall-runoff library (RRL) is computer software developed by Cooperative Research Centre for Catchment Hydrology (CRCCH), Australia consisting of five different conceptual rainfall-runoff models, and has been in operation in many water resources applications in Australia. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conceptual models actually in use in real catchments. In this paper, the results from an investigation on the use of RRL and ANNs are presented. Out of the five conceptual models in the RRL toolkit, SimHyd model has been used. Genetic Algorithm has been used as an optimizer in the RRL to calibrate the SimHyd model. Trial and error procedures were employed to arrive at the best values of various parameters involved in the GA optimizer to develop the SimHyd model. The results obtained from the best configuration of the SimHyd model are presented here. Feed-forward neural network model structure trained by back-propagation training algorithm has been adopted here to develop the ANN models. The daily rainfall and runoff data derived from Bird Creek Basin, Oklahoma, USA have been employed to develop all the models included here. A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. The ANN models developed consistently outperformed the conceptual model developed in this study. The results obtained in this study indicate that the ANNs can be extremely useful tools for modeling the complex rainfall-runoff process in real catchments. The ANNs should be adopted in real catchments for hydrological modeling and forecasting. It is hoped that more research will be carried out to compare the performance of ANN model with the conceptual models actually in use at catchment scales. It is hoped that such efforts may go a long way in making the ANNs more acceptable by the policy makers, water resources decision makers, and traditional hydrologists.
Park, Byung-Jung; Lord, Dominique; Wu, Lingtao
2016-10-28
This study aimed to investigate the relative performance of two models (negative binomial (NB) model and two-component finite mixture of negative binomial models (FMNB-2)) in terms of developing crash modification factors (CMFs). Crash data on rural multilane divided highways in California and Texas were modeled with the two models, and crash modification functions (CMFunctions) were derived. The resultant CMFunction estimated from the FMNB-2 model showed several good properties over that from the NB model. First, the safety effect of a covariate was better reflected by the CMFunction developed using the FMNB-2 model, since the model takes into account the differential responsiveness of crash frequency to the covariate. Second, the CMFunction derived from the FMNB-2 model is able to capture nonlinear relationships between covariate and safety. Finally, following the same concept as those for NB models, the combined CMFs of multiple treatments were estimated using the FMNB-2 model. The results indicated that they are not the simple multiplicative of single ones (i.e., their safety effects are not independent under FMNB-2 models). Adjustment Factors (AFs) were then developed. It is revealed that current Highway Safety Manual's method could over- or under-estimate the combined CMFs under particular combination of covariates. Safety analysts are encouraged to consider using the FMNB-2 models for developing CMFs and AFs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Global Environmental Multiscale model - a platform for integrated environmental predictions
NASA Astrophysics Data System (ADS)
Kaminski, Jacek W.; Struzewska, Joanna; Neary, Lori; Dearden, Frank
2017-04-01
The Global Environmental Multiscale model was developed by the Government of Canada as an operational weather prediction model in the mid-1990s. Subsequently, it was used as the host meteorological model for an on-line implementation of air quality chemistry and aerosols from global to the meso-gamma scale. Further model developments led to the vertical extension of the modelling domain to include stratospheric chemistry, aerosols, and formation of polar stratospheric clouds. In parallel, the modelling platform was used for planetary applications where dynamical, radiative transfer and chemical processes in the atmosphere of Mars were successfully simulated. Undoubtedly, the developed modelling platform can be classified as an example capable of the seamless and coupled modelling of the dynamics and chemistry of planetary atmospheres. We will present modelling results for global, regional, and local air quality episodes and the long-term air quality trends. Upper troposphere and lower stratosphere modelling results will be presented in terms of climate change and subsonic aviation emissions modelling. Model results for the atmosphere of Mars will be presented in the context of the 2016 ExoMars mission and the anticipated observations from the NOMAD instrument. Also, we will present plans and the design to extend the GEM model to the F region with further coupling with a magnetospheric model that extends to 15 Re.
A Study of Collaborative Software Development Using Groupware Tools
ERIC Educational Resources Information Center
Defranco-Tommarello, Joanna; Deek, Fadi P.
2005-01-01
The experimental results of a collaborative problem solving and program development model that takes into consideration the cognitive and social activities that occur during software development is presented in this paper. This collaborative model is based on the Dual Common Model that focuses on individual cognitive aspects of problem solving and…
Binders for Energetics - Modelling and Synthesis in Harmony
NASA Astrophysics Data System (ADS)
Dossi, Licia; Cleaver, Doug; Gould, Peter; Dunnett, Jim; Cavaye, Hamish; Ellison, Laurence; Luppi, Federico; Hollands, Ron; Bradley, Mark
The Binders by Design UK programme develop new polymeric materials for energetic applications that can overcome problems related to chemico-physical properties, aging, additives, environmental and performance of energetic compositions. Combined multi-scale modelling and experiment is used for the development of a new modelling tool and with the aim to produce novel materials with great confidence and fast turnaround. New synthesised binders with attractive properties for energetic applications used to provide a high level of confidence in the results of developed models. Molecular dynamics simulations investigate the thermal behaviour and the results directly feed into a Group Interaction Model (GIM). A viscoelastic constitutive model has been developed examining stress development in energetic/binder configurations. GIM data has been used as the basis for developing hydrocode equations of state, which then applied in run-to-detonation type investigations to examine the effect of the shock properties of a binder on the reactivity of a typical Polymer Bonded Explosive in a high-velocity impact type scenario. The Binders by Design UK programme is funded through the Weapons Science and Technology Centre by DSTL.
Nonlinear Aerodynamic Modeling From Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Brandon, Jay M.; Morelli, Eugene A.
2012-01-01
Results of the Aeronautics Research Mission Directorate Seedling Project Phase I research project entitled "Nonlinear Aerodynamics Modeling using Fuzzy Logic" are presented. Efficient and rapid flight test capabilities were developed for estimating highly nonlinear models of airplane aerodynamics over a large flight envelope. Results showed that the flight maneuvers developed, used in conjunction with the fuzzy-logic system identification algorithms, produced very good model fits of the data, with no model structure inputs required, for flight conditions ranging from cruise to departure and spin conditions.
Modeling of a Surface Acoustic Wave Strain Sensor
NASA Technical Reports Server (NTRS)
Wilson, W. C.; Atkinson, Gary M.
2010-01-01
NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented
Aircraft Dynamic Modeling in Turbulence
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Cunninham, Kevin
2012-01-01
A method for accurately identifying aircraft dynamic models in turbulence was developed and demonstrated. The method uses orthogonal optimized multisine excitation inputs and an analytic method for enhancing signal-to-noise ratio for dynamic modeling in turbulence. A turbulence metric was developed to accurately characterize the turbulence level using flight measurements. The modeling technique was demonstrated in simulation, then applied to a subscale twin-engine jet transport aircraft in flight. Comparisons of modeling results obtained in turbulent air to results obtained in smooth air were used to demonstrate the effectiveness of the approach.
Thermal performance modeling of NASA s scientific balloons
NASA Astrophysics Data System (ADS)
Franco, H.; Cathey, H.
The flight performance of a scientific balloon is highly dependant on the interaction between the balloon and its environment. The balloon is a thermal vehicle. Modeling a scientific balloon's thermal performance has proven to be a difficult analytical task. Most previous thermal models have attempted these analyses by using either a bulk thermal model approach, or by simplified representations of the balloon. These approaches to date have provided reasonable, but not very accurate results. Improvements have been made in recent years using thermal analysis tools developed for the thermal modeling of spacecraft and other sophisticated heat transfer problems. These tools, which now allow for accurate modeling of highly transmissive materials, have been applied to the thermal analysis of NASA's scientific balloons. A research effort has been started that utilizes the "Thermal Desktop" addition to AUTO CAD. This paper will discuss the development of thermal models for both conventional and Ultra Long Duration super-pressure balloons. This research effort has focused on incremental analysis stages of development to assess the accuracy of the tool and the required model resolution to produce usable data. The first stage balloon thermal analyses started with simple spherical balloon models with a limited number of nodes, and expanded the number of nodes to determine required model resolution. These models were then modified to include additional details such as load tapes. The second stage analyses looked at natural shaped Zero Pressure balloons. Load tapes were then added to these shapes, again with the goal of determining the required modeling accuracy by varying the number of gores. The third stage, following the same steps as the Zero Pressure balloon efforts, was directed at modeling super-pressure pumpkin shaped balloons. The results were then used to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. The development of the radiative environment and program input files, the development of the modeling techniques for balloons, and the development of appropriate data output handling techniques for both the raw data and data plots will be discussed. A general guideline to match predicted balloon performance with known flight data will also be presented. One long-term goal of this effort is to develop simplified approaches and techniques to include results in performance codes being developed.
Next-generation concurrent engineering: developing models to complement point designs
NASA Technical Reports Server (NTRS)
Morse, Elizabeth; Leavens, Tracy; Cohanim, Babak; Harmon, Corey; Mahr, Eric; Lewis, Brian
2006-01-01
Concurrent Engineering Design (CED) teams have made routine the rapid development of point designs for space missions. The Jet Propulsion Laboratory's Team X is now evolving into a 'next-generation CED; in addition to a point design, the Team develops a model of the local trade space. The process is a balance between the power of a model developing tools and the creativity of humal experts, enabling the development of a variety of trade models for any space mission. This paper reviews the modeling method and its practical implementation in the ED environment. Example results illustrate the benefit of this approach.
Development of estrogen receptor beta binding prediction model using large sets of chemicals.
Sakkiah, Sugunadevi; Selvaraj, Chandrabose; Gong, Ping; Zhang, Chaoyang; Tong, Weida; Hong, Huixiao
2017-11-03
We developed an ER β binding prediction model to facilitate identification of chemicals specifically bind ER β or ER α together with our previously developed ER α binding model. Decision Forest was used to train ER β binding prediction model based on a large set of compounds obtained from EADB. Model performance was estimated through 1000 iterations of 5-fold cross validations. Prediction confidence was analyzed using predictions from the cross validations. Informative chemical features for ER β binding were identified through analysis of the frequency data of chemical descriptors used in the models in the 5-fold cross validations. 1000 permutations were conducted to assess the chance correlation. The average accuracy of 5-fold cross validations was 93.14% with a standard deviation of 0.64%. Prediction confidence analysis indicated that the higher the prediction confidence the more accurate the predictions. Permutation testing results revealed that the prediction model is unlikely generated by chance. Eighteen informative descriptors were identified to be important to ER β binding prediction. Application of the prediction model to the data from ToxCast project yielded very high sensitivity of 90-92%. Our results demonstrated ER β binding of chemicals could be accurately predicted using the developed model. Coupling with our previously developed ER α prediction model, this model could be expected to facilitate drug development through identification of chemicals that specifically bind ER β or ER α .
A Lumped Computational Model for Sodium Sulfur Battery Analysis
NASA Astrophysics Data System (ADS)
Wu, Fan
Due to the cost of materials and time consuming testing procedures, development of new batteries is a slow and expensive practice. The purpose of this study is to develop a computational model and assess the capabilities of such a model designed to aid in the design process and control of sodium sulfur batteries. To this end, a transient lumped computational model derived from an integral analysis of the transport of species, energy and charge throughout the battery has been developed. The computation processes are coupled with the use of Faraday's law, and solutions for the species concentrations, electrical potential and current are produced in a time marching fashion. Properties required for solving the governing equations are calculated and updated as a function of time based on the composition of each control volume. The proposed model is validated against multi- dimensional simulations and experimental results from literatures, and simulation results using the proposed model is presented and analyzed. The computational model and electrochemical model used to solve the equations for the lumped model are compared with similar ones found in the literature. The results obtained from the current model compare favorably with those from experiments and other models.
Calibration of Airframe and Occupant Models for Two Full-Scale Rotorcraft Crash Tests
NASA Technical Reports Server (NTRS)
Annett, Martin S.; Horta, Lucas G.; Polanco, Michael A.
2012-01-01
Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. Accelerations and kinematic data collected from the crash tests were compared to a system integrated finite element model of the test article. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the second full-scale crash test. This combination of heuristic and quantitative methods was used to identify modeling deficiencies, evaluate parameter importance, and propose required model changes. It is shown that the multi-dimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were compared to test results and the original model results. There was a noticeable improvement in the pilot and co-pilot region, a slight improvement in the occupant model response, and an over-stiffening effect in the passenger region. This approach should be adopted early on, in combination with the building-block approaches that are customarily used, for model development and test planning guidance. Complete crash simulations with validated finite element models can be used to satisfy crash certification requirements, thereby reducing overall development costs.
Anion exchange membrane fuel cell modelling
NASA Astrophysics Data System (ADS)
Fragiacomo, P.; Astorino, E.; Chippari, G.; De Lorenzo, G.; Czarnetzki, W. T.; Schneider, W.
2018-04-01
A parametric model predicting the performance of a solid polymer electrolyte, anion exchange membrane fuel cell (AEMFC), has been developed, in Matlab environment, based on interrelated electrical and thermal models. The electrical model proposed is developed by modelling an AEMFC open-circuit output voltage, irreversible voltage losses along with a mass balance, while the thermal model is based on the energy balance. The proposed model of the AEMFC stack estimates its dynamic behaviour, in particular the operating temperature variation for different discharge current values. The results of the theoretical fuel cell (FC) stack are reported and analysed in order to highlight the FC performance and how it varies by changing the values of some parameters such as temperature and pressure. Both the electrical and thermal FC models were validated by comparing the model results with experimental data and the results of other models found in the literature.
AXAF-1 high-resolution mirror assembly image model and comparison with x-ray ground-test image
NASA Astrophysics Data System (ADS)
Zissa, David E.
1999-09-01
The completed High Resolution Mirror Assembly (HRMA) of the Advanced X-ray Astrophysics Facility - Imaging (AXAF-I) was tested at the X-ray Calibration Facility (XRCF) at the NASA- Marshall Space Flight Center (MSFC) in 1997. The MSFC image model was developed during the development of AXAF-I. The MSFC model is a detailed ray-trace model of the as-built HRMA optics and the XRCF teste conditions. The image encircled-energy distributions from the model are found to general agree well with XRCF test data nd the preliminary Smithsonian Astrophysical Observatory (SAO) model. MSFC model effective-area result generally agree with those of the preliminary SAO model. Preliminary model effective-area results were reported by SAO to be approximately 5-13 percent above initial XRCF test results. The XRCF test conditions are removed from the MSFC ray-trace model to derive an on-orbit prediction of the HRMA image.
Research and development activities in unified control-structure modeling and design
NASA Technical Reports Server (NTRS)
Nayak, A. P.
1985-01-01
Results of work to develop a unified control/structures modeling and design capability for large space structures modeling are presented. Recent analytical results are presented to demonstrate the significant interdependence between structural and control properties. A new design methodology is suggested in which the structure, material properties, dynamic model and control design are all optimized simultaneously. Parallel research done by other researchers is reviewed. The development of a methodology for global design optimization is recommended as a long-term goal. It is suggested that this methodology should be incorporated into computer aided engineering programs, which eventually will be supplemented by an expert system to aid design optimization.
Modeling plant growth and development.
Prusinkiewicz, Przemyslaw
2004-02-01
Computational plant models or 'virtual plants' are increasingly seen as a useful tool for comprehending complex relationships between gene function, plant physiology, plant development, and the resulting plant form. The theory of L-systems, which was introduced by Lindemayer in 1968, has led to a well-established methodology for simulating the branching architecture of plants. Many current architectural models provide insights into the mechanisms of plant development by incorporating physiological processes, such as the transport and allocation of carbon. Other models aim at elucidating the geometry of plant organs, including flower petals and apical meristems, and are beginning to address the relationship between patterns of gene expression and the resulting plant form.
Transition and Turbulence Modeling for Blunt-Body Wake Flows
NASA Technical Reports Server (NTRS)
Nance, Robert P.; Horvath, Thomas J.; Hassan, H. A.
1997-01-01
This study attempts t o improve the modeling and computational prediction of high- speed transitional wake flows. The recently developed kappa - zeta (Enstrophy) turbulence model is coupled with a newly developed transition prediction method and implemented in an implicit flow solver well-suited to hypersonic flows. In this model, transition onset is determined as part of the solution. Results obtained using the new model for a 70- deg blunted cone/sting geometry demonstrate better agreement with experimental heat- transfer measurements when compared to laminar calculations as well as solutions using the kappa - omega model. Results are also presented for the situation where transition onset is preselected. It is shown that, in this case, results are quite sensitive to location of the transition point.
Validation of numerical model for cook stove using Reynolds averaged Navier-Stokes based solver
NASA Astrophysics Data System (ADS)
Islam, Md. Moinul; Hasan, Md. Abdullah Al; Rahman, Md. Mominur; Rahaman, Md. Mashiur
2017-12-01
Biomass fired cook stoves, for many years, have been the main cooking appliance for the rural people of developing countries. Several researches have been carried out to the find efficient stoves. In the present study, numerical model of an improved household cook stove is developed to analyze the heat transfer and flow behavior of gas during operation. The numerical model is validated with the experimental results. Computation of the numerical model is executed the using non-premixed combustion model. Reynold's averaged Navier-Stokes (RaNS) equation along with the κ - ɛ model governed the turbulent flow associated within the computed domain. The computational results are in well agreement with the experiment. Developed numerical model can be used to predict the effect of different biomasses on the efficiency of the cook stove.
Developing a Model for ePortfolio Design: A Studio Approach
ERIC Educational Resources Information Center
Carpenter, Russell; Apostel, Shawn; Hyndman, June Overton
2012-01-01
After developing and testing a model for integrative collaboration at Eastern Kentucky University's Noel Studio for Academic Creativity, we offer results that highlight the potential for peer review to significantly and positively impact the ePortfolio design process for students. The results of this classroom/studio collaboration suggest that…
Normal Brain-Skull Development with Hybrid Deformable VR Models Simulation.
Jin, Jing; De Ribaupierre, Sandrine; Eagleson, Roy
2016-01-01
This paper describes a simulation framework for a clinical application involving skull-brain co-development in infants, leading to a platform for craniosynostosis modeling. Craniosynostosis occurs when one or more sutures are fused early in life, resulting in an abnormal skull shape. Surgery is required to reopen the suture and reduce intracranial pressure, but is difficult without any predictive model to assist surgical planning. We aim to study normal brain-skull growth by computer simulation, which requires a head model and appropriate mathematical methods for brain and skull growth respectively. On the basis of our previous model, we further specified suture model into fibrous and cartilaginous sutures and develop algorithm for skull extension. We evaluate the resulting simulation by comparison with datasets of cases and normal growth.
NASA Technical Reports Server (NTRS)
Holms, A. G.
1977-01-01
A statistical decision procedure called chain pooling had been developed for model selection in fitting the results of a two-level fixed-effects full or fractional factorial experiment not having replication. The basic strategy included the use of one nominal level of significance for a preliminary test and a second nominal level of significance for the final test. The subject has been reexamined from the point of view of using as many as three successive statistical model deletion procedures in fitting the results of a single experiment. The investigation consisted of random number studies intended to simulate the results of a proposed aircraft turbine-engine rotor-burst-protection experiment. As a conservative approach, population model coefficients were chosen to represent a saturated 2 to the 4th power experiment with a distribution of parameter values unfavorable to the decision procedures. Three model selection strategies were developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, Marte
2013-12-31
This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understandmore » of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.« less
Status of DSMT research program
NASA Technical Reports Server (NTRS)
Mcgowan, Paul E.; Javeed, Mehzad; Edighoffer, Harold H.
1991-01-01
The status of the Dynamic Scale Model Technology (DSMT) research program is presented. DSMT is developing scale model technology for large space structures as part of the Control Structure Interaction (CSI) program at NASA Langley Research Center (LaRC). Under DSMT a hybrid-scale structural dynamics model of Space Station Freedom was developed. Space Station Freedom was selected as the focus structure for DSMT since the station represents the first opportunity to obtain flight data on a complex, three-dimensional space structure. Included is an overview of DSMT including the development of the space station scale model and the resulting hardware. Scaling technology was developed for this model to achieve a ground test article which existing test facilities can accommodate while employing realistically scaled hardware. The model was designed and fabricated by the Lockheed Missile and Space Co., and is assembled at LaRc for dynamic testing. Also, results from ground tests and analyses of the various model components are presented along with plans for future subassembly and matted model tests. Finally, utilization of the scale model for enhancing analysis verification of the full-scale space station is also considered.
Wall-resolved spectral cascade-transport turbulence model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C. S.; Shaver, D. R.; Lahey, R. T.
A spectral cascade-transport model has been developed and applied to turbulent channel flows (Reτ= 550, 950, and 2000 based on friction velocity, uτ ; or ReδΜ= 8,500; 14,800 and 31,000, based on the mean velocity and channel half-width). This model is an extension of a spectral model previously developed for homogeneous single and two-phase decay of isotropic turbulence and uniform shear flows; and a spectral turbulence model for wall-bounded flows without resolving the boundary layer. Data from direct numerical simulation (DNS) of turbulent channel flow was used to help develop this model and to assess its performance in the 1Dmore » direction across the channel width. The resultant spectral model is capable of predicting the mean velocity, turbulent kinetic energy and energy spectrum distributions for single-phase wall-bounded flows all the way to the wall, where the model source terms have been developed to account for the wall influence. We implemented the model into the 3D multiphase CFD code NPHASE-CMFD and the latest results are within reasonable error of the 1D predictions.« less
Wall-resolved spectral cascade-transport turbulence model
Brown, C. S.; Shaver, D. R.; Lahey, R. T.; ...
2017-07-08
A spectral cascade-transport model has been developed and applied to turbulent channel flows (Reτ= 550, 950, and 2000 based on friction velocity, uτ ; or ReδΜ= 8,500; 14,800 and 31,000, based on the mean velocity and channel half-width). This model is an extension of a spectral model previously developed for homogeneous single and two-phase decay of isotropic turbulence and uniform shear flows; and a spectral turbulence model for wall-bounded flows without resolving the boundary layer. Data from direct numerical simulation (DNS) of turbulent channel flow was used to help develop this model and to assess its performance in the 1Dmore » direction across the channel width. The resultant spectral model is capable of predicting the mean velocity, turbulent kinetic energy and energy spectrum distributions for single-phase wall-bounded flows all the way to the wall, where the model source terms have been developed to account for the wall influence. We implemented the model into the 3D multiphase CFD code NPHASE-CMFD and the latest results are within reasonable error of the 1D predictions.« less
The NASA Space Radiobiology Risk Assessment Project
NASA Astrophysics Data System (ADS)
Cucinotta, Francis A.; Huff, Janice; Ponomarev, Artem; Patel, Zarana; Kim, Myung-Hee
The current first phase (2006-2011) has the three major goals of: 1) optimizing the conventional cancer risk models currently used based on the double-detriment life-table and radiation quality functions; 2) the integration of biophysical models of acute radiation syndromes; and 3) the development of new systems radiation biology models of cancer processes. The first-phase also includes continued uncertainty assessment of space radiation environmental models and transport codes, and relative biological effectiveness factors (RBE) based on flight data and NSRL results, respectively. The second phase of the (2012-2016) will: 1) develop biophysical models of central nervous system risks (CNS); 2) achieve comphrensive systems biology models of cancer processes using data from proton and heavy ion studies performed at NSRL; and 3) begin to identify computational models of biological countermeasures. Goals for the third phase (2017-2021) include: 1) the development of a systems biology model of cancer risks for operational use at NASA; 2) development of models of degenerative risks, 2) quantitative models of counter-measure impacts on cancer risks; and 3) indiviudal based risk assessments. Finally, we will support a decision point to continue NSRL research in support of NASA's exploration goals beyond 2021, and create an archival of NSRL research results for continued analysis. Details on near term goals, plans for a WEB based data resource of NSRL results, and a space radiation Wikepedia are described.
A Review of Surface Water Quality Models
Li, Shibei; Jia, Peng; Qi, Changjun; Ding, Feng
2013-01-01
Surface water quality models can be useful tools to simulate and predict the levels, distributions, and risks of chemical pollutants in a given water body. The modeling results from these models under different pollution scenarios are very important components of environmental impact assessment and can provide a basis and technique support for environmental management agencies to make right decisions. Whether the model results are right or not can impact the reasonability and scientificity of the authorized construct projects and the availability of pollution control measures. We reviewed the development of surface water quality models at three stages and analyzed the suitability, precisions, and methods among different models. Standardization of water quality models can help environmental management agencies guarantee the consistency in application of water quality models for regulatory purposes. We concluded the status of standardization of these models in developed countries and put forward available measures for the standardization of these surface water quality models, especially in developing countries. PMID:23853533
DOT National Transportation Integrated Search
2006-01-01
A previous study developed a procedure for microscopic simulation model calibration and validation and evaluated the procedure via two relatively simple case studies using three microscopic simulation models. Results showed that default parameters we...
Demonstration of reduced-order urban scale building energy models
Heidarinejad, Mohammad; Mattise, Nicholas; Dahlhausen, Matthew; ...
2017-09-08
The aim of this study is to demonstrate a developed framework to rapidly create urban scale reduced-order building energy models using a systematic summary of the simplifications required for the representation of building exterior and thermal zones. These urban scale reduced-order models rely on the contribution of influential variables to the internal, external, and system thermal loads. OpenStudio Application Programming Interface (API) serves as a tool to automate the process of model creation and demonstrate the developed framework. The results of this study show that the accuracy of the developed reduced-order building energy models varies only up to 10% withmore » the selection of different thermal zones. In addition, to assess complexity of the developed reduced-order building energy models, this study develops a novel framework to quantify complexity of the building energy models. Consequently, this study empowers the building energy modelers to quantify their building energy model systematically in order to report the model complexity alongside the building energy model accuracy. An exhaustive analysis on four university campuses suggests that the urban neighborhood buildings lend themselves to simplified typical shapes. Specifically, building energy modelers can utilize the developed typical shapes to represent more than 80% of the U.S. buildings documented in the CBECS database. One main benefits of this developed framework is the opportunity for different models including airflow and solar radiation models to share the same exterior representation, allowing a unifying exchange data. Altogether, the results of this study have implications for a large-scale modeling of buildings in support of urban energy consumption analyses or assessment of a large number of alternative solutions in support of retrofit decision-making in the building industry.« less
Demonstration of reduced-order urban scale building energy models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidarinejad, Mohammad; Mattise, Nicholas; Dahlhausen, Matthew
The aim of this study is to demonstrate a developed framework to rapidly create urban scale reduced-order building energy models using a systematic summary of the simplifications required for the representation of building exterior and thermal zones. These urban scale reduced-order models rely on the contribution of influential variables to the internal, external, and system thermal loads. OpenStudio Application Programming Interface (API) serves as a tool to automate the process of model creation and demonstrate the developed framework. The results of this study show that the accuracy of the developed reduced-order building energy models varies only up to 10% withmore » the selection of different thermal zones. In addition, to assess complexity of the developed reduced-order building energy models, this study develops a novel framework to quantify complexity of the building energy models. Consequently, this study empowers the building energy modelers to quantify their building energy model systematically in order to report the model complexity alongside the building energy model accuracy. An exhaustive analysis on four university campuses suggests that the urban neighborhood buildings lend themselves to simplified typical shapes. Specifically, building energy modelers can utilize the developed typical shapes to represent more than 80% of the U.S. buildings documented in the CBECS database. One main benefits of this developed framework is the opportunity for different models including airflow and solar radiation models to share the same exterior representation, allowing a unifying exchange data. Altogether, the results of this study have implications for a large-scale modeling of buildings in support of urban energy consumption analyses or assessment of a large number of alternative solutions in support of retrofit decision-making in the building industry.« less
Physics based model for online fault detection in autonomous cryogenic loading system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashani, Ali; Ponizhovskaya, Ekaterina; Luchinsky, Dmitry
2014-01-29
We report the progress in the development of the chilldown model for a rapid cryogenic loading system developed at NASA-Kennedy Space Center. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The two-phase flow model of the chilldown is approximated as one-dimensional homogeneous fluid flow with no slip condition for the interphase velocity. The model is built using commercial SINDA/FLUINT software. The results of numerical predictions are in good agreement with the experimental time traces. The obtained results pave the way to the application of the SINDA/FLUINT model as a verification tool formore » the design and algorithm development required for autonomous loading operation.« less
30 CFR 550.219 - What oil and hazardous substance spills information must accompany the EP?
Code of Federal Regulations, 2012 CFR
2012-07-01
...), (d), and (e)). (b) Modeling report. If you model a potential oil or hazardous substance spill in developing your EP, a modeling report or the modeling results, or a reference to such report or results if...
30 CFR 550.219 - What oil and hazardous substance spills information must accompany the EP?
Code of Federal Regulations, 2013 CFR
2013-07-01
...), (d), and (e)). (b) Modeling report. If you model a potential oil or hazardous substance spill in developing your EP, a modeling report or the modeling results, or a reference to such report or results if...
30 CFR 550.219 - What oil and hazardous substance spills information must accompany the EP?
Code of Federal Regulations, 2014 CFR
2014-07-01
...), (d), and (e)). (b) Modeling report. If you model a potential oil or hazardous substance spill in developing your EP, a modeling report or the modeling results, or a reference to such report or results if...
NASA Astrophysics Data System (ADS)
Abbasi Baharanchi, Ahmadreza
This dissertation focused on development and utilization of numerical and experimental approaches to improve the CFD modeling of fluidization flow of cohesive micron size particles. The specific objectives of this research were: (1) Developing a cluster prediction mechanism applicable to Two-Fluid Modeling (TFM) of gas-solid systems (2) Developing more accurate drag models for Two-Fluid Modeling (TFM) of gas-solid fluidization flow with the presence of cohesive interparticle forces (3) using the developed model to explore the improvement of accuracy of TFM in simulation of fluidization flow of cohesive powders (4) Understanding the causes and influential factor which led to improvements and quantification of improvements (5) Gathering data from a fast fluidization flow and use these data for benchmark validations. Simulation results with two developed cluster-aware drag models showed that cluster prediction could effectively influence the results in both the first and second cluster-aware models. It was proven that improvement of accuracy of TFM modeling using three versions of the first hybrid model was significant and the best improvements were obtained by using the smallest values of the switch parameter which led to capturing the smallest chances of cluster prediction. In the case of the second hybrid model, dependence of critical model parameter on only Reynolds number led to the fact that improvement of accuracy was significant only in dense section of the fluidized bed. This finding may suggest that a more sophisticated particle resolved DNS model, which can span wide range of solid volume fraction, can be used in the formulation of the cluster-aware drag model. The results of experiment suing high speed imaging indicated the presence of particle clusters in the fluidization flow of FCC inside the riser of FIU-CFB facility. In addition, pressure data was successfully captured along the fluidization column of the facility and used as benchmark validation data for the second hybrid model developed in the present dissertation. It was shown the second hybrid model could predict the pressure data in the dense section of the fluidization column with better accuracy.
Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. J. Berry; Susanta Das
2009-12-30
To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtainedmore » from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance.« less
Sfakiotakis, Stelios; Vamvuka, Despina
2015-12-01
The pyrolysis of six waste biomass samples was studied and the fuels were kinetically evaluated. A modified independent parallel reactions scheme (IPR) and a distributed activation energy model (DAEM) were developed and their validity was assessed and compared by checking their accuracy of fitting the experimental results, as well as their prediction capability in different experimental conditions. The pyrolysis experiments were carried out in a thermogravimetric analyzer and a fitting procedure, based on least squares minimization, was performed simultaneously at different experimental conditions. A modification of the IPR model, considering dependence of the pre-exponential factor on heating rate, was proved to give better fit results for the same number of tuned kinetic parameters, comparing to the known IPR model and very good prediction results for stepwise experiments. Fit of calculated data to the experimental ones using the developed DAEM model was also proved to be very good. Copyright © 2015 Elsevier Ltd. All rights reserved.
Morrison, Evan; Sullivan, Emma; Dam, Hoa Khanh
2016-01-01
Background Standardizing the background diet of participants during a dietary randomized controlled trial is vital to trial outcomes. For this process, dietary modeling based on food groups and their target servings is employed via a dietary prescription before an intervention, often using a manual process. Partial automation has employed the use of linear programming. Validity of the modeling approach is critical to allow trial outcomes to be translated to practice. Objective This paper describes the first-stage development of a tool to automatically perform dietary modeling using food group and macronutrient requirements as a test case. The Dietary Modeling Tool (DMT) was then compared with existing approaches to dietary modeling (manual and partially automated), which were previously available to dietitians working within a dietary intervention trial. Methods Constraint optimization techniques were implemented to determine whether nonlinear constraints are best suited to the development of the automated dietary modeling tool using food composition and food consumption data. Dietary models were produced and compared with a manual Microsoft Excel calculator, a partially automated Excel Solver approach, and the automated DMT that was developed. Results The web-based DMT was produced using nonlinear constraint optimization, incorporating estimated energy requirement calculations, nutrition guidance systems, and the flexibility to amend food group targets for individuals. Percentage differences between modeling tools revealed similar results for the macronutrients. Polyunsaturated fatty acids and monounsaturated fatty acids showed greater variation between tools (practically equating to a 2-teaspoon difference), although it was not considered clinically significant when the whole diet, as opposed to targeted nutrients or energy requirements, were being addressed. Conclusions Automated modeling tools can streamline the modeling process for dietary intervention trials ensuring consistency of the background diets, although appropriate constraints must be used in their development to achieve desired results. The DMT was found to be a valid automated tool producing similar results to tools with less automation. The results of this study suggest interchangeability of the modeling approaches used, although implementation should reflect the requirements of the dietary intervention trial in which it is used. PMID:27471104
The HTA core model: a novel method for producing and reporting health technology assessments.
Lampe, Kristian; Mäkelä, Marjukka; Garrido, Marcial Velasco; Anttila, Heidi; Autti-Rämö, Ilona; Hicks, Nicholas J; Hofmann, Björn; Koivisto, Juha; Kunz, Regina; Kärki, Pia; Malmivaara, Antti; Meiesaar, Kersti; Reiman-Möttönen, Päivi; Norderhaug, Inger; Pasternack, Iris; Ruano-Ravina, Alberto; Räsänen, Pirjo; Saalasti-Koskinen, Ulla; Saarni, Samuli I; Walin, Laura; Kristensen, Finn Børlum
2009-12-01
The aim of this study was to develop and test a generic framework to enable international collaboration for producing and sharing results of health technology assessments (HTAs). Ten international teams constructed the HTA Core Model, dividing information contained in a comprehensive HTA into standardized pieces, the assessment elements. Each element contains a generic issue that is translated into practical research questions while performing an assessment. Elements were described in detail in element cards. Two pilot assessments, designated as Core HTAs were also produced. The Model and Core HTAs were both validated. Guidance on the use of the HTA Core Model was compiled into a Handbook. The HTA Core Model considers health technologies through nine domains. Two applications of the Model were developed, one for medical and surgical interventions and another for diagnostic technologies. Two Core HTAs were produced in parallel with developing the model, providing the first real-life testing of the Model and input for further development. The results of formal validation and public feedback were primarily positive. Development needs were also identified and considered. An online Handbook is available. The HTA Core Model is a novel approach to HTA. It enables effective international production and sharing of HTA results in a structured format. The face validity of the Model was confirmed during the project, but further testing and refining are needed to ensure optimal usefulness and user-friendliness. Core HTAs are intended to serve as a basis for local HTA reports. Core HTAs do not contain recommendations on technology use.
NASA Astrophysics Data System (ADS)
Krishnasamy, M.; Qian, Feng; Zuo, Lei; Lenka, T. R.
2018-03-01
The charge cancellation due to the change of strain along single continuous piezoelectric layer can remarkably affect the performance of a cantilever based harvester. In this paper, analytical models using distributed parameters are developed with some extent of averting the charge cancellation in cantilever piezoelectric transducer where the piezoelectric layers are segmented at strain nodes of concerned vibration mode. The electrode of piezoelectric segments are parallelly connected with a single external resistive load in the 1st model (Model 1). While each bimorph piezoelectric layers are connected in parallel to a resistor to form an independent circuit in the 2nd model (Model 2). The analytical expressions of the closed-form electromechanical coupling responses in frequency domain under harmonic base excitation are derived based on the Euler-Bernoulli beam assumption for both models. The developed analytical models are validated by COMSOL and experimental results. The results demonstrate that the energy harvesting performance of the developed segmented piezoelectric layer models is better than the traditional model of continuous piezoelectric layer.
Estimating Traffic Accidents in Turkey Using Differential Evolution Algorithm
NASA Astrophysics Data System (ADS)
Akgüngör, Ali Payıdar; Korkmaz, Ersin
2017-06-01
Estimating traffic accidents play a vital role to apply road safety procedures. This study proposes Differential Evolution Algorithm (DEA) models to estimate the number of accidents in Turkey. In the model development, population (P) and the number of vehicles (N) are selected as model parameters. Three model forms, linear, exponential and semi-quadratic models, are developed using DEA with the data covering from 2000 to 2014. Developed models are statistically compared to select the best fit model. The results of the DE models show that the linear model form is suitable to estimate the number of accidents. The statistics of this form is better than other forms in terms of performance criteria which are the Mean Absolute Percentage Errors (MAPE) and the Root Mean Square Errors (RMSE). To investigate the performance of linear DE model for future estimations, a ten-year period from 2015 to 2024 is considered. The results obtained from future estimations reveal the suitability of DE method for road safety applications.
Performance of fire behavior fuel models developed for the Rothermel Surface Fire Spread Model
Robert Ziel; W. Matt Jolly
2009-01-01
In 2005, 40 new fire behavior fuel models were published for use with the Rothermel Surface Fire Spread Model. These new models are intended to augment the original 13 developed in 1972 and 1976. As a compiled set of quantitative fuel descriptions that serve as input to the Rothermel model, the selected fire behavior fuel model has always been critical to the resulting...
Jobs and Economic Development Impact (JEDI) Model Geothermal User Reference Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.; Augustine, C.; Goldberg, M.
2012-09-01
The Geothermal Jobs and Economic Development Impact (JEDI) model, developed through the National Renewable Energy Laboratory (NREL), is an Excel-based user-friendly tools that estimates the economic impacts of constructing and operating hydrothermal and Enhanced Geothermal System (EGS) power generation projects at the local level for a range of conventional and renewable energy technologies. The JEDI Model Geothermal User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide alsomore » provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.« less
Modeling of Spacecraft Advanced Chemical Propulsion Systems
NASA Technical Reports Server (NTRS)
Benfield, Michael P. J.; Belcher, Jeremy A.
2004-01-01
This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.
NASA Technical Reports Server (NTRS)
Stankovic, Ana V.
2003-01-01
Professor Stankovic will be developing and refining Simulink based models of the PM alternator and comparing the simulation results with experimental measurements taken from the unit. Her first task is to validate the models using the experimental data. Her next task is to develop alternative control techniques for the application of the Brayton Cycle PM Alternator in a nuclear electric propulsion vehicle. The control techniques will be first simulated using the validated models then tried experimentally with hardware available at NASA. Testing and simulation of a 2KW PM synchronous generator with diode bridge output is described. The parameters of a synchronous PM generator have been measured and used in simulation. Test procedures have been developed to verify the PM generator model with diode bridge output. Experimental and simulation results are in excellent agreement.
Finite Element Vibration Modeling and Experimental Validation for an Aircraft Engine Casing
NASA Astrophysics Data System (ADS)
Rabbitt, Christopher
This thesis presents a procedure for the development and validation of a theoretical vibration model, applies this procedure to a pair of aircraft engine casings, and compares select parameters from experimental testing of those casings to those from a theoretical model using the Modal Assurance Criterion (MAC) and linear regression coefficients. A novel method of determining the optimal MAC between axisymmetric results is developed and employed. It is concluded that the dynamic finite element models developed as part of this research are fully capable of modelling the modal parameters within the frequency range of interest. Confidence intervals calculated in this research for correlation coefficients provide important information regarding the reliability of predictions, and it is recommended that these intervals be calculated for all comparable coefficients. The procedure outlined for aligning mode shapes around an axis of symmetry proved useful, and the results are promising for the development of further optimization techniques.
Simulating unstressed crop development and growth using the Unified Plant Growth Model (UPGM)
USDA-ARS?s Scientific Manuscript database
Since development of the EPIC model in 1989, many versions of the plant growth component have been incorporated into other erosion and crop management models and subsequently modified to meet model objectives (e.g., WEPS, WEPP, SWAT, ALMANAC, GPFARM). This has resulted in different versions of the ...
A Model for Measuring Effectiveness of an Online Course
ERIC Educational Resources Information Center
Mashaw, Bijan
2012-01-01
As a result of this research, a quantitative model and a procedure have been developed to create an online mentoring effectiveness index (EI). To develop the model, mentoring and teaching effectiveness are defined, and then the constructs and factors of effectiveness are identified. The model's construction is based on the theory that…
Clinical Predictive Modeling Development and Deployment through FHIR Web Services.
Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng
2015-01-01
Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction.
Clinical Predictive Modeling Development and Deployment through FHIR Web Services
Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng
2015-01-01
Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction. PMID:26958207
Higher order turbulence closure models
NASA Technical Reports Server (NTRS)
Amano, Ryoichi S.; Chai, John C.; Chen, Jau-Der
1988-01-01
Theoretical models are developed and numerical studies conducted on various types of flows including both elliptic and parabolic. The purpose of this study is to find better higher order closure models for the computations of complex flows. This report summarizes three new achievements: (1) completion of the Reynolds-stress closure by developing a new pressure-strain correlation; (2) development of a parabolic code to compute jets and wakes; and, (3) application to a flow through a 180 deg turnaround duct by adopting a boundary fitted coordinate system. In the above mentioned models near-wall models are developed for pressure-strain correlation and third-moment, and incorporated into the transport equations. This addition improved the results considerably and is recommended for future computations. A new parabolic code to solve shear flows without coordinate tranformations is developed and incorporated in this study. This code uses the structure of the finite volume method to solve the governing equations implicitly. The code was validated with the experimental results available in the literature.
DOT National Transportation Integrated Search
2009-05-01
The primary objective of this research was to develop models that predict the resilient modulus of cohesive and granular soils from the test results of various in-situ test devices for possible application in QA/QC during construction of pavement str...
A discrete-element model for viscoelastic deformation and fracture of glacial ice
NASA Astrophysics Data System (ADS)
Riikilä, T. I.; Tallinen, T.; Åström, J.; Timonen, J.
2015-10-01
A discrete-element model was developed to study the behavior of viscoelastic materials that are allowed to fracture. Applicable to many materials, the main objective of this analysis was to develop a model specifically for ice dynamics. A realistic model of glacial ice must include elasticity, brittle fracture and slow viscous deformations. Here the model is described in detail and tested with several benchmark simulations. The model was used to simulate various ice-specific applications with resulting flow rates that were compatible with Glen's law, and produced under fragmentation fragment-size distributions that agreed with the known analytical and experimental results.
Regional analyses of labor markets and demography: a model based Norwegian example.
Stambol, L S; Stolen, N M; Avitsland, T
1998-01-01
The authors discuss the regional REGARD model, developed by Statistics Norway to analyze the regional implications of macroeconomic development of employment, labor force, and unemployment. "In building the model, empirical analyses of regional producer behavior in manufacturing industries have been performed, and the relation between labor market development and regional migration has been investigated. Apart from providing a short description of the REGARD model, this article demonstrates the functioning of the model, and presents some results of an application." excerpt
Arunachalam, Viswanathan; Akhavan-Tabatabaei, Raha; Lopez, Cristina
2013-01-01
The classical models of single neuron like Hodgkin-Huxley point neuron or leaky integrate and fire neuron assume the influence of postsynaptic potentials to last till the neuron fires. Vidybida (2008) in a refreshing departure has proposed models for binding neurons in which the trace of an input is remembered only for a finite fixed period of time after which it is forgotten. The binding neurons conform to the behaviour of real neurons and are applicable in constructing fast recurrent networks for computer modeling. This paper develops explicitly several useful results for a binding neuron like the firing time distribution and other statistical characteristics. We also discuss the applicability of the developed results in constructing a modified hourglass network model in which there are interconnected neurons with excitatory as well as inhibitory inputs. Limited simulation results of the hourglass network are presented.
Models for Total-Dose Radiation Effects in Non-Volatile Memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Philip Montgomery; Wix, Steven D.
The objective of this work is to develop models to predict radiation effects in non- volatile memory: flash memory and ferroelectric RAM. In flash memory experiments have found that the internal high-voltage generators (charge pumps) are the most sensitive to radiation damage. Models are presented for radiation effects in charge pumps that demonstrate the experimental results. Floating gate models are developed for the memory cell in two types of flash memory devices by Intel and Samsung. These models utilize Fowler-Nordheim tunneling and hot electron injection to charge and erase the floating gate. Erase times are calculated from the models andmore » compared with experimental results for different radiation doses. FRAM is less sensitive to radiation than flash memory, but measurements show that above 100 Krad FRAM suffers from a large increase in leakage current. A model for this effect is developed which compares closely with the measurements.« less
FE Modelling of the Fluid-Structure-Acoustic Interaction for the Vocal Folds Self-Oscillation
NASA Astrophysics Data System (ADS)
Švancara, Pavel; Horáček, J.; Hrůza, V.
The flow induced self-oscillation of the human vocal folds in interaction with acoustic processes in the simplified vocal tract model was explored by three-dimensional (3D) finite element (FE) model. Developed FE model includes vocal folds pretension before phonation, large deformations of the vocal fold tissue, vocal folds contact, fluid-structure interaction, morphing the fluid mesh according the vocal folds motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation during the glottis closure. Iterative partitioned approach is used for modelling the fluid-structure interaction. Computed results prove that the developed model can be used for simulation of the vocal folds self-oscillation and resulting acoustic waves. The developed model enables to numerically simulate an influence of some pathological changes in the vocal fold tissue on the voice production.
Development of a Water Recovery System Resource Tracking Model
NASA Technical Reports Server (NTRS)
Chambliss, Joe; Stambaugh, Imelda; Sarguishm, Miriam; Shull, Sarah; Moore, Michael
2014-01-01
A simulation model has been developed to track water resources in an exploration vehicle using regenerative life support (RLS) systems. The model integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the model results in the RTM being a part of of a complete vehicle simulation that can be used in real time mission studies. Performance data for the variety of components in the RTM is focused on water processing and has been defined based on the most recent information available for the technology of the component. This paper will describe the process of defining the RLS system to be modeled and then the way the modeling environment was selected and how the model has been implemented. Results showing how the variety of RLS components exchange water are provided in a set of test cases.
NASA Astrophysics Data System (ADS)
Rostami, Ali Bakhshandeh; Fernandes, Antonio Carlos
2018-03-01
This paper is dedicated to develop a mathematical model that can simulate nonlinear phenomena of a hinged plate which places into the fluid flow (1 DOF). These phenomena are fluttering (oscillation motion), autorotation (continuous rotation) and chaotic motion (combination of fluttering and autorotation). Two mathematical models are developed for 1 DOF problem using two eminent mathematical models which had been proposed for falling plates (3 DOF). The procedures of developing these models are elaborated and then these results are compared to experimental data. The best model in the simulation of the phenomena is chosen for stability and bifurcation analysis. Based on these analyses, this model shows a transcritical bifurcation and as a result, the stability diagram and threshold are presented. Moreover, an analytical expression is given for finding the boundary of bifurcation from the fluttering to the autorotation.
NASA Astrophysics Data System (ADS)
Kennedy, J. H.; Bennett, A. R.; Evans, K. J.; Fyke, J. G.; Vargo, L.; Price, S. F.; Hoffman, M. J.
2016-12-01
Accurate representation of ice sheets and glaciers are essential for robust predictions of arctic climate within Earth System models. Verification and Validation (V&V) is a set of techniques used to quantify the correctness and accuracy of a model, which builds developer/modeler confidence, and can be used to enhance the credibility of the model. Fundamentally, V&V is a continuous process because each model change requires a new round of V&V testing. The Community Ice Sheet Model (CISM) development community is actively developing LIVVkit, the Land Ice Verification and Validation toolkit, which is designed to easily integrate into an ice-sheet model's development workflow (on both personal and high-performance computers) to provide continuous V&V testing.LIVVkit is a robust and extensible python package for V&V, which has components for both software V&V (construction and use) and model V&V (mathematics and physics). The model Verification component is used, for example, to verify model results against community intercomparisons such as ISMIP-HOM. The model validation component is used, for example, to generate a series of diagnostic plots showing the differences between model results against observations for variables such as thickness, surface elevation, basal topography, surface velocity, surface mass balance, etc. Because many different ice-sheet models are under active development, new validation datasets are becoming available, and new methods of analysing these models are actively being researched, LIVVkit includes a framework to easily extend the model V&V analyses by ice-sheet modelers. This allows modelers and developers to develop evaluations of parameters, implement changes, and quickly see how those changes effect the ice-sheet model and earth system model (when coupled). Furthermore, LIVVkit outputs a portable hierarchical website allowing evaluations to be easily shared, published, and analysed throughout the arctic and Earth system communities.
Animal Models of Fibrotic Lung Disease
Lawson, William E.; Oury, Tim D.; Sisson, Thomas H.; Raghavendran, Krishnan; Hogaboam, Cory M.
2013-01-01
Interstitial lung fibrosis can develop as a consequence of occupational or medical exposure, as a result of genetic defects, and after trauma or acute lung injury leading to fibroproliferative acute respiratory distress syndrome, or it can develop in an idiopathic manner. The pathogenesis of each form of lung fibrosis remains poorly understood. They each result in a progressive loss of lung function with increasing dyspnea, and most forms ultimately result in mortality. To better understand the pathogenesis of lung fibrotic disorders, multiple animal models have been developed. This review summarizes the common and emerging models of lung fibrosis to highlight their usefulness in understanding the cell–cell and soluble mediator interactions that drive fibrotic responses. Recent advances have allowed for the development of models to study targeted injuries of Type II alveolar epithelial cells, fibroblastic autonomous effects, and targeted genetic defects. Repetitive dosing in some models has more closely mimicked the pathology of human fibrotic lung disease. We also have a much better understanding of the fact that the aged lung has increased susceptibility to fibrosis. Each of the models reviewed in this report offers a powerful tool for studying some aspect of fibrotic lung disease. PMID:23526222
Identification of aerodynamic models for maneuvering aircraft
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Hu, C. C.
1992-01-01
A Fourier analysis method was developed to analyze harmonic forced-oscillation data at high angles of attack as functions of the angle of attack and its time rate of change. The resulting aerodynamic responses at different frequencies are used to build up the aerodynamic models involving time integrals of the indicial type. An efficient numerical method was also developed to evaluate these time integrals for arbitrary motions based on a concept of equivalent harmonic motion. The method was verified by first using results from two-dimensional and three-dimensional linear theories. The developed models for C sub L, C sub D, and C sub M based on high-alpha data for a 70 deg delta wing in harmonic motions showed accurate results in reproducing hysteresis. The aerodynamic models are further verified by comparing with test data using ramp-type motions.
Development, Validation and Parametric study of a 3-Year-Old Child Head Finite Element Model
NASA Astrophysics Data System (ADS)
Cui, Shihai; Chen, Yue; Li, Haiyan; Ruan, ShiJie
2015-12-01
Traumatic brain injury caused by drop and traffic accidents is an important reason for children's death and disability. Recently, the computer finite element (FE) head model has been developed to investigate brain injury mechanism and biomechanical responses. Based on CT data of a healthy 3-year-old child head, the FE head model with detailed anatomical structure was developed. The deep brain structures such as white matter, gray matter, cerebral ventricle, hippocampus, were firstly created in this FE model. The FE model was validated by comparing the simulation results with that of cadaver experiments based on reconstructing the child and adult cadaver experiments. In addition, the effects of skull stiffness on the child head dynamic responses were further investigated. All the simulation results confirmed the good biofidelity of the FE model.
L-shaped piezoelectric motor--part II: analytical modeling.
Avirovik, Dragan; Karami, M Amin; Inman, Daniel; Priya, Shashank
2012-01-01
This paper develops an analytical model for an L-shaped piezoelectric motor. The motor structure has been described in detail in Part I of this study. The coupling of the bending vibration mode of the bimorphs results in an elliptical motion at the tip. The emphasis of this paper is on the development of a precise analytical model which can predict the dynamic behavior of the motor based on its geometry. The motor was first modeled mechanically to identify the natural frequencies and mode shapes of the structure. Next, an electromechanical model of the motor was developed to take into account the piezoelectric effect, and dynamics of L-shaped piezoelectric motor were obtained as a function of voltage and frequency. Finally, the analytical model was validated by comparing it to experiment results and the finite element method (FEM). © 2012 IEEE
Kropf, Stefan; Chalopin, Claire; Lindner, Dirk; Denecke, Kerstin
2017-06-28
Access to patient data within the hospital or between hospitals is still problematic since a variety of information systems is in use applying different vendor specific terminologies and underlying knowledge models. Beyond, the development of electronic health record systems (EHRSs) is time and resource consuming. Thus, there is a substantial need for a development strategy of standardized EHRSs. We are applying a reuse-oriented process model and demonstrate its feasibility and realization on a practical medical use case, which is an EHRS holding all relevant data arising in the context of treatment of tumors of the sella region. In this paper, we describe the development process and our practical experiences. Requirements towards the development of the EHRS were collected by interviews with a neurosurgeon and patient data analysis. For modelling of patient data, we selected openEHR as standard and exploited the software tools provided by the openEHR foundation. The patient information model forms the core of the development process, which comprises the EHR generation and the implementation of an EHRS architecture. Moreover, a reuse-oriented process model from the business domain was adapted to the development of the EHRS. The reuse-oriented process model is a model for a suitable abstraction of both, modeling and development of an EHR centralized EHRS. The information modeling process resulted in 18 archetypes that were aggregated in a template and built the boilerplate of the model driven development. The EHRs and the EHRS were developed by openEHR and W3C standards, tightly supported by well-established XML techniques. The GUI of the final EHRS integrates and visualizes information from various examinations, medical reports, findings and laboratory test results. We conclude that the development of a standardized overarching EHR and an EHRS is feasible using openEHR and W3C standards, enabling a high degree of semantic interoperability. The standardized representation visualizes data and can in this way support the decision process of clinicians.
ERIC Educational Resources Information Center
Stone, James R., III; Wentling, Rose Mary
This report provides a conceptual model of how a business develops and grows in Wisconsin and results from a survey of entrepreneurs. Part I provides the background and develops the conceptual model. It defines small business, discusses entrepreneurial characteristics, describes stages of business development, and considers barriers encountered by…
ERIC Educational Resources Information Center
Johanson, Joyce; Clark, Letha; Daytner, Katrina; Robinson, Linda
2009-01-01
Accessing Curriculum through Technology Tools (ACTTT), a model development project, was developed and tested by staff of the Center for Best Practices in Early Childhood (the Center), a research and development unit within the College of Education and Human Services at Western Illinois University. The major goal of ACTTT was to develop,…
Stress and deformation modeling of multiple rotary combustion engine trochoid housings
NASA Technical Reports Server (NTRS)
Lychuk, W. M.; Bradley, S. A.; Vilmann, C. R.; Passerello, C. E.; Lee, C.-M.
1986-01-01
This paper documents the development of the capability to produce finite element models of alternate trochoid housing configurations. The effort needed to produce these models is greatly reduced by the use of a newly developed specialized finite element preprocessor which is described. The results of static stress comparisons conducted on a Mazda trochoid housing are presented. Planned future development of this modeling capability to operational situations is also presented.
Wittkopp, Felix; Peeck, Lars; Hafner, Mathias; Frech, Christian
2018-04-13
Process development and characterization based on mathematic modeling provides several advantages and has been applied more frequently over the last few years. In this work, a Donnan equilibrium ion exchange (DIX) model is applied for modelling and simulation of ion exchange chromatography of a monoclonal antibody in linear chromatography. Four different cation exchange resin prototypes consisting of weak, strong and mixed ligands are characterized using pH and salt gradient elution experiments applying the extended DIX model. The modelling results are compared with the results using a classic stoichiometric displacement model. The Donnan equilibrium model is able to describe all four prototype resins while the stoichiometric displacement model fails for the weak and mixed weak/strong ligands. Finally, in silico chromatogram simulations of pH and pH/salt dual gradients are performed to verify the results and to show the consistency of the developed model. Copyright © 2018 Elsevier B.V. All rights reserved.
A comparison of methods of fitting several models to nutritional response data.
Vedenov, D; Pesti, G M
2008-02-01
A variety of models have been proposed to fit nutritional input-output response data. The models are typically nonlinear; therefore, fitting the models usually requires sophisticated statistical software and training to use it. An alternative tool for fitting nutritional response models was developed by using widely available and easier-to-use Microsoft Excel software. The tool, implemented as an Excel workbook (NRM.xls), allows simultaneous fitting and side-by-side comparisons of several popular models. This study compared the results produced by the tool we developed and PROC NLIN of SAS. The models compared were the broken line (ascending linear and quadratic segments), saturation kinetics, 4-parameter logistics, sigmoidal, and exponential models. The NRM.xls workbook provided results nearly identical to those of PROC NLIN. Furthermore, the workbook successfully fit several models that failed to converge in PROC NLIN. Two data sets were used as examples to compare fits by the different models. The results suggest that no particular nonlinear model is necessarily best for all nutritional response data.
DOT National Transportation Integrated Search
2011-10-01
The Nebraska Department of Roads (NDOR) has an interest in integrating state economic development impact as another factor in prioritizing transportation investments. Such efforts require the development of a comprehensive model that can be used to e...
We developed a numerical model to predict chemical concentrations in indoor environments resulting from soil vapor intrusion and volatilization from groundwater. The model, which integrates new and existing algorithms for chemical fate and transport, was originally...
Jobs and Economic Development Impacts from Small Wind: JEDI Model in the Works (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegen, S.
2012-06-01
This presentation covers the National Renewable Energy Laboratory's role in economic impact analysis for wind power Jobs and Economic Development Impacts (JEDI) models, JEDI results, small wind JEDI specifics, and a request for information to complete the model.
Commercial Demand Module - NEMS Documentation
2017-01-01
Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.
EIA models and capacity building in Viet Nam: an analysis of development aid programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doberstein, Brent
2004-04-01
There has been a decided lack of empirical research examining development aid agencies as 'agents of change' in environmental impact assessment (EIA) systems in developing countries, particularly research examining the model of environmental planning practice promoted by aid agencies as part of capacity building. This paper briefly traces a conceptual framework of EIA, then introduces the concept of 'EIA capacity building'. Using Viet Nam as a case study, the paper then outlines the empirical results of the research, focusing on the extent to which aid agency capacity-building programs promoted a Technical vs. Planning Model of EIA and on the coherencemore » of capacity-building efforts across all aid programs. A discussion follows, where research results are interpreted within the Vietnamese context, and implications of research results are identified for three main groups of actors. The paper concludes by calling for development aid agencies to reconceptualise EIA capacity building as an opportunity to transform developing countries' development planning processes.« less
NASA Astrophysics Data System (ADS)
Ismail, Edy; Samsudi, Widjanarko, Dwi; Joyce, Peter; Stearns, Roman
2018-03-01
This model integrates project base learning by creating a product based on environmental needs. The Produktif Orientasi Lapangan 4 Tahap (POL4T) combines technical skills and entrepreneurial elements together in the learning process. This study is to implement the result of technopreneurship learning model development which is environment-oriented by combining technology and entrepreneurship components on Machining Skill Program. This study applies research and development design by optimizing experimental subject. Data were obtained from questionnaires, learning material validation, interpersonal, intrapersonal observation forms, skills, product, teachers and students' responses, and cognitive tasks. Expert validation and t-test calculation are applied to see how effective POL4T learning model. The result of the study is in the form of 4 steps learning model to enhance interpersonal and intrapersonal attitudes, develop practical products which orient to society and appropriate technology so that the products can have high selling value. The model is effective based on the students' post test result, which is better than the pre-test. The product obtained from POL4T model is proven to be better than the productive learning. POL4T model is recommended to be implemented for XI grade students. This is can develop entrepreneurial attitudes that are environment oriented, community needs and technical competencies students.
Developing the Model of Fuel Injection Process Efficiency Analysis for Injector for Diesel Engines
NASA Astrophysics Data System (ADS)
Anisimov, M. Yu; Kayukov, S. S.; Gorshkalev, A. A.; Belousov, A. V.; Gallyamov, R. E.; Lysenko, Yu D.
2018-01-01
The article proposes an assessment option for analysing the quality of fuel injection by the injector constituting the development of calculation blocks in a common injector model within LMS Imagine.Lab AMESim. The parameters of the injector model in the article correspond to the serial injector Common Rail-type with solenoid. The possibilities of this approach are demonstrated with providing the results using the example of modelling the modified injector. Following the research results, the advantages of the proposed approach to analysing assessing the fuel injection quality were detected.
NASA Astrophysics Data System (ADS)
Lee, Jun; Lee, Jungwoo; Yun, Sang-Leen; Oh, Hye-Cheol
2017-08-01
The purpose of this study was to develop a two-dimensional shallow water flow model using the finite volume method on a combined unstructured triangular and quadrilateral grid system to simulate coastal, estuarine and river flows. The intercell numerical fluxes were calculated using the classical Osher-Solomon's approximate Riemann solver for the governing conservation laws to be able to handle wetting and drying processes and to capture a tidal bore like phenomenon. The developed model was validated with several benchmark test problems including the two-dimensional dam-break problem. The model results were well agreed with results of other models and experimental results in literature. The unstructured triangular and quadrilateral combined grid system was successfully implemented in the model, thus the developed model would be more flexible when applying in an estuarine system, which includes narrow channels. Then, the model was tested in Mobile Bay, Alabama, USA. The developed model reproduced water surface elevation well as having overall Predictive Skill of 0.98. We found that the primary inlet, Main Pass, only covered 35% of the fresh water exchange while it covered 89% of the total water exchange between the ocean and Mobile Bay. There were also discharge phase difference between MP and the secondary inlet, Pass aux Herons, and this phase difference in flows would act as a critical role in substances' exchange between the eastern Mississippi Sound and the northern Gulf of Mexico through Main Pass and Pass aux Herons in Mobile Bay.
Balancing energy development and conservation: A method utilizing species distribution models
Jarnevich, C.S.; Laubhan, M.K.
2011-01-01
Alternative energy development is increasing, potentially leading to negative impacts on wildlife populations already stressed by other factors. Resource managers require a scientifically based methodology to balance energy development and species conservation, so we investigated modeling habitat suitability using Maximum Entropy to develop maps that could be used with other information to help site energy developments. We selected one species of concern, the Lesser Prairie-Chicken (LPCH; Tympanuchus pallidicinctus) found on the southern Great Plains of North America, as our case study. LPCH populations have been declining and are potentially further impacted by energy development. We used LPCH lek locations in the state of Kansas along with several environmental and anthropogenic parameters to develop models that predict the probability of lek occurrence across the landscape. The models all performed well as indicated by the high test area under the curve (AUC) scores (all >0.9). The inclusion of anthropogenic parameters in models resulted in slightly better performance based on AUC values, indicating that anthropogenic features may impact LPCH lek habitat suitability. Given the positive model results, this methodology may provide additional guidance in designing future survey protocols, as well as siting of energy development in areas of marginal or unsuitable habitat for species of concern. This technique could help to standardize and quantify the impacts various developments have upon at-risk species. ?? 2011 Springer Science+Business Media, LLC (outside the USA).
Northern Forest Ecosystem Dynamics Using Coupled Models and Remote Sensing
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Sun, G.; Knox, R. G.; Levine, E. R.; Weishampel, J. F.; Fifer, S. T.
1999-01-01
Forest ecosystem dynamics modeling, remote sensing data analysis, and a geographical information system (GIS) were used together to determine the possible growth and development of a northern forest in Maine, USA. Field measurements and airborne synthetic aperture radar (SAR) data were used to produce maps of forest cover type and above ground biomass. These forest attribute maps, along with a conventional soils map, were used to identify the initial conditions for forest ecosystem model simulations. Using this information along with ecosystem model results enabled the development of predictive maps of forest development. The results obtained were consistent with observed forest conditions and expected successional trajectories. The study demonstrated that ecosystem models might be used in a spatial context when parameterized and used with georeferenced data sets.
2013-06-01
Building in- formation exchange (COBie), Building Information Modeling ( BIM ) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...to develop a life-cycle building model have resulted in the definition of a “core” building information model that contains general information de...develop an information -exchange Model View Definition (MVD) for building electrical systems. The objective of the current work was to document the
A systematic review of predictive models for asthma development in children.
Luo, Gang; Nkoy, Flory L; Stone, Bryan L; Schmick, Darell; Johnson, Michael D
2015-11-28
Asthma is the most common pediatric chronic disease affecting 9.6 % of American children. Delay in asthma diagnosis is prevalent, resulting in suboptimal asthma management. To help avoid delay in asthma diagnosis and advance asthma prevention research, researchers have proposed various models to predict asthma development in children. This paper reviews these models. A systematic review was conducted through searching in PubMed, EMBASE, CINAHL, Scopus, the Cochrane Library, the ACM Digital Library, IEEE Xplore, and OpenGrey up to June 3, 2015. The literature on predictive models for asthma development in children was retrieved, with search results limited to human subjects and children (birth to 18 years). Two independent reviewers screened the literature, performed data extraction, and assessed article quality. The literature search returned 13,101 references in total. After manual review, 32 of these references were determined to be relevant and are discussed in the paper. We identify several limitations of existing predictive models for asthma development in children, and provide preliminary thoughts on how to address these limitations. Existing predictive models for asthma development in children have inadequate accuracy. Efforts to improve these models' performance are needed, but are limited by a lack of a gold standard for asthma development in children.
Ham, Joo-Ho; Park, Hun-Young; Kim, Youn-Ho; Bae, Sang-Kon; Ko, Byung-Hoon; Nam, Sang-Seok
2017-09-30
The purpose of this study was to develop a regression model to estimate the heart rate at the lactate threshold (HRLT) and the heart rate at the ventilatory threshold (HRVT) using the heart rate threshold (HRT), and to test the validity of the regression model. We performed a graded exercise test with a treadmill in 220 normal individuals (men: 112, women: 108) aged 20-59 years. HRT, HRLT, and HRVT were measured in all subjects. A regression model was developed to estimate HRLT and HRVT using HRT with 70% of the data (men: 79, women: 76) through randomization (7:3), with the Bernoulli trial. The validity of the regression model developed with the remaining 30% of the data (men: 33, women: 32) was also examined. Based on the regression coefficient, we found that the independent variable HRT was a significant variable in all regression models. The adjusted R2 of the developed regression models averaged about 70%, and the standard error of estimation of the validity test results was 11 bpm, which is similar to that of the developed model. These results suggest that HRT is a useful parameter for predicting HRLT and HRVT. ©2017 The Korean Society for Exercise Nutrition
Challenges in the development of chronic pulmonary hypertension models in large animals
Rothman, Abraham; Wiencek, Robert G.; Davidson, Stephanie; Evans, William N.; Restrepo, Humberto; Sarukhanov, Valeri; Mann, David
2017-01-01
Pulmonary hypertension (PH) results in significant morbidity and mortality. Chronic PH animal models may advance the study of PH’s mechanisms, evolution, and therapy. In this report, we describe the challenges and successes in developing three models of chronic PH in large animals: two models (one canine and one swine) utilized repeated infusions of ceramic microspheres into the pulmonary vascular bed, and the third model employed a surgical aorto-pulmonary shunt. In the canine model, seven dogs underwent microsphere infusions that resulted in progressive elevation of pulmonary arterial pressure over a few months. In this model, pulmonary endoarterial tissue was obtained for histology. In the aorto-pulmonary shunt swine model, 17 pigs developed systemic level pulmonary pressures after 2–3 months. In this model, pulmonary endoarterial tissue was sequentially obtained to assess for changes in gene and microRNA expression. In the swine microsphere infusion model, three pigs developed only a modest chronic increase in pulmonary arterial pressure, despite repeated infusions of microspheres (up to 40 in one animal). The main purpose of this model was for vasodilator testing, which was performed successfully immediately after acute microsphere infusions. Chronic PH in large animal models can be successfully created; however, a model’s characteristics need to match the investigational goals. PMID:28680575
Genetic Programming as Alternative for Predicting Development Effort of Individual Software Projects
Chavoya, Arturo; Lopez-Martin, Cuauhtemoc; Andalon-Garcia, Irma R.; Meda-Campaña, M. E.
2012-01-01
Statistical and genetic programming techniques have been used to predict the software development effort of large software projects. In this paper, a genetic programming model was used for predicting the effort required in individually developed projects. Accuracy obtained from a genetic programming model was compared against one generated from the application of a statistical regression model. A sample of 219 projects developed by 71 practitioners was used for generating the two models, whereas another sample of 130 projects developed by 38 practitioners was used for validating them. The models used two kinds of lines of code as well as programming language experience as independent variables. Accuracy results from the model obtained with genetic programming suggest that it could be used to predict the software development effort of individual projects when these projects have been developed in a disciplined manner within a development-controlled environment. PMID:23226305
ERIC Educational Resources Information Center
Oxford-Carpenter, Rebecca L.; And Others
This paper presents an evaluation of Army job training development and testing practices, with a focus on Advanced Individual Testing. Information comes from intensive interviews with school instructors and from observations in the schools. Results indicate that some aspects of the Instructional Systems Development (ISD) model have been…
NASA Astrophysics Data System (ADS)
Beriro, D. J.; Abrahart, R. J.; Nathanail, C. P.
2012-04-01
Data-driven modelling is most commonly used to develop predictive models that will simulate natural processes. This paper, in contrast, uses Gene Expression Programming (GEP) to construct two alternative models of different pan evaporation estimations by means of symbolic regression: a simulator, a model of a real-world process developed on observed records, and an emulator, an imitator of some other model developed on predicted outputs calculated by that source model. The solutions are compared and contrasted for the purposes of determining whether any substantial differences exist between either option. This analysis will address recent arguments over the impact of using downloaded hydrological modelling datasets originating from different initial sources i.e. observed or calculated. These differences can be easily be overlooked by modellers, resulting in a model of a model developed on estimations derived from deterministic empirical equations and producing exceptionally high goodness-of-fit. This paper uses different lines-of-evidence to evaluate model output and in so doing paves the way for a new protocol in machine learning applications. Transparent modelling tools such as symbolic regression offer huge potential for explaining stochastic processes, however, the basic tenets of data quality and recourse to first principles with regard to problem understanding should not be trivialised. GEP is found to be an effective tool for the prediction of observed and calculated pan evaporation, with results supported by an understanding of the records, and of the natural processes concerned, evaluated using one-at-a-time response function sensitivity analysis. The results show that both architectures and response functions are very similar, implying that previously observed differences in goodness-of-fit can be explained by whether models are applied to observed or calculated data.
Evaluation of future base-flow water-quality conditions in the Hillsborough River, Florida
Fernandez, Mario; Goetz, C.L.; Miller, J.E.
1984-01-01
A one-dimensional, steady-state, water-quality model was developed for a 30.0 mile reach of the Hillsborough River to evaluate water-quality conditions to be expected from future development. The model was calibrated and verified using data collected under critical base-flow conditions in April and December 1978. Dissolved organic nitrogen, nitrate nitrogen, and total and fecal coliforms were modeled for most of the study reach. Model results were used to evaluate the impacts of two typical housing developments on water-quality conditions in Tampa Reservoir. One development is located in the Cypress Creek basin and the other near the upper end of the study reach. Model results show development in the Hillsborough River basin may cause increased total and fecal coliform conditions. Simulated total coliforms at the Tampa water treatment plant for 1-, 3-, and 5-square-mile developments located in the Cypress Creek basin were 3,000, 5,400, and 8,300 colonies per 100 milliliters. Similar developments, however, located near the upper end of the study reach were 2,000, 3,600, and 5,100 colonies per 100 milliliters. Simulated fecal coliforms were 360, 700, and 100 and 180, 350, and 510 colonies per 100 milliliters, respectively. Other constituents modeled showed only minor increases in concentrations. (USGS)
Model documentation: Electricity Market Module, Electricity Fuel Dispatch Submodule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report documents the objectives, analytical approach and development of the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.
A mathematical model of salmonid spawning habitat
Robert N. Havis; Carlos V. Alonzo; Keith E Woeste; Russell F. Thurow
1993-01-01
A simulation model [Salmonid Spawning Analysis Model (SSAM)I was developed as a management tool to evaluate the relative impacts of stream sediment load and water temperature on salmonid egg survival. The model is usefi.il for estimating acceptable sediment loads to spawning habitat that may result from upland development, such as logging and agriculture. Software in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.H.; Roy, D.M.; Mann, B.
1995-12-31
This paper describes an integrated approach to developing a predictive computer model for long-term performance of concrete engineered barriers utilized in LLRW and ILRW disposal facilities. The model development concept consists of three major modeling schemes: hydration modeling of the binder phase, pore solution speciation, and transport modeling in the concrete barrier and service environment. Although still in its inception, the model development approach demonstrated that the chemical and physical properties of complex cementitious materials and their interactions with service environments can be described quantitatively. Applying the integrated model development approach to modeling alkali (Na and K) leaching from amore » concrete pad barrier in an above-grade tumulus disposal unit, it is predicted that, in a near-surface land disposal facility where water infiltration through the facility is normally minimal, the alkalis control the pore solution pH of the concrete barriers for much longer than most previous concrete barrier degradation studies assumed. The results also imply that a highly alkaline condition created by the alkali leaching will result in alteration of the soil mineralogy in the vicinity of the disposal facility.« less
NASA Astrophysics Data System (ADS)
Wang, Daosheng; Cao, Anzhou; Zhang, Jicai; Fan, Daidu; Liu, Yongzhi; Zhang, Yue
2018-06-01
Based on the theory of inverse problems, a three-dimensional sigma-coordinate cohesive sediment transport model with the adjoint data assimilation is developed. In this model, the physical processes of cohesive sediment transport, including deposition, erosion and advection-diffusion, are parameterized by corresponding model parameters. These parameters are usually poorly known and have traditionally been assigned empirically. By assimilating observations into the model, the model parameters can be estimated using the adjoint method; meanwhile, the data misfit between model results and observations can be decreased. The model developed in this work contains numerous parameters; therefore, it is necessary to investigate the parameter sensitivity of the model, which is assessed by calculating a relative sensitivity function and the gradient of the cost function with respect to each parameter. The results of parameter sensitivity analysis indicate that the model is sensitive to the initial conditions, inflow open boundary conditions, suspended sediment settling velocity and resuspension rate, while the model is insensitive to horizontal and vertical diffusivity coefficients. A detailed explanation of the pattern of sensitivity analysis is also given. In ideal twin experiments, constant parameters are estimated by assimilating 'pseudo' observations. The results show that the sensitive parameters are estimated more easily than the insensitive parameters. The conclusions of this work can provide guidance for the practical applications of this model to simulate sediment transport in the study area.
Modelling daily water temperature from air temperature for the Missouri River.
Zhu, Senlin; Nyarko, Emmanuel Karlo; Hadzima-Nyarko, Marijana
2018-01-01
The bio-chemical and physical characteristics of a river are directly affected by water temperature, which thereby affects the overall health of aquatic ecosystems. It is a complex problem to accurately estimate water temperature. Modelling of river water temperature is usually based on a suitable mathematical model and field measurements of various atmospheric factors. In this article, the air-water temperature relationship of the Missouri River is investigated by developing three different machine learning models (Artificial Neural Network (ANN), Gaussian Process Regression (GPR), and Bootstrap Aggregated Decision Trees (BA-DT)). Standard models (linear regression, non-linear regression, and stochastic models) are also developed and compared to machine learning models. Analyzing the three standard models, the stochastic model clearly outperforms the standard linear model and nonlinear model. All the three machine learning models have comparable results and outperform the stochastic model, with GPR having slightly better results for stations No. 2 and 3, while BA-DT has slightly better results for station No. 1. The machine learning models are very effective tools which can be used for the prediction of daily river temperature.
Computerized Adaptive Assessment of Personality Disorder: Introducing the CAT-PD Project
Simms, Leonard J.; Goldberg, Lewis R.; Roberts, John E.; Watson, David; Welte, John; Rotterman, Jane H.
2011-01-01
Assessment of personality disorders (PD) has been hindered by reliance on the problematic categorical model embodied in the most recent Diagnostic and Statistical Model of Mental Disorders (DSM), lack of consensus among alternative dimensional models, and inefficient measurement methods. This article describes the rationale for and early results from an NIMH-funded, multi-year study designed to develop an integrative and comprehensive model and efficient measure of PD trait dimensions. To accomplish these goals, we are in the midst of a five-phase project to develop and validate the model and measure. The results of Phase 1 of the project—which was focused on developing the PD traits to be assessed and the initial item pool—resulted in a candidate list of 59 PD traits and an initial item pool of 2,589 items. Data collection and structural analyses in community and patient samples will inform the ultimate structure of the measure, and computerized adaptive testing (CAT) will permit efficient measurement of the resultant traits. The resultant Computerized Adaptive Test of Personality Disorder (CAT-PD) will be well positioned as a measure of the proposed DSM-5 PD traits. Implications for both applied and basic personality research are discussed. PMID:22804677
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, Marte
The research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to: 1) Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation. 2) Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator. 3) Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the resultsmore » to improve understand of proppant flow and transport. 4) Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production. 5) Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include: 1) A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS, 2) Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock, 3) Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications, and 4) Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.« less
Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems
NASA Technical Reports Server (NTRS)
Allada, Rama Kumar; Lange, Kevin; Anderson, Molly
2011-01-01
Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.
Multiphase Modeling of Secondary Atomization in a Shock Environment
NASA Astrophysics Data System (ADS)
St. Clair, Jeffrey; McGrath, Thomas; Balachandar, Sivaramakrishnan
2017-06-01
Understanding and developing accurate modeling strategies for shock-particulate interaction remains a challenging and important topic, with application to energetic materials development, volcanic eruptions, and safety/risk assessment. This work presents computational modeling of compressible multiphase flows with shock-induced droplet atomization. Droplet size has a strong influence on the interphase momentum and heat transfer. A test case is presented that is sensitive to this, requiring the dynamic modeling of the secondary atomization process occurring when the shock impacts the droplets. An Eulerian-Eulerian computational model that treats all phases as compressible, is hyperbolic and satisfies the 2nd Law of Thermodynamics is applied. Four different breakup models are applied to the test case in which a planar shock wave encounters a cloud of water droplets. The numerical results are compared with both experimental and previously-generated modeling results. The effect of the drag relation used is also investigated. The computed results indicate the necessity of using a droplet breakup model for this application, and the relative accuracy of results obtained with the different droplet breakup and drag models is discussed.
NASA Astrophysics Data System (ADS)
Ferdous, Nazneen; Bhat, Chandra R.
2013-01-01
This paper proposes and estimates a spatial panel ordered-response probit model with temporal autoregressive error terms to analyze changes in urban land development intensity levels over time. Such a model structure maintains a close linkage between the land owner's decision (unobserved to the analyst) and the land development intensity level (observed by the analyst) and accommodates spatial interactions between land owners that lead to spatial spillover effects. In addition, the model structure incorporates spatial heterogeneity as well as spatial heteroscedasticity. The resulting model is estimated using a composite marginal likelihood (CML) approach that does not require any simulation machinery and that can be applied to data sets of any size. A simulation exercise indicates that the CML approach recovers the model parameters very well, even in the presence of high spatial and temporal dependence. In addition, the simulation results demonstrate that ignoring spatial dependency and spatial heterogeneity when both are actually present will lead to bias in parameter estimation. A demonstration exercise applies the proposed model to examine urban land development intensity levels using parcel-level data from Austin, Texas.
Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y
2014-05-01
This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, A.W.; Ghil, M.; Kravtsov, K.
2011-04-08
This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs,more » we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravtsov, S.; Robertson, Andrew W.; Ghil, Michael
2011-04-08
This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs,more » we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.« less
Development of a Stirling System Dynamic Model With Enhanced Thermodynamics
NASA Technical Reports Server (NTRS)
Regan, Timothy F.; Lewandowski, Edward J.
2005-01-01
The Stirling Convertor System Dynamic Model developed at NASA Glenn Research Center is a software model developed from first principles that includes the mechanical and mounting dynamics, the thermodynamics, the linear alternator, and the controller of a free-piston Stirling power convertor, along with the end user load. As such it represents the first detailed modeling tool for fully integrated Stirling convertor-based power systems. The thermodynamics of the model were originally a form of the isothermal Stirling cycle. In some situations it may be desirable to improve the accuracy of the Stirling cycle portion of the model. An option under consideration is to enhance the SDM thermodynamics by coupling the model with Gedeon Associates Sage simulation code. The result will be a model that gives a more accurate prediction of the performance and dynamics of the free-piston Stirling convertor. A method of integrating the Sage simulation code with the System Dynamic Model is described. Results of SDM and Sage simulation are compared to test data. Model parameter estimation and model validation are discussed.
Development of a Stirling System Dynamic Model with Enhanced Thermodynamics
NASA Astrophysics Data System (ADS)
Regan, Timothy F.; Lewandowski, Edward J.
2005-02-01
The Stirling Convertor System Dynamic Model developed at NASA Glenn Research Center is a software model developed from first principles that includes the mechanical and mounting dynamics, the thermodynamics, the linear alternator, and the controller of a free-piston Stirling power convertor, along with the end user load. As such it represents the first detailed modeling tool for fully integrated Stirling convertor-based power systems. The thermodynamics of the model were originally a form of the isothermal Stirling cycle. In some situations it may be desirable to improve the accuracy of the Stirling cycle portion of the model. An option under consideration is to enhance the SDM thermodynamics by coupling the model with Gedeon Associates' Sage simulation code. The result will be a model that gives a more accurate prediction of the performance and dynamics of the free-piston Stirling convertor. A method of integrating the Sage simulation code with the System Dynamic Model is described. Results of SDM and Sage simulation are compared to test data. Model parameter estimation and model validation are discussed.
NASA Astrophysics Data System (ADS)
Vannametee, E.; Karssenberg, D.; Hendriks, M. R.; de Jong, S. M.; Bierkens, M. F. P.
2010-05-01
We propose a modelling framework for distributed hydrological modelling of 103-105 km2 catchments by discretizing the catchment in geomorphologic units. Each of these units is modelled using a lumped model representative for the processes in the unit. Here, we focus on the development and parameterization of this lumped model as a component of our framework. The development of the lumped model requires rainfall-runoff data for an extensive set of geomorphological units. Because such large observational data sets do not exist, we create artificial data. With a high-resolution, physically-based, rainfall-runoff model, we create artificial rainfall events and resulting hydrographs for an extensive set of different geomorphological units. This data set is used to identify the lumped model of geomorphologic units. The advantage of this approach is that it results in a lumped model with a physical basis, with representative parameters that can be derived from point-scale measurable physical parameters. The approach starts with the development of the high-resolution rainfall-runoff model that generates an artificial discharge dataset from rainfall inputs as a surrogate of a real-world dataset. The model is run for approximately 105 scenarios that describe different characteristics of rainfall, properties of the geomorphologic units (i.e. slope gradient, unit length and regolith properties), antecedent moisture conditions and flow patterns. For each scenario-run, the results of the high-resolution model (i.e. runoff and state variables) at selected simulation time steps are stored in a database. The second step is to develop the lumped model of a geomorphological unit. This forward model consists of a set of simple equations that calculate Hortonian runoff and state variables of the geomorphologic unit over time. The lumped model contains only three parameters: a ponding factor, a linear reservoir parameter, and a lag time. The model is capable of giving an appropriate representation of the transient rainfall-runoff relations that exist in the artificial data set generated with the high-resolution model. The third step is to find the values of empirical parameters in the lumped forward model using the artificial dataset. For each scenario of the high-resolution model run, a set of lumped model parameters is determined with a fitting method using the corresponding time series of state variables and outputs retrieved from the database. Thus, the parameters in the lumped model can be estimated by using the artificial data set. The fourth step is to develop an approach to assign lumped model parameters based upon the properties of the geomorphological unit. This is done by finding relationships between the measurable physical properties of geomorphologic units (i.e. slope gradient, unit length, and regolith properties) and the lumped forward model parameters using multiple regression techniques. In this way, a set of lumped forward model parameters can be estimated as a function of morphology and physical properties of the geomorphologic units. The lumped forward model can then be applied to different geomorphologic units. Finally, the performance of the lumped forward model is evaluated; the outputs of the lumped forward model are compared with the results of the high-resolution model. Our results show that the lumped forward model gives the best estimates of total discharge volumes and peak discharges when rain intensities are not significantly larger than the infiltration capacities of the units and when the units are small with a flat gradient. Hydrograph shapes are fairly well reproduced for most cases except for flat and elongated units with large runoff volumes. The results of this study provide a first step towards developing low-dimensional models for large ungauged basins.
2011-01-01
Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task. PMID:21867520
An open source web interface for linking models to infrastructure system databases
NASA Astrophysics Data System (ADS)
Knox, S.; Mohamed, K.; Harou, J. J.; Rheinheimer, D. E.; Medellin-Azuara, J.; Meier, P.; Tilmant, A.; Rosenberg, D. E.
2016-12-01
Models of networked engineered resource systems such as water or energy systems are often built collaboratively with developers from different domains working at different locations. These models can be linked to large scale real world databases, and they are constantly being improved and extended. As the development and application of these models becomes more sophisticated, and the computing power required for simulations and/or optimisations increases, so has the need for online services and tools which enable the efficient development and deployment of these models. Hydra Platform is an open source, web-based data management system, which allows modellers of network-based models to remotely store network topology and associated data in a generalised manner, allowing it to serve multiple disciplines. Hydra Platform uses a web API using JSON to allow external programs (referred to as `Apps') to interact with its stored networks and perform actions such as importing data, running models, or exporting the networks to different formats. Hydra Platform supports multiple users accessing the same network and has a suite of functions for managing users and data. We present ongoing development in Hydra Platform, the Hydra Web User Interface, through which users can collaboratively manage network data and models in a web browser. The web interface allows multiple users to graphically access, edit and share their networks, run apps and view results. Through apps, which are located on the server, the web interface can give users access to external data sources and models without the need to install or configure any software. This also ensures model results can be reproduced by removing platform or version dependence. Managing data and deploying models via the web interface provides a way for multiple modellers to collaboratively manage data, deploy and monitor model runs and analyse results.
An Effect of the Co-Operative Network Model for Students' Quality in Thai Primary Schools
ERIC Educational Resources Information Center
Khanthaphum, Udomsin; Tesaputa, Kowat; Weangsamoot, Visoot
2016-01-01
This research aimed: 1) to study the current and desirable states of the co-operative network in developing the learners' quality in Thai primary schools, 2) to develop a model of the co-operative network in developing the learners' quality, and 3) to examine the results of implementation of the co-operative network model in the primary school.…
Forecasting characteristics of flood effects
NASA Astrophysics Data System (ADS)
Khamutova, M. V.; Rezchikov, A. F.; Kushnikov, V. A.; Ivaschenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikova, E. V.; Shulga, T. E.; Tverdokhlebov, V. A.; Fominykh, D. S.
2018-05-01
The article presents the development of a mathematical model of the system dynamics. Mathematical model allows forecasting the characteristics of flood effects. Model is based on a causal diagram and is presented by a system of nonlinear differential equations. Simulated characteristics are the nodes of the diagram, and edges define the functional relationships between them. The numerical solution of the system of equations using the Runge-Kutta method was obtained. Computer experiments to determine the characteristics on different time interval have been made and results of experiments have been compared with real data of real flood. The obtained results make it possible to assert that the developed model is valid. The results of study are useful in development of an information system for the operating and dispatching staff of the Ministry of the Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural Disasters (EMERCOM).
JEDI Methodology | Jobs and Economic Development Impact Models | NREL
Methodology JEDI Methodology The intent of the Jobs and Economic Development Impact (JEDI) models costs) to demonstrate the employment and economic impacts that will likely result during the estimate of overall economic impacts from specific scenarios. Please see Limitations of JEDI Models for
A Comprehensive Leadership Education Model To Train, Teach, and Develop Leadership in Youth.
ERIC Educational Resources Information Center
Ricketts, John C.; Rudd, Rick D.
2002-01-01
Meta-analysis of youth leadership development literature resulted in a conceptual model and curriculum framework. Model dimensions are leadership knowledge and information; leadership attitudes, will, and desire; decision making, reasoning, and critical thinking; oral and written communication; and intra/interpersonal relations. Dimensions have…
Use case driven approach to develop simulation model for PCS of APR1400 simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Wook, Kim; Hong Soo, Kim; Hyeon Tae, Kang
2006-07-01
The full-scope simulator is being developed to evaluate specific design feature and to support the iterative design and validation in the Man-Machine Interface System (MMIS) design of Advanced Power Reactor (APR) 1400. The simulator consists of process model, control logic model, and MMI for the APR1400 as well as the Power Control System (PCS). In this paper, a use case driven approach is proposed to develop a simulation model for PCS. In this approach, a system is considered from the point of view of its users. User's view of the system is based on interactions with the system and themore » resultant responses. In use case driven approach, we initially consider the system as a black box and look at its interactions with the users. From these interactions, use cases of the system are identified. Then the system is modeled using these use cases as functions. Lower levels expand the functionalities of each of these use cases. Hence, starting from the topmost level view of the system, we proceeded down to the lowest level (the internal view of the system). The model of the system thus developed is use case driven. This paper will introduce the functionality of the PCS simulation model, including a requirement analysis based on use case and the validation result of development of PCS model. The PCS simulation model using use case will be first used during the full-scope simulator development for nuclear power plant and will be supplied to Shin-Kori 3 and 4 plant. The use case based simulation model development can be useful for the design and implementation of simulation models. (authors)« less
Developing and Validating the Socio-Technical Model in Ontology Engineering
NASA Astrophysics Data System (ADS)
Silalahi, Mesnan; Indra Sensuse, Dana; Giri Sucahyo, Yudho; Fadhilah Akmaliah, Izzah; Rahayu, Puji; Cahyaningsih, Elin
2018-03-01
This paper describes results from an attempt to develop a model in ontology engineering methodology and a way to validate the model. The approach to methodology in ontology engineering is from the point view of socio-technical system theory. Qualitative research synthesis is used to build the model using meta-ethnography. In order to ensure the objectivity of the measurement, inter-rater reliability method was applied using a multi-rater Fleiss Kappa. The results show the accordance of the research output with the diamond model in the socio-technical system theory by evidence of the interdependency of the four socio-technical variables namely people, technology, structure and task.
Assessing the feasibility, cost, and utility of developing models of human performance in aviation
NASA Technical Reports Server (NTRS)
Stillwell, William
1990-01-01
The purpose of the effort outlined in this briefing was to determine whether models exist or can be developed that can be used to address aviation automation issues. A multidisciplinary team has been assembled to undertake this effort, including experts in human performance, team/crew, and aviation system modeling, and aviation data used as input to such models. The project consists of two phases, a requirements assessment phase that is designed to determine the feasibility and utility of alternative modeling efforts, and a model development and evaluation phase that will seek to implement the plan (if a feasible cost effective development effort is found) that results from the first phase. Viewgraphs are given.
Self-calibrating models for dynamic monitoring and diagnosis
NASA Technical Reports Server (NTRS)
Kuipers, Benjamin
1994-01-01
The present goal in qualitative reasoning is to develop methods for automatically building qualitative and semiquantitative models of dynamic systems and to use them for monitoring and fault diagnosis. The qualitative approach to modeling provides a guarantee of coverage while our semiquantitative methods support convergence toward a numerical model as observations are accumulated. We have developed and applied methods for automatic creation of qualitative models, developed two methods for obtaining tractable results on problems that were previously intractable for qualitative simulation, and developed more powerful methods for learning semiquantitative models from observations and deriving semiquantitative predictions from them. With these advances, qualitative reasoning comes significantly closer to realizing its aims as a practical engineering method.
NASA Technical Reports Server (NTRS)
Hashemi-Kia, Mostafa; Toossi, Mostafa
1990-01-01
A computational procedure for the reduction of large finite element models was developed. This procedure is used to obtain a significantly reduced model while retaining the essential global dynamic characteristics of the full-size model. This reduction procedure is applied to the airframe finite element model of AH-64A Attack Helicopter. The resulting reduced model is then validated by application to a vibration reduction study.
Iterative algorithms for large sparse linear systems on parallel computers
NASA Technical Reports Server (NTRS)
Adams, L. M.
1982-01-01
Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.
NASA Astrophysics Data System (ADS)
Wardono; Waluya, B.; Kartono; Mulyono; Mariani, S.
2018-03-01
This research is very urgent in relation to the national issue of human development and the nation's competitiveness because of the ability of Indonesian Junior High School students' mathematics literacy results of the Programme for International Student Assessment (PISA) by OECD field of Mathematics is still very low compared to other countries. Curriculum 2013 launched one of them reflect the results of PISA which is still far from the expectations of the Indonesian nation and to produce a better quality of education, PISA ratings that reflect the nation's better competitiveness need to be developed innovative, interactive learning models such as innovative interactive learning Problem Based Learning (PBL) based on the approach of Indonesian Realistic Mathematics Education (PMRI) and the Scientific approach using Information and Communication Technology (ICT).The research was designed using Research and Development (R&D), research that followed up the development and dissemination of a product/model. The result of the research shows the innovative interactive learning PBL model based on PMRI-Scientific using ICT that developed valid, practical and effective and can improve the ability of mathematics literacy and independence-character of junior high school students. While the quality of innovative interactive learning PBL model based on PMRI-Scientific using ICT meet the good category.
Development of a patient-specific model for calculation of pulmonary function
NASA Astrophysics Data System (ADS)
Zhong, Hualiang; Ding, Mingyue; Movsas, Benjamin; Chetty, Indrin J.
2011-06-01
The purpose of this paper is to develop a patient-specific finite element model (FEM) to calculate the pulmonary function of lung cancer patients for evaluation of radiation treatment. The lung model was created with an in-house developed FEM software with region-specific parameters derived from a four-dimensional CT (4DCT) image. The model was used first to calculate changes in air volume and elastic stress in the lung, and then to calculate regional compliance defined as the change in air volume corrected by its associated stress. The results have shown that the resultant compliance images can reveal the regional elastic property of lung tissue, and could be useful for radiation treatment planning and assessment.
Investigation of advanced fault insertion and simulator methods
NASA Technical Reports Server (NTRS)
Dunn, W. R.; Cottrell, D.
1986-01-01
The cooperative agreement partly supported research leading to the open-literature publication cited. Additional efforts under the agreement included research into fault modeling of semiconductor devices. Results of this research are presented in this report which is summarized in the following paragraphs. As a result of the cited research, it appears that semiconductor failure mechanism data is abundant but of little use in developing pin-level device models. Failure mode data on the other hand does exist but is too sparse to be of any statistical use in developing fault models. What is significant in the failure mode data is that, unlike classical logic, MSI and LSI devices do exhibit more than 'stuck-at' and open/short failure modes. Specifically they are dominated by parametric failures and functional anomalies that can include intermittent faults and multiple-pin failures. The report discusses methods of developing composite pin-level models based on extrapolation of semiconductor device failure mechanisms, failure modes, results of temperature stress testing and functional modeling. Limitations of this model particularly with regard to determination of fault detection coverage and latency time measurement are discussed. Indicated research directions are presented.
Peer Review for EPA's Biologically Based Dose-Response ...
EPA is developing a regulation for perchlorate in drinking water. As part the regulatory process EPA must develop a Maximum Contaminant Level Goal (MCLG). FDA and EPA scientists developed a biologically based dose-response (BBDR) model to assist in deriving the MCLG. This model is designed to determine under what conditions of iodine nutrition and exposure to perchlorate across sensitive lifestages would result in low serum free and total thyroxine (hypothyroxinemia). EPA is undertaking a peer review to provide a focused, objective independent peer evaluation of the draft model and its model results report. EPA is undertaking a peer review to provide a focused, objective independent peer evaluation of the draft model and its model results report. Peer review is an important component of the scientific process. The criticism, suggestions, and new ideas provided by the peer reviewers stimulate creative thought, strengthen the interpretation of the reviewed material, and confer credibility on the product. The peer review objective is to provide advice to EPA on steps that will yield a highly credible scientific product that is supported by the scientific community and a defensible perchlorate MCLG.
NASA Technical Reports Server (NTRS)
Wilbur, Matthew L.
1998-01-01
At the Langley Research Center an active mount rotorcraft testbed is being developed for use in the Langley Transonic Dynamics Tunnel. This testbed, the second generation version of the Aeroelastic Rotor Experimental System (ARES-II), can impose rotor hub motions and measure the response so that rotor-body coupling phenomena may be investigated. An analytical method for coupling an aeroelastically scaled model rotor system to the ARES-II is developed in the current study. Models of the testbed and the rotor system are developed in independent analyses, and an impedance-matching approach is used to couple the rotor system to the testbed. The development of the analytical models and the coupling method is examined, and individual and coupled results are presented for the testbed and rotor system. Coupled results are presented with and without applied hub motion, and system loads and displacements are examined. The results show that a closed-loop control system is necessary to achieve desired hub motions, that proper modeling requires including the loads at the rotor hub and rotor control system, and that the strain-gauge balance placed in the rotating system of the ARES-II provided the best loads results.
Numerical modeling of continuous flow microwave heating: a critical comparison of COMSOL and ANSYS.
Salvi, D; Boldor, Dorin; Ortego, J; Aita, G M; Sabliov, C M
2010-01-01
Numerical models were developed to simulate temperature profiles in Newtonian fluids during continuous flow microwave heating by one way coupling electromagnetism, fluid flow, and heat transport in ANSYS 8.0 and COMSOL Multiphysics v3.4. Comparison of the results from the COMSOL model with the results from a pre-developed and validated ANSYS model ensured accuracy of the COMSOL model. Prediction of power Loss by both models was in close agreement (5-13% variation) and the predicted temperature profiles were similar. COMSOL provided a flexible model setup whereas ANSYS required coupling incompatible elements to transfer load between electromagnetic, fluid flow, and heat transport modules. Overall, both software packages provided the ability to solve multiphysics phenomena accurately.
Modeling and simulating industrial land-use evolution in Shanghai, China
NASA Astrophysics Data System (ADS)
Qiu, Rongxu; Xu, Wei; Zhang, John; Staenz, Karl
2018-01-01
This study proposes a cellular automata-based Industrial and Residential Land Use Competition Model to simulate the dynamic spatial transformation of industrial land use in Shanghai, China. In the proposed model, land development activities in a city are delineated as competitions among different land-use types. The Hedonic Land Pricing Model is adopted to implement the competition framework. To improve simulation results, the Land Price Agglomeration Model was devised to simulate and adjust classic land price theory. A new evolutionary algorithm-based parameter estimation method was devised in place of traditional methods. Simulation results show that the proposed model closely resembles actual land transformation patterns and the model can not only simulate land development, but also redevelopment processes in metropolitan areas.
Mean-line Modeling of an Axial Turbine
NASA Astrophysics Data System (ADS)
Tkachenko, A. Yu; Ostapyuk, Ya A.; Filinov, E. P.
2018-01-01
The article describes the approach for axial turbine modeling along the mean line. It bases on the developed model of an axial turbine blade row. This model is suitable for both nozzle vanes and rotor blades simulations. Consequently, it allows the simulation of the single axial turbine stage as well as a multistage turbine. The turbine stage model can take into account the cooling air flow before and after a throat of each blade row, outlet straightener vanes existence and stagger angle controlling of nozzle vanes. The axial turbine estimation method includes the loss estimation and thermogasdynamic analysis. The single stage axial turbine was calculated with the developed model. The obtained results deviation was within 3% when comparing with the results of CFD modeling.
Diagnosing Model Errors in Simulations of Solar Radiation on Inclined Surfaces: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit
2016-06-01
Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results suggest that an isotropic transposition model developed by Badescu substantially underestimates diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can be used as amore » guide for future development of physics-based transposition models.« less
Logic models as a tool for sexual violence prevention program development.
Hawkins, Stephanie R; Clinton-Sherrod, A Monique; Irvin, Neil; Hart, Laurie; Russell, Sarah Jane
2009-01-01
Sexual violence is a growing public health problem, and there is an urgent need to develop sexual violence prevention programs. Logic models have emerged as a vital tool in program development. The Centers for Disease Control and Prevention funded an empowerment evaluation designed to work with programs focused on the prevention of first-time male perpetration of sexual violence, and it included as one of its goals, the development of program logic models. Two case studies are presented that describe how significant positive changes can be made to programs as a result of their developing logic models that accurately describe desired outcomes. The first case study describes how the logic model development process made an organization aware of the importance of a program's environmental context for program success; the second case study demonstrates how developing a program logic model can elucidate gaps in organizational programming and suggest ways to close those gaps.
Studies of the Codeposition of Cobalt Hydroxide and Nickel Hydroxide
NASA Technical Reports Server (NTRS)
Ho, C. H.; Murthy, M.; VanZee, J. W.
1997-01-01
Topics considered include: chemistry, experimental measurements, planar film model development, impregnation model development, results and conclusion. Also included: effect of cobalt concentration on deposition/loading; effect of current density on loading distribution.
NASA Astrophysics Data System (ADS)
Zahmatkesh, Zahra; Karamouz, Mohammad; Nazif, Sara
2015-09-01
Simulation of rainfall-runoff process in urban areas is of great importance considering the consequences and damages of extreme runoff events and floods. The first issue in flood hazard analysis is rainfall simulation. Large scale climate signals have been proved to be effective in rainfall simulation and prediction. In this study, an integrated scheme is developed for rainfall-runoff modeling considering different sources of uncertainty. This scheme includes three main steps of rainfall forecasting, rainfall-runoff simulation and future runoff prediction. In the first step, data driven models are developed and used to forecast rainfall using large scale climate signals as rainfall predictors. Due to high effect of different sources of uncertainty on the output of hydrologic models, in the second step uncertainty associated with input data, model parameters and model structure is incorporated in rainfall-runoff modeling and simulation. Three rainfall-runoff simulation models are developed for consideration of model conceptual (structural) uncertainty in real time runoff forecasting. To analyze the uncertainty of the model structure, streamflows generated by alternative rainfall-runoff models are combined, through developing a weighting method based on K-means clustering. Model parameters and input uncertainty are investigated using an adaptive Markov Chain Monte Carlo method. Finally, calibrated rainfall-runoff models are driven using the forecasted rainfall to predict future runoff for the watershed. The proposed scheme is employed in the case study of the Bronx River watershed, New York City. Results of uncertainty analysis of rainfall-runoff modeling reveal that simultaneous estimation of model parameters and input uncertainty significantly changes the probability distribution of the model parameters. It is also observed that by combining the outputs of the hydrological models using the proposed clustering scheme, the accuracy of runoff simulation in the watershed is remarkably improved up to 50% in comparison to the simulations by the individual models. Results indicate that the developed methodology not only provides reliable tools for rainfall and runoff modeling, but also adequate time for incorporating required mitigation measures in dealing with potentially extreme runoff events and flood hazard. Results of this study can be used in identification of the main factors affecting flood hazard analysis.
Probst, Yasmine; Morrison, Evan; Sullivan, Emma; Dam, Hoa Khanh
2016-07-28
Standardizing the background diet of participants during a dietary randomized controlled trial is vital to trial outcomes. For this process, dietary modeling based on food groups and their target servings is employed via a dietary prescription before an intervention, often using a manual process. Partial automation has employed the use of linear programming. Validity of the modeling approach is critical to allow trial outcomes to be translated to practice. This paper describes the first-stage development of a tool to automatically perform dietary modeling using food group and macronutrient requirements as a test case. The Dietary Modeling Tool (DMT) was then compared with existing approaches to dietary modeling (manual and partially automated), which were previously available to dietitians working within a dietary intervention trial. Constraint optimization techniques were implemented to determine whether nonlinear constraints are best suited to the development of the automated dietary modeling tool using food composition and food consumption data. Dietary models were produced and compared with a manual Microsoft Excel calculator, a partially automated Excel Solver approach, and the automated DMT that was developed. The web-based DMT was produced using nonlinear constraint optimization, incorporating estimated energy requirement calculations, nutrition guidance systems, and the flexibility to amend food group targets for individuals. Percentage differences between modeling tools revealed similar results for the macronutrients. Polyunsaturated fatty acids and monounsaturated fatty acids showed greater variation between tools (practically equating to a 2-teaspoon difference), although it was not considered clinically significant when the whole diet, as opposed to targeted nutrients or energy requirements, were being addressed. Automated modeling tools can streamline the modeling process for dietary intervention trials ensuring consistency of the background diets, although appropriate constraints must be used in their development to achieve desired results. The DMT was found to be a valid automated tool producing similar results to tools with less automation. The results of this study suggest interchangeability of the modeling approaches used, although implementation should reflect the requirements of the dietary intervention trial in which it is used.
Sexing California gulls using morphometrics and discriminant function analysis
Herring, Garth; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Takekawa, John Y.
2010-01-01
A discriminant function analysis (DFA) model was developed with DNA sex verification so that external morphology could be used to sex 203 adult California Gulls (Larus californicus) in San Francisco Bay (SFB). The best model was 97% accurate and included head-to-bill length, culmen depth at the gonys, and wing length. Using an iterative process, the model was simplified to a single measurement (head-to-bill length) that still assigned sex correctly 94% of the time. A previous California Gull sex determination model developed for a population in Wyoming was then assessed by fitting SFB California Gull measurement data to the Wyoming model; this new model failed to converge on the same measurements as those originally used by the Wyoming model. Results from the SFB discriminant function model were compared to the Wyoming model results (by using SFB data with the Wyoming model); the SFB model was 7% more accurate for SFB California gulls. The simplified DFA model (head-to-bill length only) provided highly accurate results (94%) and minimized the measurements and time required to accurately sex California Gulls.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
1997-01-01
The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended somewhat so that linear models can also be generated from two- and three-dimensional steady-state results. Standard techniques are adequate for reducing the order of one-dimensional CFD-based linear models. However, reduction of linear models based on two- and three-dimensional CFD results is complicated by very sparse, ill-conditioned matrices. Some novel approaches are being investigated to solve this problem.
ERIC Educational Resources Information Center
Chaiyadejkamjorn, Natsuchawirang; Soonthonrojana, Wimonrat; Sangkhaphanthanon, Thanya
2017-01-01
The research aimed to construct an instructional model for creative writing for Mattayomsueksa Three students (Grade 9), to develop the model according to a criterion of 80/80, and to examine the results of the model in use. The research methodology consisted of three phases: phase one studied the current states, problems and needs for teaching…
Reduced-Order Modeling: Cooperative Research and Development at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Beran, Philip S.; Cesnik, Carlos E. S.; Guendel, Randal E.; Kurdila, Andrew; Prazenica, Richard J.; Librescu, Liviu; Marzocca, Piergiovanni; Raveh, Daniella E.
2001-01-01
Cooperative research and development activities at the NASA Langley Research Center (LaRC) involving reduced-order modeling (ROM) techniques are presented. Emphasis is given to reduced-order methods and analyses based on Volterra series representations, although some recent results using Proper Orthogonal Deco in position (POD) are discussed as well. Results are reported for a variety of computational and experimental nonlinear systems to provide clear examples of the use of reduced-order models, particularly within the field of computational aeroelasticity. The need for and the relative performance (speed, accuracy, and robustness) of reduced-order modeling strategies is documented. The development of unsteady aerodynamic state-space models directly from computational fluid dynamics analyses is presented in addition to analytical and experimental identifications of Volterra kernels. Finally, future directions for this research activity are summarized.
A Roy model study of adapting to being HIV positive.
Perrett, Stephanie E; Biley, Francis C
2013-10-01
Roy's adaptation model outlines a generic process of adaptation useful to nurses in any situation where a patient is facing change. To advance nursing practice, nursing theories and frameworks must be constantly tested and developed through research. This article describes how the results of a qualitative grounded theory study have been used to test components of the Roy adaptation model. A framework for "negotiating uncertainty" was the result of a grounded theory study exploring adaptation to HIV. This framework has been compared to the Roy adaptation model, strengthening concepts such as focal and contextual stimuli, Roy's definition of adaptation and her description of adaptive modes, while suggesting areas for further development including the role of perception. The comparison described in this article demonstrates the usefulness of qualitative research in developing nursing models, specifically highlighting opportunities to continue refining Roy's work.
NASA Astrophysics Data System (ADS)
Jonny, Zagloed, Teuku Yuri M.
2017-11-01
This paper aims to present an integrated health care model for Indonesian health care industry. Based on previous researches, there are two health care models in the industry such as decease- and patient-centered care models. In their developments, the patient-centered care model is widely applied due to its capability in reducing cost and improving quality simultaneously. However, there is still no comprehensive model resulting in cost reduction, quality improvement, patient satisfaction and hospital profitability simultaneously. Therefore, this research is intended to develop that model. In doing so, first, a conceptual model using Kano's Model, Quality Function Deployment (QFD) and Balanced Scorecard (BSC) is developed to generate several important elements of the model as required by stakeholders. Then, a case study of an Indonesian hospital is presented to evaluate the validity of the model using correlation analysis. As a result, it can be concluded that the model is validated implying several managerial insights among its elements such as l) leadership (r=0.85) and context of the organization (r=0.77) improve operations; 2) planning (r=0.96), support process (r=0.87) and continual improvement (r=0.95) also improve operations; 3) operations improve customer satisfaction (r=0.89) and financial performance (r=0.93) and 4) customer satisfaction improves the financial performance (0.98).
Closed loop models for analyzing engineering requirements for simulators
NASA Technical Reports Server (NTRS)
Baron, S.; Muralidharan, R.; Kleinman, D.
1980-01-01
A closed loop analytic model, incorporating a model for the human pilot, (namely, the optimal control model) that would allow certain simulation design tradeoffs to be evaluated quantitatively was developed. This model was applied to a realistic flight control problem. The resulting model is used to analyze both overall simulation effects and the effects of individual elements. The results show that, as compared to an ideal continuous simulation, the discrete simulation can result in significant performance and/or workload penalties.
Marbjerg, Gerd; Brunskog, Jonas; Jeong, Cheol-Ho; Nilsson, Erling
2015-09-01
A model, combining acoustical radiosity and the image source method, including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Method (PARISM), and it has been developed in order to be able to model both specular and diffuse reflections with complex-valued and angle-dependent boundary conditions. This paper mainly describes the combination of the two models and the implementation of the angle-dependent boundary conditions. It furthermore describes how a pressure impulse response is obtained from the energy-based acoustical radiosity by regarding the model as being stochastic. Three methods of implementation are proposed and investigated, and finally, recommendations are made for their use. Validation of the image source method is done by comparison with finite element simulations of a rectangular room with a porous absorber ceiling. Results from the full model are compared with results from other simulation tools and with measurements. The comparisons of the full model are done for real-valued and angle-independent surface properties. The proposed model agrees well with both the measured results and the alternative theories, and furthermore shows a more realistic spatial variation than energy-based methods due to the fact that interference is considered.
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2010-01-01
A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. In this talk, I will present: (1) A brief review on GCE model and its applications on the impact of the aerosol on deep precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications). We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems. In addition, high - resolution (spatial. 2km, and temporal, I minute) visualization showing the model results will be presented.
A Novel Approach to Develop the Lower Order Model of Multi-Input Multi-Output System
NASA Astrophysics Data System (ADS)
Rajalakshmy, P.; Dharmalingam, S.; Jayakumar, J.
2017-10-01
A mathematical model is a virtual entity that uses mathematical language to describe the behavior of a system. Mathematical models are used particularly in the natural sciences and engineering disciplines like physics, biology, and electrical engineering as well as in the social sciences like economics, sociology and political science. Physicists, Engineers, Computer scientists, and Economists use mathematical models most extensively. With the advent of high performance processors and advanced mathematical computations, it is possible to develop high performing simulators for complicated Multi Input Multi Ouptut (MIMO) systems like Quadruple tank systems, Aircrafts, Boilers etc. This paper presents the development of the mathematical model of a 500 MW utility boiler which is a highly complex system. A synergistic combination of operational experience, system identification and lower order modeling philosophy has been effectively used to develop a simplified but accurate model of a circulation system of a utility boiler which is a MIMO system. The results obtained are found to be in good agreement with the physics of the process and with the results obtained through design procedure. The model obtained can be directly used for control system studies and to realize hardware simulators for boiler testing and operator training.
An EMTP system level model of the PMAD DC test bed
NASA Technical Reports Server (NTRS)
Dravid, Narayan V.; Kacpura, Thomas J.; Tam, Kwa-Sur
1991-01-01
A power management and distribution direct current (PMAD DC) test bed was set up at the NASA Lewis Research Center to investigate Space Station Freedom Electric Power Systems issues. Efficiency of test bed operation significantly improves with a computer simulation model of the test bed as an adjunct tool of investigation. Such a model is developed using the Electromagnetic Transients Program (EMTP) and is available to the test bed developers and experimenters. The computer model is assembled on a modular basis. Device models of different types can be incorporated into the system model with only a few lines of code. A library of the various model types is created for this purpose. Simulation results and corresponding test bed results are presented to demonstrate model validity.
A new free and open source tool for space plasma modeling.
NASA Astrophysics Data System (ADS)
Honkonen, I. J.
2014-12-01
I will present a new distributed memory parallel, free and open source computational model for studying space plasma. The model is written in C++ with emphasis on good software development practices and code readability without sacrificing serial or parallel performance. As such the model could be especially useful for education, for learning both (magneto)hydrodynamics (MHD) and computational model development. By using latest features of the C++ standard (2011) it has been possible to develop a very modular program which improves not only the readability of code but also the testability of the model and decreases the effort required to make changes to various parts of the program. Major parts of the model, functionality not directly related to (M)HD, have been outsourced to other freely available libraries which has reduced the development time of the model significantly. I will present an overview of the code architecture as well as details of different parts of the model and will show examples of using the model including preparing input files and plotting results. A multitude of 1-, 2- and 3-dimensional test cases are included in the software distribution and the results of, for example, Kelvin-Helmholtz, bow shock, blast wave and reconnection tests, will be presented.
Identification of chemical vascular disruptors during development using an integrative predictive toxicity model and zebrafish and in vitro functional angiogenesis assays Chemically-induced vascular toxicity during embryonic development can result in a wide range of adverse pre...
Manoharan, Prabu; Chennoju, Kiranmai; Ghoshal, Nanda
2015-07-01
BACE1 is an attractive target in Alzheimer's disease (AD) treatment. A rational drug design effort for the inhibition of BACE1 is actively pursued by researchers in both academic and pharmaceutical industries. This continued effort led to the steady accumulation of BACE1 crystal structures, co-complexed with different classes of inhibitors. This wealth of information is used in this study to develop target specific proteochemometric models and these models are exploited for predicting the prospective BACE1 inhibitors. The models developed in this study have performed excellently in predicting the computationally generated poses, separately obtained from single and ensemble docking approaches. The simple protein-ligand contact (SPLC) model outperforms other sophisticated high end models, in virtual screening performance, developed during this study. In an attempt to account for BACE1 protein active site flexibility information in predictive models, we included the change in the area of solvent accessible surface and the change in the volume of solvent accessible surface in our models. The ensemble and single receptor docking results obtained from this study indicate that the structural water mediated interactions improve the virtual screening results. Also, these waters are essential for recapitulating bioactive conformation during docking study. The proteochemometric models developed in this study can be used for the prediction of BACE1 inhibitors, during the early stage of AD drug discovery.
Transmission Line Jobs and Economic Development Impact (JEDI) Model User Reference Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, M.; Keyser, D.
The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are freely available, user-friendly tools that estimate the potential economic impacts of constructing and operating power generation projects for a range of conventional and renewable energy technologies. The Transmission Line JEDI model can be used to field questions about the economic impacts of transmission lines in a given state, region, or local community. This Transmission Line JEDI User Reference Guide was developed to provide basic instruction on operating the model and understanding the results. This guide also provides information on the model's underlying methodology,more » as well as the parameters and references used to develop the cost data contained in the model.« less
Development of Multi-Layered Floating Floor for Cabin Noise Reduction
NASA Astrophysics Data System (ADS)
Song, Jee-Hun; Hong, Suk-Yoon; Kwon, Hyun-Wung
2017-12-01
Recently, regulations pertaining to the noise and vibration environment of ship cabins have been strengthened. In this paper, a numerical model is developed for multi-layered floating floor to predict the structure-borne noise in ship cabins. The theoretical model consists of multi-panel structures lined with high-density mineral wool. The predicted results for structure-borne noise when multi-layered floating floor is used are compared to the measure-ments made of a mock-up. A comparison of the predicted results and the experimental one shows that the developed model could be an effective tool for predicting structure-borne noise in ship cabins.
Numerical modeling of on-orbit propellant motion resulting from an impulsive acceleration
NASA Technical Reports Server (NTRS)
Aydelott, John C.; Mjolsness, Raymond C.; Torrey, Martin D.; Hochstein, John I.
1987-01-01
In-space docking and separation maneuvers of spacecraft that have large fluid mass fractions may cause undesirable spacecraft motion in response to the impulsive-acceleration-induced fluid motion. An example of this potential low gravity fluid management problem arose during the development of the shuttle/Centaur vehicle. Experimentally verified numerical modeling techniques were developed to establish the propellant dynamics, and subsequent vehicle motion, associated with the separation of the Centaur vehicle from the shuttle orbiter cargo bay. Although the shuttle/Centaur development activity was suspended, the numerical modeling techniques are available to predict on-orbit liquid motion resulting from impulsive accelerations for other missions and spacecraft.
NASA Technical Reports Server (NTRS)
Bucinell, Ronald B.
1997-01-01
The objective of this project was to model the 5-3/4 inch pressure vessels used on the NASA RTOP program in an attempt to learn more about how impact damage forms and what are the residual effects of the resulting damage. A global-local finite element model was developed for the bottle and the states of stress in the bottles were determined down to the constituent level. The experimental data that was generated on the NASA RTOP program was not in a form that enabled the model developed under this grant to be correlated with the experimental data. As a result of this exercise it is recommended that an experimental program be designed using statistical design of experiment techniques to generate data that can be used to isolate the phenomenon that control the formation of impact damage. This data should include residual property determinations so that models for post impact structural integrity can be developed. It is also recommended that the global-local methodology be integrated directly into the finite element code. This will require considerable code development.
Model prototype utilization in the analysis of fault tolerant control and data processing systems
NASA Astrophysics Data System (ADS)
Kovalev, I. V.; Tsarev, R. Yu; Gruzenkin, D. V.; Prokopenko, A. V.; Knyazkov, A. N.; Laptenok, V. D.
2016-04-01
The procedure assessing the profit of control and data processing system implementation is presented in the paper. The reasonability of model prototype creation and analysis results from the implementing of the approach of fault tolerance provision through the inclusion of structural and software assessment redundancy. The developed procedure allows finding the best ratio between the development cost and the analysis of model prototype and earnings from the results of this utilization and information produced. The suggested approach has been illustrated by the model example of profit assessment and analysis of control and data processing system.
Modeling and control of flexible space platforms with articulated payloads
NASA Technical Reports Server (NTRS)
Graves, Philip C.; Joshi, Suresh M.
1989-01-01
The first steps in developing a methodology for spacecraft control-structure interaction (CSI) optimization are identification and classification of anticipated missions, and the development of tractable mathematical models in each mission class. A mathematical model of a generic large flexible space platform (LFSP) with multiple independently pointed rigid payloads is considered. The objective is not to develop a general purpose numerical simulation, but rather to develop an analytically tractable mathematical model of such composite systems. The equations of motion for a single payload case are derived, and are linearized about zero steady-state. The resulting model is then extended to include multiple rigid payloads, yielding the desired analytical form. The mathematical models developed clearly show the internal inertial/elastic couplings, and are therefore suitable for analytical and numerical studies. A simple decentralized control law is proposed for fine pointing the payloads and LFSP attitude control, and simulation results are presented for an example problem. The decentralized controller is shown to be adequate for the example problem chosen, but does not, in general, guarantee stability. A centralized dissipative controller is then proposed, requiring a symmetric form of the composite system equations. Such a controller guarantees robust closed loop stability despite unmodeled elastic dynamics and parameter uncertainties.
Merino, Giselle Schmidt Alves Díaz; Teixeira, Clarissa Stefani; Schoenardie, Rodrigo Petry; Merino, Eugenio Andrés Diáz; Gontijo, Leila Amaral
2012-01-01
In product design, human factors are considered as an element of differentiation given that today's consumer demands are increasing. Safety, wellbeing, satisfaction, health, effectiveness, efficiency, and other aspects must be effectively incorporated into the product development process. This work proposes a usability assessment model that can be incorporated as an assessment tool. The methodological approach is settled in two stages. First a literature review focus specifically on usability and developing user-centred products. After this, a model of usability named Usa-Design (U-D©) is presented. Consisted of four phases: understanding the use context, pre-preliminary usability assessment (efficiency/effectiveness/satisfaction); assessment of usability principles and results, U-D© features are modular and flexible, allowing principles used in Phase 3 to be changed according to the needs and scenario of each situation. With qualitative/quantitative measurement scales of easy understanding and application, the model results are viable and applicable throughout all the product development process.
Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems
NASA Technical Reports Server (NTRS)
Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.
2012-01-01
Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.
NASA Astrophysics Data System (ADS)
Tonitto, C.; Gurwick, N. P.
2012-12-01
Policy initiatives to reduce greenhouse gas emissions (GHG) have promoted the development of agricultural management protocols to increase SOC storage and reduce GHG emissions. We review approaches for quantifying N2O flux from agricultural landscapes. We summarize the temporal and spatial extent of observations across representative soil classes, climate zones, cropping systems, and management scenarios. We review applications of simulation and empirical modeling approaches and compare validation outcomes across modeling tools. Subsequently, we review current model application in agricultural management protocols. In particular, we compare approaches adapted for compliance with the California Global Warming Solutions Act, the Alberta Climate Change and Emissions Management Act, and by the American Carbon Registry. In the absence of regional data to drive model development, policies that require GHG quantification often use simple empirical models based on highly aggregated data of N2O flux as a function of applied N - Tier 1 models according to IPCC categorization. As participants in development of protocols that could be used in carbon offset markets, we observed that stakeholders outside of the biogeochemistry community favored outcomes from simulation modeling (Tier 3) rather than empirical modeling (Tier 2). In contrast, scientific advisors were more accepting of outcomes based on statistical approaches that rely on local observations, and their views sometimes swayed policy practitioners over the course of policy development. Both Tier 2 and Tier 3 approaches have been implemented in current policy development, and it is important that the strengths and limitations of both approaches, in the face of available data, be well-understood by those drafting and adopting policies and protocols. The reliability of all models is contingent on sufficient observations for model development and validation. Simulation models applied without site-calibration generally result in poor validation results, and this point particularly needs to be emphasized during policy development. For cases where sufficient calibration data are available, simulation models have demonstrated the ability to capture seasonal patterns of N2O flux. The reliability of statistical models likewise depends on data availability. Because soil moisture is a significant driver of N2O flux, the best outcomes occur when empirical models are applied to systems with relevant soil classification and climate. The structure of current carbon offset protocols is not well-aligned with a budgetary approach to GHG accounting. Current protocols credit field-scale reduction in N2O flux as a result of reduced fertilizer use. Protocols do not award farmers credit for reductions in CO2 emissions resulting from reduced production of synthetic N fertilizer. To achieve the greatest GHG emission reductions through reduced synthetic N production and reduced landscape N saturation requires a re-envisioning of the agricultural landscape to include cropping systems with legume and manure N sources. The current focus on on-farm GHG sources focuses credits on simple reductions of N applied in conventional systems rather than on developing cropping systems which promote higher recycling and retention of N.
NASA Astrophysics Data System (ADS)
Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.
2011-12-01
One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.
The Role of Multimodel Combination in Improving Streamflow Prediction
NASA Astrophysics Data System (ADS)
Arumugam, S.; Li, W.
2008-12-01
Model errors are the inevitable part in any prediction exercise. One approach that is currently gaining attention to reduce model errors is by optimally combining multiple models to develop improved predictions. The rationale behind this approach primarily lies on the premise that optimal weights could be derived for each model so that the developed multimodel predictions will result in improved predictability. In this study, we present a new approach to combine multiple hydrological models by evaluating their predictability contingent on the predictor state. We combine two hydrological models, 'abcd' model and Variable Infiltration Capacity (VIC) model, with each model's parameter being estimated by two different objective functions to develop multimodel streamflow predictions. The performance of multimodel predictions is compared with individual model predictions using correlation, root mean square error and Nash-Sutcliffe coefficient. To quantify precisely under what conditions the multimodel predictions result in improved predictions, we evaluate the proposed algorithm by testing it against streamflow generated from a known model ('abcd' model or VIC model) with errors being homoscedastic or heteroscedastic. Results from the study show that streamflow simulated from individual models performed better than multimodels under almost no model error. Under increased model error, the multimodel consistently performed better than the single model prediction in terms of all performance measures. The study also evaluates the proposed algorithm for streamflow predictions in two humid river basins from NC as well as in two arid basins from Arizona. Through detailed validation in these four sites, the study shows that multimodel approach better predicts the observed streamflow in comparison to the single model predictions.
HyPEP FY06 Report: Models and Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOE report
2006-09-01
The Department of Energy envisions the next generation very high-temperature gas-cooled reactor (VHTR) as a single-purpose or dual-purpose facility that produces hydrogen and electricity. The Ministry of Science and Technology (MOST) of the Republic of Korea also selected VHTR for the Nuclear Hydrogen Development and Demonstration (NHDD) Project. This research project aims at developing a user-friendly program for evaluating and optimizing cycle efficiencies of producing hydrogen and electricity in a Very-High-Temperature Reactor (VHTR). Systems for producing electricity and hydrogen are complex and the calculations associated with optimizing these systems are intensive, involving a large number of operating parameter variations andmore » many different system configurations. This research project will produce the HyPEP computer model, which is specifically designed to be an easy-to-use and fast running tool for evaluating nuclear hydrogen and electricity production facilities. The model accommodates flexible system layouts and its cost models will enable HyPEP to be well-suited for system optimization. Specific activities of this research are designed to develop the HyPEP model into a working tool, including (a) identifying major systems and components for modeling, (b) establishing system operating parameters and calculation scope, (c) establishing the overall calculation scheme, (d) developing component models, (e) developing cost and optimization models, and (f) verifying and validating the program. Once the HyPEP model is fully developed and validated, it will be used to execute calculations on candidate system configurations. FY-06 report includes a description of reference designs, methods used in this study, models and computational strategies developed for the first year effort. Results from computer codes such as HYSYS and GASS/PASS-H used by Idaho National Laboratory and Argonne National Laboratory, respectively will be benchmarked with HyPEP results in the following years.« less
Comparison of BrainTool to other UML modeling and model transformation tools
NASA Astrophysics Data System (ADS)
Nikiforova, Oksana; Gusarovs, Konstantins
2017-07-01
In the last 30 years there were numerous model generated software systems offered targeting problems with the development productivity and the resulting software quality. CASE tools developed due today's date are being advertised as having "complete code-generation capabilities". Nowadays the Object Management Group (OMG) is calling similar arguments in regards to the Unified Modeling Language (UML) models at different levels of abstraction. It is being said that software development automation using CASE tools enables significant level of automation. Actual today's CASE tools are usually offering a combination of several features starting with a model editor and a model repository for a traditional ones and ending with code generator (that could be using a scripting or domain-specific (DSL) language), transformation tool to produce the new artifacts from the manually created and transformation definition editor to define new transformations for the most advanced ones. Present paper contains the results of CASE tool (mainly UML editors) comparison against the level of the automation they are offering.
Systems Engineering Metrics: Organizational Complexity and Product Quality Modeling
NASA Technical Reports Server (NTRS)
Mog, Robert A.
1997-01-01
Innovative organizational complexity and product quality models applicable to performance metrics for NASA-MSFC's Systems Analysis and Integration Laboratory (SAIL) missions and objectives are presented. An intensive research effort focuses on the synergistic combination of stochastic process modeling, nodal and spatial decomposition techniques, organizational and computational complexity, systems science and metrics, chaos, and proprietary statistical tools for accelerated risk assessment. This is followed by the development of a preliminary model, which is uniquely applicable and robust for quantitative purposes. Exercise of the preliminary model using a generic system hierarchy and the AXAF-I architectural hierarchy is provided. The Kendall test for positive dependence provides an initial verification and validation of the model. Finally, the research and development of the innovation is revisited, prior to peer review. This research and development effort results in near-term, measurable SAIL organizational and product quality methodologies, enhanced organizational risk assessment and evolutionary modeling results, and 91 improved statistical quantification of SAIL productivity interests.
Geometrical modelling of textile reinforcements
NASA Technical Reports Server (NTRS)
Pastore, Christopher M.; Birger, Alexander B.; Clyburn, Eugene
1995-01-01
The mechanical properties of textile composites are dictated by the arrangement of yarns contained with the material. Thus to develop a comprehensive understanding of the performance of these materials, it is necessary to develop a geometrical model of the fabric structure. This task is quite complex, as the fabric is made form highly flexible yarn systems which experience a certain degree of compressability. Furthermore there are tremendous forces acting on the fabric during densification typically resulting in yarn displacement and misorientation. The objective of this work is to develop a methodology for characterizing the geometry of yarns within a fabric structure including experimental techniques for evaluating these models. Furthermore, some applications of these geometric results to mechanical prediction models are demonstrated. Although more costly than its predecessors, the present analysis is based on the detailed architecture developed by one of the authors and his colleagues and accounts for many of the geometric complexities that other analyses ignore.
Raabe, Margaret E.; Chaudhari, Ajit M.W.
2016-01-01
The ability of a biomechanical simulation to produce results that can translate to real-life situations is largely dependent on the physiological accuracy of the musculoskeletal model. There are a limited number of freely-available, full-body models that exist in OpenSim, and those that do exist are very limited in terms of trunk musculature and degrees of freedom in the spine. Properly modeling the motion and musculature of the trunk is necessary to most accurately estimate lower extremity and spinal loading. The objective of this study was to develop and validate a more physiologically accurate OpenSim full-body model. By building upon three previously developed OpenSim models, the Full-Body Lumbar Spine (FBLS) model, comprised of 21 segments, 30 degrees-of-freedom, and 324 musculotendon actuators, was developed. The five lumbar vertebrae were modeled as individual bodies, and coupled constraints were implemented to describe the net motion of the spine. The eight major muscle groups of the lumbar spine were modeled (rectus abdominis, external and internal obliques, erector spinae, multifidus, quadratus lumborum, psoas major, and latissimus dorsi), and many of these muscle groups were modeled as multiple fascicles allowing the large muscles to act in multiple directions. The resulting FBLS model's trunk muscle geometry, maximal isometric joint moments, and simulated muscle activations compare well to experimental data. The FBLS model will be made freely available (https://simtk.org/home/fullbodylumbar) for others to perform additional analyses and develop simulations investigating full-body dynamics and contributions of the trunk muscles to dynamic tasks. PMID:26947033
Barotropic Tidal Predictions and Validation in a Relocatable Modeling Environment. Revised
NASA Technical Reports Server (NTRS)
Mehra, Avichal; Passi, Ranjit; Kantha, Lakshmi; Payne, Steven; Brahmachari, Shuvobroto
1998-01-01
Under funding from the Office of Naval Research (ONR), the Mississippi State University Center for Air Sea Technology (CAST) has been working on developing a Relocatable Modeling Environment (RME) to provide a uniform and unbiased infrastructure for efficiently configuring numerical models in any geographic or oceanic region. Under Naval Oceanographic Office (NAVOCEANO) funding, the model was implemented and tested for NAVOCEANO use. With our current emphasis on ocean tidal modeling, CAST has adopted the Colorado University's numerical ocean model, known as CURReNTSS (Colorado University Rapidly Relocatable Nestable Storm Surge) Model, as the model of choice. During the RME development process, CURReNTSS has been relocated to several coastal oceanic regions, providing excellent results that demonstrate its veracity. This report documents the model validation results and provides a brief description of the Graphic user Interface.
Modeling of laser interactions with composite materials
Rubenchik, Alexander M.; Boley, Charles D.
2013-05-07
In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.
Biopharma business models in Canada.
March-Chordà, I; Yagüe-Perales, R M
2011-08-01
This article provides new insights into the different strategy paths or business models currently being implemented by Canadian biopharma companies. Through a case-study methodology, seven biopharma companies pertaining to three business models were analyzed, leading to a broad set of results emerging from the following areas: activity, business model and strategy; management and human resources; and R&D, technology and innovation strategy. The three business models represented were: model 1 (conventional biotech oriented to new drug development, radical innovation and search for discoveries); model 2 (development of a technology platform, usually in proteomics and bioinformatics); and model 3 (incremental innovation, with shorter and less risky development timelines). Copyright © 2011 Elsevier Ltd. All rights reserved.
Pesticide fate at regional scale: Development of an integrated model approach and application
NASA Astrophysics Data System (ADS)
Herbst, M.; Hardelauf, H.; Harms, R.; Vanderborght, J.; Vereecken, H.
As a result of agricultural practice many soils and aquifers are contaminated with pesticides. In order to quantify the side-effects of these anthropogenic impacts on groundwater quality at regional scale, a process-based, integrated model approach was developed. The Richards’ equation based numerical model TRACE calculates the three-dimensional saturated/unsaturated water flow. For the modeling of regional scale pesticide transport we linked TRACE with the plant module SUCROS and with 3DLEWASTE, a hybrid Lagrangian/Eulerian approach to solve the convection/dispersion equation. We used measurements, standard methods like pedotransfer-functions or parameters from literature to derive the model input for the process model. A first-step application of TRACE/3DLEWASTE to the 20 km 2 test area ‘Zwischenscholle’ for the period 1983-1993 reveals the behaviour of the pesticide isoproturon. The selected test area is characterised by an intense agricultural use and shallow groundwater, resulting in a high vulnerability of the groundwater to pesticide contamination. The model results stress the importance of the unsaturated zone for the occurrence of pesticides in groundwater. Remarkable isoproturon concentrations in groundwater are predicted for locations with thin layered and permeable soils. For four selected locations we used measured piezometric heads to validate predicted groundwater levels. In general, the model results are consistent and reasonable. Thus the developed integrated model approach is seen as a promising tool for the quantification of the agricultural practice impact on groundwater quality.
Shi, Yuan; Lau, Kevin Ka-Lun; Ng, Edward
2017-08-01
Urban air quality serves as an important function of the quality of urban life. Land use regression (LUR) modelling of air quality is essential for conducting health impacts assessment but more challenging in mountainous high-density urban scenario due to the complexities of the urban environment. In this study, a total of 21 LUR models are developed for seven kinds of air pollutants (gaseous air pollutants CO, NO 2 , NO x , O 3 , SO 2 and particulate air pollutants PM 2.5 , PM 10 ) with reference to three different time periods (summertime, wintertime and annual average of 5-year long-term hourly monitoring data from local air quality monitoring network) in Hong Kong. Under the mountainous high-density urban scenario, we improved the traditional LUR modelling method by incorporating wind availability information into LUR modelling based on surface geomorphometrical analysis. As a result, 269 independent variables were examined to develop the LUR models by using the "ADDRESS" independent variable selection method and stepwise multiple linear regression (MLR). Cross validation has been performed for each resultant model. The results show that wind-related variables are included in most of the resultant models as statistically significant independent variables. Compared with the traditional method, a maximum increase of 20% was achieved in the prediction performance of annual averaged NO 2 concentration level by incorporating wind-related variables into LUR model development. Copyright © 2017 Elsevier Inc. All rights reserved.
Accelerating Drug Development: Antiviral Therapies for Emerging Viruses as a Model.
Everts, Maaike; Cihlar, Tomas; Bostwick, J Robert; Whitley, Richard J
2017-01-06
Drug discovery and development is a lengthy and expensive process. Although no one, simple, single solution can significantly accelerate this process, steps can be taken to avoid unnecessary delays. Using the development of antiviral therapies as a model, we describe options for acceleration that cover target selection, assay development and high-throughput screening, hit confirmation, lead identification and development, animal model evaluations, toxicity studies, regulatory issues, and the general drug discovery and development infrastructure. Together, these steps could result in accelerated timelines for bringing antiviral therapies to market so they can treat emerging infections and reduce human suffering.
Modeling of the HiPco process for carbon nanotube production. I. Chemical kinetics
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.; Gokcen, Tahir; Meyyappan, M.
2002-01-01
A chemical kinetic model is developed to help understand and optimize the production of single-walled carbon nanotubes via the high-pressure carbon monoxide (HiPco) process, which employs iron pentacarbonyl as the catalyst precursor and carbon monoxide as the carbon feedstock. The model separates the HiPco process into three steps, precursor decomposition, catalyst growth and evaporation, and carbon nanotube production resulting from the catalyst-enhanced disproportionation of carbon monoxide, known as the Boudouard reaction: 2 CO(g)-->C(s) + CO2(g). The resulting detailed model contains 971 species and 1948 chemical reactions. A second model with a reduced reaction set containing 14 species and 22 chemical reactions is developed on the basis of the detailed model and reproduces the chemistry of the major species. Results showing the parametric dependence of temperature, total pressure, and initial precursor partial pressures are presented, with comparison between the two models. The reduced model is more amenable to coupled reacting flow-field simulations, presented in the following article.
Development of an Input Suite for an Orthotropic Composite Material Model
NASA Technical Reports Server (NTRS)
Hoffarth, Canio; Shyamsunder, Loukham; Khaled, Bilal; Rajan, Subramaniam; Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Blankenhorn, Gunther
2017-01-01
An orthotropic three-dimensional material model suitable for use in modeling impact tests has been developed that has three major components elastic and inelastic deformations, damage and failure. The material model has been implemented as MAT213 into a special version of LS-DYNA and uses tabulated data obtained from experiments. The prominent features of the constitutive model are illustrated using a widely-used aerospace composite the T800S3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape fiber resin unidirectional composite. The input for the deformation model consists of experimental data from 12 distinct experiments at a known temperature and strain rate: tension and compression along all three principal directions, shear in all three principal planes, and off axis tension or compression tests in all three principal planes, along with other material constants. There are additional input associated with the damage and failure models. The steps in using this model are illustrated composite characterization tests, verification tests and a validation test. The results show that the developed and implemented model is stable and yields acceptably accurate results.
Role Modelling in Manager Development: Learning that Which Cannot Be Taught
ERIC Educational Resources Information Center
Warhurst, Russell
2011-01-01
Purpose: This is an empirical article which aims to examine the extent and nature of management role modelling and the learning achieved from role modelling. The article argues that the spread of taught management development and formal mentoring programmes has resulted in the neglect of practice-knowledge and facets of managerial character…
Data driven modeling of plastic deformation
Versino, Daniele; Tonda, Alberto; Bronkhorst, Curt A.
2017-05-01
In this paper the application of machine learning techniques for the development of constitutive material models is being investigated. A flow stress model, for strain rates ranging from 10 –4 to 10 12 (quasi-static to highly dynamic), and temperatures ranging from room temperature to over 1000 K, is obtained by beginning directly with experimental stress-strain data for Copper. An incrementally objective and fully implicit time integration scheme is employed to integrate the hypo-elastic constitutive model, which is then implemented into a finite element code for evaluation. Accuracy and performance of the flow stress models derived from symbolic regression are assessedmore » by comparison to Taylor anvil impact data. The results obtained with the free-form constitutive material model are compared to well-established strength models such as the Preston-Tonks-Wallace (PTW) model and the Mechanical Threshold Stress (MTS) model. Here, preliminary results show candidate free-form models comparing well with data in regions of stress-strain space with sufficient experimental data, pointing to a potential means for both rapid prototyping in future model development, as well as the use of machine learning in capturing more data as a guide for more advanced model development.« less
Data driven modeling of plastic deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Versino, Daniele; Tonda, Alberto; Bronkhorst, Curt A.
In this paper the application of machine learning techniques for the development of constitutive material models is being investigated. A flow stress model, for strain rates ranging from 10 –4 to 10 12 (quasi-static to highly dynamic), and temperatures ranging from room temperature to over 1000 K, is obtained by beginning directly with experimental stress-strain data for Copper. An incrementally objective and fully implicit time integration scheme is employed to integrate the hypo-elastic constitutive model, which is then implemented into a finite element code for evaluation. Accuracy and performance of the flow stress models derived from symbolic regression are assessedmore » by comparison to Taylor anvil impact data. The results obtained with the free-form constitutive material model are compared to well-established strength models such as the Preston-Tonks-Wallace (PTW) model and the Mechanical Threshold Stress (MTS) model. Here, preliminary results show candidate free-form models comparing well with data in regions of stress-strain space with sufficient experimental data, pointing to a potential means for both rapid prototyping in future model development, as well as the use of machine learning in capturing more data as a guide for more advanced model development.« less
Numerical modelling of the flow in the resin infusion process on the REV scale: A feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jabbari, M.; Spangenberg, J.; Hattel, J. H.
2016-06-08
The resin infusion process (RIP) has developed as a low cost method for manufacturing large fibre reinforced plastic parts. However, the process still presents some challenges to industry with regards to reliability and repeatability, resulting in expensive and inefficient trial and error development. In this paper, we show the implementation of 2D numerical models for the RIP using the open source simulator DuMu{sup X}. The idea of this study is to present a model which accounts for the interfacial forces coming from the capillary pressure on the so-called representative elementary volume (REV) scale. The model is described in detail andmore » three different test cases — a constant and a tensorial permeability as well as a preform/Balsa domain — are investigated. The results show that the developed model is very applicable for the RIP for manufacturing of composite parts. The idea behind this study is to test the developed model for later use in a real application, in which the preform medium has numerous layers with different material properties.« less
Messier, Kyle P; Jackson, Laura E; White, Jennifer L; Hilborn, Elizabeth D
2015-01-01
This study assessed how landcover classification affects associations between landscape characteristics and Lyme disease rate. Landscape variables were derived from the National Land Cover Database (NLCD), including native classes (e.g., deciduous forest, developed low intensity) and aggregate classes (e.g., forest, developed). Percent of each landcover type, median income, and centroid coordinates were calculated by census tract. Regression results from individual and aggregate variable models were compared with the dispersion parameter-based R(2) (Rα(2)) and AIC. The maximum Rα(2) was 0.82 and 0.83 for the best aggregate and individual model, respectively. The AICs for the best models differed by less than 0.5%. The aggregate model variables included forest, developed, agriculture, agriculture-squared, y-coordinate, y-coordinate-squared, income and income-squared. The individual model variables included deciduous forest, deciduous forest-squared, developed low intensity, pasture, y-coordinate, y-coordinate-squared, income, and income-squared. Results indicate that regional landscape models for Lyme disease rate are robust to NLCD landcover classification resolution. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Childs, D. W.; Moyer, D. S.
1984-01-01
Attention is given to rotor dynamic problems that have been encountered and eliminated in the course of Space Shuttle Main Engine (SSME) development, as well as continuing, subsynchronous problems which are being encountered in the development of a 109-percent power level engine. The basic model for the SSME's High Pressure Oxygen Turbopump (HPOTP) encompasses a structural dynamic model for the rotor and housing, and component models for the liquid and gas seals, turbine clearance excitation forces, and impeller diffuser forces. Linear model results are used to examine the synchronous response and stability characteristics of the HPOTP, with attention to bearing load and stability problems associated with the second critical speed. Differences between linear and nonlinear model results are discussed and explained in terms of simple models. Simulation results indicate that while synchronous bearing loads can be reduced, subsynchronous motion is not eliminated by seal modifications.
Robust permanence for ecological equations with internal and external feedbacks.
Patel, Swati; Schreiber, Sebastian J
2018-07-01
Species experience both internal feedbacks with endogenous factors such as trait evolution and external feedbacks with exogenous factors such as weather. These feedbacks can play an important role in determining whether populations persist or communities of species coexist. To provide a general mathematical framework for studying these effects, we develop a theorem for coexistence for ecological models accounting for internal and external feedbacks. Specifically, we use average Lyapunov functions and Morse decompositions to develop sufficient and necessary conditions for robust permanence, a form of coexistence robust to large perturbations of the population densities and small structural perturbations of the models. We illustrate how our results can be applied to verify permanence in non-autonomous models, structured population models, including those with frequency-dependent feedbacks, and models of eco-evolutionary dynamics. In these applications, we discuss how our results relate to previous results for models with particular types of feedbacks.
Dynamic Metabolic Model Building Based on the Ensemble Modeling Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, James C.
2016-10-01
Ensemble modeling of kinetic systems addresses the challenges of kinetic model construction, with respect to parameter value selection, and still allows for the rich insights possible from kinetic models. This project aimed to show that constructing, implementing, and analyzing such models is a useful tool for the metabolic engineering toolkit, and that they can result in actionable insights from models. Key concepts are developed and deliverable publications and results are presented.
ERIC Educational Resources Information Center
Hse, Shun-Yi
1991-01-01
The development of an instructional model based on a learning cycle including correlation, analysis, and generalization (CAG) is described. A module developed for heat and temperature was administered to test its effects by comparing its use with the same unit in the New Physical Science Curriculum (NPSC). The methodology, results, and discussion…
NASA Technical Reports Server (NTRS)
Defelice, David M.; Aydelott, John C.
1987-01-01
The resupply of the cryogenic propellants is an enabling technology for spacebased orbit transfer vehicles. As part of the NASA Lewis ongoing efforts in microgravity fluid management, thermodynamic analysis and subscale modeling techniques were developed to support an on-orbit test bed for cryogenic fluid management technologies. Analytical results have shown that subscale experimental modeling of liquid resupply can be used to validate analytical models when the appropriate target temperature is selected to relate the model to its prototype system. Further analyses were used to develop a thermodynamic model of the tank chilldown process which is required prior to the no-vent fill operation. These efforts were incorporated into two FORTRAN programs which were used to present preliminary analyticl results.
Duangto, P; Iamaroon, A; Prasitwattanaseree, S; Mahakkanukrauh, P; Janhom, A
2017-03-01
Age estimation using developing third molar teeth is considered an important and accurate technique for both clinical and forensic practices. The aims of this study were to establish population-specific reference data, to develop age prediction models using mandibular third molar development, to test the accuracy of the resulting models, and to find the probability of persons being at the age thresholds of legal relevance in a Thai population. A total of 1867 digital panoramic radiographs of Thai individuals aged between 8 and 23 years was selected to assess dental age. The mandibular third molar development was divided into nine stages. The stages were evaluated and each stage was transformed into a development score. Quadratic regression was employed to develop age prediction models. Our results show that males reached mandibular third molar root formation stages earlier than females. The models revealed a high correlation coefficient for both left and right mandibular third molar teeth in both sexes (R = 0.945 and 0.944 in males, R = 0.922 and 0.923 in females, respectively). Furthermore, the accuracy of the resulting models was tested in randomly selected 374 cases and showed low error values between the predicted dental age and the chronological age for both left and right mandibular third molar teeth in both sexes (-0.13 and -0.17 years in males, 0.01 and 0.03 years in females, respectively). In Thai samples, when the mandibular third molar teeth reached stage H, the probability of the person being over 18 years was 100 % in both sexes.
Development and testing of a fast conceptual river water quality model.
Keupers, Ingrid; Willems, Patrick
2017-04-15
Modern, model based river quality management strongly relies on river water quality models to simulate the temporal and spatial evolution of pollutant concentrations in the water body. Such models are typically constructed by extending detailed hydrodynamic models with a component describing the advection-diffusion and water quality transformation processes in a detailed, physically based way. This approach is too computational time demanding, especially when simulating long time periods that are needed for statistical analysis of the results or when model sensitivity analysis, calibration and validation require a large number of model runs. To overcome this problem, a structure identification method to set up a conceptual river water quality model has been developed. Instead of calculating the water quality concentrations at each water level and discharge node, the river branch is divided into conceptual reservoirs based on user information such as location of interest and boundary inputs. These reservoirs are modelled as Plug Flow Reactor (PFR) and Continuously Stirred Tank Reactor (CSTR) to describe advection and diffusion processes. The same water quality transformation processes as in the detailed models are considered but with adjusted residence times based on the hydrodynamic simulation results and calibrated to the detailed water quality simulation results. The developed approach allows for a much faster calculation time (factor 10 5 ) without significant loss of accuracy, making it feasible to perform time demanding scenario runs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Testing Software Development Project Productivity Model
NASA Astrophysics Data System (ADS)
Lipkin, Ilya
Software development is an increasingly influential factor in today's business environment, and a major issue affecting software development is how an organization estimates projects. If the organization underestimates cost, schedule, and quality requirements, the end results will not meet customer needs. On the other hand, if the organization overestimates these criteria, resources that could have been used more profitably will be wasted. There is no accurate model or measure available that can guide an organization in a quest for software development, with existing estimation models often underestimating software development efforts as much as 500 to 600 percent. To address this issue, existing models usually are calibrated using local data with a small sample size, with resulting estimates not offering improved cost analysis. This study presents a conceptual model for accurately estimating software development, based on an extensive literature review and theoretical analysis based on Sociotechnical Systems (STS) theory. The conceptual model serves as a solution to bridge organizational and technological factors and is validated using an empirical dataset provided by the DoD. Practical implications of this study allow for practitioners to concentrate on specific constructs of interest that provide the best value for the least amount of time. This study outlines key contributing constructs that are unique for Software Size E-SLOC, Man-hours Spent, and Quality of the Product, those constructs having the largest contribution to project productivity. This study discusses customer characteristics and provides a framework for a simplified project analysis for source selection evaluation and audit task reviews for the customers and suppliers. Theoretical contributions of this study provide an initial theory-based hypothesized project productivity model that can be used as a generic overall model across several application domains such as IT, Command and Control, Simulation and etc... This research validates findings from previous work concerning software project productivity and leverages said results in this study. The hypothesized project productivity model provides statistical support and validation of expert opinions used by practitioners in the field of software project estimation.
Zeng, Fangfang; Li, Zhongtao; Yu, Xiaoling; Zhou, Linuo
2013-01-01
Background This study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR) analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the prediction models using the two approaches. Methods and Materials We analyzed a previous dataset based on a Chinese population sample consisting of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN and LR analysis, and were tested in the validation set. Performances of these prediction models were then compared. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with the prevalence of CA dysfunction (P<0.05). The mean area under the receiver-operating curve was 0.758 (95% CI 0.724–0.793) for LR and 0.762 (95% CI 0.732–0.793) for ANN analysis, but noninferiority result was found (P<0.001). The similar results were found in comparisons of sensitivity, specificity, and predictive values in the prediction models between the LR and ANN analyses. Conclusion The prediction models for CA dysfunction were developed using ANN and LR. ANN and LR are two effective tools for developing prediction models based on our dataset. PMID:23940593
Computer simulation of solder joint failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchett, S.N.; Frear, D.R.; Rashid, M.M.
The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue for electronic packages. The purpose of this Laboratory Directed Research and Development (LDRD) project was to develop computational tools for simulating the behavior of solder joints under strain and temperature cycling, taking into account the microstructural heterogeneities that exist in as-solidified near eutectic Sn-Pb joints, as well as subsequent microstructural evolution. The authors present two computational constitutive models, a two-phase model and a single-phase model, that were developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions. Unique metallurgical tests provide themore » fundamental input for the constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations with this model agree qualitatively with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single-phase model was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. Special thermomechanical fatigue tests were developed to give fundamental materials input to the models, and an in situ SEM thermomechanical fatigue test system was developed to characterize microstructural evolution and the mechanical behavior of solder joints during the test. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests. The simulation results from the two-phase model showed good fit to the experimental test results.« less
Single tree biomass modelling using airborne laser scanning
NASA Astrophysics Data System (ADS)
Kankare, Ville; Räty, Minna; Yu, Xiaowei; Holopainen, Markus; Vastaranta, Mikko; Kantola, Tuula; Hyyppä, Juha; Hyyppä, Hannu; Alho, Petteri; Viitala, Risto
2013-11-01
Accurate forest biomass mapping methods would provide the means for e.g. detecting bioenergy potential, biofuel and forest-bound carbon. The demand for practical biomass mapping methods at all forest levels is growing worldwide, and viable options are being developed. Airborne laser scanning (ALS) is a promising forest biomass mapping technique, due to its capability of measuring the three-dimensional forest vegetation structure. The objective of the study was to develop new methods for tree-level biomass estimation using metrics derived from ALS point clouds and to compare the results with field references collected using destructive sampling and with existing biomass models. The study area was located in Evo, southern Finland. ALS data was collected in 2009 with pulse density equalling approximately 10 pulses/m2. Linear models were developed for the following tree biomass components: total, stem wood, living branch and total canopy biomass. ALS-derived geometric and statistical point metrics were used as explanatory variables when creating the models. The total and stem biomass root mean square error per cents equalled 26.3% and 28.4% for Scots pine (Pinus sylvestris L.), and 36.8% and 27.6% for Norway spruce (Picea abies (L.) H. Karst.), respectively. The results showed that higher estimation accuracy for all biomass components can be achieved with models created in this study compared to existing allometric biomass models when ALS-derived height and diameter were used as input parameters. Best results were achieved when adding field-measured diameter and height as inputs in the existing biomass models. The only exceptions to this were the canopy and living branch biomass estimations for spruce. The achieved results are encouraging for the use of ALS-derived metrics in biomass mapping and for further development of the models.
Transportation Sector Module - NEMS Documentation
2017-01-01
Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.
Counting Jobs and Economic Impacts from Distributed Wind in the United States (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegen, S.
This conference poster describes the distributed wind Jobs and Economic Development Imapcts (JEDI) model. The goal of this work is to provide a model that estimates jobs and other economic effects associated with the domestic distributed wind industry. The distributed wind JEDI model is a free input-output model that estimates employment and other impacts resulting from an investment in distributed wind installations. Default inputs are from installers and industry experts and are based on existing projects. User input can be minimal (use defaults) or very detailed for more precise results. JEDI can help evaluate potential scenarios, current or future; informmore » stakeholders and decision-makers; assist businesses in evaluating economic development impacts and estimating jobs; assist government organizations with planning and evaluating and developing communities.« less
NASA Astrophysics Data System (ADS)
Katsura, Yasufumi; Attaviriyanupap, Pathom; Kataoka, Yoshihiko
In this research, the fundamental premises for deregulation of the electric power industry are reevaluated. The authors develop a simple model to represent wholesale electricity market with highly congested network. The model is developed by simplifying the power system and market in New York ISO based on available data of New York ISO in 2004 with some estimation. Based on the developed model and construction cost data from the past, the economic impact of transmission line addition on market participants and the impact of deregulation on power plant additions under market with transmission congestion are studied. Simulation results show that the market signals may fail to facilitate proper capacity additions and results in the undesirable over-construction and insufficient-construction cycle of capacity addition.
Ecological Modeling Guide for Ecosystem Restoration and Management
2012-08-01
may result from proposed restoration and management actions. This report provides information to guide environmental planers in selection, development...actions. This report provides information to guide environmental planers in selection, development, evaluation and documentation of ecological models. A
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Maier, Holger R.; Wu, Wenyan; Dandy, Graeme C.; Gupta, Hoshin V.; Zhang, Tuqiao
2018-02-01
Hydrological models are used for a wide variety of engineering purposes, including streamflow forecasting and flood-risk estimation. To develop such models, it is common to allocate the available data to calibration and evaluation data subsets. Surprisingly, the issue of how this allocation can affect model evaluation performance has been largely ignored in the research literature. This paper discusses the evaluation performance bias that can arise from how available data are allocated to calibration and evaluation subsets. As a first step to assessing this issue in a statistically rigorous fashion, we present a comprehensive investigation of the influence of data allocation on the development of data-driven artificial neural network (ANN) models of streamflow. Four well-known formal data splitting methods are applied to 754 catchments from Australia and the U.S. to develop 902,483 ANN models. Results clearly show that the choice of the method used for data allocation has a significant impact on model performance, particularly for runoff data that are more highly skewed, highlighting the importance of considering the impact of data splitting when developing hydrological models. The statistical behavior of the data splitting methods investigated is discussed and guidance is offered on the selection of the most appropriate data splitting methods to achieve representative evaluation performance for streamflow data with different statistical properties. Although our results are obtained for data-driven models, they highlight the fact that this issue is likely to have a significant impact on all types of hydrological models, especially conceptual rainfall-runoff models.
NASA Technical Reports Server (NTRS)
Myers, Jerry G.; Young, M.; Goodenow, Debra A.; Keenan, A.; Walton, M.; Boley, L.
2015-01-01
Model and simulation (MS) credibility is defined as, the quality to elicit belief or trust in MS results. NASA-STD-7009 [1] delineates eight components (Verification, Validation, Input Pedigree, Results Uncertainty, Results Robustness, Use History, MS Management, People Qualifications) that address quantifying model credibility, and provides guidance to the model developers, analysts, and end users for assessing the MS credibility. Of the eight characteristics, input pedigree, or the quality of the data used to develop model input parameters, governing functions, or initial conditions, can vary significantly. These data quality differences have varying consequences across the range of MS application. NASA-STD-7009 requires that the lowest input data quality be used to represent the entire set of input data when scoring the input pedigree credibility of the model. This requirement provides a conservative assessment of model inputs, and maximizes the communication of the potential level of risk of using model outputs. Unfortunately, in practice, this may result in overly pessimistic communication of the MS output, undermining the credibility of simulation predictions to decision makers. This presentation proposes an alternative assessment mechanism, utilizing results parameter robustness, also known as model input sensitivity, to improve the credibility scoring process for specific simulations.
On the application of the PFEM to droplet dynamics modeling in fuel cells
NASA Astrophysics Data System (ADS)
Ryzhakov, Pavel B.; Jarauta, Alex; Secanell, Marc; Pons-Prats, Jordi
2017-07-01
The Particle Finite Element Method (PFEM) is used to develop a model to study two-phase flow in fuel cell gas channels. First, the PFEM is used to develop the model of free and sessile droplets. The droplet model is then coupled to an Eulerian, fixed-grid, model for the airflow. The resulting coupled PFEM-Eulerian algorithm is used to study droplet oscillations in an air flow and droplet growth in a low-temperature fuel cell gas channel. Numerical results show good agreement with predicted frequencies of oscillation, contact angle, and deformation of injected droplets in gas channels. The PFEM-based approach provides a novel strategy to study droplet dynamics in fuel cells.
Model-Based Development of Automotive Electronic Climate Control Software
NASA Astrophysics Data System (ADS)
Kakade, Rupesh; Murugesan, Mohan; Perugu, Bhupal; Nair, Mohanan
With increasing complexity of software in today's products, writing and maintaining thousands of lines of code is a tedious task. Instead, an alternative methodology must be employed. Model-based development is one candidate that offers several benefits and allows engineers to focus on the domain of their expertise than writing huge codes. In this paper, we discuss the application of model-based development to the electronic climate control software of vehicles. The back-to-back testing approach is presented that ensures flawless and smooth transition from legacy designs to the model-based development. Simulink report generator to create design documents from the models is presented along with its usage to run the simulation model and capture the results into the test report. Test automation using model-based development tool that support the use of unique set of test cases for several testing levels and the test procedure that is independent of software and hardware platform is also presented.
NASA Astrophysics Data System (ADS)
Okawa, Tsutomu; Kaminishi, Tsukasa; Hirabayashi, Syuichi; Suzuki, Ryo; Mitsui, Hiroyasu; Koizumi, Hisao
The business in the enterprise is closely related with the information system to such an extent that the business activities are difficult without the information system. The system design technique that considers the business process well, and that enables a quick system development is requested. In addition, the demand for the development cost is also severe than before. To cope with the current situation, the modeling technology named BPM(Business Process Management/Modeling)is drawing attention and becoming important as a key technology. BPM is a technology to model business activities as business processes and visualize them to improve the business efficiency. However, a general methodology to develop the information system using the analysis result of BPM doesn't exist, and a few development cases are reported. This paper proposes an information system development method combining business process modeling with executable modeling. In this paper we describe a guideline to support consistency of development and development efficiency and the framework enabling to develop the information system from model. We have prototyped the information system with the proposed method and our experience has shown that the methodology is valuable.
Development of an accident duration prediction model on the Korean Freeway Systems.
Chung, Younshik
2010-01-01
Since duration prediction is one of the most important steps in an accident management process, there have been several approaches developed for modeling accident duration. This paper presents a model for the purpose of accident duration prediction based on accurately recorded and large accident dataset from the Korean Freeway Systems. To develop the duration prediction model, this study utilizes the log-logistic accelerated failure time (AFT) metric model and a 2-year accident duration dataset from 2006 to 2007. Specifically, the 2006 dataset is utilized to develop the prediction model and then, the 2007 dataset was employed to test the temporal transferability of the 2006 model. Although the duration prediction model has limitations such as large prediction error due to the individual differences of the accident treatment teams in terms of clearing similar accidents, the results from the 2006 model yielded a reasonable prediction based on the mean absolute percentage error (MAPE) scale. Additionally, the results of the statistical test for temporal transferability indicated that the estimated parameters in the duration prediction model are stable over time. Thus, this temporal stability suggests that the model may have potential to be used as a basis for making rational diversion and dispatching decisions in the event of an accident. Ultimately, such information will beneficially help in mitigating traffic congestion due to accidents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenquist, Ian; Tonks, Michael
2016-10-01
Light water reactor fuel pellets are fabricated using sintering to final densities of 95% or greater. During reactor operation, the porosity remaining in the fuel after fabrication decreases further due to irradiation-assisted densification. While empirical models have been developed to describe this densification process, a mechanistic model is needed as part of the ongoing work by the NEAMS program to develop a more predictive fuel performance code. In this work we will develop a phase field model of sintering of UO 2 in the MARMOT code, and validate it by comparing to published sintering data. We will then add themore » capability to capture irradiation effects into the model, and use it to develop a mechanistic model of densification that will go into the BISON code and add another essential piece to the microstructure-based materials models. The final step will be to add the effects of applied fields, to model field-assisted sintering of UO 2. The results of the phase field model will be validated by comparing to data from field-assisted sintering. Tasks over three years: 1. Develop a sintering model for UO 2 in MARMOT 2. Expand model to account for irradiation effects 3. Develop a mechanistic macroscale model of densification for BISON« less
Progression of pathogenic events in cynomolgus macaques infected with variola virus.
Wahl-Jensen, Victoria; Cann, Jennifer A; Rubins, Kathleen H; Huggins, John W; Fisher, Robert W; Johnson, Anthony J; de Kok-Mercado, Fabian; Larsen, Thomas; Raymond, Jo Lynne; Hensley, Lisa E; Jahrling, Peter B
2011-01-01
Smallpox, caused by variola virus (VARV), is a devastating human disease that affected millions worldwide until the virus was eradicated in the 1970 s. Subsequent cessation of vaccination has resulted in an immunologically naive human population that would be at risk should VARV be used as an agent of bioterrorism. The development of antivirals and improved vaccines to counter this threat would be facilitated by the development of animal models using authentic VARV. Towards this end, cynomolgus macaques were identified as adequate hosts for VARV, developing ordinary or hemorrhagic smallpox in a dose-dependent fashion. To further refine this model, we performed a serial sampling study on macaques exposed to doses of VARV strain Harper calibrated to induce ordinary or hemorrhagic disease. Several key differences were noted between these models. In the ordinary smallpox model, lymphoid and myeloid hyperplasias were consistently found whereas lymphocytolysis and hematopoietic necrosis developed in hemorrhagic smallpox. Viral antigen accumulation, as assessed immunohistochemically, was mild and transient in the ordinary smallpox model. In contrast, in the hemorrhagic model antigen distribution was widespread and included tissues and cells not involved in the ordinary model. Hemorrhagic smallpox developed only in the presence of secondary bacterial infections - an observation also commonly noted in historical reports of human smallpox. Together, our results support the macaque model as an excellent surrogate for human smallpox in terms of disease onset, acute disease course, and gross and histopathological lesions.
Loads Model Development and Analysis for the F/A-18 Active Aeroelastic Wing Airplane
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Lizotte, Andrew M.; Dibley, Ryan P.; Clarke, Robert
2005-01-01
The Active Aeroelastic Wing airplane was successfully flight-tested in March 2005. During phase 1 of the two-phase program, an onboard excitation system provided independent control surface movements that were used to develop a loads model for the wing structure and wing control surfaces. The resulting loads model, which was used to develop the control laws for phase 2, is described. The loads model was developed from flight data through the use of a multiple linear regression technique. The loads model input consisted of aircraft states and control surface positions, in addition to nonlinear inputs that were calculated from flight-measured parameters. The loads model output for each wing consisted of wing-root bending moment and torque, wing-fold bending moment and torque, inboard and outboard leading-edge flap hinge moment, trailing-edge flap hinge moment, and aileron hinge moment. The development of the Active Aeroelastic Wing loads model is described, and the ability of the model to predict loads during phase 2 research maneuvers is demonstrated. Results show a good match to phase 2 flight data for all loads except inboard and outboard leading-edge flap hinge moments at certain flight conditions. The average load prediction errors for all loads at all flight conditions are 9.1 percent for maximum stick-deflection rolls, 4.4 percent for 5-g windup turns, and 7.7 percent for 4-g rolling pullouts.
Kotir, Julius H; Smith, Carl; Brown, Greg; Marshall, Nadine; Johnstone, Ron
2016-12-15
In a rapidly changing water resources system, dynamic models based on the notion of systems thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key system variables over time. In this paper, an integrated system dynamics simulation model was developed using a system dynamics modelling approach to examine the feedback processes and interaction between the population, the water resource, and the agricultural production sub-sectors of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and as a decision support tool for exploring plausible policy scenarios necessary for sustainable water resource management and agricultural development. Structural and behavioural pattern tests, and statistical test were used to evaluate and validate the performance of the model. The results showed that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis also indicated that the model is reliable and robust to uncertainties in the major parameters. Results of the business as usual scenario showed that total population, agricultural, domestic, and industrial water demands will continue to increase over the simulated period. Besides business as usual, three additional policy scenarios were simulated to assess their impact on water demands, crop yield, and net-farm income. These were the development of the water infrastructure (scenario 1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model results could help inform planning and investment decisions within the basin to enhance food security, livelihoods development, socio-economic growth, and sustainable management of natural resources. Copyright © 2016 Elsevier B.V. All rights reserved.
Integrated identification, modeling and control with applications
NASA Astrophysics Data System (ADS)
Shi, Guojun
This thesis deals with the integration of system design, identification, modeling and control. In particular, six interdisciplinary engineering problems are addressed and investigated. Theoretical results are established and applied to structural vibration reduction and engine control problems. First, the data-based LQG control problem is formulated and solved. It is shown that a state space model is not necessary to solve this problem; rather a finite sequence from the impulse response is the only model data required to synthesize an optimal controller. The new theory avoids unnecessary reliance on a model, required in the conventional design procedure. The infinite horizon model predictive control problem is addressed for multivariable systems. The basic properties of the receding horizon implementation strategy is investigated and the complete framework for solving the problem is established. The new theory allows the accommodation of hard input constraints and time delays. The developed control algorithms guarantee the closed loop stability. A closed loop identification and infinite horizon model predictive control design procedure is established for engine speed regulation. The developed algorithms are tested on the Cummins Engine Simulator and desired results are obtained. A finite signal-to-noise ratio model is considered for noise signals. An information quality index is introduced which measures the essential information precision required for stabilization. The problems of minimum variance control and covariance control are formulated and investigated. Convergent algorithms are developed for solving the problems of interest. The problem of the integrated passive and active control design is addressed in order to improve the overall system performance. A design algorithm is developed, which simultaneously finds: (i) the optimal values of the stiffness and damping ratios for the structure, and (ii) an optimal output variance constrained stabilizing controller such that the active control energy is minimized. A weighted q-Markov COVER method is introduced for identification with measurement noise. The result is use to develop an iterative closed loop identification/control design algorithm. The effectiveness of the algorithm is illustrated by experimental results.
Artificial Intelligence Techniques for Predicting and Mapping Daily Pan Evaporation
NASA Astrophysics Data System (ADS)
Arunkumar, R.; Jothiprakash, V.; Sharma, Kirty
2017-09-01
In this study, Artificial Intelligence techniques such as Artificial Neural Network (ANN), Model Tree (MT) and Genetic Programming (GP) are used to develop daily pan evaporation time-series (TS) prediction and cause-effect (CE) mapping models. Ten years of observed daily meteorological data such as maximum temperature, minimum temperature, relative humidity, sunshine hours, dew point temperature and pan evaporation are used for developing the models. For each technique, several models are developed by changing the number of inputs and other model parameters. The performance of each model is evaluated using standard statistical measures such as Mean Square Error, Mean Absolute Error, Normalized Mean Square Error and correlation coefficient (R). The results showed that daily TS-GP (4) model predicted better with a correlation coefficient of 0.959 than other TS models. Among various CE models, CE-ANN (6-10-1) resulted better than MT and GP models with a correlation coefficient of 0.881. Because of the complex non-linear inter-relationship among various meteorological variables, CE mapping models could not achieve the performance of TS models. From this study, it was found that GP performs better for recognizing single pattern (time series modelling), whereas ANN is better for modelling multiple patterns (cause-effect modelling) in the data.
Forestry sector analysis for developing countries: issues and methods.
R.W. Haynes
1993-01-01
A satellite meeting of the 10th Forestry World Congress focused on the methods used for forest sector analysis and their applications in both developed and developing countries. The results of that meeting are summarized, and a general approach for forest sector modeling is proposed. The approach includes models derived from the existing...
The Development of Ethnic Identity in Adolescents.
ERIC Educational Resources Information Center
Phinney, Jean S.
This paper presents a model and some empirical research on the process of ethnic identity development beyond childhood. Several models of ethnic identity development among minorities share with Erikson the idea that an achieved identity is the result of an identity crisis, which involves a period of searching that leads to a commitment. In order…
Evidence-Based Leadership Development: The 4L Framework
ERIC Educational Resources Information Center
Scott, Shelleyann; Webber, Charles F.
2008-01-01
Purpose: This paper aims to use the results of three research initiatives to present the life-long learning leader 4L framework, a model for leadership development intended for use by designers and providers of leadership development programming. Design/methodology/approach: The 4L model is a conceptual framework that emerged from the analysis of…
Parametric Cost Models for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2010-01-01
A study is in-process to develop a multivariable parametric cost model for space telescopes. Cost and engineering parametric data has been collected on 30 different space telescopes. Statistical correlations have been developed between 19 variables of 59 variables sampled. Single Variable and Multi-Variable Cost Estimating Relationships have been developed. Results are being published.
NASA Astrophysics Data System (ADS)
Pohlert, T.
2007-12-01
The aim of this paper is to present recent developments of an integrated water- and N-balance model for the assessment of land use changes on water and N-fluxes for meso-scale river catchments. The semi-distributed water-balance model SWAT was coupled with algorithms of the bio-geochemical model DNDC as well as the model CropSyst. The new model that is further denoted as SWAT-N was tested with leaching data from a long- term lysimeter experiment as well as results from a 5-years sampling campaign that was conducted at the outlet of the meso-scale catchment of the River Dill (Germany). The model efficiency for N-load as well as the spatial representation of N-load along the river channel that was tested with results taken from longitudinal profiles show that the accuracy of the model has improved due to the integration of the aforementioned process-oriented models. After model development and model testing, SWAT-N was then used for the assessment of the EU agricultural policy (CAP reform) on land use change and consequent changes on N-fluxes within the Dill Catchment. giessen.de/geb/volltexte/2007/4531/
Effects of Energy Development on Hydrologic Response: a Multi-Scale Modeling Approach
NASA Astrophysics Data System (ADS)
Vithanage, J.; Miller, S. N.; Berendsen, M.; Caffrey, P. A.; Bellis, J.; Schuler, R.
2013-12-01
Potential impacts of energy development on surface hydrology in western Wyoming were assessed using spatially explicit hydrological models. Currently there are proposals to develop over 800 new oil and gas wells in the 218,000 acre-sized LaBarge development area that abuts the Wyoming Range and contributes runoff to the Upper Green River (approximately 1 well per 2 square miles). The intensity of development raises questions relating to impacts on the hydrological cycle, water quality, erosion and sedimentation. We developed landscape management scenarios relating to current disturbance and proposed actions put forth by the energy operators to provide inputs to spatially explicit hydrologic models. Differences between the scenarios were derived to quantify the changes and analyse the impacts to the project area. To perform this research, the Automated Watershed Assessment Tool (AGWA) was enhanced by adding different management practices suitable for the region, including the reclamation of disturbed lands over time. The AGWA interface was used to parameterize and execute two hydrologic models: the Soil and Water Assessment Tool (SWAT) and the KINEmatic Runoff and EROSion model (KINEROS2). We used freely available data including SSURGO soils, Multi-Resolution Landscape Consortium (MRLC) land cover, and 10m resolution terrain data to derive suitable initial parameters for the models. The SWAT model was manually calibrated using an innovative method at the monthly level; observed daily rainfall and temperature inputs were used as a function of elevation considering the local climate effects. Higher temporal calibration was not possible due to a lack of adequate climate and runoff data. The Nash Sutcliff efficiencies of two calibrated watersheds at the monthly scale exceeded 0.95. Results of the AGWA/SWAT simulations indicate a range of sensitivity to disturbance due to heterogeneous soil and terrain characteristics over a simulated time period of 10 years. The KINEROS2 model, a fully distributed physically based event model, was used to simulate runoff and erosion in areas identified by SWAT of particular concern due to their vulnerability. Results were used to find the most suitable locations for placing the well pads and infrastructure that limited overall degradation and downstream delivery of excess water and sediment. Results are highly relevant to land managers interested in optimizing the placement of roads, well pads and other infrastructure that results in disturbance and can be used to design monitoring and mitigation plans post development.
Wind Assessment for Aerial Payload Delivery Systems Using GPS and IMU Sensors
2016-09-01
post- processing of the resultant test data were the research methods used in development of this thesis . Ultimately, this thesis presents two models ...processing of the resultant test data were the research methods used in development of this thesis . Ultimately, this thesis presents two models for winds...7 E . THESIS OBJECTIVE AND ORGANIZATION ................................. 7 II. BLIZZARD SYSTEM COMPONENTS
ERIC Educational Resources Information Center
ALTMANN, BERTHOLD
AFTER A BRIEF SUMMARY OF THE TEST PROGRAM (DESCRIBED MORE FULLY IN LI 000 318), THE STATISTICAL RESULTS TABULATED AS OVERALL "ABC (APPROACH BY CONCEPT)-RELEVANCE RATIOS" AND "ABC-RECALL FIGURES" ARE PRESENTED AND REVIEWED. AN ABSTRACT MODEL DEVELOPED IN ACCORDANCE WITH MAX WEBER'S "IDEALTYPUS" ("DIE OBJEKTIVITAET…
Integrated performance and reliability specification for digital avionics systems
NASA Technical Reports Server (NTRS)
Brehm, Eric W.; Goettge, Robert T.
1995-01-01
This paper describes an automated tool for performance and reliability assessment of digital avionics systems, called the Automated Design Tool Set (ADTS). ADTS is based on an integrated approach to design assessment that unifies traditional performance and reliability views of system designs, and that addresses interdependencies between performance and reliability behavior via exchange of parameters and result between mathematical models of each type. A multi-layer tool set architecture has been developed for ADTS that separates the concerns of system specification, model generation, and model solution. Performance and reliability models are generated automatically as a function of candidate system designs, and model results are expressed within the system specification. The layered approach helps deal with the inherent complexity of the design assessment process, and preserves long-term flexibility to accommodate a wide range of models and solution techniques within the tool set structure. ADTS research and development to date has focused on development of a language for specification of system designs as a basis for performance and reliability evaluation. A model generation and solution framework has also been developed for ADTS, that will ultimately encompass an integrated set of analytic and simulated based techniques for performance, reliability, and combined design assessment.
Integrated Workforce Modeling System
NASA Technical Reports Server (NTRS)
Moynihan, Gary P.
2000-01-01
There are several computer-based systems, currently in various phases of development at KSC, which encompass some component, aspect, or function of workforce modeling. These systems may offer redundant capabilities and/or incompatible interfaces. A systems approach to workforce modeling is necessary in order to identify and better address user requirements. This research has consisted of two primary tasks. Task 1 provided an assessment of existing and proposed KSC workforce modeling systems for their functionality and applicability to the workforce planning function. Task 2 resulted in the development of a proof-of-concept design for a systems approach to workforce modeling. The model incorporates critical aspects of workforce planning, including hires, attrition, and employee development.
The development of an advanced generic solar dynamic heat receiver thermal model
NASA Technical Reports Server (NTRS)
Wu, Y. C.; Roschke, E. J.; Kohout, L.
1988-01-01
An advanced generic solar dynamic heat receiver thermal model under development which can analyze both orbital transient and orbital average conditions is discussed. This model can be used to study advanced receiver concepts, evaluate receiver concepts under development, analyze receiver thermal characteristics under various operational conditions, and evaluate solar dynamic system thermal performances in various orbit conditions. The model and the basic considerations that led to its creation are described, and results based on a set of baseline orbit, configuration, and operational conditions are presented to demonstrate the working of the receiver model.
Modelling rollover behaviour of exacavator-based forest machines
M.W. Veal; S.E. Taylor; Robert B. Rummer
2003-01-01
This poster presentation provides results from analytical and computer simulation models of rollover behaviour of hydraulic excavators. These results are being used as input to the operator protective structure standards development process. Results from rigid body mechanics and computer simulation methods agree well with field rollover test data. These results show...
Zuthi, M F R; Ngo, H H; Guo, W S; Nghiem, L D; Hai, F I; Xia, S Q; Zhang, Z Q; Li, J X
2015-08-01
This study investigates the influence of key biomass parameters on specific oxygen uptake rate (SOUR) in a sponge submerged membrane bioreactor (SSMBR) to develop mathematical models of biomass viability. Extra-cellular polymeric substances (EPS) were considered as a lumped parameter of bound EPS (bEPS) and soluble microbial products (SMP). Statistical analyses of experimental results indicate that the bEPS, SMP, mixed liquor suspended solids and volatile suspended solids (MLSS and MLVSS) have functional relationships with SOUR and their relative influence on SOUR was in the order of EPS>bEPS>SMP>MLVSS/MLSS. Based on correlations among biomass parameters and SOUR, two independent empirical models of biomass viability were developed. The models were validated using results of the SSMBR. However, further validation of the models for different operating conditions is suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Genetically Engineered Mouse Model of Sporadic Colorectal Cancer.
Betzler, Alexander M; Kochall, Susan; Blickensdörfer, Linda; Garcia, Sebastian A; Thepkaysone, May-Linn; Nanduri, Lahiri K; Muders, Michael H; Weitz, Jürgen; Reissfelder, Christoph; Schölch, Sebastian
2017-07-06
Despite the advantages of easy applicability and cost-effectiveness, colorectal cancer mouse models based on tumor cell injection have severe limitations and do not accurately simulate tumor biology and tumor cell dissemination. Genetically engineered mouse models have been introduced to overcome these limitations; however, such models are technically demanding, especially in large organs such as the colon in which only a single tumor is desired. As a result, an immunocompetent, genetically engineered mouse model of colorectal cancer was developed which develops highly uniform tumors and can be used for tumor biology studies as well as therapeutic trials. Tumor development is initiated by surgical, segmental infection of the distal colon with adeno-cre virus in compound conditionally mutant mice. The tumors can be easily detected and monitored via colonoscopy. We here describe the surgical technique of segmental adeno-cre infection of the colon, the surveillance of the tumor via high-resolution colonoscopy and present the resulting colorectal tumors.
McDonald, Richard; Nelson, Jonathan; Kinzel, Paul; Conaway, Jeffrey S.
2006-01-01
The Multi-Dimensional Surface-Water Modeling System (MD_SWMS) is a Graphical User Interface for surface-water flow and sediment-transport models. The capabilities of MD_SWMS for developing models include: importing raw topography and other ancillary data; building the numerical grid and defining initial and boundary conditions; running simulations; visualizing results; and comparing results with measured data.
Cognitive Modeling for Agent-Based Simulation of Child Maltreatment
NASA Astrophysics Data System (ADS)
Hu, Xiaolin; Puddy, Richard
This paper extends previous work to develop cognitive modeling for agent-based simulation of child maltreatment (CM). The developed model is inspired from parental efficacy, parenting stress, and the theory of planned behavior. It provides an explanatory, process-oriented model of CM and incorporates causality relationship and feedback loops from different factors in the social ecology in order for simulating the dynamics of CM. We describe the model and present simulation results to demonstrate the features of this model.
NASA Technical Reports Server (NTRS)
Tijidjian, Raffi P.
2010-01-01
The TEAMS model analyzer is a supporting tool developed to work with models created with TEAMS (Testability, Engineering, and Maintenance System), which was developed by QSI. In an effort to reduce the time spent in the manual process that each TEAMS modeler must perform in the preparation of reporting for model reviews, a new tool has been developed as an aid to models developed in TEAMS. The software allows for the viewing, reporting, and checking of TEAMS models that are checked into the TEAMS model database. The software allows the user to selectively model in a hierarchical tree outline view that displays the components, failure modes, and ports. The reporting features allow the user to quickly gather statistics about the model, and generate an input/output report pertaining to all of the components. Rules can be automatically validated against the model, with a report generated containing resulting inconsistencies. In addition to reducing manual effort, this software also provides an automated process framework for the Verification and Validation (V&V) effort that will follow development of these models. The aid of such an automated tool would have a significant impact on the V&V process.
Wang, Chong; Sun, Qun; Wahab, Magd Abdel; Zhang, Xingyu; Xu, Limin
2015-09-01
Rotary cup brushes mounted on each side of a road sweeper undertake heavy debris removal tasks but the characteristics have not been well known until recently. A Finite Element (FE) model that can analyze brush deformation and predict brush characteristics have been developed to investigate the sweeping efficiency and to assist the controller design. However, the FE model requires large amount of CPU time to simulate each brush design and operating scenario, which may affect its applications in a real-time system. This study develops a mathematical regression model to summarize the FE modeled results. The complex brush load characteristic curves were statistically analyzed to quantify the effects of cross-section, length, mounting angle, displacement and rotational speed etc. The data were then fitted by a multiple variable regression model using the maximum likelihood method. The fitted results showed good agreement with the FE analysis results and experimental results, suggesting that the mathematical regression model may be directly used in a real-time system to predict characteristics of different brushes under varying operating conditions. The methodology may also be used in the design and optimization of rotary brush tools. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Santi, L. Michael; Helmicki, Arthur J.
1993-01-01
The objective of Phase I of this research effort was to develop an advanced mathematical-empirical model of SSME steady-state performance. Task 6 of Phase I is to develop component specific modification strategy for baseline case influence coefficient matrices. This report describes the background of SSME performance characteristics and provides a description of the control variable basis of three different gains models. The procedure used to establish influence coefficients for each of these three models is also described. Gains model analysis results are compared to Rocketdyne's power balance model (PBM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauffer, Philip H.; Levitt, Daniel G.; Miller, Terry Ann
2017-02-09
This report consists of four major sections, including this introductory section. Section 2 provides an overview of previous investigations related to the development of the current sitescale model. The methods and data used to develop the 3-D groundwater model and the techniques used to distill that model into a form suitable for use in the GoldSim models are discussed in Section 3. Section 4 presents the results of the model development effort and discusses some of the uncertainties involved. Three attachments that provide details about the components and data used in this groundwater pathway model are also included with thismore » report.« less
The stock-flow model of spatial data infrastructure development refined by fuzzy logic.
Abdolmajidi, Ehsan; Harrie, Lars; Mansourian, Ali
2016-01-01
The system dynamics technique has been demonstrated to be a proper method by which to model and simulate the development of spatial data infrastructures (SDI). An SDI is a collaborative effort to manage and share spatial data at different political and administrative levels. It is comprised of various dynamically interacting quantitative and qualitative (linguistic) variables. To incorporate linguistic variables and their joint effects in an SDI-development model more effectively, we suggest employing fuzzy logic. Not all fuzzy models are able to model the dynamic behavior of SDIs properly. Therefore, this paper aims to investigate different fuzzy models and their suitability for modeling SDIs. To that end, two inference and two defuzzification methods were used for the fuzzification of the joint effect of two variables in an existing SDI model. The results show that the Average-Average inference and Center of Area defuzzification can better model the dynamics of SDI development.
NASA Astrophysics Data System (ADS)
Whitney, Cory W.; Lanzanova, Denis; Muchiri, Caroline; Shepherd, Keith D.; Rosenstock, Todd S.; Krawinkel, Michael; Tabuti, John R. S.; Luedeling, Eike
2018-03-01
Governments around the world have agreed to end hunger and food insecurity and to improve global nutrition, largely through changes to agriculture and food systems. However, they are faced with a lot of uncertainty when making policy decisions, since any agricultural changes will influence social and biophysical systems, which could yield either positive or negative nutrition outcomes. We outline a holistic probability modeling approach with Bayesian Network (BN) models for nutritional impacts resulting from agricultural development policy. The approach includes the elicitation of expert knowledge for impact model development, including sensitivity analysis and value of information calculations. It aims at a generalizable methodology that can be applied in a wide range of contexts. To showcase this approach, we develop an impact model of Vision 2040, Uganda's development strategy, which, among other objectives, seeks to transform the country's agricultural landscape from traditional systems to large-scale commercial agriculture. Model results suggest that Vision 2040 is likely to have negative outcomes for the rural livelihoods it intends to support; it may have no appreciable influence on household hunger but, by influencing preferences for and access to quality nutritional foods, may increase the prevalence of micronutrient deficiency. The results highlight the trade-offs that must be negotiated when making decisions regarding agriculture for nutrition, and the capacity of BNs to make these trade-offs explicit. The work illustrates the value of BNs for supporting evidence-based agricultural development decisions.
Raabe, Margaret E; Chaudhari, Ajit M W
2016-05-03
The ability of a biomechanical simulation to produce results that can translate to real-life situations is largely dependent on the physiological accuracy of the musculoskeletal model. There are a limited number of freely-available, full-body models that exist in OpenSim, and those that do exist are very limited in terms of trunk musculature and degrees of freedom in the spine. Properly modeling the motion and musculature of the trunk is necessary to most accurately estimate lower extremity and spinal loading. The objective of this study was to develop and validate a more physiologically accurate OpenSim full-body model. By building upon three previously developed OpenSim models, the full-body lumbar spine (FBLS) model, comprised of 21 segments, 30 degrees-of-freedom, and 324 musculotendon actuators, was developed. The five lumbar vertebrae were modeled as individual bodies, and coupled constraints were implemented to describe the net motion of the spine. The eight major muscle groups of the lumbar spine were modeled (rectus abdominis, external and internal obliques, erector spinae, multifidus, quadratus lumborum, psoas major, and latissimus dorsi), and many of these muscle groups were modeled as multiple fascicles allowing the large muscles to act in multiple directions. The resulting FBLS model׳s trunk muscle geometry, maximal isometric joint moments, and simulated muscle activations compare well to experimental data. The FBLS model will be made freely available (https://simtk.org/home/fullbodylumbar) for others to perform additional analyses and develop simulations investigating full-body dynamics and contributions of the trunk muscles to dynamic tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ruotsalainen, Hannu
2018-05-01
A modern third-generation interferometric water level tilt meter was developed at the Finnish Geodetic Institute in 2000. The tilt meter has absolute scale and can do high-precision tilt measurements on earth tides, ocean tide loading and atmospheric loading. Additionally, it can be applied in various kinds of geodynamic and geophysical research. The principles and results of the historical 100-year-old Michelson-Gale tilt meter, as well as the development of interferometric water tube tilt meters of the Finnish Geodetic Institute, Finland, are reviewed. Modern Earth tide model tilt combined with Schwiderski ocean tide loading model explains the uncertainty in historical tilt observations by Michelson and Gale. Earth tide tilt observations in Lohja2 geodynamic station, southern Finland, are compared with the combined model earth tide and four ocean tide loading models. The observed diurnal and semidiurnal harmonic constituents do not fit well with combined models. The reason could be a result of the improper harmonic modelling of the Baltic Sea tides in those models.
Dynamic modeling of brushless dc motors for aerospace actuation
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Nehl, T. W.
1980-01-01
A discrete time model for simulation of the dynamics of samarium cobalt-type permanent magnet brushless dc machines is presented. The simulation model includes modeling of the interaction between these machines and their attached power conditioners. These are transistorized conditioner units. This model is part of an overall discrete-time analysis of the dynamic performance of electromechanical actuators, which was conducted as part of prototype development of such actuators studied and built for NASA-Johnson Space Center as a prospective alternative to hydraulic actuators presently used in shuttle orbiter applications. The resulting numerical simulations of the various machine and power conditioner current and voltage waveforms gave excellent correlation to the actual waveforms collected from actual hardware experimental testing. These results, numerical and experimental, are presented here for machine motoring, regeneration and dynamic braking modes. Application of the resulting model to the determination of machine current and torque profiles during closed-loop actuator operation were also analyzed and the results are given here. These results are given in light of an overall view of the actuator system components. The applicability of this method of analysis to design optimization and trouble-shooting in such prototype development is also discussed in light of the results at hand.
Duan, Q.; Schaake, J.; Andreassian, V.; Franks, S.; Goteti, G.; Gupta, H.V.; Gusev, Y.M.; Habets, F.; Hall, A.; Hay, L.; Hogue, T.; Huang, M.; Leavesley, G.; Liang, X.; Nasonova, O.N.; Noilhan, J.; Oudin, L.; Sorooshian, S.; Wagener, T.; Wood, E.F.
2006-01-01
The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques for the a priori estimation of parameters in hydrologic models and in land surface parameterization schemes of atmospheric models. The MOPEX science strategy involves three major steps: data preparation, a priori parameter estimation methodology development, and demonstration of parameter transferability. A comprehensive MOPEX database has been developed that contains historical hydrometeorological data and land surface characteristics data for many hydrologic basins in the United States (US) and in other countries. This database is being continuously expanded to include more basins in all parts of the world. A number of international MOPEX workshops have been convened to bring together interested hydrologists and land surface modelers from all over world to exchange knowledge and experience in developing a priori parameter estimation techniques. This paper describes the results from the second and third MOPEX workshops. The specific objective of these workshops is to examine the state of a priori parameter estimation techniques and how they can be potentially improved with observations from well-monitored hydrologic basins. Participants of the second and third MOPEX workshops were provided with data from 12 basins in the southeastern US and were asked to carry out a series of numerical experiments using a priori parameters as well as calibrated parameters developed for their respective hydrologic models. Different modeling groups carried out all the required experiments independently using eight different models, and the results from these models have been assembled for analysis in this paper. This paper presents an overview of the MOPEX experiment and its design. The main experimental results are analyzed. A key finding is that existing a priori parameter estimation procedures are problematic and need improvement. Significant improvement of these procedures may be achieved through model calibration of well-monitored hydrologic basins. This paper concludes with a discussion of the lessons learned, and points out further work and future strategy. ?? 2005 Elsevier Ltd. All rights reserved.
Claggett, Peter; Jantz, Claire A.; Goetz, S.J.; Bisland, C.
2004-01-01
Natural resource lands in the Chesapeake Bay watershed are increasingly susceptible to conversion into developed land uses, particularly as the demand for residential development grows. We assessed development pressure in the Baltimore-Washington, DC region, one of the major urban and suburban centers in the watershed. We explored the utility of two modeling approaches for forecasting future development trends and patterns by comparing results from a cellular automata model, SLEUTH (slope, land use, excluded land, urban extent, transportation), and a supply/demand/allocation model, the Western Futures Model. SLEUTH can be classified as a land-cover change model and produces projections on the basis of historic trends of changes in the extent and patterns of developed land and future land protection scenarios. The Western Futures Model derives forecasts from historic trends in housing units, a U.S. Census variable, and exogenously supplied future population projections. Each approach has strengths and weaknesses, and combining the two has advantages and limitations. ?? 2004 Kluwer Academic Publishers.
Claggett, Peter R; Jantz, Claire A; Goetz, Scott J; Bisland, Carin
2004-06-01
Natural resource lands in the Chesapeake Bay watershed are increasingly susceptible to conversion into developed land uses, particularly as the demand for residential development grows. We assessed development pressure in the Baltimore-Washington, DC region, one of the major urban and suburban centers in the watershed. We explored the utility of two modeling approaches for forecasting future development trends and patterns by comparing results from a cellular automata model, SLEUTH (slope, land use, excluded land, urban extent, transportation), and a supply/demand/allocation model, the Western Futures Model. SLEUTH can be classified as a land-cover change model and produces projections on the basis of historic trends of changes in the extent and patterns of developed land and future land protection scenarios. The Western Futures Model derives forecasts from historic trends in housing units, a U.S. Census variable, and exogenously supplied future population projections. Each approach has strengths and weaknesses, and combining the two has advantages and limitations.
Financial arrangement selection for energy management projects
NASA Astrophysics Data System (ADS)
Woodroof, Eric Aubrey
Scope and method of study. The purpose of this study was to develop a model (E-FUND) to help facility managers select financial arrangements for energy management projects (EMPs). The model was developed with the help of a panel of expert financiers. The panel also helped develop a list of key objectives critical to the decision process. The E-FUND model was tested by a population of facility managers in four case studies. Findings and conclusions. The results may indicate that having a high economic benefit (from an EMP) is not overwhelmingly important, when compared to other qualitative objectives. The results may also indicate that the true lease and performance contract may be the most applicable financial arrangements for EMPs.
NASA Technical Reports Server (NTRS)
Beers, B. L.; Pine, V. W.; Hwang, H. C.; Bloomberg, H. W.; Lin, D. L.; Schmidt, M. J.; Strickland, D. J.
1979-01-01
The model consists of four phases: single electron dynamics, single electron avalanche, negative streamer development, and tree formation. Numerical algorithms and computer code implementations are presented for the first three phases. An approach to developing a code description of fourth phase is discussed. Numerical results are presented for a crude material model of Teflon.
ERIC Educational Resources Information Center
Kim, Sangwon; Orpinas, Pamela; Kamphaus, Randy; Kelder, Steven H.
2011-01-01
This study empirically derived a multiple risk factors model of the development of aggression among middle school students in urban, low-income neighborhoods, using Hierarchical Linear Modeling (HLM). Results indicated that aggression increased from sixth to eighth grade. Additionally, the influences of four risk domains (individual, family,…
Investigation of traveler acceptance factors in short haul air carrier operations
NASA Technical Reports Server (NTRS)
Kuhlthau, A. R.; Jacobson, I. D.
1972-01-01
The development of a mathematical model for human reaction to variables involved in transportation systems is discussed. The techniques, activities, and results related to defining certain specific inputs to the model are presented. A general schematic diagram of the problem solution is developed. The application of the model to short haul air carrier operations is examined.
Development of a comprehensive urban commodity/freight movement model for Texas.
DOT National Transportation Integrated Search
2006-01-01
The Texas Department of Transportation (TxDOT) developed the Texas Statewide Analysis Model (SAM) to provide analysis and : forecasting capabilities of passenger and commodity/freight movements in Texas. The SAM provides data and results at a level :...
A Brush Seals Program Modeling and Developments
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Flower, Ralph; Howe, Harold
1996-01-01
Some events of a U.S. Army/NASA Lewis Research Center brush seals program are reviewed, and the development of ceramic brush seals is described. Some preliminary room-temperature flow data are modeled and compare favorably to the results of Ergun.
Modified optimal control pilot model for computer-aided design and analysis
NASA Technical Reports Server (NTRS)
Davidson, John B.; Schmidt, David K.
1992-01-01
This paper presents the theoretical development of a modified optimal control pilot model based upon the optimal control model (OCM) of the human operator developed by Kleinman, Baron, and Levison. This model is input compatible with the OCM and retains other key aspects of the OCM, such as a linear quadratic solution for the pilot gains with inclusion of control rate in the cost function, a Kalman estimator, and the ability to account for attention allocation and perception threshold effects. An algorithm designed for each implementation in current dynamic systems analysis and design software is presented. Example results based upon the analysis of a tracking task using three basic dynamic systems are compared with measured results and with similar analyses performed with the OCM and two previously proposed simplified optimal pilot models. The pilot frequency responses and error statistics obtained with this modified optimal control model are shown to compare more favorably to the measured experimental results than the other previously proposed simplified models evaluated.
NASA Astrophysics Data System (ADS)
Domanskyi, Sergii; Schilling, Joshua E.; Gorshkov, Vyacheslav; Libert, Sergiy; Privman, Vladimir
2016-09-01
We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model we describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of "stiff" equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.
NASA Astrophysics Data System (ADS)
Domanskyi, Sergii; Schilling, Joshua; Gorshkov, Vyacheslav; Libert, Sergiy; Privman, Vladimir
We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model we describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of ``stiff'' equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.
Distributed support modelling for vertical track dynamic analysis
NASA Astrophysics Data System (ADS)
Blanco, B.; Alonso, A.; Kari, L.; Gil-Negrete, N.; Giménez, J. G.
2018-04-01
The finite length nature of rail-pad supports is characterised by a Timoshenko beam element formulation over an elastic foundation, giving rise to the distributed support element. The new element is integrated into a vertical track model, which is solved in frequency and time domain. The developed formulation is obtained by solving the governing equations of a Timoshenko beam for this particular case. The interaction between sleeper and rail via the elastic connection is considered in an analytical, compact and efficient way. The modelling technique results in realistic amplitudes of the 'pinned-pinned' vibration mode and, additionally, it leads to a smooth evolution of the contact force temporal response and to reduced amplitudes of the rail vertical oscillation, as compared to the results from concentrated support models. Simulations are performed for both parametric and sinusoidal roughness excitation. The model of support proposed here is compared with a previous finite length model developed by other authors, coming to the conclusion that the proposed model gives accurate results at a reduced computational cost.
Waterhammer Transient Simulation and Model Anchoring for the Robotic Lunar Lander Propulsion System
NASA Technical Reports Server (NTRS)
Stein, William B.; Trinh, Huu P.; Reynolds, Michael E.; Sharp, David J.
2011-01-01
Waterhammer transients have the potential to adversely impact propulsion system design if not properly addressed. Waterhammer can potentially lead to system plumbing, and component damage. Multi-thruster propulsion systems also develop constructive/destructive wave interference which becomes difficult to predict without detailed models. Therefore, it is important to sufficiently characterize propulsion system waterhammer in order to develop a robust design with minimal impact to other systems. A risk reduction activity was performed at Marshall Space Flight Center to develop a tool for estimating waterhammer through the use of anchored simulation for the Robotic Lunar Lander (RLL) propulsion system design. Testing was performed to simulate waterhammer surges due to rapid valve closure and consisted of twenty-two series of waterhammer tests, resulting in more than 300 valve actuations. These tests were performed using different valve actuation schemes and three system pressures. Data from the valve characterization tests were used to anchor the models that employed MSCSoftware.EASY5 v.2010 to model transient fluid phenomena by using transient forms of mass and energy conservation. The anchoring process was performed by comparing initial model results to experimental data and then iterating the model input to match the simulation results with the experimental data. The models provide good correlation with experimental results, supporting the use of EASY5 as a tool to model fluid transients and provide a baseline for future RLL system modeling. This paper addresses tasks performed during the waterhammer risk reduction activity for the RLL propulsion system. The problem of waterhammer simulation anchoring as applied to the RLL system is discussed with results from the corresponding experimental valve tests. Important factors for waterhammer mitigation are discussed along with potential design impacts to the RLL propulsion system.
Predictive modeling of nanomaterial exposure effects in biological systems
Liu, Xiong; Tang, Kaizhi; Harper, Stacey; Harper, Bryan; Steevens, Jeffery A; Xu, Roger
2013-01-01
Background Predictive modeling of the biological effects of nanomaterials is critical for industry and policymakers to assess the potential hazards resulting from the application of engineered nanomaterials. Methods We generated an experimental dataset on the toxic effects experienced by embryonic zebrafish due to exposure to nanomaterials. Several nanomaterials were studied, such as metal nanoparticles, dendrimer, metal oxide, and polymeric materials. The embryonic zebrafish metric (EZ Metric) was used as a screening-level measurement representative of adverse effects. Using the dataset, we developed a data mining approach to model the toxic endpoints and the overall biological impact of nanomaterials. Data mining techniques, such as numerical prediction, can assist analysts in developing risk assessment models for nanomaterials. Results We found several important attributes that contribute to the 24 hours post-fertilization (hpf) mortality, such as dosage concentration, shell composition, and surface charge. These findings concur with previous studies on nanomaterial toxicity using embryonic zebrafish. We conducted case studies on modeling the overall effect/impact of nanomaterials and the specific toxic endpoints such as mortality, delayed development, and morphological malformations. The results show that we can achieve high prediction accuracy for certain biological effects, such as 24 hpf mortality, 120 hpf mortality, and 120 hpf heart malformation. The results also show that the weighting scheme for individual biological effects has a significant influence on modeling the overall impact of nanomaterials. Sample prediction models can be found at http://neiminer.i-a-i.com/nei_models. Conclusion The EZ Metric-based data mining approach has been shown to have predictive power. The results provide valuable insights into the modeling and understanding of nanomaterial exposure effects. PMID:24098077
Modeling Rabbit Responses to Single and Multiple Aerosol ...
Journal Article Survival models are developed here to predict response and time-to-response for mortality in rabbits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Hazard function models were developed for a multiple dose dataset to predict the probability of death through specifying dose-response functions and the time between exposure and the time-to-death (TTD). Among the models developed, the best-fitting survival model (baseline model) has an exponential dose-response model with a Weibull TTD distribution. Alternative models assessed employ different underlying dose-response functions and use the assumption that, in a multiple dose scenario, earlier doses affect the hazard functions of each subsequent dose. In addition, published mechanistic models are analyzed and compared with models developed in this paper. None of the alternative models that were assessed provided a statistically significant improvement in fit over the baseline model. The general approach utilizes simple empirical data analysis to develop parsimonious models with limited reliance on mechanistic assumptions. The baseline model predicts TTDs consistent with reported results from three independent high-dose rabbit datasets. More accurate survival models depend upon future development of dose-response datasets specifically designed to assess potential multiple dose effects on response and time-to-response. The process used in this paper to dev
Barotropic Tidal Predictions and Validation in a Relocatable Modeling Environment. Revised
NASA Technical Reports Server (NTRS)
Mehra, Avichal; Passi, Ranjit; Kantha, Lakshmi; Payne, Steven; Brahmachari, Shuvobroto
1998-01-01
Under funding from the Office of Naval Research (ONR), and the Naval Oceanographic Office (NAVOCEANO), the Mississippi State University Center for Air Sea Technology (CAST) has been working on developing a Relocatable Modeling Environment(RME) to provide a uniform and unbiased infrastructure for efficiently configuring numerical models in any geographic/oceanic region. Under Naval Oceanographic Office (NAVO-CEANO) funding, the model was implemented and tested for NAVOCEANO use. With our current emphasis on ocean tidal modeling, CAST has adopted the Colorado University's numerical ocean model, known as CURReNTSS (Colorado University Rapidly Relocatable Nestable Storm Surge) Model, as the model of choice. During the RME development process, CURReNTSS has been relocated to several coastal oceanic regions, providing excellent results that demonstrate its veracity. This report documents the model validation results and provides a brief description of the Graphic user Interface (GUI).
Load compensation in a lean burn natural gas vehicle
NASA Astrophysics Data System (ADS)
Gangopadhyay, Anupam
A new multivariable PI tuning technique is developed in this research that is primarily developed for regulation purposes. Design guidelines are developed based on closed-loop stability. The new multivariable design is applied in a natural gas vehicle to combine idle and A/F ratio control loops. This results in better recovery during low idle operation of a vehicle under external step torques. A powertrain model of a natural gas engine is developed and validated for steady-state and transient operation. The nonlinear model has three states: engine speed, intake manifold pressure and fuel fraction in the intake manifold. The model includes the effect of fuel partial pressure in the intake manifold filling and emptying dynamics. Due to the inclusion of fuel fraction as a state, fuel flow rate into the cylinders is also accurately modeled. A linear system identification is performed on the nonlinear model. The linear model structure is predicted analytically from the nonlinear model and the coefficients of the predicted transfer function are shown to be functions of key physical parameters in the plant. Simulations of linear system and model parameter identification is shown to converge to the predicted values of the model coefficients. The multivariable controller developed in this research could be designed in an algebraic fashion once the plant model is known. It is thus possible to implement the multivariable PI design in an adaptive fashion combining the controller with identified plant model on-line. This will result in a self-tuning regulator (STR) type controller where the underlying design criteria is the multivariable tuning technique designed in this research.
Modeling of NASA's 30/20 GHz satellite communications system
NASA Technical Reports Server (NTRS)
Kwatra, S. C.; Maples, B. W.; Stevens, G. A.
1984-01-01
NASA is in the process of developing technology for a 30/20 GHz satellite communications link. Currently hardware is being assembled for a test transponder. A simulation package is being developed to study the link performance in the presence of interference and noise. This requires developing models for the components of the system. This paper describes techniques used to model the components for which data is available. Results of experiments performed using these models are described. A brief overview of NASA's 30/20 GHz communications satellite program is also included.
Prediction models for clustered data: comparison of a random intercept and standard regression model
2013-01-01
Background When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Methods Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. Results The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. Conclusion The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters. PMID:23414436
Scripting MODFLOW model development using Python and FloPy
Bakker, Mark; Post, Vincent E. A.; Langevin, Christian D.; Hughes, Joseph D.; White, Jeremy; Starn, Jeffrey; Fienen, Michael N.
2016-01-01
Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW-based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture-fraction analysis with a real-world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy.
Rapid prototyping and AI programming environments applied to payload modeling
NASA Technical Reports Server (NTRS)
Carnahan, Richard S., Jr.; Mendler, Andrew P.
1987-01-01
This effort focused on using artificial intelligence (AI) programming environments and rapid prototyping to aid in both space flight manned and unmanned payload simulation and training. Significant problems addressed are the large amount of development time required to design and implement just one of these payload simulations and the relative inflexibility of the resulting model to accepting future modification. Results of this effort have suggested that both rapid prototyping and AI programming environments can significantly reduce development time and cost when applied to the domain of payload modeling for crew training. The techniques employed are applicable to a variety of domains where models or simulations are required.
Measuring sustainable development using a multi-criteria model: a case study.
Boggia, Antonio; Cortina, Carla
2010-11-01
This paper shows how Multi-criteria Decision Analysis (MCDA) can help in a complex process such as the assessment of the level of sustainability of a certain area. The paper presents the results of a study in which a model for measuring sustainability was implemented to better aid public policy decisions regarding sustainability. In order to assess sustainability in specific areas, a methodological approach based on multi-criteria analysis has been developed. The aim is to rank areas in order to understand the specific technical and/or financial support that they need to develop sustainable growth. The case study presented is an assessment of the level of sustainability in different areas of an Italian Region using the MCDA approach. Our results show that MCDA is a proper approach for sustainability assessment. The results are easy to understand and the evaluation path is clear and transparent. This is what decision makers need for having support to their decisions. The multi-criteria model for evaluation has been developed respecting the sustainable development economic theory, so that final results can have a clear meaning in terms of sustainability. Copyright 2010 Elsevier Ltd. All rights reserved.
2009-06-01
simulation is the campaign-level Peace Support Operations Model (PSOM). This thesis provides a quantitative analysis of PSOM. The results are based ...multiple potential outcomes , further development and analysis is required before the model is used for large scale analysis . 15. NUMBER OF PAGES 159...multiple potential outcomes , further development and analysis is required before the model is used for large scale analysis . vi THIS PAGE
Construction schedules slack time minimizing
NASA Astrophysics Data System (ADS)
Krzemiński, Michał
2017-07-01
The article presents two copyright models for minimizing downtime working brigades. Models have been developed for construction schedules performed using the method of work uniform. Application of flow shop models is possible and useful for the implementation of large objects, which can be divided into plots. The article also presents a condition describing gives which model should be used, as well as a brief example of optimization schedule. The optimization results confirm the legitimacy of the work on the newly-developed models.
ERIC Educational Resources Information Center
Kosheleva, Natalia; Segone, Marco
2013-01-01
In many less developed democracies Voluntary Organizations for Professional Evaluation (VOPEs) face the challenges of low demand for evaluation and the resulting low economic capacity of national evaluation communities. The VOPE model that evolved in well-developed democracies is not directly applicable under these circumstances, so a new model…
ERIC Educational Resources Information Center
Garcia Arriola, Alfonso
2017-01-01
In the last twenty years in US science education, professional development has emphasized the need to change science instruction from a direct instruction model to a more participatory and constructivist learning model. The result of these reform efforts has seen an increase in science education professional development that is focused on…
ERIC Educational Resources Information Center
Hudley, Anne H. Charity; Mallinson, Christine
2017-01-01
Professional development on issues of language and culture is often separate from professional development on issues related to STEM education, resulting in linguistic and cultural gaps in K-12 STEM pedagogy and practice. To address this issue, we have designed a model of professional development in which we work with educators to build cultural…
Fault Diagnostics and Prognostics for Large Segmented SRMs
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry; Osipov, Viatcheslav V.; Smelyanskiy, Vadim N.; Timucin, Dogan A.; Uckun, Serdar; Hayashida, Ben; Watson, Michael; McMillin, Joshua; Shook, David; Johnson, Mont;
2009-01-01
We report progress in development of the fault diagnostic and prognostic (FD&P) system for large segmented solid rocket motors (SRMs). The model includes the following main components: (i) 1D dynamical model of internal ballistics of SRMs; (ii) surface regression model for the propellant taking into account erosive burning; (iii) model of the propellant geometry; (iv) model of the nozzle ablation; (v) model of a hole burning through in the SRM steel case. The model is verified by comparison of the spatially resolved time traces of the flow parameters obtained in simulations with the results of the simulations obtained using high-fidelity 2D FLUENT model (developed by the third party). To develop FD&P system of a case breach fault for a large segmented rocket we notice [1] that the stationary zero-dimensional approximation for the nozzle stagnation pressure is surprisingly accurate even when stagnation pressure varies significantly in time during burning tail-off. This was also found to be true for the case breach fault [2]. These results allow us to use the FD&P developed in our earlier research [3]-[6] by substituting head stagnation pressure with nozzle stagnation pressure. The axial corrections to the value of the side thrust due to the mass addition are taken into account by solving a system of ODEs in spatial dimension.
Wu, Hua'an; Zeng, Bo; Zhou, Meng
2017-11-15
High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy.
NASA Astrophysics Data System (ADS)
Kline, Jeffrey D.; Moses, Alissa; Burcsu, Theresa
2010-05-01
Forest policymakers, public lands managers, and scientists in the Pacific Northwest (USA) seek ways to evaluate the landscape-level effects of policies and management through the multidisciplinary development and application of spatially explicit methods and models. The Interagency Mapping and Analysis Project (IMAP) is an ongoing effort to generate landscape-wide vegetation data and models to evaluate the integrated effects of disturbances and management activities on natural resource conditions in Oregon and Washington (USA). In this initial analysis, we characterized the spatial distribution of forest and range land development in a four-county pilot study region in central Oregon. The empirical model describes the spatial distribution of buildings and new building construction as a function of population growth, existing development, topography, land-use zoning, and other factors. We used the model to create geographic information system maps of likely future development based on human population projections to inform complementary landscape analyses underway involving vegetation, habitat, and wildfire interactions. In an example application, we use the model and resulting maps to show the potential impacts of future forest and range land development on mule deer ( Odocoileus hemionus) winter range. Results indicate significant development encroachment and habitat loss already in 2000 with development located along key migration routes and increasing through the projection period to 2040. The example application illustrates a simple way for policymakers and public lands managers to combine existing data and preliminary model outputs to begin to consider the potential effects of development on future landscape conditions.
Rahimaghaee, Flora; Nayeri, Nahid Dehghan; Mohammadi, Eesa; Salavati, Shahram
2015-01-01
Background: Professional development is reiterated in the new definition of modern organizations as a serious undertaking of organizations. This article aims to present and describe a prescriptive model to increase the quality of professional development of Iranian nurses within an organization-based framework. Materials and Methods: This article is an outcome of the results of a study based on grounded theory describing how Iranian nurses develop. The present study adopted purposive sampling and the initial participants were experienced clinical nurses. Then, the study continued by theoretical sampling. The present study involved 21 participants. Data were mainly collected through interviews. Analysis began with open coding and continued with axial coding and selective coding. Trustworthiness was ensured by applying Lincoln and Guba criteria such as credibility, dependability, and conformability. Based on the data gathered in the study and a thorough review of related literature, a prescriptive model has been designed by use of the methodology of Walker and Avant (2005). Results: In this model, the first main component is a three-part structure: Reformation to establish a value-assigning structure, a position for human resource management, and a job redesigning. The second component is certain of opportunities for organization-oriented development. These strategies are as follows: Raising the sensitivity of the organization toward development, goal setting and planning the development of human resources, and improving management practices. Conclusions: Through this model, clinical nurses’ professional development can transform the profession from an individual, randomized activity into more planned and systematized services. This model can lead to a better quality of care. PMID:26457100
NASA Technical Reports Server (NTRS)
Epperson, David L.; Davis, Jerry M.; Bloomfield, Peter; Karl, Thomas R.; Mcnab, Alan L.; Gallo, Kevin P.
1995-01-01
Multiple regression techniques were used to predict surface shelter temperatures based on the time period 1986-89 using upper-air data from the European Centre for Medium-Range Weather Forecasts (ECMWF) to represent the background climate and site-specific data to represent the local landscape. Global monthly mean temperature models were developed using data from over 5000 stations available in the Global Historical Climate Network (GHCN). Monthly maximum, mean, and minimum temperature models for the United States were also developed using data from over 1000 stations available in the U.S. Cooperative (COOP) Network and comparative monthly mean temperature models were developed using over 1150 U.S. stations in the GHCN. Three-, six-, and full-variable models were developed for comparative purposes. Inferences about the variables selected for the various models were easier for the GHCN models, which displayed month-to-month consistency in which variables were selected, than for the COOP models, which were assigned a different list of variables for nearly every month. These and other results suggest that global calibration is preferred because data from the global spectrum of physical processes that control surface temperatures are incorporated in a global model. All of the models that were developed in this study validated relatively well, especially the global models. Recalibration of the models with validation data resulted in only slightly poorer regression statistics, indicating that the calibration list of variables was valid. Predictions using data from the validation dataset in the calibrated equation were better for the GHCN models, and the globally calibrated GHCN models generally provided better U.S. predictions than the U.S.-calibrated COOP models. Overall, the GHCN and COOP models explained approximately 64%-95% of the total variance of surface shelter temperatures, depending on the month and the number of model variables. In addition, root-mean-square errors (rmse's) were over 3 C for GHCN models and over 2 C for COOP models for winter months, and near 2 C for GHCN models and near 1.5 C for COOP models for summer months.
NASA Astrophysics Data System (ADS)
Mia, Mozammel; Al Bashir, Mahmood; Dhar, Nikhil Ranjan
2016-10-01
Hard turning is increasingly employed in machining, lately, to replace time-consuming conventional turning followed by grinding process. An excessive amount of tool wear in hard turning is one of the main hurdles to be overcome. Many researchers have developed tool wear model, but most of them developed it for a particular work-tool-environment combination. No aggregate model is developed that can be used to predict the amount of principal flank wear for specific machining time. An empirical model of principal flank wear (VB) has been developed for the different hardness of workpiece (HRC40, HRC48 and HRC56) while turning by coated carbide insert with different configurations (SNMM and SNMG) under both dry and high pressure coolant conditions. Unlike other developed model, this model includes the use of dummy variables along with the base empirical equation to entail the effect of any changes in the input conditions on the response. The base empirical equation for principal flank wear is formulated adopting the Exponential Associate Function using the experimental results. The coefficient of dummy variable reflects the shifting of the response from one set of machining condition to another set of machining condition which is determined by simple linear regression. The independent cutting parameters (speed, rate, depth of cut) are kept constant while formulating and analyzing this model. The developed model is validated with different sets of machining responses in turning hardened medium carbon steel by coated carbide inserts. For any particular set, the model can be used to predict the amount of principal flank wear for specific machining time. Since the predicted results exhibit good resemblance with experimental data and the average percentage error is <10 %, this model can be used to predict the principal flank wear for stated conditions.
Scientific Benefits of Space Science Models Archiving at Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Kuznetsova, Maria M.; Berrios, David; Chulaki, Anna; Hesse, Michael; MacNeice, Peter J.; Maddox, Marlo M.; Pulkkinen, Antti; Rastaetter, Lutz; Taktakishvili, Aleksandre
2009-01-01
The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the-art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. CCMC provides a web-based Run-on-Request system, by which the interested scientist can request simulations for a broad range of space science problems. To allow the models to be driven by data relevant to particular events CCMC developed a tool that automatically downloads data from data archives and transform them to required formats. CCMC also provides a tailored web-based visualization interface for the model output, as well as the capability to download the simulation output in portable format. CCMC offers a variety of visualization and output analysis tools to aid scientists in interpretation of simulation results. During eight years since the Run-on-request system became available the CCMC archived the results of almost 3000 runs that are covering significant space weather events and time intervals of interest identified by the community. The simulation results archived at CCMC also include a library of general purpose runs with modeled conditions that are used for education and research. Archiving results of simulations performed in support of several Modeling Challenges helps to evaluate the progress in space weather modeling over time. We will highlight the scientific benefits of CCMC space science model archive and discuss plans for further development of advanced methods to interact with simulation results.
NASA Astrophysics Data System (ADS)
Bennett, A.; Nijssen, B.; Chegwidden, O.; Wood, A.; Clark, M. P.
2017-12-01
Model intercomparison experiments have been conducted to quantify the variability introduced during the model development process, but have had limited success in identifying the sources of this model variability. The Structure for Unifying Multiple Modeling Alternatives (SUMMA) has been developed as a framework which defines a general set of conservation equations for mass and energy as well as a common core of numerical solvers along with the ability to set options for choosing between different spatial discretizations and flux parameterizations. SUMMA can be thought of as a framework for implementing meta-models which allows for the investigation of the impacts of decisions made during the model development process. Through this flexibility we develop a hierarchy of definitions which allows for models to be compared to one another. This vocabulary allows us to define the notion of weak equivalence between model instantiations. Through this weak equivalence we develop the concept of model mimicry, which can be used to investigate the introduction of uncertainty and error during the modeling process as well as provide a framework for identifying modeling decisions which may complement or negate one another. We instantiate SUMMA instances that mimic the behaviors of the Variable Infiltration Capacity (VIC) model and the Precipitation Runoff Modeling System (PRMS) by choosing modeling decisions which are implemented in each model. We compare runs from these models and their corresponding mimics across the Columbia River Basin located in the Pacific Northwest of the United States and Canada. From these comparisons, we are able to determine the extent to which model implementation has an effect on the results, as well as determine the changes in sensitivity of parameters due to these implementation differences. By examining these changes in results and sensitivities we can attempt to postulate changes in the modeling decisions which may provide better estimation of state variables.
Hyland, Philip; Shevlin, Mark; Adamson, Gary; Boduszek, Daniel
2014-01-01
The Attitudes and Belief Scale-2 (ABS-2: DiGiuseppe, Leaf, Exner, & Robin, 1988. The development of a measure of rational/irrational thinking. Paper presented at the World Congress of Behavior Therapy, Edinburg, Scotland.) is a 72-item self-report measure of evaluative rational and irrational beliefs widely used in Rational Emotive Behavior Therapy research contexts. However, little psychometric evidence exists regarding the measure's underlying factor structure. Furthermore, given the length of the ABS-2 there is a need for an abbreviated version that can be administered when there are time demands on the researcher, such as in clinical settings. This study sought to examine a series of theoretical models hypothesized to represent the latent structure of the ABS-2 within an alternative models framework using traditional confirmatory factor analysis as well as utilizing a bifactor modeling approach. Furthermore, this study also sought to develop a psychometrically sound abbreviated version of the ABS-2. Three hundred and thirteen (N = 313) active emergency service personnel completed the ABS-2. Results indicated that for each model, the application of bifactor modeling procedures improved model fit statistics, and a novel eight-factor intercorrelated solution was identified as the best fitting model of the ABS-2. However, the observed fit indices failed to satisfy commonly accepted standards. A 24-item abbreviated version was thus constructed and an intercorrelated eight-factor solution yielded satisfactory model fit statistics. Current results support the use of a bifactor modeling approach to determining the factor structure of the ABS-2. Furthermore, results provide empirical support for the psychometric properties of the newly developed abbreviated version.
Xu, Lifeng; Henke, Michael; Zhu, Jun; Kurth, Winfried; Buck-Sorlin, Gerhard
2011-01-01
Background and Aims Although quantitative trait loci (QTL) analysis of yield-related traits for rice has developed rapidly, crop models using genotype information have been proposed only relatively recently. As a first step towards a generic genotype–phenotype model, we present here a three-dimensional functional–structural plant model (FSPM) of rice, in which some model parameters are controlled by functions describing the effect of main-effect and epistatic QTLs. Methods The model simulates the growth and development of rice based on selected ecophysiological processes, such as photosynthesis (source process) and organ formation, growth and extension (sink processes). It was devised using GroIMP, an interactive modelling platform based on the Relational Growth Grammar formalism (RGG). RGG rules describe the course of organ initiation and extension resulting in final morphology. The link between the phenotype (as represented by the simulated rice plant) and the QTL genotype was implemented via a data interface between the rice FSPM and the QTLNetwork software, which computes predictions of QTLs from map data and measured trait data. Key Results Using plant height and grain yield, it is shown how QTL information for a given trait can be used in an FSPM, computing and visualizing the phenotypes of different lines of a mapping population. Furthermore, we demonstrate how modification of a particular trait feeds back on the entire plant phenotype via the physiological processes considered. Conclusions We linked a rice FSPM to a quantitative genetic model, thereby employing QTL information to refine model parameters and visualizing the dynamics of development of the entire phenotype as a result of ecophysiological processes, including the trait(s) for which genetic information is available. Possibilities for further extension of the model, for example for the purposes of ideotype breeding, are discussed. PMID:21247905
In Praise of a Model but Not Its Conclusions: Commentary on Cooper, Catmur, and Heyes (2012)
ERIC Educational Resources Information Center
Bertenthal, Bennett I.; Scheutz, Matthias
2013-01-01
Cooper et al. (this issue) develop an interactive activation model of spatial and imitative compatibilities that simulates the key results from Catmur and Heyes (2011) and thus conclude that both compatibilities are mediated by the same processes since their single model can predict all the results. Although the model is impressive, the…
Government Investment and Follow-on Private Sector Investment in Pakistan, 1972-1995
1997-06-01
private sector investment has long been suggested. Until recently, an appropriate model to test for the relationship in developing countries has been absent. In 1984, Blejer and Khan developed and estimated a model for 24 developing countries between 1971 and 1979. They found that higher rates of investment took place when the private sector took a large role in capital formation. This paper estimates a similar model for one developing country, Pakistan, for the period 1972 to 1995. Our results are broadly similar to those obtained by Blejer and Khan
Global dynamic modeling of a transmission system
NASA Technical Reports Server (NTRS)
Choy, F. K.; Qian, W.
1993-01-01
The work performed on global dynamic simulation and noise correlation of gear transmission systems at the University of Akron is outlined. The objective is to develop a comprehensive procedure to simulate the dynamics of the gear transmission system coupled with the effects of gear box vibrations. The developed numerical model is benchmarked with results from experimental tests at NASA Lewis Research Center. The modal synthesis approach is used to develop the global transient vibration analysis procedure used in the model. Modal dynamic characteristics of the rotor-gear-bearing system are calculated by the matrix transfer method while those of the gear box are evaluated by the finite element method (NASTRAN). A three-dimensional, axial-lateral coupled bearing model is used to couple the rotor vibrations with the gear box motion. The vibrations between the individual rotor systems are coupled through the nonlinear gear mesh interactions. The global equations of motion are solved in modal coordinates and the transient vibration of the system is evaluated by a variable time-stepping integration scheme. The relationship between housing vibration and resulting noise of the gear transmission system is generated by linear transfer functions using experimental data. A nonlinear relationship of the noise components to the fundamental mesh frequency is developed using the hypercoherence function. The numerically simulated vibrations and predicted noise of the gear transmission system are compared with the experimental results from the gear noise test rig at NASA Lewis Research Center. Results of the comparison indicate that the global dynamic model developed can accurately simulate the dynamics of a gear transmission system.
Development of a Fuel Spill/Vapor Migration Modeling System.
1985-12-01
transforms resulting in a direct solution of the differential equation. A second order finite * difference approximation to the Poisson equation A2*j is...7 O-A64 043 DEVELOPMENT OF A FUEL SPILL/VPOR MIGRATION MODELING 1/2 SYSTEM(U) TRACER TECHNOLOGIES ESCONDIDO Cflo IL 0 ENGLAND ET AL. DEC 85 RFURL...AFWAL-TR-85-2089 DEVELOPMENT OF A FUEL SPILL/VAPOR MIGRATION MODELING SYSTEM W.G. England * L.H. Teuscher TRACER TECHNOLOGIES DTIC *2120 WEST MISSION
NASA Standard for Models and Simulations: Philosophy and Requirements Overview
NASA Technical Reports Server (NTRS)
Blattnig, Steve R.; Luckring, James M.; Morrison, Joseph H.; Sylvester, Andre J.; Tripathi, Ram K.; Zang, Thomas A.
2013-01-01
Following the Columbia Accident Investigation Board report, the NASA Administrator chartered an executive team (known as the Diaz Team) to identify those CAIB report elements with NASA-wide applicability and to develop corrective measures to address each element. One such measure was the development of a standard for the development, documentation, and operation of models and simulations. This report describes the philosophy and requirements overview of the resulting NASA Standard for Models and Simulations.
NASA Standard for Models and Simulations: Philosophy and Requirements Overview
NASA Technical Reports Server (NTRS)
Blattnig, St3eve R.; Luckring, James M.; Morrison, Joseph H.; Sylvester, Andre J.; Tripathi, Ram K.; Zang, Thomas A.
2009-01-01
Following the Columbia Accident Investigation Board report, the NASA Administrator chartered an executive team (known as the Diaz Team) to identify those CAIB report elements with NASA-wide applicability and to develop corrective measures to address each element. One such measure was the development of a standard for the development, documentation, and operation of models and simulations. This report describes the philosophy and requirements overview of the resulting NASA Standard for Models and Simulations.
Algebraic Turbulence-Chemistry Interaction Model
NASA Technical Reports Server (NTRS)
Norris, Andrew T.
2012-01-01
The results of a series of Perfectly Stirred Reactor (PSR) and Partially Stirred Reactor (PaSR) simulations are compared to each other over a wide range of operating conditions. It is found that the PaSR results can be simulated by a PSR solution with just an adjusted chemical reaction rate. A simple expression has been developed that gives the required change in reaction rate for a PSR solution to simulate the PaSR results. This expression is the basis of a simple turbulence-chemistry interaction model. The interaction model that has been developed is intended for use with simple one-step global reaction mechanisms and for steady-state flow simulations. Due to the simplicity of the model there is very little additional computational cost in adding it to existing CFD codes.
How do horizontal, frictional discontinuities affect reverse fault-propagation folding?
NASA Astrophysics Data System (ADS)
Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio
2017-09-01
The development of new reverse faults and related folds is strongly controlled by the mechanical characteristics of the host rocks. In this study we analyze the impact of a specific kind of anisotropy, i.e. thin mechanical and frictional discontinuities, in affecting the development of reverse faults and of the associated folds using physical scaled models. We perform analog modeling introducing one or two initially horizontal, thin discontinuities above an initially blind fault dipping at 30° in one case, and 45° in another, and then compare the results with those obtained from a fully isotropic model. The experimental results show that the occurrence of thin discontinuities affects both the development and the propagation of new faults and the shape of the associated folds. New faults 1) accelerate or decelerate their propagation depending on the location of the tips with respect to the discontinuities, 2) cross the discontinuities at a characteristic angle (∼90°), and 3) produce folds with different shapes, resulting not only from the dip of the new faults but also from their non-linear propagation history. Our results may have direct impact on future kinematic models, especially those aimed to reconstruct the tectonic history of faults that developed in layered rocks or in regions affected by pre-existing faults.
Standardisation of digital human models.
Paul, Gunther; Wischniewski, Sascha
2012-01-01
Digital human models (DHM) have evolved as useful tools for ergonomic workplace design and product development, and found in various industries and education. DHM systems which dominate the market were developed for specific purposes and differ significantly, which is not only reflected in non-compatible results of DHM simulations, but also provoking misunderstanding of how DHM simulations relate to real world problems. While DHM developers are restricted by uncertainty about the user need and lack of model data related standards, users are confined to one specific product and cannot exchange results, or upgrade to another DHM system, as their previous results would be rendered worthless. Furthermore, origin and validity of anthropometric and biomechanical data is not transparent to the user. The lack of standardisation in DHM systems has become a major roadblock in further system development, affecting all stakeholders in the DHM industry. Evidently, a framework for standardising digital human models is necessary to overcome current obstructions. Practitioner Summary: This short communication addresses a standardisation issue for digital human models, which has been addressed at the International Ergonomics Association Technical Committee for Human Simulation and Virtual Environments. It is the outcome of a workshop at the DHM 2011 symposium in Lyon, which concluded steps towards DHM standardisation that need to be taken.
Progress in the Development of a Global Quasi-3-D Multiscale Modeling Framework
NASA Astrophysics Data System (ADS)
Jung, J.; Konor, C. S.; Randall, D. A.
2017-12-01
The Quasi-3-D Multiscale Modeling Framework (Q3D MMF) is a second-generation MMF, which has following advances over the first-generation MMF: 1) The cloud-resolving models (CRMs) that replace conventional parameterizations are not confined to the large-scale dynamical-core grid cells, and are seamlessly connected to each other, 2) The CRMs sense the three-dimensional large- and cloud-scale environment, 3) Two perpendicular sets of CRM channels are used, and 4) The CRMs can resolve the steep surface topography along the channel direction. The basic design of the Q3D MMF has been developed and successfully tested in a limited-area modeling framework. Currently, global versions of the Q3D MMF are being developed for both weather and climate applications. The dynamical cores governing the large-scale circulation in the global Q3D MMF are selected from two cube-based global atmospheric models. The CRM used in the model is the 3-D nonhydrostatic anelastic Vector-Vorticity Model (VVM), which has been tested with the limited-area version for its suitability for this framework. As a first step of the development, the VVM has been reconstructed on the cubed-sphere grid so that it can be applied to global channel domains and also easily fitted to the large-scale dynamical cores. We have successfully tested the new VVM by advecting a bell-shaped passive tracer and simulating the evolutions of waves resulted from idealized barotropic and baroclinic instabilities. For improvement of the model, we also modified the tracer advection scheme to yield positive-definite results and plan to implement a new physics package that includes a double-moment microphysics and an aerosol physics. The interface for coupling the large-scale dynamical core and the VVM is under development. In this presentation, we shall describe the recent progress in the development and show some test results.
Crack propagation and arrest in CFRP materials with strain softening regions
NASA Astrophysics Data System (ADS)
Dilligan, Matthew Anthony
Understanding the growth and arrest of cracks in composite materials is critical for their effective utilization in fatigue-sensitive and damage susceptible applications such as primary aircraft structures. Local tailoring of the laminate stack to provide crack arrest capacity intermediate to major structural components has been investigated and demonstrated since some of the earliest efforts in composite aerostructural design, but to date no rigorous model of the crack arrest mechanism has been developed to allow effective sizing of these features. To address this shortcoming, the previous work in the field is reviewed, with particular attention to the analysis methodologies proposed for similar arrest features. The damage and arrest processes active in such features are investigated, and various models of these processes are discussed and evaluated. Governing equations are derived based on a proposed mechanistic model of the crack arrest process. The derived governing equations are implemented in a numerical model, and a series of simulations are performed to ascertain the general characteristics of the proposed model and allow qualitative comparison to existing experimental results. The sensitivity of the model and the arrest process to various parameters is investigated, and preliminary conclusions regarding the optimal feature configuration are developed. To address deficiencies in the available material and experimental data, a series of coupon tests are developed and conducted covering a range of arrest zone configurations. Test results are discussed and analyzed, with a particular focus on identification of the proposed failure and arrest mechanisms. Utilizing the experimentally derived material properties, the tests are reproduced with both the developed numerical tool as well as a FEA-based implementation of the arrest model. Correlation between the simulated and experimental results is analyzed, and future avenues of investigation are identified. Utilizing the developed model, a sensitivity study is conducted to assess the current proposed arrest configuration. Optimum distribution and sizing of the arrest zones is investigated, and general design guidelines are developed.
ERIC Educational Resources Information Center
Sodiq, Syamsul
2015-01-01
This research is aimed at developing an Indonesian course-books integrated with the materials for life skill education (LSE). It can support effective learning through literacy models and results qualified book on Indonesian language learning. By applying Fenrich's method on development model (1997) include five phases of analysis, planning,…
Faculty Perspectives on Baldwin and Chang's Mid-Career Faculty Development Model
ERIC Educational Resources Information Center
Pastore, Donna L.
2013-01-01
The purpose of this study was to determine the merit and applicability of the mid-career faculty development model proposed by Baldwin and Chang (2006). A total of 7 associate and 10 full professors participated in semi-structured interviews. Categories were developed from an inductive analysis. The results showed positive support for the model…
ERIC Educational Resources Information Center
Nasser, Ilham; Kidd, Julie K.; Burns, M. Susan; Campbell, Trina
2015-01-01
This study investigates early childhood education teachers' and assistant teachers' views about a year-long professional development model that focuses on developing intentional teaching. The study shares the results of interviews conducted with the teachers at the end of the implementation of a one-year experimental professional model in Head…
Development of a feed-forward controller for a tracking telescope
NASA Astrophysics Data System (ADS)
Allen, John S.; Stufflebeam, Joseph L.; Feller, Dan
2004-07-01
This paper develops a State Space model of a feed-forward control system in the frequency domain, and time domain. The results of the mathematical model are implemented and the responses of the Elevation and Azimuth servo controller in a tracking telescope called a Cine-Sextant developed for the Utah Test and Training Range.
Putti, Fernando Ferrari; Filho, Luis Roberto Almeida Gabriel; Gabriel, Camila Pires Cremasco; Neto, Alfredo Bonini; Bonini, Carolina Dos Santos Batista; Rodrigues Dos Reis, André
2017-06-01
This study aimed to develop a fuzzy mathematical model to estimate the impacts of global warming on the vitality of Laelia purpurata growing in different Brazilian environmental conditions. In order to develop the mathematical model was considered as intrinsic factors the parameters: temperature, humidity and shade conditions to determine the vitality of plants. Fuzzy model results could accurately predict the optimal conditions for cultivation of Laelia purpurata in several sites of Brazil. Based on fuzzy model results, we found that higher temperatures and lacking of properly shading can reduce the vitality of orchids. Fuzzy mathematical model could precisely detect the effect of higher temperatures causing damages on vitality of plants as a consequence of global warming. Copyright © 2017 Elsevier Inc. All rights reserved.
Reusable Component Model Development Approach for Parallel and Distributed Simulation
Zhu, Feng; Yao, Yiping; Chen, Huilong; Yao, Feng
2014-01-01
Model reuse is a key issue to be resolved in parallel and distributed simulation at present. However, component models built by different domain experts usually have diversiform interfaces, couple tightly, and bind with simulation platforms closely. As a result, they are difficult to be reused across different simulation platforms and applications. To address the problem, this paper first proposed a reusable component model framework. Based on this framework, then our reusable model development approach is elaborated, which contains two phases: (1) domain experts create simulation computational modules observing three principles to achieve their independence; (2) model developer encapsulates these simulation computational modules with six standard service interfaces to improve their reusability. The case study of a radar model indicates that the model developed using our approach has good reusability and it is easy to be used in different simulation platforms and applications. PMID:24729751
Comparison of CdZnTe neutron detector models using MCNP6 and Geant4
NASA Astrophysics Data System (ADS)
Wilson, Emma; Anderson, Mike; Prendergasty, David; Cheneler, David
2018-01-01
The production of accurate detector models is of high importance in the development and use of detectors. Initially, MCNP and Geant were developed to specialise in neutral particle models and accelerator models, respectively; there is now a greater overlap of the capabilities of both, and it is therefore useful to produce comparative models to evaluate detector characteristics. In a collaboration between Lancaster University, UK, and Innovative Physics Ltd., UK, models have been developed in both MCNP6 and Geant4 of Cadmium Zinc Telluride (CdZnTe) detectors developed by Innovative Physics Ltd. Herein, a comparison is made of the relative strengths of MCNP6 and Geant4 for modelling neutron flux and secondary γ-ray emission. Given the increasing overlap of the modelling capabilities of MCNP6 and Geant4, it is worthwhile to comment on differences in results for simulations which have similarities in terms of geometries and source configurations.
Results from a workshop on research needs for modeling aquifer thermal energy storage systems
NASA Astrophysics Data System (ADS)
Drost, M. K.
1990-08-01
A workshop an aquifer thermal energy storage (ATES) system modeling was conducted by Pacific Northwest Laboratory (PNL). The goal of the workshop was to develop a list of high priority research activities that would facilitate the commercial success of ATES. During the workshop, participants reviewed currently available modeling tools for ATES systems and produced a list of significant issues related to modeling ATES systems. Participants assigned a priority to each issue on the list by voting and developed a list of research needs for each of four high-priority research areas; the need for a feasibility study model, the need for engineering design models, the need for aquifer characterization, and the need for an economic model. The workshop participants concluded that ATES commercialization can be accelerated by aggressive development of ATES modeling tools and made specific recommendations for that development.
Development of a model to assess environmental performance, concerning HSE-MS principles.
Abbaspour, M; Hosseinzadeh Lotfi, F; Karbassi, A R; Roayaei, E; Nikoomaram, H
2010-06-01
The main objective of the present study was to develop a valid and appropriate model to evaluate companies' efficiency and environmental performance, concerning health, safety, and environmental management system principles. The proposed model overcomes the shortcomings of the previous models developed in this area. This model has been designed on the basis of a mathematical method known as Data Envelopment Analysis (DEA). In order to differentiate high-performing companies from weak ones, one of DEA nonradial models named as enhanced Russell graph efficiency measure has been applied. Since some of the environmental performance indicators cannot be controlled by companies' managers, it was necessary to develop the model in a way that it could be applied when discretionary and/or nondiscretionary factors were involved. The model, then, has been modified on a real case that comprised 12 oil and gas general contractors. The results showed the relative efficiency, inefficiency sources, and the rank of contractors.
Development of CCHE2D embankment break model
USDA-ARS?s Scientific Manuscript database
Earthen embankment breach often results in detrimental impact on downstream residents and infrastructure, especially those located in the flooding zone. Embankment failures are most commonly caused by overtopping or internal erosion. This study is to develop a practical numerical model for simulat...
Predictive Software Cost Model Study. Volume I. Final Technical Report.
1980-06-01
development phase to identify computer resources necessary to support computer programs after transfer of program manangement responsibility and system... classical model development with refinements specifically applicable to avionics systems. The refinements are the result of the Phase I literature search
NASA Astrophysics Data System (ADS)
Wray, Richard B.
1991-12-01
A hybrid requirements analysis methodology was developed, based on the practices actually used in developing a Space Generic Open Avionics Architecture. During the development of this avionics architecture, a method of analysis able to effectively define the requirements for this space avionics architecture was developed. In this methodology, external interfaces and relationships are defined, a static analysis resulting in a static avionics model was developed, operating concepts for simulating the requirements were put together, and a dynamic analysis of the execution needs for the dynamic model operation was planned. The systems engineering approach was used to perform a top down modified structured analysis of a generic space avionics system and to convert actual program results into generic requirements. CASE tools were used to model the analyzed system and automatically generate specifications describing the model's requirements. Lessons learned in the use of CASE tools, the architecture, and the design of the Space Generic Avionics model were established, and a methodology notebook was prepared for NASA. The weaknesses of standard real-time methodologies for practicing systems engineering, such as Structured Analysis and Object Oriented Analysis, were identified.
NASA Technical Reports Server (NTRS)
Wray, Richard B.
1991-01-01
A hybrid requirements analysis methodology was developed, based on the practices actually used in developing a Space Generic Open Avionics Architecture. During the development of this avionics architecture, a method of analysis able to effectively define the requirements for this space avionics architecture was developed. In this methodology, external interfaces and relationships are defined, a static analysis resulting in a static avionics model was developed, operating concepts for simulating the requirements were put together, and a dynamic analysis of the execution needs for the dynamic model operation was planned. The systems engineering approach was used to perform a top down modified structured analysis of a generic space avionics system and to convert actual program results into generic requirements. CASE tools were used to model the analyzed system and automatically generate specifications describing the model's requirements. Lessons learned in the use of CASE tools, the architecture, and the design of the Space Generic Avionics model were established, and a methodology notebook was prepared for NASA. The weaknesses of standard real-time methodologies for practicing systems engineering, such as Structured Analysis and Object Oriented Analysis, were identified.
Reilly, Thomas E.; Harbaugh, Arlen W.
1980-01-01
A three-dimensional electric-analog model of the Long Island, NY , groundwater system constructed by the U.S. Geological Survey in the early 1970 's was used as the basis for developing a digital, three-dimensional finite-difference model. The digital model was needed to provide faster modifications and more rapid solutions to water-management questions. Results generated by the two models are depicted as potentiometric-surface maps of the upper glacial and Magothy aquifers. Results compare favorably for all parts of Long Island except the northwestern part, where hydrologic discontinuities are most prevalent and which the two models represent somewhat differently. The mathematical and hydrologic principles used in development of ground-water models, and the procedures for calibration and acceptance, are presented in nontechnical terms. (USGS)
Mathematic model of regional economy development by the final result of labor resources
NASA Astrophysics Data System (ADS)
Zaitseva, Irina; Malafeev, Oleg; Strekopytov, Sergei; Bondarenko, Galina; Lovyannikov, Denis
2018-04-01
This article presents the mathematic model of regional economy development based on the result of labor resources. The solution of a region development-planning problem is considered for the period of long-lasting planning taking into account the beginning and the end of the planned period. The challenge is to find the distribution of investments in the main and additional branches of the regional economy, which will provide simultaneous transaction of all major sectors of the regional economy from the given condition to the predetermined final state.
Chen, J D; Sun, H L
1999-04-01
Objective. To assess and predict reliability of an equipment dynamically by making full use of various test informations in the development of products. Method. A new reliability growth assessment method based on army material system analysis activity (AMSAA) model was developed. The method is composed of the AMSAA model and test data conversion technology. Result. The assessment and prediction results of a space-borne equipment conform to its expectations. Conclusion. It is suggested that this method should be further researched and popularized.
Assessing the IRIS Professional Development Model: Impact Beyond the Workshops
NASA Astrophysics Data System (ADS)
Hubenthal, M.; Braile, L. W.; Taber, J. J.
2003-12-01
The IRIS Education and Outreach (E&O) Program has developed a highly effective, one-day professional development experience for formal educators. Leveraging the expertise of its consortium, IRIS delivers content including: plate tectonics, propagation of seismic waves, seismographs, Earth's interior structure. At the core of the IRIS professional development model is the philosophy that changes in teacher behavior can be affected by increasing teacher comfort in the classroom. Science and research organizations such as IRIS are able to increase teachers' comfort in the classroom by providing professional development which: increases an educator's knowledge of scientific content, provides educators with a variety of high-quality, scientifically accurate activities to deliver content to students, and provides educators with experiences involving both the content and the educational activities as the primary means of knowledge transfer. As reflected in a 2002-2003 academic year assessment program, this model has proven to be effective at reaching beyond participants and extending into the educators' classrooms. 76% of respondents report increasing the amount of time they spend teaching seismology or related topics in their classroom as a result of participating in IRIS professional development experience. This increase can be directly attributed to the workshop as 90% of participants report using at least one activity modeled during the workshop upon returning to their classrooms. The reported mean activity usage by teachers upon was 4.5 activities per teacher. Since the inception of the professional development model in 1999, IRIS E&O has been committed to evaluation. Data derived from assessment is utilized as a key decision making tool, driving a continuous improvement process. As a result, both the model and the assessment methods have become increasingly refined and sophisticated. The alignment of the professional development model within the IRIS E&O Program framework has resulted in a clarified a definition of success and an increased demand for the collection of new data. Currently, the assessment program is testing tools to examine participant learning, measure the transfer of knowledge and resources from professional development into in classrooms, and measure the use of individual activities.
A Canopy Architectural Model to Study the Competitive Ability of Chickpea with Sowthistle
Cici, S-Zahra-Hosseini; Adkins, Steve; Hanan, Jim
2008-01-01
Background and Aims Improving the competitive ability of crops is a sustainable method of weed management. This paper shows how a virtual plant model of competition between chickpea (Cicer arietinum) and sowthistle (Sonchus oleraceus) can be used as a framework for discovering and/or developing more competitive chickpea cultivars. Methods The virtual plant models were developed using the L-systems formalism, parameterized according to measurements taken on plants at intervals during their development. A quasi-Monte Carlo light-environment model was used to model the effect of chickpea canopy on the development of sowthistle. The chickpea–light environment–sowthistle model (CLES model) captured the hypothesis that the architecture of chickpea plants modifies the light environment inside the canopy and determines sowthistle growth and development pattern. The resulting CLES model was parameterized for different chickpea cultivars (viz. ‘Macarena’, ‘Bumper’, ‘Jimbour’ and ‘99071-1001’) to compare their competitive ability with sowthistle. To validate the CLES model, an experiment was conducted using the same four chickpea cultivars as different treatments with a sowthistle growing under their canopy. Results and Conclusions The growth of sowthistle, both in silico and in glasshouse experiments, was reduced most by ‘99071-1001’, a cultivar with a short phyllochron. The second rank of competitive ability belonged to ‘Macarena’ and ‘Bumper’, while ‘Jimbour’ was the least competitive cultivar. The architecture of virtual chickpea plants modified the light inside the canopy, which influenced the growth and development of the sowthistle plants in response to different cultivars. This is the first time that a virtual plant model of a crop–weed interaction has been developed. This virtual plant model can serve as a platform for a broad range of applications in the study of chickpea–weed interactions and their environment. PMID:18375962
Engine System Model Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Nelson, Karl W.; Simpson, Steven P.
2006-01-01
In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.
Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Degroh, Kim K.; Sechkar, Edward A.
1992-01-01
Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) will assist in understanding the mechanisms involved, and will lead to improved reliability in predicting in-space durability of materials based on ground laboratory testing. A computational simulation of atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of assumed mechanistic behavior of atomic oxygen and results of both ground laboratory and LDEF data, a predictive Monte Carlo model was developed which simulates the oxidation processes that occur on polymers with applied protective coatings that have defects. The use of high atomic oxygen fluence-directed ram LDEF results has enabled mechanistic implications to be made by adjusting Monte Carlo modeling assumptions to match observed results based on scanning electron microscopy. Modeling assumptions, implications, and predictions are presented, along with comparison of observed ground laboratory and LDEF results.
Cryogenic Fluid Storage Technology Development: Recent and Planned Efforts at NASA
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
2009-01-01
Recent technology development work conducted at NASA in the area of Cryogenic Fluid Management (CFM) storage is highlighted, including summary results, key impacts, and ongoing efforts. Thermodynamic vent system (TVS) ground test results are shown for hydrogen, methane, and oxygen. Joule-Thomson (J-T) device tests related to clogging in hydrogen are summarized, along with the absence of clogging in oxygen and methane tests. Confirmation of analytical relations and bonding techniques for broad area cooling (BAC) concepts based on tube-to-tank tests are presented. Results of two-phase lumped-parameter computational fluid dynamic (CFD) models are highlighted, including validation of the model with hydrogen self pressurization test data. These models were used to simulate Altair representative methane and oxygen tanks subjected to 210 days of lunar surface storage. Engineering analysis tools being developed to support system level trades and vehicle propulsion system designs are also cited. Finally, prioritized technology development risks identified for Constellation cryogenic propulsion systems are presented, and future efforts to address those risks are discussed.
Testing and numerical modeling of hypervelocity impact damaged Space Station multilayer insulation
NASA Technical Reports Server (NTRS)
Rule, William K.
1992-01-01
Results are presented of experiments measuring the degradation of the insulating capabilities of the multilayer insulation (MLI) of the Space Station Freedom, when subjected to hypervelocity impact damage. A simple numerical model was developed for use in an engineering design environment for quick assessment of thermal effect of the impact. The model was validated using results from thermal vacuum tests on MLI with simulated damage. The numerical model results agreed with experimental data.
NASA Technical Reports Server (NTRS)
Bardino, J.; Ferziger, J. H.; Reynolds, W. C.
1983-01-01
The physical bases of large eddy simulation and subgrid modeling are studied. A subgrid scale similarity model is developed that can account for system rotation. Large eddy simulations of homogeneous shear flows with system rotation were carried out. Apparently contradictory experimental results were explained. The main effect of rotation is to increase the transverse length scales in the rotation direction, and thereby decrease the rates of dissipation. Experimental results are shown to be affected by conditions at the turbulence producing grid, which make the initial states a function of the rotation rate. A two equation model is proposed that accounts for effects of rotation and shows good agreement with experimental results. In addition, a Reynolds stress model is developed that represents the turbulence structure of homogeneous shear flows very well and can account also for the effects of system rotation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.
ITN Energy Systems, Inc., and Global Solar Energy, Inc., with the assistance of NREL's PV Manufacturing R&D program, have continued the advancement of CIGS production technology through the development of trajectory-oriented predictive/control models, fault-tolerance control, control-platform development, in-situ sensors, and process improvements. Modeling activities to date include the development of physics-based and empirical models for CIGS and sputter-deposition processing, implementation of model-based control, and application of predictive models to the construction of new evaporation sources and for control. Model-based control is enabled through implementation of reduced or empirical models into a control platform. Reliability improvement activities include implementation of preventivemore » maintenance schedules; detection of failed sensors/equipment and reconfiguration to continue processing; and systematic development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which, in turn, have been enabled by control and reliability improvements due to this PV Manufacturing R&D program. This has resulted in substantial improvements of flexible CIGS PV module performance and efficiency.« less
NASA Astrophysics Data System (ADS)
Vimal, S.; Tarboton, D. G.; Band, L. E.; Duncan, J. M.; Lovette, J. P.; Corzo, G.; Miles, B.
2015-12-01
Prioritizing river restoration requires information on river geometry. In many states in the US detailed river geometry has been collected for floodplain mapping and is available in Flood Risk Information Systems (FRIS). In particular, North Carolina has, for its 100 Counties, developed a database of numerous HEC-RAS models which are available through its Flood Risk Information System (FRIS). These models that include over 260 variables were developed and updated by numerous contractors. They contain detailed surveyed or LiDAR derived cross-sections and modeled flood extents for different extreme event return periods. In this work, over 4700 HEC-RAS models' data was integrated and upscaled to utilize detailed cross-section information and 100-year modelled flood extent information to enable river restoration prioritization for the entire state of North Carolina. We developed procedures to extract geomorphic properties such as entrenchment ratio, incision ratio, etc. from these models. Entrenchment ratio quantifies the vertical containment of rivers and thereby their vulnerability to flooding and incision ratio quantifies the depth per unit width. A map of entrenchment ratio for the whole state was derived by linking these model results to a geodatabase. A ranking of highly entrenched counties enabling prioritization for flood allowance and mitigation was obtained. The results were shared through HydroShare and web maps developed for their visualization using Google Maps Engine API.
2009-01-01
Background Feed composition has a large impact on the growth of animals, particularly marine fish. We have developed a quantitative dynamic model that can predict the growth and body composition of marine fish for a given feed composition over a timespan of several months. The model takes into consideration the effects of environmental factors, particularly temperature, on growth, and it incorporates detailed kinetics describing the main metabolic processes (protein, lipid, and central metabolism) known to play major roles in growth and body composition. Results For validation, we compared our model's predictions with the results of several experimental studies. We showed that the model gives reliable predictions of growth, nutrient utilization (including amino acid retention), and body composition over a timespan of several months, longer than most of the previously developed predictive models. Conclusion We demonstrate that, despite the difficulties involved, multiscale models in biology can yield reasonable and useful results. The model predictions are reliable over several timescales and in the presence of strong temperature fluctuations, which are crucial factors for modeling marine organism growth. The model provides important improvements over existing models. PMID:19903354
Owamah, H I; Izinyon, O C
2015-10-01
Biogas kinetic models are often used to characterize substrate degradation and prediction of biogas production potential. Most of these existing models are however difficult to apply to substrates they were not developed for since their applications are usually substrate specific. Biodegradability kinetic (BIK) model and maximum biogas production potential and stability assessment (MBPPSA) model were therefore developed in this study for better understanding of the anaerobic co-digestion of food waste and maize husk for biogas production. Biodegradability constant (k) was estimated as 0.11 d(-1) using the BIK model. The results of maximum biogas production potential (A) obtained using the MBPPSA model were found to be in good correspondence, both in value and trend with the results obtained using the popular but complex modified Gompertz model for digesters B-1, B-2, B-3, B-4, and B-5. The (If) value of MBPPSA model also showed that digesters B-3, B-4, and B-5 were stable, while B-1 and B-2 were inhibited/unstable. Similar stability observation was also obtained using the modified Gompertz model. The MBPPSA model can therefore be used as an alternative model for anaerobic digestion feasibility studies and plant design. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fedyushin, B. T.
1992-01-01
The concepts developed earlier are used to propose a simple analytic model describing the spatial-temporal distribution of a mechanical load (pressure, impulse) resulting from interaction of laser radiation with a planar barrier surrounded by air. The correctness of the model is supported by a comparison with experimental results.
Modeling of magnetorheological fluid in quasi-static squeeze flow mode
NASA Astrophysics Data System (ADS)
Horak, Wojciech
2018-06-01
This work presents a new nonlinear model to describe MR fluid behavior in the squeeze flow mode. The basis for deriving the model were the principles of continuum mechanics and the theory of tensor transformation. The analyzed case concerned quasi-static squeeze with a constant area, between two parallel plates with non-slip boundary conditions. The developed model takes into account the rheological properties or MR fluids as a viscoplastic material for which yield stress increases due to compression. The model also takes into account the formation of normal force in the MR fluid as a result of the magnetic field impact. Moreover, a new parameter has been introduced which characterizes the behavior of MR fluid subjected to compression. The proposed model has been experimentally validated and the obtained results suggest that the assumptions made in the model development are reasonable, as good model compatibility with the experiments was obtained.
Evaluation model of wind energy resources and utilization efficiency of wind farm
NASA Astrophysics Data System (ADS)
Ma, Jie
2018-04-01
Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.
Development of single cell lithium ion battery model using Scilab/Xcos
NASA Astrophysics Data System (ADS)
Arianto, Sigit; Yunaningsih, Rietje Y.; Astuti, Edi Tri; Hafiz, Samsul
2016-02-01
In this research, a lithium battery model, as a component in a simulation environment, was developed and implemented using Scicos/Xcos graphical language programming. Scicos used in this research was actually Xcos that is a variant of Scicos which is embedded in Scilab. The equivalent circuit model used in modeling the battery was Double Polarization (DP) model. DP model consists of one open circuit voltage (VOC), one internal resistance (Ri), and two parallel RC circuits. The parameters of the battery were extracted using Hybrid Power Pulse Characterization (HPPC) testing. In this experiment, the Double Polarization (DP) electrical circuit model was used to describe the lithium battery dynamic behavior. The results of simulation of the model were validated with the experimental results. Using simple error analysis, it was found out that the biggest error was 0.275 Volt. It was occurred mostly at the low end of the state of charge (SOC).
Desktop Modeling and Simulation: Parsimonious, yet Effective Discrete-Event Simulation Analysis
NASA Technical Reports Server (NTRS)
Bradley, James R.
2012-01-01
This paper evaluates how quickly students can be trained to construct useful discrete-event simulation models using Excel The typical supply chain used by many large national retailers is described, and an Excel-based simulation model is constructed of it The set of programming and simulation skills required for development of that model are then determined we conclude that six hours of training are required to teach the skills to MBA students . The simulation presented here contains all fundamental functionallty of a simulation model, and so our result holds for any discrete-event simulation model. We argue therefore that Industry workers with the same technical skill set as students having completed one year in an MBA program can be quickly trained to construct simulation models. This result gives credence to the efficacy of Desktop Modeling and Simulation whereby simulation analyses can be quickly developed, run, and analyzed with widely available software, namely Excel.
NASA Technical Reports Server (NTRS)
Menrad, Robert J.; Larson, Wiley J.
2008-01-01
This paper shares the findings of NASA's Integrated Learning and Development Program (ILDP) in its effort to reinvigorate the HANDS-ON practice of space systems engineering and project/program management through focused coursework, training opportunities, on-the job learning and special assignments. Prior to March 2005, NASA responsibility for technical workforce development (the program/project manager, systems engineering, discipline engineering, discipline engineering and associated communities) was executed by two parallel organizations. In March 2005 these organizations merged. The resulting program-ILDP-was chartered to implement an integrated competency-based development model capable of enhancing NASA's technical workforce performance as they face the complex challenges of Earth science, space science, aeronautics and human spaceflight missions. Results developed in collaboration with NASA Field Centers are reported on. This work led to definition of the agency's first integrated technical workforce development model known as the Requisite Occupation Competence and Knowledge (the ROCK). Critical processes and products are presented including: 'validation' techniques to guide model development, the Design-A-CUrriculuM (DACUM) process, and creation of the agency's first systems engineering body-of-knowledge. Findings were validated via nine focus groups from industry and government, validated with over 17 space-related organizations, at an estimated cost exceeding $300,000 (US). Masters-level programs and training programs have evolved to address the needs of these practitioner communities based upon these results. The ROCK reintroduced rigor and depth to the practitioner's development in these critical disciplines enabling their ability to take mission concepts from imagination to reality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringler, Todd; Ju, Lili; Gunzburger, Max
2008-11-14
During the next decade and beyond, climate system models will be challenged to resolve scales and processes that are far beyond their current scope. Each climate system component has its prototypical example of an unresolved process that may strongly influence the global climate system, ranging from eddy activity within ocean models, to ice streams within ice sheet models, to surface hydrological processes within land system models, to cloud processes within atmosphere models. These new demands will almost certainly result in the develop of multiresolution schemes that are able, at least regionally, to faithfully simulate these fine-scale processes. Spherical centroidal Voronoimore » tessellations (SCVTs) offer one potential path toward the development of a robust, multiresolution climate system model components. SCVTs allow for the generation of high quality Voronoi diagrams and Delaunay triangulations through the use of an intuitive, user-defined density function. In each of the examples provided, this method results in high-quality meshes where the quality measures are guaranteed to improve as the number of nodes is increased. Real-world examples are developed for the Greenland ice sheet and the North Atlantic ocean. Idealized examples are developed for ocean–ice shelf interaction and for regional atmospheric modeling. In addition to defining, developing, and exhibiting SCVTs, we pair this mesh generation technique with a previously developed finite-volume method. Our numerical example is based on the nonlinear, shallow water equations spanning the entire surface of the sphere. This example is used to elucidate both the potential benefits of this multiresolution method and the challenges ahead.« less
Ansari, Mozafar; Othman, Faridah; Abunama, Taher; El-Shafie, Ahmed
2018-04-01
The function of a sewage treatment plant is to treat the sewage to acceptable standards before being discharged into the receiving waters. To design and operate such plants, it is necessary to measure and predict the influent flow rate. In this research, the influent flow rate of a sewage treatment plant (STP) was modelled and predicted by autoregressive integrated moving average (ARIMA), nonlinear autoregressive network (NAR) and support vector machine (SVM) regression time series algorithms. To evaluate the models' accuracy, the root mean square error (RMSE) and coefficient of determination (R 2 ) were calculated as initial assessment measures, while relative error (RE), peak flow criterion (PFC) and low flow criterion (LFC) were calculated as final evaluation measures to demonstrate the detailed accuracy of the selected models. An integrated model was developed based on the individual models' prediction ability for low, average and peak flow. An initial assessment of the results showed that the ARIMA model was the least accurate and the NAR model was the most accurate. The RE results also prove that the SVM model's frequency of errors above 10% or below - 10% was greater than the NAR model's. The influent was also forecasted up to 44 weeks ahead by both models. The graphical results indicate that the NAR model made better predictions than the SVM model. The final evaluation of NAR and SVM demonstrated that SVM made better predictions at peak flow and NAR fit well for low and average inflow ranges. The integrated model developed includes the NAR model for low and average influent and the SVM model for peak inflow.
NASA Astrophysics Data System (ADS)
Mogaji, Kehinde Anthony; Omobude, Osayande Bright
2017-12-01
Modeling of groundwater potentiality zones is a vital scheme for effective management of groundwater resources. This study developed a new multi-criteria decision making algorithm for groundwater potentiality modeling through modifying the standard GOD model. The developed model christened as GODT model was applied to assess groundwater potential in a multi-faceted crystalline geologic terrain, southwestern, Nigeria using the derived four unify groundwater potential conditioning factors namely: Groundwater hydraulic confinement (G), aquifer Overlying strata resistivity (O), Depth to water table (D) and Thickness of aquifer (T) from the interpreted geophysical data acquired in the area. With the developed model algorithm, the GIS-based produced G, O, D and T maps were synthesized to estimate groundwater potential index (GWPI) values for the area. The estimated GWPI values were processed in GIS environment to produce groundwater potential prediction index (GPPI) map which demarcate the area into four potential zones. The produced GODT model-based GPPI map was validated through application of both correlation technique and spatial attribute comparative scheme (SACS). The performance of the GODT model was compared with that of the standard analytic hierarchy process (AHP) model. The correlation technique results established 89% regression coefficients for the GODT modeling algorithm compared with 84% for the AHP model. On the other hand, the SACS validation results for the GODT and AHP models are 72.5% and 65%, respectively. The overall results indicate that both models have good capability for predicting groundwater potential zones with the GIS-based GODT model as a good alternative. The GPPI maps produced in this study can form part of decision making model for environmental planning and groundwater management in the area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sig Drellack, Lance Prothro
2007-12-01
The Underground Test Area (UGTA) Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is in the process of assessing and developing regulatory decision options based on modeling predictions of contaminant transport from underground testing of nuclear weapons at the Nevada Test Site (NTS). The UGTA Project is attempting to develop an effective modeling strategy that addresses and quantifies multiple components of uncertainty including natural variability, parameter uncertainty, conceptual/model uncertainty, and decision uncertainty in translating model results into regulatory requirements. The modeling task presents multiple unique challenges to the hydrological sciences as a result ofmore » the complex fractured and faulted hydrostratigraphy, the distributed locations of sources, the suite of reactive and non-reactive radionuclides, and uncertainty in conceptual models. Characterization of the hydrogeologic system is difficult and expensive because of deep groundwater in the arid desert setting and the large spatial setting of the NTS. Therefore, conceptual model uncertainty is partially addressed through the development of multiple alternative conceptual models of the hydrostratigraphic framework and multiple alternative models of recharge and discharge. Uncertainty in boundary conditions is assessed through development of alternative groundwater fluxes through multiple simulations using the regional groundwater flow model. Calibration of alternative models to heads and measured or inferred fluxes has not proven to provide clear measures of model quality. Therefore, model screening by comparison to independently-derived natural geochemical mixing targets through cluster analysis has also been invoked to evaluate differences between alternative conceptual models. Advancing multiple alternative flow models, sensitivity of transport predictions to parameter uncertainty is assessed through Monte Carlo simulations. The simulations are challenged by the distributed sources in each of the Corrective Action Units, by complex mass transfer processes, and by the size and complexity of the field-scale flow models. An efficient methodology utilizing particle tracking results and convolution integrals provides in situ concentrations appropriate for Monte Carlo analysis. Uncertainty in source releases and transport parameters including effective porosity, fracture apertures and spacing, matrix diffusion coefficients, sorption coefficients, and colloid load and mobility are considered. With the distributions of input uncertainties and output plume volumes, global analysis methods including stepwise regression, contingency table analysis, and classification tree analysis are used to develop sensitivity rankings of parameter uncertainties for each model considered, thus assisting a variety of decisions.« less
Transition mixing study empirical model report
NASA Technical Reports Server (NTRS)
Srinivasan, R.; White, C.
1988-01-01
The empirical model developed in the NASA Dilution Jet Mixing Program has been extended to include the curvature effects of transition liners. This extension is based on the results of a 3-D numerical model generated under this contract. The empirical model results agree well with the numerical model results for all tests cases evaluated. The empirical model shows faster mixing rates compared to the numerical model. Both models show drift of jets toward the inner wall of a turning duct. The structure of the jets from the inner wall does not exhibit the familiar kidney-shaped structures observed for the outer wall jets or for jets injected in rectangular ducts.
Development and Application of a Process-based River System Model at a Continental Scale
NASA Astrophysics Data System (ADS)
Kim, S. S. H.; Dutta, D.; Vaze, J.; Hughes, J. D.; Yang, A.; Teng, J.
2014-12-01
Existing global and continental scale river models, mainly designed for integrating with global climate model, are of very course spatial resolutions and they lack many important hydrological processes, such as overbank flow, irrigation diversion, groundwater seepage/recharge, which operate at a much finer resolution. Thus, these models are not suitable for producing streamflow forecast at fine spatial resolution and water accounts at sub-catchment levels, which are important for water resources planning and management at regional and national scale. A large-scale river system model has been developed and implemented for water accounting in Australia as part of the Water Information Research and Development Alliance between Australia's Bureau of Meteorology (BoM) and CSIRO. The model, developed using node-link architecture, includes all major hydrological processes, anthropogenic water utilisation and storage routing that influence the streamflow in both regulated and unregulated river systems. It includes an irrigation model to compute water diversion for irrigation use and associated fluxes and stores and a storage-based floodplain inundation model to compute overbank flow from river to floodplain and associated floodplain fluxes and stores. An auto-calibration tool has been built within the modelling system to automatically calibrate the model in large river systems using Shuffled Complex Evolution optimiser and user-defined objective functions. The auto-calibration tool makes the model computationally efficient and practical for large basin applications. The model has been implemented in several large basins in Australia including the Murray-Darling Basin, covering more than 2 million km2. The results of calibration and validation of the model shows highly satisfactory performance. The model has been operalisationalised in BoM for producing various fluxes and stores for national water accounting. This paper introduces this newly developed river system model describing the conceptual hydrological framework, methods used for representing different hydrological processes in the model and the results and evaluation of the model performance. The operational implementation of the model for water accounting is discussed.
NASA Astrophysics Data System (ADS)
Latypov, Marat I.; Kalidindi, Surya R.
2017-10-01
There is a critical need for the development and verification of practically useful multiscale modeling strategies for simulating the mechanical response of multiphase metallic materials with heterogeneous microstructures. In this contribution, we present data-driven reduced order models for effective yield strength and strain partitioning in such microstructures. These models are built employing the recently developed framework of Materials Knowledge Systems that employ 2-point spatial correlations (or 2-point statistics) for the quantification of the heterostructures and principal component analyses for their low-dimensional representation. The models are calibrated to a large collection of finite element (FE) results obtained for a diverse range of microstructures with various sizes, shapes, and volume fractions of the phases. The performance of the models is evaluated by comparing the predictions of yield strength and strain partitioning in two-phase materials with the corresponding predictions from a classical self-consistent model as well as results of full-field FE simulations. The reduced-order models developed in this work show an excellent combination of accuracy and computational efficiency, and therefore present an important advance towards computationally efficient microstructure-sensitive multiscale modeling frameworks.
Testing students' e-learning via Facebook through Bayesian structural equation modeling.
Salarzadeh Jenatabadi, Hashem; Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad
2017-01-01
Learning is an intentional activity, with several factors affecting students' intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods' results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated.
Testing students’ e-learning via Facebook through Bayesian structural equation modeling
Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad
2017-01-01
Learning is an intentional activity, with several factors affecting students’ intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods’ results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated. PMID:28886019
Hartwell H. Welsh Jr; Jeffrey R. Dunk; William J. Zielinski
2004-01-01
We provide a framework for developing predictive species habitat models using preexisting vegetation, physical, and spatial data in association with animal sampling data. The resulting models are used to evaluate questions relevant to species conservation, in particular, comparing occurrence estimates in reserved and unreserved lands. We used an informationâtheoretic...
Comparison of Development Test and Evaluation and Overall Program Estimate at Completion
2011-03-01
of the overall model and parameter. In addition to 36 the Shapiro-Wilkes test , and Cook’s Distance overlay plot we used the Breusch - Pagan test to...Transformed Model Finally, we evaluated our log transformed model using the Breusch - Pagan test . The results return a value of .51, thus confirming our...COMPARISON OF DEVELOPMENT TEST AND EVALUATION AND OVERALL
Real time wind farm emulation using SimWindFarm toolbox
NASA Astrophysics Data System (ADS)
Topor, Marcel
2016-06-01
This paper presents a wind farm emulation solution using an open source Matlab/Simulink toolbox and the National Instruments cRIO platform. This work is based on the Aeolus SimWindFarm (SWF) toolbox models developed at Aalborg university, Denmark. Using the Matlab Simulink models developed in SWF, the modeling code can be exported to a real time model using the NI Veristand model framework and the resulting code is integrated as a hardware in the loop control on the NI 9068 platform.
Pharmacokinetic model analysis of interaction between phenytoin and capecitabine.
Miyazaki, Shohei; Satoh, Hiroki; Ikenishi, Masayuki; Sakurai, Miyuki; Ueda, Mutsuaki; Kawahara, Kaori; Ueda, Rie; Ohtori, Tohru; Matsuyama, Kenji; Miki, Akiko; Hori, Satoko; Fukui, Eiji; Nakatsuka, Eitaro; Sawada, Yasufumi
2016-09-01
Recent reports have shbown an increase in serum phenytoin levels resulting in phenytoin toxicity after initiation of luoropyrimidine chemotherapy. To prevent phenytoin intoxication, phenytoin dosage must be adjusted. We sought to develop a pharmacokinetic model of the interaction between phenytoin and capecitabine. We developed the phenytoin-capecitabine interaction model on the assumption that fluorouracil (5-FU) inhibits cytochrome P450 (CYP) 2C9 synthesis in a concentration- dependent manner. The plasma 5-FU concentration after oral administration of capecitabine was estimated using a conventional compartment model. Nonlinear pharmacokinetics of phenytoin was modeled by incorporating the Michaelis-Menten equation to represent the saturation of phenytoin metabolism. The resulting model was fitted to data from our previously-reported cases. The developed phenytoincapecitabine interaction model successfully described the profiles of serum phenytoin concentration in patients who received phenytoin and capecitabine concomitantly. The 50% inhibitory 5-FU concentration for CYP2C9 synthesis and the degradation rate constant of CYP2C9 were estimated to be 0.00310 ng/mL and 0.0768 day-1, respectively. This model and these parameters allow us to predict the appropriate phenytoin dosage schedule when capecitabine is administered concomitantly. This newly-developed model accurately describes changes in phenytoin concentration during concomitant capecitabine chemotherapy, and it may be clinically useful for predicting appropriate phenytoin dosage adjustments for maintaining serum phenytoin levels within the therapeutic range.
Garcia, J M; Teodoro, F; Cerdeira, R; Coelho, L M R; Kumar, Prashant; Carvalho, M G
2016-09-01
A methodology to predict PM10 concentrations in urban outdoor environments is developed based on the generalized linear models (GLMs). The methodology is based on the relationship developed between atmospheric concentrations of air pollutants (i.e. CO, NO2, NOx, VOCs, SO2) and meteorological variables (i.e. ambient temperature, relative humidity (RH) and wind speed) for a city (Barreiro) of Portugal. The model uses air pollution and meteorological data from the Portuguese monitoring air quality station networks. The developed GLM considers PM10 concentrations as a dependent variable, and both the gaseous pollutants and meteorological variables as explanatory independent variables. A logarithmic link function was considered with a Poisson probability distribution. Particular attention was given to cases with air temperatures both below and above 25°C. The best performance for modelled results against the measured data was achieved for the model with values of air temperature above 25°C compared with the model considering all ranges of air temperatures and with the model considering only temperature below 25°C. The model was also tested with similar data from another Portuguese city, Oporto, and results found to behave similarly. It is concluded that this model and the methodology could be adopted for other cities to predict PM10 concentrations when these data are not available by measurements from air quality monitoring stations or other acquisition means.
Gaze distribution analysis and saliency prediction across age groups.
Krishna, Onkar; Helo, Andrea; Rämä, Pia; Aizawa, Kiyoharu
2018-01-01
Knowledge of the human visual system helps to develop better computational models of visual attention. State-of-the-art models have been developed to mimic the visual attention system of young adults that, however, largely ignore the variations that occur with age. In this paper, we investigated how visual scene processing changes with age and we propose an age-adapted framework that helps to develop a computational model that can predict saliency across different age groups. Our analysis uncovers how the explorativeness of an observer varies with age, how well saliency maps of an age group agree with fixation points of observers from the same or different age groups, and how age influences the center bias tendency. We analyzed the eye movement behavior of 82 observers belonging to four age groups while they explored visual scenes. Explorative- ness was quantified in terms of the entropy of a saliency map, and area under the curve (AUC) metrics was used to quantify the agreement analysis and the center bias tendency. Analysis results were used to develop age adapted saliency models. Our results suggest that the proposed age-adapted saliency model outperforms existing saliency models in predicting the regions of interest across age groups.
NASA Astrophysics Data System (ADS)
Wang, Chuanjie; Liu, Huan; Zhang, Ying; Chen, Gang; Li, Yujie; Zhang, Peng
2017-12-01
Micro-forming is one promising technology for manufacturing micro metal parts. However, the traditional metal-forming theories fail to analyze the plastic deformation behavior in micro-scale due to the size effect arising from the part geometry scaling down from macro-scale to micro-scale. To reveal the mechanism of plastic deformation behavior size effect in micro-scale, the geometrical parameters and the induced variation of microstructure by them need to be integrated in the developed constitutive models considering the free surface effect. In this research, the variations of dislocation cell diameter with original grain size, strain and location (surface grain or inner grain) are derived according the previous research data. Then the overall flow stress of the micro specimen is determined by employing the surface layer model and the relationship between dislocation cell diameter and the flow stress. This new developed constitutive model considers the original grain size, geometrical dimension and strain simultaneously. The flow stresses in micro-tensile tests of thin sheets are compared with calculated results using the developed constitutive model. The calculated and experimental results match well. Thus the validity of the developed constitutive model is verified.
RESULTS FROM THE NORTH AMERICAN MERCURY MODEL INTER-COMPARISON STUDY (NAMMIS)
A North American Mercury Model Intercomparison Study (NAMMIS) has been conducted to build upon the findings from previous mercury model intercomparison in Europe. In the absence of mercury measurement networks sufficient for model evaluation, model developers continue to rely on...
NASA Astrophysics Data System (ADS)
Arida, Maya Ahmad
In 1972 sustainable development concept existed and during The years it became one of the most important solution to save natural resources and energy, but now with rising energy costs and increasing awareness of the effect of global warming, the development of building energy saving methods and models become apparently more necessary for sustainable future. According to U.S. Energy Information Administration EIA (EIA), today buildings in the U.S. consume 72 percent of electricity produced, and use 55 percent of U.S. natural gas. Buildings account for about 40 percent of the energy consumed in the United States, more than industry and transportation. Of this energy, heating and cooling systems use about 55 percent. If energy-use trends continue, buildings will become the largest consumer of global energy by 2025. This thesis proposes procedures and analysis techniques for building energy system and optimization methods using time series auto regression artificial neural networks. The model predicts whole building energy consumptions as a function of four input variables, dry bulb and wet bulb outdoor air temperatures, hour of day and type of day. The proposed model and the optimization process are tested using data collected from an existing building located in Greensboro, NC. The testing results show that the model can capture very well the system performance, and The optimization method was also developed to automate the process of finding the best model structure that can produce the best accurate prediction against the actual data. The results show that the developed model can provide results sufficiently accurate for its use in various energy efficiency and saving estimation applications.
Wave Attenuation and Gas Exchange Velocity in Marginal Sea Ice Zone
NASA Astrophysics Data System (ADS)
Bigdeli, A.; Hara, T.; Loose, B.; Nguyen, A. T.
2018-03-01
The gas transfer velocity in marginal sea ice zones exerts a strong control on the input of anthropogenic gases into the ocean interior. In this study, a sea state-dependent gas exchange parametric model is developed based on the turbulent kinetic energy dissipation rate. The model is tuned to match the conventional gas exchange parametrization in fetch-unlimited, fully developed seas. Next, fetch limitation is introduced in the model and results are compared to fetch limited experiments in lakes, showing that the model captures the effects of finite fetch on gas exchange with good fidelity. Having validated the results in fetch limited waters such as lakes, the model is next applied in sea ice zones using an empirical relation between the sea ice cover and the effective fetch, while accounting for the sea ice motion effect that is unique to sea ice zones. The model results compare favorably with the available field measurements. Applying this parametric model to a regional Arctic numerical model, it is shown that, under the present conditions, gas flux into the Arctic Ocean may be overestimated by 10% if a conventional parameterization is used.
NASA Technical Reports Server (NTRS)
Poole, L. R.; Huckins, E. K., III
1972-01-01
A general theory on mathematical modeling of elastic parachute suspension lines during the unfurling process was developed. Massless-spring modeling of suspension-line elasticity was evaluated in detail. For this simple model, equations which govern the motion were developed and numerically integrated. The results were compared with flight test data. In most regions, agreement was satisfactory. However, poor agreement was obtained during periods of rapid fluctuations in line tension.
Reliability and coverage analysis of non-repairable fault-tolerant memory systems
NASA Technical Reports Server (NTRS)
Cox, G. W.; Carroll, B. D.
1976-01-01
A method was developed for the construction of probabilistic state-space models for nonrepairable systems. Models were developed for several systems which achieved reliability improvement by means of error-coding, modularized sparing, massive replication and other fault-tolerant techniques. From the models developed, sets of reliability and coverage equations for the systems were developed. Comparative analyses of the systems were performed using these equation sets. In addition, the effects of varying subunit reliabilities on system reliability and coverage were described. The results of these analyses indicated that a significant gain in system reliability may be achieved by use of combinations of modularized sparing, error coding, and software error control. For sufficiently reliable system subunits, this gain may far exceed the reliability gain achieved by use of massive replication techniques, yet result in a considerable saving in system cost.
Wang, Wenyi; Zeng, Weihua; Yao, Bo
2014-01-01
Many rapidly developing regions have begun to draw the attention of the world. Meanwhile, the energy and environmental issues associated with rapid economic growth have aroused widespread critical concern. Therefore, studying energy, economic, and environmental systems is of great importance. This study establishes a system dynamic model that covers multiple aspects of those systems, such as energy, economy, population, water pollution, air pollution, solid waste, and technology. The model designed here attempts to determine the impacts of socioeconomic development on the energy and environment of Tongzhou District in three scenarios: under current, planning, and sustainable conditions. The results reveal that energy shortages and water pollutions are very serious and are the key issues constraining future social and economic development. Solid waste emissions increase with population growth. The prediction results provide valuable insights into social advancement.
2013-01-01
Background This study aims to improve accuracy of Bioelectrical Impedance Analysis (BIA) prediction equations for estimating fat free mass (FFM) of the elderly by using non-linear Back Propagation Artificial Neural Network (BP-ANN) model and to compare the predictive accuracy with the linear regression model by using energy dual X-ray absorptiometry (DXA) as reference method. Methods A total of 88 Taiwanese elderly adults were recruited in this study as subjects. Linear regression equations and BP-ANN prediction equation were developed using impedances and other anthropometrics for predicting the reference FFM measured by DXA (FFMDXA) in 36 male and 26 female Taiwanese elderly adults. The FFM estimated by BIA prediction equations using traditional linear regression model (FFMLR) and BP-ANN model (FFMANN) were compared to the FFMDXA. The measuring results of an additional 26 elderly adults were used to validate than accuracy of the predictive models. Results The results showed the significant predictors were impedance, gender, age, height and weight in developed FFMLR linear model (LR) for predicting FFM (coefficient of determination, r2 = 0.940; standard error of estimate (SEE) = 2.729 kg; root mean square error (RMSE) = 2.571kg, P < 0.001). The above predictors were set as the variables of the input layer by using five neurons in the BP-ANN model (r2 = 0.987 with a SD = 1.192 kg and relatively lower RMSE = 1.183 kg), which had greater (improved) accuracy for estimating FFM when compared with linear model. The results showed a better agreement existed between FFMANN and FFMDXA than that between FFMLR and FFMDXA. Conclusion When compared the performance of developed prediction equations for estimating reference FFMDXA, the linear model has lower r2 with a larger SD in predictive results than that of BP-ANN model, which indicated ANN model is more suitable for estimating FFM. PMID:23388042
Multifidelity, Multidisciplinary Design Under Uncertainty with Non-Intrusive Polynomial Chaos
NASA Technical Reports Server (NTRS)
West, Thomas K., IV; Gumbert, Clyde
2017-01-01
The primary objective of this work is to develop an approach for multifidelity uncertainty quantification and to lay the framework for future design under uncertainty efforts. In this study, multifidelity is used to describe both the fidelity of the modeling of the physical systems, as well as the difference in the uncertainty in each of the models. For computational efficiency, a multifidelity surrogate modeling approach based on non-intrusive polynomial chaos using the point-collocation technique is developed for the treatment of both multifidelity modeling and multifidelity uncertainty modeling. Two stochastic model problems are used to demonstrate the developed methodologies: a transonic airfoil model and multidisciplinary aircraft analysis model. The results of both showed the multifidelity modeling approach was able to predict the output uncertainty predicted by the high-fidelity model as a significant reduction in computational cost.
Schedule Risks Due to Delays in Advanced Technology Development
NASA Technical Reports Server (NTRS)
Reeves, John D. Jr.; Kayat, Kamal A.; Lim, Evan
2008-01-01
This paper discusses a methodology and modeling capability that probabilistically evaluates the likelihood and impacts of delays in advanced technology development prior to the start of design, development, test, and evaluation (DDT&E) of complex space systems. The challenges of understanding and modeling advanced technology development considerations are first outlined, followed by a discussion of the problem in the context of lunar surface architecture analysis. The current and planned methodologies to address the problem are then presented along with sample analyses and results. The methodology discussed herein provides decision-makers a thorough understanding of the schedule impacts resulting from the inclusion of various enabling advanced technology assumptions within system design.
Summary of the key features of seven biomathematical models of human fatigue and performance
NASA Technical Reports Server (NTRS)
Mallis, Melissa M.; Mejdal, Sig; Nguyen, Tammy T.; Dinges, David F.
2004-01-01
BACKGROUND: Biomathematical models that quantify the effects of circadian and sleep/wake processes on the regulation of alertness and performance have been developed in an effort to predict the magnitude and timing of fatigue-related responses in a variety of contexts (e.g., transmeridian travel, sustained operations, shift work). This paper summarizes key features of seven biomathematical models reviewed as part of the Fatigue and Performance Modeling Workshop held in Seattle, WA, on June 13-14, 2002. The Workshop was jointly sponsored by the National Aeronautics and Space Administration, U.S. Department of Defense, U.S. Army Medical Research and Materiel Command, Office of Naval Research, Air Force Office of Scientific Research, and U.S. Department of Transportation. METHODS: An invitation was sent to developers of seven biomathematical models that were commonly cited in scientific literature and/or supported by government funding. On acceptance of the invitation to attend the Workshop, developers were asked to complete a survey of the goals, capabilities, inputs, and outputs of their biomathematical models of alertness and performance. Data from the completed surveys were summarized and juxtaposed to provide a framework for comparing features of the seven models. RESULTS: Survey responses revealed that models varied greatly relative to their reported goals and capabilities. While all modelers reported that circadian factors were key components of their capabilities, they differed markedly with regard to the roles of sleep and work times as input factors for prediction: four of the seven models had work time as their sole input variable(s), while the other three models relied on various aspects of sleep timing for model input. Models also differed relative to outputs: five sought to predict results from laboratory experiments, field, and operational data, while two models were developed without regard to predicting laboratory experimental results. All modelers provided published papers describing their models, with three of the models being proprietary. CONCLUSIONS: Although all models appear to have been fundamentally influenced by the two-process model of sleep regulation by Borbely, there is considerable diversity among them in the number and type of input and output variables, and their stated goals and capabilities.
Aggregate modeling of fast-acting demand response and control under real-time pricing
Chassin, David P.; Rondeau, Daniel
2016-08-24
This paper develops and assesses the performance of a short-term demand response (DR) model for utility load control with applications to resource planning and control design. Long term response models tend to underestimate short-term demand response when induced by prices. This has two important consequences. First, planning studies tend to undervalue DR and often overlook its benefits in utility demand management program development. Second, when DR is not overlooked, the open-loop DR control gain estimate may be too low. This can result in overuse of load resources, control instability and excessive price volatility. Our objective is therefore to develop amore » more accurate and better performing short-term demand response model. We construct the model from first principles about the nature of thermostatic load control and show that the resulting formulation corresponds exactly to the Random Utility Model employed in economics to study consumer choice. The model is tested against empirical data collected from field demonstration projects and is shown to perform better than alternative models commonly used to forecast demand in normal operating conditions. Finally, the results suggest that (1) existing utility tariffs appear to be inadequate to incentivize demand response, particularly in the presence of high renewables, and (2) existing load control systems run the risk of becoming unstable if utilities close the loop on real-time prices.« less
Earth observation data based rapid flood-extent modelling for tsunami-devastated coastal areas
NASA Astrophysics Data System (ADS)
Hese, Sören; Heyer, Thomas
2016-04-01
Earth observation (EO)-based mapping and analysis of natural hazards plays a critical role in various aspects of post-disaster aid management. Spatial very high-resolution Earth observation data provide important information for managing post-tsunami activities on devastated land and monitoring re-cultivation and reconstruction. The automatic and fast use of high-resolution EO data for rapid mapping is, however, complicated by high spectral variability in densely populated urban areas and unpredictable textural and spectral land-surface changes. The present paper presents the results of the SENDAI project, which developed an automatic post-tsunami flood-extent modelling concept using RapidEye multispectral satellite data and ASTER Global Digital Elevation Model Version 2 (GDEM V2) data of the eastern coast of Japan (captured after the Tohoku earthquake). In this paper, the authors developed both a bathtub-modelling approach and a cost-distance approach, and integrated the roughness parameters of different land-use types to increase the accuracy of flood-extent modelling. Overall, the accuracy of the developed models reached 87-92%, depending on the analysed test site. The flood-modelling approach was explained and results were compared with published approaches. We came to the conclusion that the cost-factor-based approach reaches accuracy comparable to published results from hydrological modelling. However the proposed cost-factor approach is based on a much simpler dataset, which is available globally.
Aggregate modeling of fast-acting demand response and control under real-time pricing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Rondeau, Daniel
This paper develops and assesses the performance of a short-term demand response (DR) model for utility load control with applications to resource planning and control design. Long term response models tend to underestimate short-term demand response when induced by prices. This has two important consequences. First, planning studies tend to undervalue DR and often overlook its benefits in utility demand management program development. Second, when DR is not overlooked, the open-loop DR control gain estimate may be too low. This can result in overuse of load resources, control instability and excessive price volatility. Our objective is therefore to develop amore » more accurate and better performing short-term demand response model. We construct the model from first principles about the nature of thermostatic load control and show that the resulting formulation corresponds exactly to the Random Utility Model employed in economics to study consumer choice. The model is tested against empirical data collected from field demonstration projects and is shown to perform better than alternative models commonly used to forecast demand in normal operating conditions. Finally, the results suggest that (1) existing utility tariffs appear to be inadequate to incentivize demand response, particularly in the presence of high renewables, and (2) existing load control systems run the risk of becoming unstable if utilities close the loop on real-time prices.« less
Aggregate modeling of fast-acting demand response and control under real-time pricing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Rondeau, Daniel
This paper develops and assesses the performance of a short-term demand response (DR) model for utility load control with applications to resource planning and control design. Long term response models tend to underestimate short-term demand response when induced by prices. This has two important consequences. First, planning studies tend to undervalue DR and often overlook its benefits in utility demand management program development. Second, when DR is not overlooked, the open-loop DR control gain estimate may be too low. This can result in overuse of load resources, control instability and excessive price volatility. Our objective is therefore to develop amore » more accurate and better performing short-term demand response model. We construct the model from first principles about the nature of thermostatic load control and show that the resulting formulation corresponds exactly to the Random Utility Model employed in economics to study consumer choice. The model is tested against empirical data collected from field demonstration projects and is shown to perform better than alternative models commonly used to forecast demand in normal operating conditions. The results suggest that (1) existing utility tariffs appear to be inadequate to incentivize demand response, particularly in the presence of high renewables, and (2) existing load control systems run the risk of becoming unstable if utilities close the loop on real-time prices.« less
Software Framework for Advanced Power Plant Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Widmann; Sorin Munteanu; Aseem Jain
2010-08-01
This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. Thesemore » include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.« less
NASA Astrophysics Data System (ADS)
Sepka, S. A.; Samareh, J. A.
2014-06-01
Mass estimating relationships have been formulated to determine a vehicle's Thermal Protection System material and required thickness for safe Earth entry. We focus on developing MERs, the resulting equations, model limitations, and model accuracy.
Developing a Modeling Framework for Ecosystem Forecasting: The Lake Michigan Pilot
Recent multi-party efforts to coordinate modeling activities that support ecosystem management decision-making in the Great Lakes have resulted in the recommendation to convene an interagency working group that will develop a pilot approach for Lake Michigan. The process will br...
Health literacy and public health: A systematic review and integration of definitions and models
2012-01-01
Background Health literacy concerns the knowledge and competences of persons to meet the complex demands of health in modern society. Although its importance is increasingly recognised, there is no consensus about the definition of health literacy or about its conceptual dimensions, which limits the possibilities for measurement and comparison. The aim of the study is to review definitions and models on health literacy to develop an integrated definition and conceptual model capturing the most comprehensive evidence-based dimensions of health literacy. Methods A systematic literature review was performed to identify definitions and conceptual frameworks of health literacy. A content analysis of the definitions and conceptual frameworks was carried out to identify the central dimensions of health literacy and develop an integrated model. Results The review resulted in 17 definitions of health literacy and 12 conceptual models. Based on the content analysis, an integrative conceptual model was developed containing 12 dimensions referring to the knowledge, motivation and competencies of accessing, understanding, appraising and applying health-related information within the healthcare, disease prevention and health promotion setting, respectively. Conclusions Based upon this review, a model is proposed integrating medical and public health views of health literacy. The model can serve as a basis for developing health literacy enhancing interventions and provide a conceptual basis for the development and validation of measurement tools, capturing the different dimensions of health literacy within the healthcare, disease prevention and health promotion settings. PMID:22276600
Progression of Pathogenic Events in Cynomolgus Macaques Infected with Variola Virus
Rubins, Kathleen H.; Huggins, John W.; Fisher, Robert W.; Johnson, Anthony J.; de Kok-Mercado, Fabian; Larsen, Thomas; Raymond, Jo Lynne; Hensley, Lisa E.; Jahrling, Peter B.
2011-01-01
Smallpox, caused by variola virus (VARV), is a devastating human disease that affected millions worldwide until the virus was eradicated in the 1970 s. Subsequent cessation of vaccination has resulted in an immunologically naive human population that would be at risk should VARV be used as an agent of bioterrorism. The development of antivirals and improved vaccines to counter this threat would be facilitated by the development of animal models using authentic VARV. Towards this end, cynomolgus macaques were identified as adequate hosts for VARV, developing ordinary or hemorrhagic smallpox in a dose-dependent fashion. To further refine this model, we performed a serial sampling study on macaques exposed to doses of VARV strain Harper calibrated to induce ordinary or hemorrhagic disease. Several key differences were noted between these models. In the ordinary smallpox model, lymphoid and myeloid hyperplasias were consistently found whereas lymphocytolysis and hematopoietic necrosis developed in hemorrhagic smallpox. Viral antigen accumulation, as assessed immunohistochemically, was mild and transient in the ordinary smallpox model. In contrast, in the hemorrhagic model antigen distribution was widespread and included tissues and cells not involved in the ordinary model. Hemorrhagic smallpox developed only in the presence of secondary bacterial infections – an observation also commonly noted in historical reports of human smallpox. Together, our results support the macaque model as an excellent surrogate for human smallpox in terms of disease onset, acute disease course, and gross and histopathological lesions. PMID:21998632
2010-01-01
Background China has had no effective and systematic information system to provide guidance for strengthening PHC (Primary Health Care) or account to citizens on progress. We report on the development of the China results-based Logic Model for Community Health Facilities and Stations (CHS) and a set of relevant PHC indicators intended to measure CHS priorities. Methods We adapted the PHC Results Based Logic Model developed in Canada and current work conducted in the community health system in China to create the China CHS Logic Model framework. We used a staged approach by first constructing the framework and indicators and then validating their content through an interactive process involving policy analysis, critical review of relevant literature and multiple stakeholder consultation. Results The China CHS Logic Model includes inputs, activities, outputs and outcomes with a total of 287 detailed performance indicators. In these indicators, 31 indicators measure inputs, 64 measure activities, 105 measure outputs, and 87 measure immediate (n = 65), intermediate (n = 15), or final (n = 7) outcomes. Conclusion A Logic Model framework can be useful in planning, implementation, analysis and evaluation of PHC at a system and service level. The development and content validation of the China CHS Logic Model and subsequent indicators provides a means for stronger accountability and a clearer sense of overall direction and purpose needed to renew and strengthen the PHC system in China. Moreover, this work will be useful in moving towards developing a PHC information system and performance measurement across districts in urban China, and guiding the pursuit of quality in PHC. PMID:21087516
Impact of Learning Model Based on Cognitive Conflict toward Student’s Conceptual Understanding
NASA Astrophysics Data System (ADS)
Mufit, F.; Festiyed, F.; Fauzan, A.; Lufri, L.
2018-04-01
The problems that often occur in the learning of physics is a matter of misconception and low understanding of the concept. Misconceptions do not only happen to students, but also happen to college students and teachers. The existing learning model has not had much impact on improving conceptual understanding and remedial efforts of student misconception. This study aims to see the impact of cognitive-based learning model in improving conceptual understanding and remediating student misconceptions. The research method used is Design / Develop Research. The product developed is a cognitive conflict-based learning model along with its components. This article reports on product design results, validity tests, and practicality test. The study resulted in the design of cognitive conflict-based learning model with 4 learning syntaxes, namely (1) preconception activation, (2) presentation of cognitive conflict, (3) discovery of concepts & equations, (4) Reflection. The results of validity tests by some experts on aspects of content, didactic, appearance or language, indicate very valid criteria. Product trial results also show a very practical product to use. Based on pretest and posttest results, cognitive conflict-based learning models have a good impact on improving conceptual understanding and remediating misconceptions, especially in high-ability students.
Perotte, Adler; Ranganath, Rajesh; Hirsch, Jamie S; Blei, David; Elhadad, Noémie
2015-07-01
As adoption of electronic health records continues to increase, there is an opportunity to incorporate clinical documentation as well as laboratory values and demographics into risk prediction modeling. The authors develop a risk prediction model for chronic kidney disease (CKD) progression from stage III to stage IV that includes longitudinal data and features drawn from clinical documentation. The study cohort consisted of 2908 primary-care clinic patients who had at least three visits prior to January 1, 2013 and developed CKD stage III during their documented history. Development and validation cohorts were randomly selected from this cohort and the study datasets included longitudinal inpatient and outpatient data from these populations. Time series analysis (Kalman filter) and survival analysis (Cox proportional hazards) were combined to produce a range of risk models. These models were evaluated using concordance, a discriminatory statistic. A risk model incorporating longitudinal data on clinical documentation and laboratory test results (concordance 0.849) predicts progression from state III CKD to stage IV CKD more accurately when compared to a similar model without laboratory test results (concordance 0.733, P<.001), a model that only considers the most recent laboratory test results (concordance 0.819, P < .031) and a model based on estimated glomerular filtration rate (concordance 0.779, P < .001). A risk prediction model that takes longitudinal laboratory test results and clinical documentation into consideration can predict CKD progression from stage III to stage IV more accurately than three models that do not take all of these variables into consideration. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uddin, Rizwan
2012-01-01
This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during themore » third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keefer, Donald A.; Shaffer, Eric G.; Storsved, Brynne
A free software application, RVA, has been developed as a plugin to the US DOE-funded ParaView visualization package, to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed as an open-source plugin to the 64 bit Windows version of ParaView 3.14. RVA was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing jointmore » visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed on enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including: sophisticated connectivity analysis, cross sections through simulation results between selected wells, simplified volumetric calculations, global vertical exaggeration adjustments, ingestion of UTChem simulation results, ingestion of Isatis geostatistical framework models, interrogation of joint geologic and reservoir modeling results, joint visualization and analysis of well history files, location-targeted visualization, advanced correlation analysis, visualization of flow paths, and creation of static images and animations highlighting targeted reservoir features.« less
NASA Technical Reports Server (NTRS)
Rundel, R. D.; Butler, D. M.; Stolarski, R. S.
1977-01-01
A concise model has been developed to analyze uncertainties in stratospheric perturbations, yet uses a minimum of computer time and is complete enough to represent the results of more complex models. The steady state model applies iteration to achieve coupling between interacting species. The species are determined from diffusion equations with appropriate sources and sinks. Diurnal effects due to chlorine nitrate formation are accounted for by analytic approximation. The model has been used to evaluate steady state perturbations due to injections of chlorine and NO(X).
Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour
NASA Astrophysics Data System (ADS)
Smarzewski, Piotr; Stolarski, Adam
2017-10-01
Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.
NASA Astrophysics Data System (ADS)
Jeyakumar, Lordwin; Zhao, Yaqian
2014-05-01
Increased awareness of the impacts of diffuse pollution and their intensification has pushed forward the need for the development of low-cost wastewater treatment techniques. One of such efforts is the use of novel DASC (Dewatered Alum Sludge Cakes) based constructed wetlands (CWs) for removing nutrients, organics, trace elements and other pollutants from wastewater. Understanding of the processes in CWs requires a numerical model that describes the biochemical transformation and degradation processes in subsurface vertical flow (VF) CWs. Therefore, this research focuses on the development of a process-based model for phosphorus (P) and nitrogen (N) removal to achieve a stable performance by using DASC as a substrate in CWs treatment system. An object-oriented modelling tool known as "STELLA" which works based on the principle of system dynamics is used for the development of P and N model. The core objective of the modelling work is oriented towards understanding the process in DASC-based CWs and optimizes design criteria. The P and N dynamic model is developed for DASC-based CWs. The P model developed exclusively for DASC-based CW was able to simulate the effluent P concentration leaving the system satisfactorily. Moreover, the developed P dynamic model has identified the major P pathways as adsorption (72%) followed by plant uptake (20%) and microbial uptake (7%) in single-stage laboratory scale DASC-based CW. Similarly, P dynamic simulation model was developed to simulate the four-stage laboratory scale DASC-based CWs. It was found that simulated and observed values of P removal were in good agreement. The fate of P in all the four stages clearly shows that adsorption played a pivotal role in each stage of the system due to the use of the DASC as a substrate. P adsorption by wetland substrate/DASC represents 59-75% of total P reduction. Subsequently, plant uptake and microbial uptake have lesser role regarding P removal (as compared to adsorption).With regard to N, DASC-based CWs dynamic model was developed and was run for 18 months from Feb 2009 to May 2010. The results reveal that the simulated effluent DN, NH4-N, NO3-N and TN had a considerably good agreement with the observed results. The TN removal was found to be 52% in the DASC-based CW. Interestingly, NIT is the main agent (65.60%) for the removal followed by ad (11.90%), AMM (8.90%), NH4-N (P) (5.90%), and NO3-N (P) (4.40%). DeN did not result in any significant removal (2.90%) in DASC-based CW which may be due to lack of anaerobic condition and absence of carbon sources. The N model also attempted to simulate the internal process behaviour of the system which provided a useful tool for gaining insight into the N dynamics of VFCWs. The results obtained for both N and P models can be used to improve the design of the newly developed DASC-based CWs to increase the efficiency of nutrient removal by CWs.
Capturing strain localization behind a geosynthetic-reinforced soil wall
NASA Astrophysics Data System (ADS)
Lai, Timothy Y.; Borja, Ronaldo I.; Duvernay, Blaise G.; Meehan, Richard L.
2003-04-01
This paper presents the results of finite element (FE) analyses of shear strain localization that occurred in cohesionless soils supported by a geosynthetic-reinforced retaining wall. The innovative aspects of the analyses include capturing of the localized deformation and the accompanying collapse mechanism using a recently developed embedded strong discontinuity model. The case study analysed, reported in previous publications, consists of a 3.5-m tall, full-scale reinforced wall model deforming in plane strain and loaded by surcharge at the surface to failure. Results of the analysis suggest strain localization developing from the toe of the wall and propagating upward to the ground surface, forming a curved failure surface. This is in agreement with a well-documented failure mechanism experienced by the physical wall model showing internal failure surfaces developing behind the wall as a result of the surface loading. Important features of the analyses include mesh sensitivity studies and a comparison of the localization properties predicted by different pre-localization constitutive models, including a family of three-invariant elastoplastic constitutive models appropriate for frictional/dilatant materials. Results of the analysis demonstrate the potential of the enhanced FE method for capturing a collapse mechanism characterized by the presence of a failure, or slip, surface through earthen materials.
Modelling and control of a rotor supported by magnetic bearings
NASA Technical Reports Server (NTRS)
Gurumoorthy, R.; Pradeep, A. K.
1994-01-01
In this paper we develop a dynamical model of a rotor and the active magnetic bearings used to support the rotor. We use this model to develop a stable state feedback control of the magnetic bearing system. We present the development of a rigid body model of the rotor, utilizing both Rotation Matrices (Euler Angles) and Euler Parameters (Quaternions). In the latter half of the paper we develop a stable state feedback control of the actively controlled magnetic bearing to control the rotor position under inbalances. The control law developed takes into account the variation of the model with rotational speed. We show stability over the whole operating range of speeds for the magnetic bearing system. Simulation results are presented to demonstrate the closed loop system performance. We develop the model of the magnetic bearing, and present two schemes for the excitation of the poles of the actively controlled magnetic bearing. We also present a scheme for averaging multiple sensor measurements and splitting the actuation forces amongst redundant actuators.
IMPACT: a generic tool for modelling and simulating public health policy.
Ainsworth, J D; Carruthers, E; Couch, P; Green, N; O'Flaherty, M; Sperrin, M; Williams, R; Asghar, Z; Capewell, S; Buchan, I E
2011-01-01
Populations are under-served by local health policies and management of resources. This partly reflects a lack of realistically complex models to enable appraisal of a wide range of potential options. Rising computing power coupled with advances in machine learning and healthcare information now enables such models to be constructed and executed. However, such models are not generally accessible to public health practitioners who often lack the requisite technical knowledge or skills. To design and develop a system for creating, executing and analysing the results of simulated public health and healthcare policy interventions, in ways that are accessible and usable by modellers and policy-makers. The system requirements were captured and analysed in parallel with the statistical method development for the simulation engine. From the resulting software requirement specification the system architecture was designed, implemented and tested. A model for Coronary Heart Disease (CHD) was created and validated against empirical data. The system was successfully used to create and validate the CHD model. The initial validation results show concordance between the simulation results and the empirical data. We have demonstrated the ability to connect health policy-modellers and policy-makers in a unified system, thereby making population health models easier to share, maintain, reuse and deploy.
[Development of a program theory as a basis for the evaluation of a dementia special care unit].
Adlbrecht, Laura; Bartholomeyczik, Sabine; Mayer, Hanna
2018-06-01
Background: An existing dementia special care unit should be evaluated. In order to build a sound foundation of the evaluation a deep theoretical understanding of the implemented intervention is needed, which has not been explicated yet. One possibility to achieve this is the development of a program theory. Aim: The aim is to present a method to develop a program theory for the existing living and care concept of the dementia special care unit, which is used in a larger project to evaluate the concept theory-drivenly. Method: The evaluation is embedded in the framework of van Belle et al. (2010) and an action model and a change model (Chen, 2015) is created. For the specification of the change model the contribution analysis (Mayne, 2011) is applied. Data were collected in workshops with the developers and the nurses of the dementia special care unit and a literature research concerning interventions and outcomes was carried out. The results were synthesized in a consens workshop. Results: The action model describes the interventions of the dementia special care unit, the implementers, the organization and the context. The change model compromises the mechanisms through which interventions achieve outcomes. Conclusions: The results of the program theory can be employed to choose data collection methods and instruments for the evaluation. On the basis of the results of the evaluation the program theory can be refined and adapted.
Modelling of peak temperature during friction stir processing of magnesium alloy AZ91
NASA Astrophysics Data System (ADS)
Vaira Vignesh, R.; Padmanaban, R.
2018-02-01
Friction stir processing (FSP) is a solid state processing technique with potential to modify the properties of the material through microstructural modification. The study of heat transfer in FSP aids in the identification of defects like flash, inadequate heat input, poor material flow and mixing etc. In this paper, transient temperature distribution during FSP of magnesium alloy AZ91 was simulated using finite element modelling. The numerical model results were validated using the experimental results from the published literature. The model was used to predict the peak temperature obtained during FSP for various process parameter combinations. The simulated peak temperature results were used to develop a statistical model. The effect of process parameters namely tool rotation speed, tool traverse speed and shoulder diameter of the tool on the peak temperature was investigated using the developed statistical model. It was found that peak temperature was directly proportional to tool rotation speed and shoulder diameter and inversely proportional to tool traverse speed.
Modelling breast cancer tumour growth for a stable disease population.
Isheden, Gabriel; Humphreys, Keith
2017-01-01
Statistical models of breast cancer tumour progression have been used to further our knowledge of the natural history of breast cancer, to evaluate mammography screening in terms of mortality, to estimate overdiagnosis, and to estimate the impact of lead-time bias when comparing survival times between screen detected cancers and cancers found outside of screening programs. Multi-state Markov models have been widely used, but several research groups have proposed other modelling frameworks based on specifying an underlying biological continuous tumour growth process. These continuous models offer some advantages over multi-state models and have been used, for example, to quantify screening sensitivity in terms of mammographic density, and to quantify the effect of body size covariates on tumour growth and time to symptomatic detection. As of yet, however, the continuous tumour growth models are not sufficiently developed and require extensive computing to obtain parameter estimates. In this article, we provide a detailed description of the underlying assumptions of the continuous tumour growth model, derive new theoretical results for the model, and show how these results may help the development of this modelling framework. In illustrating the approach, we develop a model for mammography screening sensitivity, using a sample of 1901 post-menopausal women diagnosed with invasive breast cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strons, Philip; Bailey, James L.; Davis, John
2016-03-01
In this work, we apply the CFD in modeling airflow and particulate transport. This modeling is then compared to field validation studies to both inform and validate the modeling assumptions. Based on the results of field tests, modeling assumptions and boundary conditions are refined and the process is repeated until the results are found to be reliable with a high level of confidence.
Software development predictors, error analysis, reliability models and software metric analysis
NASA Technical Reports Server (NTRS)
Basili, Victor
1983-01-01
The use of dynamic characteristics as predictors for software development was studied. It was found that there are some significant factors that could be useful as predictors. From a study on software errors and complexity, it was shown that meaningful results can be obtained which allow insight into software traits and the environment in which it is developed. Reliability models were studied. The research included the field of program testing because the validity of some reliability models depends on the answers to some unanswered questions about testing. In studying software metrics, data collected from seven software engineering laboratory (FORTRAN) projects were examined and three effort reporting accuracy checks were applied to demonstrate the need to validate a data base. Results are discussed.
Numerical model updating technique for structures using firefly algorithm
NASA Astrophysics Data System (ADS)
Sai Kubair, K.; Mohan, S. C.
2018-03-01
Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.
Sustainable tourism and harmonious culture: a case study of cultic model at village tourism
NASA Astrophysics Data System (ADS)
Astawa, I. P.; Triyuni, N. N.; Santosa, I. D. M. C.
2018-01-01
The research aims to analyze an event model of Culture and Tourism International Camp (Cultic) from two aspects, harmonious culture and sustainable tourism. Currently, Indonesian government promotes village tourism by involving more villagers to achieve village independence in its development. The program has faced various obstacles, such as the eroded local cultures due to the development of a massive and money-oriented tourism with less attention on the environmental damage. One of the offered programs is a green tourism model for an event named Culture and Tourism International Camps - Cultic. The research is conducted in several stages. The first stage is the development of model based on the theoretical study. The second stage is the implementation of the model with 85 participants. The third stage is the evaluation of the model through harmonious culture and sustainable tourism approaches. The data is collected through a direct observation and a questionnaire. The result of qualitative analysis indicates that the developed event model supports the harmonious culture, especially the natural environment. Whereas, the result of quantitative analysis indicates that the participants enjoy the activities, such as green food, material natural, waste management, and ecosystem. Another finding is that the community strongly supports the concept of sustainable tourism.
Modeling, analysis, and simulation of the co-development of road networks and vehicle ownership
NASA Astrophysics Data System (ADS)
Xu, Mingtao; Ye, Zhirui; Shan, Xiaofeng
2016-01-01
A two-dimensional logistic model is proposed to describe the co-development of road networks and vehicle ownership. The endogenous interaction between road networks and vehicle ownership and how natural market forces and policies transformed into their co-development are considered jointly in this model. If the involved parameters satisfy a certain condition, the proposed model can arrive at a steady equilibrium level and the final development scale will be within the maximum capacity of an urban traffic system; otherwise, the co-development process will be unstable and even manifest chaotic behavior. Then sensitivity tests are developed to determine the proper values for a series of parameters in this model. Finally, a case study, using Beijing City as an example, is conducted to explore the applicability of the proposed model to the real condition. Results demonstrate that the proposed model can effectively simulate the co-development of road network and vehicle ownership for Beijing City. Furthermore, we can obtain that their development process will arrive at a stable equilibrium level in the years 2040 and 2045 respectively, and the equilibrium values are within the maximum capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watney, W.L.
1994-12-01
Reservoirs in the Lansing-Kansas City limestone result from complex interactions among paleotopography (deposition, concurrent structural deformation), sea level, and diagenesis. Analysis of reservoirs and surface and near-surface analogs has led to developing a {open_quotes}strandline grainstone model{close_quotes} in which relative sea-level stabilized during regressions, resulting in accumulation of multiple grainstone buildups along depositional strike. Resulting stratigraphy in these carbonate units are generally predictable correlating to inferred topographic elevation along the shelf. This model is a valuable predictive tool for (1) locating favorable reservoirs for exploration, and (2) anticipating internal properties of the reservoir for field development. Reservoirs in the Lansing-Kansas Citymore » limestones are developed in both oolitic and bioclastic grainstones, however, re-analysis of oomoldic reservoirs provides the greatest opportunity for developing bypassed oil. A new technique, the {open_quotes}Super{close_quotes} Pickett crossplot (formation resistivity vs. porosity) and its use in an integrated petrophysical characterization, has been developed to evaluate extractable oil remaining in these reservoirs. The manual method in combination with 3-D visualization and modeling can help to target production limiting heterogeneities in these complex reservoirs and moreover compute critical parameters for the field such as bulk volume water. Application of this technique indicates that from 6-9 million barrels of Lansing-Kansas City oil remain behind pipe in the Victory-Northeast Lemon Fields. Petroleum geologists are challenged to quantify inferred processes to aid in developing rationale geologically consistent models of sedimentation so that acceptable levels of prediction can be obtained.« less
Load Measurement in Structural Members Using Guided Acoustic Waves
NASA Astrophysics Data System (ADS)
Chen, Feng; Wilcox, Paul D.
2006-03-01
A non-destructive technique to measure load in structures such as rails and bridge cables by using guided acoustic waves is investigated both theoretically and experimentally. Robust finite element models for predicting the effect of load on guided wave propagation are developed and example results are presented for rods. Reasonably good agreement of experimental results with modelling prediction is obtained. The measurement technique has been developed to perform tests on larger specimens.
Reducing hydrologic model uncertainty in monthly streamflow predictions using multimodel combination
NASA Astrophysics Data System (ADS)
Li, Weihua; Sankarasubramanian, A.
2012-12-01
Model errors are inevitable in any prediction exercise. One approach that is currently gaining attention in reducing model errors is by combining multiple models to develop improved predictions. The rationale behind this approach primarily lies on the premise that optimal weights could be derived for each model so that the developed multimodel predictions will result in improved predictions. A new dynamic approach (MM-1) to combine multiple hydrological models by evaluating their performance/skill contingent on the predictor state is proposed. We combine two hydrological models, "abcd" model and variable infiltration capacity (VIC) model, to develop multimodel streamflow predictions. To quantify precisely under what conditions the multimodel combination results in improved predictions, we compare multimodel scheme MM-1 with optimal model combination scheme (MM-O) by employing them in predicting the streamflow generated from a known hydrologic model (abcd model orVICmodel) with heteroscedastic error variance as well as from a hydrologic model that exhibits different structure than that of the candidate models (i.e., "abcd" model or VIC model). Results from the study show that streamflow estimated from single models performed better than multimodels under almost no measurement error. However, under increased measurement errors and model structural misspecification, both multimodel schemes (MM-1 and MM-O) consistently performed better than the single model prediction. Overall, MM-1 performs better than MM-O in predicting the monthly flow values as well as in predicting extreme monthly flows. Comparison of the weights obtained from each candidate model reveals that as measurement errors increase, MM-1 assigns weights equally for all the models, whereas MM-O assigns higher weights for always the best-performing candidate model under the calibration period. Applying the multimodel algorithms for predicting streamflows over four different sites revealed that MM-1 performs better than all single models and optimal model combination scheme, MM-O, in predicting the monthly flows as well as the flows during wetter months.
Boden, Lisa A; McKendrick, Iain J
2017-01-01
Mathematical models are increasingly relied upon as decision support tools, which estimate risks and generate recommendations to underpin public health policies. However, there are no formal agreements about what constitutes professional competencies or duties in mathematical modeling for public health. In this article, we propose a framework to evaluate whether mathematical models that assess human and animal disease risks and control strategies meet standards consistent with ethical "good practice" and are thus "fit for purpose" as evidence in support of policy. This framework is derived from principles of biomedical ethics: independence, transparency (autonomy), beneficence/non-maleficence, and justice. We identify ethical risks associated with model development and implementation and consider the extent to which scientists are accountable for the translation and communication of model results to policymakers so that the strengths and weaknesses of the scientific evidence base and any socioeconomic and ethical impacts of biased or uncertain predictions are clearly understood. We propose principles to operationalize a framework for ethically sound model development and risk communication between scientists and policymakers. These include the creation of science-policy partnerships to mutually define policy questions and communicate results; development of harmonized international standards for model development; and data stewardship and improvement of the traceability and transparency of models via a searchable archive of policy-relevant models. Finally, we suggest that bespoke ethical advisory groups, with relevant expertise and access to these resources, would be beneficial as a bridge between science and policy, advising modelers of potential ethical risks and providing overview of the translation of modeling advice into policy.
Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Manajit; Gotseff, Peter
2013-12-01
This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear skymore » model performance.« less
Nonlinear Dynamic Modeling and Controls Development for Supersonic Propulsion System Research
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Kopasakis, George; Paxson, Daniel E.; Stuber, Eric; Woolwine, Kyle
2012-01-01
This paper covers the propulsion system component modeling and controls development of an integrated nonlinear dynamic simulation for an inlet and engine that can be used for an overall vehicle (APSE) model. The focus here is on developing a methodology for the propulsion model integration, which allows for controls design that prevents inlet instabilities and minimizes the thrust oscillation experienced by the vehicle. Limiting thrust oscillations will be critical to avoid exciting vehicle aeroelastic modes. Model development includes both inlet normal shock position control and engine rotor speed control for a potential supersonic commercial transport. A loop shaping control design process is used that has previously been developed for the engine and verified on linear models, while a simpler approach is used for the inlet control design. Verification of the modeling approach is conducted by simulating a two-dimensional bifurcated inlet and a representative J-85 jet engine previously used in a NASA supersonics project. Preliminary results are presented for the current supersonics project concept variable cycle turbofan engine design.
Modelling a single phase voltage controlled rectifier using Laplace transforms
NASA Technical Reports Server (NTRS)
Kraft, L. Alan; Kankam, M. David
1992-01-01
The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.
ERIC Educational Resources Information Center
Hadromi; Rachman, Maman; Soesanto; Kartana, Tri Jaka
2015-01-01
The purpose of this research is to develop automotive Mechanical Technology Skill Program (TMO) in Vocational School. The Research and Development (R&D) object was done in SMK 1, 4 and 7 Semarang, Indonesia. The result was achieved productivity Practical Management Final Model at TMO skill Program in Vocational school named momanticproter.…
ERIC Educational Resources Information Center
Smith, Calvin
2008-01-01
This paper describes the development of a model for integrating student evaluation of teaching results with academic development opportunities, in new ways that take into account theoretical and practical developments in both fields. The model is described in terms of five phases or components: (1) the basic student evaluation system; (2) an…
Integrated Control Modeling for Propulsion Systems Using NPSS
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Felder, James L.; Lavelle, Thomas M.; Withrow, Colleen A.; Yu, Albert Y.; Lehmann, William V. A.
2004-01-01
The Numerical Propulsion System Simulation (NPSS), an advanced engineering simulation environment used to design and analyze aircraft engines, has been enhanced by integrating control development tools into it. One of these tools is a generic controller interface that allows NPSS to communicate with control development software environments such as MATLAB and EASY5. The other tool is a linear model generator (LMG) that gives NPSS the ability to generate linear, time-invariant state-space models. Integrating these tools into NPSS enables it to be used for control system development. This paper will discuss the development and integration of these tools into NPSS. In addition, it will show a comparison of transient model results of a generic, dual-spool, military-type engine model that has been implemented in NPSS and Simulink. It will also show the linear model generator s ability to approximate the dynamics of a nonlinear NPSS engine model.
Ski jump takeoff performance predictions for a mixed-flow, remote-lift STOVL aircraft
NASA Technical Reports Server (NTRS)
Birckelbaw, Lourdes G.
1992-01-01
A ski jump model was developed to predict ski jump takeoff performance for a short takeoff and vertical landing (STOVL) aircraft. The objective was to verify the model with results from a piloted simulation of a mixed flow, remote lift STOVL aircraft. The prediction model is discussed. The predicted results are compared with the piloted simulation results. The ski jump model can be utilized for basic research of other thrust vectoring STOVL aircraft performing a ski jump takeoff.
NASA Astrophysics Data System (ADS)
Oliveira, N. P.; Maciel, L.; Catarino, A. P.; Rocha, A. M.
2017-10-01
This work proposes the creation of models of surfaces using a parametric computer modelling software to obtain three-dimensional structures in weft knitted fabrics produced on single needle system machines. Digital prototyping, another feature of digital modelling software, was also explored in three-dimensional drawings generated using the Rhinoceros software. With this approach, different 3D structures were developed and produced. Physical characterization tests were then performed on the resulting 3D weft knitted structures to assess their ability to promote comfort. From the obtained results, it is apparent that the developed structures have potential for application in different market segments, such as clothing and interior textiles.
Modeling the target acquisition performance of active imaging systems
NASA Astrophysics Data System (ADS)
Espinola, Richard L.; Jacobs, Eddie L.; Halford, Carl E.; Vollmerhausen, Richard; Tofsted, David H.
2007-04-01
Recent development of active imaging system technology in the defense and security community have driven the need for a theoretical understanding of its operation and performance in military applications such as target acquisition. In this paper, the modeling of active imaging systems, developed at the U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate, is presented with particular emphasis on the impact of coherent effects such as speckle and atmospheric scintillation. Experimental results from human perception tests are in good agreement with the model results, validating the modeling of coherent effects as additional noise sources. Example trade studies on the design of a conceptual active imaging system to mitigate deleterious coherent effects are shown.
Modeling the target acquisition performance of active imaging systems.
Espinola, Richard L; Jacobs, Eddie L; Halford, Carl E; Vollmerhausen, Richard; Tofsted, David H
2007-04-02
Recent development of active imaging system technology in the defense and security community have driven the need for a theoretical understanding of its operation and performance in military applications such as target acquisition. In this paper, the modeling of active imaging systems, developed at the U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate, is presented with particular emphasis on the impact of coherent effects such as speckle and atmospheric scintillation. Experimental results from human perception tests are in good agreement with the model results, validating the modeling of coherent effects as additional noise sources. Example trade studies on the design of a conceptual active imaging system to mitigate deleterious coherent effects are shown.
Computation of Turbulent Wake Flows in Variable Pressure Gradient
NASA Technical Reports Server (NTRS)
Duquesne, N.; Carlson, J. R.; Rumsey, C. L.; Gatski, T. B.
1999-01-01
Transport aircraft performance is strongly influenced by the effectiveness of high-lift systems. Developing wakes generated by the airfoil elements are subjected to strong pressure gradients and can thicken very rapidly, limiting maximum lift. This paper focuses on the effects of various pressure gradients on developing symmetric wakes and on the ability of a linear eddy viscosity model and a non-linear explicit algebraic stress model to accurately predict their downstream evolution. In order to reduce the uncertainties arising from numerical issues when assessing the performance of turbulence models, three different numerical codes with the same turbulence models are used. Results are compared to available experimental data to assess the accuracy of the computational results.
Statistical Techniques Complement UML When Developing Domain Models of Complex Dynamical Biosystems.
Williams, Richard A; Timmis, Jon; Qwarnstrom, Eva E
2016-01-01
Computational modelling and simulation is increasingly being used to complement traditional wet-lab techniques when investigating the mechanistic behaviours of complex biological systems. In order to ensure computational models are fit for purpose, it is essential that the abstracted view of biology captured in the computational model, is clearly and unambiguously defined within a conceptual model of the biological domain (a domain model), that acts to accurately represent the biological system and to document the functional requirements for the resultant computational model. We present a domain model of the IL-1 stimulated NF-κB signalling pathway, which unambiguously defines the spatial, temporal and stochastic requirements for our future computational model. Through the development of this model, we observe that, in isolation, UML is not sufficient for the purpose of creating a domain model, and that a number of descriptive and multivariate statistical techniques provide complementary perspectives, in particular when modelling the heterogeneity of dynamics at the single-cell level. We believe this approach of using UML to define the structure and interactions within a complex system, along with statistics to define the stochastic and dynamic nature of complex systems, is crucial for ensuring that conceptual models of complex dynamical biosystems, which are developed using UML, are fit for purpose, and unambiguously define the functional requirements for the resultant computational model.
Statistical Techniques Complement UML When Developing Domain Models of Complex Dynamical Biosystems
Timmis, Jon; Qwarnstrom, Eva E.
2016-01-01
Computational modelling and simulation is increasingly being used to complement traditional wet-lab techniques when investigating the mechanistic behaviours of complex biological systems. In order to ensure computational models are fit for purpose, it is essential that the abstracted view of biology captured in the computational model, is clearly and unambiguously defined within a conceptual model of the biological domain (a domain model), that acts to accurately represent the biological system and to document the functional requirements for the resultant computational model. We present a domain model of the IL-1 stimulated NF-κB signalling pathway, which unambiguously defines the spatial, temporal and stochastic requirements for our future computational model. Through the development of this model, we observe that, in isolation, UML is not sufficient for the purpose of creating a domain model, and that a number of descriptive and multivariate statistical techniques provide complementary perspectives, in particular when modelling the heterogeneity of dynamics at the single-cell level. We believe this approach of using UML to define the structure and interactions within a complex system, along with statistics to define the stochastic and dynamic nature of complex systems, is crucial for ensuring that conceptual models of complex dynamical biosystems, which are developed using UML, are fit for purpose, and unambiguously define the functional requirements for the resultant computational model. PMID:27571414
NASA Astrophysics Data System (ADS)
Yakunin, Alexander N.; Aban'shin, Nikolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Akchurin, Garif G.
2018-04-01
A model for calculating the electrostatic field in the system "probe of a tunnel microscope - a nanostructure based on a DLC film" was developed. A finite-element modeling of the localization of the field was carried out, taking into account the morphological and topological features of the nanostructure. The obtained results and their interpretation contribute to the development of the concepts to the model of tunnel electric transport processes. The possibility for effective usage of the tunneling microscopy methods in the development of new nanophotonic devices is shown.
A class of multi-period semi-variance portfolio for petroleum exploration and development
NASA Astrophysics Data System (ADS)
Guo, Qiulin; Li, Jianzhong; Zou, Caineng; Guo, Yujuan; Yan, Wei
2012-10-01
Variance is substituted by semi-variance in Markowitz's portfolio selection model. For dynamic valuation on exploration and development projects, one period portfolio selection is extended to multi-period. In this article, a class of multi-period semi-variance exploration and development portfolio model is formulated originally. Besides, a hybrid genetic algorithm, which makes use of the position displacement strategy of the particle swarm optimiser as a mutation operation, is applied to solve the multi-period semi-variance model. For this class of portfolio model, numerical results show that the mode is effective and feasible.
Numerical modeling of local scour around hydraulic structure in sandy beds by dynamic mesh method
NASA Astrophysics Data System (ADS)
Fan, Fei; Liang, Bingchen; Bai, Yuchuan; Zhu, Zhixia; Zhu, Yanjun
2017-10-01
Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.
Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.
Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza
2015-09-15
The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible. Copyright © 2015 Elsevier Ltd. All rights reserved.
Development and weighting of a life cycle assessment screening model
NASA Astrophysics Data System (ADS)
Bates, Wayne E.; O'Shaughnessy, James; Johnson, Sharon A.; Sisson, Richard
2004-02-01
Nearly all life cycle assessment tools available today are high priced, comprehensive and quantitative models requiring a significant amount of data collection and data input. In addition, most of the available software packages require a great deal of training time to learn how to operate the model software. Even after this time investment, results are not guaranteed because of the number of estimations and assumptions often necessary to run the model. As a result, product development, design teams and environmental specialists need a simplified tool that will allow for the qualitative evaluation and "screening" of various design options. This paper presents the development and design of a generic, qualitative life cycle screening model and demonstrates its applicability and ease of use. The model uses qualitative environmental, health and safety factors, based on site or product-specific issues, to sensitize the overall results for a given set of conditions. The paper also evaluates the impact of different population input ranking values on model output. The final analysis is based on site or product-specific variables. The user can then evaluate various design changes and the apparent impact or improvement on the environment, health and safety, compliance cost and overall corporate liability. Major input parameters can be varied, and factors such as materials use, pollution prevention, waste minimization, worker safety, product life, environmental impacts, return of investment, and recycle are evaluated. The flexibility of the model format will be discussed in order to demonstrate the applicability and usefulness within nearly any industry sector. Finally, an example using audience input value scores will be compared to other population input results.
Development of a Skin Burn Predictive Model adapted to Laser Irradiation
NASA Astrophysics Data System (ADS)
Sonneck-Museux, N.; Scheer, E.; Perez, L.; Agay, D.; Autrique, L.
2016-12-01
Laser technology is increasingly used, and it is crucial for both safety and medical reasons that the impact of laser irradiation on human skin can be accurately predicted. This study is mainly focused on laser-skin interactions and potential lesions (burns). A mathematical model dedicated to heat transfers in skin exposed to infrared laser radiations has been developed. The model is validated by studying heat transfers in human skin and simultaneously performing experimentations an animal model (pig). For all experimental tests, pig's skin surface temperature is recorded. Three laser wavelengths have been tested: 808 nm, 1940 nm and 10 600 nm. The first is a diode laser producing radiation absorbed deep within the skin. The second wavelength has a more superficial effect. For the third wavelength, skin is an opaque material. The validity of the developed models is verified by comparison with experimental results (in vivo tests) and the results of previous studies reported in the literature. The comparison shows that the models accurately predict the burn degree caused by laser radiation over a wide range of conditions. The results show that the important parameter for burn prediction is the extinction coefficient. For the 1940 nm wavelength especially, significant differences between modeling results and literature have been observed, mainly due to this coefficient's value. This new model can be used as a predictive tool in order to estimate the amount of injury induced by several types (couple power-time) of laser aggressions on the arm, the face and on the palm of the hand.
Further two-dimensional code development for Stirling space engine components
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.
1990-01-01
The development of multidimensional models of Stirling engine components is described. Two-dimensional parallel plate models of an engine regenerator and a cooler were used to study heat transfer under conditions of laminar, incompressible oscillating flow. Substantial differences in the nature of the temperature variations in time over the cycle were observed for the cooler as contrasted with the regenerator. When the two-dimensional cooler model was used to calculate a heat transfer coefficient, it yields a very different result from that calculated using steady-flow correlations. Simulation results for the regenerator and the cooler are presented.
Composite panel development at JPL
NASA Technical Reports Server (NTRS)
Mcelroy, Paul; Helms, Rich
1988-01-01
Parametric computer studies can be use in a cost effective manner to determine optimized composite mirror panel designs. An InterDisciplinary computer Model (IDM) was created to aid in the development of high precision reflector panels for LDR. The materials properties, thermal responses, structural geometries, and radio/optical precision are synergistically analyzed for specific panel designs. Promising panels designs are fabricated and tested so that comparison with panel test results can be used to verify performance prediction models and accommodate design refinement. The iterative approach of computer design and model refinement with performance testing and materials optimization has shown good results for LDR panels.
NASA Astrophysics Data System (ADS)
Couvidat, Florian; Bessagnet, Bertrand; Garcia-Vivanco, Marta; Real, Elsa; Menut, Laurent; Colette, Augustin
2018-01-01
A new aerosol module was developed and integrated in the air quality model CHIMERE. Developments include the use of the Model of Emissions and Gases and Aerosols from Nature (MEGAN) 2.1 for biogenic emissions, the implementation of the inorganic thermodynamic model ISORROPIA 2.1, revision of wet deposition processes and of the algorithms of condensation/evaporation and coagulation and the implementation of the secondary organic aerosol (SOA) mechanism H2O and the thermodynamic model SOAP. Concentrations of particles over Europe were simulated by the model for the year 2013. Model concentrations were compared to the European Monitoring and Evaluation Programme (EMEP) observations and other observations available in the EBAS database to evaluate the performance of the model. Performances were determined for several components of particles (sea salt, sulfate, ammonium, nitrate, organic aerosol) with a seasonal and regional analysis of results. The model gives satisfactory performance in general. For sea salt, the model succeeds in reproducing the seasonal evolution of concentrations for western and central Europe. For sulfate, except for an overestimation of sulfate in northern Europe, modeled concentrations are close to observations and the model succeeds in reproducing the seasonal evolution of concentrations. For organic aerosol, the model reproduces with satisfactory results concentrations for stations with strong modeled biogenic SOA concentrations. However, the model strongly overestimates ammonium nitrate concentrations during late autumn (possibly due to problems in the temporal evolution of emissions) and strongly underestimates summer organic aerosol concentrations over most of the stations (especially in the northern half of Europe). This underestimation could be due to a lack of anthropogenic SOA or biogenic emissions in northern Europe. A list of recommended tests and developments to improve the model is also given.
Detection of driver engagement in secondary tasks from observed naturalistic driving behavior.
Ye, Mengqiu; Osman, Osama A; Ishak, Sherif; Hashemi, Bita
2017-09-01
Distracted driving has long been acknowledged as one of the leading causes of death or injury in roadway crashes. The focus of past research has been mainly on the impact of different causes of distraction on driving behavior. However, only a few studies attempted to address how some driving behavior attributes could be linked to the cause of distraction. In essence, this study takes advantage of the rich SHRP 2 Naturalistic Driving Study (NDS) database to develop a model for detecting the likelihood of a driver's involvement in secondary tasks from distinctive attributes of driving behavior. Five performance attributes, namely speed, longitudinal acceleration, lateral acceleration, yaw rate, and throttle position were used to describe the driving behavior. A model was developed for each of three selected secondary tasks: calling, texting, and passenger interaction. The models were developed using a supervised feed-forward Artificial Neural Network (ANN) architecture to account for the effect of inherent nonlinearity in the relationships between driving behavior and secondary tasks. The results show that the developed ANN models were able to detect the drivers' involvement in calling, texting, and passenger interaction with an overall accuracy of 99.5%, 98.1%, and 99.8%, respectively. These results show that the selected driving performance attributes were effective in detecting the associated secondary tasks with driving behavior. The results are very promising and the developed models could potentially be applied in crash investigations to resolve legal disputes in traffic accidents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Verification of a Quality Management Theory: Using a Delphi Study
Mosadeghrad, Ali Mohammad
2013-01-01
Background: A model of quality management called Strategic Collaborative Quality Management (SCQM) model was developed based on the quality management literature review, the findings of a survey on quality management assessment in healthcare organisations, semi-structured interviews with healthcare stakeholders, and a Delphi study on healthcare quality management experts. The purpose of this study was to verify the SCQM model. Methods: The proposed model was further developed using feedback from thirty quality management experts using a Delphi method. Further, a guidebook for its implementation was prepared including a road map and performance measurement. Results: The research led to the development of a context-specific model of quality management for healthcare organisations and a series of guidelines for its implementation. Conclusion: A proper model of quality management should be developed and implemented properly in healthcare organisations to achieve business excellence. PMID:24596883
Development of a dynamic traffic assignment model to evaluate lane-reversal plans for I-65.
DOT National Transportation Integrated Search
2010-05-01
This report presents the methodology and results from a project that studied contra-flow operations in support of : hurricane evacuations in the state of Alabama. As part of this effort, a simulation model was developed using the : VISTA platform for...
Seeking a Multi-Construct Model of Morality
ERIC Educational Resources Information Center
McDaniel, Brenda L.; Grice, James W.; Eason, E. Allen
2010-01-01
The present study explored a multi-construct model of moral development. Variables commonly seen in the moral development literature, such as family interactions, spiritual life, ascription to various sources of moral authority, empathy, shame, guilt and moral judgement competence, were investigated. Results from the current study support previous…
The Consolidation/Transition Model in Moral Reasoning Development.
ERIC Educational Resources Information Center
Walker, Lawrence J.; Gustafson, Paul; Hennig, Karl H.
2001-01-01
This longitudinal study with 62 children and adolescents examined the validity of the consolidation/transition model in the context of moral reasoning development. Results of standard statistical and Bayesian techniques supported the hypotheses regarding cyclical patterns of change and predictors of stage transition, and demonstrated the utility…
Bell, P M; Crumpton, L
1997-08-01
This research presents the development and evaluation of a fuzzy linguistic model designated to predict the risk of carpal tunnel syndrome (CTS) in an occupational setting. CTS has become one of the largest problems facing ergonomists and the medical community because it is developing in epidemic proportions within the occupational environment. In addition, practitioners are interested in identifying accurate methods for evaluating the risk of CTS in an occupational setting. It is hypothesized that many factors impact an individual's likelihood of developing CTS and the eventual development of CTS. This disparity in the occurrence of CTS for workers with similar backgrounds and work activities has confused researchers and has been a stumbling block in the development of a model for widespread use in evaluating the development of CTS. Thus this research is an attempt to develop a method that can be used to predict the likelihood of CTS risk in a variety of environments. The intent is that this model will be applied eventually in an occupational setting, thus model development was focused on a method that provided a usable interface and the desired system inputs can also be obtained without the benefit of a medical practitioner. The methodology involves knowledge acquisition to identify and categorize a holistic set of risk factors that include task-related, personal, and organizational categories. The determination of relative factor importance was accomplished using analytic hierarchy processing (AHP) analysis. Finally a mathematical representation of the CTS risk was accomplished by utilizing fuzzy set theory in order to quantify linguistic input parameters. An evaluation of the model including determination of sensitivity and specificity is conducted and the results of the model indicate that the results are fairly accurate and this method has the potential for widespread use. A significant aspect of this research is the comparison of this technique to other methods for assessing presence of CTS. The results of this evaluation technique are compared with more traditional methods for assessing the presence of CTS.
Modeling for Battery Prognostics
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.; Goebel, Kai; Khasin, Michael; Hogge, Edward; Quach, Patrick
2017-01-01
For any battery-powered vehicles (be it unmanned aerial vehicles, small passenger aircraft, or assets in exoplanetary operations) to operate at maximum efficiency and reliability, it is critical to monitor battery health as well performance and to predict end of discharge (EOD) and end of useful life (EOL). To fulfil these needs, it is important to capture the battery's inherent characteristics as well as operational knowledge in the form of models that can be used by monitoring, diagnostic, and prognostic algorithms. Several battery modeling methodologies have been developed in last few years as the understanding of underlying electrochemical mechanics has been advancing. The models can generally be classified as empirical models, electrochemical engineering models, multi-physics models, and molecular/atomist. Empirical models are based on fitting certain functions to past experimental data, without making use of any physicochemical principles. Electrical circuit equivalent models are an example of such empirical models. Electrochemical engineering models are typically continuum models that include electrochemical kinetics and transport phenomena. Each model has its advantages and disadvantages. The former type of model has the advantage of being computationally efficient, but has limited accuracy and robustness, due to the approximations used in developed model, and as a result of such approximations, cannot represent aging well. The latter type of model has the advantage of being very accurate, but is often computationally inefficient, having to solve complex sets of partial differential equations, and thus not suited well for online prognostic applications. In addition both multi-physics and atomist models are computationally expensive hence are even less suited to online application An electrochemistry-based model of Li-ion batteries has been developed, that captures crucial electrochemical processes, captures effects of aging, is computationally efficient, and is of suitable accuracy for reliable EOD prediction in a variety of operational profiles. The model can be considered an electrochemical engineering model, but unlike most such models found in the literature, certain approximations are done that allow to retain computational efficiency for online implementation of the model. Although the focus here is on Li-ion batteries, the model is quite general and can be applied to different chemistries through a change of model parameter values. Progress on model development, providing model validation results and EOD prediction results is being presented.
NASA Astrophysics Data System (ADS)
Ammouri, Aymen; Ben Salah, Walid; Khachroumi, Sofiane; Ben Salah, Tarek; Kourda, Ferid; Morel, Hervé
2014-05-01
Design of integrated power converters needs prototype-less approaches. Specific simulations are required for investigation and validation process. Simulation relies on active and passive device models. Models of planar devices, for instance, are still not available in power simulator tools. There is, thus, a specific limitation during the simulation process of integrated power systems. The paper focuses on the development of a physically-based planar inductor model and its validation inside a power converter during transient switching. The planar inductor model remains a complex device to model, particularly when the skin, the proximity and the parasitic capacitances effects are taken into account. Heterogeneous simulation scheme, including circuit and device models, is successfully implemented in VHDL-AMS language and simulated in Simplorer platform. The mixed simulation results has been favorably tested and compared with practical measurements. It is found that the multi-domain simulation results and measurements data are in close agreement.
Models, Measurements, and Local Decisions: Assessing and ...
This presentation includes a combination of modeling and measurement results to characterize near-source air quality in Newark, New Jersey with consideration of how this information could be used to inform decision making to reduce risk of health impacts. Decisions could include either exposure or emissions reduction, and a host of stakeholders, including residents, academics, NGOs, local and federal agencies. This presentation includes results from the C-PORT modeling system, and from a citizen science project from the local area. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.
All-in-one model for designing optimal water distribution pipe networks
NASA Astrophysics Data System (ADS)
Aklog, Dagnachew; Hosoi, Yoshihiko
2017-05-01
This paper discusses the development of an easy-to-use, all-in-one model for designing optimal water distribution networks. The model combines different optimization techniques into a single package in which a user can easily choose what optimizer to use and compare the results of different optimizers to gain confidence in the performances of the models. At present, three optimization techniques are included in the model: linear programming (LP), genetic algorithm (GA) and a heuristic one-by-one reduction method (OBORM) that was previously developed by the authors. The optimizers were tested on a number of benchmark problems and performed very well in terms of finding optimal or near-optimal solutions with a reasonable computation effort. The results indicate that the model effectively addresses the issues of complexity and limited performance trust associated with previous models and can thus be used for practical purposes.
Detailed Modeling of Distillation Technologies for Closed-Loop Water Recovery Systems
NASA Technical Reports Server (NTRS)
Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.
2011-01-01
Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA?s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents efforts to develop chemical process simulations for three technologies: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system and the Wiped-Film Rotating Disk (WFRD) using the Aspen Custom Modeler and Aspen Plus process simulation tools. The paper discusses system design, modeling details, and modeling results for each technology and presents some comparisons between the model results and recent test data. Following these initial comparisons, some general conclusions and forward work are discussed.
NACA0012 benchmark model experimental flutter results with unsteady pressure distributions
NASA Technical Reports Server (NTRS)
Rivera, Jose A., Jr.; Dansberry, Bryan E.; Bennett, Robert M.; Durham, Michael H.; Silva, Walter A.
1992-01-01
The Structural Dynamics Division at NASA Langley Research Center has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of this program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type computational fluid dynamics codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. This paper describes results obtained from a second wind tunnel test of the first model in the Benchmark Models Program. This first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree of freedom mount system. Experimental flutter boundaries and corresponding unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations are presented.
The hybrid RANS/LES of partially premixed supersonic combustion using G/Z flamelet model
NASA Astrophysics Data System (ADS)
Wu, Jinshui; Wang, Zhenguo; Bai, Xuesong; Sun, Mingbo; Wang, Hongbo
2016-10-01
In order to describe partially premixed supersonic combustion numerically, G/Z flamelet model is developed and compared with finite rate model in hybrid RANS/LES simulation to study the strut-injection supersonic combustion flow field designed by the German Aerospace Center. A new temperature calculation method based on time-splitting method of total energy is introduced in G/Z flamelet model. Simulation results show that temperature predictions in partially premixed zone by G/Z flamelet model are more consistent with experiment than finite rate model. It is worth mentioning that low temperature reaction zone behind the strut is well reproduced. Other quantities such as average velocity and average velocity fluctuation obtained by developed G/Z flamelet model are also in good agreement with experiment. Besides, simulation results by G/Z flamelet also reveal the mechanism of partially premixed supersonic combustion by the analyses of the interaction between turbulent burning velocity and flow field.
Mechanics of airflow in the human nasal airways.
Doorly, D J; Taylor, D J; Schroter, R C
2008-11-30
The mechanics of airflow in the human nasal airways is reviewed, drawing on the findings of experimental and computational model studies. Modelling inevitably requires simplifications and assumptions, particularly given the complexity of the nasal airways. The processes entailed in modelling the nasal airways (from defining the model, to its production and, finally, validating the results) is critically examined, both for physical models and for computational simulations. Uncertainty still surrounds the appropriateness of the various assumptions made in modelling, particularly with regard to the nature of flow. New results are presented in which high-speed particle image velocimetry (PIV) and direct numerical simulation are applied to investigate the development of flow instability in the nasal cavity. These illustrate some of the improved capabilities afforded by technological developments for future model studies. The need for further improvements in characterising airway geometry and flow together with promising new methods are briefly discussed.
Effect of tropospheric models on derived precipitable water vapor over Southeast Asia
NASA Astrophysics Data System (ADS)
Rahimi, Zhoobin; Mohd Shafri, Helmi Zulhaidi; Othman, Faridah; Norman, Masayu
2017-05-01
An interesting subject in the field of GPS technology is estimating variation of precipitable water vapor (PWV). This estimation can be used as a data source to assess and monitor rapid changes in meteorological conditions. So far, numerous GPS stations are distributed across the world and the number of GPS networks is increasing. Despite these developments, a challenging aspect of estimating PWV through GPS networks is the need of tropospheric parameters such as temperature, pressure, and relative humidity (Liu et al., 2015). To estimate the tropospheric parameters, global pressure temperature (GPT) model developed by Boehm et al. (2007) is widely used in geodetic analysis for GPS observations. To improve the accuracy, Lagler et al. (2013) introduced GPT2 model by adding annual and semi-annual variation effects to GPT model. Furthermore, Boehm et al. (2015) proposed the GPT2 wet (GPT2w) model which uses water vapor pressure to improve the calculations. The global accuracy of GPT2 and GPT2w models has been evaluated by previous researches (Fund et al., 2011; Munekane and Boehm, 2010); however, investigations to assess the accuracy of global tropospheric models in tropical regions such as Southeast Asia is not sufficient. This study tests and examines the accuracy of GPT2w as one of the most recent versions of tropospheric models (Boehm et al., 2015). We developed a new regional model called Malaysian Pressure Temperature (MPT) model, and compared this model with GPT2w model. The compared results at one international GNSS service (IGS) station located in the south of Peninsula Malaysia shows that MPT model has a better performance than GPT2w model to produce PWV during monsoon season. According to the results, MPT has improved the accuracy of estimated pressure and temperature by 30% and 10%, respectively, in comparison with GPT2w model. These results indicate that MPT model can be a good alternative tool in the absence of meteorological sensors at GPS stations in Peninsula Malaysia. Therefore, for GPS-based studies, we recommend MPT model to be used as a complementary tool for the Malaysia Real-Time Kinematic Network to develop a real-time PWV monitoring system.
NASA Astrophysics Data System (ADS)
Sadi, Maryam
2018-01-01
In this study a group method of data handling model has been successfully developed to predict heat capacity of ionic liquid based nanofluids by considering reduced temperature, acentric factor and molecular weight of ionic liquids, and nanoparticle concentration as input parameters. In order to accomplish modeling, 528 experimental data points extracted from the literature have been divided into training and testing subsets. The training set has been used to predict model coefficients and the testing set has been applied for model validation. The ability and accuracy of developed model, has been evaluated by comparison of model predictions with experimental values using different statistical parameters such as coefficient of determination, mean square error and mean absolute percentage error. The mean absolute percentage error of developed model for training and testing sets are 1.38% and 1.66%, respectively, which indicate excellent agreement between model predictions and experimental data. Also, the results estimated by the developed GMDH model exhibit a higher accuracy when compared to the available theoretical correlations.
Stochastic models for inferring genetic regulation from microarray gene expression data.
Tian, Tianhai
2010-03-01
Microarray expression profiles are inherently noisy and many different sources of variation exist in microarray experiments. It is still a significant challenge to develop stochastic models to realize noise in microarray expression profiles, which has profound influence on the reverse engineering of genetic regulation. Using the target genes of the tumour suppressor gene p53 as the test problem, we developed stochastic differential equation models and established the relationship between the noise strength of stochastic models and parameters of an error model for describing the distribution of the microarray measurements. Numerical results indicate that the simulated variance from stochastic models with a stochastic degradation process can be represented by a monomial in terms of the hybridization intensity and the order of the monomial depends on the type of stochastic process. The developed stochastic models with multiple stochastic processes generated simulations whose variance is consistent with the prediction of the error model. This work also established a general method to develop stochastic models from experimental information. 2009 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Krishnan, Govindarajapuram Subramaniam
1997-12-01
The National Aeronautics & Space Administration (NASA), the European Space Agency (ESA), and the Canadian Space Agency (CSA) missions involve the performance of scientific experiments in Space. Instruments used in such experiments are fabricated using electronic parts such as microcircuits, inductors, capacitors, diodes, transistors, etc. For instruments to perform reliably the selection of commercial parts must be monitored and strictly controlled. The process used to achieve this goal is by a manual review and approval of every part used to build the instrument. The present system to select and approve parts for space applications is manual, inefficient, inconsistent, slow and tedious, and very costly. In this dissertation a computer based decision support model is developed for implementing this process using artificial intelligence concepts based on the current information (expert sources). Such a model would result in a greater consistency, accuracy, and timeliness of evaluation. This study presents the methodology of development and features of the model, and the analysis of the data pertaining to the performance of the model in the field. The model was evaluated for three different part types by experts from three different space agencies. The results show that the model was more consistent than the manual evaluation for all part types considered. The study concludes with the cost and benefits analysis of implementing the models and shows that implementation of the model will result in significant cost savings. Other implementation details are highlighted.
Design and development of a community carbon cycle benchmarking system for CMIP5 models
NASA Astrophysics Data System (ADS)
Mu, M.; Hoffman, F. M.; Lawrence, D. M.; Riley, W. J.; Keppel-Aleks, G.; Randerson, J. T.
2013-12-01
Benchmarking has been widely used to assess the ability of atmosphere, ocean, sea ice, and land surface models to capture the spatial and temporal variability of observations during the historical period. For the carbon cycle and terrestrial ecosystems, the design and development of an open-source community platform has been an important goal as part of the International Land Model Benchmarking (ILAMB) project. Here we designed and developed a software system that enables the user to specify the models, benchmarks, and scoring systems so that results can be tailored to specific model intercomparison projects. We used this system to evaluate the performance of CMIP5 Earth system models (ESMs). Our scoring system used information from four different aspects of climate, including the climatological mean spatial pattern of gridded surface variables, seasonal cycle dynamics, the amplitude of interannual variability, and long-term decadal trends. We used this system to evaluate burned area, global biomass stocks, net ecosystem exchange, gross primary production, and ecosystem respiration from CMIP5 historical simulations. Initial results indicated that the multi-model mean often performed better than many of the individual models for most of the observational constraints.
Watkins, B M; Smith, G M; Little, R H; Kessler, J
1999-04-01
Recent developments in performance standards for proposed high level radioactive waste disposal at Yucca Mountain suggest that health risk or dose rate limits will likely be part of future standards. Approaches to the development of biosphere modeling and dose assessments for Yucca Mountain have been relatively lacking in previous performance assessments due to the absence of such a requirement. This paper describes a practical methodology used to develop a biosphere model appropriate for calculating doses from use of well water by hypothetical individuals due to discharges of contaminated groundwater into a deep well. The biosphere model methodology, developed in parallel with the BIOMOVS II international study, allows a transparent recording of the decisions at each step, from the specification of the biosphere assessment context through to model development and analysis of results. A list of features, events, and processes relevant to Yucca Mountain was recorded and an interaction matrix developed to help identify relationships between them. Special consideration was given to critical/potential exposure group issues and approaches. The conceptual model of the biosphere system was then developed, based on the interaction matrix, to show how radionuclides migrate and accumulate in the biosphere media and result in potential exposure pathways. A mathematical dose assessment model was specified using the flexible AMBER software application, which allows users to construct their own compartment models. The starting point for the biosphere calculations was a unit flux of each radionuclide from the groundwater in the geosphere into the drinking water in the well. For each of the 26 radionuclides considered, the most significant exposure pathways for hypothetical individuals were identified. For 14 of the radionuclides, the primary exposure pathways were identified as consumption of various crops and animal products following assumed agricultural use of the contaminated water derived from the deep well. Inhalation of dust (11 radionuclides) and external irradiation (1 radionuclide) were also identified as significant exposure modes. Contribution to the total flux to dose conversion factor from the drinking water pathway for each radionuclide was also assessed and for most radionuclides was found to be less than 10% of the total flux to dose conversion factor summed across all pathways. Some of the uncertainties related to the results were considered. The biosphere modeling results have been applied within an EPRI Total Systems Performance Assessment of Yucca Mountain. Conclusions and recommendations for future performance assessments are provided.
Computational Modeling of Space Physiology
NASA Technical Reports Server (NTRS)
Lewandowski, Beth E.; Griffin, Devon W.
2016-01-01
The Digital Astronaut Project (DAP), within NASAs Human Research Program, develops and implements computational modeling for use in the mitigation of human health and performance risks associated with long duration spaceflight. Over the past decade, DAP developed models to provide insights into space flight related changes to the central nervous system, cardiovascular system and the musculoskeletal system. Examples of the models and their applications include biomechanical models applied to advanced exercise device development, bone fracture risk quantification for mission planning, accident investigation, bone health standards development, and occupant protection. The International Space Station (ISS), in its role as a testing ground for long duration spaceflight, has been an important platform for obtaining human spaceflight data. DAP has used preflight, in-flight and post-flight data from short and long duration astronauts for computational model development and validation. Examples include preflight and post-flight bone mineral density data, muscle cross-sectional area, and muscle strength measurements. Results from computational modeling supplement space physiology research by informing experimental design. Using these computational models, DAP personnel can easily identify both important factors associated with a phenomenon and areas where data are lacking. This presentation will provide examples of DAP computational models, the data used in model development and validation, and applications of the model.
NASA Astrophysics Data System (ADS)
Sanchez, P.; Hinojosa, J.; Ruiz, R.
2005-06-01
Recently, neuromodeling methods of microwave devices have been developed. These methods are suitable for the model generation of novel devices. They allow fast and accurate simulations and optimizations. However, the development of libraries makes these methods to be a formidable task, since they require massive input-output data provided by an electromagnetic simulator or measurements and repeated artificial neural network (ANN) training. This paper presents a strategy reducing the cost of library development with the advantages of the neuromodeling methods: high accuracy, large range of geometrical and material parameters and reduced CPU time. The library models are developed from a set of base prior knowledge input (PKI) models, which take into account the characteristics common to all the models in the library, and high-level ANNs which give the library model outputs from base PKI models. This technique is illustrated for a microwave multiconductor tunable phase shifter using anisotropic substrates. Closed-form relationships have been developed and are presented in this paper. The results show good agreement with the expected ones.
Projecting manpower to attain quality
NASA Technical Reports Server (NTRS)
Rone, K. Y.
1983-01-01
The resulting model is useful as a projection tool but must be validated in order to be used as an on-going software cost engineering tool. A procedure is developed to facilitate the tracking of model projections and actual data to allow the model to be tuned. Finally, since the model must be used in an environment of overlapping development activities on a progression of software elements in development and maintenance, a manpower allocation model is developed for use in a steady state development/maintenance environment. In these days of soaring software costs it becomes increasingly important to properly manage a software development project. One element of the management task is the projection and tracking of manpower required to perform the task. In addition, since the total cost of the task is directly related to the initial quality built into the software, it becomes a necessity to project the development manpower in a way to attain that quality. An approach to projecting and tracking manpower with quality in mind is described.
Ink dating part II: Interpretation of results in a legal perspective.
Koenig, Agnès; Weyermann, Céline
2018-01-01
The development of an ink dating method requires an important investment of resources in order to step from the monitoring of ink ageing on paper to the determination of the actual age of a questioned ink entry. This article aimed at developing and evaluating the potential of three interpretation models to date ink entries in a legal perspective: (1) the threshold model comparing analytical results to tabulated values in order to determine the maximal possible age of an ink entry, (2) the trend tests that focusing on the "ageing status" of an ink entry, and (3) the likelihood ratio calculation comparing the probabilities to observe the results under at least two alternative hypotheses. This is the first report showing ink dating interpretation results on a ballpoint be ink reference population. In the first part of this paper three ageing parameters were selected as promising from the population of 25 ink entries aged during 4 to 304days: the quantity of phenoxyethanol (PE), the difference between the PE quantities contained in a naturally aged sample and an artificially aged sample (R NORM ) and the solvent loss ratio (R%). In the current part, each model was tested using the three selected ageing parameters. Results showed that threshold definition remains a simple model easily applicable in practice, but that the risk of false positive cannot be completely avoided without reducing significantly the feasibility of the ink dating approaches. The trend tests from the literature showed unreliable results and an alternative had to be developed yielding encouraging results. The likelihood ratio calculation introduced a degree of certainty to the ink dating conclusion in comparison to the threshold approach. The proposed model remains quite simple to apply in practice, but should be further developed in order to yield reliable results in practice. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Congcong; Wang, Zhijie; Liu, Sanming; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu
2017-05-01
Wind power has the advantages of being clean and non-polluting and the development of bundled wind-thermal generation power systems (BWTGSs) is one of the important means to improve wind power accommodation rate and implement “clean alternative” on generation side. A two-stage optimization strategy for BWTGSs considering wind speed forecasting results and load characteristics is proposed. By taking short-term wind speed forecasting results of generation side and load characteristics of demand side into account, a two-stage optimization model for BWTGSs is formulated. By using the environmental benefit index of BWTGSs as the objective function, supply-demand balance and generator operation as the constraints, the first-stage optimization model is developed with the chance-constrained programming theory. By using the operation cost for BWTGSs as the objective function, the second-stage optimization model is developed with the greedy algorithm. The improved PSO algorithm is employed to solve the model and numerical test verifies the effectiveness of the proposed strategy.
Improved thermodynamic modeling of the no-vent fill process and correlation with experimental data
NASA Technical Reports Server (NTRS)
Taylor, William J.; Chato, David J.
1991-01-01
The United States' plans to establish a permanent manned presence in space and to explore the Solar System created the need to efficiently handle large quantities of subcritical cryogenic fluids, particularly propellants such as liquid hydrogen and liquid oxygen, in low- to zero-gravity environments. One of the key technologies to be developed for fluid handling is the ability to transfer the cryogens between storage and spacecraft tanks. The no-vent fill method was identified as one way to perform this transfer. In order to understand how to apply this method, a model of the no-vent fill process is being developed and correlated with experimental data. The verified models then can be used to design and analyze configurations for tankage and subcritical fluid depots. The development of an improved macroscopic thermodynamic model is discussed of the no-vent fill process and the analytical results from the computer program implementation of the model are correlated with experimental results for two different test tanks.
Dynamic modeling of gearbox faults: A review
NASA Astrophysics Data System (ADS)
Liang, Xihui; Zuo, Ming J.; Feng, Zhipeng
2018-01-01
Gearbox is widely used in industrial and military applications. Due to high service load, harsh operating conditions or inevitable fatigue, faults may develop in gears. If the gear faults cannot be detected early, the health will continue to degrade, perhaps causing heavy economic loss or even catastrophe. Early fault detection and diagnosis allows properly scheduled shutdowns to prevent catastrophic failure and consequently result in a safer operation and higher cost reduction. Recently, many studies have been done to develop gearbox dynamic models with faults aiming to understand gear fault generation mechanism and then develop effective fault detection and diagnosis methods. This paper focuses on dynamics based gearbox fault modeling, detection and diagnosis. State-of-art and challenges are reviewed and discussed. This detailed literature review limits research results to the following fundamental yet key aspects: gear mesh stiffness evaluation, gearbox damage modeling and fault diagnosis techniques, gearbox transmission path modeling and method validation. In the end, a summary and some research prospects are presented.
Application of remote sensing for prediction and detection of thermal pollution, phase 2
NASA Technical Reports Server (NTRS)
Veziroglu, T. N.; Lee, S. S.
1975-01-01
The development of a predictive mathematical model for thermal pollution in connection with remote sensing measurements was continued. A rigid-lid model has been developed and its application to far-field study has been completed. The velocity and temperature fields have been computed for different atmospheric conditions and for different boundary currents produced by tidal effects. In connection with the theoretical work, six experimental studies of the two sites in question (Biscayne Bay site and Hutchinson Island site) have been carried out. The temperature fields obtained during the tests at the Biscayne Bay site have been compared with the predictions of the rigid-lid model and these results are encouraging. The rigid-lid model is also being applied to near-field study. Preliminary results for a simple case have been obtained and execution of more realistic cases has been initiated. The development of a free-surface model also been initiated. The governing equations have been formulated and the computer programs have been written.
Fluid Flow and Solidification Under Combined Action of Magnetic Fields and Microgravity
NASA Technical Reports Server (NTRS)
Li, B. Q.; Shu, Y.; Li, K.; deGroh, H. C.
2002-01-01
Mathematical models, both 2-D and 3-D, are developed to represent g-jitter induced fluid flows and their effects on solidification under combined action of magnetic fields and microgravity. The numerical model development is based on the finite element solution of governing equations describing the transient g-jitter driven fluid flows, heat transfer and solutal transport during crystal growth with and without an applied magnetic field in space vehicles. To validate the model predictions, a ground-based g-jitter simulator is developed using the oscillating wall temperatures where timely oscillating fluid flows are measured using a laser PIV system. The measurements are compared well with numerical results obtained from the numerical models. Results show that a combined action derived from magnetic damping and microgravity can be an effective means to control the melt flow and solutal transport in space single crystal growth systems.
Price, Christine A; Zavotka, Susan L; Teaford, Margaret H
2004-10-01
A collaborative partnership model was used to develop and implement a state-wide community education program on universal design. University faculty, extension professionals, older adult service agencies, service learning students, and a community retail chain made up the original partnership. This collaboration resulted in a five-stage partnership model. The model was used to develop and disseminate a consumer education program to promote aging in place. The five stages include (a) identifying partner strengths and shared learning, (b) program development, (c) implementing the universal design program, (d) facilitating collaborative outreach, and (e) shifting toward sustainable outreach. A lack of knowledge exists among consumers, builders, and health care professionals regarding strategies for aging in place. Collaborations between educators, outreach professionals, students, and a retail partner resulted in increased interest and awareness about universal design changes that enable seniors to age in place.
Signal analysis of accelerometry data using gravity-based modeling
NASA Astrophysics Data System (ADS)
Davey, Neil P.; James, Daniel A.; Anderson, Megan E.
2004-03-01
Triaxial accelerometers have been used to measure human movement parameters in swimming. Interpretation of data is difficult due to interference sources including interaction of external bodies. In this investigation the authors developed a model to simulate the physical movement of the lower back. Theoretical accelerometery outputs were derived thus giving an ideal, or noiseless dataset. An experimental data collection apparatus was developed by adapting a system to the aquatic environment for investigation of swimming. Model data was compared against recorded data and showed strong correlation. Comparison of recorded and modeled data can be used to identify changes in body movement, this is especially useful when cyclic patterns are present in the activity. Strong correlations between data sets allowed development of signal processing algorithms for swimming stroke analysis using first the pure noiseless data set which were then applied to performance data. Video analysis was also used to validate study results and has shown potential to provide acceptable results.
A CONTINUUM HARD-SPHERE MODEL OF PROTEIN ADSORPTION
Finch, Craig; Clarke, Thomas; Hickman, James J.
2012-01-01
Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro- or macro-scale CFD transport simulations of protein adsorption in practical devices. PMID:23729843
General form of a cooperative gradual maximal covering location problem
NASA Astrophysics Data System (ADS)
Bagherinejad, Jafar; Bashiri, Mahdi; Nikzad, Hamideh
2018-07-01
Cooperative and gradual covering are two new methods for developing covering location models. In this paper, a cooperative maximal covering location-allocation model is developed (CMCLAP). In addition, both cooperative and gradual covering concepts are applied to the maximal covering location simultaneously (CGMCLP). Then, we develop an integrated form of a cooperative gradual maximal covering location problem, which is called a general CGMCLP. By setting the model parameters, the proposed general model can easily be transformed into other existing models, facilitating general comparisons. The proposed models are developed without allocation for physical signals and with allocation for non-physical signals in discrete location space. Comparison of the previously introduced gradual maximal covering location problem (GMCLP) and cooperative maximal covering location problem (CMCLP) models with our proposed CGMCLP model in similar data sets shows that the proposed model can cover more demands and acts more efficiently. Sensitivity analyses are performed to show the effect of related parameters and the model's validity. Simulated annealing (SA) and a tabu search (TS) are proposed as solution algorithms for the developed models for large-sized instances. The results show that the proposed algorithms are efficient solution approaches, considering solution quality and running time.
Educational and Scientific Applications of Climate Model Diagnostic Analyzer
NASA Astrophysics Data System (ADS)
Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Zhang, J.; Bao, Q.
2016-12-01
Climate Model Diagnostic Analyzer (CMDA) is a web-based information system designed for the climate modeling and model analysis community to analyze climate data from models and observations. CMDA provides tools to diagnostically analyze climate data for model validation and improvement, and to systematically manage analysis provenance for sharing results with other investigators. CMDA utilizes cloud computing resources, multi-threading computing, machine-learning algorithms, web service technologies, and provenance-supporting technologies to address technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. As CMDA infrastructure and technology have matured, we have developed the educational and scientific applications of CMDA. Educationally, CMDA supported the summer school of the JPL Center for Climate Sciences for three years since 2014. In the summer school, the students work on group research projects where CMDA provide datasets and analysis tools. Each student is assigned to a virtual machine with CMDA installed in Amazon Web Services. A provenance management system for CMDA is developed to keep track of students' usages of CMDA, and to recommend datasets and analysis tools for their research topic. The provenance system also allows students to revisit their analysis results and share them with their group. Scientifically, we have developed several science use cases of CMDA covering various topics, datasets, and analysis types. Each use case developed is described and listed in terms of a scientific goal, datasets used, the analysis tools used, scientific results discovered from the use case, an analysis result such as output plots and data files, and a link to the exact analysis service call with all the input arguments filled. For example, one science use case is the evaluation of NCAR CAM5 model with MODIS total cloud fraction. The analysis service used is Difference Plot Service of Two Variables, and the datasets used are NCAR CAM total cloud fraction and MODIS total cloud fraction. The scientific highlight of the use case is that the CAM5 model overall does a fairly decent job at simulating total cloud cover, though simulates too few clouds especially near and offshore of the eastern ocean basins where low clouds are dominant.
A MODELLING FRAMEWORK FOR MERCURY CYCLING IN LAKE MICHIGAN
A time-dependent mercury model was developed to describe mercury cycling in Lake Michigan. The model addresses dynamic relationships between net mercury loadings and the resulting concentrations of mercury species in the water and sediment. The simplified predictive modeling fram...
Reilly, T.E.; Frimpter, M.H.; LeBlanc, D.R.; Goodman, A.S.
1987-01-01
Sharp interface methods have been used successfully to describe the physics of upconing. A finite-element model is developed to simulate a sharp interface for determination of the steady-state position of the interface and maximum permissible well discharges. The model developed is compared to previous published electric-analog model results of Bennett and others (1968). -from Authors
ERIC Educational Resources Information Center
Botturi, Luca
2006-01-01
This paper reports the results of an empirical study that investigated the instructional design process of three teams involved in the development of an e-learning unit. The teams declared they were using the same fast-prototyping design and development model, and were composed of the same roles (although with a different number of SMEs).…
Textile composite processing science
NASA Technical Reports Server (NTRS)
Loos, Alfred C.; Hammond, Vincent H.; Kranbuehl, David E.; Hasko, Gregory H.
1993-01-01
A multi-dimensional model of the Resin Transfer Molding (RTM) process was developed for the prediction of the infiltration behavior of a resin into an anisotropic fiber preform. Frequency dependent electromagnetic sensing (FDEMS) was developed for in-situ monitoring of the RTM process. Flow visualization and mold filling experiments were conducted to verify sensor measurements and model predictions. Test results indicated good agreement between model predictions, sensor readings, and experimental data.
Scripting MODFLOW Model Development Using Python and FloPy.
Bakker, M; Post, V; Langevin, C D; Hughes, J D; White, J T; Starn, J J; Fienen, M N
2016-09-01
Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW-based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture-fraction analysis with a real-world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy. © 2016, National Ground Water Association.
Aspen succession in the Intermountain West: A deterministic model
Dale L. Bartos; Frederick R. Ward; George S. Innis
1983-01-01
A deterministic model of succession in aspen forests was developed using existing data and intuition. The degree of uncertainty, which was determined by allowing the parameter values to vary at random within limits, was larger than desired. This report presents results of an analysis of model sensitivity to changes in parameter values. These results have indicated...
Initial Comparison of Single Cylinder Stirling Engine Computer Model Predictions with Test Results
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.; Thieme, L. G.; Miao, D.
1979-01-01
A Stirling engine digital computer model developed at NASA Lewis Research Center was configured to predict the performance of the GPU-3 single-cylinder rhombic drive engine. Revisions to the basic equations and assumptions are discussed. Model predictions with the early results of the Lewis Research Center GPU-3 tests are compared.
Pallas, B; Loi, C; Christophe, A; Cournède, P H; Lecoeur, J
2011-04-01
There is increasing interest in the development of plant growth models representing the complex system of interactions between the different determinants of plant development. These approaches are particularly relevant for grapevine organogenesis, which is a highly plastic process dependent on temperature, solar radiation, soil water deficit and trophic competition. The extent to which three plant growth models were able to deal with the observed plasticity of axis organogenesis was assessed. In the first model, axis organogenesis was dependent solely on temperature, through thermal time. In the second model, axis organogenesis was modelled through functional relationships linking meristem activity and trophic competition. In the last model, the rate of phytomer appearence on each axis was modelled as a function of both the trophic status of the plant and the direct effect of soil water content on potential meristem activity. The model including relationships between trophic competition and meristem behaviour involved a decrease in the root mean squared error (RMSE) for the simulations of organogenesis by a factor nine compared with the thermal time-based model. Compared with the model in which axis organogenesis was driven only by trophic competition, the implementation of relationships between water deficit and meristem behaviour improved organogenesis simulation results, resulting in a three times divided RMSE. The resulting model can be seen as a first attempt to build a comprehensive complete plant growth model simulating the development of the whole plant in fluctuating conditions of temperature, solar radiation and soil water content. We propose a new hypothesis concerning the effects of the different determinants of axis organogenesis. The rate of phytomer appearance according to thermal time was strongly affected by the plant trophic status and soil water deficit. Furthermore, the decrease in meristem activity when soil water is depleted does not result from source/sink imbalances.
Wu, Hua’an; Zhou, Meng
2017-01-01
High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy. PMID:29140266
An Online Prediction Platform to Support the Environmental ...
Historical QSAR models are currently utilized across a broad range of applications within the U.S. Environmental Protection Agency (EPA). These models predict basic physicochemical properties (e.g., logP, aqueous solubility, vapor pressure), which are then incorporated into exposure, fate and transport models. Whereas the classical manner of publishing results in peer-reviewed journals remains appropriate, there are substantial benefits to be gained by providing enhanced, open access to the training data sets and resulting models. Benefits include improved transparency, more flexibility to expand training sets and improve model algorithms, and greater ability to independently characterize model performance both globally and in local areas of chemistry. We have developed a web-based prediction platform that uses open-source descriptors and modeling algorithms, employs modern cheminformatics technologies, and is tailored for ease of use by the toxicology and environmental regulatory community. This tool also provides web-services to meet both EPA’s projects and the modeling community at-large. The platform hosts models developed within EPA’s National Center for Computational Toxicology, as well as those developed by other EPA scientists and the outside scientific community. Recognizing that there are other on-line QSAR model platforms currently available which have additional capabilities, we connect to such services, where possible, to produce an integrated
NASA Astrophysics Data System (ADS)
Wray, Timothy J.
Computational fluid dynamics (CFD) is routinely used in performance prediction and design of aircraft, turbomachinery, automobiles, and in many other industrial applications. Despite its wide range of use, deficiencies in its prediction accuracy still exist. One critical weakness is the accurate simulation of complex turbulent flows using the Reynolds-Averaged Navier-Stokes equations in conjunction with a turbulence model. The goal of this research has been to develop an eddy viscosity type turbulence model to increase the accuracy of flow simulations for mildly separated flows, flows with rotation and curvature effects, and flows with surface roughness. It is accomplished by developing a new zonal one-equation turbulence model which relies heavily on the flow physics; it is now known in the literature as the Wray-Agarwal one-equation turbulence model. The effectiveness of the new model is demonstrated by comparing its results with those obtained by the industry standard one-equation Spalart-Allmaras model and two-equation Shear-Stress-Transport k - o model and experimental data. Results for subsonic, transonic, and supersonic flows in and about complex geometries are presented. It is demonstrated that the Wray-Agarwal model can provide the industry and CFD researchers an accurate, efficient, and reliable turbulence model for the computation of a large class of complex turbulent flows.
Air Quality Response Modeling for Decision Support | Science ...
Air quality management relies on photochemical models to predict the responses of pollutant concentrations to changes in emissions. Such modeling is especially important for secondary pollutants such as ozone and fine particulate matter which vary nonlinearly with changes in emissions. Numerous techniques for probing pollutant-emission relationships within photochemical models have been developed and deployed for a variety of decision support applications. However, atmospheric response modeling remains complicated by the challenge of validating sensitivity results against observable data. This manuscript reviews the state of the science of atmospheric response modeling as well as efforts to characterize the accuracy and uncertainty of sensitivity results. The National Exposure Research Laboratory′s (NERL′s) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Kyoo Sil; Barker, Erin; Cheng, Guang
2016-01-06
In this paper, a three-dimensional (3D) microstructure-based finite element modeling method (i.e., extrinsic modeling method) is developed, which can be used in examining the effects of porosity on the ductility/fracture of Mg castings. For this purpose, AM60 Mg tensile samples were generated under high-pressure die-casting in a specially-designed mold. Before the tensile test, the samples were CT-scanned to obtain the pore distributions within the samples. 3D microstructure-based finite element models were then developed based on the obtained actual pore distributions of the gauge area. The input properties for the matrix material were determined by fitting the simulation result to themore » experimental result of a selected sample, and then used for all the other samples’ simulation. The results show that the ductility and fracture locations predicted from simulations agree well with the experimental results. This indicates that the developed 3D extrinsic modeling method may be used to examine the influence of various aspects of pore sizes/distributions as well as intrinsic properties (i.e., matrix properties) on the ductility/fracture of Mg castings.« less
Theory of the development of alternans in the heart during controlled diastolic interval pacing
NASA Astrophysics Data System (ADS)
Otani, Niels F.
2017-09-01
The beat-to-beat alternation in action potential durations (APDs) in the heart, called APD alternans, has been linked to the development of serious cardiac rhythm disorders, including ventricular tachycardia and fibrillation. The length of the period between action potentials, called the diastolic interval (DI), is a key dynamical variable in the standard theory of alternans development. Thus, methods that control the DI may be useful in preventing dangerous cardiac rhythms. In this study, we examine the dynamics of alternans during controlled-DI pacing using a series of single-cell and one-dimensional (1D) fiber models of alternans dynamics. We find that a model that combines a so-called memory model with a calcium cycling model can reasonably explain two key experimental results: the possibility of alternans during constant-DI pacing and the phase lag of APDs behind DIs during sinusoidal-DI pacing. We also find that these results can be replicated by incorporating the memory model into an amplitude equation description of a 1D fiber. The 1D fiber result is potentially concerning because it seems to suggest that constant-DI control of alternans can only be effective over only a limited region in space.
Oscar, T P
1999-12-01
Response surface models were developed and validated for effects of temperature (10 to 40 degrees C) and previous growth NaCl (0.5 to 4.5%) on lag time (lambda) and specific growth rate (mu) of Salmonella Typhimurium on cooked chicken breast. Growth curves for model development (n = 55) and model validation (n = 16) were fit to a two-phase linear growth model to obtain lambda and mu of Salmonella Typhimurium on cooked chicken breast. Response surface models for natural logarithm transformations of lambda and mu as a function of temperature and previous growth NaCl were obtained by regression analysis. Both lambda and mu of Salmonella Typhimurium were affected (P < 0.0001) by temperature but not by previous growth NaCl. Models were validated against data not used in their development. Mean absolute relative error of predictions (model accuracy) was 26.6% for lambda and 15.4% for mu. Median relative error of predictions (model bias) was 0.9% for lambda and 5.2% for mu. Results indicated that the models developed provided reliable predictions of lambda and mu of Salmonella Typhimurium on cooked chicken breast within the matrix of conditions modeled. In addition, results indicated that previous growth NaCl (0.5 to 4.5%) was not a major factor affecting subsequent growth kinetics of Salmonella Typhimurium on cooked chicken breast. Thus, inclusion of previous growth NaCl in predictive models may not significantly improve our ability to predict growth of Salmonella spp. on food subjected to temperature abuse.
NASA Astrophysics Data System (ADS)
Quillet, Anne; Garneau, Michelle; Frolking, Steve; Roulet, Nigel; Peng, Changhui
2010-05-01
The Holocene Peatland Model (HPM) (Frolking et al. 2009, Frolking et al. in prep.) is a recently developed tool integrating up-to-date knowledge on peatland dynamics that explores peatland development and carbon dynamics on a millennial timescale. HPM combines the water and carbon cycles with net primary production and peat decomposition and takes the multiple feedbacks into account. The model remains simple and few site-specific inputs are needed. HPM simulates the transient development of the peatland and delivers peat age, peat depth, peat composition, carbon accumulation and water table depth for each simulated year. Evaluating the ability of the model to reproduce peatland development can be achieved in several manners. Commonly one could choose to compare simulations results with observations from field data. However, we argue that the overall response of the model does not give much information about the value of the model design. Modelling of peatlands dynamics requires a lot of information regarding the behaviour of a peatland system within its environment (including allogenic changes in climate, hydrological conditions, nutrient availability or autogenic processes such as microtopographical effects). The actual state of knowledge does not cover all processes, interactions or feedbacks and a lot of peatland properties are neither well defined nor measured yet, so that estimates have been needed to build the model. The work presented here aims at analyzing the role of the model parameterization on the simulation results. To do so, a sensitivity analysis is performed with a Monte-Carlo analysis and with help of the GUI-HDMR software (Ziehn and Tomlin, 2009). This method ranks the parameters and combinations of them according to their influence on simulation results. The results will emphasize how the simulation is sensitive to the parameter values. First, the distribution of outputs gives insight into the possible responses of the simulation to HPM's assemblage of current knowledge. Second, the importance of some parameters on simulation results points out certain gaps in the current understanding of peatland dynamics. Thus, this study helps determine some avenues that should be explored in future in order to improve peatlands dynamics understanding. Frolking S, NT Roulet, A Quillet, E Tuittila, JL Bubier. 2009. Simulating long-term carbon and water dynamics in northern peatlands Eos Trans. AGU, 90(52), Fall Meet. Suppl., Abstract PP12B-05. Frolking S, NT Roulet, E Tuittila, JL Bubier, A Quillet. XXXX. A new model of Holocene peatland net primary production, decomposition, and peat accumulation. in prep. Ziehn T, AS Tomlin. 2009. GUI-HDMR - A solftware tool for global sensitivity analysis of complex models. Environmental Modelling & Software, 24, 775-785.
Errante, Margaret R; Gill, Gurjinder S; Rodriguez, Tobias E
2018-01-01
Purpose The purpose of this study was to assess if a clinical group practice model has an impact on enhancing the interpersonal skills of predoctoral dental students, what factors may influence the development of these skills, and what, if any, are innovative and technological solutions that can potentially influence interpersonal skills in predoctoral dental students. Methods This study surveyed the faculty responsible for teaching the dental students in a recently developed group practice model. Out of 18 eligible group practice leaders at one US dental school, 17 respondents (94.4%) completed the survey. In addition, this study asked the faculty to provide qualitative response and recommendations to improve interpersonal skills. Based on the feedback, a focus group was conducted to explore opportunities to further enhance the skills. Results The results of the study suggest that the group practice model has a positive and distinct impact on the development of overall interpersonal skills for students. Further research suggests that the greatest impacted areas of personal development are critical thinking skills and teamwork. However, as a way to make the model more effectual, most faculty suggested the need for additional time, for both students and faculty. To some extent, using technology and innovative teaching pedagogies could potentially address the challenge of limited time. Conclusion Based on the results of the survey, one may conclude that with adequate design and conditions, the group practice model can have a positive effect on the interpersonal skills of its students. PMID:29720884