Portable Test And Monitoring System For Wind-Tunnel Models
NASA Technical Reports Server (NTRS)
Poupard, Charles A.
1987-01-01
Portable system developed to test and monitor instrumentation used in wind-tunnel models. Self-contained and moves easily to model, either before or after model installed in wind tunnel. System is 44 1/2 in. high, 22 in. wide, and 17 in. deep and weighs 100 lb. Primary benefits realized with portable test and monitoring system associated with saving of time.
Develop real-time dosimetry concepts and instrumentation for long term missions
NASA Technical Reports Server (NTRS)
Braby, L. A.
1982-01-01
The development of a rugged portable instrument to evaluate dose and dose equivalent is described. A tissue-equivalent proportional counter simulating a 2 micrometer spherical tissue volume was operated satisfactorily for over a year. The basic elements of the electronic system were designed and tested. And finally, the most suitable mathematical technique for evaluating dose equivalent with a portable instrument was selected. Design and fabrication of a portable prototype, based on the previously tested circuits, is underway.
Development and Testing of a Portable Vocal Accumulator
ERIC Educational Resources Information Center
Cheyne, Harold A.; Hanson, Helen M.; Genereux, Ronald P.; Stevens, Kenneth N.; Hillman, Robert E.
2003-01-01
This research note describes the design and testing of a device for unobtrusive, long-term ambulatory monitoring of voice use, named the Portable Vocal Accumulator (PVA). The PVA contains a digital signal processor for analyzing input from a neck-placed miniature accelerometer. During its development, accelerometer recordings were obtained from 99…
A study for hypergolic vapor sensor development
NASA Technical Reports Server (NTRS)
Stetter, J. R.; Tellefsen, K.
1977-01-01
In summary, the following tasks were completed within the scope of this work: (1) a portable Monomethylhydrazine analyzer was developed, designed, fabricated and tested. (2) A portable NO2 analyzer was developed, designed, fabricated and tested. (3) Sampling probes and accessories were designed and fabricated for this instrumentation. (4) Improvements and modifications were made to the model 7630 Ecolyzer in preparation for field testing. (5) Instrument calibration procedures and hydrazine handling techniques necessary to the successful application of this hardware were developed.
Experimental system for the control of surgically induced infections
NASA Technical Reports Server (NTRS)
Tevebaugh, M. D.
1971-01-01
The development tests to be performed on the experimental system are described in detail. The test equipment, conditions, and procedures are given. The portable clean room tests include assembly, collapsability, portability, and storage; laminar flow rate; static pressure; air flow pattern; and electrostatic buildup. The other tests are on the ventilation system, human factors evaluation, electrical subsystem, and material compatibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parmeter, J.E.; Custer, C.A.
This project was supported by LDRD funding for the development and preliminary testing of a portable narcotics detection system. The system developed combines a commercial trace detector known as an ion mobility spectrometer (IMS) with a preconcentrator originally designed by Department 5848 for the collection of explosives molecules. The detector and preconcentrator were combined along with all necessary accessories onto a push cart, thus yielding a fully portable detection unit. Preliminary testing with both explosives and narcotics molecules shown that the system is operational, and that it can successfully detect drugs as marijuana, methamphetamine (speed), and cocaine based on theirmore » characteristics IMS signatures.« less
Lab-on-a-Chip Application Development-Portable Test System (LOCAD) Phase 2
2009-03-21
ISS018-E-041370 (21 March 2009) --- Astronaut Sandra Magnus, STS-119 mission specialist, prepares to work with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory while Space Shuttle Discovery remains docked with the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
The Portable Usability Testing Lab: A Flexible Research Tool.
ERIC Educational Resources Information Center
Hale, Michael E.; And Others
A group of faculty at the University of Georgia obtained funding for a research and development facility called the Learning and Performance Support Laboratory (LPSL). One of the LPSL's primary needs was obtaining a portable usability lab for software testing, so the facility obtained the "Luggage Lab 2000." The lab is transportable to…
Portable Health Algorithms Test System
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.; Wong, Edmond; Fulton, Christopher E.; Sowers, Thomas S.; Maul, William A.
2010-01-01
A document discusses the Portable Health Algorithms Test (PHALT) System, which has been designed as a means for evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT system allows systems health management algorithms to be developed in a graphical programming environment, to be tested and refined using system simulation or test data playback, and to be evaluated in a real-time hardware-in-the-loop mode with a live test article. The integrated hardware and software development environment provides a seamless transition from algorithm development to real-time implementation. The portability of the hardware makes it quick and easy to transport between test facilities. This hard ware/software architecture is flexible enough to support a variety of diagnostic applications and test hardware, and the GUI-based rapid prototyping capability is sufficient to support development execution, and testing of custom diagnostic algorithms. The PHALT operating system supports execution of diagnostic algorithms under real-time constraints. PHALT can perform real-time capture and playback of test rig data with the ability to augment/ modify the data stream (e.g. inject simulated faults). It performs algorithm testing using a variety of data input sources, including real-time data acquisition, test data playback, and system simulations, and also provides system feedback to evaluate closed-loop diagnostic response and mitigation control.
40 CFR 59.653 - How do I test portable fuel containers?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 6 2012-07-01 2012-07-01 false How do I test portable fuel containers... Families § 59.653 How do I test portable fuel containers? You must test the portable fuel container as.... Perform a slosh test by filling the portable fuel container to 40 percent of its capacity with the fuel...
40 CFR 59.653 - How do I test portable fuel containers?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 6 2013-07-01 2013-07-01 false How do I test portable fuel containers... Families § 59.653 How do I test portable fuel containers? You must test the portable fuel container as.... Perform a slosh test by filling the portable fuel container to 40 percent of its capacity with the fuel...
40 CFR 59.653 - How do I test portable fuel containers?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 6 2014-07-01 2014-07-01 false How do I test portable fuel containers... Families § 59.653 How do I test portable fuel containers? You must test the portable fuel container as.... Perform a slosh test by filling the portable fuel container to 40 percent of its capacity with the fuel...
Uniform Traffic Control and Warning Messages for Portable Changeable Message Signs
DOT National Transportation Integrated Search
1996-03-01
The purpose of this study was to develop and test word and symbol traffic control and hazard warning messages for use on portable changeable message signs (PCMSs). The literature was reviewed, State highway engineers were interviewed, PCMS manufactur...
Portable Oxygen Subsystem (POS). [for space shuttles
NASA Technical Reports Server (NTRS)
1975-01-01
Concept selection, design, fabrication, and testing of a Portable Subsystem (POS) for use in space shuttle operations are described. Tradeoff analyses were conducted to determine the POS concept for fabrication and testing. The fabricated POS was subjected to unmanned and manned tests to verify compliance with statement of work requirements. The POS used in the development program described herein met requirements for the three operational modes -- prebreathing, contaminated cabin, and personnel rescue system operations.
2017-05-01
AWARD NUMBER: W81XWH-15-1-0094 TITLE: TBI Assessment of Readiness Using a Gait Evaluation Test (TARGET): Development of a Portable mTBI Screening...Annual 3. DATES COVERED 1 May 2016 - 30 Apr 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER “TBI Assessment of Readiness Using a Gait Evaluation ...service members sustaining some form of traumatic brain injury (TBI) over the past 14 years, the lack of an objective measurement tool for evaluation
New technologies for field-portable monitoring instruments often have a long lead time in development and authorization. Some obstacles to the acceptance of these pilot technologies include concern about liabilities, reluctance to take risks on new technologies, and uncertainty a...
Portable devices and mobile instruments for infectious diseases point-of-care testing.
Bissonnette, Luc; Bergeron, Michel G
2017-05-01
Rapidity, simplicity, and portability are highly desirable characteristics of tests and devices designed for performing diagnostics at the point of care (POC), either near patients managed in healthcare facilities or to offer bioanalytical alternatives in external settings. By reducing the turnaround time of the diagnostic cycle, POC diagnostics can reduce the dissemination, morbidity, and mortality of infectious diseases and provide tools to control the global threat of antimicrobial resistance. Areas covered: A literature search of PubMed and Google Scholar, and extensive mining of specialized publications, Internet resources, and manufacturers' websites have been used to organize and write this overview of the challenges and requirements associated with the development of portable sample-to-answer diagnostics, and showcase relevant examples of handheld devices, portable instruments, and less mobile systems which may or could be operated at POC. Expert commentary: Rapid (<1 h) diagnostics can contribute to control infectious diseases and antimicrobial resistant pathogens. Portable devices or instruments enabling sample-to-answer bioanalysis can provide rapid, robust, and reproducible testing at the POC or close from it. Beyond testing, to realize some promises of personalized/precision medicine, it will be critical to connect instruments to healthcare data management systems, to efficiently link decentralized testing results to the electronic medical record of patients.
47 CFR 73.1530 - Portable test stations [Definition].
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Portable test stations [Definition]. 73.1530 Section 73.1530 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1530 Portable test stations [Definition]. A portable test station is one...
47 CFR 73.1530 - Portable test stations [Definition].
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Portable test stations [Definition]. 73.1530 Section 73.1530 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1530 Portable test stations [Definition]. A portable test station is one...
Portable two-channel PPG cardiovascular sensor device
NASA Astrophysics Data System (ADS)
Spigulis, Janis; Erts, Renars; Ozols, Maris
2003-10-01
A portable sensor device for simultaneous detection and processing of skin-remitted optical signals from any two sites of the body has been developed and tested. The photoplethysmography (PPG) principle was applied to follow the dilatation and contraction of skin blood vessels during the cardiac cycle. The newly developed two-channel approach allows to estimate the vascular blood flow resistance by analysis of time shifts between the PPG pulses detected at different body sites. Potential of the sensor device for express-assessment of human cardio-vascular condition and for body fitness tests has been demonstrated.
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Jennings, Mallory A.; Rivera, Fatonia L.; Martin, Devin
2011-01-01
NASA is designing a next generation Extravehicular Activity (EVA) Portable Life Support System (PLSS) for use in future surface exploration endeavors. To meet the new requirements for ventilation flow at nominal and buddy modes, a fan has been developed and tested. This paper summarizes the results of the performance and life cycle testing efforts conducted at the NASA Johnson Space Center. Additionally, oxygen compatibility assessment results from an evaluation conducted at White Sands Test Facility (WSTF) are provided, and lessons learned and future recommendations are outlined.
Very Portable Remote Automatic Weather Stations
John R. Warren
1987-01-01
Remote Automatic Weather Stations (RAWS) were introduced to Forest Service and Bureau of Land Management field units in 1978 following development, test, and evaluation activities conducted jointly by the two agencies. The original configuration was designed for semi-permanent installation. Subsequently, a need for a more portable RAWS was expressed, and one was...
Validation testing of a portable kit for measuring an active soil carbon fraction
Increasing demands exist for information about properties related to soil quality and human-induced soil change, particularly soil C. To help address this need, the USDA-NRCS Soil Survey Laboratory (SSL) developed a portable kit for rapid and relatively accurate assessment of soi...
Research: Testing of a Novel Portable Body Temperature Conditioner Using a Thermal Manikin.
Heller, Daniel; Heller, Alex; Moujaes, Samir; Williams, Shelley J; Hoffmann, Ryan; Sarkisian, Paul; Khalili, Kaveh; Rockenfeller, Uwe; Browder, Timothy D; Kuhls, Deborah A; Fildes, John J
2016-01-01
A battery-operated active cooling/heating device was developed to maintain thermoregulation of trauma victims in austere environments while awaiting evacuation to a hospital for further treatment. The use of a thermal manikin was adopted for this study in order to simulate load testing and evaluate the performance of this novel portable active cooling/heating device for both continuous (external power source) and battery power. The performance of the portable body temperature conditioner (PBTC) was evaluated through cooling/heating fraction tests to analyze the heat transfer between a thermal manikin and circulating water blanket to show consistent performance while operating under battery power. For the cooling/heating fraction tests, the ambient temperature was set to 15°C ± 1°C (heating) and 30°C ± 1°C (cooling). The PBTC water temperature was set to 37°C for the heating mode tests and 15°C for the cooling mode tests. The results showed consistent performance of the PBTC in terms of cooling/heating capacity while operating under both continuous and battery power. The PBTC functioned as intended and shows promise as a portable warming/cooling device for operation in the field.
Portable vibro-acoustic testing system for in situ microstructure characterization and metrology
NASA Astrophysics Data System (ADS)
Smith, James A.; Nichol, Corrie I.; Zuck, Larry D.; Fatemi, Mostafa
2018-04-01
There is a need in research reactors like the one at INL to inspect irradiated materials and structures. The goal of this work is to develop a portable scanning infrastructure for a material characterization technique called vibro-acoustography (VA) that has been developed by the Idaho National laboratory for nuclear applications to characterize fuel, cladding materials, and structures. The proposed VA technology is based on ultrasound and acoustic waves; however, it provides information beyond what is available from the traditional ultrasound techniques and can expand the knowledge on nuclear material characterization and microstructure evolution. This paper will report on the development of a portable scanning system that will be set up to characterize materials and components in open water reactors and canals in situ. We will show some initial laboratory results of images generated by vibro-acoustics of surrogate fuel plates and graphite structures and discuss the design of the portable system.
Normative values for a tablet computer-based application to assess chromatic contrast sensitivity.
Bodduluri, Lakshmi; Boon, Mei Ying; Ryan, Malcolm; Dain, Stephen J
2018-04-01
Tablet computer displays are amenable for the development of vision tests in a portable form. Assessing color vision using an easily accessible and portable test may help in the self-monitoring of vision-related changes in ocular/systemic conditions and assist in the early detection of disease processes. Tablet computer-based games were developed with different levels of gamification as a more portable option to assess chromatic contrast sensitivity. Game 1 was designed as a clinical version with no gaming elements. Game 2 was a gamified version of game 1 (added fun elements: feedback, scores, and sounds) and game 3 was a complete game with vision task nested within. The current study aimed to determine the normative values and evaluate repeatability of the tablet computer-based games in comparison with an established test, the Cambridge Colour Test (CCT) Trivector test. Normally sighted individuals [N = 100, median (range) age 19.0 years (18-56 years)] had their chromatic contrast sensitivity evaluated binocularly using the three games and the CCT. Games 1 and 2 and the CCT showed similar absolute thresholds and tolerance intervals, and game 3 had significantly lower values than games 1, 2, and the CCT, due to visual task differences. With the exception of game 3 for blue-yellow, the CCT and tablet computer-based games showed similar repeatability with comparable 95% limits of agreement. The custom-designed games are portable, rapid, and may find application in routine clinical practice, especially for testing younger populations.
Design, construction and calibration of a portable boundary layer wind tunnel for field use
USDA-ARS?s Scientific Manuscript database
Wind tunnels have been used for several decades to study wind erosion processes. Portable wind tunnels offer the advantage of testing natural surfaces in the field, but they must be carefully designed to insure that a logarithmic boundary layer is formed and that wind erosion processes may develop ...
Burns, Jennifer B.; Riley, Christopher B.; Shaw, R. Anthony; McClure, J. Trenton
2017-01-01
The objective of this study was to develop and compare the performance of laboratory grade and portable attenuated total reflectance infrared (ATR-IR) spectroscopic approaches in combination with partial least squares regression (PLSR) for the rapid quantification of alpaca serum IgG concentration, and the identification of low IgG (<1000 mg/dL), which is consistent with the diagnosis of failure of transfer of passive immunity (FTPI) in neonates. Serum samples (n = 175) collected from privately owned, healthy alpacas were tested by the reference method of radial immunodiffusion (RID) assay, and laboratory grade and portable ATR-IR spectrometers. Various pre-processing strategies were applied to the ATR-IR spectra that were linked to corresponding RID-IgG concentrations, and then randomly split into two sets: calibration (training) and test sets. PLSR was applied to the calibration set and calibration models were developed, and the test set was used to assess the accuracy of the analytical method. For the test set, the Pearson correlation coefficients between the IgG measured by RID and predicted by both laboratory grade and portable ATR-IR spectrometers was 0.91. The average differences between reference serum IgG concentrations and the two IR-based methods were 120.5 mg/dL and 71 mg/dL for the laboratory and portable ATR-IR-based assays, respectively. Adopting an IgG concentration <1000 mg/dL as the cut-point for FTPI cases, the sensitivity, specificity, and accuracy for identifying serum samples below this cut point by laboratory ATR-IR assay were 86, 100 and 98%, respectively (within the entire data set). Corresponding values for the portable ATR-IR assay were 95, 99 and 99%, respectively. These results suggest that the two different ATR-IR assays performed similarly for rapid qualitative evaluation of alpaca serum IgG and for diagnosis of IgG <1000 mg/dL, the portable ATR-IR spectrometer performed slightly better, and provides more flexibility for potential application in the field. PMID:28651006
Elsohaby, Ibrahim; Burns, Jennifer B; Riley, Christopher B; Shaw, R Anthony; McClure, J Trenton
2017-01-01
The objective of this study was to develop and compare the performance of laboratory grade and portable attenuated total reflectance infrared (ATR-IR) spectroscopic approaches in combination with partial least squares regression (PLSR) for the rapid quantification of alpaca serum IgG concentration, and the identification of low IgG (<1000 mg/dL), which is consistent with the diagnosis of failure of transfer of passive immunity (FTPI) in neonates. Serum samples (n = 175) collected from privately owned, healthy alpacas were tested by the reference method of radial immunodiffusion (RID) assay, and laboratory grade and portable ATR-IR spectrometers. Various pre-processing strategies were applied to the ATR-IR spectra that were linked to corresponding RID-IgG concentrations, and then randomly split into two sets: calibration (training) and test sets. PLSR was applied to the calibration set and calibration models were developed, and the test set was used to assess the accuracy of the analytical method. For the test set, the Pearson correlation coefficients between the IgG measured by RID and predicted by both laboratory grade and portable ATR-IR spectrometers was 0.91. The average differences between reference serum IgG concentrations and the two IR-based methods were 120.5 mg/dL and 71 mg/dL for the laboratory and portable ATR-IR-based assays, respectively. Adopting an IgG concentration <1000 mg/dL as the cut-point for FTPI cases, the sensitivity, specificity, and accuracy for identifying serum samples below this cut point by laboratory ATR-IR assay were 86, 100 and 98%, respectively (within the entire data set). Corresponding values for the portable ATR-IR assay were 95, 99 and 99%, respectively. These results suggest that the two different ATR-IR assays performed similarly for rapid qualitative evaluation of alpaca serum IgG and for diagnosis of IgG <1000 mg/dL, the portable ATR-IR spectrometer performed slightly better, and provides more flexibility for potential application in the field.
NASA Technical Reports Server (NTRS)
Anchondo, Ian; Campbell, Colin
2017-01-01
The FSA with Integrated Aux FSA Specification establishes the requirements for design, performance, and testing of the FSA-431/FSA-531 assembly in compliance with CTSD-ADV-780, Development Specification for the Advanced EMU (AEMU) Portable Life Support System (PLSS). This section contains the technical design and performance requirements for the integrated assembly of the Feedwater Supply Assembly and Auxiliary Feedwater Supply Assembly for the Advanced EVA Development Portable Life Support Subsystem (PLSS).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-11
... Hydrostatic Testing Provision of the Portable Fire Extinguishers Standard; Extension of the Office of... the information collection requirements contained in the Hydrostatic Testing provision of the Portable... 48729
Development and Application of a Portable Health Algorithms Test System
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.; Fulton, Christopher E.; Maul, William A.; Sowers, T. Shane
2007-01-01
This paper describes the development and initial demonstration of a Portable Health Algorithms Test (PHALT) System that is being developed by researchers at the NASA Glenn Research Center (GRC). The PHALT System was conceived as a means of evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT System allows systems health management algorithms to be developed in a graphical programming environment; to be tested and refined using system simulation or test data playback; and finally, to be evaluated in a real-time hardware-in-the-loop mode with a live test article. In this paper, PHALT System development is described through the presentation of a functional architecture, followed by the selection and integration of hardware and software. Also described is an initial real-time hardware-in-the-loop demonstration that used sensor data qualification algorithms to diagnose and isolate simulated sensor failures in a prototype Power Distribution Unit test-bed. Success of the initial demonstration is highlighted by the correct detection of all sensor failures and the absence of any real-time constraint violations.
Portable Fluorescence Imaging System for Hypersonic Flow Facilities
NASA Technical Reports Server (NTRS)
Wilkes, J. A.; Alderfer, D. W.; Jones, S. B.; Danehy, P. M.
2003-01-01
A portable fluorescence imaging system has been developed for use in NASA Langley s hypersonic wind tunnels. The system has been applied to a small-scale free jet flow. Two-dimensional images were taken of the flow out of a nozzle into a low-pressure test section using the portable planar laser-induced fluorescence system. Images were taken from the center of the jet at various test section pressures, showing the formation of a barrel shock at low pressures, transitioning to a turbulent jet at high pressures. A spanwise scan through the jet at constant pressure reveals the three-dimensional structure of the flow. Future capabilities of the system for making measurements in large-scale hypersonic wind tunnel facilities are discussed.
Development and On-Field Testing of Low-Cost Portable System for Monitoring PM2.5 Concentrations.
N Genikomsakis, Konstantinos; Galatoulas, Nikolaos-Fivos; I Dallas, Panagiotis; Candanedo Ibarra, Luis Miguel; Margaritis, Dimitris; S Ioakimidis, Christos
2018-04-01
Recent developments in the field of low-cost sensors enable the design and implementation of compact, inexpensive and portable sensing units for air pollution monitoring with fine-detailed spatial and temporal resolution, in order to support applications of wider interest in the area of intelligent transportation systems (ITS). In this context, the present work advances the concept of developing a low-cost portable air pollution monitoring system (APMS) for measuring the concentrations of particulate matter (PM), in particular fine particles with a diameter of 2.5 μm or less (PM2.5). Specifically, this paper presents the on-field testing of the proposed low-cost APMS implementation using roadside measurements from a mobile laboratory equipped with a calibrated instrument as the basis of comparison and showcases its accuracy on characterizing the PM2.5 concentrations on 1 min resolution in an on-road trial. Moreover, it demonstrates the intended application of collecting fine-grained spatio-temporal PM2.5 profiles by mounting the developed APMS on an electric bike as a case study in the city of Mons, Belgium.
Development and On-Field Testing of Low-Cost Portable System for Monitoring PM2.5 Concentrations
Galatoulas, Nikolaos-Fivos; I. Dallas, Panagiotis; Candanedo Ibarra, Luis Miguel; Margaritis, Dimitris; S. Ioakimidis, Christos
2018-01-01
Recent developments in the field of low-cost sensors enable the design and implementation of compact, inexpensive and portable sensing units for air pollution monitoring with fine-detailed spatial and temporal resolution, in order to support applications of wider interest in the area of intelligent transportation systems (ITS). In this context, the present work advances the concept of developing a low-cost portable air pollution monitoring system (APMS) for measuring the concentrations of particulate matter (PM), in particular fine particles with a diameter of 2.5 μm or less (PM2.5). Specifically, this paper presents the on-field testing of the proposed low-cost APMS implementation using roadside measurements from a mobile laboratory equipped with a calibrated instrument as the basis of comparison and showcases its accuracy on characterizing the PM2.5 concentrations on 1 min resolution in an on-road trial. Moreover, it demonstrates the intended application of collecting fine-grained spatio-temporal PM2.5 profiles by mounting the developed APMS on an electric bike as a case study in the city of Mons, Belgium. PMID:29614770
Portable wireless power transmission system for video capsule endoscopy.
Zhiwei, Jia; Guozheng, Yan; Bingquan, Zhu
2014-10-01
Wireless power transmission is considered a practical way of overcoming the power shortage of wireless capsule endoscopy (VCE). However, most patients cannot tolerate the long hours of lying in a fixed transmitting coil during diagnosis. To develop a portable wireless power transmission system for VCE, a compact transmitting coil and a portable inverter circuit driven by rechargeable batteries are proposed. The couple coils, optimized considering the stability and safety conditions, are 28 turns of transmitting coil and six strands of receiving coil. The driven circuit is designed according to the portable principle. Experiments show that the integrated system could continuously supply power to a dual-head VCE for more than 8 h at a frame rate of 30 frames per second with resolution of 320 × 240. The portable VCE exhibits potential for clinical applications, but requires further improvement and tests.
Design and construction of portable survey meter
NASA Astrophysics Data System (ADS)
Singseeta, W.; Thong-aram, D.; Pencharee, S.
2017-09-01
This work was aimed to design and construction of portable survey meter for radiation dose measuring. The designed system consists of 4 main parts consisting of low voltage power supply, radiation detection, radiation measurement and data display part on android phone. The test results show that the ripple voltage of low voltage power supply is less than 1%, the maximum integral counts are found to be 104 counts per second and the maximum distance of wireless commination between the server and the client is about 10 meter. It was found that the developed system had small size and light weight for portable instrument.
Portable field kit for determining uranium in water
McHugh, John B.
1979-01-01
The pressing need for on-site field analyses of the uranium content of surface and ground waters has promoted the development of a simple, light-weight, relatively cheap, portable kit to make such determinations in the field. Forty to sixty water samples per day can be analyzed for uranium to less than 0.2 parts per billion. The kit was tested in the field with excellent results.
Users manual for the Automated Performance Test System (APTS)
NASA Technical Reports Server (NTRS)
Lane, N. E.; Kennedy, R. S.
1990-01-01
The characteristics of and the user information for the Essex Automated Performance Test System (APTS) computer-based portable performance assessment battery are given. The battery was developed to provide a menu of performance test tapping the widest possible variety of human cognitive and motor functions, implemented on a portable computer system suitable for use in both laboratory and field settings for studying the effects of toxic agents and other stressors. The manual gives guidance in selecting, administering and scoring tests from the battery, and reviews the data and studies underlying the development of the battery. Its main emphasis is on the users of the battery - the scientists, researchers and technicians who wish to examine changes in human performance across time or as a function of changes in the conditions under which test data are obtained. First the how to information needed to make decisions about where and how to use the battery is given, followed by the research background supporting the battery development. Further, the development history of the battery focuses largely on the logical framework within which tests were evaluated.
FUELS IN SOIL TEST KIT: FIELD USE OF DIESEL DOG SOIL TEST KITS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susan S. Sorini; John F. Schabron; Joseph F. Rovani, Jr.
Western Research Institute (WRI) has developed a new commercial product ready for technology transfer, the Diesel Dog{reg_sign} Portable Soil Test Kit, for performing analysis of fuel-contaminated soils in the field. The technology consists of a method developed by WRI (U.S. Patents 5,561,065 and 5,976,883) and hardware developed by WRI that allows the method to be performed in the field (patent pending). The method is very simple and does not require the use of highly toxic reagents. The aromatic components in a soil extract are measured by absorption at 254 nm with a field-portable photometer. WRI added significant value to themore » technology by taking the method through the American Society for Testing and Materials (ASTM) approval and validation processes. The method is designated as ASTM Method D 5831-96, Standard Test Method for Screening Fuels in Soils. This ASTM designation allows the method to be used for federal compliance activities. In June 2001, the Diesel Dog technology won an American Chemical Society Regional Industrial Innovations Award. To gain field experience with the new technology, Diesel Dog kits have been used for a variety of site evaluation and cleanup activities. Information gained from these activities has led to improvements in hardware configurations and additional insight into correlating Diesel Dog results with results from laboratory methods. The Wyoming Department of Environmental Quality (DEQ) used Diesel Dog Soil Test Kits to guide cleanups at a variety of sites throughout the state. ENSR, of Acton, Massachusetts, used a Diesel Dog Portable Soil Test Kit to evaluate sites in the Virgin Islands and Georgia. ChemTrack and the U.S. Army Corps of Engineers successfully used a test kit to guide excavation at an abandoned FAA fuel-contaminated site near Fairbanks, Alaska. Barenco, Inc. is using a Diesel Dog Portable Soil Test Kit for site evaluations in Canada. A small spill of diesel fuel was cleaned up in Laramie, Wyoming using a Diesel Dog Soil Test Kit.« less
Development and flight test of a helicopter compact, portable, precision landing system concept
NASA Technical Reports Server (NTRS)
Clary, G. R.; Bull, J. S.; Davis, T. J.; Chisholm, J. P.
1984-01-01
An airborne, radar-based, precision approach concept is being developed and flight tested as a part of NASA's Rotorcraft All-Weather Operations Research Program. A transponder-based beacon landing system (BLS) applying state-of-the-art X-band radar technology and digital processing techniques, was built and is being flight tested to demonstrate the concept feasibility. The BLS airborne hardware consists of an add-on microprocessor, installed in conjunction with the aircraft weather/mapping radar, which analyzes the radar beacon receiver returns and determines range, localizer deviation, and glide-slope deviation. The ground station is an inexpensive, portable unit which can be quickly deployed at a landing site. Results from the flight test program show that the BLS concept has a significant potential for providing rotorcraft with low-cost, precision instrument approach capability in remote areas.
Harries, Megan; Bukovsky-Reyes, Santiago; Bruno, Thomas J
2016-01-15
This paper details the sampling methods used with the field portable porous layer open tubular cryoadsorption (PLOT-cryo) approach, described in Part I of this two-part series, applied to several analytes of interest. We conducted tests with coumarin and 2,4,6-trinitrotoluene (two solutes that were used in initial development of PLOT-cryo technology), naphthalene, aviation turbine kerosene, and diesel fuel, on a variety of matrices and test beds. We demonstrated that these analytes can be easily detected and reliably identified using the portable unit for analyte collection. By leveraging efficiency-boosting temperature control and the high flow rate multiple capillary wafer, very short collection times (as low as 3s) yielded accurate detection. For diesel fuel spiked on glass beads, we determined a method detection limit below 1 ppm. We observed greater variability among separate samples analyzed with the portable unit than previously documented in work using the laboratory-based PLOT-cryo technology. We identify three likely sources that may help explain the additional variation: the use of a compressed air source to generate suction, matrix geometry, and variability in the local vapor concentration around the sampling probe as solute depletion occurs both locally around the probe and in the test bed as a whole. This field-portable adaptation of the PLOT-cryo approach has numerous and diverse potential applications. Published by Elsevier B.V.
Harries, Megan; Bukovsky-Reyes, Santiago; Bruno, Thomas J.
2016-01-01
This paper details the sampling methods used with the field portable porous layer open tubular cryoadsorption (PLOT-cryo) approach, described in Part I of this two-part series, applied to several analytes of interest. We conducted tests with coumarin and 2,4,6-trinitrotoluene (two solutes that were used in initial development of PLOT-cryo technology), naphthalene, aviation turbine kerosene, and diesel fuel, on a variety of matrices and test beds. We demonstrated that these analytes can be easily detected and reliably identified using the portable unit for analyte collection. By leveraging efficiency-boosting temperature control and the high flow rate multiple capillary wafer, very short collection times (as low as 3 s) yielded accurate detection. For diesel fuel spiked on glass beads, we determined a method detection limit below 1 ppm. We observed greater variability among separate samples analyzed with the portable unit than previously documented in work using the laboratory-based PLOT-cryo technology. We identify three likely sources that may help explain the additional variation: the use of a compressed air source to generate suction, matrix geometry, and variability in the local vapor concentration around the sampling probe as solute depletion occurs both locally around the probe and in the test bed as a whole. This field-portable adaptation of the PLOT-cryo approach has numerous and diverse potential applications. PMID:26726934
Humidifier Development and Applicability to the Next Generation Portable Life Support System
NASA Technical Reports Server (NTRS)
Conger, Bruce C.; Barnes, Bruce G.; Sompayrac, Robert G.; Paul, Heather L.
2011-01-01
A development effort at the NASA Johnson Space Center investigated technologies to determine whether a humidifier would be required in the Portable Life Support System (PLSS) envisioned for future exploration missions. The humidifier has been included in the baseline PLSS schematic since performance testing of the Rapid Cycle Amine (RCA) indicates that the RCA over-dries the ventilation gas stream. Performance tests of a developmental humidifier unit and commercial off-the-shelf (COTS) units were conducted in December 2009. Following these tests, NASA revisited the need for a humidifier via system analysis. Results of this investigation indicate that it is feasible to meet humidity requirements without the humidifier if other changes are made to the PLSS ventilation loop and the Liquid Cooling and Ventilation Garment (LCVG).
Photometric requirements for portable changeable message signs.
DOT National Transportation Integrated Search
2001-09-01
This project reviewed the performance of pchangeable message signs (PCMSs) and developed photometric standards to establish performance requirements. In addition, researchers developed photometric test methods and recommended them for use in evaluati...
Design of portable electric and magnetic field generators
NASA Astrophysics Data System (ADS)
Stewart, M. G.; Siew, W. H.; Campbell, L. C.; Stewart, M. G.; Siew, W. H.
2000-11-01
Electric and magnetic field generators capable of producing high-amplitude output are not readily available. This presents difficulties for electromagnetic compatibility testing of new measurement systems where these systems are intended to operate in a particularly hostile electromagnetic environment. A portable electric and a portable magnetic field generator having high pulsed field output are described in this paper. The output of these generators were determined using an electromagnetic-compatible measurement system. These generators allow immunity testing in the laboratory of electronic systems to very high electrical fields, as well as for functional verification of the electronic systems on site. In the longer term, the basic design of the magnetic field generator may be developed as the generator to provide the damped sinusoid magnetic field specified in IEC 61000-4-10, which is adopted in BS EN 61000-4-10.
Development of a piezopolymer pressure sensor for a portable fetal heart rate monitor
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.; Pretlow, R. A.; Stoughton, J. W.; Baker, D. A.
1993-01-01
A piezopolymer pressure sensor has been developed for service in a portable fetal heart rate monitor, which will permit an expectant mother to perform the fetal nonstress test, a standard predelivery test, in her home. Several sensors are mounted in an array on a belt worn by the mother. The sensor design conforms to the distinctive features of the fetal heart tone, namely, the acoustic signature, frequency spectrum, signal amplitude, and localization. The components of a sensor serve to fulfill five functions: signal detection, acceleration cancellation, acoustical isolation, electrical shielding, and electrical isolation of the mother. A theoretical analysis of the sensor response yields a numerical value for the sensor sensitivity, which is compared to experiment in an in vitro sensor calibration. Finally, an in vivo test on patients within the last six weeks of term reveals that nonstress test recordings from the acoustic monitor compare well with those obtained from conventional ultrasound.
Nie, L H; Sanchez, S; Newton, K; Grodzins, L; Cleveland, R O; Weisskopf, M G
2011-02-07
This study was conducted to investigate the methodology and feasibility of developing a portable x-ray fluorescence (XRF) technology to quantify lead (Pb) in bone in vivo. A portable XRF device was set up and optimal settings of voltage, current, and filter combination for bone lead quantification were selected to achieve the lowest detection limit. The minimum radiation dose delivered to the subject was calculated by Monte Carlo simulations. An ultrasound device was used to measure soft tissue thickness to account for signal attenuation, and an alternative method to obtain soft tissue thickness from the XRF spectrum was developed and shown to be equivalent to the ultrasound measurements (intraclass correlation coefficient, ICC = 0.82). We tested the correlation of in vivo bone lead concentrations between the standard KXRF technology and the portable XRF technology. There was a significant correlation between the bone lead concentrations obtained from the standard KXRF technology and those obtained from the portable XRF technology (ICC = 0.65). The detection limit for the portable XRF device was about 8.4 ppm with 2 mm soft tissue thickness. The entrance skin dose delivered to the human subject was about 13 mSv and the total body effective dose was about 1.5 µSv and should pose minimal radiation risk. In conclusion, portable XRF technology can be used for in vivo bone lead measurement with sensitivity comparable to the KXRF technology and good correlation with KXRF measurements.
Nie, LH; Sanchez, S; Newton, K; Grodzins, L; Cleveland, RO; Weisskopf, MG
2013-01-01
This study was conducted to investigate the methodology and feasibility of developing a portable XRF technology to quantify lead (Pb) in bone in vivo. A portable XRF device was set up and optimal setting of voltage, current, and filter combination for bone lead quantification were selected to achieve the lowest detection limit. The minimum radiation dose delivered to the subject was calculated by Monte Carlo simulations. An ultrasound device was used to measure soft tissue thickness to account for signal attenuation, and an alternative method to obtain soft tissue thickness from the XRF spectrum was developed and shown to be equivalent to the ultrasound measurements (Intraclass Correlation Coefficient, ICC=0.82). We tested the correlation of in vivo bone lead concentrations between the standard KXRF technology and the portable XRF technology. There was a significant correlation between the bone lead concentrations obtained from the standard KXRF technology and those obtained from the portable XRF technology (ICC=0.65). The detection limit for the portable XRF device was about 8.4 ppm with 2 mm soft tissue thickness. The entrance skin dose delivered to the human subject was about 13 mSv and the total body effective dose was about 1.5 μSv and should pose a minimal radiation risk. In conclusion, portable XRF technology can be used for in vivo bone lead measurement with sensitivity comparable to the KXRF technology and good correlation with KXRF measurements. PMID:21242629
Portable device for detection of petit mal epilepsy
NASA Technical Reports Server (NTRS)
Smith, R. G.; Houge, J. C.; Webster, J. G.
1979-01-01
A portable device that analyzes the electroencephalogram to determine if petit mal epilepsy waveforms are present is developed and tested. Clinicians should find it useful in diagnosing seizure activity of their patients. The micropower, battery-operated, portable device indicates a seizure has occurred if three criteria are satisfied: (1) frequencies of 2.5-7 Hz, (2) large-amplitude waves, and (3) minimum number of waves per second. Levels and counts are adjustable, thus insuring high reliability against noise artifacts and permitting each subject to be individually fitted. The device has shown promise in giving the patient a possible mechanism of seizure control or suppression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assoufid, Lahsen; Shi, Xianbo; Marathe, Shashidhara
We developed a portable X-ray grating interferometer setup as a standard tool for testing optics at the Advanced Photon Source (APS) beamline 1-BM. The interferometer can be operated in phase-stepping, Moiré, or single-grating harmonic imaging mode with 1-D or 2-D gratings. All of the interferometer motions are motorized; hence, it is much easier and quicker to switch between the different modes of operation. A novel aspect of this new instrument is its designed portability. While the setup is designed to be primarily used as a standard tool for testing optics at 1-BM, it could be potentially deployed at other APSmore » beamlines for beam coherence and wavefront characterization or imaging. The design of the interferometer system is described in detail and coherence measurements obtained at the APS 34-ID-E beamline are presented. The coherence was probed in two directions using a 2-D checkerboard, a linear, and a circular grating at X-ray energies of 8 keV, 11 keV, and 18 keV.« less
Quantitative determinations using portable Raman spectroscopy.
Navin, Chelliah V; Tondepu, Chaitanya; Toth, Roxana; Lawson, Latevi S; Rodriguez, Jason D
2017-03-20
A portable Raman spectrometer was used to develop chemometric models to determine percent (%) drug release and potency for 500mg ciprofloxacin HCl tablets. Parallel dissolution and chromatographic experiments were conducted alongside Raman experiments to assess and compare the performance and capabilities of portable Raman instruments in determining critical drug attributes. All batches tested passed the 30min dissolution specification and the Raman model for drug release was able to essentially reproduce the dissolution profiles obtained by ultraviolet spectroscopy at 276nm for all five batches of the 500mg ciprofloxacin tablets. The five batches of 500mg ciprofloxacin tablets also passed the potency (assay) specification and the % label claim for the entire set of tablets run were nearly identical, 99.4±5.1 for the portable Raman method and 99.2±1.2 for the chromatographic method. The results indicate that portable Raman spectrometers can be used to perform quantitative analysis of critical product attributes of finished drug products. The findings of this study indicate that portable Raman may have applications in the areas of process analytical technology and rapid pharmaceutical surveillance. Published by Elsevier B.V.
10. Credit USAF, 7 September 1945. Original housed in the ...
10. Credit USAF, 7 September 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. View looks northwest into jet engine test cell located on aircraft apron southeast of Building 4305. In background of photo can be seen doors of Unicon Portable Hangar on left, and southeast end of Building T-l Bachelor Officers' Quarters ("Desert Rat Hotel"). This view emphasizes the hangar's role as a test facility for developing and testing aircraft and aircraft systems, not simply as a "garage" for aircraft. - Edwards Air Force Base, North Base, Unicon Portable Hangar, First & C Streets, Boron, Kern County, CA
Portable spark-gap arc generator
NASA Technical Reports Server (NTRS)
Ignaczak, L. R.
1978-01-01
Self-contained spark generator that simulates electrical noise caused by discharge of static charge is useful tool when checking sensitive component and equipment. In test set-up, device introduces repeatable noise pulses as behavior of components is monitored. Generator uses only standard commercial parts and weighs only 4 pounds; portable dc power supply is used. Two configurations of generator have been developed: one is free-running arc source, and one delivers spark in response to triggering pulse.
2016-05-01
Acute Concussion Evaluation (MACE), smartphone , TARGET, military, civilian, validity, reliability What was accomplished under these goals? For this...Issues with acceleration profile saturation in the smartphone app were observed in the data (see Major Task 3 below for explanation) and were...their potential impact. The goal of this project is to provide a portable, objective assessment of balance using an Android-based smartphone app that
A Portable Electronic Nose For Toxic Vapor Detection, Identification, and Quantification
NASA Technical Reports Server (NTRS)
Linnell, B. R.; Young, R. C.; Griffin, T. P.; Meneghelli, B. J.; Peterson, B. V.; Brooks, K. B.
2005-01-01
A new prototype instrument based on electronic nose (e-nose) technology has demonstrated the ability to identify and quantify many vapors of interest to the Space Program at their minimum required concentrations for both single vapors and two-component vapor mixtures, and may easily be adapted to detect many other toxic vapors. To do this, it was necessary to develop algorithms to classify unknown vapors, recognize when a vapor is not any of the vapors of interest, and estimate the concentrations of the contaminants. This paper describes the design of the portable e-nose instrument, test equipment setup, test protocols, pattern recognition algorithms, concentration estimation methods, and laboratory test results.
A handheld computer as part of a portable in vivo knee joint load monitoring system
Szivek, JA; Nandakumar, VS; Geffre, CP; Townsend, CP
2009-01-01
In vivo measurement of loads and pressures acting on articular cartilage in the knee joint during various activities and rehabilitative therapies following focal defect repair will provide a means of designing activities that encourage faster and more complete healing of focal defects. It was the goal of this study to develop a totally portable monitoring system that could be used during various activities and allow continuous monitoring of forces acting on the knee. In order to make the monitoring system portable, a handheld computer with custom software, a USB powered miniature wireless receiver and a battery-powered coil were developed to replace a currently used computer, AC powered bench top receiver and power supply. A Dell handheld running Windows Mobile operating system(OS) programmed using Labview was used to collect strain measurements. Measurements collected by the handheld based system connected to the miniature wireless receiver were compared with the measurements collected by a hardwired system and a computer based system during bench top testing and in vivo testing. The newly developed handheld based system had a maximum accuracy of 99% when compared to the computer based system. PMID:19789715
NASA Astrophysics Data System (ADS)
Restaino, Sergio R.; Gilbreath, G. Charmaine; Payne, Don M.; Baker, Jeffrey T.; Martinez, Ty; DiVittorio, Michael; Mozurkewich, David; Friedman, Jeffrey
2003-02-01
In this paper we present results using a compact, portable adaptive optics system. The system was developed as a joint venture between the Naval Research Laboratory, Air Force Research Laboratory, and two small, New Mexico based-businesses. The system has a footprint of 18x24x18 inches and weighs less than 100 lbs. Key hardware design characteristics enable portability, easy mounting, and stable alignment. The system also enables quick calibration procedures, stable performance, and automatic adaptability to various pupil configurations. The system was tested during an engineering run in late July 2002 at the Naval Observatory Flagstaff Station one-meter telescope. Weather prevented extensive testing and the seeing during the run was marginal but a sufficient opportunity was provided for proof-of-concept, initial characterization of closed loop performance, and to start addressing some of the most pressing engineering and scientific issues.
Andrés-Blanco, Ana M.; Álvarez, Daniel; Crespo, Andrea; Arroyo, C. Ainhoa; Cerezo-Hernández, Ana; Gutiérrez-Tobal, Gonzalo C.; Hornero, Roberto
2017-01-01
Background The coexistence of obstructive sleep apnea syndrome (OSAS) and chronic obstructive pulmonary disease (COPD) leads to increased morbidity and mortality. The development of home-based screening tests is essential to expedite diagnosis. Nevertheless, there is still very limited evidence on the effectiveness of portable monitoring to diagnose OSAS in patients with pulmonary comorbidities. Objective To assess the influence of suffering from COPD in the performance of an oximetry-based screening test for moderate-to-severe OSAS, both in the hospital and at home. Methods A total of 407 patients showing moderate-to-high clinical suspicion of OSAS were involved in the study. All subjects underwent (i) supervised portable oximetry simultaneously to in-hospital polysomnography (PSG) and (ii) unsupervised portable oximetry at home. A regression-based multilayer perceptron (MLP) artificial neural network (ANN) was trained to estimate the apnea-hypopnea index (AHI) from portable oximetry recordings. Two independent validation datasets were analyzed: COPD versus non-COPD. Results The portable oximetry-based MLP ANN reached similar intra-class correlation coefficient (ICC) values between the estimated AHI and the actual AHI for the non-COPD and the COPD groups either in the hospital (non-COPD: 0.937, 0.909–0.956 CI95%; COPD: 0.936, 0.899–0.960 CI95%) and at home (non-COPD: 0.731, 0.631–0.808 CI95%; COPD: 0.788, 0.678–0.864 CI95%). Regarding the area under the receiver operating characteristics curve (AUC), no statistically significant differences (p >0.01) between COPD and non-COPD groups were found in both settings, particularly for severe OSAS (AHI ≥30 events/h): 0.97 (0.92–0.99 CI95%) non-COPD vs. 0.98 (0.92–1.0 CI95%) COPD in the hospital, and 0.87 (0.79–0.92 CI95%) non-COPD vs. 0.86 (0.75–0.93 CI95%) COPD at home. Conclusion The agreement and the diagnostic performance of the estimated AHI from automated analysis of portable oximetry were similar regardless of the presence of COPD both in-lab and at-home. Particularly, portable oximetry could be used as an abbreviated screening test for moderate-to-severe OSAS in patients with COPD. PMID:29176802
Andrés-Blanco, Ana M; Álvarez, Daniel; Crespo, Andrea; Arroyo, C Ainhoa; Cerezo-Hernández, Ana; Gutiérrez-Tobal, Gonzalo C; Hornero, Roberto; Del Campo, Félix
2017-01-01
The coexistence of obstructive sleep apnea syndrome (OSAS) and chronic obstructive pulmonary disease (COPD) leads to increased morbidity and mortality. The development of home-based screening tests is essential to expedite diagnosis. Nevertheless, there is still very limited evidence on the effectiveness of portable monitoring to diagnose OSAS in patients with pulmonary comorbidities. To assess the influence of suffering from COPD in the performance of an oximetry-based screening test for moderate-to-severe OSAS, both in the hospital and at home. A total of 407 patients showing moderate-to-high clinical suspicion of OSAS were involved in the study. All subjects underwent (i) supervised portable oximetry simultaneously to in-hospital polysomnography (PSG) and (ii) unsupervised portable oximetry at home. A regression-based multilayer perceptron (MLP) artificial neural network (ANN) was trained to estimate the apnea-hypopnea index (AHI) from portable oximetry recordings. Two independent validation datasets were analyzed: COPD versus non-COPD. The portable oximetry-based MLP ANN reached similar intra-class correlation coefficient (ICC) values between the estimated AHI and the actual AHI for the non-COPD and the COPD groups either in the hospital (non-COPD: 0.937, 0.909-0.956 CI95%; COPD: 0.936, 0.899-0.960 CI95%) and at home (non-COPD: 0.731, 0.631-0.808 CI95%; COPD: 0.788, 0.678-0.864 CI95%). Regarding the area under the receiver operating characteristics curve (AUC), no statistically significant differences (p >0.01) between COPD and non-COPD groups were found in both settings, particularly for severe OSAS (AHI ≥30 events/h): 0.97 (0.92-0.99 CI95%) non-COPD vs. 0.98 (0.92-1.0 CI95%) COPD in the hospital, and 0.87 (0.79-0.92 CI95%) non-COPD vs. 0.86 (0.75-0.93 CI95%) COPD at home. The agreement and the diagnostic performance of the estimated AHI from automated analysis of portable oximetry were similar regardless of the presence of COPD both in-lab and at-home. Particularly, portable oximetry could be used as an abbreviated screening test for moderate-to-severe OSAS in patients with COPD.
Development of Temporary Rumble Strip Specifications
DOT National Transportation Integrated Search
2016-02-01
The objective of this study was to develop specifications for portable reusable temporary rumble strips for their applications in different work zone settings in Kansas. A detailed literature review, a survey of practice, and a closed-course test wer...
Design criteria for portable timber bridge systems : static versus dynamic loads
John M. Franklin; S. E. Taylor; Paul A. Morgan; M. A. Ritter
1999-01-01
Design criteria are needed specifically for portable bridges to insure that they are safe and cost effective. This paper discusses different portable bridge categories and their general design criteria. Specific emphasis is given to quantifying the effects of dynamic live loads on portable bridge design. Results from static and dynamic load tests of two portable timber...
Krasnow, Donna; Ambegaonkar, Jatin P; Stecyk, Shane; Wilmerding, M Virginia; Wyon, Matthew; Koutedakis, Yiannis
2011-12-01
Surface electromyography (sEMG) has been used in dance medicine research since the 1970s, but normalization procedures are not consistently employed in the field. The purpose of this project was to develop a portable anchored dynamometer (PAD) specifically for dance-related research. Due to the limited studies in the dance research literature using normalization procedures for sEMG data, a review of the procedures used in the exercise science literature was conducted. A portable anchored dynamometer was then developed and tested with dancers, using methods validated in previous literature. We collected sEMG maximum voluntary isometric contractions (MVIC, mV) from 10 female dancers (mean age 31.0 ± 15 yrs, mean height 163 ± 7.6 cm, mean weight 57.6 ± 6.9 kg, and 17.0 ± 13.9 yrs of training in ballet and/or modern dance) over three trials (5 sec each) for eight muscles bilaterally (quadriceps, tibialis anterior, abductor hallucis, gastrocnemius, hamstrings, gluteus maximus, erector spinae, and rectus abdominus). Consistency of data and feedback from dancers suggest that this dance-specific portable anchored dynamometer is effective for future sEMG studies in dance research.
Field-testing a portable wind tunnel for fine dust emissions
USDA-ARS?s Scientific Manuscript database
A protable wind tunnel has been developed to allow erodibility and dust emissions testing of soil surfaces with the premise that dust concentration and properties are highly correlated with surface soil properties, as modified by crop management system. In this study we report on the field-testing ...
Bagworm bags as portable armour against invertebrate predators.
Sugiura, Shinji
2016-01-01
Some animals have evolved the use of environmental materials as "portable armour" against natural enemies. Portable bags that bagworm larvae (Lepidoptera: Psychidae) construct using their own silk and plant parts are generally believed to play an important role as a physical barrier against natural enemies. However, no experimental studies have tested the importance of bags as portable armour against predators. To clarify the defensive function, I studied the bagworm Eumeta minuscula and a potential predator Calosoma maximoviczi (Coleoptera: Carabidae). Under laboratory conditions, all bagworm larvae were attacked by carabid adults, but successfully defended themselves against the predators' mandibles using their own bags. The portable bags, which are composed mainly of host plant twigs, may function as a physical barrier against predator mandibles. To test this hypothesis, I removed the twig bags and replaced some with herb leaf bags; all bag-removed larvae were easily caught and predated by carabids, while all bag-replaced larvae could successfully defend themselves against carabid attacks. Therefore, various types of portable bags can protect bagworm larvae from carabid attacks. This is the first study to test the defensive function of bagworm portable bags against invertebrate predators.
Development of Portable, Wireless and Smartphone Controllable Near-Infrared Spectroscopy System.
Watanabe, Takashi; Sekine, Rui; Mizuno, Toshihiko; Miwa, Mitsuharu
We have developed portable near-infrared tissue oxygenation monitoring systems, called the "PocketNIRS Duo" and the "PocketNIRS HM", which features wireless data communication and a sampling rate of up to 60 data readings per second. The systems can be controlled by smartphone or personal computer. We demonstrate the efficacy of the systems for monitoring changes in brain and arm muscle hemodynamics and oxygenation in breath-holding and cuff-occlusion tests, respectively.Our systems should prove to be useful as an oxygenation monitor not only in research but also in healthcare applications.
Development and study of aluminum-air electrochemical generator and its main components
NASA Astrophysics Data System (ADS)
Ilyukhina, A. V.; Kleymenov, B. V.; Zhuk, A. Z.
2017-02-01
Aluminum-air power sources are receiving increased attention for applications in portable electronic devices, transportation, and energy systems. This study reports on the development of an aluminum-air electrochemical generator (AA ECG) and provides a technical foundation for the selection of its components, i.e., aluminum anode, gas diffusion cathode, and alkaline electrolyte. A prototype 1.5 kW AA ECG with specific energy of 270 Wh kg-1 is built and tested. The results of this study demonstrate the feasibility of AA ECGs as portable reserve and emergency power sources, as well as power sources for electric vehicles.
Development of Temporary Rumble Strip Specifications : [Technical Summary
DOT National Transportation Integrated Search
2016-02-01
The objective of this study was to develop specifications for portable reusable temporary rumble strips for their applications in different work zone settings in Kansas. A detailed literature review, a survey of practice, and a closed-course test wer...
49 CFR 178.255-12 - Pressure test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Specifications for Portable Tanks § 178.255-12 Pressure test. (a) Each completed portable tank prior to application of lining shall be tested before being put into transportation service by completely filling the...
Prototyping and testing of a fully autonomous road construction beacon, the iCone.
DOT National Transportation Integrated Search
2010-04-01
A revolutionary portable traffic monitoring device is developed, extensively prototyped and thoroughly tested throughout the State of New York as well as several other states. The resulting device, trademarked as the iCone, simplifies the process o...
MEAUSREMENT OF THE SURFACE PERMEABILITY OF BASEMENT CONCRETES
The report discusses the development, testing, and use of a portable surface permeameter suitable for field use in measuring the surface permeability of concrete in new houses. he permeameter measures the airflow induced by a pressure difference across a temporary test seal appli...
Portable smartphone based quantitative phase microscope
NASA Astrophysics Data System (ADS)
Meng, Xin; Tian, Xiaolin; Yu, Wei; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Liu, Cheng; Wang, Shouyu
2018-01-01
To realize portable device with high contrast imaging capability, we designed a quantitative phase microscope using transport of intensity equation method based on a smartphone. The whole system employs an objective and an eyepiece as imaging system and a cost-effective LED as illumination source. A 3-D printed cradle is used to align these components. Images of different focal planes are captured by manual focusing, followed by calculation of sample phase via a self-developed Android application. To validate its accuracy, we first tested the device by measuring a random phase plate with known phases, and then red blood cell smear, Pap smear, broad bean epidermis sections and monocot root were also measured to show its performance. Owing to its advantages as accuracy, high-contrast, cost-effective and portability, the portable smartphone based quantitative phase microscope is a promising tool which can be future adopted in remote healthcare and medical diagnosis.
A portable device for calibration of autocollimators with nanoradian precision
NASA Astrophysics Data System (ADS)
Yandayan, Tanfer
2017-09-01
A portable device has been developed in TUBITAK UME to calibrate high precision autocollimators with nanoradian precision. The device can operate in the range of +/-4500" which is far enough for the calibration of the available autocollimators and can generate ultra-small angles in measurement steps of 0.0005" (2.5 nrad). Description of the device with the performance tests using the calibrated precise autocollimators and novel methods will be reported. The test results indicate that the device is a good candidate for application to on-site/in-situ calibration of autocollimators with expanded uncertainties of 0.01" (50 nrad) particularly those used in slope measuring profilers.
49 CFR 178.274 - Specifications for UN portable tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and 178.277, as applicable. Design type means a portable tank or series of portable tanks made of... the top of the shell during the hydraulic pressure test equal to not less than 1.5 times the design... be designed and constructed to withstand a hydraulic test pressure of not less than 1.5 times the...
49 CFR 178.274 - Specifications for UN portable tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... and 178.277, as applicable. Design type means a portable tank or series of portable tanks made of... the top of the shell during the hydraulic pressure test equal to not less than 1.5 times the design... be designed and constructed to withstand a hydraulic test pressure of not less than 1.5 times the...
Development test results of the Portable, Reconfigurable Sky Sensor (PRSS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blattman, D.A.
1993-12-31
The protection of assets against surreptitious access from the sky is a continuing problem. The Portable, Reconfigurable Sky Sensor is designed to provide volumetric intruder detection against low-observable aircraft, helicopters, and parachutists in the sky. Multiple systems may be joined to form continuous detection volume for applications such as borders. The PRSS is resistant to nuisance alarms due to wind up to 70 mph, rain/snow up to 6 inches/hour or small targets such as birds. The PRSS has been successfully tested against multiple intrusions with altitude range from 50 to 3,000 feet and cross-range up to 3,000 feet. This papermore » summarizes some of these field tests and lists specifications and potential uses.« less
46 CFR 162.028-5 - Independent laboratories: Listing.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Portable, Marine Type... or tests of portable fire extinguishers: (a) For dry chemical, CO2, water and foam type portable fire...
46 CFR 162.028-5 - Independent laboratories: Listing.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Portable, Marine Type... or tests of portable fire extinguishers: (a) For dry chemical, CO2, water and foam type portable fire...
46 CFR 162.028-5 - Independent laboratories: Listing.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Portable, Marine Type... or tests of portable fire extinguishers: (a) For dry chemical, CO2, water and foam type portable fire...
46 CFR 162.028-5 - Independent laboratories: Listing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Portable, Marine Type... or tests of portable fire extinguishers: (a) For dry chemical, CO2, water and foam type portable fire...
46 CFR 162.028-5 - Independent laboratories: Listing.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Portable, Marine Type... or tests of portable fire extinguishers: (a) For dry chemical, CO2, water and foam type portable fire...
The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock.
Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong
2009-01-01
In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode.
Module Measurements | Photovoltaic Research | NREL
prototype concentrator evaluation test bed, and the Daystar DS-10/125 portable I-V curve tracer. Standard Evaluation Test Bed. We developed this test bed to be able to evaluate I-V characteristics throughout the day a function of time, temperature, and light level. This test bed data set is also used to evaluate
The Monterey Ocean Observing System Development Program
NASA Astrophysics Data System (ADS)
Chaffey, M.; Graybeal, J. B.; O'Reilly, T.; Ryan, J.
2004-12-01
The Monterey Bay Aquarium Research Institute (MBARI) has a major development program underway to design, build, test and apply technology suitable to deep ocean observatories. The Monterey Ocean Observing System (MOOS) program is designed to form a large-scale instrument network that provides generic interfaces, intelligent instrument support, data archiving and near-real-time interaction for observatory experiments. The MOOS mooring system is designed as a portable surface mooring based seafloor observatory that provides data and power connections to both seafloor and ocean surface instruments through a specialty anchor cable. The surface mooring collects solar and wind energy for powering instruments and transmits data to shore-side researchers using a satellite communications modem. The use of a high modulus anchor cable to reach seafloor instrument networks is a high-risk development effort that is critical for the overall success of the portable observatory concept. An aggressive field test program off the California coast is underway to improve anchor cable constructions as well as end-to-end test overall system design. The overall MOOS observatory systems view is presented and the results of our field tests completed to date are summarized.
A portable wheel tester for tyre-road friction and rolling resistance determination
NASA Astrophysics Data System (ADS)
Pytka, J.; Budzyński, P.; Tarkowski, P.; Piaskowski, M.
2016-09-01
The paper describes theory of operation, design and construction as well as results from primarily experiments with a portable wheel tester that has been developed by the authors as a device for on-site determination of tyre-road braking/driving friction and rolling resistance. The paper includes schematics, drawings, descriptions as well as graphical results form early tests with the presented device. It is expected that the tester can be useful in road accident reconstruction applications as well as in vehicle dynamics research.
The purpose of this issue paper is to address the availability and performance characteristics of portable lead test kits especially suited for lead in paint, procedures for evaluating the performance of these test kits, and the availability of performance evaluation (PE) materia...
Bagworm bags as portable armour against invertebrate predators
2016-01-01
Some animals have evolved the use of environmental materials as “portable armour” against natural enemies. Portable bags that bagworm larvae (Lepidoptera: Psychidae) construct using their own silk and plant parts are generally believed to play an important role as a physical barrier against natural enemies. However, no experimental studies have tested the importance of bags as portable armour against predators. To clarify the defensive function, I studied the bagworm Eumeta minuscula and a potential predator Calosoma maximoviczi (Coleoptera: Carabidae). Under laboratory conditions, all bagworm larvae were attacked by carabid adults, but successfully defended themselves against the predators’ mandibles using their own bags. The portable bags, which are composed mainly of host plant twigs, may function as a physical barrier against predator mandibles. To test this hypothesis, I removed the twig bags and replaced some with herb leaf bags; all bag-removed larvae were easily caught and predated by carabids, while all bag-replaced larvae could successfully defend themselves against carabid attacks. Therefore, various types of portable bags can protect bagworm larvae from carabid attacks. This is the first study to test the defensive function of bagworm portable bags against invertebrate predators. PMID:26893969
ProperCAD: A portable object-oriented parallel environment for VLSI CAD
NASA Technical Reports Server (NTRS)
Ramkumar, Balkrishna; Banerjee, Prithviraj
1993-01-01
Most parallel algorithms for VLSI CAD proposed to date have one important drawback: they work efficiently only on machines that they were designed for. As a result, algorithms designed to date are dependent on the architecture for which they are developed and do not port easily to other parallel architectures. A new project under way to address this problem is described. A Portable object-oriented parallel environment for CAD algorithms (ProperCAD) is being developed. The objectives of this research are (1) to develop new parallel algorithms that run in a portable object-oriented environment (CAD algorithms using a general purpose platform for portable parallel programming called CARM is being developed and a C++ environment that is truly object-oriented and specialized for CAD applications is also being developed); and (2) to design the parallel algorithms around a good sequential algorithm with a well-defined parallel-sequential interface (permitting the parallel algorithm to benefit from future developments in sequential algorithms). One CAD application that has been implemented as part of the ProperCAD project, flat VLSI circuit extraction, is described. The algorithm, its implementation, and its performance on a range of parallel machines are discussed in detail. It currently runs on an Encore Multimax, a Sequent Symmetry, Intel iPSC/2 and i860 hypercubes, a NCUBE 2 hypercube, and a network of Sun Sparc workstations. Performance data for other applications that were developed are provided: namely test pattern generation for sequential circuits, parallel logic synthesis, and standard cell placement.
Corrigan, Damion K; Salton, Neale A; Preston, Chris; Piletsky, Sergey
2010-09-01
Cleaning verification is a scientific and economic problem for the pharmaceutical industry. A large amount of potential manufacturing time is lost to the process of cleaning verification. This involves the analysis of residues on spoiled manufacturing equipment, with high-performance liquid chromatography (HPLC) being the predominantly employed analytical technique. The aim of this study was to develop a portable cleaning verification system for nelarabine using surface enhanced Raman spectroscopy (SERS). SERS was conducted using a portable Raman spectrometer and a commercially available SERS substrate to develop a rapid and portable cleaning verification system for nelarabine. Samples of standard solutions and swab extracts were deposited onto the SERS active surfaces, allowed to dry and then subjected to spectroscopic analysis. Nelarabine was amenable to analysis by SERS and the necessary levels of sensitivity were achievable. It is possible to use this technology for a semi-quantitative limits test. Replicate precision, however, was poor due to the heterogeneous drying pattern of nelarabine on the SERS active surface. Understanding and improving the drying process in order to produce a consistent SERS signal for quantitative analysis is desirable. This work shows the potential application of SERS for cleaning verification analysis. SERS may not replace HPLC as the definitive analytical technique, but it could be used in conjunction with HPLC so that swabbing is only carried out once the portable SERS equipment has demonstrated that the manufacturing equipment is below the threshold contamination level.
Novel versatile smart phone based Microplate readers for on-site diagnoses.
Fu, Qiangqiang; Wu, Ze; Li, Xiuqing; Yao, Cuize; Yu, Shiting; Xiao, Wei; Tang, Yong
2016-07-15
Microplate readers are important diagnostic instruments, used intensively for various readout test kits (biochemical analysis kits and ELISA kits). However, due to their expensive and non-portability, commercial microplate readers are unavailable for home testing, community and rural hospitals, especially in developing countries. In this study, to provide a field-portable, cost-effective and versatile diagnostic tool, we reported a novel smart phone based microplate reader. The basic principle of this devise relies on a smart phone's optical sensor that measures transmitted light intensities of liquid samples. To prove the validity of these devises, developed smart phone based microplate readers were applied to readout results of various analytical targets. These targets included analanine aminotransferase (ALT; limit of detection (LOD) was 17.54 U/L), alkaline phosphatase (AKP; LOD was 15.56 U/L), creatinine (LOD was 1.35μM), bovine serum albumin (BSA; LOD was 0.0041mg/mL), prostate specific antigen (PSA; LOD was 0.76pg/mL), and ractopamine (Rac; LOD was 0.31ng/mL). The developed smart phone based microplate readers are versatile, portable, and inexpensive; they are unique because of their ability to perform under circumstances where resources and expertize are limited. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wiegert, R. F.
2009-05-01
A man-portable Magnetic Scalar Triangulation and Ranging ("MagSTAR") technology for Detection, Localization and Classification (DLC) of unexploded ordnance (UXO) has been developed by Naval Surface Warfare Center Panama City Division (NSWC PCD) with support from the Strategic Environmental Research and Development Program (SERDP). Proof of principle of the MagSTAR concept and its unique advantages for real-time, high-mobility magnetic sensing applications have been demonstrated by field tests of a prototype man-portable MagSTAR sensor. The prototype comprises: a) An array of fluxgate magnetometers configured as a multi-tensor gradiometer, b) A GPS-synchronized signal processing system. c) Unique STAR algorithms for point-by-point, standoff DLC of magnetic targets. This paper outlines details of: i) MagSTAR theory, ii) Design and construction of the prototype sensor, iii) Signal processing algorithms recently developed to improve the technology's target-discrimination accuracy, iv) Results of field tests of the portable gradiometer system against magnetic dipole targets. The results demonstrate that the MagSTAR technology is capable of very accurate, high-speed localization of magnetic targets at standoff distances of several meters. These advantages could readily be transitioned to a wide range of defense, security and sensing applications to provide faster and more effective DLC of UXO and buried mines.
Modified ACES Portable Life Support Integration, Design, and Testing for Exploration Missions
NASA Technical Reports Server (NTRS)
Kelly, Cody
2014-01-01
NASA's next generation of exploration missions provide a unique challenge to designers of EVA life support equipment, especially in a fiscally-constrained environment. In order to take the next steps of manned space exploration, NASA is currently evaluating the use of the Modified ACES (MACES) suit in conjunction with the Advanced Portable Life Support System (PLSS) currently under development. This paper will detail the analysis and integration of the PLSS thermal and ventilation subsystems into the MACES pressure garment, design of prototype hardware, and hardware-in-the-loop testing during the spring 2014 timeframe. Prototype hardware was designed with a minimal impact philosophy in order to mitigate design constraints becoming levied on either the advanced PLSS or MACES subsystems. Among challenges faced by engineers were incorporation of life support thermal water systems into the pressure garment cavity, operational concept definition between vehicle/portable life support system hardware, and structural attachment mechanisms while still enabling maximum EVA efficiency from a crew member's perspective. Analysis was completed in late summer 2013 to 'bound' hardware development, with iterative analysis cycles throughout the hardware development process. The design effort will cumulate in the first ever manned integration of NASA's advanced PLSS system with a pressure garment originally intended primarily for use in a contingency survival scenario.
Brushless dc motors. [applications in non-space technology
NASA Technical Reports Server (NTRS)
1975-01-01
Brushless dc motors were intensively developed and tested over several years before qualification as the prime movers for Apollo Spacecraft life support blowers, and for circulating oxygen in the lunar portable life support system. Knowledge gained through prototype development and critical testing has significantly influenced the technology employed, broadened markets and applications, and reduced the cost of present day motors.
A gas flow indicator for portable life support systems
NASA Technical Reports Server (NTRS)
Bass, R. L., III; Schroeder, E. C.
1975-01-01
A three-part program was conducted to develop a gas flow indicator (GFI) to monitor ventilation flow in a portable life support system. The first program phase identified concepts which could potentially meet the GFI requirements. In the second phase, a working breadboard GFI, based on the concept of a pressure sensing diaphragm-aneroid assembly connected to a venturi, was constructed and tested. Extensive testing of the breadboard GFI indicated that the design would meet all NASA requirements including eliminating problems experienced with the ventilation flow sensor used in the Apollo program. In the third program phase, an optimized GFI was designed by utilizing test data obtained on the breadboard unit. A prototype unit was constructed using prototype materials and fabrication techniques, and performance tests indicated that the prototype GFI met or exceeded all requirements.
Portable Ultrasonic Guided Wave Inspection with MACRO Fiber Composite Actuators
NASA Astrophysics Data System (ADS)
Haig, A.; Mudge, P.; Catton, P.; Balachandran, W.
2010-02-01
The development of portable ultrasonic guided wave transducer arrays that utilize Macro Fiber Composite actuators (MFCs) is described. Portable inspection equipment can make use of ultrasonic guided waves to rapidly screen large areas of many types of engineering structures for defects. The defect finding performance combined with the difficulty of application determines how much the engineering industry makes use of this non-destructive, non-disruptive technology. The developments with MFCs have the potential to make considerable improvements in both these aspects. MFCs are highly efficient because they use interdigital electrodes to facilitate the extensional, d33 displacement mode. Their fiber composite design allows them to be thin, lightweight, flexible and durable. The flexibility affords them conformance with curved surfaces, which can facilitate good mechanical coupling. The suitability of a given transducer for Long Range Ultrasonic Testing is governed by the nature and amplitude of the displacement that it excites/senses in the contact area of the target structure. This nature is explored for MFCs through directional sensitivity analysis and empirical testing. Housing methods that facilitate non-permanent coupling techniques are discussed. Finally, arrangements of arrays of MFCs for the guided wave inspection of plates and pipes are considered and some broad design criteria are given.
Space Suit Portable Life Support System Rapid Cycle Amine Repackaging and Sub-Scale Test Results
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Rivera, Fatonia L.
2010-01-01
NASA is developing technologies to meet requirements for an extravehicular activity (EVA) Portable Life Support System (PLSS) for exploration. The PLSS Ventilation Subsystem transports clean, conditioned oxygen to the pressure garment for space suit pressurization and human consumption, and recycles the ventilation gas, removing carbon dioxide, humidity, and trace contaminants. This paper provides an overview of the development efforts conducted at the NASA Johnson Space Center to redesign the Rapid Cycle Amine (RCA) canister and valve assembly into a radial flow, cylindrical package for carbon dioxide and humidity control of the PLSS ventilation loop. Future work is also discussed.
Portable X-ray Fluorescence Unit for Analyzing Crime Scenes
NASA Astrophysics Data System (ADS)
Visco, A.
2003-12-01
Goddard Space Flight Center and the National Institute of Justice have teamed up to apply NASA technology to the field of forensic science. NASA hardware that is under development for future planetary robotic missions, such as Mars exploration, is being engineered into a rugged, portable, non-destructive X-ray fluorescence system for identifying gunshot residue, blood, and semen at crime scenes. This project establishes the shielding requirements that will ensure that the exposure of a user to ionizing radiation is below the U.S. Nuclear Regulatory Commission's allowable limits, and also develops the benchtop model for testing the system in a controlled environment.
Widder, Mark W; Brennan, Linda M; Hanft, Elizabeth A; Schrock, Mary E; James, Ryan R; van der Schalie, William H
2015-07-01
The US Army's need for a reliable and field-portable drinking water toxicity sensor was the catalyst for the development and evaluation of an electric cell-substrate impedance sensing (ECIS) device. Water testing technologies currently available to soldiers in the field are analyte-specific and have limited capabilities to detect broad-based water toxicity. The ECIS sensor described here uses rainbow trout gill epithelial cells seeded on fluidic biochips to measure changes in impedance for the detection of possible chemical contamination of drinking water supplies. Chemicals selected for testing were chosen as representatives of a broad spectrum of toxic industrial compounds. Results of a US Environmental Protection Agency (USEPA)-sponsored evaluation of the field portable device were similar to previously published US Army testing results of a laboratory-based version of the same technology. Twelve of the 18 chemicals tested following USEPA Technology Testing and Evaluation Program procedures were detected by the ECIS sensor within 1 h at USEPA-derived human lethal concentrations. To simplify field-testing methods further, elimination of a procedural step that acclimated cells to serum-free media streamlined the test process with only a slight loss of chemical sensitivity. For field use, the ECIS sensor will be used in conjunction with an enzyme-based sensor that is responsive to carbamate and organophosphorus pesticides. Copyright © 2014 John Wiley & Sons, Ltd.
Evaluation of methods for rapid determination of freezing point of aviation fuels
NASA Technical Reports Server (NTRS)
Mathiprakasam, B.
1982-01-01
Methods for identification of the more promising concepts for the development of a portable instrument to rapidly determine the freezing point of aviation fuels are described. The evaluation process consisted of: (1) collection of information on techniques previously used for the determination of the freezing point, (2) screening and selection of these techniques for further evaluation of their suitability in a portable unit for rapid measurement, and (3) an extensive experimental evaluation of the selected techniques and a final selection of the most promising technique. Test apparatuses employing differential thermal analysis and the change in optical transparency during phase change were evaluated and tested. A technique similar to differential thermal analysis using no reference fuel was investigated. In this method, the freezing point was obtained by digitizing the data and locating the point of inflection. Results obtained using this technique compare well with those obtained elsewhere using different techniques. A conceptual design of a portable instrument incorporating this technique is presented.
Development of Portable Venturi Kiln for Agricultural Waste Utilization by Carbonization Process
NASA Astrophysics Data System (ADS)
Agustina, S. E.; Chasanah, N.; Eris, A. P.
2018-05-01
Many types of kiln or carbonization equipment have been developed, but most of them were designed for big capacity and some also having low performance. This research aims to develop kiln, especially portable metal kiln, which has higher performance, more environmental- friendly, and can be used for several kinds of biomass or agricultural waste (not exclusive for one kind of biomass) as feeding material. To improve the kiln performance, a venturi drum type of portable kiln has been designed with an optimum capacity of 12.45 kg coconut shells. Basic idea of those design is heat flow improvement causing by venturi effect. The performance test for coconut shell carbonization shows that the carbonization process takes about 60-90 minutes to produce average yields of 23.8%., and the highest temperature of the process was 441 °C. The optimum performance has been achieved in the 4th test, which was producing 24% yield of highest charcoal quality (represented by LHV) in 65 minutes process at average temperature level 485 °C. For pecan shell and palm shell, design modification has been done by adding 6 air inlet holes and 3 ignition column to get better performance. While operation procedure should be modified on loading and air supply, depending on each biomass characteristic. The result of performance test showed that carbonization process of pecan shell produce 17 % yield, and palm shell produce 15% yield. Based on Indonesian Standard (SNI), all charcoal produced in those carbonization has good quality level.
46 CFR 160.038-4 - Inspections and tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Magazine Chests, Portable, for Merchant Vessels § 160.038-4 Inspections and tests. (a) Portable magazine chests specified by this subpart are not ordinarily subject to...
Ganavadiya, R; Chandrashekar, Br; Goel, P; Hongal, Sg; Jain, M
2014-05-01
India is the second most populous country in the world with an extensive rural population (68.8%). Children less than 18 years constitute about 40% of the population. Approximately, 23.5% of the urban population resides in urban slums. The extensive rural population, school children and the urban slum dwellers are denied of even the basic dental services though there is continuous advancement in the field of dentistry. The dentist to population ratio has dramatically improved in the last one to two decades with no significant improvement in the oral health status of the general population. The various studies have revealed an increasing trend in oral diseases in the recent times especially among this underserved population. Alternate strategies have to be thought about rather than the traditional oral health-care delivery through private dentists on fee for service basis. Mobile and portable dental services are a viable option to take the sophisticated oral health services to the doorsteps of the underserved population. The databases were searched for publications from 1900 to the present (2013) using terms such as Mobile dental services, Portable dental services and Mobile and portable dental services with key articles obtained primarily from MEDLINE. This paper reviews the published and unpublished literature from different sources on the various mobile dental service programs successfully implemented in some developed and developing countries. Though the mobile and portable systems have some practical difficulties like financial considerations, they still seem to be the only way to reach every section of the community in the absence of national oral health policy and organized school dental health programs in India. The material for the present review was obtained mainly by searching the biomedical databases for primary research material using the search engine with key words such as mobile and/or portable dental services in developed and developing countries (adding each of these terms in a sequential order). Based on the review of the programs successfully implemented in developed countries, we propose a model to cater to the basic oral health needs of an extensive underserved population in India that may be pilot tested. The increasing dental manpower can best be utilized for the promotion of oral health through mobile and portable dental services. The professional dental organizations should have a strong motive to translate this into reality.
40 CFR 1065.901 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
....901 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065.901...-specific emissions using portable emission measurement systems (PEMS). These procedures are designed...
Luzio de Melo, Paulo; da Silva, Miguel Tavares; Martins, Jorge; Newman, Dava
2015-05-01
Functional electrical stimulation (FES) has been used over the last decades as a method to rehabilitate lost motor functions of individuals with spinal cord injury, multiple sclerosis, and post-stroke hemiparesis. Within this field, researchers in need of developing FES-based control solutions for specific disabilities often have to choose between either the acquisition and integration of high-performance industry-level systems, which are rather expensive and hardly portable, or develop custom-made portable solutions, which despite their lower cost, usually require expert-level electronic skills. Here, a flexible low-cost microcontroller-based platform for rapid prototyping of FES neuroprostheses is presented, designed for reduced execution complexity, development time, and production cost. For this reason, the Arduino open-source microcontroller platform was used, together with off-the-shelf components whenever possible. The developed system enables the rapid deployment of portable FES-based gait neuroprostheses, being flexible enough to allow simple open-loop strategies but also more complex closed-loop solutions. The system is based on a modular architecture that allows the development of optimized solutions depending on the desired FES applications, even though the design and testing of the platform were focused toward drop foot correction. The flexibility of the system was demonstrated using two algorithms targeting drop foot condition within different experimental setups. Successful bench testing of the device in healthy subjects demonstrated these neuroprosthesis platform capabilities to correct drop foot. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Portable fixture facilitates pressure testing of instrumentation fittings
NASA Technical Reports Server (NTRS)
Olson, G. A.
1967-01-01
Portable fixture facilitates pressure testing to detect possible leaks in instrumentation fittings mounted on tank bulkheads. It uses a vacuum cup which seals a pressure regulator adapter around one side of the fitting to be pressure tested. Leakage is detected with a gas sniffer.
NASA Astrophysics Data System (ADS)
Maiwald, M.; Müller, A.; Sumpf, B.
2017-02-01
In-situ shifted excitation Raman difference spectroscopy (SERDS) experiments are presented using a portable sensor system. Key elements of this system are an in-house developed handheld probe with an implemented dual-wavelength diode laser at 785 nm. An optical power of 120 mW is achieved ex probe. Raman experiments are carried out in the laboratory for qualification using polystyrene as test sample. Here, a shot-noise limited signal-to-noise ratio (SNR) of 120 is achieved. Stability tests were performed and show a stable position of the Raman line under study within 0.1 cm-1 and a stable Raman intensity better +/- 2% mainly limited by shot noise interference. SERDS experiments are carried out in an apple orchard for demonstration. Green apple leafs are used as test samples. The Raman spectra show huge background interferences by fluorescence and ambient daylight which almost obscure Raman signals from green leafs. The selected excitation power is 50 mW and the exposure time is 0.2 s to avoid detector saturation. SERDS efficiently separates the Raman signals from fluorescence and daylight contributions and generates an 11-fold improvement of the signal-to-background noise with respect to the measured Raman signals. The results demonstrate the capability of the portable SERDS system and enable rapid in-situ and undisturbed Raman investigations under daylight conditions.
A prototype of a portable TDCR system at ENEA.
Capogni, Marco; De Felice, Pierino
2014-11-01
A prototype of a portable liquid scintillation counting system based on the Triple-to-Double Coincidence Ratio (TDCR) technique was developed at ENEA-INMRI in the framework of the European Metrofission project. The new device equipped with the CAEN digitizers was tested for the activity measurements of pure β-emitters ((99)Tc and (63)Ni). The list-mode data recorded by the digitizers were analyzed by software implemented in the CERN ROOT environment, which allows the application of pulse shape discrimination using the new device. Copyright © 2014 Elsevier Ltd. All rights reserved.
Detection of fatty product falsifications using a portable near infrared spectrometer
NASA Astrophysics Data System (ADS)
Kalinin, A. V.; Krasheninnikov, V. N.
2017-01-01
Spreading sales of counterfeited fatty-oil foods leads to a development of portable and operational analyzer of typical fatty acids (FA) which may be a near infrared (NIR) spectrometer. In this work the calibration models for prediction of named FA were built with the spectra of FT-NIR spectrometer for different absorption bands of the FA. The best parameters were obtained for the wavelength sub-band 1.0-1.8 μ, which includes the 2nd and 3rd overtones of C-H stretching vibrations (near 1.7 and 1.2 μ) and the combination band (1.42 μ). Applicability of the portable spectrometer based on linear NIR array photosensor for the quality analysis of spread, butter and fish oil by the typical FA has been tested.
49 CFR 178.255-12 - Pressure test.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Pressure test. 178.255-12 Section 178.255-12... Portable Tanks § 178.255-12 Pressure test. (a) Each completed portable tank prior to application of lining... the test, and applying a pressure of 60 psig. The tank shall be capable of holding the prescribed...
NASA Astrophysics Data System (ADS)
Hess, M.; Robson, S.
2012-07-01
3D colour image data generated for the recording of small museum objects and archaeological finds are highly variable in quality and fitness for purpose. Whilst current technology is capable of extremely high quality outputs, there are currently no common standards or applicable guidelines in either the museum or engineering domain suited to scientific evaluation, understanding and tendering for 3D colour digital data. This paper firstly explains the rationale towards and requirements for 3D digital documentation in museums. Secondly it describes the design process, development and use of a new portable test object suited to sensor evaluation and the provision of user acceptance metrics. The test object is specifically designed for museums and heritage institutions and includes known surface and geometric properties which support quantitative and comparative imaging on different systems. The development for a supporting protocol will allow object reference data to be included in the data processing workflow with specific reference to conservation and curation.
Improvement of portable computed tomography system for on-field applications
NASA Astrophysics Data System (ADS)
Sukrod, K.; Khoonkamjorn, P.; Tippayakul, C.
2015-05-01
In 2010, Thailand Institute of Nuclear Technology (TINT) received a portable Computed Tomography (CT) system from the IAEA as part of the Regional Cooperative Agreement (RCA) program. This portable CT system has been used as the prototype for development of portable CT system intended for industrial applications since then. This paper discusses the improvements in the attempt to utilize the CT system for on-field applications. The system is foreseen to visualize the amount of agarwood in the live tree trunk. The experiments adopting Am-241 as the radiation source were conducted. The Am-241 source was selected since it emits low energy gamma which should better distinguish small density differences of wood types. Test specimens made of timbers with different densities were prepared and used in the experiments. The cross sectional views of the test specimens were obtained from the CT system using different scanning parameters. It is found from the experiments that the results are promising as the picture can clearly differentiate wood types according to their densities. Also, the optimum scanning parameters were determined from the experiments. The results from this work encourage the research team to advance into the next phase which is to experiment with the real tree on the field.
The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock
Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong
2009-01-01
In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode. PMID:22291566
PubMedPortable: A Framework for Supporting the Development of Text Mining Applications.
Döring, Kersten; Grüning, Björn A; Telukunta, Kiran K; Thomas, Philippe; Günther, Stefan
2016-01-01
Information extraction from biomedical literature is continuously growing in scope and importance. Many tools exist that perform named entity recognition, e.g. of proteins, chemical compounds, and diseases. Furthermore, several approaches deal with the extraction of relations between identified entities. The BioCreative community supports these developments with yearly open challenges, which led to a standardised XML text annotation format called BioC. PubMed provides access to the largest open biomedical literature repository, but there is no unified way of connecting its data to natural language processing tools. Therefore, an appropriate data environment is needed as a basis to combine different software solutions and to develop customised text mining applications. PubMedPortable builds a relational database and a full text index on PubMed citations. It can be applied either to the complete PubMed data set or an arbitrary subset of downloaded PubMed XML files. The software provides the infrastructure to combine stand-alone applications by exporting different data formats, e.g. BioC. The presented workflows show how to use PubMedPortable to retrieve, store, and analyse a disease-specific data set. The provided use cases are well documented in the PubMedPortable wiki. The open-source software library is small, easy to use, and scalable to the user's system requirements. It is freely available for Linux on the web at https://github.com/KerstenDoering/PubMedPortable and for other operating systems as a virtual container. The approach was tested extensively and applied successfully in several projects.
PubMedPortable: A Framework for Supporting the Development of Text Mining Applications
Döring, Kersten; Grüning, Björn A.; Telukunta, Kiran K.; Thomas, Philippe; Günther, Stefan
2016-01-01
Information extraction from biomedical literature is continuously growing in scope and importance. Many tools exist that perform named entity recognition, e.g. of proteins, chemical compounds, and diseases. Furthermore, several approaches deal with the extraction of relations between identified entities. The BioCreative community supports these developments with yearly open challenges, which led to a standardised XML text annotation format called BioC. PubMed provides access to the largest open biomedical literature repository, but there is no unified way of connecting its data to natural language processing tools. Therefore, an appropriate data environment is needed as a basis to combine different software solutions and to develop customised text mining applications. PubMedPortable builds a relational database and a full text index on PubMed citations. It can be applied either to the complete PubMed data set or an arbitrary subset of downloaded PubMed XML files. The software provides the infrastructure to combine stand-alone applications by exporting different data formats, e.g. BioC. The presented workflows show how to use PubMedPortable to retrieve, store, and analyse a disease-specific data set. The provided use cases are well documented in the PubMedPortable wiki. The open-source software library is small, easy to use, and scalable to the user’s system requirements. It is freely available for Linux on the web at https://github.com/KerstenDoering/PubMedPortable and for other operating systems as a virtual container. The approach was tested extensively and applied successfully in several projects. PMID:27706202
Zero Gravity Aircraft Testing of a Prototype Portable Fire Extinguisher for Use in Spacecraft
NASA Astrophysics Data System (ADS)
Butz, J.; Carriere, T.; Abbud-Madrid, A.; Easton, J.
2012-01-01
For the past five years ADA Technologies has been developing a portable fire extinguisher (PFE) for use in microgravity environments. This technology uses fine water mist (FWM) to effectively and efficiently extinguish fires representative of spacecraft hazards. Recently the FWM PFE was flown on a Zero-G (reduced gravity) aircraft to validate the performance of the technology in a microgravity environment. Test results demonstrated that droplet size distributions generated in the reduced gravity environment were in the same size range as data collected during normal gravity (1-g) discharges from the prototype PFE. Data taken in an obscured test configuration showed that the mist behind the obstacle was more dense in the low-g environment when compared to 1-g discharges. The mist behind the obstacle tended to smaller droplet sizes in both the low-g and 1-g test conditions.
A Portable Electronic Nose for Toxic Vapor Detection, Identification, and Quantification
NASA Technical Reports Server (NTRS)
Linnell, B. R.; Young, R. C.; Griffin, T. P.; Meneghelli, B. J.; Peterson, B. V.; Brooks, K. B.
2005-01-01
The Space Program and military use large quantities of hydrazine and monomethyl hydrazine as rocket propellant, which are very toxic and suspected human carcinogens. Current off-the-shelf portable instruments require 10 to 20 minutes of exposure to detect these compounds at the minimum required concentrations and are prone to false positives, making them unacceptable for many operations. In addition, post-mission analyses of grab bag air samples from the Shuttle have confirmed the occasional presence of on-board volatile organic contaminants, which also need to be monitored to ensure crew safety. A new prototype instrument based on electronic nose (e-nose) technology has demonstrated the ability to qualify (identify) and quantify many of these vapors at their minimum required concentrations, and may easily be adapted to detect many other toxic vapors. To do this, it was necessary to develop algorithms to classify unknown vapors, recognize when a vapor is not any of the vapors of interest, and estimate the concentrations of the contaminants. This paper describes the design of the portable e-nose instrument, test equipment setup, test protocols, pattern recognition algorithms, concentration estimation methods, and laboratory test results.
de Miguel, Dunia; Burgaleta, Carmen; Reyes, Eduardo; Pascual, Teresa
2003-07-01
We evaluated a new portable monitor (AvoSure PT PRO, Menarini Diagnostics, Firenze, Italy) developed to test the prothrombin time in capillary blood and plasma by comparing it with the standard laboratory determination. We studied 62 patients receiving acenocoumarol therapy. The international normalized ratio (INR) in capillary blood was analyzed by 2 methods: AvoSure PT PRO and Thrombotrack Nycomed Analyzer (Axis-Shield, Dundee, Scotland). Parallel studies were performed in plasma samples by a reference method using the Behring Coagulation Timer (Behring Diagnostics, Marburg, Germany). Plasma samples also were tested with the AvoSure PT PRO. Correlation was good for INR values for capillary blood and plasma samples by AvoSure PT PRO and our reference method (R2 = 0.8596) and for capillary blood samples tested by the AvoSure PT PRO and Thrombotrack Nycomed Analyzer (R2 = 0.8875). The correlation for INR in capillary blood and plasma samples by AvoSure PT PRO was 0.6939 (P < .0004). Capillary blood determinations are rapid and effective for monitoring oral anticoagulation therapy and have a high correlation to plasma determinations. AvoSure PT PRO is accurate for controlling INR in plasma and capillary blood samples, may be used in outpatient clinics, and has advantages over previous portable monitors.
ERIC Educational Resources Information Center
Evans, Richard M.; Surkan, Alvin J.
The recent arrival of portable computer systems with high-level language interpreters now makes it practical to rapidly develop complex testing and scoring programs. These programs permit undergraduates access, at arbitrary times, to testing as an integral part of a mastery learning strategy. Effects of introducing the computer were studied by…
Development of a compact portable driver for a pneumatic ventricular assist device.
Nishinaka, Tomohiro; Taenaka, Yoshiyuki; Tatsumi, Eisuke; Ohnishi, Hiroyuki; Homma, Akihiko; Shioya, Kyoko; Mizuno, Toshihide; Tsukiya, Tomonori; Mushika, Sadahiko; Hashiguchi, Yasuhiro; Suzuki, Akira; Kitamura, Soichiro
2007-01-01
The Toyobo-National Cardiovascular Center pneumatic ventricular assist device (Toyobo-NCVC VAD) is widely used in Japan; however, the current pneumatic drivers have some drawbacks, including their large size, heavy weight, and high power consumption. These issues cause difficulty with mobility and contribute to an unsatisfactory quality of life for patients. Because it is urgently necessary to improve patients' safety and quality of life, we have developed a compact, low-noise, portable VAD driver by utilizing an electrohydraulic actuator consisting of a brushless DC motor and a regenerative pump. This unit can be actuated for as long as 2 h with two rechargeable lightweight batteries as well as with external AC power. It is compact in size (33 x 25 x 43 cm) and light in weight (13 kg), and the unit is carried on a mobile wheeled cart. In vitro testing with a Toyobo-NCVC VAD demonstrated a sufficient pumping capacity of up to 8 l/min. We conclude that this newly-developed compact portable driver can provide a better quality of life and improved safety for patients using protracted pneumatic VAD support.
Portable electrocardiograph through android application.
De Oliveira, Igor H; Cene, V H; Balbinot, A
2015-01-01
An electrocardiograph was designed and implemented, being capable of obtaining electrical signals from the heart, and sending this data via Bluetooth to a tablet, in which the signals are graphically shown. The user interface is developed as an Android application. Because of the technological progress and the increasing use of full portable systems, such as tablets and cell phones, it is important to understand the functioning and development of an application, which provides a basis for conducting studies using this technology as an interface. The project development includes concepts of electronics and its application to achieve a portable and functional final project, besides using a specific programmable integrated circuit for electrocardiogram, electroencephalogram and electromyogram, the ADS1294. Using a simulator of cardiac signals, 36 different waveforms were recorded, including normal sinus rhythm, arrhythmias and artifacts. Simulations include variations of heart rate from 30 to 190 beats per minute (BPM), with variations in peak amplitude of 1 mV to 2 mV. Tests were performed with a subject at rest and in motion, observing the signals obtained and the damage to their interpretation due to the introduction of muscle movement artifacts in motion situations.
Nuclear Magnetic Resonance Trackbed Moisture Sensor System
DOT National Transportation Integrated Search
2018-02-01
In this initial phase, conducted from March 2015 through December 2016, Vista Clara and its subcontractor Zetica Rail successfully developed and tested a man-portable, non-invasive spot-check nuclear magnetic resonance (NMR) moisture sensor that dire...
ERIC Educational Resources Information Center
Jellins, Laura
2015-01-01
With recent developments in technology, online tests and digital tools offer school psychologists and school counsellors alternate modes of assessment. These new technologies have the potential to increase accessibility to tests (through greater portability), allow school psychologists and school counsellors to service more students (through…
NASA Technical Reports Server (NTRS)
Jeanneret, P. R.
1988-01-01
The development and use of a menu of performance tests that can be self-administered on a portable microcomputer are investigated. In order to identify, develop, or otherwise select the relevant human capabilities/attributes to measure and hence include in the performance battery, it is essential that an analysis be conducted of the jobs or functions that will be performed throughout a space shuttle mission. The primary job analysis instrument, the Position Analysis Questionnaire (PAQ), is discussed in detail so the reader will have sufficient background for understanding the application of the instrument to the various work activities included within the scope of the study, and the derivation of the human requirements (abilities/attributes) from the PAQ analyses. The research methodology is described and includes the procedures used for gathering the PAQ data. The results are presented in detail with specific emphasis on identifying critical requirements that can be measured with a portable computerized assessment battery. A discussion of the results is given with implications for future research.
Portable water quality monitoring system
NASA Astrophysics Data System (ADS)
Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.
2017-09-01
Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.
40 CFR Appendix I to Part 204 - Appendix I to Part 204
Code of Federal Regulations, 2014 CFR
2014-07-01
... plane composition: Operating speed as tested: Beginning of test rpm End of test rpm Air pressure... acceptance not permitted for this number of batches. Table IV—Recommended Format for Portable Air Compressor... capacity: cfm (m3/in). Configuration identification: Category identification: Portable air compressor...
40 CFR Appendix I to Part 204 - Appendix I to Part 204
Code of Federal Regulations, 2013 CFR
2013-07-01
... plane composition: Operating speed as tested: Beginning of test rpm End of test rpm Air pressure... acceptance not permitted for this number of batches. Table IV—Recommended Format for Portable Air Compressor... capacity: cfm (m3/in). Configuration identification: Category identification: Portable air compressor...
40 CFR Appendix I to Part 204 - Appendix I to Part 204
Code of Federal Regulations, 2012 CFR
2012-07-01
... plane composition: Operating speed as tested: Beginning of test rpm End of test rpm Air pressure... acceptance not permitted for this number of batches. Table IV—Recommended Format for Portable Air Compressor... capacity: cfm (m3/in). Configuration identification: Category identification: Portable air compressor...
NASA Technical Reports Server (NTRS)
De La Cruz, Melinda; Henderson, Steve
2016-01-01
The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD1553B, Ethernet and TAXI) and is designed for rapid testing and deployment of payload experiments to the ISS. The ISS's goal is to reduce the amount of time it takes for a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface.
Testing and assessment of portable seismic property analyzer.
DOT National Transportation Integrated Search
2014-02-01
Investigator will thoroughly test and assess the Portable Seismic Property Analyzer (PSPA), a hand-held device that focuses on : pavement layer properties. The device can be utilized on both rigid and flexible pavements. When used on rigid pavements,...
Development and validation of a multilateration test bench for particle accelerator pre-alignment
NASA Astrophysics Data System (ADS)
Kamugasa, Solomon William; Rothacher, Markus; Gayde, Jean-Christophe; Mainaud Durand, Helene
2018-03-01
The development and validation of a portable coordinate measurement solution for fiducialization of compact linear collider (CLIC) components is presented. This new solution addresses two limitations of high-accuracy state-of-the-art coordinate measuring machines, i.e. lack of portability and limited measurement volume. The solution is based on frequency scanning interferometry (FSI) distances and the multilateration coordinate measurement technique. The developments include a reference sphere for localizing the FSI optical fiber tip and a kinematic mount for repositioning the reference sphere with sub-micrometric repeatability. This design enables absolute distance measurements in different directions from the same point, which is essential for multilateration. A multilateration test bench built using these prototypes has been used to fiducialize a CLIC cavity beam position monitor and 420 mm-long main beam quadrupole magnet. The combined fiducialization uncertainty achieved is 3.5 μm (k = 1), which is better than the CLIC 5 μm (k = 1) uncertainty specification.
NASA Astrophysics Data System (ADS)
la Grone, Marcus J.; Cumming, Colin J.; Fisher, Mark E.; Fox, Michael J.; Jacob, Sheena; Reust, Dennis; Rockley, Mark G.; Towers, Eric
2000-08-01
The explosive charge within a landmine is the source for a mixture of chemical vapors that form a distinctive 'chemical signature' indicative of a landmine. The concentration of these compounds in the air over landmines is extremely low, well below the minimum detection limits of most field- portable chemical sensors. Described in this paper is a man- portable landmine detection system that has for the first time demonstrated the ability to detect landmines by direct sensing of the vapors of signature compounds in the air over landmines. The system utilizes fluorescent polymers developed by collaborators at the MIT. The sensor can detect ultra-trace concentrations of TNT vapor and other nitroaromatic compounds found in many landmine explosives. Thin films of the polymers exhibit intense fluorescence, but when exposed to vapors of nitroaromatic explosives the intensity of the light emitted from the films decreases. A single molecule of TNT binding to a receptor site quenches the fluorescence from many polymer repeat units, increasing the sensitivity by orders of magnitude. A sensor prototype has been develop that response in near real-time to low femtogram quantities of nitroaromatic explosives. The prototype is portable, lightweight, has low power consumption, is simple to operate, and is relatively inexpensive. Simultaneous field testing of the sensor and experienced canine landmine detection teams was recently completed. Although the testing was limited in scope, the performance of the senor met or exceeded that of the canines against buried landmines.
Point-of-care testing system enabling 30 min detection of influenza genes.
Abe, Tomoteru; Segawa, Yuji; Watanabe, Hidetoshi; Yotoriyama, Tasuku; Kai, Shinichi; Yasuda, Akio; Shimizu, Norio; Tojo, Naoko
2011-03-21
We developed a portable and easy-to-use nucleic acid amplification test (NAT) system for use in point-of-care testing (POCT). The system shows sensitivity that is sufficiently higher than that of the currently available rapid diagnostic kit and is comparable to that of real-time reverse transcription polymerase chain reaction (RT-PCR) for influenza testing. This journal is © The Royal Society of Chemistry 2011
Portable traffic management system smart work zone application : operational test evaluation report
DOT National Transportation Integrated Search
1997-05-01
As part of its statewide Intelligent Transportation System (ITS), The Minnesota Department of Transportation (Mn/DOT) sponsored an operational test of the Portable Traffic Management System (PTMS) in a work zone application in cooperation with its pr...
A USB-2 based portable data acquisition system for detector development and nuclear research
NASA Astrophysics Data System (ADS)
Jiang, Hao; Ojaruega, M.; Becchetti, F. D.; Griffin, H. C.; Torres-Isea, R. O.
2011-10-01
A highly portable high-speed CAMAC data acquisition system has been developed using Kmax software (Sparrow, Inc.) for Macintosh laptop and tower computers. It uses a USB-2 interface to the CAMAC crate controller with custom-written software drivers. Kmax permits 2D parameter gating and specific algorithms have been developed to facilitate the rapid evaluation of various multi-element nuclear detectors for energy and time-of-flight measurements. This includes tests using neutrons from 252Cf and a 2.5 MeV neutron generator as well as standard gamma calibration sources such as 60Co and 137Cs. In addition, the system has been used to measure gamma-gamma coincidences over extended time periods using radioactive sources (e.g., Ra-228, Pa-233, Np-237, and Am-243).
[Advances of portable electrocardiogram monitor design].
Ding, Shenping; Wang, Yinghai; Wu, Weirong; Deng, Lingli; Lu, Jidong
2014-06-01
Portable electrocardiogram monitor is an important equipment in the clinical diagnosis of cardiovascular diseases due to its portable, real-time features. It has a broad application and development prospects in China. In the present review, previous researches on the portable electrocardiogram monitors have been arranged, analyzed and summarized. According to the characteristics of the electrocardiogram (ECG), this paper discusses the ergonomic design of the portable electrocardiogram monitor, including hardware and software. The circuit components and software modules were parsed from the ECG features and system functions. Finally, the development trend and reference are provided for the portable electrocardiogram monitors and for the subsequent research and product design.
NASA Technical Reports Server (NTRS)
1981-01-01
A device for testing composites for strength characteristics has been developed by Acoustic Emission Technology Corporation. Called the Model 206AU, the system is lightweight and portable. It is comprised of three sections. The "pulser" section injects ultrasonic waves into the material under test. A receiver picks up the simulated stress waves as they pass through the material and relays the signals to the acoustic emission section, where they are electronically analyzed.
Assembly and Testing of a Compact, Lightweight Homopolar Generator Power Supply
1983-06-01
ASSEMBLY AND TESTING OF A COMPACT, LIGHTWEIGHT HOMOPOLAR GENERATOR POWER SUPPLY J. H. Gully Center for Electromechanics The University of Texas...portable systems. The initial step in developing the power supply was to design, fabricate and test a prototype homopolar generator, attempting to...levels. SUPPORT STRUCTURE HYDRAULIC Fig. 1. Section through compact homopolar generator ~1 l-oot!:__ __ 63.80 ----~ (25. 12) ~------ 85.88
Olatunya, Oladele; Ogundare, Olatunde; Olaleye, Abiola; Agaja, Oyinkansola; Omoniyi, Evelyn; Adeyefa, Babajide; Oluwadiya, Kehinde; Oyelami, Oyeku
2016-05-01
Prompt and accurate diagnosis is needed to prevent the untoward effects of anaemia on children. Although haematology analyzers are the gold standard for accurate measurement of haemoglobin or haematocrit for anaemia diagnosis, they are often out of the reach of most health facilities in resource-poor settings thus creating a care gap. We conducted this study to examine the agreement between a point-of-care device and haematology analyzer in determining the haematocrit levels in children and to determine its usefulness in diagnosing anaemia in resource-poor settings. EDTA blood samples collected from participants were processed to estimate their haematocrits using the two devices (Mindray BC-3600 haematology analyzer and Portable Mission Hb/Haemotocrit testing system). A pairwise t-test was used to compare the haematocrit (PCV) results from the automated haematology analyzer and the portable haematocrit meter. The agreement between the two sets of measurements was assessed using the Bland and Altman method where the mean, standard deviation and limit of agreement of paired results were calculated. The intraclass and concordance correlation coefficients were 0.966 and 0.936. Sensitivity and specificity were 97.85% and 94.51% respectively while the positive predictive and negative predictive values were 94.79% and 97.73%. The Bland and Altman`s limit of agreement was -5.5-5.1 with the mean difference being -0.20 and a non-ignificant variability between the two measurements (p = 0.506). Haematocrit determined by the portable testing system is comparable to that determined by the haematology analyzer. We therefore recommend its use as a point-of-care device for determining haematocrit in resource-poor settings where haematology analyzers are not available.
Ganavadiya, R; Chandrashekar, BR; Goel, P; Hongal, SG; Jain, M
2014-01-01
India is the second most populous country in the world with an extensive rural population (68.8%). Children less than 18 years constitute about 40% of the population. Approximately, 23.5% of the urban population resides in urban slums. The extensive rural population, school children and the urban slum dwellers are denied of even the basic dental services though there is continuous advancement in the field of dentistry. The dentist to population ratio has dramatically improved in the last one to two decades with no significant improvement in the oral health status of the general population. The various studies have revealed an increasing trend in oral diseases in the recent times especially among this underserved population. Alternate strategies have to be thought about rather than the traditional oral health-care delivery through private dentists on fee for service basis. Mobile and portable dental services are a viable option to take the sophisticated oral health services to the doorsteps of the underserved population. The databases were searched for publications from 1900 to the present (2013) using terms such as Mobile dental services, Portable dental services and Mobile and portable dental services with key articles obtained primarily from MEDLINE. This paper reviews the published and unpublished literature from different sources on the various mobile dental service programs successfully implemented in some developed and developing countries. Though the mobile and portable systems have some practical difficulties like financial considerations, they still seem to be the only way to reach every section of the community in the absence of national oral health policy and organized school dental health programs in India. The material for the present review was obtained mainly by searching the biomedical databases for primary research material using the search engine with key words such as mobile and/or portable dental services in developed and developing countries (adding each of these terms in a sequential order). Based on the review of the programs successfully implemented in developed countries, we propose a model to cater to the basic oral health needs of an extensive underserved population in India that may be pilot tested. The increasing dental manpower can best be utilized for the promotion of oral health through mobile and portable dental services. The professional dental organizations should have a strong motive to translate this into reality. PMID:24971198
ASC-ATDM Performance Portability Requirements for 2015-2019
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Harold C.; Trott, Christian Robert
This report outlines the research, development, and support requirements for the Advanced Simulation and Computing (ASC ) Advanced Technology, Development, and Mitigation (ATDM) Performance Portability (a.k.a., Kokkos) project for 2015 - 2019 . The research and development (R&D) goal for Kokkos (v2) has been to create and demonstrate a thread - parallel programming model a nd standard C++ library - based implementation that enables performance portability across diverse manycore architectures such as multicore CPU, Intel Xeon Phi, and NVIDIA Kepler GPU. This R&D goal has been achieved for algorithms that use data parallel pat terns including parallel - for, parallelmore » - reduce, and parallel - scan. Current R&D is focusing on hierarchical parallel patterns such as a directed acyclic graph (DAG) of asynchronous tasks where each task contain s nested data parallel algorithms. This five y ear plan includes R&D required to f ully and performance portably exploit thread parallelism across current and anticipated next generation platforms (NGP). The Kokkos library is being evaluated by many projects exploring algorithm s and code design for NGP. Some production libraries and applications such as Trilinos and LAMMPS have already committed to Kokkos as their foundation for manycore parallelism an d performance portability. These five year requirements includes support required for current and antic ipated ASC projects to be effective and productive in their use of Kokkos on NGP. The greatest risk to the success of Kokkos and ASC projects relying upon Kokkos is a lack of staffing resources to support Kokkos to the degree needed by these ASC projects. This support includes up - to - date tutorials, documentation, multi - platform (hardware and software stack) testing, minor feature enhancements, thread - scalable algorithm consulting, and managing collaborative R&D.« less
Portable emittance measurement device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakin, D.; Seleznev, D.; Orlov, A.
2010-02-15
In Institute for Theoretical and Experimental Physics (ITEP) the portable emittance measurements device is developed. It provides emittance measurements both with ''pepper-pot'' and ''two slits'' methods. Depending on the method of measurements, either slits or pepper-pot mask with scintillator are mounted on the two activators and are installed in two standard Balzer's cross chamber with CF-100 flanges. To match the angle resolution for measured beam, the length of the stainless steel pipe between two crosses changes is adjusted. The description of the device and results of emittance measurements at the ITEP ion source test bench are presented.
A novel technique for bedside anorectal manometry in humans.
Bharucha, A E; Stroetz, R; Feuerhak, K; Szarka, L A; Zinsmeister, A R
2015-10-01
Currently, anorectal manometry (ARM), which is used to diagnose defecatory disorders and identify anal weakness in fecal incontinence (FI) is generally conducted in specialized laboratories. Our aims were to compare anorectal functions measured with high-resolution manometry (HRM) and a novel portable manometry device. Anal pressures at rest, during squeeze, and simulated evacuation, and rectal sensation were evaluated with portable and HRM in 20 healthy women, 19 women with constipation, and 11 with FI. The relationship between anal pressures measured with portable and HRM was assessed by the concordance correlation coefficient (CCC), Bland Altman test, and paired t-tests. Anal pressures at rest (CCC 0.45; 95% CI: 0.29, 0.58) and during squeeze (CCC 0.60; 95% CI: 0.46, 0.72) measured with portable and HRM were correlated and inversely associated with the risk of FI. During simulated evacuation, the CCC for rectal pressure (0.62; 95% CI: 0.43, 0.76) was greater than that for anal pressure (CCC 0.22; 95% CI: 0.04, 0.39) and the rectoanal gradient (CCC 0.22; 95% CI: 0.02, 0.41). Rectal sensory thresholds for first sensation, the desire to defecate, and urgency measured by portable and HRM were also significantly correlated between techniques. For several parameters, differences between portable and HRM were statistically significant and the Bland Altman test was positive. Anorectal pressures and rectal sensation can be conveniently measured by portable manometry and are significantly correlated with high-resolution manometry. © 2015 John Wiley & Sons Ltd.
The Portable Dynamic Fundus Instrument: Uses in telemedicine and research
NASA Technical Reports Server (NTRS)
Hunter, Norwood; Caputo, Michael; Billica, Roger; Taylor, Gerald; Gibson, C. Robert; Manuel, F. Keith; Mader, Thomas; Meehan, Richard
1994-01-01
For years ophthalmic photographs have been used to track the progression of many ocular diseases such as macular degeneration and glaucoma as well as the ocular manifestations of diabetes, hypertension, and hypoxia. In 1987 a project was initiated at the Johnson Space Center (JSC) to develop a means of monitoring retinal vascular caliber and intracranial pressure during space flight. To conduct telemedicine during space flight operations, retinal images would require real-time transmissions from space. Film-based images would not be useful during in-flight operations. Video technology is beneficial in flight because the images may be acquired, recorded, and transmitted to the ground for rapid computer digital image processing and analysis. The computer analysis techniques developed for this project detected vessel caliber changes as small as 3 percent. In the field of telemedicine, the Portable Dynamic Fundus Instrument demonstrates the concept and utility of a small, self-contained video funduscope. It was used to record retinal images during the Gulf War and to transmit retinal images from the Space Shuttle Columbia during STS-50. There are plans to utilize this device to provide a mobile ophthalmic screening service in rural Texas. In the fall of 1993 a medical team in Boulder, Colorado, will transmit real-time images of the retina during remote consultation and diagnosis. The research applications of this device include the capability of operating in remote locations or small, confined test areas. There has been interest shown utilizing retinal imaging during high-G centrifuge tests, high-altitude chamber tests, and aircraft flight tests. A new design plan has been developed to incorporate the video instrumentation into face-mounted goggle. This design would eliminate head restraint devices, thus allowing full maneuverability to the subjects. Further development of software programs will broaden the application of the Portable Dynamic Fundus Instrument in telemedicine and medical research.
Giechaskiel, Barouch; Vlachos, Theodoros; Riccobono, Francesco; Forni, Fausto; Colombo, Rinaldo; Montigny, Francois; Le-Lijour, Philippe; Carriero, Massimo; Bonnel, Pierre; Weiss, Martin
2016-12-04
Vehicles are tested in controlled and relatively narrow laboratory conditions to determine their official emission values and reference fuel consumption. However, on the road, ambient and driving conditions can vary over a wide range, sometimes causing emissions to be higher than those measured in the laboratory. For this reason, the European Commission has developed a complementary Real-Driving Emissions (RDE) test procedure using the Portable Emissions Measurement Systems (PEMS) to verify gaseous pollutant and particle number emissions during a wide range of normal operating conditions on the road. This paper presents the newly-adopted RDE test procedure, differentiating six steps: 1) vehicle selection, 2) vehicle preparation, 3) trip design, 4) trip execution, 5) trip verification, and 6) calculation of emissions. Of these steps, vehicle preparation and trip execution are described in greater detail. Examples of trip verification and the calculations of emissions are given.
Experimental system for the control of surgically induced infections
NASA Technical Reports Server (NTRS)
1971-01-01
The results are presented of the development tests performed on the experimental system for the control of surgically induced infections. Tests were performed on the portable clean room to demonstrate assembly, collapsability, portability and storage. Collapsing, relocating and storing within the surgery room can be accomplished in 12 minutes. The storage envelope dimensions are 1.64 m x 4.24 m x 2.62 m high. The disassembly transfer to another room, and reassembly were demonstrated. The laminar air flow velocity profile within the enclosure was measured. In the undisturbed area of the enclosure the air flow met the Federal Standard 209a requirements of 27.45 meters per minute + or - 6.10 meters per minute. Smoke tests with simulated surgery equipment and personnel in the enclosure did not indicate any detrimental air flow patterns. It is concluded that the system as designed will perform the functions required for its intended use.
Experimental system, and its evaluation for the control of surgically inducted infections
NASA Technical Reports Server (NTRS)
Tevebaugh, M. D.; Nelson, J. P.
1972-01-01
The effect is reported to design, fabricate, test and evaluate a prototype experimental system for the control of surgically induced infections. The purpose is to provide the cleanest possible environment within a hospital surgery room and eliminate contamination sources that could cause infections during surgery. The system design is described. The system provides for a portable laminar flow clean room, a full bubble helmet system with associated communications and ventilation subsystems for operating room personnel, and surgical gowns that minimize the migration of bacteria. The development test results consisting of portability, laminar flowrate, air flow pattern, electrostatic buildup, noise level, ventilation, human factors, electrical and material compatibility tests are summarized. The conclusions are that the experimental system is effective in reducing the airborne and wound contamination although the helmets and gowns may not be a significant part of this reduction. Definitive conclusions with regard to the infection rate cannot be made at this time.
Giechaskiel, Barouch; Vlachos, Theodoros; Riccobono, Francesco; Forni, Fausto; Colombo, Rinaldo; Montigny, Francois; Le-Lijour, Philippe; Carriero, Massimo; Bonnel, Pierre; Weiss, Martin
2016-01-01
Vehicles are tested in controlled and relatively narrow laboratory conditions to determine their official emission values and reference fuel consumption. However, on the road, ambient and driving conditions can vary over a wide range, sometimes causing emissions to be higher than those measured in the laboratory. For this reason, the European Commission has developed a complementary Real-Driving Emissions (RDE) test procedure using the Portable Emissions Measurement Systems (PEMS) to verify gaseous pollutant and particle number emissions during a wide range of normal operating conditions on the road. This paper presents the newly-adopted RDE test procedure, differentiating six steps: 1) vehicle selection, 2) vehicle preparation, 3) trip design, 4) trip execution, 5) trip verification, and 6) calculation of emissions. Of these steps, vehicle preparation and trip execution are described in greater detail. Examples of trip verification and the calculations of emissions are given. PMID:28060306
Kokkos: Enabling manycore performance portability through polymorphic memory access patterns
Carter Edwards, H.; Trott, Christian R.; Sunderland, Daniel
2014-07-22
The manycore revolution can be characterized by increasing thread counts, decreasing memory per thread, and diversity of continually evolving manycore architectures. High performance computing (HPC) applications and libraries must exploit increasingly finer levels of parallelism within their codes to sustain scalability on these devices. We found that a major obstacle to performance portability is the diverse and conflicting set of constraints on memory access patterns across devices. Contemporary portable programming models address manycore parallelism (e.g., OpenMP, OpenACC, OpenCL) but fail to address memory access patterns. The Kokkos C++ library enables applications and domain libraries to achieve performance portability on diversemore » manycore architectures by unifying abstractions for both fine-grain data parallelism and memory access patterns. In this paper we describe Kokkos’ abstractions, summarize its application programmer interface (API), present performance results for unit-test kernels and mini-applications, and outline an incremental strategy for migrating legacy C++ codes to Kokkos. Furthermore, the Kokkos library is under active research and development to incorporate capabilities from new generations of manycore architectures, and to address a growing list of applications and domain libraries.« less
Analysis of DMFC/battery hybrid power system for portable applications
NASA Astrophysics Data System (ADS)
Lee, Bong-Do; Jung, Doo-Hwan; Ko, Young-Ho
This study was carried out to develop a direct methanol fuel cell (DMFC)/battery hybrid power system used in portable applications. For a portable power system, the DMFC was applied for the main power source at average load and the battery was applied for auxiliary power at overload. Load share characteristics of hybrid power source were analyzed by computational simulation. The connection apparatus between the DMFC and the battery was set and investigated in the real system. Voltages and currents of the load, the battery and the DMFC were measured according to fuel, air and load changes. The relationship between load share characteristic and battery capacity was surveyed. The relationship was also studied in abnormal operation. A DMFC stack was manufactured for this experiment. For the study of the connection characteristics to the fuel cell Pb-acid, Ni-Cd and Ni-MH batteries were tested. The results of this study can be applied to design the interface module of the fuel cell/battery hybrid system and to determine the design requirement in the fuel cell stack for portable applications.
A new portable vibrator for plaster pouring: effect on the marginal fit at cylinder-abutment
de ANDRADE, Pâmela Cândida Aires Ribas; LUTHI, Leonardo Flores; STANLEY, Kyle; CARDOSO, Antônio Carlos
2012-01-01
Objective The aim of this study was to test a new portable vibrator for plaster pouring (developed for this purpose), comparing the effect of its use on the accuracy of working cast of implant-supported restorations to the conventional vibrator. Material and methods From a master cast with 2 implants, 30 transfer moldings were made randomly and divided into three groups: Group I (GI): pouring performed in an outsourced dental laboratory with conventional plaster vibrator (10 casts), Group II (GII): pouring performed in the laboratory of the Federal University of Santa Catarina (UFSC) with conventional plaster vibrator (10 casts) and Group III (GIII): pouring performed with the portable vibrator fabricated for this study (10 casts). The position of the analogue and marginal adaptation of the infrastructure were verified by testing the single screw on the master model and on the working model. The measurement of misfit was blindly performed with a precision microscope and analyzing unit, Quadra-Check 200. The data were statistically analyzed by analysis of variance (ANOVA) and the Holm-Sidak test (α=0.05). Results Means±standard deviations were as follows: GI: 19.19±4.73 µm; GII: 21.72±5.41 µm; GIII: 13.5±2.39 µm (P<0.05), with GIII significantly lower as compared to the other groups. Conclusion Within the limitations of this study, it was concluded that a greater accuracy of working cast was achieved when a portable vibrator was used for casting molds. PMID:23138736
Portable guided-mode resonance biosensor platform for point-of-care testing
NASA Astrophysics Data System (ADS)
Sung, Gun Yong; Kim, Wan-Joong; Ko, Hyunsung; Kim, Bong K.; Kim, Kyung-Hyun; Huh, Chul; Hong, Jongcheol
2012-10-01
It represents a viable solution for the realization of a portable biosensor platform that could screen/diagnose acute myocardial infarction by measuring cardiac marker concentrations such as cardiac troponin I (cTnI), creatine kinase MB (CK-MB), and myoglobin (MYO) for application to u-health monitoring system. The portable biosensor platform introduced in this presentation has a more compact structure and a much higher measuring resolution than a conventional spectrometer system. Portable guided-mode resonance (GMR) biosensor platform was composed of a biosensor chip stage, an optical pick-up module, and a data display panel. Disposable plastic GMR biosensor chips with nano-grating patterns were fabricated by injection-molding. Whole blood filtration and label-free immunoassay were performed on these single chips, automatically. Optical pick-up module was fabricated by using the miniaturized bulk optics and the interconnecting optical fibers and a tunable VCSEL (vertical cavity surface emitting laser). The reflectance spectrum from the GMR biosensor was measured by the optical pick-up module. Cardiac markers in human serum with concentrations less than 0.1ng/mL were analyzed using a GMR biosensor. Analysis time was 30min, which is short enough to meet clinical requirements. Our results show that the GMR biosensor will be very useful in developing lowcost portable biosensors that can screen for cardiac diseases.
Mobile Computing for Aerospace Applications
NASA Technical Reports Server (NTRS)
Alena, Richard; Swietek, Gregory E. (Technical Monitor)
1994-01-01
The use of commercial computer technology in specific aerospace mission applications can reduce the cost and project cycle time required for the development of special-purpose computer systems. Additionally, the pace of technological innovation in the commercial market has made new computer capabilities available for demonstrations and flight tests. Three areas of research and development being explored by the Portable Computer Technology Project at NASA Ames Research Center are the application of commercial client/server network computing solutions to crew support and payload operations, the analysis of requirements for portable computing devices, and testing of wireless data communication links as extensions to the wired network. This paper will present computer architectural solutions to portable workstation design including the use of standard interfaces, advanced flat-panel displays and network configurations incorporating both wired and wireless transmission media. It will describe the design tradeoffs used in selecting high-performance processors and memories, interfaces for communication and peripheral control, and high resolution displays. The packaging issues for safe and reliable operation aboard spacecraft and aircraft are presented. The current status of wireless data links for portable computers is discussed from a system design perspective. An end-to-end data flow model for payload science operations from the experiment flight rack to the principal investigator is analyzed using capabilities provided by the new generation of computer products. A future flight experiment on-board the Russian MIR space station will be described in detail including system configuration and function, the characteristics of the spacecraft operating environment, the flight qualification measures needed for safety review, and the specifications of the computing devices to be used in the experiment. The software architecture chosen shall be presented. An analysis of the performance characteristics of wireless data links in the spacecraft environment will be discussed. Network performance and operation will be modeled and preliminary test results presented. A crew support application will be demonstrated in conjunction with the network metrics experiment.
A Portable Environment Test System: A Field Assessment of Organotin Leachates--Test and Evaluation.
1987-11-01
Environmental Test System (PETS) was evaluated with tributyltin ( TBT ) anti oling leachates in Sin Diego Bay over a 7-month period. Overall mean test...EXECUTIVE SUMMARY A Portable Environmental Test System (PETS) was evaluated with tributyltin ( TBT ) antifouling leachates in San Diego Bay for 7...of organotin-based antifouling (AF) coatings, NOSC researchers used this facility to study the effects of tributyltin ( TBT ), the primary toxic
LASER FLUORESCENCE EEM PROBE FOR CONE PENETROMETER POLLUTION ANALYSIS
A fiber optic LIF (Laser induced fluorescence) EEM (Excitation emission matrix) instrument for CPT deployment has been successfully developed and field tested. The system employs a Nd: YAG laser and Raman shifter as a rugged field portable excitation source. This excitation sou...
Autonomous measurements of bridge pier and abutment scour using motion-sensing radio transmitters.
DOT National Transportation Integrated Search
2010-01-01
Two portable Radio Frequency IDentification (RFID) systems (made by Texas Instruments and HiTAG) were developed and tested for bridge scour monitoring by the Department of Civil and Environmental Engineering at the University of Iowa. Both systems co...
Expedition 18 Station Development Test Objectives (STDO) Session 1
2009-02-19
ISS018-E-033816 (19 Feb. 2009) --- Astronaut Michael Fincke, Expedition 18 commander, removes, cleans and replaces electronic test components on a single test card using Component Repair Equipment (CRE-1) hardware in a portable glovebox facility in the Harmony node of the International Space Station. Fincke unsoldered 1 1/2 components from an integrated circuit board and re-soldered new components including an integrated circuit chip.
Expedition 18 Station Development Test Objectives (STDO) Session 1
2009-02-19
ISS018-E-033818 (19 Feb. 2009) --- Astronaut Michael Fincke, Expedition 18 commander, removes, cleans and replaces electronic test components on a single test card using Component Repair Equipment (CRE-1) hardware in a portable glovebox facility in the Harmony node of the International Space Station. Fincke unsoldered 1 1/2 components from an integrated circuit board and re-soldered new components including an integrated circuit chip.
Portable and programmable clinical EOG diagnostic system.
Chen, S C; Tsai, T T; Luo, C H
2000-01-01
Monitoring eye movements is clinically important in diagnosis of diseases of the central nervous system. Electrooculography (EOG) is one method of obtaining such records which uses skin electrodes, and utilizes the anterior posterior polarization of the eye. A new EOG diagnostic system has been developed that utilizes two off-the-shelf portable notebook computers, one projector and simple electronic hardware. It can be operated under Windows 95, 98, NT, and has significant advantages over any other similar equipment, including programmability, portability, improved safety and low cost. Especially, portability of the instrument is extremely important for acutely ill or handicapped patients. The purpose of this paper is to introduce the techniques of computer animation, data acquisition, real time analysis of measured data, and database management to implement a portable, programmable and inexpensive contacting EOG instrument. It is very convenient to replace the present expensive, inflexible and large-sized commercially available EOG instruments. A lot of interesting stimulation patterns for clinical application can be created easily in different shape, time sequence, and colour by programming in Delphi language. With the help of Winstar (a software package that is used to control I/O and interrupt functions of the computer under Windows 95, 98, NT), the I/O communication between two notebook computers and A/D interface module can be effectively programmed. In addition, the new EOG diagnostic system is battery operated and it has the advantages of low noise as well as isolation from electricity. Two kinds of EOG tests, pursuit and saccade, were performed on 20 normal subjects with this new portable and programmable instrument. Based on the test result, the performance of the new instrument is superior to the other commercially available instruments. In conclusion, we hope that it will be more convenient for doctors and researchers to do the clinical EOG diagnosis and basic medical science research by using this new creation.
David Anna
2017-12-09
The National Energy Technology Laboratory developed the idea of a portable joint information center AKA JIC in-a-box. This video discribes some of the equipment in the portable JIC as well as some of the methodology that NETL developed as a result of this portable JIC concept.
New designs for portable Raman instrumentation in defense applications
NASA Astrophysics Data System (ADS)
Carron, Keith; Ray, Bryan; Buller, Shane; Strickland, Aaron
2016-05-01
The realization of global terrorism after the September 11 attacks led immediately to a need for rapid field analysis of materials. Colorimetric test kits existed, but they are very subjective to interpret and they require contact with the sample. A push for handheld spectrometers quickly led to FTIR systems with ATR sampling, handheld IMS systems, and handheld Raman spectrometers. No single technique solves all of the problems of field detection. We will discuss the development of Raman instrumentation and, in particular, cover the advantages and the problems that are inherent in Raman portability. Portable Raman instrumentation began with a limited number of accessories: a point-and-shoot and some sort of vial adaptor. Currently this has expanded to stand-off attachments for measurements at a distance, air sampling to look for toxic gasses or aerosols, Orbital Raster Scan (ORS) to spatially average over samples, SERS attachments for trace detection, and fiber optic probes.
Gregg, H.R.; Meltzer, M.P.
1996-05-28
The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.
Gregg, Hugh R.; Meltzer, Michael P.
1996-01-01
The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.
Portable, battery-operated, fluorescence field microscope for the developing world
NASA Astrophysics Data System (ADS)
Miller, Andrew R.; Davis, Gregory; Pierce, Mark; Oden, Z. Maria; Richards-Kortum, Rebecca
2010-02-01
In many areas of the world, current methods for diagnosis of infectious diseases such as malaria and tuberculosis involve microscopic evaluation of a patient specimen. Advances in fluorescence microscopy can improve diagnostic sensitivity and reduce time and expertise necessary to interpret diagnostic results. However, modern research-grade microscopes are neither available nor appropriate for use in many settings in the developing world. To address this need, we designed, fabricated, and tested a portable, battery-powered, bright field and fluorescence inverted field microscope, optimized for infrastructural constraints of the developing world. We characterized an initial prototype constructed with rapidprototyping techniques, which utilized low-cost, over-the-counter components such as a battery-powered LED flashlight as the light source. The microscope exhibited suitable spatial resolution (0.8 μm) in fluorescence mode to resolve M. tuberculosis bacilli. In bright field mode, malaria parasites were resolvable at 1000x magnification. The initial prototype cost 480 USD and we estimate that the microscope can be manufactured for 230 USD. While future studies are planned to evaluate ease-of-use and reliability, our current system serves as a proof of concept that combined fluorescence and bright field microscopy is possible in a low-cost and portable system.
Development of a Low-Cost, Noninvasive, Portable Visual Speech Recognition Program.
Kohlberg, Gavriel D; Gal, Ya'akov Kobi; Lalwani, Anil K
2016-09-01
Loss of speech following tracheostomy and laryngectomy severely limits communication to simple gestures and facial expressions that are largely ineffective. To facilitate communication in these patients, we seek to develop a low-cost, noninvasive, portable, and simple visual speech recognition program (VSRP) to convert articulatory facial movements into speech. A Microsoft Kinect-based VSRP was developed to capture spatial coordinates of lip movements and translate them into speech. The articulatory speech movements associated with 12 sentences were used to train an artificial neural network classifier. The accuracy of the classifier was then evaluated on a separate, previously unseen set of articulatory speech movements. The VSRP was successfully implemented and tested in 5 subjects. It achieved an accuracy rate of 77.2% (65.0%-87.6% for the 5 speakers) on a 12-sentence data set. The mean time to classify an individual sentence was 2.03 milliseconds (1.91-2.16). We have demonstrated the feasibility of a low-cost, noninvasive, portable VSRP based on Kinect to accurately predict speech from articulation movements in clinically trivial time. This VSRP could be used as a novel communication device for aphonic patients. © The Author(s) 2016.
Crime scene investigations using portable, non-destructive space exploration technology
NASA Technical Reports Server (NTRS)
Trombka, Jacob I.; Schweitzer, Jeffrey; Selavka, Carl; Dale, Mark; Gahn, Norman; Floyd, Samuel; Marie, James; Hobson, Maritza; Zeosky, Jerry; Martin, Ken;
2002-01-01
The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASAs) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals solve crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ programs with state and local forensic laboratories. A working group of NASA scientists and law enforcement professionals has been established to develop and implement a feasibility demonstration program. Specifically, the group has focused its efforts on identifying gunpowder and primer residue, blood, and semen at crime scenes. Non-destructive elemental composition identification methods are carried out using portable X-ray fluorescence (XRF) systems. These systems are similar to those being developed for planetary exploration programs. A breadboard model of a portable XRF system has been constructed for these tests using room temperature silicon and cadmium-zinc telluride (CZT) detectors. Preliminary tests have been completed with gunshot residue (GSR), blood-spatter and semen samples. Many of the element composition lines have been identified. Studies to determine the minimum detectable limits needed for the analyses of GSR, blood and semen in the crime scene environment have been initiated and preliminary results obtained. Furthermore, a database made up of the inorganic composition of GSR is being developed. Using data obtained from the open literature of the elemental composition of barium (Ba) and antimony (Sb) in handswipes of GSR, we believe that there may be a unique GSR signature based on the Sb to Ba ratio.
Diaz, Javier; Arrizabalaga, Saioa; Bustamante, Paul; Mesa, Iker; Añorga, Javier; Goya, Jon
2013-01-01
Portable systems and global communications open a broad spectrum for new health applications. In the framework of electrophysiological applications, several challenges are faced when developing portable systems embedded in Cloud computing services. In order to facilitate new developers in this area based on our experience, five areas of interest are presented in this paper where strategies can be applied for improving the performance of portable systems: transducer and conditioning, processing, wireless communications, battery and power management. Likewise, for Cloud services, scalability, portability, privacy and security guidelines have been highlighted.
DOT National Transportation Integrated Search
1974-06-01
This evaluation report examines use in the field of portable breath test (PBT) devices by police in Hennepin County, Minnesota. Thirteen Brog-Warner J2 and J2A-200 "ALERT" devices were deployed by seven enforcement agencies. This report is presented ...
[The development of an oral biomechanical testing instrument].
Zhang, X H; Sun, X D; Lin, Z
2000-03-01
An oral biomechanical testing instrument, which is portable, powered with batteries and controlled by single chip microcomputer, was described. The instrument was characterized by its multichannel, high accuracy, low power dissipation, wide rage of force measurement and stable performance. It can be used for acquisiting, displaying and storing data. And it may be expected to be an ideal instrument for oral biomechanical measurements.
Portable fluorescence meter with reference backscattering channel
NASA Astrophysics Data System (ADS)
Kornilin, Dmitriy V.; Grishanov, Vladimir N.; Zakharov, Valery P.; Burkov, Dmitriy S.
2016-09-01
Methods based on fluorescence and backscattering are intensively used for determination of the advanced glycation end products (AGE) concentration in the biological tissues. There are strong correlation between the AGE concentration and the severity of such diseases like diabetes, coronary heart disease and renal failure. This fact can be used for diagnostic purposes in medical applications. Only few investigations in this area can be useful for development of portable and affordable in vivo AGE meter because the most of them are oriented on using spectrometers. In this study we describe the design and the results of tests on volunteers of portable fluorescence meter based on two photodiodes. One channel of such fluorimeter is used for measurement of the autofluorescence (AF) intensity, another one - for the intensity of elastically scattered radiation, which can be used as a reference. This reference channel is proposed for normalization of the skin autofluorescence signal to the human skin photo type. The fluorimeter, that was developed is relatively compact and does not contain any expensive optical and electronic components. The experimental results prove that proposed tool can be used for the AGE estimation in human skin.
Wei, Ting-Yen; Yen, Tzung-Hai; Cheng, Chao-Min
2018-01-01
Acute pesticide intoxication is a common method of suicide globally. This article reviews current diagnostic methods and makes suggestions for future development. In the case of paraquat intoxication, it is characterized by multi-organ failure, causing substantial mortality and morbidity. Early diagnosis may save the life of a paraquat intoxication patient. Conventional paraquat intoxication diagnostic methods, such as symptom review and urine sodium dithionite assay, are time-consuming and impractical in resource-scarce areas where most intoxication cases occur. Several experimental and clinical studies have shown the potential of portable Surface Enhanced Raman Scattering (SERS), paper-based devices, and machine learning for paraquat intoxication diagnosis. Portable SERS and new SERS substrates maintain the sensitivity of SERS while being less costly and more convenient than conventional SERS. Paper-based devices provide the advantages of price and portability. Machine learning algorithms can be implemented as a mobile phone application and facilitate diagnosis in resource-limited areas. Although these methods have not yet met all features of an ideal diagnostic method, the combination and development of these methods offer much promise.
ISS Expedition 18 Lab-On-a-Chip Applications Development (LOCAD) OPS
2009-01-10
ISS018-E-018995 (10 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
The microassay on a card: A rugged, portable immunoassay
NASA Technical Reports Server (NTRS)
Kidwell, David
1991-01-01
The Microassay on a Card (MAC) is a portable, hand-held, non-instrumental immunoassay that can test for the presence of a wide variety of substances in the environment. The MAC is a simple device to use. A drop of test solution is placed on one side of the card and within five minutes a color is developed on the other side in proportion to the amount of substance in the test solution, with sensitivity approaching 10 ng/ml. The MAC is self-contained and self-timed; no reagents or timing is necessary. The MAC may be configured with multiple wells to provide simultaneous testing for multiple species. As envisioned, the MAC will be employed first as an on-site screen for drugs of abuse in urine or saliva. If the MAC can be used as a screen of saliva for drugs of abuse, it could be applied to driving while intoxicated, use of drugs on the job, or testing of the identity of seized materials. With appropriate modifications, the MAC also could be used to test for environmental toxins or pollutants.
Inexpensive portable drug detector
NASA Technical Reports Server (NTRS)
Dimeff, J.; Heimbuch, A. H.; Parker, J. A.
1977-01-01
Inexpensive, easy-to-use, self-scanning, self-calibrating, portable unit automatically graphs fluorescence spectrum of drug sample. Device also measures rate of movement through chromatographic column for forensic and medical testing.
Development of a portable passive-acoustic bedload monitoring system
USDA-ARS?s Scientific Manuscript database
A hydrophone-based passive acoustic bedload-monitoring system was designed, tested and deployed by researchers at the University of Mississippi and the National Sedimentation Laboratory in Oxford, MS. The hydrophone system was designed to be easily deployed and operated by non-experts. In addition, ...
NASA Astrophysics Data System (ADS)
Zheng, Yu; Wang, Kan; Zhang, Jingjing; Qin, Weijian; Yan, Xinyu; Shen, Guangxia; Gao, Guo; Pan, Fei; Cui, Daxiang
2016-02-01
Quantum dots-labeled urea-enzyme antibody-based rapid immunochromatographic test strips have been developed as quantitative fluorescence point-of-care tests (POCTs) to detect helicobacter pylori. Presented in this study is a new test strip reader designed to run on tablet personal computers (PCs), which is portable for outdoor detection even without an alternating current (AC) power supply. A Wi-Fi module was integrated into the reader to improve its portability. Patient information was loaded by a barcode scanner, and an application designed to run on tablet PCs was developed to handle the acquired images. A vision algorithm called Kmeans was used for picture processing. Different concentrations of various human blood samples were tested to evaluate the stability and accuracy of the fabricated device. Results demonstrate that the reader can provide an easy, rapid, simultaneous, quantitative detection for helicobacter pylori. The proposed test strip reader has a lighter weight than existing detection readers, and it can run for long durations without an AC power supply, thus verifying that it possesses advantages for outdoor detection. Given its fast detection speed and high accuracy, the proposed reader combined with quantum dots-labeled test strips is suitable for POCTs and owns great potential in applications such as screening patients with infection of helicobacter pylori, etc. in near future.
NASA Technical Reports Server (NTRS)
Woods, R. R.; Heppner, D. B.; Marshall, R. D.; Quattrone, P. D.
1979-01-01
As the length of manned space missions increase, more ambitious extravehicular activities (EVAs) are required. For the projected longer mission the use of expendables in the portable life support system (PLSS) will become prohibited due to high launch weight and volume requirements. Therefore, the development of a regenerable CO2 absorber for the PLSS application is highly desirable. The paper discusses the concept, regeneration mechanism, performance, system design, and absorption/regeneration cycle testing of a most promising concept known as ERCA (Electrochemically Regenerable CO2 Absorber). This concept is based on absorbing CO2 into an alkaline absorbent similar to LiOH. The absorbent is an aqueous solution supported in a porous matrix which can be electrochemically regenerated on board the primary space vehicle. With the metabolic CO2 recovery the ERCA concept results in a totally regenerable CO2 scrubber. The ERCA test hardware has passed 200 absorption/regeneration cycles without performance degradation.
DOT National Transportation Integrated Search
2006-06-01
The purpose of the project was to develop a : temporary portable concrete barrier (PCB) : with an integral glare shield for use in : roadside work-zone areas. Currentlyavailable : 32-inch portable concrete barriers : require the use of an add-on glar...
Technology assessment of portable energy RDT and P, phase 1
NASA Technical Reports Server (NTRS)
Spraul, J. R. (Compiler)
1975-01-01
A technological assessment of portable energy research, development, technology, and production was undertaken to assess the technical, economic, environmental, and sociopolitical issues associated with portable energy options. Those courses of action are discussed which would impact aviation and air transportation research and technology. Technology assessment workshops were held to develop problem statements. The eighteen portable energy problem statements are discussed in detail along with each program's objective, approach, task description, and estimates of time and costs.
Britton, J
2007-01-01
Portable medical devices represent an important resource for assisting healthcare delivery. The movement of portable devices often results in them being unavailable when needed. Tracking equipment using radiofrequency identification technology/devices (RFID) may provide a promising solution to the problems encountered in locating portable equipment. An RFID technology trial was undertaken at Royal Alexandra Hospital, Paisley. This involved the temporary installation of three active readers and attaching actively transmitting radio frequency tags to different portable medical devices. The active readers and computer system were linked using a bespoke data network. Tags and readers from two separate manufacturers were tested. Reliability difficulties were encountered when testing the technology from the first manufacturer, probably due to the casing of the medical device interfering with the signal from the tag. Improved results were obtained when using equipment from the second manufacturer with an overall error rate of 12.3%. Tags from this manufacturer were specifically designed to overcome problems observed with the first system tested. Findings from this proof of concept trial suggest that RFID technology could be used to track the location of equipment in a hospital.
Performance Portability Strategies for Grid C++ Expression Templates
NASA Astrophysics Data System (ADS)
Boyle, Peter A.; Clark, M. A.; DeTar, Carleton; Lin, Meifeng; Rana, Verinder; Vaquero Avilés-Casco, Alejandro
2018-03-01
One of the key requirements for the Lattice QCD Application Development as part of the US Exascale Computing Project is performance portability across multiple architectures. Using the Grid C++ expression template as a starting point, we report on the progress made with regards to the Grid GPU offloading strategies. We present both the successes and issues encountered in using CUDA, OpenACC and Just-In-Time compilation. Experimentation and performance on GPUs with a SU(3)×SU(3) streaming test will be reported. We will also report on the challenges of using current OpenMP 4.x for GPU offloading in the same code.
NASA Astrophysics Data System (ADS)
Pu, Yang; Wang, Wubao; Tang, Guichen; Budansky, Yury; Sharonov, Mikhail; Xu, Min; Achilefu, Samuel; Eastham, James A.; Alfano, Robert R.
2012-01-01
A portable near infrared scanning polarization imaging unit with an optical fiber-based rectal probe, namely Photonic Finger, was designed and developed o locate the 3D position of abnormal prostate site inside normal prostate tissue. An inverse algorithm, Optical Tomography using Independent Component Analysis (OPTICA) was improved particularly to unmix the signal from targets (cancerous tissue) embedded in a turbid medium (normal tissue) in the backscattering imaging geometry. Photonic Finger combined with OPTICA was tested to characterize different target(s) inside different tissue medium, including cancerous prostate tissue embedded by large piece of normal tissue.
A knee-mounted biomechanical energy harvester with enhanced efficiency and safety
NASA Astrophysics Data System (ADS)
Chen, Chao; Chau, Li Yin; Liao, Wei-Hsin
2017-06-01
Energy harvesting is becoming a major limiting issue for many portable devices. When undertaking any activity, the human body generates a significant amount of biomechanical energy, which can be collected by means of a portable energy harvester. This energy provides a method of powering portable devices such as prosthetic limbs. In this paper, a knee-mounted energy harvester with enhanced efficiency and safety is proposed and developed to convert mechanical energy into electricity during human motion. This device can change the bi-directional knee input into uni-directional rotation for an electromagnetic generator using a specially designed transmission system. Without the constraint of induced impact on the human body, this device can harvest biomechanical energy from both knee flexion and extension, improving the harvesting efficiency over previous single-direction energy harvesters. It can also provide protection from device malfunction, and increase the safety of current biomechanical energy harvesters. A highly compact and light prototype is developed taking into account human kinematics. The biomechanical energy harvesting system is also modeled and analyzed. The prototype is tested under different conditions including walking, running and climbing stairs, to evaluate the energy harvesting performance and effect on the human gait. The experimental results show that the prototype can harvest an average power of 3.6 W at 1.5 m s-1 walking speed, which is promising for portable electronic devices.
40 CFR 59.653 - How do I test portable fuel containers?
Code of Federal Regulations, 2011 CFR
2011-07-01
... PRODUCTS Control of Evaporative Emissions From New and In-Use Portable Fuel Containers Certifying Emission... container must be tested in their open condition unless they close automatically and are unlikely to be left open by the user during typical storage. All manual closures such as caps must be left off the...
NASA Technical Reports Server (NTRS)
Manta, G.; Gurau, Y.; Nica, P.; Facacaru, I.
1974-01-01
The development of methods for the nondestructive study of concrete structures is discussed. The nondestructive test procedure is based on the method of ultrasonic pulse transmission through the material. The measurements indicate that the elastic properties of concrete or other heterogeneous materials are a function of the rate of ultrasonic propagation. Diagrams of the test equipment are provided. Mathematical models are included to support the theoretical aspects.
Ultra-portable field transfer radiometer for vicarious calibration of earth imaging sensors
NASA Astrophysics Data System (ADS)
Thome, Kurtis; Wenny, Brian; Anderson, Nikolaus; McCorkel, Joel; Czapla-Myers, Jeffrey; Biggar, Stuart
2018-06-01
A small portable transfer radiometer has been developed as part of an effort to ensure the quality of upwelling radiance from test sites used for vicarious calibration in the solar reflective. The test sites are used to predict top-of-atmosphere reflectance relying on ground-based measurements of the atmosphere and surface. The portable transfer radiometer is designed for one-person operation for on-site field calibration of instrumentation used to determine ground-leaving radiance. The current work describes the detector- and source-based radiometric calibration of the transfer radiometer highlighting the expected accuracy and SI-traceability. The results indicate differences between the detector-based and source-based results greater than the combined uncertainties of the approaches. Results from recent field deployments of the transfer radiometer using a solar radiation based calibration agree with the source-based laboratory calibration within the combined uncertainties of the methods. The detector-based results show a significant difference to the solar-based calibration. The source-based calibration is used as the basis for a radiance-based calibration of the Landsat-8 Operational Land Imager that agrees with the OLI calibration to within the uncertainties of the methods.
NASA Astrophysics Data System (ADS)
Frish, M. B.; Morency, J. R.; Laderer, M. C.; Wainner, R. T.; Parameswaran, K. R.; Kessler, W. J.; Druy, M. A.
2010-04-01
This paper reports the development and initial testing of a field-portable sensor for monitoring hydrogen peroxide (H2O2) and water (H2O) vapor concentrations during building decontamination after accidental or purposeful exposure to hazardous biological materials. During decontamination, a sterilization system fills ambient air with water and peroxide vapor to near-saturation. The peroxide concentration typically exceeds several hundred ppm for tens of minutes, and subsequently diminishes below 1 ppm. The H2O2/ H2O sensor is an adaptation of a portable gas-sensing platform based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) technology. By capitalizing on its spectral resolution, the TDLAS analyzer isolates H2O2 and H2O spectral lines to measure both vapors using a single laser source. It offers a combination of sensitivity, specificity, fast response, dynamic range, linearity, ease of operation and calibration, ruggedness, and portability not available in alternative H2O2 detectors. The H2O2 range is approximately 0- 5,000 ppm. The autonomous and rugged instrument provides real-time data. It has been tested in a closed-loop liquid/vapor equilibrium apparatus and by comparison against electrochemical sensors.
Portable Virtual Training Units
NASA Technical Reports Server (NTRS)
Malone, Reagan; Johnston, Alan
2015-01-01
The Mission Operations Lab initiated a project to design, develop, deliver, test, and validate a unique training system for astronaut and ground support personnel. In an effort to keep training costs low, virtual training units (VTUs) have been designed based on images of actual hardware and manipulated by a touch screen style interface for ground support personnel training. This project helped modernized the training system and materials by integrating them with mobile devices for training when operators or crew are unavailable to physically train in the facility. This project also tested the concept of a handheld remote device to control integrated trainers using International Space Station (ISS) training simulators as a platform. The portable VTU can interface with the full-sized VTU, allowing a trainer co-located with a trainee to remotely manipulate a VTU and evaluate a trainee's response. This project helped determine if it is useful, cost effective, and beneficial for the instructor to have a portable handheld device to control the behavior of the models during training. This project has advanced NASA Marshall Space Flight Center's (MSFC's) VTU capabilities with modern and relevant technology to support space flight training needs of today and tomorrow.
Automated Portable Test System (APTS) - A performance envelope assessment tool
NASA Technical Reports Server (NTRS)
Kennedy, R. S.; Dunlap, W. P.; Jones, M. B.; Wilkes, R. L.; Bittner, A. C., Jr.
1985-01-01
The reliability and stability of microcomputer-based psychological tests are evaluated. The hardware, test programs, and system control of the Automated Portable Test System, which assesses human performance and subjective status, are described. Subjects were administered 11 pen-and-pencil and microcomputer-based tests for 10 sessions. The data reveal that nine of the 10 tests stabilized by the third administration; inertial correlations were high and consistent. It is noted that the microcomputer-based tests display good psychometric properties in terms of differential stability and reliability.
Noncontaminating technique for making holes in existing process systems
NASA Technical Reports Server (NTRS)
Hecker, T. P.; Czapor, H. P.; Giordano, S. M.
1972-01-01
Technique is developed for making cleanly-contoured holes in assembled process systems without introducing chips or other contaminants into system. Technique uses portable equipment and does not require dismantling of system. Method was tested on Inconel, stainless steel, ASTMA-53, and Hastelloy X in all positions.
Effects of portable computing devices on posture, muscle activation levels and efficiency.
Werth, Abigail; Babski-Reeves, Kari
2014-11-01
Very little research exists on ergonomic exposures when using portable computing devices. This study quantified muscle activity (forearm and neck), posture (wrist, forearm and neck), and performance (gross typing speed and error rates) differences across three portable computing devices (laptop, netbook, and slate computer) and two work settings (desk and computer) during data entry tasks. Twelve participants completed test sessions on a single computer using a test-rest-test protocol (30min of work at one work setting, 15min of rest, 30min of work at the other work setting). The slate computer resulted in significantly more non-neutral wrist, elbow and neck postures, particularly when working on the sofa. Performance on the slate computer was four times less than that of the other computers, though lower muscle activity levels were also found. Potential or injury or illness may be elevated when working on smaller, portable computers in non-traditional work settings. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Portable Body Temperature Conditioner
2014-12-01
are homeothermic and require a narrow core body temperature range to maintain normal homeostasis. Currently, the most effective treatments for...for monitoring circulating water and patient body temperature . During breadboard testing the effectiveness of the air coil was found to be...blanket. Bath temperatures were set to 30°C, 15°C, and 10°C respectively. In order to develop a testing procedure for quantifying the effective
Space Suit Portable Life Support System Test Bed (PLSS 1.0) Development and Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Campbell, Colin; Vogel, Matthew; Conger, Bruce
2012-01-01
A multi-year effort has been carried out at NASA-JSC to develop an advanced extra-vehicular activity Portable Life Support System (PLSS) design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station Extra-vehicular Mobility Unit PLSS, the advanced PLSS comprises three subsystems required to sustain the crew during extra-vehicular activity including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test bed that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, Ventilation Subsystem fan, Rapid Cycle Amine swingbed carbon dioxide and water vapor removal device, and Spacesuit Water Membrane Evaporator heat rejection device. The overall PLSS 1.0 test objective was to demonstrate the capability of the Advanced PLSS to provide key life support functions including suit pressure regulation, carbon dioxide and water vapor removal, thermal control and contingency purge operations. Supplying oxygen was not one of the specific life support functions because the PLSS 1.0 test was not oxygen rated. Nitrogen was used for the working gas. Additional test objectives were to confirm PLSS technology development components performance within an integrated test bed, identify unexpected system level interactions, and map the PLSS 1.0 performance with respect to key variables such as crewmember metabolic rate and suit pressure. Successful PLSS 1.0 testing completed 168 test points over 44 days of testing and produced a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.
2003-01-28
Proposal Title PORTABLE TEST CELL - JETCAL 2000(R) Lead Proposer HOWELL INSTRUMENTS Military Customer NAVY/MARINE H53...B-4 Proposal Title PORTABLE TEST CELL - JETCAL 2000(R) Lead Proposer HOWELL INSTRUMENTS Military Customer...TEST CELL - JETCAL 2000(R) Lead Proposer HOWELL INSTRUMENTS Military Customer NAVY/MARINE H53 AIRCRAFT Baseline Costs -- DoD’s Costs When COSSI is NOT
Development of an alpha scattering instrument for heavy element detection in surface materials
NASA Technical Reports Server (NTRS)
Turkevich, A. L.; Economou, T.; Blume, E.; Anderson, W.
1974-01-01
The development and characteristics of a portable instrument for detecting and measuring the amounts of lead in painted surfaces are discussed. The instrument is based on the ones used with the alpha scattering experiment on the Surveyor lunar missions. The principles underlying the instrument are described. It is stated that the performance tests of the instrument were satisfactory.
Hollow fiber membrane systems for advanced life support systems
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Lysaght, M. J.
1976-01-01
The practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications is described. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing; breadboard hardware was manufactured and tested, and the physical properties of the hollow fiber membrane assemblies are characterized.
Development open source microcontroller based temperature data logger
NASA Astrophysics Data System (ADS)
Abdullah, M. H.; Che Ghani, S. A.; Zaulkafilai, Z.; Tajuddin, S. N.
2017-10-01
This article discusses the development stages in designing, prototyping, testing and deploying a portable open source microcontroller based temperature data logger for use in rough industrial environment. The 5V powered prototype of data logger is equipped with open source Arduino microcontroller for integrating multiple thermocouple sensors with their module, secure digital (SD) card storage, liquid crystal display (LCD), real time clock and electronic enclosure made of acrylic. The program for the function of the datalogger is programmed so that 8 readings from the thermocouples can be acquired within 3 s interval and displayed on the LCD simultaneously. The recorded temperature readings at four different points on both hydrodistillation show similar profile pattern and highest yield of extracted oil was achieved on hydrodistillation 2 at 0.004%. From the obtained results, this study achieved the objective of developing an inexpensive, portable and robust eight channels temperature measuring module with capabilities to monitor and store real time data.
Development Specification for the FN-323/324, Oxygen Ventilation Loop Fan Assembly
NASA Technical Reports Server (NTRS)
Ralston, Russell; Campbell, Colin
2017-01-01
This specification establishes the requirements for design, performance, safety, and manufacture of the FN-323/324, Oxygen Ventilation Loop Fan Assembly as part of the Advanced EMU (AEMU) Portable Life Support System (PLSS). Fan development for the advanced Portable Life Support System (PLSS) began in 2009 with the development of Fan 1.0. This fan was used in PLSS 2.0 for circulation of the ventilation loop gas. Fan 2.0 was delivered in 2015 and will be used in the PLSS 2.5 Live Loads test series. This fan used the same motor as Fan 1.0, but had a larger volute and impeller in hopes of achieving lower speeds. The next iteration of the advanced PLSS fan is the subject of the requirements contained within this document, and will be used with the PLSS 2.5 -302 configuration.
Note: A portable automatic capillary viscometer for transparent and opaque liquids
NASA Astrophysics Data System (ADS)
Soltani Ghalehjooghi, A.; Minaei, S.; Gholipour Zanjani, N.; Beheshti, B.
2017-07-01
A portable automatic capillary viscometer, equipped with an AVR microcontroller, was designed and developed. The viscometer was calibrated with Certified Reference Material (CRM) s200 and utilized for measurement of kinematic viscosity. A quadratic equation was developed for calibration of the instrument at various temperatures. Also, a model was developed for viscosity determination in terms of the viscometer dimensions. Development of the portable viscometer provides for on-site monitoring of engine oil viscosity.
29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., 1963. They shall be subjected to a hydrostatic pressure test of one and one-half times the working... quarterly by a competent person. They shall be subjected yearly to a hydrostatic pressure test of one and... 29 Labor 7 2010-07-01 2010-07-01 false Portable air receivers and other unfired pressure vessels...
Fine dust emissions in sandy and silty agricultural soils
USDA-ARS?s Scientific Manuscript database
Dust emissions from strong winds are common in arid and semi-arid regions and occur under both natural and managed land systems. A portable field wind tunnel has been developed to allow measurements of dust emissions from soil surfaces to test the premise that dust concentrations are highly correlat...
Bi-axial Vibration Energy Harvesting
2012-07-01
included early dedicated portable signal averaging equipment, Nomad, CT4 and F18 fatigue test control systems and some field trials. Currently he is...and repairs to acoustically- fatigued structures. ____________________ ________________________________________________ UNCLASSIFIED...Physicists at the Tokyo Institute of Technology investigated various piezoceramic materials [20], developing lead zirconate titanate ( PZT ) in around 1952
An Integrated Analysis-Test Approach
NASA Technical Reports Server (NTRS)
Kaufman, Daniel
2003-01-01
This viewgraph presentation provides an overview of a project to develop a computer program which integrates data analysis and test procedures. The software application aims to propose a new perspective to traditional mechanical analysis and test procedures and to integrate pre-test and test analysis calculation methods. The program also should also be able to be used in portable devices and allows for the 'quasi-real time' analysis of data sent by electronic means. Test methods reviewed during this presentation include: shaker swept sine and random tests, shaker shock mode tests, shaker base driven model survey tests and acoustic tests.
Leary, Pauline E; Dobson, Gareth S; Reffner, John A
2016-05-01
Portable gas chromatography-mass spectrometry (GC-MS) systems are being deployed for field use, and are designed with this goal in mind. Performance characteristics of instruments that are successful in the field are different from those of equivalent technologies that are successful in a laboratory setting. These field-portable systems are extending the capabilities of the field user, providing investigative leads and confirmatory identifications in real time. Many different types of users benefit from the availability of this technology including emergency responders, the military, and law-enforcement organizations. This manuscript describes performance characteristics that are important for field-portable instruments, especially field-portable GC-MS systems, and demonstrates the value of this equipment to the disciplines of explosives investigations, fire investigations, and counterfeit-drug detection. This paper describes the current state of portable GC-MS technology, including a review of the development of portable GC-MS, as well as a demonstration of the value of this capability using different examples. © The Author(s) 2016.
Enzyme-Cascade Analysis of the Rio Tinto Subsurface Environment: A Biosensor Experiment
NASA Technical Reports Server (NTRS)
McKay, David S.; Lynch, Kennda; Wainwright, Norman; Child, Alice; Williams, Kendra; McKay, David; Amils, Ricardo; Gonzalez, Elena; Stoker, Carol
2004-01-01
The Portable Test System (PTS), designed & developed by Charles Rivers Laboratories, Inc. (Charleston, SC) is a portable instrument that was designed to perform analysis of enzymatic assays related to rapid assessment of microbial contamination (Wainwright, 2003). The enzymatic cascade of Limulus Amebocyte Lysate (LAL) is known to be one of the most sensitive techniques available for microbial detection, enabling the PTS to be evaluated as a potential life detection instrument for in situ Astrobiology missions. In the summer of 2003 the system was tested as a part of the Mars Astrobiology Research and Technology Experiment (MARTE) ground truth science campaign in the Rio Tinto Analogue environment near Nerva, Spain. The preliminary results show that the PTS analysis correlates well with the contamination control tests and the more traditional lab-based biological assays performed during the MARTE field mission. Further work will be conducted on this research during a second field campaign in 2004 and a technology demonstration of a prototype instrument that includes autonomous sample preparation will occur in 2005.
Portable Instrumentation for Real-Time Measurement of Scour at Bridges
DOT National Transportation Integrated Search
2000-12-01
Portable scour-measuring systems were developed to meet the requirements of three different applications: bridge inspections, limited-detail data collection, and detailed data collection. A portable scour-measuring system consists of four components:...
Portable Chemical Sterilizer (PCS) for Surgical Instruments
2004-12-01
PORTABLE CHEMICAL STERILIZER (PCS) FOR SURGICAL INSTRUMENTS CJ Doona*, FE Feeherry, MA Curtin‡, K Kustin‡, S Kandlikar‡ U.S. Army-Soldier...denotes Contractors) Biomedical Technologies ABSTRACT A novel device called the Portable Chemical Sterilizer (PCS) has been developed for the...rapid, safe, portable, power-free, and convenient sterilization of objects or surfaces contaminated with pathogenic microorganisms that cause
Collection of Infrasonic Sound From Sources of Military Importance
NASA Technical Reports Server (NTRS)
Masterman, Michael; Shams, Qamar A.; Burkett, Cecil G.; Zuckerwar, Allan J.; Stihler, Craig; Wallace, Jack
2008-01-01
Extreme Endeavors is collaborating with NASA Langley Research Center (LaRC) in the development, testing and analysis of infrasonic detection system under a Space Act Agreement. Acoustic studies of atmospheric events like convective storms, shear-induced turbulence, acoustic gravity waves, microbursts, hurricanes, and clear air turbulence (CAT) over the past thirty years have established that these events are strong emitters of infrasound. Recently NASA Langley Research Center has designed and developed a portable infrasonic detection system which can be used to make useful infrasound measurements at locations where it was not possible previously, such as a mountain crag, inside a cave or on the battlefield. The system comprises an electret condenser microphone, having a 3-inch membrane diameter, and a small, compact windscreen. Extreme Endeavors will present the findings from field testing using this portable infrasonic detection system. Field testing of the infrasonic detection system was partly funded by Greer Industries and support provided by the West Virginia Division of Natural Resources. The findings from this work illustrate the ability to detect structure and other information about the contents inside the caves. The presentation will describe methodology for utilizing infrasonic to locate and portray underground facilities.
A portable battery for objective, non-obstrusive measures of human performances
NASA Technical Reports Server (NTRS)
Kennedy, R. S.
1984-01-01
The need for a standardized battery of human performance tests to measure the effects of various treatments is pointed out. Progress in such a program is reported. Three batteries are available which differ in length and the number of tests in the battery. All tests are implemented on a portable, lap held, briefcase size microprocessor. Performances measured include: information processing, memory, visual perception, reasoning, and motor skills, programs to determine norms, reliabilities, stabilities, factor structure of tests, comparisons with marker tests, apparatus suitability. Rationale for the battery is provided.
Development of a Portable Test Kit for Field-Screening Paints
1986-01-01
Use) rods. TT-P-002119 Paint, Latex Base, High Traffic Areas, Flat and Eggshell Finish Discussion (Low Lustre, For Interior Use) The applications...testing uniformity in different clean. Eggshell or flat surfaces have more pigment than laboratories. Although the methods are designed to vehicle on...samples (Table 12) were selected from the useful for determining the gloss of eggshell , semigloss, series to represent the range of gloss (glossy
MPF: A portable message passing facility for shared memory multiprocessors
NASA Technical Reports Server (NTRS)
Malony, Allen D.; Reed, Daniel A.; Mcguire, Patrick J.
1987-01-01
The design, implementation, and performance evaluation of a message passing facility (MPF) for shared memory multiprocessors are presented. The MPF is based on a message passing model conceptually similar to conversations. Participants (parallel processors) can enter or leave a conversation at any time. The message passing primitives for this model are implemented as a portable library of C function calls. The MPF is currently operational on a Sequent Balance 21000, and several parallel applications were developed and tested. Several simple benchmark programs are presented to establish interprocess communication performance for common patterns of interprocess communication. Finally, performance figures are presented for two parallel applications, linear systems solution, and iterative solution of partial differential equations.
Optical ordnance system for use in explosive ordnance disposal activities
NASA Technical Reports Server (NTRS)
Merson, J. A.; Salas, F. J.; Helsel, F.M.
1994-01-01
A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt(III) perchlorate (CP) as the DDT column and the explosive Octahydro- 1,3,5,7 - tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.
Kobrin, Eeva-Gerda; Lees, Heidi; Fomitšenko, Maria; Kubáň, Petr; Kaljurand, Mihkel
2014-04-01
A portable capillary electrophoretic system with contactless conductivity detection was used for fingerprint analysis of postblast explosive residues from commercial organic and improvised inorganic explosives on various surfaces (sand, concrete, metal witness plates). Simple extraction methods were developed for each of the surfaces for subsequent simultaneous capillary electrophoretic analysis of anions and cations. Dual-opposite end injection principle was used for fast (<4 min) separation of 10 common anions and cations from postblast residues using an optimized separation electrolyte composed of 20 mM MES, 20 mM l-histidine, 30 μM CTAB and 2 mM 18-crown-6. The concentrations of all ions obtained from the electropherograms were subjected to principal component analysis to classify the tested explosives on all tested surfaces, resulting in distinct cluster formations that could be used to verify (each) type of the explosive. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wei, Jyh-Da; Tsai, Ming-Hung; Lee, Gen-Cher; Huang, Jeng-Hung; Lee, Der-Tsai
2009-01-01
Algorithm visualization is a unique research topic that integrates engineering skills such as computer graphics, system programming, database management, computer networks, etc., to facilitate algorithmic researchers in testing their ideas, demonstrating new findings, and teaching algorithm design in the classroom. Within the broad applications of algorithm visualization, there still remain performance issues that deserve further research, e.g., system portability, collaboration capability, and animation effect in 3D environments. Using modern technologies of Java programming, we develop an algorithm visualization and debugging system, dubbed GeoBuilder, for geometric computing. The GeoBuilder system features Java's promising portability, engagement of collaboration in algorithm development, and automatic camera positioning for tracking 3D geometric objects. In this paper, we describe the design of the GeoBuilder system and demonstrate its applications.
Jang, Hyunwook; Ahmed, Syed Rahin; Neethirajan, Suresh
2017-01-01
Enzyme-linked immunosorbent assay (ELISA) is a popular assay technique for the detection and quantification of various biological substances due its high sensitivity and specificity. More often, it requires large and expensive laboratory instruments, which makes it difficult to conduct when the tests must be performed quickly at the point-of-care (POC). To increase portability and ease of use, we propose a portable diagnostic system based on a Raspberry Pi imaging sensor for the rapid detection of progesterone in milk samples. We designed, assembled, and tested a standalone portable diagnostic reader and validated it for progesterone detection against a standard ELISA assay using a commercial plate reader. The portable POC device yielded consistent results, regardless of differences in the cameras and flashlights between various smartphone devices. An Android application was built to provide front-end access to users, control the diagnostic reader, and display and store the progesterone measurement on the smartphone. The diagnostic reader takes images of the samples, reads the pixel values, processes the results, and presents the results on the handheld device. The proposed POC reader can perform to superior levels of performance as a plate reader, while adding the desirable qualities of portability and ease of use. PMID:28489036
Jang, Hyunwook; Ahmed, Syed Rahin; Neethirajan, Suresh
2017-05-10
Enzyme-linked immunosorbent assay (ELISA) is a popular assay technique for the detection and quantification of various biological substances due its high sensitivity and specificity. More often, it requires large and expensive laboratory instruments, which makes it difficult to conduct when the tests must be performed quickly at the point-of-care (POC). To increase portability and ease of use, we propose a portable diagnostic system based on a Raspberry Pi imaging sensor for the rapid detection of progesterone in milk samples. We designed, assembled, and tested a standalone portable diagnostic reader and validated it for progesterone detection against a standard ELISA assay using a commercial plate reader. The portable POC device yielded consistent results, regardless of differences in the cameras and flashlights between various smartphone devices. An Android application was built to provide front-end access to users, control the diagnostic reader, and display and store the progesterone measurement on the smartphone. The diagnostic reader takes images of the samples, reads the pixel values, processes the results, and presents the results on the handheld device. The proposed POC reader can perform to superior levels of performance as a plate reader, while adding the desirable qualities of portability and ease of use.
A portable hardware-in-the-loop (HIL) device for automotive diagnostic control systems.
Palladino, A; Fiengo, G; Lanzo, D
2012-01-01
In-vehicle driving tests for evaluating the performance and diagnostic functionalities of engine control systems are often time consuming, expensive, and not reproducible. Using a hardware-in-the-loop (HIL) simulation approach, new control strategies and diagnostic functions on a controller area network (CAN) line can be easily tested in real time, in order to reduce the effort and the cost of the testing phase. Nowadays, spark ignition engines are controlled by an electronic control unit (ECU) with a large number of embedded sensors and actuators. In order to meet the rising demand of lower emissions and fuel consumption, an increasing number of control functions are added into such a unit. This work aims at presenting a portable electronic environment system, suited for HIL simulations, in order to test the engine control software and the diagnostic functionality on a CAN line, respectively, through non-regression and diagnostic tests. The performances of the proposed electronic device, called a micro hardware-in-the-loop system, are presented through the testing of the engine management system software of a 1.6 l Fiat gasoline engine with variable valve actuation for the ECU development version. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
The Software Element of the NASA Portable Electronic Device Radiated Emissions Investigation
NASA Technical Reports Server (NTRS)
Koppen, Sandra V.; Williams, Reuben A. (Technical Monitor)
2002-01-01
NASA Langley Research Center's (LaRC) High Intensity Radiated Fields Laboratory (HIRF Lab) recently conducted a series of electromagnetic radiated emissions tests under a cooperative agreement with Delta Airlines and an interagency agreement with the FAA. The frequency spectrum environment at a commercial airport was measured on location. The environment survey provides a comprehensive picture of the complex nature of the electromagnetic environment present in those areas outside the aircraft. In addition, radiated emissions tests were conducted on portable electronic devices (PEDs) that may be brought onboard aircraft. These tests were performed in both semi-anechoic and reverberation chambers located in the HIRF Lab. The PEDs included cell phones, laptop computers, electronic toys, and family radio systems. The data generated during the tests are intended to support the research on the effect of radiated emissions from wireless devices on aircraft systems. Both tests systems relied on customized control and data reduction software to provide test and instrument control, data acquisition, a user interface, real time data reduction, and data analysis. The software executed on PC's running MS Windows 98 and 2000, and used Agilent Pro Visual Engineering Environment (VEE) development software, Common Object Model (COM) technology, and MS Excel.
Manufacturing Process Applications Team (MATeam)
NASA Technical Reports Server (NTRS)
1978-01-01
The activities of the Manufacturing Process Applications Team concerning the promotion of joint Industry/Federal Agency/NASA funded research and technology operating plan (RTOP) programs are reported. Direct transfers occurred in cutting tools, laser wire stripping, soldering, and portable X-ray unit technology. TROP program funding approval was obtained for the further development of the cutting tool Sialon and development of an automated nondestructive fracture toughness testing system.
A portable platform for accelerated PIC codes and its application to GPUs using OpenACC
NASA Astrophysics Data System (ADS)
Hariri, F.; Tran, T. M.; Jocksch, A.; Lanti, E.; Progsch, J.; Messmer, P.; Brunner, S.; Gheller, C.; Villard, L.
2016-10-01
We present a portable platform, called PIC_ENGINE, for accelerating Particle-In-Cell (PIC) codes on heterogeneous many-core architectures such as Graphic Processing Units (GPUs). The aim of this development is efficient simulations on future exascale systems by allowing different parallelization strategies depending on the application problem and the specific architecture. To this end, this platform contains the basic steps of the PIC algorithm and has been designed as a test bed for different algorithmic options and data structures. Among the architectures that this engine can explore, particular attention is given here to systems equipped with GPUs. The study demonstrates that our portable PIC implementation based on the OpenACC programming model can achieve performance closely matching theoretical predictions. Using the Cray XC30 system, Piz Daint, at the Swiss National Supercomputing Centre (CSCS), we show that PIC_ENGINE running on an NVIDIA Kepler K20X GPU can outperform the one on an Intel Sandy bridge 8-core CPU by a factor of 3.4.
Meng, Xin; Huang, Huachuan; Yan, Keding; Tian, Xiaolin; Yu, Wei; Cui, Haoyang; Kong, Yan; Xue, Liang; Liu, Cheng; Wang, Shouyu
2016-12-20
In order to realize high contrast imaging with portable devices for potential mobile healthcare, we demonstrate a hand-held smartphone based quantitative phase microscope using the transport of intensity equation method. With a cost-effective illumination source and compact microscope system, multi-focal images of samples can be captured by the smartphone's camera via manual focusing. Phase retrieval is performed using a self-developed Android application, which calculates sample phases from multi-plane intensities via solving the Poisson equation. We test the portable microscope using a random phase plate with known phases, and to further demonstrate its performance, a red blood cell smear, a Pap smear and monocot root and broad bean epidermis sections are also successfully imaged. Considering its advantages as an accurate, high-contrast, cost-effective and field-portable device, the smartphone based hand-held quantitative phase microscope is a promising tool which can be adopted in the future in remote healthcare and medical diagnosis.
Jang, A; Zou, Z; MacKnight, E; Wu, P M; Kim, I S; Ahn, C H; Bishop, P L
2009-01-01
A new portable analyzer with polymer lab-on-a-chip (LOC) has been designed, fabricated and fully characterized for continuous sampling and monitoring of lead (Pb(II)) in this work. As the working electrodes of the sensor, bismuth (Bi (III)) which allowed the advantage of being more environmentally friendly than traditional mercury drop electrodes was used, while maintaining similar sensitivity and other desirable characteristics. The size of a portable analyzer was 30 cmx23 cmx7 cm, and the weight was around 3 kg. The small size gives the advantage of being portable for field use while not sacrificing portability for accuracy of measurement. Furthermore, the autonomous system developed in coordination with the development of new polymer LOC integrated with electrochemical sensors can provide an innovative way to monitor surface waters in an efficient, cost-effective and sustainable manner.
NASA Astrophysics Data System (ADS)
Feijó Barreira, Luís Miguel; Xue, Yu; Duporté, Geoffroy; Parshintsev, Jevgeni; Hartonen, Kari; Jussila, Matti; Kulmala, Markku; Riekkola, Marja-Liisa
2016-08-01
Volatile organic compounds (VOCs) play a key role in atmospheric chemistry and physics. They participate in photochemical reactions in the atmosphere, which have direct implications on climate through, e.g. aerosol particle formation. Forests are important sources of VOCs, and the limited resources and infrastructures often found in many remote environments call for the development of portable devices. In this research, the potential of needle trap microextraction and portable gas chromatography-mass spectrometry for the study of VOCs at forest site was evaluated. Measurements were performed in summer and autumn 2014 at the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II) in Hyytiälä, Finland. During the first part of the campaign (summer) the applicability of the developed method was tested for the determination of monoterpenes, pinonaldehyde, aldehydes, amines and anthropogenic compounds. The temporal variation of aerosol precursors was determined, and evaluated against temperature and aerosol number concentration data. The most abundant monoterpenes, pinonaldehyde and aldehydes were successfully measured, their relative amounts being lower during days when particle number concentration was higher. Ethylbenzene, p- and m-xylene were also found when wind direction was from cities with substantial anthropogenic activity. An accumulation of VOCs in the snow cover was observed in the autumn campaign. Results demonstrated the successful applicability of needle trap microextraction and portable gas chromatography-mass spectrometry for the rapid in situ determination of organic gaseous compounds in the atmosphere.
Nuntawong, N; Eiamchai, P; Limwichean, S; Wong-ek, B; Horprathum, M; Patthanasettakul, V; Leelapojanaporn, A; Nakngoenthong, S; Chindaudom, P
2013-12-10
Recent analyses by ion-exchange chromatography (IC) showed that, beside nitrate, the majority of the industrial-grade emulsion explosives, extensively used by most separatists in the southern Thailand insurgency, contained small traces of perchlorate anions. In demand for the faster, reliable, and simple detection methods, the portable detection of nitrate and perchlorate became the great interest for the forensic and field-investigators. This work proposed a unique method to detect the trace amount of perchlorate in seven industrial-grade emulsion explosives under the field tests. We utilized the combination of the portable Raman spectroscope, the developed surfaced-enhanced Raman substrates, and the sample preparation procedures. The portable Raman spectroscope with a laser diode of 785 nm for excitation and a thermoelectric-cooled CCD spectrometer for detection was commercially available. The SERS substrates, with uniformly distributed nanostructured silver nanorods, were fabricated by the DC magnetron sputtering system, based on the oblique-angle deposition technique. The sample preparation procedures were proposed based on (1) pentane extraction technique and (2) combustion technique, prior to being dissolved in the purified water. In comparison to the ion chromatography and the conventional Raman measurements, our proposed methods successfully demonstrated the highly sensitive detectability of the minimal trace amount of perchlorate from five of the explosives with minimal operating time. This work was therefore highly practical to the development for the forensic analyses of the post-blast explosive residues under the field-investigations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draeger, E. W.
The Advanced Architecture and Portability Specialists team (AAPS) worked with a select set of LLNL application teams to develop and/or implement a portability strategy for next-generation architectures. The team also investigated new and updated programming models and helped develop programming abstractions targeting maintainability and performance portability. Significant progress was made on both fronts in FY17, resulting in multiple applications being significantly more prepared for the nextgeneration machines than before.
ShakeNet: a portable wireless sensor network for instrumenting large civil structures
Kohler, Monica D.; Hao, Shuai; Mishra, Nilesh; Govindan, Ramesh; Nigbor, Robert
2015-08-03
We report our findings from a U.S. Geological Survey (USGS) National Earthquake Hazards Reduction Program-funded project to develop and test a wireless, portable, strong-motion network of up to 40 triaxial accelerometers for structural health monitoring. The overall goal of the project was to record ambient vibrations for several days from USGS-instrumented structures. Structural health monitoring has important applications in fields like civil engineering and the study of earthquakes. The emergence of wireless sensor networks provides a promising means to such applications. However, while most wireless sensor networks are still in the experimentation stage, very few take into consideration the realistic earthquake engineering application requirements. To collect comprehensive data for structural health monitoring for civil engineers, high-resolution vibration sensors and sufficient sampling rates should be adopted, which makes it challenging for current wireless sensor network technology in the following ways: processing capabilities, storage limit, and communication bandwidth. The wireless sensor network has to meet expectations set by wired sensor devices prevalent in the structural health monitoring community. For this project, we built and tested an application-realistic, commercially based, portable, wireless sensor network called ShakeNet for instrumentation of large civil structures, especially for buildings, bridges, or dams after earthquakes. Two to three people can deploy ShakeNet sensors within hours after an earthquake to measure the structural response of the building or bridge during aftershocks. ShakeNet involved the development of a new sensing platform (ShakeBox) running a software suite for networking, data collection, and monitoring. Deployments reported here on a tall building and a large dam were real-world tests of ShakeNet operation, and helped to refine both hardware and software.
NASA Technical Reports Server (NTRS)
Chyba, Thomas; Zenker, Thomas
1998-01-01
The objective of this project is to develop a portable, eye-safe, ground-based ozone lidar instrument specialized for ozone differential absorption lidar (DIAL) measurements in the troposphere. This prototype instrument is intended to operate at remote field sites and to serve as the basic unit for monitoring projects requiring multi-instrument networks, such as that discussed in the science plan for the Global Tropospheric Ozone Project (GTOP). This instrument will be based at HU for student training in lidar technology as well as atmospheric ozone data analysis and interpretation. It will be also available for off-site measurement campaigns and will serve as a test bed for further instrument development. Later development beyond this grant to extend the scientific usefulness of the instrument may include incorporation of an aerosol channel and upgrading the laser to make stratospheric ozone measurements. Undergraduate and graduate students have been and will be active participants in this research effort.
Low-Cost, Class D Testing of Spacecraft Photovoltaic Systems Can Reduce Risk
NASA Technical Reports Server (NTRS)
Forgione, Joshua B.; Kojima, Gilbert K.; Hanel, Robert; Mallinson, Mark
2014-01-01
The end-to-end verification of a spacecraft photovoltaic power generation system requires light! A lowcost, portable, and end-to-end photovoltaic-system test appropriate for NASA's new generation of Class D missions is presented. High risk, low-cost, and quick-turn satellites rarely have the resources to execute the traditional approaches from higher-class (A-C) missions. The Class D approach, as demonstrated on the Lunar Atmospheric and Dust Environment Explorer (LADEE), utilizes a portable, metalhalide, theatre lamp for an end-to-end photovoltaic system test. While not as precise and comprehensive as the traditional Large Area Pulsed Solar Simulator (LAPSS) test, the LADEE method leverages minimal resources into an ongoing assessment program that can be applied through numerous stages of the mission. The project takes a true Class D approach in assessing the technical value of a costly, highfidelity performance test versus a simpler approach with less programmatic risk. The resources required are a fraction of that for a LAPSS test, and is easy to repeat due to its portability. Further, the test equipment can be handed down to future projects without building an on-site facility. At the vanguard of Class D missions, the LADEE team frequently wrestled with and challenged the status quo. The philosophy of risk avoidance at all cost, typical to Class A-C missions, simply could not be executed. This innovative and simple testing solution is contextualized to NASA Class D programs and a specific risk encountered during development of the LADEE Electrical Power System (EPS). Selection of the appropriate lamp and safety concerns are discussed, with examples of test results. Combined with the vendor's panellevel data and periodic inspection, the method ensures system integrity from Integration and Test (I&T) through launch. Following launch, mission operations tools are utilized to assess system performance based on a scant amount of available data.
A Portable, High Resolution, Surface Measurement Device
NASA Technical Reports Server (NTRS)
Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.
2012-01-01
A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.
Closed Course Testing of Portable Rumble Strips to Improve Truck Safety at Work Zones
DOT National Transportation Integrated Search
2010-01-01
The purpose of this research was to compare the attention-getting characteristics, movements and vertical displacements of several portable, reusable rumble strips. The attention-getting characteristics and displacement were measured after passes of ...
Portable track loading fixture improvement.
DOT National Transportation Integrated Search
2012-12-01
The portable track loading fixture (PTLF) has been used in the field as a nondestructive means of testing track strength, as per the Federal Railroad Administrations (FRA) Track Safety Standards (TSS) 49 CFR 213.110 (m). The PTLF operates by pla...
Expanding portable B-WIM technology.
DOT National Transportation Integrated Search
2011-06-28
Advances in weigh-in-motion technology over the past 15 years have led to successful field application of a : commercial grade portable Bridge WIM system (B-WIM) in Europe. Under a previous UTCA Research : Project No. 07212, UTCA tested the state-of-...
A field wind tunnel study of fine dust emissions in sandy soils
USDA-ARS?s Scientific Manuscript database
A portable field wind tunnel has been developed to allow measurements of dust emissions from soil surfaces to test the premise that dust concentration and properties are highly correlated with surface soil properties, as modified by crop management system. In this study, we report on the effect of ...
Radionuclides in Soils Along a Mountain-Basin Transect in the Koratepa Mountains of Uzbekistan
USDA-ARS?s Scientific Manuscript database
Wind tunnels have been used for several decades to study wind erosion processes. Portable wind tunnels offer the advantage of testing natural surfaces in the field, but they must be carefully designed to insure that a logarithmic boundary layer is formed and that wind erosion processes may develop ...
Mobile system for in-situ imaging of cultural objects
NASA Astrophysics Data System (ADS)
Zemlicka, J.; Jakubek, J.; Krejci, F.; Hradil, D.; Hradilova, J.; Mislerova, H.
2012-01-01
Non-invasive analytical techniques recently developed with the Timepix pixel detector have shown great potential for the inspection of objects of cultural heritage. We have developed new instrumentation and methodology for in-situ X-ray transmission radiography and X-ray fluorescence imaging and successfully tested and evaluated a mobile system for remote terrain tasks. The prototype portable imaging device comprises the radiation source tube and the spectral sensitive X-ray camera. Both components can be moreover mounted on independent motorized positioning systems allowing adaptation of irradiation geometry to the object shape. Both parts are placed onto a pair of universal portable holders (tripods). The detector is placed in a shielded box with exchangeable entrance window (beam filters and pinhole collimator). This adjustable setup allows performing in-situ measurements for both transmission and emission (XRF) radiography. The assembled system has been successfully tested in our laboratory with phantoms and real samples. The obtained and evaluated results are presented in this paper. Future work will include successive adaptation of the current system for real in-situ utilization and preparation of software allowing semi-automatic remote control of measurements.
Molecular Communication over Gas Stream Channels using Portable Mass Spectrometry.
Giannoukos, Stamatios; Marshall, Alan; Taylor, Stephen; Smith, Jeremy
2017-11-01
The synthetic generation/coding and transmission of olfactory information over a gas stream or an odor network is a new and unexplored field. Application areas vary from the entertainment or advertisement industry to security and telemedicine. However, current technological limitations frustrate the accurate reproduction of decoded and transmitted olfactory data. This study describes the development, testing, and characterization of a novel odor emitter (OE) that is used to investigate the generation-encoding of gaseous standards with odorous characteristics with a regulatable way, for scent transmission purposes. The calibration and the responses of a developed OE were examined using a portable quadrupole mass spectrometer (MS). Experiments were undertaken for a range of volatile organic compounds (VOCs) at different temperatures and flow rates. Individual compounds and mixtures were tested to investigate periodic and dynamic transmission characteristics within two different size tubular containers for distances up to 3 m. Olfactory information transmission is demonstrated using MS as the main molecular sensor for odor detection and monitoring and for the first time spatial encryption of olfactory information is shown. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Yang, Shangming; Wang, Pengfei; Cui, Hong-Liang
2010-04-01
A high speed, portable, multi-function WIM sensing system based on Fiber Bragg Grating (FBG) technology is reported in this paper. This system is developed to measure the total weight, the distribution of weight of vehicle in motion, the distance of wheel axles and the distance between left and right wheels. In this system, a temperature control system and a real-time compensation system are employed to eliminate the drifts of optical fiber Fabry-Pérot tunable filter. Carbon Fiber Laminated Composites are used in the sensor heads to obtain high reliability and sensitivity. The speed of tested vehicles is up to 20 mph, the full scope of measurement is 4000 lbs, and the static resolution of sensor head is 20 lbs. The demodulator has high speed (500 Hz) data collection, and high stability. The demodulator and the light source are packed into a 17'' rack style enclosure. The prototype has been tested respectively at Stevens' campus and Army base. Some experiences of avoiding the pitfalls in developing this system are also presented in this paper.
Molecular Communication over Gas Stream Channels using Portable Mass Spectrometry
NASA Astrophysics Data System (ADS)
Giannoukos, Stamatios; Marshall, Alan; Taylor, Stephen; Smith, Jeremy
2017-07-01
The synthetic generation/coding and transmission of olfactory information over a gas stream or an odor network is a new and unexplored field. Application areas vary from the entertainment or advertisement industry to security and telemedicine. However, current technological limitations frustrate the accurate reproduction of decoded and transmitted olfactory data. This study describes the development, testing, and characterization of a novel odor emitter (OE) that is used to investigate the generation-encoding of gaseous standards with odorous characteristics with a regulatable way, for scent transmission purposes. The calibration and the responses of a developed OE were examined using a portable quadrupole mass spectrometer (MS). Experiments were undertaken for a range of volatile organic compounds (VOCs) at different temperatures and flow rates. Individual compounds and mixtures were tested to investigate periodic and dynamic transmission characteristics within two different size tubular containers for distances up to 3 m. Olfactory information transmission is demonstrated using MS as the main molecular sensor for odor detection and monitoring and for the first time spatial encryption of olfactory information is shown.
Wang, Mei; Duong, Le Dai; Mai, Nguyen Thi; Kim, Sanghoon; Kim, Youngjun; Seo, Heewon; Kim, Ye Chan; Jang, Woojin; Lee, Youngkwan; Suhr, Jonghwan; Nam, Jae-Do
2015-01-21
Portable energy storage devices have gained special attention due to the growing demand for portable electronics. Herein, an all-solid-state supercapacitor is successfully fabricated based on a poly(vinyl alcohol)-H3PO4 (PVA-H3PO4) polymer electrolyte and a reduced graphene oxide (RGO) membrane electrode prepared by electrophoretic deposition (EPD). The RGO electrode fabricated by EPD contains an in-plane layer-by-layer alignment and a moderate porosity that accommodate the electrolyte ions. The all-solid-state RGO supercapacitor is thoroughly tested to give high specific volumetric capacitance (108 F cm(-3)) and excellent energy and power densities (7.5 Wh cm(-3) and 2.9 W cm(-3), respectively). In addition, the all-solid-state RGO supercapacitor exhibits an ultralong lifetime for as long as 180 days (335 000 cycles), which is an ultrahigh cycling capability for a solid-state supercapacitor. The RGO is also tested for being used as a transparent supercapacitor electrode demonstrating its possible use in various transparent optoelectronic devices. Due to the facile scale-up capability of the EPD process and RGO dispersion, the developed all-solid-state supercapacitor is highly applicable to large-area portable energy storage devices.
Space Suit Portable Life Support System (PLSS) 2.0 Pre-Installation Acceptance (PIA) Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Vogel, Matthew
2016-01-01
Following successful completion of the space suit Portable Life Support System (PLSS) 1.0 development and testing in 2011, the second system-level prototype, PLSS 2.0, was developed in 2012 to continue the maturation of the advanced PLSS design which is intended to reduce consumables, improve reliability and robustness, and incorporate additional sensing and functional capabilities over the current Space Shuttle/International Space Station Extravehicular Mobility Unit (EMU) PLSS. PLSS 2.0 represents the first attempt at a packaged design comprising first generation or later component prototypes and medium fidelity interfaces within a flight-like representative volume. Pre-Installation Acceptance (PIA) is carryover terminology from the Space Shuttle Program referring to the series of test sequences used to verify functionality of the EMU PLSS prior to installation into the Space Shuttle airlock for launch. As applied to the PLSS 2.0 development and testing effort, PIA testing designated the series of 27 independent test sequences devised to verify component and subsystem functionality, perform in situ instrument calibrations, generate mapping data to define set-points for control algorithms, evaluate hardware performance against advanced PLSS design requirements, and provide quantitative and qualitative feedback on evolving design requirements and performance specifications. PLSS 2.0 PIA testing was carried out from 3/20/13 - 3/15/14 using a variety of test configurations to perform test sequences that ranged from stand-alone component testing to system-level testing, with evaluations becoming increasingly integrated as the test series progressed. Each of the 27 test sequences was vetted independently, with verification of basic functionality required before completion. Because PLSS 2.0 design requirements were evolving concurrently with PLSS 2.0 PIA testing, the requirements were used as guidelines to assess performance during the tests; after the completion of PIA testing, test data served to improve the fidelity and maturity of design requirements as well as plans for future advanced PLSS functional testing.
Space Suit Portable Life Support System (PLSS) 2.0 Pre-Installation Acceptance (PIA) Testing
NASA Technical Reports Server (NTRS)
Anchondo, Ian; Cox, Marlon; Meginnis, Carly; Westheimer, David; Vogel, Matt R.
2016-01-01
Following successful completion of the space suit Portable Life Support System (PLSS) 1.0 development and testing in 2011, the second system-level prototype, PLSS 2.0, was developed in 2012 to continue the maturation of the advanced PLSS design. This advanced PLSS is intended to reduce consumables, improve reliability and robustness, and incorporate additional sensing and functional capabilities over the current Space Shuttle/International Space Station Extravehicular Mobility Unit (EMU) PLSS. PLSS 2.0 represents the first attempt at a packaged design comprising first generation or later component prototypes and medium fidelity interfaces within a flight-like representative volume. Pre-Installation Acceptance (PIA) is carryover terminology from the Space Shuttle Program referring to the series of test sequences used to verify functionality of the EMU PLSS prior to installation into the Space Shuttle airlock for launch. As applied to the PLSS 2.0 development and testing effort, PIA testing designated the series of 27 independent test sequences devised to verify component and subsystem functionality, perform in situ instrument calibrations, generate mapping data, define set-points, evaluate control algorithms, evaluate hardware performance against advanced PLSS design requirements, and provide quantitative and qualitative feedback on evolving design requirements and performance specifications. PLSS 2.0 PIA testing was carried out in 2013 and 2014 using a variety of test configurations to perform test sequences that ranged from stand-alone component testing to system-level testing, with evaluations becoming increasingly integrated as the test series progressed. Each of the 27 test sequences was vetted independently, with verification of basic functionality required before completion. Because PLSS 2.0 design requirements were evolving concurrently with PLSS 2.0 PIA testing, the requirements were used as guidelines to assess performance during the tests; after the completion of PIA testing, test data served to improve the fidelity and maturity of design requirements as well as plans for future advanced PLSS functional testing.
Development of an ultra-portable ride quality meter.
DOT National Transportation Integrated Search
2012-12-01
FRAs Office of Research and Development has funded the development of an ultra-portable ride quality meter (UPRQM) under the Small Business and Innovative Research (SBIR) program. Track inspectors can use the UPRQM to locate segments of track that...
Portable Imagery Quality Assessment Test Field for Uav Sensors
NASA Astrophysics Data System (ADS)
Dąbrowski, R.; Jenerowicz, A.
2015-08-01
Nowadays the imagery data acquired from UAV sensors are the main source of all data used in various remote sensing applications, photogrammetry projects and in imagery intelligence (IMINT) as well as in other tasks as decision support. Therefore quality assessment of such imagery is an important task. The research team from Military University of Technology, Faculty of Civil Engineering and Geodesy, Geodesy Institute, Department of Remote Sensing and Photogrammetry has designed and prepared special test field- The Portable Imagery Quality Assessment Test Field (PIQuAT) that provides quality assessment in field conditions of images obtained with sensors mounted on UAVs. The PIQuAT consists of 6 individual segments, when combined allow for determine radiometric, spectral and spatial resolution of images acquired from UAVs. All segments of the PIQuAT can be used together in various configurations or independently. All elements of The Portable Imagery Quality Assessment Test Field were tested in laboratory conditions in terms of their radiometry and spectral reflectance characteristics.
Acceptance test report for portable exhauster POR-008/Skid F
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriskovich, J.R.
1998-07-24
Portable Exhauster POR-008 was procured via HNF-0490, Specification for a Portable Exhausted System for Waste Tank Ventilation. Prior to taking ownership, acceptance testing was performed at the vendors. However at the conclusion of testing a number of issues remained that required resolution before the exhausters could be used by Project W-320. The purpose of acceptance testing documented by this report was to demonstrate compliance of the exhausters with the performance criteria established within HNF-O49O, Rev. 1 following a repair and upgrade effort at Hanford. In addition, data obtained during this testing is required for the resolution of outstanding Non-conformance Reportsmore » (NCR), and finally, to demonstrate the functionality of the associated software for the pressure control and high vacuum exhauster operating modes provided for by W-320. Additional testing not required by the ATP was also performed to assist in the disposition and close out of receiving inspection report and for application design information (system curve). Results of this testing are also captured within this document.« less
Rapid molecular assays for the detection of yellow fever virus in low-resource settings.
Escadafal, Camille; Faye, Oumar; Sall, Amadou Alpha; Faye, Ousmane; Weidmann, Manfred; Strohmeier, Oliver; von Stetten, Felix; Drexler, Josef; Eberhard, Michael; Niedrig, Matthias; Patel, Pranav
2014-03-01
Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in low-resource settings.
Rapid Molecular Assays for the Detection of Yellow Fever Virus in Low-Resource Settings
Escadafal, Camille; Faye, Oumar; Sall, Amadou Alpha; Faye, Ousmane; Weidmann, Manfred; Strohmeier, Oliver; von Stetten, Felix; Drexler, Josef; Eberhard, Michael; Niedrig, Matthias; Patel, Pranav
2014-01-01
Background Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. Methodology The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. Conclusion/Significance The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in low-resource settings. PMID:24603874
Hybrid Rocket Experiment Station for Capstone Design
NASA Technical Reports Server (NTRS)
Conley, Edgar; Hull, Bethanne J.
2012-01-01
Portable hybrid rocket motors and test stands can be seen in many papers but none have been reported on the design or instrumentation at such a small magnitude. The design of this hybrid rocket and test stand is to be small and portable (suitcase size). This basic apparatus will be used for demonstrations in rocket propulsion. The design had to include all of the needed hardware to operate the hybrid rocket unit (with the exception of the external Oxygen tank). The design of this project includes making the correlation between the rocket's thrust and its size, the appropriate transducers (physical size, resolution, range, and cost), compatability with a laptop analog card, the ease of setup, and its portability.
Automated Portable Test (APT) System: overview and prospects
NASA Technical Reports Server (NTRS)
Bittner, A. C.; Smith, M. G.; Kennedy, R. S.; Staley, C. F.; Harbeson, M. M.
1985-01-01
The Automated Portable Test (APT) System is a notebook-sized, computer-based, human-performance and subjective-status assessment system. It is now being used in a wide range of environmental studies (e.g., simulator aftereffects, flight tests, drug effects, and hypoxia). Three questionnaires and 15 performance tests have been implemented, and the adaptation of 30 more tests is underway or is planned. The APT System is easily transportable, is inexpensive, and has the breadth of expansion options required for field and laboratory applications. The APT System is a powerful and expandable tool for human assessment in remote and unusual environments.
Development of a Portable Knee Rehabilitation Device That Uses Mechanical Loading.
Fitzwater, Daric; Dodge, Todd; Chien, Stanley; Yokota, Hiroki; Anwar, Sohel
2013-12-01
Joint loading is a recently developed mechanical modality, which potentially provides a therapeutic regimen to activate bone formation and prevent degradation of joint tissues. To our knowledge, however, few joint loading devices are available for clinical or point-of-care applications. Using a voice-coil actuator, we developed an electromechanical loading system appropriate for human studies and preclinical trials that should prove both safe and effective. Two specific tasks for this loading system were development of loading conditions (magnitude and frequency) suitable for humans, and provision of a convenient and portable joint loading apparatus. Desktop devices have been previously designed to evaluate the effects of various loading conditions using small and large animals. However, a portable knee loading device is more desirable from a usability point of view. In this paper, we present such a device that is designed to be portable, providing a compact, user-friendly loader. The portable device was employed to evaluate its capabilities using a human knee model. The portable device was characterized for force-pulse width modulation duty cycle and loading frequency properties. The results demonstrate that the device is capable of producing the necessary magnitude of forces at appropriate frequencies to promote the stimulation of bone growth and which can be used in clinical studies for further evaluations.
Aboud, Maurice J; Gassmann, Marcus; McCord, Bruce
2015-09-01
There are situations in which it is important to quickly and positively identify an individual. Examples include suspects detained in the neighborhood of a bombing or terrorist incident, individuals detained attempting to enter or leave the country, and victims of mass disasters. Systems utilized for these purposes must be fast, portable, and easy to maintain. DNA typing methods provide the best biometric information yielding identity, kinship, and geographical origin, but they are not portable and rapid. This study details the development of a portable short-channel microfluidic device based on a modified Agilent 2100 bioanalyzer for applications in forensic genomics. The system utilizes a denaturing polymer matrix with dual-channel laser-induced fluorescence and is capable of producing a genotype in 80 sec. The device was tested for precision and resolution using an allelic ladder created from 6 short tandem repeat (STR) loci and a sex marker (amelogenin). The results demonstrated a precision of 0.09-0.21 bp over the entire size range and resolution values from 2.5 to 4.1 bp. Overall, the results demonstrate the chip provides a portable, rapid, and precise method for screening amplified short tandem repeats and human identification screening. © 2015 American Academy of Forensic Sciences.
Apollo experience report: Development of the extravehicular mobility unit
NASA Technical Reports Server (NTRS)
Lutz, C. C.; Stutesman, H. L.; Carson, M. A.; Mcbarron, J. W., II
1975-01-01
The development and performance history of the Apollo extravehicular mobility unit and its major subsystems is described. The three major subsystems, the pressure garment assembly, the portable life-support system, and the oxygen purge system, are defined and described in detail as is the evolutionary process that culminated in each major subsystem component. Descriptions of ground-support equipment and the qualification testing process for component hardware are also presented.
Disposable cartridge biosensor platform for portable diagnostics
NASA Astrophysics Data System (ADS)
Yaras, Yusuf S.; Cakmak, Onur; Gunduz, Ali B.; Saglam, Gokhan; Olcer, Selim; Mostafazadeh, Aref; Baris, Ibrahim; Civitci, Fehmi; Yaralioglu, Goksen G.; Urey, Hakan
2017-03-01
We developed two types of cantilever-based biosensors for portable diagnostics applications. One sensor is based on MEMS cantilever chip mounted in a microfluidic channel and the other sensor is based on a movable optical fiber placed across a microfluidic channel. Both types of sensors were aimed at direct mechanical measurement of coagulation time in a disposable cartridge using plasma or whole blood samples. There are several similarities and also some important differences between the MEMS based and the optical fiber based solutions. The aim of this paper is to provide a comparison between the two solutions and the results. For both types of sensors, actuation of the cantilever or the moving fiber is achieved using an electro coil and the readout is optical. Since both the actuation and sensing are remote, no electrical connections are required for the cartridge. Therefore it is possible to build low cost disposable cartridges. The reader unit for the cartridge contains light sources, photodetectors, the electro coil, a heater, analog electronics, and a microprocessor. The reader unit has different optical interfaces for the cartridges that have MEMS cantilevers and moving fibers. MEMS based platform has better sensitivity but optomechanical alignment is a challenge and measurements with whole blood were not possible due to high scattering of light by the red blood cells. Fiber sensor based platform has relaxed optomechanical tolerances, ease of manufacturing, and it allows measurements in whole blood. Both sensors were tested using control plasma samples for activated-Partial-Thromboplastin-Time (aPTT) measurements. Control plasma test results matched with the manufacturer's datasheet. Optical fiber based system was tested for aPTT tests with human whole blood samples and the proposed platform provided repeatable test results making the system method of choice for portable diagnostics.
Sound reduction of air compressors using a systematic approach
NASA Astrophysics Data System (ADS)
Moylan, Justin Tharp
The noise emitted by portable electric air compressors can often be a nuisance or potentially hazardous to the operator or others nearby. Therefore, reducing the noise of these air compressors is desired. This research focuses on compressors with a reciprocating piston design as this is the most common type of pump design for portable compressors. An experimental setup was developed to measure the sound and vibration of the air compressors, including testing inside a semi-anechoic chamber. The design of a quiet air compressor was performed in four stages: 1) Teardown and benchmarking of air compressors, 2) Identification and isolation of noise sources, 3) Development of individual means to quiet noise sources, 4) Selection and testing of integrated solutions. The systematic approach and results for each of these stages will be discussed. Two redesigned solutions were developed and measured to be approximately 65% quieter than the previous unmodified compressor. An additional analysis was performed on the solutions selected by the participants involved in the selection process. This analysis involved determining which of the design criteria each participant considered most important when selecting solutions. The results from each participant were then compared to their educational background and experience and correlations were identified. The correlations discovered suggest that educational background and experience may be key determinants for the preference models developed.
Next Generation LOCAD-PTS Cartridge Development
NASA Technical Reports Server (NTRS)
Morris, H.; Nutter, D.; Weite, E.; Wells, M.; Maule, J.; Damon, M.; Monaco, L.; Steele, A.; Wainwright, N.
2008-01-01
Future astrobiology exploration missions will require rapid, point-of-use techniques for surface science experiments and contamination monitoring. The Lab-On-a-Chip Application Development (LOCAD) team is developing operational instruments that advance spaceflight technologies to molecular-based methods. Currently, LOCAD-Portable Test System (PTS) is quantifying levels of the bacterial molecule endotoxin onboard the Internatioal Space Station. Future research and development will focus on more sensitive molecular techniques that expand the number of compounds detected to include beta-glucan from fungal cell walls.
Gas-fired duplex free-piston Stirling refrigerator
NASA Astrophysics Data System (ADS)
Urieli, L.
1984-03-01
The duplex free-piston Stirling refrigerator is a potentially high efficiency, high reliability device which is ideally suited to the home appliance field, in particular as a gas-fired refrigerator. It has significant advantages over other equivalent devices including freedom from halogenated hydrocarbons, extremely low temperatures available at a high efficiency, integrated water heating, and simple burner system control. The design and development of a portable working demonstration gas-fired duplex Stirling refrigeration unit is described. A unique combination of computer aided development and experimental development was used, enabling a continued interaction between the theoretical analysis and practical testing and evaluation. A universal test rig was developed in order to separately test and evaluate major subunits, enabling a smooth system integration phase.
Maurer, Natalie E; Hatta-Sakoda, Beatriz; Pascual-Chagman, Gloria; Rodriguez-Saona, Luis E
2012-09-15
Consumption of omega-3 fatty acids (ω-3's), whether from fish oils, flax or supplements, can protect against cardiovascular disease. Finding plant-based sources of the essential ω-3's could provide a sustainable, renewable and inexpensive source of ω-3's, compared to fish oils. Our objective was to develop a rapid test to characterize and detect adulteration in sacha inchi oils, a Peruvian seed containing higher levels of ω-3's in comparison to other oleaginous seeds. A temperature-controlled ZnSe ATR mid-infrared benchtop and diamond ATR mid-infrared portable handheld spectrometers were used to characterize sacha inchi oil and evaluate its oxidative stability compared to commercial oils. A soft independent model of class analogy (SIMCA) and partial least squares regression (PLSR) analyzed the spectral data. Fatty acid profiles showed that sacha inchi oil (44% linolenic acid) had levels of PUFA similar to those of flax oils. PLSR showed good correlation coefficients (R(2)>0.9) between reference tests and spectra from infrared devices, allowing for rapid determination of fatty acid composition and prediction of oxidative stability. Oils formed distinct clusters, allowing the evaluation of commercial sacha inchi oils from Peruvian markets and showed some prevalence of adulteration. Determining oil adulteration and quality parameters, by using the ATR-MIR portable handheld spectrometer, allowed for portability and ease-of-use, making it a great alternative to traditional testing methods. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sciutto, Giorgia; Zangheri, Martina; Anfossi, Laura; Guardigli, Massimo; Prati, Silvia; Mirasoli, Mara; Di Nardo, Fabio; Baggiani, Claudio; Mazzeo, Rocco; Roda, Aldo
2018-06-18
The point-of-care testing concept has been exploited to design and develop portable and cheap bioanalytical systems that can be used on-site by conservators. These systems employ lateral flow immunoassays to simultaneously detect two proteins (ovalbumin and collagen) in artworks. For an in-depth study on the application of these portable biosensors, both chemiluminescent and colorimetric detections were developed and compared in terms of sensitivity and feasibility. The chemiluminescent system displayed the best analytical performance (that is, two orders of magnitude lower limits of detection than the colorimetric system). To simplify its use, a disposable cartridge was designed ad hoc for this specific application. These results highlight the enormous potential of these inexpensive, easy-to-use, and minimally invasive diagnostic tools for conservators in the cultural heritage field. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Personal Computer-less (PC-less) Microcontroller Training Kit
NASA Astrophysics Data System (ADS)
Somantri, Y.; Wahyudin, D.; Fushilat, I.
2018-02-01
The need of microcontroller training kit is necessary for practical work of students of electrical engineering education. However, to use available training kit not only costly but also does not meet the need of laboratory requirements. An affordable and portable microcontroller kit could answer such problem. This paper explains the design and development of Personal Computer Less (PC-Less) Microcontroller Training Kit. It was developed based on Lattepanda processor and Arduino microcontroller as target. The training kit equipped with advanced input-output interfaces that adopted the concept of low cost and low power system. The preliminary usability testing proved this device can be used as a tool for microcontroller programming and industrial automation training. By adopting the concept of portability, the device could be operated in the rural area which electricity and computer infrastructure are limited. Furthermore, the training kit is suitable for student of electrical engineering student from university and vocational high school.
NASA Technical Reports Server (NTRS)
1982-01-01
Portable Medical Status and Treatment System (PMSTS) is designed for use in remote areas where considerable time may elapse before a patient can be transported to a hospital. First units were delivered to the Department of Transportation last year and tested in two types of medical emergency environments: one in a rural Pennsylvania community and another aboard a U.S. Coast Guard rescue helicopter operating along Florida's Gulf Coast. The system has the capability to transmit vital signs to a distantly located physician, who can perform diagnosis and relay treatment instructions to the attendant at the scene. The battery powered PMSTS includes a vital signs monitor and a defibrillator. Narco has also developed a companion system, called Porta-Fib III designed for use in a hospital environment with modifications accordingly. Both systems are offshoots of an earlier NASA project known as the Physician's Black Bag developed by Telecare, Inc., a company now acquired by NARCO.
Portable sensors for drug and explosive detection
NASA Astrophysics Data System (ADS)
Leginus, Joseph M.
1994-03-01
Westinghouse Electric is developing portable, hand-held sensors capable of detecting numerous drugs of abuse (cocaine, heroin, amphetamines) and explosives (trinitrotoluene, pentaerythritol tetranitrate, nitroglycerin). The easy-to-use system consists of a reusable electronics module and disposable probes. The sensor illuminates and detects light transmitted through optical cells of the probe during an antibody-based latex agglutination reaction. Each probe contains all the necessary reagents to carry out a test in a single step. The probe has the ability to lift minute quantities of samples from a variety of surfaces and deliver the sample to a reaction region within the device. The sensor yields a qualitative answer in 30 to 45 seconds and is able to detect illicit substances at nanogram levels.
NASA Astrophysics Data System (ADS)
Gliss, Christine; Parel, Jean-Marie A.; Flynn, John T.; Pratisto, Hans S.; Niederer, Peter F.
2003-07-01
We present a miniaturized version of a fundus camera. The camera is designed for the use in screening for retinopathy of prematurity (ROP). There, but also in other applications a small, light weight, digital camera system can be extremely useful. We present a small wide angle digital camera system. The handpiece is significantly smaller and lighter then in all other systems. The electronics is truly portable fitting in a standard boardcase. The camera is designed to be offered at a compatible price. Data from tests on young rabbits' eyes is presented. The development of the camera system is part of a telemedicine project screening for ROP. Telemedical applications are a perfect application for this camera system using both advantages: the portability as well as the digital image.
A portable gas recirculation unit for gaseous detectors
NASA Astrophysics Data System (ADS)
Guida, R.; Mandelli, B.
2017-10-01
The use of greenhouse gases (usually C2H2F4, CF4 and SF6) is sometimes necessary to achieve the required performance for some gaseous detectors. The consumption of these gases in the LHC systems is reduced by recycling the gas mixture thanks to a complex gas recirculation system. Beyond greenhouse gas consumption due to LHC systems, a considerable contribution is generated by setups used for LHC detector upgrade projects, R&D activities, detector quality assurance or longevity tests. In order to minimise this emission, a new flexible and portable gas recirculation unit has been developed. Thanks to its low price, flexibility and user-friendly operation it can be easily adapted for the different types of detector systems and set-ups.
24 CFR 982.636 - Homeownership option: Portability.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Homeownership option: Portability... Types Homeownership Option § 982.636 Homeownership option: Portability. (a) General. A family may... described in §§ 982.353 and 982.355 apply to the homeownership option and the administrative...
Lord Kelvin's atmospheric electricity measurements
NASA Astrophysics Data System (ADS)
Aplin, Karen; Harrison, R. Giles; Trainer, Matthew; Hough, James
2013-04-01
Lord Kelvin (William Thomson), one of the greatest Victorian scientists, made a substantial but little-recognised contribution to geophysics through his work on atmospheric electricity. He developed sensitive instrumentation for measuring the atmospheric electric field, including invention of a portable electrometer, which made mobile measurements possible for the first time. Kelvin's measurements of the atmospheric electric field in 1859, made during development of the portable electrometer, can be used to deduce the substantial levels of particulate pollution blown over the Scottish island of Arran from the industrial mainland. Kelvin was also testing the electrometer during the largest solar flare ever recorded, the "Carrington event" in the late summer of 1859. Subsequently, Lord Kelvin also developed a water dropper sensor, and employed photographic techniques for "incessant recording" of the atmospheric electric field, which led to the long series of measurements recorded at UK observatories for the remainder of the 19th and much of the 20th century. These data sets have been valuable in both studies of historical pollution and cosmic ray effects on atmospheric processes.
Williams works with LOCAD-PTS Experiment Hardware in the US Lab during Expedition 15
2007-05-05
ISS015-E-06773 (5 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, sets up a video camera inside a flame resistant covering to film a chip during Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) Swab Operations in the Destiny laboratory of the International Space Station.
2008-02-01
of the magnetic data to constrain the target depth using joint or cooperative inversions ( Pasion et al. 2002). ERDC/EL TR-08-9 24 Figure 15. EM...baseline ordnance classification test site at Blossom Pt. Naval Research Laboratory. NRL/MR/6110-00-8437, March 20, 1998. Pasion , L., S. Billings, and
Williams works with LOCAD-PTS in Destiny lab
2007-04-01
ISS014-E-18822 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
Williams works with LOCAD-PTS in Destiny lab
2007-04-01
ISS014-E-18818 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
Williams works with LOCAD-PTS in Destiny lab
2007-04-01
ISS014-E-18811 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
Segregation of Foliage from Chipped Tree Tops and Limbs
John A. Sturos
1973-01-01
An increase in forest utilization can be brought about by chipping logging residues or whole trees in the woods and removing the bark and foliage later. Because portable whole-tree chippers are now commercially available, methods must be developed for segregating bark and foliage from the chips. This paper discusses foliage removal results obtained from testing two...
NASA Technical Reports Server (NTRS)
1984-01-01
A low cost, low power, self-contained portable welding gun designed for joining thermoplastics which become soft when heated and harden when cooled was developed originally by NASA's Langley Research Center for repairing helicopter windshields. Welder has a broad range of applications for joining both thermoplastic materials in the aerospace, automotive, appliance, and construction industries. Welders portability and low power requirement allow its use on-site in any type of climate, with power supplied by a variety of portable sources.
MASH test 3-11 of the TxDOT portable type 2 PCTB with sign support assembly
DOT National Transportation Integrated Search
2010-01-01
Portable concrete traffic barriers (PCTBs) are commonly used in work zones or in temporary median : barrier applications. PCTBs are needed for separation and channelization of vehicle movement and for : worker protection. Signage is often necessary w...
DOT National Transportation Integrated Search
2013-08-01
Portable roll-up signs are currently used by the Texas Department of Transportation for identification of short-term maintenance/work zones and emergency operations. These signs have fiberglass frames that directly support diamond-shaped and rectangu...
Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Vogel, Matthew
2016-01-01
For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and operational concepts verification, as well as demonstration of vehicular interfaces, consumables sizing and recharge, and water quality control.
Hohenstein, Jess; O'Dell, Dakota; Murnane, Elizabeth L; Lu, Zhengda; Erickson, David; Gay, Geri
2017-11-21
In today's health care environment, increasing costs and inadequate medical resources have created a worldwide need for more affordable diagnostic tools that are also portable, fast, and easy to use. To address this issue, numerous research and commercial efforts have focused on developing rapid diagnostic technologies; however, the efficacy of existing systems has been hindered by usability problems or high production costs, making them infeasible for deployment in at-home, point-of-care (POC), or resource-limited settings. The aim of this study was to create a low-cost optical reader system that integrates with any smart device and accepts any type of rapid diagnostic test strip to provide fast and accurate data collection, sample analysis, and diagnostic result reporting. An iterative design methodology was employed by a multidisciplinary research team to engineer three versions of a portable diagnostic testing device that were evaluated for usability and overall user receptivity. Repeated design critiques and usability studies identified a number of system requirements and considerations (eg, software compatibility, biomatter contamination, and physical footprint) that we worked to incrementally incorporate into successive system variants. Our final design phase culminated in the development of Tidbit, a reader that is compatible with any Wi-Fi-enabled device and test strip format. The Tidbit includes various features that support intuitive operation, including a straightforward test strip insertion point, external indicator lights, concealed electronic components, and an asymmetric shape, which inherently signals correct device orientation. Usability testing of the Tidbit indicates high usability for potential user communities. This study presents the design process, specification, and user reception of the Tidbit, an inexpensive, easy-to-use, portable optical reader for fast, accurate quantification of rapid diagnostic test results. Usability testing suggests that the reader is usable among and can benefit a wide group of potential users, including in POC contexts. Generally, the methodology of this study demonstrates the importance of testing these types of systems with potential users and exemplifies how iterative design processes can be employed by multidisciplinary research teams to produce compelling technological solutions. ©Jess Hohenstein, Dakota O'Dell, Elizabeth L Murnane, Zhengda Lu, David Erickson, Geri Gay. Originally published in JMIR Human Factors (http://humanfactors.jmir.org), 21.11.2017.
Kurosaki, Yohei; Magassouba, N’Faly; Oloniniyi, Olamide K.; Cherif, Mahamoud S.; Sakabe, Saori; Takada, Ayato; Hirayama, Kenji; Yasuda, Jiro
2016-01-01
Given the current absence of specific drugs or vaccines for Ebola virus disease (EVD), rapid, sensitive, and reliable diagnostic methods are required to stem the transmission chain of the disease. We have developed a rapid detection assay for Zaire ebolavirus based on reverse transcription-loop-mediated isothermal amplification (RT-LAMP) and coupled with a novel portable isothermal amplification and detection platform. The RT-LAMP assay is based on primer sets that target the untranscribed trailer region or nucleoprotein coding region of the viral RNA. The test could specifically detect viral RNAs of Central and West African Ebola virus strains within 15 minutes with no cross-reactivity to other hemorrhagic fever viruses and arboviruses, which cause febrile disease. The assay was evaluated using a total of 100 clinical specimens (serum, n = 44; oral swab, n = 56) collected from suspected EVD cases in Guinea. The specificity of this diagnostic test was 100% for both primer sets, while the sensitivity was 100% and 97.9% for the trailer and nucleoprotein primer sets, respectively, compared with a reference standard RT-PCR test. These observations suggest that our diagnostic assay is useful for identifying EVD cases, especially in the field or in settings with insufficient infrastructure. PMID:26900929
Kurosaki, Yohei; Magassouba, N'Faly; Oloniniyi, Olamide K; Cherif, Mahamoud S; Sakabe, Saori; Takada, Ayato; Hirayama, Kenji; Yasuda, Jiro
2016-02-01
Given the current absence of specific drugs or vaccines for Ebola virus disease (EVD), rapid, sensitive, and reliable diagnostic methods are required to stem the transmission chain of the disease. We have developed a rapid detection assay for Zaire ebolavirus based on reverse transcription-loop-mediated isothermal amplification (RT-LAMP) and coupled with a novel portable isothermal amplification and detection platform. The RT-LAMP assay is based on primer sets that target the untranscribed trailer region or nucleoprotein coding region of the viral RNA. The test could specifically detect viral RNAs of Central and West African Ebola virus strains within 15 minutes with no cross-reactivity to other hemorrhagic fever viruses and arboviruses, which cause febrile disease. The assay was evaluated using a total of 100 clinical specimens (serum, n = 44; oral swab, n = 56) collected from suspected EVD cases in Guinea. The specificity of this diagnostic test was 100% for both primer sets, while the sensitivity was 100% and 97.9% for the trailer and nucleoprotein primer sets, respectively, compared with a reference standard RT-PCR test. These observations suggest that our diagnostic assay is useful for identifying EVD cases, especially in the field or in settings with insufficient infrastructure.
Embedded Data Processor and Portable Computer Technology testbeds
NASA Technical Reports Server (NTRS)
Alena, Richard; Liu, Yuan-Kwei; Goforth, Andre; Fernquist, Alan R.
1993-01-01
Attention is given to current activities in the Embedded Data Processor and Portable Computer Technology testbed configurations that are part of the Advanced Data Systems Architectures Testbed at the Information Sciences Division at NASA Ames Research Center. The Embedded Data Processor Testbed evaluates advanced microprocessors for potential use in mission and payload applications within the Space Station Freedom Program. The Portable Computer Technology (PCT) Testbed integrates and demonstrates advanced portable computing devices and data system architectures. The PCT Testbed uses both commercial and custom-developed devices to demonstrate the feasibility of functional expansion and networking for portable computers in flight missions.
2010-05-01
decontaminate chemical and biological agents from sensitive equipment (avionics, electronics, electrical , and environmental systems and equipment...fabricated 2 x 2 in. square, 3/32 in. thick aluminum shims, augmented with electrical tape for added thickness as needed, were used in these tests to make...test coupons, thin custom-fabricated 2x2 in. square x 3/32 in. thick aluminum shims, augmented with electrical tape for added thickness as needed
NASA Technical Reports Server (NTRS)
1976-01-01
With NASA contracts, Whittaker Corporations Space Science division has developed an electro-optical instrument to mass screen for lead poisoning. Device is portable and detects protoporphyrin in whole blood. Free corpuscular porphyrins occur as an early effect of lead ingestion. Also detects lead in urine used to confirm blood tests. Test is inexpensive and can be applied by relatively unskilled personnel. Similar Whittaker fluorometry device called "drug screen" can measure morphine and quinine in urine much faster and cheaper than other methods.
Portable Holographic Interferometry Testing System: Application to crack patching quality control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heslehurst, R.B.; Baird, J.P.; Williamson, H.M.
Over recent years the repair of metallic structures has been improved through the use of patches fabricated from composite materials and adhesively bonded to the damaged area. This technology is termed crack patching, and has been successfully and extensively used by the RAAF and the USAF. However, application of the technology to civilian registered aircraft has had limited success due to the apparent lack of suitable quality assurance testing methods and the airworthiness regulators concern overpatch adhesion integrity. Holographic interferometry has previously shown the advantages of detecting out-of-plane deformations of the order of the wavelength of light (1{mu}). Evidence willmore » be presented that holography is able to detect changes in load path due to debonds and weakened adhesion in an adhesively bonded patch. A Portable Holographic Interferometry Testing System (PHITS) which overcomes the vibration isolation problem associated with conventional holography techniques has been developed. The application of PHITS to crack patching technology now provides a suitable method to verify the integrity of bonded patches in-situ.« less
Portable oxygen subsystem. [design analysis and performance tests
NASA Technical Reports Server (NTRS)
1975-01-01
The concept and design of a portable oxygen device for use in the space shuttle orbiter is presented. Hardware fabrication and acceptance tests (i.e., breadboard models) are outlined and discussed. Optimization of the system (for weight, volume, safety, costs) is discussed. The device is of the rebreather type, and provides a revitalized breathing gas supply to a crewman for denitrogenization and emergency activities. Engineering drawings and photographs of the device are shown.
STS-41 Commander Richards uses DTO 1206 portable computer onboard OV-103
NASA Technical Reports Server (NTRS)
1990-01-01
STS-41 Commander Richard N. Richards, at pilots station, uses Detailed Test Objective (DTO) Space Station Cursor Control Device Evaluation MACINTOSH portable computer on the forward flight deck of Discovery, Orbiter Vehicle (OV) 103. Richards tests the roller ball cursor control device. Surrounding Richards are checklists, forward flight deck windows, his lightweight communications kit assembly headset, a beverage container (orange-mango drink), and the pilots seat back and headrest.
A Portable Sorption Tester for Nondestructive Testing of Chemical Protective Garments
1992-08-01
ö.^ TECHNICAL REPORT NATICK/TR-92/042 Ap AASL MI A PORTABLE SORPTION TESTER FOR NONDESTRUCTIVE TESTING OF CHEMICAL PROTECTIVE GARMENTS ...items. DESTRUCTION NOTICE For Classified Documents: Follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section 11-19 or DoD...disclosure of contents or reconstruction of the document. REPORT DOCUMENTATION PAGE Form Approved OMB No . 0704-0188 Public ’»oor.ra Ouro«" ":> -n
A Portable Electronic Nose For Hydrazine and Monomethyl Hydrazine Detection
NASA Technical Reports Server (NTRS)
Young, Rebecca C.; Linnell, Bruce R.; Peterson, Barbara V.; Brooks, Kathy B.; Griffin, Tim P.
2004-01-01
The Space Program and military use large quantities Hydrazine (Hz) and monomethyl hydrazine (MMI-I) as rocket propellant. These substances are very toxic and are suspected human carcinogens. The American Conference of Governmental Industrial Hygienist set the threshold limit value to be 10 parts per billion (ppb). Current off-the-shelf portable instruments require 10 to 20 minutes of exposure to detect 10 ppb concentration. This shortcofriing is not acceptable for many operations. A new prototype instrument using a gas sensor array and pattern recognition software technology (i.e., an electronic nose) has demonstrated the ability to identify either Hz or MM}{ and quantify their concentrations at 10 parts per billion in 90 seconds. This paper describes the design of the portable electronic nose (e-nose) instrument, test equipment setup, test protocol, pattern recognition algorithm, concentration estimation method, and laboratory test results.
Sakudo, Akikazu; Kato, Yukiko Hakariya; Kuratsune, Hirohiko; Ikuta, Kazuyoshi
2009-10-01
After blood donation, in some individuals having polycythemia, dehydration causes anemia. Although the hematocrit (Ht) level is closely related to anemia, the current method of measuring Ht is performed after blood drawing. Furthermore, the monitoring of Ht levels contributes to a healthy life. Therefore, a non-invasive test for Ht is warranted for the safe donation of blood and good quality of life. A non-invasive procedure for the prediction of hematocrit levels was developed on the basis of a chemometric analysis of visible and near-infrared (Vis-NIR) spectra of the thumbs using portable spectrophotometer. Transmittance spectra in the 600- to 1100-nm region from thumbs of Japanese volunteers were subjected to a partial least squares regression (PLSR) analysis and leave-out cross-validation to develop chemometric models for predicting Ht levels. Ht levels of masked samples predicted by this model from Vis-NIR spectra provided a coefficient of determination in prediction of 0.6349 with a standard error of prediction of 3.704% and a detection limit in prediction of 17.14%, indicating that the model is applicable for normal and abnormal value in Ht level. These results suggest portable Vis-NIR spectrophotometer to have potential for the non-invasive measurement of Ht levels with a combination of PLSR analysis.
On site DNA barcoding by nanopore sequencing
Menegon, Michele; Cantaloni, Chiara; Rodriguez-Prieto, Ana; Centomo, Cesare; Abdelfattah, Ahmed; Rossato, Marzia; Bernardi, Massimo; Xumerle, Luciano; Loader, Simon; Delledonne, Massimo
2017-01-01
Biodiversity research is becoming increasingly dependent on genomics, which allows the unprecedented digitization and understanding of the planet’s biological heritage. The use of genetic markers i.e. DNA barcoding, has proved to be a powerful tool in species identification. However, full exploitation of this approach is hampered by the high sequencing costs and the absence of equipped facilities in biodiversity-rich countries. In the present work, we developed a portable sequencing laboratory based on the portable DNA sequencer from Oxford Nanopore Technologies, the MinION. Complementary laboratory equipment and reagents were selected to be used in remote and tough environmental conditions. The performance of the MinION sequencer and the portable laboratory was tested for DNA barcoding in a mimicking tropical environment, as well as in a remote rainforest of Tanzania lacking electricity. Despite the relatively high sequencing error-rate of the MinION, the development of a suitable pipeline for data analysis allowed the accurate identification of different species of vertebrates including amphibians, reptiles and mammals. In situ sequencing of a wild frog allowed us to rapidly identify the species captured, thus confirming that effective DNA barcoding in the field is possible. These results open new perspectives for real-time-on-site DNA sequencing thus potentially increasing opportunities for the understanding of biodiversity in areas lacking conventional laboratory facilities. PMID:28977016
Software for keratometry measurements using portable devices
NASA Astrophysics Data System (ADS)
Iyomasa, C. M.; Ventura, L.; De Groote, J. J.
2010-02-01
In this work we present an image processing software for automatic astigmatism measurements developed for a hand held keratometer. The system projects 36 light spots, from LEDs, displayed in a precise circle at the lachrymal film of the examined cornea. The displacement, the size and deformation of the reflected image of these light spots are analyzed providing the keratometry. The purpose of this research is to develop a software that performs fast and precise calculations in mainstream mobile devices. In another words, a software that can be implemented in portable computer systems, which could be of low cost and easy to handle. This project allows portability for keratometers and is a previous work for a portable corneal topographer.
Portable parallel stochastic optimization for the design of aeropropulsion components
NASA Technical Reports Server (NTRS)
Sues, Robert H.; Rhodes, G. S.
1994-01-01
This report presents the results of Phase 1 research to develop a methodology for performing large-scale Multi-disciplinary Stochastic Optimization (MSO) for the design of aerospace systems ranging from aeropropulsion components to complete aircraft configurations. The current research recognizes that such design optimization problems are computationally expensive, and require the use of either massively parallel or multiple-processor computers. The methodology also recognizes that many operational and performance parameters are uncertain, and that uncertainty must be considered explicitly to achieve optimum performance and cost. The objective of this Phase 1 research was to initialize the development of an MSO methodology that is portable to a wide variety of hardware platforms, while achieving efficient, large-scale parallelism when multiple processors are available. The first effort in the project was a literature review of available computer hardware, as well as review of portable, parallel programming environments. The first effort was to implement the MSO methodology for a problem using the portable parallel programming language, Parallel Virtual Machine (PVM). The third and final effort was to demonstrate the example on a variety of computers, including a distributed-memory multiprocessor, a distributed-memory network of workstations, and a single-processor workstation. Results indicate the MSO methodology can be well-applied towards large-scale aerospace design problems. Nearly perfect linear speedup was demonstrated for computation of optimization sensitivity coefficients on both a 128-node distributed-memory multiprocessor (the Intel iPSC/860) and a network of workstations (speedups of almost 19 times achieved for 20 workstations). Very high parallel efficiencies (75 percent for 31 processors and 60 percent for 50 processors) were also achieved for computation of aerodynamic influence coefficients on the Intel. Finally, the multi-level parallelization strategy that will be needed for large-scale MSO problems was demonstrated to be highly efficient. The same parallel code instructions were used on both platforms, demonstrating portability. There are many applications for which MSO can be applied, including NASA's High-Speed-Civil Transport, and advanced propulsion systems. The use of MSO will reduce design and development time and testing costs dramatically.
Jorgensen, Martin Gronbech; Paramanathan, Sentha; Ryg, Jesper; Masud, Tahir; Andersen, Stig
2015-07-10
Reaction time (RT) has been associated with falls in older adults, but is not routinely tested in clinical practice. A simple, portable, inexpensive and reliable method for measuring RT is desirable for clinical settings. We therefore developed a custom software, which utilizes the portable and low-cost standard Nintendo Wii board (NWB) to record RT. The aims in the study were to (1) explore if the test could differentiate old and young adults, and (2) to study learning effects between test-sessions, and (3) to examine reproducibility. A young (n = 25, age 20-35 years, mean BMI of 22.6) and an old (n = 25, age ≥65 years, mean BMI of 26.3) study-population were enrolled in this within- and between-day reproducibility study. A standard NWB was used along with the custom software to obtain RT from participants in milliseconds. A mixed effect model was initially used to explore systematic differences associated with age, and test-session. Reproducibility was then expressed by Intraclass Correlation Coefficients (ICC), Coefficient of Variance (CV), and Typical Error (TE). The RT tests was able to differentiate the old group from the young group in both the upper extremity test (p < 0.001; -170.7 ms (95%CI -209.4; -132.0)) and the lower extremity test (p < 0.001; -224.3 ms (95%CI -274.6; -173.9)). Moreover, the mixed effect model showed no significant learning effect between sessions with exception of the lower extremity test between session one and three for the young group (-35,5 ms; 4.6%; p = 0.02). A good within- and between-day reproducibility (ICC: 0.76-0.87; CV: 8.5-12.9; TE: 45.7-95.1 ms) was achieved for both the upper and lower extremity test with the fastest of three trials in both groups. A low-cost and portable reaction test utilizing a standard Nintendo wii board showed good reproducibility, no or little systematic learning effects across test-sessions, and could differentiate between young and older adults in both upper and lower extremity tests.
Liu, Yan; Yang, Dong; Xiong, Fen; Yu, Lan; Ji, Fei; Wang, Qiu-Ju
2015-09-01
Hearing loss affects more than 27 million people in mainland China. It would be helpful to develop a portable and self-testing audiometer for the timely detection of hearing loss so that the optimal clinical therapeutic schedule can be determined. The objective of this study was to develop a software-based hearing self-testing system. The software-based self-testing system consisted of a notebook computer, an external sound card, and a pair of 10-Ω insert earphones. The system could be used to test the hearing thresholds by individuals themselves in an interactive manner using software. The reliability and validity of the system at octave frequencies of 0.25 Hz to 8.0 kHz were analyzed in three series of experiments. Thirty-seven normal-hearing particpants (74 ears) were enrolled in experiment 1. Forty individuals (80 ears) with sensorineural hearing loss (SNHL) participated in experiment 2. Thirteen normal-hearing participants (26 ears) and 37 participants (74 ears) with SNHL were enrolled in experiment 3. Each participant was enrolled in only one of the three experiments. In all experiments, pure-tone audiometry in a sound insulation room (standard test) was regarded as the gold standard. SPSS for Windows, version 17.0, was used for statistical analysis. The paired t-test was used to compare the hearing thresholds between the standard test and software-based self-testing (self-test) in experiments 1 and 2. In experiment 3 (main study), one-way analysis of variance and post hoc comparisons were used to compare the hearing thresholds among the standard test and two rounds of the self-test. Linear correlation analysis was carried out for the self-tests performed twice. The concordance was analyzed between the standard test and the self-test using the kappa method. p < 0.05 was considered statistically significant. Experiments 1 and 2: The hearing thresholds determined by the two methods were not significantly different at frequencies of 250, 500, or 8000 Hz (p > 0.05) but were significantly different at frequencies of 1000, 2000, and 4000 Hz (p < 0.05), except for 1000 Hz in the right ear in experiment 2. Experiment 3: The hearing thresholds determined by the standard test and self-tests repeated twice were not significantly different at any frequency (p > 0.05). The overall sensitivity of the self-test method was 97.6%, and the specificity was 98.3%. The sensitivity was 97.6% and the specificity was 97% for the patients with SNHL. The self-test had significant concordance with the standard test (kappa value = 0.848, p < 0.001). This portable hearing self-testing system based on a notebook personal computer is a reliable and sensitive method for hearing threshold assessment and monitoring. American Academy of Audiology.
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Lysaght, M. J.
1977-01-01
This paper describes an investigation of the practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing. Breadboard hardware has been manufactured and tested, and the physical properties of the three hollow fiber membrane assemblies applicable to use aboard future spacecraft have been characterized.
Feasibility of a portable X-ray fluorescence device for bone lead measurements of condor bones.
Specht, Aaron J; Parish, Chris N; Wallens, Emma K; Watson, Rick T; Nie, Linda H; Weisskopf, Marc G
2018-02-15
Lead based ammunition is a primary source of lead exposure, especially for scavenging wildlife. Lead poisoning remains the leading cause of diagnosed death for the critically endangered California condors, which are annually monitored via blood tests for lead exposure. The results of these tests are helpful in determining recent exposure in condors and in defining the potential for exposure to other species including humans. Since condors are victim to acute and chronic lead exposure, being able to measure both would lend valuable information on the rates of exposure and accumulation through time. A commercial portable X-ray fluorescence (XRF) device has been optimized to measure bone lead in vivo in humans, but this device could also be valuable for field measurements of bone lead in avian species. In this study, we performed measurements of bone Pb in excised, bare condor bones using inductively coupled plasma mass spectrometry (ICP-MS), a cadmium 109 (Cd-109) K-shell X-ray fluorescence (KXRF) system, and a portable XRF system. Both KXRF and portable XRF bone Pb measurement techniques demonstrated good correlations with ICP-MS results (r=0.93 and r=0.92 respectively), even with increasing skin thickness (r=0.86 between ICP-MS and portable XRF at 1.54mm of soft tissue). In conclusion, our results suggest that a portable XRF could be a useful option for measurement of bone Pb in avian species in the field. Copyright © 2017 Elsevier B.V. All rights reserved.
24 CFR 984.306 - Section 8 residency and portability requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... URBAN DEVELOPMENT SECTION 8 AND PUBLIC HOUSING FAMILY SELF-SUFFICIENCY PROGRAM Program Operation § 984... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Section 8 residency and portability requirements. 984.306 Section 984.306 Housing and Urban Development Regulations Relating to Housing and Urban...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.A.
In computing landscape which has a plethora of different hardware architectures and supporting software systems ranging from compilers to operating systems, there is an obvious and strong need for a philosophy of software development that lends itself to the design and construction of portable code systems. The current efforts to standardize software bear witness to this need. SABrE is an effort to implement a software development environment which is itself portable and promotes the design and construction of portable applications. SABrE does not include such important tools as editors and compilers. Well built tools of that kind are readily availablemore » across virtually all computer platforms. The areas that SABrE addresses are at a higher level involving issues such as data portability, portable inter-process communication, and graphics. These blocks of functionality have particular significance to the kind of code development done at LLNL. That is partly why the general computing community has not supplied us with these tools already. This is another key feature of the software development environments which we must recognize. The general computing community cannot and should not be expected to produce all of the tools which we require.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.A.
In computing landscape which has a plethora of different hardware architectures and supporting software systems ranging from compilers to operating systems, there is an obvious and strong need for a philosophy of software development that lends itself to the design and construction of portable code systems. The current efforts to standardize software bear witness to this need. SABrE is an effort to implement a software development environment which is itself portable and promotes the design and construction of portable applications. SABrE does not include such important tools as editors and compilers. Well built tools of that kind are readily availablemore » across virtually all computer platforms. The areas that SABrE addresses are at a higher level involving issues such as data portability, portable inter-process communication, and graphics. These blocks of functionality have particular significance to the kind of code development done at LLNL. That is partly why the general computing community has not supplied us with these tools already. This is another key feature of the software development environments which we must recognize. The general computing community cannot and should not be expected to produce all of the tools which we require.« less
The Reusable Handheld Electrolyte and Lab Technology for Humans (rHEALTH) Sensor
NASA Technical Reports Server (NTRS)
Chan, Eugene
2015-01-01
The DNA Medicine Institute has produced a reusable microfluidic device that performs rapid, low-cost cell counts and measurements of electrolytes, proteins, and other biomarkers. The rHEALTH sensor is compact and portable, and it employs cutting-edge fluorescence detection optics, innovative microfluidics, and nanostrip reagents to perform a suite of hematology, chemistry, and biomarker assays from a single drop of blood. A handful of current portable POC devices provide generalized blood analysis, but they perform only a few tests at a time. These devices also rely on disposable components and depend on diverse detection technologies to complete routine tests-all ill-suited for space travelers on extended missions. In contrast, the rHEALTH sensor integrates sample introduction, processing, and detection with a compact, resource-conscious, and efficient design. Developed to monitor astronaut health on the International Space Station and during long-term space flight, this microscale lab analysis tool also has terrestrial applications that include POC diagnostics conducted at a patient's bedside, in a doctor's office, and in a hospital.
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Polis, Daniel L.
2014-01-01
Damage tolerance performance is critical to composite structures because surface impacts at relatively low energies may result in a significant strength loss. For certification, damage tolerance criteria require aerospace vehicles to meet design loads while containing damage at critical locations. Data from standard small coupon testing are difficult to apply to larger more complex structures. Due to the complexity of predicting both the impact damage and the residual properties, damage tolerance is demonstrated primarily by testing. A portable, spring-propelled, impact device was developed which allows the impact damage response to be investigated on large specimens, full-scale components, or entire vehicles. During impact, both the force history and projectile velocity are captured. The device was successfully used to demonstrate the damage tolerance performance of the NASA Composite Crew Module. The impactor was used to impact 18 different design features at impact energies up to 35 J. Detailed examples of these results are presented, showing impact force histories, damage inspection results, and response to loading.
A Portable Infrasonic Detection System
NASA Technical Reports Server (NTRS)
Shams, Qamar A.; Burkett, Cecil G.; Zuckerwar, Allan J.; Lawrenson, Christopher C.; Masterman, Michael
2008-01-01
During last couple of years, NASA Langley has designed and developed a portable infrasonic detection system which can be used to make useful infrasound measurements at a location where it was not possible previously. The system comprises an electret condenser microphone, having a 3-inch membrane diameter, and a small, compact windscreen. Electret-based technology offers the lowest possible background noise, because Johnson noise generated in the supporting electronics (preamplifier) is minimized. The microphone features a high membrane compliance with a large backchamber volume, a prepolarized backplane and a high impedance preamplifier located inside the backchamber. The windscreen, based on the high transmission coefficient of infrasound through matter, is made of a material having a low acoustic impedance and sufficiently thick wall to insure structural stability. Close-cell polyurethane foam has been found to serve the purpose well. In the proposed test, test parameters will be sensitivity, background noise, signal fidelity (harmonic distortion), and temporal stability. The design and results of the compact system, based upon laboratory and field experiments, will be presented.
DOT National Transportation Integrated Search
1989-05-01
This study was undertaken, on request, to evaluate the performance of the Puritan-Bennett portable crew protective breathing device for contaminant leaks. O2, CO2 levels, inhalation/exhalation pressure, and inhalation temperature. Tests were conducte...
2017-06-12
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Jacobs Test and Operations Support Contract, or TOSC, technicians fill portable breathing apparatuses, or PBAS. The PBAs are to be use on board the International Space Staton to provide astronauts with breathable air in the event of a fire or other emergency situation.
A miniaturized digital telemetry system for physiological data transmission
NASA Technical Reports Server (NTRS)
Portnoy, W. M.; Stotts, L. J.
1978-01-01
A physiological date telemetry system, consisting basically of a portable unit and a ground base station was designed, built, and tested. The portable unit to be worn by the subject is composed of a single crystal controlled transmitter with AM transmission of digital data and narrowband FM transmission of voice; a crystal controlled FM receiver; thirteen input channels follwed by a PCM encoder (three of these channels are designed for ECG data); a calibration unit; and a transponder control system. The ground base station consists of a standard telemetry reciever, a decoder, and an FM transmitter for transmission of voice and transponder signals to the portable unit. The ground base station has complete control of power to all subsystems in the portable unit. The phase-locked loop circuit which is used to decode the data, remains in operation even when the signal from the portable unit is interrupted.
A programmable and portable NMES device for drop foot correction and blood flow assist applications.
Breen, Paul P; Corley, Gavin J; O'Keeffe, Derek T; Conway, Richard; Olaighin, Gearóid
2009-04-01
The Duo-STIM, a new, programmable and portable neuromuscular stimulation system for drop foot correction and blood flow assist applications is presented. The system consists of a programmer unit and a portable, programmable stimulator unit. The portable stimulator features fully programmable, sensor-controlled, constant-voltage, dual-channel stimulation and accommodates a range of customized stimulation profiles. Trapezoidal and free-form adaptive stimulation intensity envelope algorithms are provided for drop foot correction applications, while time dependent and activity dependent algorithms are provided for blood flow assist applications. A variety of sensor types can be used with the portable unit, including force sensitive resistor-based foot switches and MEMS-based accelerometer and gyroscope devices. The paper provides a detailed description of the hardware and block-level system design for both units. The programming and operating procedures for the system are also presented. Finally, functional bench test results for the system are presented.
A programmable and portable NMES device for drop foot correction and blood flow assist applications.
Breen, Paul P; Corley, Gavin J; O'Keeffe, Derek T; Conway, Richard; OLaighin, Gearoid
2007-01-01
The Duo-STIM, a new, programmable and portable neuromuscular stimulation system for drop foot correction and blood flow assist applications is presented. The system consists of a programmer unit and a portable, programmable stimulator unit. The portable stimulator features fully programmable, sensor-controlled, constant-voltage, dual-channel stimulation and accommodates a range of customized stimulation profiles. Trapezoidal and free-form adaptive stimulation intensity envelope algorithms are provided for drop foot correction applications, while time dependent and activity dependent algorithms are provided for blood flow assist applications. A variety of sensor types can be used with the portable unit, including force sensitive resistor based foot switches and NMES based accelerometer and gyroscope devices. The paper provides a detailed description of the hardware and block-level system design for both units. The programming and operating procedures for the system are also presented. Finally, functional bench test results for the system are presented.
Lubetzky, Anat V; Kary, Erinn E; Harel, Daphna; Hujsak, Bryan; Perlin, Ken
2018-01-24
Using Unity for the Oculus Development-Kit 2, we have developed an affordable, portable virtual reality platform that targets the visuomotor domain, a missing link in current clinical assessments of postural control. Here, we describe the design and technical development as well as report its feasibility with regards to cybersickness and test-retest reliability in healthy young adults. Our virtual reality paradigm includes two functional scenes ('City' and 'Park') and four moving dots scenes. Twenty-one healthy young adults were tested twice, one to two weeks apart. They completed a simulator sickness questionnaire several times per session. Their postural sway response was recorded from a forceplate underneath their feet while standing on the floor, stability trainers, or a Both Sides Up (BOSU) ball. Sample entropy, postural displacement, velocity, and excursion were calculated and compared between sessions given the visual and surface conditions. Participants reported slight-to-moderate transient side effects. Intra-Class Correlation values mostly ranged from 0.5 to 0.7 for displacement and velocity, were above 0.5 (stability trainer conditions) and above 0.4 (floor mediolateral conditions) for sample entropy, and minimal for excursion. Our novel portable VR platform was found to be feasible and reliable in healthy young adults.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, R.J.; Barickman, F.S.; Spelt, P.F.
1998-01-01
A two-phase, multi-year research program entitled ``development of a portable driver performance data acquisition system for human factors research`` was recently completed. The primary objective of the project was to develop a portable data acquisition system for crash avoidance research (DASCAR) that will allow drive performance data to be collected using a large variety of vehicle types and that would be capable of being installed on a given vehicle type within a relatively short-time frame. During phase 1 a feasibility study for designing and fabricating DASCAR was conducted. In phase 2 of the research DASCAR was actually developed and validated.more » This technical memorandum documents the results from the feasibility study. It is subdivided into three volumes. Volume one (this report) addresses the last five items in the phase 1 research and the first issue in the second phase of the project. Volumes two and three present the related appendices, and the design specifications developed for DASCAR respectively. The six tasks were oriented toward: identifying parameters and measures; identifying analysis tools and methods; identifying measurement techniques and state-of-the-art hardware and software; developing design requirements and specifications; determining the cost of one or more copies of the proposed data acquisition system; and designing a development plan and constructing DASCAR. This report also covers: the background to the program; the requirements for the project; micro camera testing; heat load calculations for the DASCAR instrumentation package in automobile trunks; phase 2 of the research; the DASCAR hardware and software delivered to the National Highway Traffic Safety Administration; and crash avoidance problems that can be addressed by DASCAR.« less
The Development of a Portable ECG Monitor Based on DSP
NASA Astrophysics Data System (ADS)
Nan, CHI Jian; Tao, YAN Yan; Meng Chen, LIU; Li, YANG
With the advent of global information, researches of Smart Home system are in the ascendant, the ECG real-time detection, and wireless transmission of ECG become more useful. In order to achieve the purpose we developed a portable ECG monitor which achieves the purpose of cardiac disease remote monitoring, and will be used in the physical and psychological disease surveillance in smart home system, we developed this portable ECG Monitor, based on the analysis of existing ECG Monitor, using TMS320F2812 as the core controller, which complete the signal collection, storage, processing, waveform display and transmission.
Portable classroom leads to partnership.
Le Ber, Jeanne Marie; Lombardo, Nancy T; Weber, Alice; Bramble, John
2004-01-01
Library faculty participation on the School of Medicine Curriculum Steering Committee led to a unique opportunity to partner technology and teaching utilizing the library's portable wireless classroom. The pathology lab course master expressed a desire to revise the curriculum using patient cases and direct access to the Web and library resources. Since the pathology lab lacked computers, the library's portable wireless classroom provided a solution. Originally developed to provide maximum portability and flexibility, the wireless classroom consists of ten laptop computers configured with wireless cards and an access point. While the portable wireless classroom led to a partnership with the School of Medicine, there were additional benefits and positive consequences for the library.
Sang, Shengbo; Feng, Qiliang; Jian, Aoqun; Li, Huiming; Ji, Jianlong; Duan, Qianqian; Zhang, Wendong; Wang, Tao
2016-09-20
Hemolytic anemia intensity has been suggested as a vital factor for the growth of certain clinical complications of sickle cell disease. However, there is no effective and rapid diagnostic method. As a powerful platform for bio-particles testing, biosensors integrated with microfluidics offer great potential for a new generation of portable point of care systems. In this paper, we describe a novel portable microsystem consisting of a multifunctional dielectrophoresis manipulations (MDM) device and a surface stress biosensor to separate and detect red blood cells (RBCs) for diagnosis of hemolytic anemia. The peripheral circuit to power the interdigitated electrode array of the MDM device and the surface stress biosensor test platform were integrated into a portable signal system. The MDM includes a preparing region, a focusing region, and a sorting region. Simulation and experimental results show the RBCs trajectories when they are subjected to the positive DEP force, allowing the successful sorting of living/dead RBCs. Separated RBCs are then transported to the biosensor and the capacitance values resulting from the variation of surface stress were measured. The diagnosis of hemolytic anemia can be realized by detecting RBCs and the portable microsystem provides the assessment to the hemolytic anemia patient.
Choi, Jong Hwan; Choi, Jae Hyuk; Lee, Yoo Jin; Lee, Hyung Ki; Choi, Wang Yong; Kim, Eun Soo; Park, Kyung Sik; Cho, Kwang Bum; Jang, Byoung Kuk; Chung, Woo Jin; Hwang, Jae Seok
2014-07-07
To compare outcomes using the novel portable endoscopy with that of nasogastric (NG) aspiration in patients with gastrointestinal bleeding. Patients who underwent NG aspiration for the evaluation of upper gastrointestinal (UGI) bleeding were eligible for the study. After NG aspiration, we performed the portable endoscopy to identify bleeding evidence in the UGI tract. Then, all patients underwent conventional esophagogastroduodenoscopy as the gold-standard test. The sensitivity, specificity, and accuracy of the portable endoscopy for confirming UGI bleeding were compared with those of NG aspiration. In total, 129 patients who had GI bleeding signs or symptoms were included in the study (age 64.46 ± 13.79, 91 males). The UGI tract (esophagus, stomach, and duodenum) was the most common site of bleeding (81, 62.8%) and the cause of bleeding was not identified in 12 patients (9.3%). Specificity for identifying UGI bleeding was higher with the portable endoscopy than NG aspiration (85.4% vs 68.8%, P = 0.008) while accuracy was comparable. The accuracy of the portable endoscopy was significantly higher than that of NG in the subgroup analysis of patients with esophageal bleeding (88.2% vs 75%, P = 0.004). Food material could be detected more readily by the portable endoscopy than NG tube aspiration (20.9% vs 9.3%, P = 0.014). No serious adverse effect was observed during the portable endoscopy. The portable endoscopy was not superior to NG aspiration for confirming UGI bleeding site. However, this novel portable endoscopy device might provide a benefit over NG aspiration in patients with esophageal bleeding.
Safety and Quality Training Simulator
NASA Technical Reports Server (NTRS)
Scobby, Pete T.
2009-01-01
A portable system of electromechanical and electronic hardware and documentation has been developed as an automated means of instructing technicians in matters of safety and quality. The system enables elimination of most of the administrative tasks associated with traditional training. Customized, performance-based, hands-on training with integral testing is substituted for the traditional instructional approach of passive attendance in class followed by written examination.
Williams working on the LOCAD-PTS Experiment in the US Lab during Expedition 15
2007-04-30
ISS015-E-05649 (30 April 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
Williams works on the LOCAD-PTS Experiment in the US Lab during Expedition 15
2007-05-05
ISS015-E-06777 (5 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
Williams working on the LOCAD-PTS Experiment in the US Lab during Expedition 15
2007-04-30
ISS015-E-05640 (30 April 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
Fighting The Network: Manet Management In Support Of Littoral Operations
2016-03-01
Solomon , 2015). DL widens the scope of naval Surface Action Groups (SAG) operations, introducing the concept of Adaptive Force Package (AFP...be implemented in littoral tactical networks. CENETIX research utilizes three Wave Relay radio models for experimentation : the Man-Portable Unit...enable seamless continuity in the transfer of research knowledge to subsequent testing and CONOPS development. CENETIX field experimentation
NASA Astrophysics Data System (ADS)
Tacke, Kenneth L.
1998-12-01
Primex Aerospace Company, under contract with the U.S. Army Armament Research Development & Engineering Center (ARDEC), has developed a portable vehicle capture system for use at vehicle checkpoints. Currently when a vehicle does not stop at a checkpoint, there are three possible reactions: let the vehicle go unchallenged, pursue the vehicle or stop the vehicle with lethal force. This system provides a non-lethal alternative that will stop and contain the vehicle. The system is completely portable with the heaviest component weighing less than 120 pounds. It can be installed with no external electrical power or permanent anchors required. In its standby mode, the system does not impede normal traffic, but on command erects a barrier in less than 1.5 seconds. System tests have been conducted using 5,100 and 8.400 pound vehicles, traveling at speeds up to 45 mph. The system is designed to minimize vehicle damage and occupant injury, typically resulting in deceleration forces of less than 2.5 gs on the vehicle. According to the drivers involved in tests at 45 mph, the stopping forces feel similar to a panic stop with the vehicle brakes locked. The system is completely reusable and be rapidly reset.
Ultraviolet Source For Testing Hydrogen-Fire Detectors
NASA Technical Reports Server (NTRS)
Hall, Gregory A.; Larson, William E.; Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Stout, Stephen J.; Strobel, James P.
1995-01-01
Hand-held portable unit emits ultraviolet light similar to that emitted by hydrogen burning in air. Developed for use in testing optoelectronic hydrogen-fire detectors, which respond to ultraviolet light at wavelengths from 180 to 240 nanometers. Wavelength range unique in that within it, hydrogen fires emit small but detectable amounts of radiation, light from incandescent lamps and Sun almost completely absent, and air sufficiently transmissive to enable detection of hydrogen fire from distance. Consequently, this spectral region favorable for detecting hydrogen fires while minimizing false alarms.
Huang, Rong; He, Hongmei; Pi, Xitian; Diao, Ziji; Zhao, Suwen
2014-06-01
Non-drug treatment of hypertension has become a research hotspot, which might overcome the heavy economic burden and side effects of drug treatment for the patients. Because of the good treatment effect and convenient operation, a new treatment based on slow breathing training is increasingly becoming a kind of physical therapy for hypertension. This paper explains the principle of hypertension treatment based on slow breathing training method, and introduces the overall structure of the portable blood pressure controlling instrument, including breathing detection circuit, the core control module, audio module, memory module and man-machine interaction module. We give a brief introduction to the instrument and the software in this paper. The prototype testing results showed that the treatment had a significant effect on controlling the blood pressure.
Song, Qinxin; Wei, Guijiang; Zhou, Guohua
2014-07-01
A portable bioluminescence analyser for detecting the DNA sequence of genetically modified organisms (GMOs) was developed by using a photodiode (PD) array. Pyrosequencing on eight genes (zSSIIb, Bt11 and Bt176 gene of genetically modified maize; Lectin, 35S-CTP4, CP4EPSPS, CaMV35S promoter and NOS terminator of the genetically modified Roundup ready soya) was successfully detected with this instrument. The corresponding limit of detection (LOD) was 0.01% with 35 PCR cycles. The maize and soya available from three different provenances in China were detected. The results indicate that pyrosequencing using the small size of the detector is a simple, inexpensive, and reliable way in a farm/field test of GMO analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of a portable bicycle/pedestrian monitoring system for safety enhancement.
DOT National Transportation Integrated Search
2017-02-02
The objective of this project was to develop a portable automated system to collect continuous video data on pedestrian and cyclist behavior at midblock locations throughout the metro Atlanta area. The system analyzes the collected video data and aut...
NASA Technical Reports Server (NTRS)
Decker, T. A.; Williams, R. E.; Kuether, C. L.; Logar, N. D.; Wyman-Cornsweet, D.
1975-01-01
A computer-operated binocular vision testing device was developed as one part of a system designed for NASA to evaluate the visual function of astronauts during spaceflight. This particular device, called the Mark 3 Haploscope, employs semi-automated psychophysical test procedures to measure visual acuity, stereopsis, phoria, fixation disparity, refractive state and accommodation/convergence relationships. Test procedures are self-administered and can be used repeatedly without subject memorization. The Haploscope was designed as one module of the complete NASA Vision Testing System. However, it is capable of stand-alone operation. Moreover, the compactness and portability of the Haploscope make possible its use in a broad variety of testing environments.
Noskov, V B; Nikolaev, D V; Tuĭkin, S A; Kozharinov, V I; Grachev, V A
2007-01-01
A portable two-frequency tetrapolar impedance meter was developed to study the state of liquid compartments of human body under zero-gravity conditions. The portable impedance meter makes it possible to monitor the hydration state of human body under conditions of long-term space flight on board international space station.
ERIC Educational Resources Information Center
McNaughton, Janet
In response to requests from law enforcement professionals for guidelines on investigating child abuse and neglect, the Office of Juvenile Justice and Delinquency Prevention developed the Portable Guides to Investigating Child Abuse series. This document is a synposis of each Portable Guide and provides annotated bibliographies of the series. The…
Portable electron beam weld chamber
NASA Technical Reports Server (NTRS)
Lewis, J. R.; Dimino, J. M.
1972-01-01
Development and characteristics of portable vacuum chamber for skate type electron beam welding are discussed. Construction and operational details of equipment are presented. Illustrations of equipment are provided.
Nickerson, Jillian; Lee, Euny; Nedelman, Michael; Aurora, R Nisha; Krieger, Ana; Horowitz, Carol R
2015-01-01
Portable sleep monitors may offer a convenient method to expand detection of obstructive sleep apnea (OSA), yet few studies have evaluated this technology in vulnerable populations. We therefore aimed to assess the feasibility and acceptability of portable sleep monitors for detection of OSA in a prediabetic, urban minority population. We recruited a convenience sample of participants at their 12-month follow-up for a community-partnered, peer-led lifestyle intervention aimed to prevent diabetes in prediabetic and overweight patients in this prospective mixed-methods pilot study. All participants wore portable sleep monitors overnight at home. We qualitatively explored perceptions about OSA and portable monitors in a subset of participants. We tested 72 people, predominantly non-White, female, Spanish speaking, uninsured, and of low income. Use of portable sleep monitors was feasible: 100% of the monitors were returned and all participants received results. We detected OSA in 49% (defined as an Apnea-Hypopnea Index [AHI] >5) and moderate-severe OSA in 14% (AHI >15) requiring treatment in 14%. In 21 qualitative interviews, participants supported increased use of portable sleep monitors in their community, were appropriately concerned that OSA could cause progression to diabetes, and thought weight loss could prevent or improve OSA. Portable sleep monitors may represent a feasible method for detecting OSA in high-risk urban minority populations. © Copyright 2015 by the American Board of Family Medicine.
Space Suit Portable Life Support System (PLSS) 2.0 Human-in-the-Loop (HITL) Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Vogel, Matthew
2016-01-01
The space suit Portable Life Support System (PLSS) 2.0 represents the second integrated prototype developed and tested to mature a design that uses advanced technologies to reduce consumables, improve robustness, and provide additional capabilities over the current state of the art. PLSS 2.0 was developed in 2012, with extensive functional evaluations and system performance testing through mid-2014. In late 2014, PLSS 2.0 was integrated with the Mark III space suit in an ambient laboratory environment to facilitate manned testing, designated PLSS 2.0 Human-in-the-Loop (HITL) testing, in which the PLSS prototype performed the primary life support functions, including suit pressure regulation, ventilation, carbon dioxide control, and cooling of the test subject and PLSS avionics. The intent of this testing was to obtain subjective test subject feedback regarding qualitative aspects of PLSS 2.0 performance such as thermal comfort, sounds, smells, and suit pressure fluctuations due to the cycling carbon dioxide removal system, as well as to collect PLSS performance data over a range of human metabolic rates from 500-3000 Btu/hr. Between October 27 and December 18, 2014, nineteen two-hour simulated EVA test points were conducted in which suited test subjects walked on a treadmill to achieve a target metabolic rate. Six test subjects simulated nominal and emergency EVA conditions with varied test parameters including metabolic rate profile, carbon dioxide removal control mode, cooling water temperature, and Liquid Cooling and Ventilation Garment (state of the art or prototype). The nineteen test points achieved more than 60 hours of test time, with 36 hours accounting for simulated EVA time. The PLSS 2.0 test article performed nominally throughout the test series, confirming design intentions for the advanced PLSS. Test subjects' subjective feedback provided valuable insight into thermal comfort and perceptions of suit pressure fluctuations that will influence future advanced PLSS design and testing strategies.
Tong, Yanhong; McCarthy, Kaitlin; Kong, Huimin; Lemieux, Bertrand
2013-01-01
We have developed a rapid and simple molecular test, the IsoGlow HSV Typing assay, for the detection and typing of herpes simplex virus (type 1 and 2) from genital or oral lesions. Clinical samples suspended in viral transport mediums are simply diluted and then added to a helicase-dependent amplification master mix. The amplification and detection were performed on a portable fluorescence detector called the FireFly instrument. Detection of amplification products is based on end-point analysis using cycling probe technology. An internal control nucleic acid was included in the amplification master mix to monitor the presence of amplification inhibitors in the samples. Because the device has only two fluorescence detection channels, two strategies were developed and compared to detect the internal control template: internal control detected by melting curve analysis using a dual-labeled probe, versus internal control detection using end-point fluorescence release by a CPT probe at a lower temperature. Both have a total turnaround time of about 1 hour. Clinical performance relative to herpes viral culture was evaluated using 176 clinical specimens. Both formats of the IsoGlow HSV typing assay had sensitivities comparable to that of the Food and Drug Administration–cleared IsoAmp HSV (BioHelix Corp., Beverly MA) test and specificity for the two types of HSV comparable to that of ELVIS HSV (Diagnostic Hybrids, Athens, OH). PMID:22951487
49 CFR 180.605 - Requirements for periodic testing, inspection and repair of portable tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... repair of portable tanks. 180.605 Section 180.605 Transportation Other Regulations Relating to... leakage or cracks near areas of stress concentration due to cooling metal shrinkage in welding operations, sharp fillets, reversal of stresses, or otherwise. No field welding may be done except to non-pressure...
49 CFR 180.605 - Requirements for periodic testing, inspection and repair of portable tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... repair of portable tanks. 180.605 Section 180.605 Transportation Other Regulations Relating to... leakage or cracks near areas of stress concentration due to cooling metal shrinkage in welding operations, sharp fillets, reversal of stresses, or otherwise. No field welding may be done except to non-pressure...
49 CFR 180.605 - Requirements for periodic testing, inspection and repair of portable tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... repair of portable tanks. 180.605 Section 180.605 Transportation Other Regulations Relating to... leakage or cracks near areas of stress concentration due to cooling metal shrinkage in welding operations, sharp fillets, reversal of stresses, or otherwise. No field welding may be done except to non-pressure...
49 CFR 180.605 - Requirements for periodic testing, inspection and repair of portable tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... repair of portable tanks. 180.605 Section 180.605 Transportation Other Regulations Relating to... leakage or cracks near areas of stress concentration due to cooling metal shrinkage in welding operations, sharp fillets, reversal of stresses, or otherwise. No field welding may be done except to non-pressure...
49 CFR 178.273 - Approval of Specification UN portable tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... including, but not limited to, ensuring that the quality control, design calculations and required tests are... necessary to ensure that the design meets the relevant specification. (ii) The manufacturer's serial number that will be assigned to each portable tank. (iii) A statement as to whether the design type has been...
49 CFR 178.273 - Approval of Specification UN portable tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... including, but not limited to, ensuring that the quality control, design calculations and required tests are... necessary to ensure that the design meets the relevant specification. (ii) The manufacturer's serial number that will be assigned to each portable tank. (iii) A statement as to whether the design type has been...
49 CFR 178.273 - Approval of Specification UN portable tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... including, but not limited to, ensuring that the quality control, design calculations and required tests are... necessary to ensure that the design meets the relevant specification. (ii) The manufacturer's serial number that will be assigned to each portable tank. (iii) A statement as to whether the design type has been...
49 CFR 178.273 - Approval of Specification UN portable tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... including, but not limited to, ensuring that the quality control, design calculations and required tests are... necessary to ensure that the design meets the relevant specification. (ii) The manufacturer's serial number that will be assigned to each portable tank. (iii) A statement as to whether the design type has been...
49 CFR 178.273 - Approval of Specification UN portable tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... including, but not limited to, ensuring that the quality control, design calculations and required tests are... necessary to ensure that the design meets the relevant specification. (ii) The manufacturer's serial number that will be assigned to each portable tank. (iii) A statement as to whether the design type has been...
Preliminary testing of a prototype portable X-ray fluorescence spectrometer
NASA Technical Reports Server (NTRS)
Patten, L. L.; Anderson, N. B.; Stevenson, J. J.
1982-01-01
A portable X-ray fluorescence spectrometer for use as an analyzer in mineral resource investigative work was built and tested. The prototype battery powered spectrometer, measuring 11 by 12 by 5 inches and weighing only about 15 pounds, was designed specifically for field use. The spectrometer has two gas proportional counters and two radioactive sources, Cd (10a) and Fe (55). Preliminary field and laboratory tests on rock specimens and rock pulps have demonstrated the capability of the spectrometer to detect 33 elements to date. Characteristics of the system present some limitations, however, and further improvements are recommended.
Crispín Milart, Patricia Hanna; Diaz Molina, César Augusto; Prieto-Egido, Ignacio; Martínez-Fernández, Andrés
2016-09-13
Maternal and neonatal mortality figures remain unacceptably high worldwide and new approaches are required to address this problem. This paper evaluates the impact on maternal and neonatal mortality of a pregnancy care package for rural areas of developing countries with portable ultrasound and blood/urine tests. An observational study was conducted, with intervention and control groups not randomly assigned. Rural areas of the districts of Senahu, Campur and Carcha, in Alta Verapaz Department (Guatemala). The control group is composed by 747 pregnant women attended by the community facilitator, which is the common practice in rural Guatemala. The intervention group is composed by 762 pregnant women attended under the innovative Healthy Pregnancy project. That project strengthens the local prenatal care program, providing local nurses training, portable ultrasound equipment and blood and urine tests. The information of each pregnancy is registered in a medical exchange tool, and is later reviewed by a gynecology specialist to ensure a correct diagnosis and improve nurses training. No maternal deaths were reported within the intervention group, versus five cases in the control group. Regarding neonatal deaths, official data revealed a 64 % reduction for neonatal mortality. A 37 % prevalence of anemia was detected. Non-urgent referral was recommended to 70 pregnancies, being fetal malpresentation the main reported cause. Impact data on maternal mortality (reduction to zero) and neonatal mortality (NMR was reduced to 36 %) are encouraging, although we are aware of the limitations of the study related to possible biasing and the small sample size. The major reduction of maternal and neonatal mortality provides promising prospects for these low-cost diagnostic procedures, which allow to provide high quality prenatal care in isolated rural communities of developing countries. This research was not registered because it is an observational study where the assignment of the medical intervention was not at the discretion of the investigators.
Mao, Xiangju; Hu, Bin; He, Man; Fan, Wenying
2012-10-19
In this study, novel off/on-site stir bar sorptive extraction (SBSE) approaches with a home-made portable electric stirrer have been developed for the analysis of polycyclic aromatic hydrocarbon compounds (PAHs). In these approaches, a miniature battery-operated electric stirrer was employed to provide agitation of sample solutions instead of the commonly used large size magnetic stirrer powered by alternating current in conventional SBSE process, which could extend the SBSE technique from the conventional off-site analysis to the on-site sampling. The applicability of the designed off/on-site SBSE sampling approaches was evaluated by polydimethylsiloxane (PDMS) coating SBSE-high performance liquid chromatography-fluorescence detection (HPLC-FLD) analysis of six target PAHs in environmental water. The home-made portable electric stirrer is simple, easy-to-operate, user friendly, low cost, easy-to-be-commercialized, and can be processed in direct immersion SBSE, headspace sorptive extraction (HSSE) and continuous flow (CF)-SBSE modes. Since the stir bar was fixed onto the portable device by magnetic force, it is very convenient to install, remove and replace the stir bar, and the coating friction loss which occurred frequently in conventional SBSE process could be avoided. The parameters affecting the extraction of six target PAHs by the home-made portable SBSE sampling device with different sampling modes were studied. Under the optimum extraction conditions, good linearity was obtained by all of three SBSE extraction modes with correlation coefficient (R) higher than 0.9971. The limits of detection (LODs, S/N=3) were 0.05-3.41 ng L(-1) for direct immersion SBSE, 0.03-2.23 ng L(-1) for HSSE and 0.09-3.75 ng L(-1) for CF-SBSE, respectively. The proposed portable PDMS-SBSE-HPLC-FLD method was applied for the analysis of six target PAHs in East Lake water, and the analytical results obtained by on-site SBSE sampling were in good agreement with that obtained by off-site SBSE sampling. The accuracy of the developed method was evaluated by recovery test and the recoveries for the spiked sample were found to be in the range of 87.1-122.8% for off-site CF-SBSE, 88.8-114.3% for on-site sampling, and 87.7-123.6% for off-site SBSE, respectively. The developed method is one of the most sensitive methods for PAHs determination and the home-designed SBSE system is feasible for the field sampling. Copyright © 2012 Elsevier B.V. All rights reserved.
Choi, Jong Hwan; Choi, Jae Hyuk; Lee, Yoo Jin; Lee, Hyung Ki; Choi, Wang Yong; Kim, Eun Soo; Park, Kyung Sik; Cho, Kwang Bum; Jang, Byoung Kuk; Chung, Woo Jin; Hwang, Jae Seok
2014-01-01
AIM: To compare outcomes using the novel portable endoscopy with that of nasogastric (NG) aspiration in patients with gastrointestinal bleeding. METHODS: Patients who underwent NG aspiration for the evaluation of upper gastrointestinal (UGI) bleeding were eligible for the study. After NG aspiration, we performed the portable endoscopy to identify bleeding evidence in the UGI tract. Then, all patients underwent conventional esophagogastroduodenoscopy as the gold-standard test. The sensitivity, specificity, and accuracy of the portable endoscopy for confirming UGI bleeding were compared with those of NG aspiration. RESULTS: In total, 129 patients who had GI bleeding signs or symptoms were included in the study (age 64.46 ± 13.79, 91 males). The UGI tract (esophagus, stomach, and duodenum) was the most common site of bleeding (81, 62.8%) and the cause of bleeding was not identified in 12 patients (9.3%). Specificity for identifying UGI bleeding was higher with the portable endoscopy than NG aspiration (85.4% vs 68.8%, P = 0.008) while accuracy was comparable. The accuracy of the portable endoscopy was significantly higher than that of NG in the subgroup analysis of patients with esophageal bleeding (88.2% vs 75%, P = 0.004). Food material could be detected more readily by the portable endoscopy than NG tube aspiration (20.9% vs 9.3%, P = 0.014). No serious adverse effect was observed during the portable endoscopy. CONCLUSION: The portable endoscopy was not superior to NG aspiration for confirming UGI bleeding site. However, this novel portable endoscopy device might provide a benefit over NG aspiration in patients with esophageal bleeding. PMID:25009396
Immersive Theater - a Proven Way to Enhance Learning Retention
NASA Astrophysics Data System (ADS)
Reiff, P. H.; Zimmerman, L.; Spillane, S.; Sumners, C.
2014-12-01
The portable immersive theater has gone from our first demonstration at fall AGU 2003 to a product offered by multiple companies in various versions to literally millions of users per year. As part of our NASA funded outreach program, we conducted a test of learning in a portable Discovery Dome as contrasted with learning the same materials (visuals and sound track) on a computer screen. We tested 200 middle school students (primarily underserved minorities). Paired t-tests and an independent t-test were used to compare the amount of learning that students achieved. Interest questionnaires were administered to participants in formal (public school) settings and focus groups were conducted in informal (museum camp and educational festival) settings. Overall results from the informal and formal educational setting indicated that there was a statistically significant increase in test scores after viewing We Choose Space. There was a statistically significant increase in test scores for students who viewed We Choose Space in the portable Discovery Dome (9.75) as well as with the computer (8.88). However, long-term retention of the material tested on the questionnaire indicated that for students who watched We Choose Space in the portable Discovery Dome, there was a statistically significant long-term increase in test scores (10.47), whereas, six weeks after learning on the computer, the improvements over the initial baseline (3.49) were far less and were not statistically significant. The test score improvement six weeks after learning in the dome was essentially the same as the post test immediately after watching the show, demonstrating virtually no loss of gained information in the six week interval. In the formal educational setting, approximately 34% of the respondents indicated that they wanted to learn more about becoming a scientist, while 35% expressed an interest in a career in space science. In the informal setting, 26% indicated that they were interested in pursuing a career in space science.
[Development of innovative methods of electromagnetic field evaluation for portable radio-station].
Rubtsova, N B; Perov, S Iu; Bogacheva, E V; Kuster, N
2013-01-01
The results of portable radio-station "Radiy-301" electromagnetic fields (EMF) emission measurement and specific absorption rate data evaluation has shown that workers' exposure EMF levels may elevate hygienic norms and hereupon can be health risk factor. Possible way of portable radio-station EMF dosimetry enhancement by means of domestic and international approaches harmonization is considered.
Advances in developing rapid, reliable and portable detection systems for alcohol.
Thungon, Phurpa Dema; Kakoti, Ankana; Ngashangva, Lightson; Goswami, Pranab
2017-11-15
Development of portable, reliable, sensitive, simple, and inexpensive detection system for alcohol has been an instinctive demand not only in traditional brewing, pharmaceutical, food and clinical industries but also in rapidly growing alcohol based fuel industries. Highly sensitive, selective, and reliable alcohol detections are currently amenable typically through the sophisticated instrument based analyses confined mostly to the state-of-art analytical laboratory facilities. With the growing demand of rapid and reliable alcohol detection systems, an all-round attempt has been made over the past decade encompassing various disciplines from basic and engineering sciences. Of late, the research for developing small-scale portable alcohol detection system has been accelerated with the advent of emerging miniaturization techniques, advanced materials and sensing platforms such as lab-on-chip, lab-on-CD, lab-on-paper etc. With these new inter-disciplinary approaches along with the support from the parallel knowledge growth on rapid detection systems being pursued for various targets, the progress on translating the proof-of-concepts to commercially viable and environment friendly portable alcohol detection systems is gaining pace. Here, we summarize the progress made over the years on the alcohol detection systems, with a focus on recent advancement towards developing portable, simple and efficient alcohol sensors. Copyright © 2017 Elsevier B.V. All rights reserved.
Probe Heating Method for the Analysis of Solid Samples Using a Portable Mass Spectrometer
Kumano, Shun; Sugiyama, Masuyuki; Yamada, Masuyoshi; Nishimura, Kazushige; Hasegawa, Hideki; Morokuma, Hidetoshi; Inoue, Hiroyuki; Hashimoto, Yuichiro
2015-01-01
We previously reported on the development of a portable mass spectrometer for the onsite screening of illicit drugs, but our previous sampling system could only be used for liquid samples. In this study, we report on an attempt to develop a probe heating method that also permits solid samples to be analyzed using a portable mass spectrometer. An aluminum rod is used as the sampling probe. The powdered sample is affixed to the sampling probe or a droplet of sample solution is placed on the tip of the probe and dried. The probe is then placed on a heater to vaporize the sample. The vapor is then introduced into the portable mass spectrometer and analyzed. With the heater temperature set to 130°C, the developed system detected 1 ng of methamphetamine, 1 ng of amphetamine, 3 ng of 3,4-methylenedioxymethamphetamine, 1 ng of 3,4-methylenedioxyamphetamine, and 0.3 ng of cocaine. Even from mixtures consisting of clove powder and methamphetamine powder, methamphetamine ions were detected by tandem mass spectrometry. The developed probe heating method provides a simple method for the analysis of solid samples. A portable mass spectrometer incorporating this method would thus be useful for the onsite screening of illicit drugs. PMID:26819909
Chen, Yang; Li, Xu; Xu, Zhan; Li, Zonghua; Zhang, Pengzhi; He, Ya; Wang, Fangyuan; Qiu, Jianhua
2011-06-08
Hearing impairment negatively impacts students' development of academic, language and social skills. Even minimal unilateral hearing loss can hinder educational performance. We investigated the prevalence of ear diseases among secondary school students in the city of Xi'an, China in order to provide a foundation for evidence-based hearing healthcare. A stratified random sampling survey was conducted in 29 secondary schools. Demographics and medical histories were collected, and otologic examinations were performed. Questionnaires were administered to assess insomnia, academic stress and use of portable audio devices. Logistic regression analysis was used to identify factors associated with hearing impairment, and the association of sensorineural hearing loss with insomnia, academic stress and the use of portable audio devices was analyzed with the chi-square test. The percentage of students with some form of ear disease was 3.32%. External ear disease, middle ear disease and sensorineural hearing loss occurred in 1.21%, 0.64% and 1.47% of the students, respectively. Boys had a relatively higher prevalence of ear disease than girls. According to our survey, the prevalence of sensorineural hearing loss increased significantly among the students with insomnia and extended use of portable audio devices, but not among those with elevated levels of academic stress. Hearing aids and surgical treatment were needed in 1.47% and 0.89% of the students, respectively. There is a high prevalence of ear disease among secondary school students, and this should be given more attention. Insomnia and the excessive use of portable audio devices may be related to adolescent sensorineural hearing loss. It is important to establish and comply with an evidence-based preventive strategy.
NASA Astrophysics Data System (ADS)
Fahrul Hassan, Mohd; Jusoh, Suhada; Zaini Yunos, Muhamad; Arifin, A. M. T.; Ismail, A. E.; Rasidi Ibrahim, M.; Zulafif Rahim, M.
2017-09-01
Portable water filter has grown significantly in recent years. The use of water bottles as a water drink stuff using hand pump water filtration unit has been suggested to replace water bottled during outdoor recreational activities and for emergency supplies. However, quality of water still the issue related to contaminated water due to the residual waste plants, bacteria, and so on. Based on these issues, the study was carried out to design a portable water filter that uses membrane filtration system by applying Design for Six Sigma. Design for Six Sigma methodology consists of five stages which is Define, Measure, Analyze, Design and Verify. There were several tools have been used in each stage in order to come out with a specific objective. In the Define stage, questionnaire approach was used to identify the needs of portable water filter in the future from potential users. Next, Quality Function Deployment (QFD) tool was used in the Measure stage to measure the users’ needs into engineering characteristics. Based on the information in the Measure stage, morphological chart and weighted decision matrix tools were used in the Analyze stage. This stage performed several activities including concept generation and selection. Once the selection of the final concept completed, detail drawing was made in the Design stage. Then, prototype was developed in the Verify stage to conduct proof-of-concept testing. The results that obtained from each stage have been reported in this paper. From this study, it can be concluded that the application of Design for Six Sigma in designing a future portable water filter that uses membrane filtration system is a good start in looking for a new alternative concept with a completed supporting document.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunimura, Shinsuke; Hatakeyama, So; Sasaki, Nobuharu
A portable total reflection X-ray fluorescence (TXRF) spectrometer that we have developed is applied to trace elemental analysis of water solutions. Although a 5 W X-ray tube is used in the portable TXRF spectrometer, detection limits of several ppb are achieved for 3d transition metal elements and trace elements in a leaching solution of soils, a leaching solution of solder, and alcoholic beverages are detected. Portable X-ray fluorescence (XRF) spectromicroscopes with a 1 W X-ray tube and an 8 W X-ray tube are also presented. Using the portable XRF spectromicroscope with the 1 W X-ray tube, 93 ppm of Crmore » is detected with an about 700 {mu}m spatial resolution. Spatially resolved elemental analysis of a mug painted with blue, red, green, and white is performed using the two portable spectromicroscopes, and the difference in elemental composition at each paint is detected.« less
Merrill, Rebecca D.; Shamim, Abu Ahmed; Ali, Hasmot; Schulze, Kerry; Rashid, Mahbubur; Christian, Parul; West, Jr., Keith P.
2009-01-01
Iron is ubiquitous in natural water sources used around the world for drinking and cooking. The health impact of chronic exposure to iron through water, which in groundwater sources can reach well above the World Health Organization's defined aesthetic limit of 0.3 mg/L, is not currently understood. To quantify the impact of consumption of iron in groundwater on nutritional status, it is important to accurately assess naturally-occurring exposure levels among populations. In this study, the validity of iron quantification in water was evaluated using two portable instruments: the HACH DR/890 portable colorimeter (colorimeter) and HACH Iron test-kit, Model IR-18B (test-kit), by comparing field-based iron estimates for 25 tubewells located in northwestern Bangladesh with gold standard atomic absorption spectrophotometry analysis. Results of the study suggest that the HACH test-kit delivers more accurate point-of-use results across a wide range of iron concentrations under challenging field conditions. PMID:19507757
Merrill, Rebecca D; Shamim, Abu Ahmed; Labrique, Alain B; Ali, Hasmot; Schulze, Kerry; Rashid, Mahbubur; Christian, Parul; West, Keith P
2009-06-01
Iron is ubiquitous in natural water sources used around the world for drinking and cooking. The health impact of chronic exposure to iron through water, which in groundwater sources can reach well above the World Health Organization's defined aesthetic limit of 0.3 mg/L, is not currently understood. To quantify the impact of consumption of iron in groundwater on nutritional status, it is important to accurately assess naturally-occurring exposure levels among populations. In this study, the validity of iron quantification in water was evaluated using two portable instruments: the HACH DR/890 portable colorimeter (colorimeter) and HACH Iron test-kit, Model IR-18B (test-kit), by comparing field-based iron estimates for 25 tubewells located in northwestern Bangladesh with gold standard atomic absorption spectrophotometry analysis. Results of the study suggest that the HACH test-kit delivers more accurate point-of-use results across a wide range of iron concentrations under challenging field conditions.
New portable instrument for the measurement of thermal conductivity in gas process conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Queirós, C. S. G. P.; Lourenço, M. J. V., E-mail: mjlourenco@fc.ul.pt; Vieira, S. I.
The development of high temperature gas sensors for the monitoring and determination of thermophysical properties of complex process mixtures at high temperatures faces several problems, related with the materials compatibility, active sensing parts sensitivity, and lifetime. Ceramic/thin metal films based sensors, previously developed for the determination of thermal conductivity of molten materials up to 1200 °C, were redesigned, constructed, and applied for thermal conductivity measuring sensors. Platinum resistance thermometers were also developed using the same technology, to be used in the temperature measurement, which were also constructed and tested. A new data acquisition system for the thermal conductivity sensors, based onmore » a linearization of the transient hot-strip model, including a portable electronic bridge for the measurement of the thermal conductivity in gas process conditions was also developed. The equipment is capable of measuring the thermal conductivity of gaseous phases with an accuracy of 2%-5% up to 840 °C (95% confidence level). The development of sensors up to 1200 °C, present at the core of the combustion chambers, will be done in a near future.« less
Wilmink, Gerald J; Ibey, Bennett L; Tongue, Thomas; Schulkin, Brian; Laman, Norman; Peralta, Xomalin G; Roth, Caleb C; Cerna, Cesario Z; Rivest, Benjamin D; Grundt, Jessica E; Roach, William P
2011-04-01
Terahertz spectrometers and imaging systems are currently being evaluated as biomedical tools for skin burn assessment. These systems show promise, but due to their size and weight, they have restricted portability, and are impractical for military and battlefield settings where space is limited. In this study, we developed and tested the performance of a compact, light, and portable THz time-domain spectroscopy (THz-TDS) device. Optical properties were collected with this system from 0.1 to 1.6 THz for water, ethanol, and several ex vivo porcine tissues (muscle, adipose, skin). For all samples tested, we found that the index of refraction (n) decreases with frequency, while the absorption coefficient (μ(a)) increases with frequency. Muscle, adipose, and frozen/thawed skin samples exhibited comparable n values ranging between 2.5 and 2.0, whereas the n values for freshly harvested skin were roughly 40% lower. Additionally, we found that the freshly harvested samples exhibited higher μ(a) values than the frozen/thawed skin samples. Overall, for all liquids and tissues tested, we found that our system measured optical property values that were consistent with those reported in the literature. These results suggest that our compact THz spectrometer performed comparable to its larger counterparts, and therefore may be a useful and practical tool for skin health assessment.
Locating bomb factories by detecting hydrogen peroxide.
Romolo, Francesco Saverio; Connell, Samantha; Ferrari, Carlotta; Suarez, Guillaume; Sauvain, Jean-Jacques; Hopf, Nancy B
2016-11-01
The analytical capability to detect hydrogen peroxide vapour can play a key role in localizing a site where a H2O2 based Improvised Explosive (IE) is manufactured. In security activities it is very important to obtain information in a short time. For this reason, an analytical method to be used in security activity needs portable devices. The authors have developed the first analytical method based on a portable luminometer, specifically designed and validated to locate IE manufacturing sites using quantitative on-site vapour analysis for H2O2. The method was tested both indoor and outdoor. The results demonstrate that the detection of H2O2 vapours could allow police forces to locate the site, while terrorists are preparing an attack. The collected data are also very important in developing new sensors, able to give an early alarm if located at a proper distance from a site where an H2O2 based IE is prepared. Copyright © 2016 Elsevier B.V. All rights reserved.
Portable thin layer chromatography for field detection of explosives and propellants
NASA Astrophysics Data System (ADS)
Satcher, Joe H.; Maienschein, Jon L.; Pagoria, Philip F.; Racoveanu, Ana; Carman, M. Leslie; Whipple, Richard E.; Reynolds, John G.
2012-06-01
A field deployable detection kit for explosives and propellants using thin layer chromatography (TLC) has been developed at Lawrence Livermore National Laboratory (LLNL). The chemistry of the kit has been modified to allow for field detection of propellants (through propellant stabilizers), military explosives, peroxide explosives, nitrates and inorganic oxidizer precursors. For many of these target analytes, the detection limit is in the μg to pg range. A new miniaturized, bench prototype, field portable TLC (Micro TLC) kit has also been developed for the detection and identification of common military explosives. It has been demonstrated in a laboratory environment and is ready for field-testing. The kit is comprised of a low cost set of commercially available components specifically assembled for rapid identification needed in the field and identifies the common military explosives: HMX, RDX, Tetryl, Explosive D or picric acid, and TNT all on one plate. Additional modifications of the Micro TLC system have been made with fluorescent organosilicon co-polymer coatings to detect a large suite of explosives.
Target Assembly to Check Boresight Alignment of Active Sensors
NASA Technical Reports Server (NTRS)
Ramos-Izquierdo, Luis; Scott, V. Stanley; Riris, Haris; Cavanaugh, John; Liiva, Peter; Rodriguez, Michael
2011-01-01
A compact and portable target assembly (Fig. 1) has been developed to measure the boresite alignment of LRO's Lunar Orbiter Laser Altimeter (LOLA) instrument at the spacecraft level. The concept for this target assembly has evolved over many years with earlier versions used to test the Mars Observer Laser Altimeter (MOLA), the Geoscience Laser Altimeter System (GLAS), and the Mercury Laser Altimeter (MLA) space-based instruments.
Development Specification for RV-346/348 Positive Pressure Relief Valves (PPRV)
NASA Technical Reports Server (NTRS)
Ralston, Russell L.
2017-01-01
This specification establishes the requirements for design, performance, safety, testing, and manufacture of the RV-346 and RV-348, Positive Pressure Relief Valve (PPRV) as part of the Advanced Extravehicular Mobility Unit (EMU)(AEMU) Portable Life Support System (PLSS). The RV-346 serves as the Positive Pressure Relief Valve (PPRV), and the RV-348 serves as the Secondary Positive Pressure Relief Valve (SPPRV).
A tubular-coring device for use in biogeochemical sampling of succulent and pulpy plants
Campbell, W.L.
1986-01-01
A hand-operated, tubular-coring device developed for use in biogeochemical sampling of succulent and pulpy plants is described. The sampler weighs about 500 g (1.1 lb); and if 25 ?? 175 mm (1 ?? 7 in) screw-top test tubes are used as sample containers, the complete sampling equipment kit is easily portable, having both moderate bulk and weight. ?? 1986.
Compact, Automated, Frequency-Agile Microspectrofluorimeter
NASA Technical Reports Server (NTRS)
Fernandez, Salvador M.; Guignon, Ernest F.
1995-01-01
Compact, reliable, rugged, automated cell-culture and frequency-agile microspectrofluorimetric apparatus developed to perform experiments involving photometric imaging observations of single live cells. In original application, apparatus operates mostly unattended aboard spacecraft; potential terrestrial applications include automated or semiautomated diagnosis of pathological tissues in clinical laboratories, biomedical instrumentation, monitoring of biological process streams, and portable instrumentation for testing biological conditions in various environments. Offers obvious advantages over present laboratory instrumentation.
Pulsed solid state lasers for medicine
NASA Astrophysics Data System (ADS)
Kertesz, Ivan; Danileiko, A. Y.; Denker, Boris I.; Kroo, Norbert; Osiko, Vyacheslav V.; Prokhorov, Alexander M.
1994-02-01
The effect on living tissues of different pulsed solid state lasers: Nd:YAG ((lambda) equals 1.06 micrometers ) Er:glass (1.54 micrometers ), Ho:YAG (2.1 micrometers ) and Er:YAG (2.94 micrometers ) is compared with the continuous wave Nd:YAG- and CO2-lasers used in operating theaters. Portable Er:glass- and Er:YAG-lasers are developed for surgery/cosmetics and HIV-safe blood testing.
Tarzia, Vincenzo; Braccioni, Fausto; Bortolussi, Giacomo; Buratto, Edward; Gallo, Michele; Bottio, Tomaso; Vianello, Andrea; Gerosa, Gino
2016-06-01
Management of patients treated with CardioWest Total Artificial Heart (CW-TAH) as a bridge to heart transplantation (HTx) is complicated by difficulties in determining the optimal timing of transplantation. We present a case of a 53-year-old man supported as an outpatient with a CW-TAH, whose condition deteriorated following exchange of the portable driver. The patient was followed-up with serial cardiopulmonary exercise testing (CPET) which demonstrated a fall of peak VO2 to below 12 ml/kg/min following driver substitution, and the patient was subsequently treated with urgent orthotopic HTx. This case highlights the potential utility of CPET as a means for monitoring and indicating timing of HTx in patients with CW-TAH, as well as the potential for clinical deterioration following portable driver substitution.
A test technique for measuring lightning-induced voltages on aircraft electrical circuits
NASA Technical Reports Server (NTRS)
Walko, L. C.
1974-01-01
The development of a test technique used for the measurement of lightning-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to lightning current surges, but at a lower current level. A linear relationship between the magnitude of lightning current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.
Multifunctional Space Evaporator-Absorber-Radiator (SEAR)
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Hodgson, Ed; Izenson, Mike; Chen, Weibo
2013-01-01
A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 sq m radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduce the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.
Space Evaporator-Absorber-Radiator (SEAR)
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Stephan, Ryan; Hodgson, Ed; Izenson, Mike; Chen, Weibo
2012-01-01
A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 m2 radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduces the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.
Development of cable fed flash X-ray (FXR) system
NASA Astrophysics Data System (ADS)
Menon, Rakhee; Mitra, S.; Patel, A. S.; Kumar, R.; Singh, G.; Senthil, K.; Kumar, Ranjeet; Kolge, T. S.; Roy, Amitava; Acharya, S.; Biswas, D.; Sharma, Archana
2017-08-01
Flash X-ray sources driven by pulsed power find applications in industrial radiography, and a portable X-ray source is ideal where the radiography needs to be taken at the test site. A compact and portable flash X-ray (FXR) system based on a Marx generator has been developed with the high voltage fed to the FXR tube via a cable feed-through arrangement. Hard bremsstrahlung X-rays of few tens of nanosecond duration are generated by impinging intense electron beams on an anode target of high Z material. An industrial X-ray source is developed with source size as low as 1 mm. The system can be operated from 150 kV to 450 kV peak voltages and a dose of 10 mR has been measured at 1 m distance from the source window. The modeling of the FXR source has been carried out using particle-in-cell and Monte Carlo simulations for the electron beam dynamics and X-ray generation, respectively. The angular dose profile of X-ray has been measured and compared with the simulation.
NASA Technical Reports Server (NTRS)
Juarez, Alfredo; Harper, Susan A.; Hirsch, David B.; Carriere, Thierry
2013-01-01
Many sources of fuel are present aboard current spacecraft, with one especially hazardous source of stored energy: lithium ion batteries. Lithium ion batteries are a very hazardous form of fuel due to their self-sustaining combustion once ignited, for example, by an external heat source. Batteries can become extremely energetic fire sources due to their high density electrochemical energy content that may, under duress, be violently converted to thermal energy and fire in the form of a thermal runaway. Currently, lithium ion batteries are the preferred types of batteries aboard international spacecraft and therefore are routinely installed, collectively forming a potentially devastating fire threat to a spacecraft and its crew. Currently NASA is developing a fine water mist portable fire extinguisher for future use on international spacecraft. As its development ensues, a need for the standard evaluation of various types of fire extinguishers against this potential threat is required to provide an unbiased means of comparing between fire extinguisher technologies and ranking them based on performance.
Astronaut tool development: An orbital replaceable unit-portable handhold
NASA Technical Reports Server (NTRS)
Redmon, John W., Jr.
1989-01-01
A tool to be used during astronaut Extra-Vehicular Activity (EVA) replacement of spent or defective electrical/electronic component boxes is described. The generation of requirements and design philosophies are detailed, as well as specifics relating to mechanical development, interface verifications, testing, and astronaut feedback. Findings are presented in the form of: (1) a design which is universally applicable to spacecraft component replacement, and (2) guidelines that the designer of orbital replacement units might incorporate to enhance spacecraft on-orbit maintainability and EVA mission safety.
1983-06-01
for DEC PDPll systems. MAINSAIL was developed and is marketed with a set of integrated tools for program development. The syntax of the language is...stack, and to test for stack-full and stack-empty conditions. This technique is useful in enforcing data integrity and in con- trolling concurrent...and market MAINSAIL. The language is distinguished by its portability. The same compiler and runtime system, both written in MAINSAIL, are the basis
Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology
NASA Technical Reports Server (NTRS)
Chullen, Cinda
2015-01-01
Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology" project will investigate newly developed optic gas sensors delivered from a Small Business Innovative Research (SBIR) Phase II effort. A ventilation test rig will be designed and fabricated to test the sensors while integrated with a Suited Manikin Test Apparatus (SMTA). Once the sensors are integrated, a series of test points will be completed to verify that the sensors can withstand Advanced Suit Portable Life Support System (PLSS) environments and associated human metabolic profiles for changes in pressure and levels of Oxygen (ppO2), carbon dioxide (ppCO2), and humidity (ppH2O).
2006-11-01
spores of B. stearothermophilus . For all of the test organisms, conditions were found that effected sterilization (6-log kill of contaminating...kill 106 E. coli, L. monocytogenes, S. aureus, and bacterial spores of B. atrophaeus and B. stearothermophilus and to sterilize high-grade...Portable Chemical Sterilizer for Microbial Decontamination of
Code of Federal Regulations, 2011 CFR
2011-10-01
... design pressure in the ASME Code, Section VIII (IBR, see § 171.7 of this subchapter). Holding time is the... 49 Transportation 3 2011-10-01 2011-10-01 false Requirements for the design, construction... FOR PACKAGINGS Specifications for Portable Tanks § 178.277 Requirements for the design, construction...
Code of Federal Regulations, 2012 CFR
2012-10-01
... design pressure in the ASME Code, Section VIII (IBR, see § 171.7 of this subchapter). Holding time is the... 49 Transportation 3 2012-10-01 2012-10-01 false Requirements for the design, construction... FOR PACKAGINGS Specifications for Portable Tanks § 178.277 Requirements for the design, construction...
Code of Federal Regulations, 2014 CFR
2014-10-01
... design pressure in the ASME Code, Section VIII (IBR, see § 171.7 of this subchapter). Holding time is the... 49 Transportation 3 2014-10-01 2014-10-01 false Requirements for the design, construction... FOR PACKAGINGS Specifications for Portable Tanks § 178.277 Requirements for the design, construction...
Code of Federal Regulations, 2010 CFR
2010-10-01
... design pressure in the ASME Code, Section VIII (IBR, see § 171.7 of this subchapter). Holding time is the... 49 Transportation 2 2010-10-01 2010-10-01 false Requirements for the design, construction... FOR PACKAGINGS Specifications for Portable Tanks § 178.277 Requirements for the design, construction...
Code of Federal Regulations, 2013 CFR
2013-10-01
... design pressure in the ASME Code, Section VIII (IBR, see § 171.7 of this subchapter). Holding time is the... 49 Transportation 3 2013-10-01 2013-10-01 false Requirements for the design, construction... FOR PACKAGINGS Specifications for Portable Tanks § 178.277 Requirements for the design, construction...
A Research Program in Computer Technology. Volume 1
1981-08-01
rigidity, sensor networks 10. command and control, digital voice communication, graphic input device for terminal, multimedia communications, portable...satellite channel in the internetwork environment; Distributed Sensor Networks - formulation of algorithms and communication protocols to support the...operation of geographically distributed sensors ; Personal Communicator - work intended to result in a demonstration-level portable terminal to test and
DOT National Transportation Integrated Search
2010-06-11
The purpose of this document is to present the findings of the national evaluation of the deployment of portable traffic monitoring devices (PTMDs) at a variety of locations in North Carolina conducted under the USDOTs SafeTrip-21 Initiative. The ...
DOT National Transportation Integrated Search
2010-06-11
The purpose of this document is to present the findings of the national evaluation of the deployment of portable trafficmonitoring devices (PTMDs) at a variety of locations in North Carolina conducted under the USDOTs SafeTrip-21 Initiative. The N...
ERIC Educational Resources Information Center
Gould, Christine E.; Zapata, Aimee Marie L.; Shinsky, Deanna N.; Goldstein, Mary K.
2018-01-01
DVD-delivered behavioral skills training may help disseminate efficacious treatments to older adults independent of internet access. The present study examined the usability of a portable DVD player alongside iterative revisions of accompanying instructions to be used by older adults in a DVD-delivered behavioral skills treatment study. The sample…
Measurement of Retinal Sensitivity on Tablet Devices in Age-Related Macular Degeneration.
Wu, Zhichao; Guymer, Robyn H; Jung, Chang J; Goh, Jonathan K; Ayton, Lauren N; Luu, Chi D; Lawson, David J; Turpin, Andrew; McKendrick, Allison M
2015-06-01
We compared measurements of central retinal sensitivity on a portable, low-cost tablet device to the established method of microperimetry in age-related macular degeneration (AMD). A customized test designed to measure central retinal sensitivity (within the central 1° radius) on a tablet device was developed using an open-source platform called PsyPad. A total of 30 participants with AMD were included in this study, and all participants performed a practice test on PsyPad, followed by four tests of one eye and one test of the other eye. Participants then underwent standardized microperimetry examinations in both eyes. The average test duration on PsyPad was 53.9 ± 7.5 seconds, and no significant learning effect was observed over the examinations performed ( P = 1.000). The coefficient of repeatability of central retinal sensitivity between the first two examinations on PsyPad was ±1.76 dB. The mean central retinal sensitivity was not significantly different between PsyPad (25.7 ± 0.4 dB) and microperimetry (26.1 ± 0.4 dB, P = 0.094), and the 95% limits of agreement between the two measures were between -4.12 and 4.92 dB. The measurements of central retinal sensitivity can be performed effectively using a tablet device, displaying reasonably good agreement with those obtained using the established method of microperimetry. These findings highlight the potential of tablet devices as low-cost and portable tools for developing and performing visual function measures that can be easily and widely implemented.
NASA Astrophysics Data System (ADS)
Nikitczuk, Jason; Weinberg, Brian; Mavroidis, Constantinos
2006-03-01
In this paper we present the design and control algorithms for novel electro-rheological fluid based torque generation elements that will be used to drive the joint of a new type of portable and controllable Active Knee Rehabilitation Orthotic Device (AKROD) for gait retraining in stroke patients. The AKROD is composed of straps and rigid components for attachment to the leg, with a central hinge mechanism where a gear system is connected. The key features of AKROD include: a compact, lightweight design with highly tunable torque capabilities through a variable damper component, full portability with on board power, control circuitry, and sensors (encoder and torque), and real-time capabilities for closed loop computer control for optimizing gait retraining. The variable damper component is achieved through an electro-rheological fluid (ERF) element that connects to the output of the gear system. Using the electrically controlled rheological properties of ERFs, compact brakes capable of supplying high resistive and controllable torques, are developed. A preliminary prototype for AKROD v.2 has been developed and tested in our laboratory. AKROD's v.2 ERF resistive actuator was tested in laboratory experiments using our custom made ERF Testing Apparatus (ETA). ETA provides a computer controlled environment to test ERF brakes and actuators in various conditions and scenarios including emulating the interaction between human muscles involved with the knee and AKROD's ERF actuators / brakes. In our preliminary results, AKROD's ERF resistive actuator was tested in closed loop torque control experiments. A hybrid (non-linear, adaptive) Proportional-Integral (PI) torque controller was implemented to achieve this goal.
Diesel-fired self-pumping water heater
NASA Astrophysics Data System (ADS)
Gertsmann, Joseph
1994-07-01
The object of this project was to study the feasibility of pumping and heating water by sustained oscillatory vaporization and condensation in a fired heat exchanger. Portable field liquid fueled water heaters would facilitate heating water for sanitation, personal hygiene, food service, laundry, equipment maintenance, and decontamination presently available only from larger, less portable, motorized pumping units. The technical tasks consisted of: development of an analytical model, operation of proof-of-principal prototypes, and determination of the thermal and mechanical relationships to evaluate operating range and control characteristics. Four successive pump models were analyzed and tested. The final analytical model gave reasonable agreement with the experimental results, indicating that the actual pumping effect was an order of magnitude lower than originally anticipated. It was concluded that a thermally-activated self pumping water heater based on the proposed principle is not feasible.
Loh, Leslie J; Bandara, Gayan C; Weber, Genevieve L; Remcho, Vincent T
2015-08-21
Due to the rapid expansion in hydraulic fracturing (fracking), there is a need for robust, portable and specific water analysis techniques. Early detection of contamination is crucial for the prevention of lasting environmental damage. Bromide can potentially function as an early indicator of water contamination by fracking waste, because there is a high concentration of bromide ions in fracking wastewaters. To facilitate this, a microfluidic paper-based analytical device (μPAD) has been developed and optimized for the quantitative colorimetric detection of bromide in water using a smartphone. A paper microfluidic platform offers the advantages of inexpensive fabrication, elimination of unstable wet reagents, portability and high adaptability for widespread distribution. These features make this assay an attractive option for a new field test for on-site determination of bromide.
A Portable, Shock-Proof, Surface-Heated Droplet PCR System for Escherichia coli Detection
Angus, Scott V.; Cho, Soohee; Harshman, Dustin K.; Song, Jae-Young; Yoon, Jeong-Yeol
2015-01-01
A novel polymerase chain reaction (PCR) device was developed that uses wire-guided droplet manipulation (WDM) to guide a droplet over three different heating chambers. After PCR amplification, end-point detection is achieved using a smartphone-based fluorescence microscope. The device was tested for identification of the 16S rRNA gene V3 hypervariable region from Escherichia coli genomic DNA. The lower limit of detection was 103 genome copies per sample. The device is portable with smartphone-based end-point detection and provides the assay results quickly (15 min for a 30-cycle amplification) and accurately. The system is also shock and vibration resistant, due to the multiple points of contact between the droplet and the thermocouple and the Teflon film on the heater surfaces. The thermocouple also provides realtime droplet temperature feedback to ensure it reaches the set temperature before moving to the next chamber/step in PCR. The device is equipped to use either silicone oil or coconut oil. Coconut oil provides additional portability and ease of transportation by eliminating spilling because its high melting temperature means it is solid at room temperature. PMID:26164008
Breath acetone monitoring by portable Si:WO3 gas sensors
Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.
2013-01-01
Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702
Optics Program Modified for Multithreaded Parallel Computing
NASA Technical Reports Server (NTRS)
Lou, John; Bedding, Dave; Basinger, Scott
2006-01-01
A powerful high-performance computer program for simulating and analyzing adaptive and controlled optical systems has been developed by modifying the serial version of the Modeling and Analysis for Controlled Optical Systems (MACOS) program to impart capabilities for multithreaded parallel processing on computing systems ranging from supercomputers down to Symmetric Multiprocessing (SMP) personal computers. The modifications included the incorporation of OpenMP, a portable and widely supported application interface software, that can be used to explicitly add multithreaded parallelism to an application program under a shared-memory programming model. OpenMP was applied to parallelize ray-tracing calculations, one of the major computing components in MACOS. Multithreading is also used in the diffraction propagation of light in MACOS based on pthreads [POSIX Thread, (where "POSIX" signifies a portable operating system for UNIX)]. In tests of the parallelized version of MACOS, the speedup in ray-tracing calculations was found to be linear, or proportional to the number of processors, while the speedup in diffraction calculations ranged from 50 to 60 percent, depending on the type and number of processors. The parallelized version of MACOS is portable, and, to the user, its interface is basically the same as that of the original serial version of MACOS.
Biosensors and bioelectronics on smartphone for portable biochemical detection.
Zhang, Diming; Liu, Qingjun
2016-01-15
Smartphone has been widely integrated with sensors, such as test strips, sensor chips, and hand-held detectors, for biochemical detections due to its portability and ubiquitous availability. Utilizing built-in function modules, smartphone is often employed as controller, analyzer, and displayer for rapid, real-time, and point-of-care monitoring, which can significantly simplify design and reduce cost of the detecting systems. This paper presents a review of biosensors and bioelectronics on smartphone for portable biochemical detections. The biosensors and bioelectronics based on smartphone can mainly be classified into biosensors using optics, surface plasmon resonance, electrochemistry, and near-field communication. The developments of these biosensors and bioelectronics on smartphone are reviewed along with typical biochemical detecting cases. Sensor strategies, detector attachments, and coupling methods are highlighted to show designs of the compact, lightweight, and low-cost sensor systems. The performances and advantages of these designs are introduced with their applications in healthcare diagnosis, environment monitoring, and food evaluation. With advances in micro-manufacture, sensor technology, and miniaturized electronics, biosensor and bioelectronic devices on smartphone can be used to perform biochemical detections as common and convenient as electronic tag readout in foreseeable future. Copyright © 2015 Elsevier B.V. All rights reserved.
Development of a mobile robot for the 1995 AUVS competition
NASA Astrophysics Data System (ADS)
Matthews, Bradley O.; Ruthemeyer, Michael A.; Perdue, David; Hall, Ernest L.
1995-12-01
Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The advantages of a modular system are related to portability and the fact that any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors systems. The speed and steering control are supervised by a 486 computer through a 3-axis motion controller. The obstacle avoidance system is based on a micro-controller interfaced with six ultrasonic transducers. The is micro-controller independently handles all timing and distance calculations and sends a steering angle correction back to the computer via the serial line. This design yields a portable independent system, where even computer communication is not necessary. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected through a commercial tracking device, communicating with the computer the X,Y coordinates of the lane marker. Testing of these systems yielded positive results by showing that at five mph the vehicle can follow a line and at the same time avoid obstacles. This design, in its modularity, creates a portable autonomous controller applicable for any mobile vehicle with only minor adaptations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhaohui; Wang, Ying; Wang, Jun
2010-08-15
A portable fluorescence biosensor with rapid and ultrasensitive response for trace protein has been built up with quantum dots and lateral flow test strip. The superior signal brightness and high photostability of quantum dots are combined with the promising advantages of lateral flow test strip and resulted in high sensitivity, selectivity and speedy for protein detection. Nitrated ceruloplasmin, a significant biomarker for cardiovascular disease, lung cancer and stress response to smoking, was used as model protein to demonstrate the good performances of this proposed Qdot-based lateral flow test strip. Quantitative detection of nitrated ceruloplasmin was realized by recording the fluorescencemore » intensity of quantum dots captured on the test line. Under optimal conditions, this portable fluorescence biosensor displays rapid responses for nitrated ceruloplasmin in wide dynamic range with a detection limit of 0.1ng/mL (S/N=3). Furthermore, the biosensor was successfully utilized for spiked human plasma sample detection with the concentration as low as 1ng/mL. The results demonstrate that the quantum dot-based lateral flow test strip is capable for rapid, sensitive, and quantitative detection of nitrated ceruloplasmin and hold a great promise for point-of-care and in field analysis of other protein biomarkers.« less
Lin, Bingqian; Liu, Dan; Yan, Jinmao; Qiao, Zhi; Zhong, Yunxin; Yan, Jiawei; Zhu, Zhi; Ji, Tianhai; Yang, Chaoyong James
2016-03-23
There is considerable demand for sensitive, selective, and portable detection of disease-associated proteins, particularly in clinical practice and diagnostic applications. Portable devices are highly desired for detection of disease biomarkers in daily life due to the advantages of being simple, rapid, user-friendly, and low-cost. Herein we report an enzyme-encapsulated liposome-linked immunosorbent assay for sensitive detection of proteins using personal glucose meters (PGM) for portable quantitative readout. Liposomes encapsulating a large amount of amyloglucosidase or invertase are surface-coated with recognition elements such as aptamers or antibodies for target recognition. By translating molecular recognition signal into a large amount of glucose with the encapsulated enzyme, disease biomarkers such as thrombin or C-reactive protein (CRP) can be quantitatively detected by a PGM with a high detection limit of 1.8 or 0.30 nM, respectively. With the advantages of portability, ease of use, and low-cost, the method reported here has potential for portable and quantitative detection of various targets for different POC testing scenarios, such as rapid diagnosis in clinic offices, health monitoring at the bedside, and chemical/biochemical safety control in the field.
NASA Technical Reports Server (NTRS)
Losquadro, G.; Luglio, M.; Vatalaro, F.
1997-01-01
A geostationary satellite system for mobile multimedia services via portable, aeronautical and mobile terminals was developed within the framework of the Advanced Communications Technology Service (ACTS) programs. The architecture of the system developed under the 'satellite extremely high frequency communications for multimedia mobile services (SECOMS)/ACTS broadband aeronautical terminal experiment' (ABATE) project is presented. The system will be composed of a Ka band system component, and an extremely high frequency band component. The major characteristics of the space segment, the ground control station and the portable, aeronautical and mobile user terminals are outlined.
NASA Technical Reports Server (NTRS)
McComas, David C.; Strege, Susanne L.; Carpenter, Paul B. Hartman, Randy
2015-01-01
The core Flight System (cFS) is a flight software (FSW) product line developed by the Flight Software Systems Branch (FSSB) at NASA's Goddard Space Flight Center (GSFC). The cFS uses compile-time configuration parameters to implement variable requirements to enable portability across embedded computing platforms and to implement different end-user functional needs. The verification and validation of these requirements is proving to be a significant challenge. This paper describes the challenges facing the cFS and the results of a pilot effort to apply EXB Solution's testing approach to the cFS applications.
Foliage Penetration Radar: History and Developed Technology
1974-05-01
26 M-FOPEN Antenna Mast with Delta- Loop Antennas 44 27 AB-577/GRC Antenna Mast Used to Extend the Range of the Man-Portable Radar 45 28 Base Station...Ground Control Unit 47 29 Base Station Tov.er with Delta- Loop Antennas 48 30 Test Configuration for the AN/fPS-5 Comparison Test and Tactical Exercise...00 UNDERGROW 1H TRANSMTTTING ANTENN . HEIG IT: 2 m 5(6- 13 m ) \\\\7 \\ Seo \\................ $A1 U, -< o\\ 31 I~ ~ A ,M\\;’ I10 31 ’•...GJ, FIGURE 3
2010-05-01
absorption. Thermogravimetric Analysis (TGA) was employed to measure absorption of HD and GD into the nylon fabric. TGA is an analytical tool useful in...Chromatography Analysis 26 4.4.5.1 Mass Removed by Wiper at Room Temperature 26 4.4.6 Chemical Agent Mass Removed by Wiper at Elevated and Reduced...Temperature Tests 71 5.9 Vapor Analysis of Spent Wipe 78 5.10 Wiping Efficacy and Complex Geometries 82 5.11 Spray and Wipe Tests 84 5.12 Effect of
A single FPGA-based portable ultrasound imaging system for point-of-care applications.
Kim, Gi-Duck; Yoon, Changhan; Kye, Sang-Bum; Lee, Youngbae; Kang, Jeeun; Yoo, Yangmo; Song, Tai-kyong
2012-07-01
We present a cost-effective portable ultrasound system based on a single field-programmable gate array (FPGA) for point-of-care applications. In the portable ultrasound system developed, all the ultrasound signal and image processing modules, including an effective 32-channel receive beamformer with pseudo-dynamic focusing, are embedded in an FPGA chip. For overall system control, a mobile processor running Linux at 667 MHz is used. The scan-converted ultrasound image data from the FPGA are directly transferred to the system controller via external direct memory access without a video processing unit. The potable ultrasound system developed can provide real-time B-mode imaging with a maximum frame rate of 30, and it has a battery life of approximately 1.5 h. These results indicate that the single FPGA-based portable ultrasound system developed is able to meet the processing requirements in medical ultrasound imaging while providing improved flexibility for adapting to emerging POC applications.
Portable system for auscultation and lung sound analysis.
Nabiev, Rustam; Glazova, Anna; Olyinik, Valery; Makarenkova, Anastasiia; Makarenkov, Anatolii; Rakhimov, Abdulvosid; Felländer-Tsai, Li
2014-01-01
A portable system for auscultation and lung sound analysis has been developed, including the original electronic stethoscope coupled with mobile devices and special algorithms for the automated analysis of pulmonary sound signals. It's planned that the developed system will be used for monitoring of health status of patients with various pulmonary diseases.
Sher, Mazhar; Zhuang, Rachel; Demirci, Utkan; Asghar, Waseem
2017-01-01
Introduction There is a significant interest in developing inexpensive portable biosensing platforms for various applications including disease diagnostics, environmental monitoring, food safety, and water testing at the point-of-care (POC) settings. Current diagnostic assays available in the developed world require sophisticated laboratory infrastructure and expensive reagents. Hence, they are not suitable for resource-constrained settings with limited financial resources, basic health infrastructure, and few trained technicians. Cellulose and flexible transparency paper-based analytical devices have demonstrated enormous potential for developing robust, inexpensive and portable devices for disease diagnostics. These devices offer promising solutions to disease management in resource-constrained settings where the vast majority of the population cannot afford expensive and highly sophisticated treatment options. Areas covered In this review, the authors describe currently developed cellulose and flexible transparency paper-based microfluidic devices, device fabrication techniques, and sensing technologies that are integrated with these devices. The authors also discuss the limitations and challenges associated with these devices and their potential in clinical settings. Expert commentary In recent years, cellulose and flexible transparency paper-based microfluidic devices have demonstrated the potential to become future healthcare options despite a few limitations such as low sensitivity and reproducibility. PMID:28103450
Sher, Mazhar; Zhuang, Rachel; Demirci, Utkan; Asghar, Waseem
2017-04-01
There is a significant interest in developing inexpensive portable biosensing platforms for various applications including disease diagnostics, environmental monitoring, food safety, and water testing at the point-of-care (POC) settings. Current diagnostic assays available in the developed world require sophisticated laboratory infrastructure and expensive reagents. Hence, they are not suitable for resource-constrained settings with limited financial resources, basic health infrastructure, and few trained technicians. Cellulose and flexible transparency paper-based analytical devices have demonstrated enormous potential for developing robust, inexpensive and portable devices for disease diagnostics. These devices offer promising solutions to disease management in resource-constrained settings where the vast majority of the population cannot afford expensive and highly sophisticated treatment options. Areas covered: In this review, the authors describe currently developed cellulose and flexible transparency paper-based microfluidic devices, device fabrication techniques, and sensing technologies that are integrated with these devices. The authors also discuss the limitations and challenges associated with these devices and their potential in clinical settings. Expert commentary: In recent years, cellulose and flexible transparency paper-based microfluidic devices have demonstrated the potential to become future healthcare options despite a few limitations such as low sensitivity and reproducibility.
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott (Inventor); Winfree, William P. (Inventor)
1999-01-01
A method and a portable apparatus for the nondestructive identification of defects in structures. The apparatus comprises a heat source and a thermal imager that move at a constant speed past a test surface of a structure. The thermal imager is off set at a predetermined distance from the heat source. The heat source induces a constant surface temperature. The imager follows the heat source and produces a video image of the thermal characteristics of the test surface. Material defects produce deviations from the constant surface temperature that move at the inverse of the constant speed. Thermal noise produces deviations that move at random speed. Computer averaging of the digitized thermal image data with respect to the constant speed minimizes noise and improves the signal of valid defects. The motion of thermographic equipment coupled with the high signal to noise ratio render it suitable for portable, on site analysis.
A Multi-Purpose Modular Electronics Integration Node for Exploration Extravehicular Activity
NASA Technical Reports Server (NTRS)
Hodgson, Edward; Papale, William; Wichowski, Robert; Rosenbush, David; Hawes, Kevin; Stankiewicz, Tom
2013-01-01
As NASA works to develop an effective integrated portable life support system design for exploration Extravehicular activity (EVA), alternatives to the current system s electrical power and control architecture are needed to support new requirements for flexibility, maintainability, reliability, and reduced mass and volume. Experience with the current Extravehicular Mobility Unit (EMU) has demonstrated that the current architecture, based in a central power supply, monitoring and control unit, with dedicated analog wiring harness connections to active components in the system has a significant impact on system packaging and seriously constrains design flexibility in adapting to component obsolescence and changing system needs over time. An alternative architecture based in the use of a digital data bus offers possible wiring harness and system power savings, but risks significant penalties in component complexity and cost. A hybrid architecture that relies on a set of electronic and power interface nodes serving functional models within the Portable Life Support System (PLSS) is proposed to minimize both packaging and component level penalties. A common interface node hardware design can further reduce penalties by reducing the nonrecurring development costs, making miniaturization more practical, maximizing opportunities for maturation and reliability growth, providing enhanced fault tolerance, and providing stable design interfaces for system components and a central control. Adaptation to varying specific module requirements can be achieved with modest changes in firmware code within the module. A preliminary design effort has developed a common set of hardware interface requirements and functional capabilities for such a node based on anticipated modules comprising an exploration PLSS, and a prototype node has been designed assembled, programmed, and tested. One instance of such a node has been adapted to support testing the swingbed carbon dioxide and humidity control element in NASA s advanced PLSS 2.0 test article. This paper will describe the common interface node design concept, results of the prototype development and test effort, and plans for use in NASA PLSS 2.0 integrated tests.
Optical Testing Using Portable Laser Coordinate Measuring Instruments
NASA Technical Reports Server (NTRS)
Khreishi, Manal; Ohl, Raymond G.; Mclean, Kyle F.; Hadjimichael, Theodore J.; Hayden, Joseph E.
2017-01-01
High precision, portable coordinate measuring instruments (CMI) such as laser radars (LR) and laser trackers (LT) have been used for optical system alignment and integration. The LR's ability to perform a non-contact scan of surfaces was previously utilized to characterize large spherical and aspheric mirrors. In this paper, we explore the use of a CMI as an accurate, fast, robust, and non-contact tool for prescription characterization of powered optical surfaces. Using Nikon's MV-224/350 LR and Leica's Absolute Tracker AT401/402 instruments, proof of concept measurements were performed to characterize a variety of optical components by measuring the actual and apparent, or equivalently the "direct and through" (D&T), coordinates of calibrated metrology targets. Custom macros in metrology software and other data reduction code were developed to compute surface-ray intercepts and surface slopes from the D&T shots. The calculated data is fit to an aspheric surface formula to obtain the optimum prescription. The results were compared to the nominal parameters and were crosschecked using LR scans or other approaches. We discuss potential applications across the fields of optical component fabrication and system alignment and testing.
Optical Testing Using Portable Laser Coordinate Measuring Instruments
NASA Technical Reports Server (NTRS)
Khreishi, M.; Ohl, R.; Mclean, K.; Hadjimichael, T.; Hayden, J.
2017-01-01
High precision, portable coordinate measuring instruments (CMI) such as laser radars (LR) and laser trackers (LT) have been used for optical system alignment and integration. The LRs ability to perform a non-contact scan of surfaces was previously utilized to characterize large spherical and aspheric mirrors. In this paper, we explore the use of a CMI as an accurate, fast, robust, and non-contact tool for prescription characterization of powered optical surfaces. Using Nikons MV-224350 LR and Leicas Absolute Tracker AT401402 instruments, proof of concept measurements were performed to characterize a variety of optical components by measuring the actual and apparent, or equivalently the direct and through (DT), coordinates of calibrated metrology targets. Custom macros in metrology software and other data reduction code were developed to compute surface-ray intercepts and surface slopes from the DT shots. The calculated data is fit to an aspheric surface formula to obtain the optimum prescription. The results were compared to the nominal parameters and were crosschecked using LR scans or other approaches. We discuss potential applications across the fields of optical component fabrication and system alignment and testing.
Improving Diagnosis of Sepsis After Burn Injury Using a Portable Sepsis Alert System
2016-10-01
application listed milestones/target dates for important activities or phases of the project, identify these dates and show actual completion dates or the... activities ; 2) specific objectives; 3) significant results or key outcomes, including major findings, developments, or conclusions (both positive and...progresses to completion, the emphasis in reporting in this section should shift from reporting activities to reporting accomplishments. Task 1. Test the
Handheld Delivery System for Modified Boron-Type Fire Extinguishment Agent
1993-11-01
was to develop and test a handheld portable delivery system for use with the modified boron-type fire extinguishing agent for metal fires . B...BACKGROUND A need exists for an extinguishing agent and accompanying delivery system that are effective against complex geometry metal fires . A modified...agent and its delivery system have proven effective against complex geometry metal fires containing up to 200 pounds of magnesium metal. Further
Use of the JPL Electronic Nose to detect leaks and spills in an enclosed environment
NASA Technical Reports Server (NTRS)
Ryan, Margaret A.; Homer, M. L.; Zhou, H.; Pelletier, C. C.; Manatt, K.; Jewell, A. D.; Kisor, A.; Shevade, A. V.; Lewis, C. R.; Taylor, C. J.;
2006-01-01
An electronic nose to be used as an air quality monitor in human habitats in space has been developed at the Jet Propulsion Laboratory. This device is capable of detecting, identifying and quantifying several organic and inorganic chemical species which might be present as contaminants in spacecraft air. The complete portable device, including sensors, electronics, and software for data analysis, has been extensively tested.
2016-05-01
M72 LAW 66mm (Light Anti -Tank Weapon), and RPG (Rocket Propelled Grenades) with varying munitions...one-time publications. Report any book, monograph, dissertation , abstract, or the like published as or in a separate publication, rather than a...year; type of publication (e.g., book, thesis or dissertation ); status of publication (published; accepted, awaiting publication; submitted, under
Portable point-of-care blood analysis system for global health (Conference Presentation)
NASA Astrophysics Data System (ADS)
Dou, James J.; Aitchison, James Stewart; Chen, Lu; Nayyar, Rakesh
2016-03-01
In this paper we present a portable blood analysis system based on a disposable cartridge and hand-held reader. The platform can perform all the sample preparation, detection and waste collection required to complete a clinical test. In order to demonstrate the utility of this approach a CD4 T cell enumeration was carried out. A handheld, point-of-care CD4 T cell system was developed based on this system. In particular we will describe a pneumatic, active pumping method to control the on-chip fluidic actuation. Reagents for the CD4 T cell counting assay were dried on a reagent plug to eliminate the need for cold chain storage when used in the field. A micromixer based on the active fluidic actuation was designed to complete sample staining with fluorescent dyes that was dried on the reagent plugs. A novel image detection and analysis algorithm was developed to detect and track the flight of target particles and cells during each analysis. The handheld, point-of-care CD4 testing system was benchmarked against clinical cytometer. The experimental results demonstrated experimental results were closely matched with the flow cytometry. The same platform can be further expanded into a bead-array detection system where other types of biomolecules such as proteins can be detected using the same detection system.
Development of autonomous gamma dose logger for environmental monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.
2012-03-15
Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system ismore » totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify {sup 41}Ar, proving its utility for real-time plume tracking and source term estimation.« less
Development of method for quantifying essential tremor using a small optical device.
Chen, Kai-Hsiang; Lin, Po-Chieh; Chen, Yu-Jung; Yang, Bing-Shiang; Lin, Chin-Hsien
2016-06-15
Clinical assessment scales are the most common means used by physicians to assess tremor severity. Some scientific tools that may be able to replace these scales to objectively assess the severity, such as accelerometers, digital tablets, electromyography (EMG) measurement devices, and motion capture cameras, are currently available. However, most of the operational modes of these tools are relatively complex or are only able to capture part of the clinical information; furthermore, using these tools is sometimes time consuming. Currently, there is no tool available for automatically quantifying tremor severity in clinical environments. We aimed to develop a rapid, objective, and quantitative system for measuring the severity of finger tremor using a small portable optical device (Leap Motion). A single test took 15s to conduct, and three algorithms were proposed to quantify the severity of finger tremor. The system was tested with four patients diagnosed with essential tremor. The proposed algorithms were able to quantify different characteristics of tremor in clinical environments, and could be used as references for future clinical assessments. A portable, easy-to-use, small-sized, and noncontact device (Leap Motion) was used to clinically detect and record finger movement, and three algorithms were proposed to describe tremor amplitudes. Copyright © 2016 Elsevier B.V. All rights reserved.
2003-12-01
Dr. Lisa Monaco, Marshall Space Flight Center’s (MSFC’s) project scientist for the Lab-on-a-Chip Applications Development (LOCAD) program, examines a lab on a chip. The small dots are actually ports where fluids and chemicals can be mixed or samples can be collected for testing. Tiny channels, only clearly visible under a microscope, form pathways between the ports. Many chemical and biological processes, previously conducted on large pieces of laboratory equipment, can now be performed on these small glass or plastic plates. Monaco and other researchers at MSFC in Huntsville, Alabama, are customizing the chips to be used for many space applications, such as monitoring microbes inside spacecraft and detecting life on other planets. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the International Space Station (ISS), the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)
Dr. Monaco Examines Lab-on a-Chip
NASA Technical Reports Server (NTRS)
2003-01-01
Dr. Lisa Monaco, Marshall Space Flight Center's (MSFC's) project scientist for the Lab-on-a-Chip Applications Development (LOCAD) program, examines a lab on a chip. The small dots are actually ports where fluids and chemicals can be mixed or samples can be collected for testing. Tiny channels, only clearly visible under a microscope, form pathways between the ports. Many chemical and biological processes, previously conducted on large pieces of laboratory equipment, can now be performed on these small glass or plastic plates. Monaco and other researchers at MSFC in Huntsville, Alabama, are customizing the chips to be used for many space applications, such as monitoring microbes inside spacecraft and detecting life on other planets. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the International Space Station (ISS), the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)
Development of autonomous gamma dose logger for environmental monitoring
NASA Astrophysics Data System (ADS)
Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.; Kumari, Anju; Baskaran, R.; Venkatraman, B.
2012-03-01
Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system is totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify 41Ar, proving its utility for real-time plume tracking and source term estimation.
The Portable War Room Research Project
NASA Technical Reports Server (NTRS)
Govers, Francis X., III; Fry, Mark
1997-01-01
The Portable War Room is an internal TASC project to research and develop a visualization and simulation environment to provide for decision makers the power to review the past, understand the present, and peer into the future.
Cardiovascular fitness strengthening using portable device.
Alqudah, Hamzah; Kai Cao; Tao Zhang; Haddad, Azzam; Su, Steven; Celler, Branko; Nguyen, Hung T
2016-08-01
The paper describes a reliable and valid Portable Exercise Monitoring system developed using TI eZ430-Chronos watch, which can control the exercise intensity through audio stimulation in order to increase the Cardiovascular fitness strengthening.
A portable toolbox to monitor and evaluate signal operations.
DOT National Transportation Integrated Search
2011-10-01
Researchers from the Texas Transportation Institute developed a portable tool consisting of a fieldhardened : computer interfacing with the traffic signal cabinet through special enhanced Bus Interface Units. : The toolbox consisted of a monitoring t...
Bluetooth data collection system for planning and arterial management.
DOT National Transportation Integrated Search
2014-08-01
This report presents the results of a research and development project of an implementable portable wireless traffic data collection system. Utilizing Bluetooth wireless technology as a platform, portable battery powered data collection units housed ...
NASA Astrophysics Data System (ADS)
Pei, Hua-Fu; Yin, Jian-Hua; Jin, Wei
2013-09-01
Two kinds of innovative sensors based on optical fiber sensing technologies have been proposed and developed for measuring tilts and displacements in geotechnical structures. The newly developed tilt sensors are based on classical beam theory and were successfully used to measure the inclinations in a physical model test. The conventional inclinometers including in-place and portable types, as a key instrument, are very commonly used in geotechnical engineering. In this paper, fiber Bragg grating sensing technology is used to measure strains along a standard inclinometer casing and these strains are used to calculate the lateral and/or horizontal deflections of the casing using the beam theory and a finite difference method. Finally, the monitoring results are verified by laboratory tests.
A portable and integrated instrument for cell manipulation by dielectrophoresis.
Burgarella, Sarah; Di Bari, Marco
2015-07-01
The physical manipulation of biological cells is a key point in the development of miniaturized systems for point-of-care analyses. Dielectrophoresis (DEP) has been reported by several laboratories as a promising method in biomedical research for label-free cell manipulation without physical contact, by exploiting the dielectric properties of cells suspended in a microfluidic sample, under the action of high-gradient electric fields. In view of a more extended use of DEP phenomena in lab-on-chip devices for point-of-care settings, we have developed a portable instrument, integrating on the same device the microfluidic biochip for cell manipulation and all the laboratory functions (i.e., DEP electric signal generation, microscopic observation of the biological sample under test and image acquisition) that are normally obtained by combining different nonportable standard laboratory instruments. The nonuniform electric field for cell manipulation on the biochip is generated by microelectrodes, patterned on the silicon substrate of microfluidic channels, using standard microfabrication techniques. Numerical modeling was performed to simulate the electric field distribution, quantify the DEP force, and optimize the geometry of the microelectrodes. The developed instrument includes an electronic board, which allows the control of the electric signal applied to electrodes necessary for DEP, and a miniaturized optical microscope system that allows visual inspection and eventually cell counting, as well as image and video recording. The system also includes the control software. The portable and integrated platform described in this work therefore represents a complete and innovative solution of applied research, suitable for many biological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tong, Yanhong; McCarthy, Kaitlin; Kong, Huimin; Lemieux, Bertrand
2012-11-01
We have developed a rapid and simple molecular test, the IsoGlow HSV Typing assay, for the detection and typing of herpes simplex virus (type 1 and 2) from genital or oral lesions. Clinical samples suspended in viral transport mediums are simply diluted and then added to a helicase-dependent amplification master mix. The amplification and detection were performed on a portable fluorescence detector called the FireFly instrument. Detection of amplification products is based on end-point analysis using cycling probe technology. An internal control nucleic acid was included in the amplification master mix to monitor the presence of amplification inhibitors in the samples. Because the device has only two fluorescence detection channels, two strategies were developed and compared to detect the internal control template: internal control detected by melting curve analysis using a dual-labeled probe, versus internal control detection using end-point fluorescence release by a CPT probe at a lower temperature. Both have a total turnaround time of about 1 hour. Clinical performance relative to herpes viral culture was evaluated using 176 clinical specimens. Both formats of the IsoGlow HSV typing assay had sensitivities comparable to that of the Food and Drug Administration-cleared IsoAmp HSV (BioHelix Corp., Beverly MA) test and specificity for the two types of HSV comparable to that of ELVIS HSV (Diagnostic Hybrids, Athens, OH). Copyright © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Reilly, Thomas L. (Inventor); Jacobstein, A. Ronald (Inventor); Cramer, K. Elliott (Inventor)
2006-01-01
A method and apparatus for testing a material such as the water-wall tubes in boilers includes the use of a portable thermal line heater having radiation shields to control the amount of thermal radiation that reaches a thermal imager. A procedure corrects for variations in the initial temperature of the material being inspected. A method of calibrating the testing device to determine an equation relating thickness of the material to temperatures created by the thermal line heater uses empirical data derived from tests performed on test specimens for each material type, geometry, density, specific heat, speed at which the line heater is moved across the material and heat intensity.
Ahamed, Nizam U; Sundaraj, Kenneth; Poo, Tarn S
2013-03-01
This article describes the design of a robust, inexpensive, easy-to-use, small, and portable online electromyography acquisition system for monitoring electromyography signals during rehabilitation. This single-channel (one-muscle) system was connected via the universal serial bus port to a programmable Windows operating system handheld tablet personal computer for storage and analysis of the data by the end user. The raw electromyography signals were amplified in order to convert them to an observable scale. The inherent noise of 50 Hz (Malaysia) from power lines electromagnetic interference was then eliminated using a single-hybrid IC notch filter. These signals were sampled by a signal processing module and converted into 24-bit digital data. An algorithm was developed and programmed to transmit the digital data to the computer, where it was reassembled and displayed in the computer using software. Finally, the following device was furnished with the graphical user interface to display the online muscle strength streaming signal in a handheld tablet personal computer. This battery-operated system was tested on the biceps brachii muscles of 20 healthy subjects, and the results were compared to those obtained with a commercial single-channel (one-muscle) electromyography acquisition system. The results obtained using the developed device when compared to those obtained from a commercially available physiological signal monitoring system for activities involving muscle contractions were found to be comparable (the comparison of various statistical parameters) between male and female subjects. In addition, the key advantage of this developed system over the conventional desktop personal computer-based acquisition systems is its portability due to the use of a tablet personal computer in which the results are accessible graphically as well as stored in text (comma-separated value) form.
Acceptance test report for portable exhauster POR-007/Skid E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriskovich, J.R.
1998-07-24
This document describes Acceptance Testing performed on Portable Exhauster POR-007/Skid E. It includes measurements of bearing vibration levels, pressure decay testing, programmable logic controller interlocks, high vacuum, flow and pressure control functional testing. The purpose of Acceptance testing documented by this report was to demonstrate compliance of the exhausters with the performance criteria established within HNF-0490, Rev. 1 following a repair and upgrade effort at Hanford. In addition, data obtained during this testing is required for the resolution of outstanding Non-conformance Reports (NCR), and finally, to demonstrate the functionality of the associated software for the pressure control and high vacuummore » exhauster operating modes provided for by W-320. Additional testing not required by the ATP was also performed to assist in the disposition and close out of receiving inspection report and for application design information (system curve). Results of this testing are also captured within this document.« less
Portable monitoring for the diagnosis of obstructive sleep apnea.
Collop, Nancy A
2008-11-01
The demand for expedient diagnosis of suspected obstructive sleep apnea (OSA) has increased due to improved awareness of sleep disorders. Polysomnography (PSG) is the current preferred diagnostic modality but is relatively inconvenient, expensive and inefficient. Portable monitoring has been developed and is widely used in countries outside the United States as an alternative approach. A portable monitor records fewer physiologic variables but is typically unattended and can be performed in the home. Numerous portable monitor studies have been performed over the past two to three decades. The US government and medical societies have extensively reviewed this literature several times in an attempt to determine if portable monitoring should be more broadly used for diagnosing OSA. In March 2008, the US Centers for Medicare and Medicaid Services released a statement allowing the use of portable monitoring to diagnose OSA and prescribe continuous positive airway pressure. This has potentially opened the door for more widespread use of these devices. This review will focus on the literature that has examined portable monitoring as a diagnostic tool for OSA. It is anticipated that portable monitoring as a diagnostic modality for OSA will be used more frequently in the United States following the Centers for Medicare and Medicaid Services ruling. Physicians and others considering the use of portable monitors should thoroughly understand the advantages and limitations of this technology.
Gómez-Simón, Antonia; Navarro-Núñez, Leyre; Pérez-Ceballos, Elena; Lozano, María L; Candela, María J; Cascales, Almudena; Martínez, Constantino; Corral, Javier; Vicente, Vicente; Rivera, José
2007-06-01
Predonation hemoglobin measurement is a problematic requirement in mobile donation settings, where accurate determination of venous hemoglobin by hematology analyzers is not available. We have evaluated hemoglobin screening in prospective donors by the semiquantitative copper sulphate test and by capillary blood samples analyzed by three portable photometers, HemoCue, STAT-Site MHgb, and the CompoLab HB system. Capillary blood samples were obtained from 380 donors and tested by the copper sulphate test and by at least one of the named portable photometers. Predonation venous hemoglobin was also determined in all donors using a Coulter Max-M analyzer. The three photometers provided acceptable reproducibility (CV below 5%), and displayed a significant correlation between the capillary blood samples and the venous hemoglobin (R2 0.5-0.8). HemoCue showed the best agreement with venous hemoglobin determination, followed by STAT-Site MHgb, and the CompoLab HB system. The copper sulphate test provided the highest rate of donors acceptance (83%) despite unacceptable hemoglobin levels, and the lowest rate for donor deferral (1%) despite acceptable hemoglobin levels. The percentage of donors correctly categorized for blood donation by the portable hemoglobinometers was 85%, 82%, and 76% for CompoLab HB system, HemoCue and STAT-Site, respectively. Our data suggest that hemoglobin determination remains a conflictive issue in donor selection in the mobile setting. Without appropriate performance control, capillary hemoglobin screening by either the copper sulphate method or by the novel portable hemoglobinometers could be inaccurate, thus potentially affecting both donor safety and the blood supply.
Development and application of dynamic simulations of a subsonic wind tunnel
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Cole, G. L.; Seidel, R. C.; Arpasi, D. J.
1986-01-01
Efforts are currently underway at NASA Lewis to improve and expand ground test facilities and to develop supporting technologies to meet anticipated aeropropulsion research needs. Many of these efforts have been focused on a proposed rehabilitation of the Altitude Wind Tunnel (AWT). In order to insure a technically sound design, an AWT modeling program (both analytical and physical) was initiated to provide input to the AWT final design process. This paper describes the approach taken to develop analytical, dynamic computer simulations of the AWT, and the use of these simulations as test-beds for: (1) predicting the dynamic response characteristics of the AWT, and (2) evaluating proposed AWT control concepts. Plans for developing a portable, real-time simulator for the AWT facility are also described.
Outsourcing Security Services for Low Performance Portable Devices
NASA Astrophysics Data System (ADS)
Szentgyörgyi, Attila; Korn, András
The number of portable devices using wireless network technologies is on the rise. Some of these devices are incapable of, or at a disadvantage at using secure Internet services, because secure communication often requires comparatively high computing capacity. In this paper, we propose a solution which can be used to offer secure network services for low performance portable devices without severely degrading data transmission rates. We also show that using our approach these devices can utilize some secure network services which were so far unavailable to them due to a lack of software support. In order to back up our claims, we present performance measurement results obtained in a test network.
Bunel, Vincent; Shoukri, Amr; Choin, Frederic; Roblin, Serge; Smith, Cindy; Similowski, Thomas; Morélot-Panzini, Capucine; Gonzalez, Jesus
2016-12-01
Bunel, Vincent, Amr Shoukri, Frederic Choin, Serge Roblin, Cindy Smith, Thomas Similowski, Capucine Morélot-Panzini, and Jésus Gonzalez. Bench evaluation of four portable oxygen concentrators under different conditions representing altitudes of 2438, 4200, and 8000 m. High Alt Med Biol. 17:370-374, 2016.-Air travel is responsible for a reduction of the partial pressure of oxygen (O 2 ) as a result of the decreased barometric pressure. This hypobaric hypoxia can be dangerous for passengers with respiratory diseases, requiring initiation or intensification of oxygen therapy during the flight. In-flight oxygen therapy can be provided by portable oxygen concentrators, which are less expensive and more practical than oxygen cylinders, but no study has evaluated their capacity to concentrate oxygen under simulated flight conditions. We tested four portable oxygen concentrators during a bench test study. The O 2 concentrations (FO 2 ) produced were measured under three different conditions: in room air at sea level, under hypoxia due to a reduction of the partial pressure of O 2 (normobaric hypoxia, which can be performed routinely), and under hypoxia due to a reduction of atmospheric pressure (hypobaric hypoxia, using a chamber manufactured by Airbus Defence and Space). The FO 2 obtained under conditions of hypobaric hypoxia (chamber) was lower than that measured in room air (0.92 [0.89-0.92] vs. 0.93 [0.92-0.94], p = 0.029), but only one portable oxygen concentrator was unable to maintain an FO 2 ≥ 0.90 (0.89 [0.89-0.89]). In contrast, under conditions of normobaric hypoxia (tent) simulating an altitude of 2438 m, none of the apparatuses tested was able to achieve an FO 2 greater than 0.76. (0.75 [0.75-0.76] vs. 0.93 [0.92-0.94], p = 0.029). Almost all portable oxygen concentrators were able to generate a sufficient quantity of O 2 at simulated altitudes of 2438 m and can therefore be used in the aircraft cabin. Unfortunately, verification of the reliability and efficacy of these devices in a patient would require a nonroutinely available technology, and no preflight test can currently be performed by using simple techniques such as hypobaric hypoxia.
Cremer, Miriam; Paul, Proma; Bergman, Katie; Haas, Michael; Maza, Mauricio; Zevallos, Albert; Ossandon, Miguel; Garai, Jillian D; Winkler, Jennifer L
2017-01-01
ABSTRACT Background: Gas-based cryotherapy is the most widely used treatment strategy for cervical intraepithelial neoplasia (CIN) in low-resource settings, but reliance on gas presents challenges in low- and middle-income countries (LMICs). Our team adapted the original CryoPen Cryosurgical System, a cryotherapy device that does not require compressed gas and is powered by electricity, for use in LMICs. Methods: A mixed-methods approach was used involving both qualitative and quantitative methods. First, we used a user-centered design approach to identify priority features of the adapted device. U.S.-based and global potential users of the adapted CryoPen participated in discussion groups and a card sorting activity to rank 7 features of the adapted CryoPen: cost, durability, efficacy and safety, maintenance, no need for electricity, patient throughput, and portability. Mean and median rankings, overall rankings, and summary rankings by discussion group were generated. In addition, results of several quantitative tests were analyzed including bench testing to determine tip temperature and heat extraction capabilities; a pathology review of CIN grade 3 cases (N=107) to determine target depth of necrosis needed to achieve high efficacy; and a pilot study (N=5) investigating depth of necrosis achieved with the adapted device to assess efficacy. Results: Discussion groups revealed 4 priority themes for device development in addition to the need to ensure high efficacy and safety and low cost: improved portability, durability, ease of use, and potential for cure. Adaptions to the original CryoPen system included a single-core, single-tip model; rugged carrying case; custom circuit to allow car battery charging; and sterilization by high-level disinfection. In bench testing, there were no significant differences in tip temperature or heat extraction capability between the adapted CryoPen and the standard cryotherapy device. In 80% of the cases in the pilot study, the adapted CryoPen achieved the target depth of necrosis 3.5 mm established in the pathology review. Conclusion: The LMIC-adapted CryoPen overcomes barriers to standard gas-based cryotherapy by eliminating dependency on gas, increasing portability, and ensuring consistent freeze temperatures. Further testing and evaluation of the adapted CryoPen will be pursued to assess scalability and potential impact of this device in decreasing the cervical cancer burden in LMICs. PMID:28351879
Cremer, Miriam; Paul, Proma; Bergman, Katie; Haas, Michael; Maza, Mauricio; Zevallos, Albert; Ossandon, Miguel; Garai, Jillian D; Winkler, Jennifer L
2017-03-24
Gas-based cryotherapy is the most widely used treatment strategy for cervical intraepithelial neoplasia (CIN) in low-resource settings, but reliance on gas presents challenges in low- and middle-income countries (LMICs). Our team adapted the original CryoPen Cryosurgical System, a cryotherapy device that does not require compressed gas and is powered by electricity, for use in LMICs. A mixed-methods approach was used involving both qualitative and quantitative methods. First, we used a user-centered design approach to identify priority features of the adapted device. U.S.-based and global potential users of the adapted CryoPen participated in discussion groups and a card sorting activity to rank 7 features of the adapted CryoPen: cost, durability, efficacy and safety, maintenance, no need for electricity, patient throughput, and portability. Mean and median rankings, overall rankings, and summary rankings by discussion group were generated. In addition, results of several quantitative tests were analyzed including bench testing to determine tip temperature and heat extraction capabilities; a pathology review of CIN grade 3 cases (N=107) to determine target depth of necrosis needed to achieve high efficacy; and a pilot study (N=5) investigating depth of necrosis achieved with the adapted device to assess efficacy. Discussion groups revealed 4 priority themes for device development in addition to the need to ensure high efficacy and safety and low cost: improved portability, durability, ease of use, and potential for cure. Adaptions to the original CryoPen system included a single-core, single-tip model; rugged carrying case; custom circuit to allow car battery charging; and sterilization by high-level disinfection. In bench testing, there were no significant differences in tip temperature or heat extraction capability between the adapted CryoPen and the standard cryotherapy device. In 80% of the cases in the pilot study, the adapted CryoPen achieved the target depth of necrosis 3.5 mm established in the pathology review. The LMIC-adapted CryoPen overcomes barriers to standard gas-based cryotherapy by eliminating dependency on gas, increasing portability, and ensuring consistent freeze temperatures. Further testing and evaluation of the adapted CryoPen will be pursued to assess scalability and potential impact of this device in decreasing the cervical cancer burden in LMICs. © Cremer et al.
Effectiveness of Cool Roof Coatings with Ceramic Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brehob, Ellen G; Desjarlais, Andre Omer; Atchley, Jerald Allen
2011-01-01
Liquid applied coatings promoted as cool roof coatings, including several with ceramic particles, were tested at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., for the purpose of quantifying their thermal performances. Solar reflectance measurements were made for new samples and aged samples using a portable reflectometer (ASTM C1549, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer) and for new samples using the integrating spheres method (ASTM E903, Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres). Thermal emittance was measured for the new samples using amore » portable emissometer (ASTM C1371, Standard Test Method for Determination of Emittance of Materials Near Room 1 Proceedings of the 2011 International Roofing Symposium Temperature Using Portable Emissometers). Thermal conductivity of the coatings was measured using a FOX 304 heat flow meter (ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus). The surface properties of the cool roof coatings had higher solar reflectance than the reference black and white material, but there were no significant differences among coatings with and without ceramics. The coatings were applied to EPDM (ethylene propylene diene monomer) membranes and installed on the Roof Thermal Research Apparatus (RTRA), an instrumented facility at ORNL for testing roofs. Roof temperatures and heat flux through the roof were obtained for a year of exposure in east Tennessee. The field tests showed significant reduction in cooling required compared with the black reference roof (~80 percent) and a modest reduction in cooling compared with the white reference roof (~33 percent). The coating material with the highest solar reflectivity (no ceramic particles) demonstrated the best overall thermal performance (combination of reducing the cooling load cost and not incurring a large heating penalty cost) and suggests solar reflectivity is the significant characteristic for selecting cool roof coatings.« less
NASA Astrophysics Data System (ADS)
Fauzan Zakki, Ahmad; Suharto; Windyandari, Aulia
2018-03-01
Several attempts have been made to reduce the risk of tsunami disasters such as the development of early warning systems, evacuation procedures training, coastal protection and coastal spatial planning. Although many efforts to mitigate the impact of the tsunami in Indonesia was made, no one has developed a portable disaster rescue vehicle/shelter as well as a lifeboat on ships and offshore building, which is always available when a disaster occurs. The aim of the paper is to evaluate the performance of cone capsule shaped hull form that would be used for the portable tsunami lifeboat. The investigation of the boat resistance, intact stability, and seakeeping characteristics was made. The numerical analysis results indicate that the cone capsule is reliable as an alternative hull form for the portable tsunami lifeboat.
Toward performance portability of the Albany finite element analysis code using the Kokkos library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.
Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less
Toward performance portability of the Albany finite element analysis code using the Kokkos library
Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.; ...
2018-02-05
Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less
Lewis, George K.; Olbricht, William L.
2008-01-01
We have developed a portable high power ultrasound system with a very low output impedance amplifier circuit (less than 0.3 Ω) that can transfer more than 90% of the energy from a battery supply to the ultrasound transducer. The system can deliver therapeutic acoustical energy waves at lower voltages than those in conventional ultrasound systems because energy losses owing to a mismatched impedance are eliminated. The system can produce acoustic power outputs over the therapeutic range (greater then 50 W) from a PZT-4, 1.54 MHz, and 0.75 in diameter piezoelectric ceramic. It is lightweight, portable, and powered by a rechargeable battery. The portable therapeutic ultrasound unit has the potential to replace “plug-in” medical systems and rf amplifiers used in research. The system is capable of field service on its internal battery, making it especially useful for military, ambulatory, and remote medical applications. PMID:19045903
Hand portable thin-layer chromatography system
Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.
2000-01-01
A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.
Obstacle avoidance system with sonar sensing and fuzzy logic
NASA Astrophysics Data System (ADS)
Chiang, Wen-chuan; Kelkar, Nikhal; Hall, Ernest L.
1997-09-01
Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of an obstacle avoidance system using sonar sensors for a modular autonomous mobile robot controller. The advantages of a modular system are related to portability and the fact that any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. The obstacle avoidance system is based on a micro-controller interfaced with multiple ultrasonic transducers. This micro-controller independently handles all timing and distance calculations and sends a distance measurement back to the computer via the serial line. This design yields a portable independent system. Testing of these systems has been done in the lab as well as on an outside test track with positive results that show that at five mph the vehicle can follow a line and at the same time avoid obstacles. This design, in its modularity, creates a portable autonomous obstacle avoidance controller applicable for any mobile vehicle with only minor adaptations.
Enhanced data consistency of a portable gait measurement system.
Lin, Hsien-I; Chiang, Y P
2013-11-01
A gait measurement system is a useful tool for rehabilitation applications. Such a system is used to conduct gait experiments in large workplaces such as laboratories where gait measurement equipment can be permanently installed. However, a gait measurement system should be portable if it is to be used in clinics or community centers for aged people. In a portable gait measurement system, the workspace is limited and landmarks on a subject may not be visible to the cameras during experiments. Thus, we propose a virtual-marker function to obtain positions of unseen landmarks for maintaining data consistency. This work develops a portable clinical gait measurement system consisting of lightweight motion capture devices, force plates, and a walkway assembled from plywood boards. We evaluated the portable clinic gait system with 11 normal subjects in three consecutive days in a limited experimental space. Results of gait analysis based on the verification of within-day and between-day coefficients of multiple correlations show that the proposed portable gait system is reliable.
Enhanced data consistency of a portable gait measurement system
NASA Astrophysics Data System (ADS)
Lin, Hsien-I.; Chiang, Y. P.
2013-11-01
A gait measurement system is a useful tool for rehabilitation applications. Such a system is used to conduct gait experiments in large workplaces such as laboratories where gait measurement equipment can be permanently installed. However, a gait measurement system should be portable if it is to be used in clinics or community centers for aged people. In a portable gait measurement system, the workspace is limited and landmarks on a subject may not be visible to the cameras during experiments. Thus, we propose a virtual-marker function to obtain positions of unseen landmarks for maintaining data consistency. This work develops a portable clinical gait measurement system consisting of lightweight motion capture devices, force plates, and a walkway assembled from plywood boards. We evaluated the portable clinic gait system with 11 normal subjects in three consecutive days in a limited experimental space. Results of gait analysis based on the verification of within-day and between-day coefficients of multiple correlations show that the proposed portable gait system is reliable.
Tykot, Robert H
2016-01-01
Elemental analysis is a fundamental method of analysis on archaeological materials to address their overall composition or identify the source of their geological components, yet having access to instrumentation, its often destructive nature, and the time and cost of analyses have limited the number and/or size of archaeological artifacts tested. The development of portable X-ray fluorescence (pXRF) instruments over the past decade, however, has allowed nondestructive analyses to be conducted in museums around the world, on virtually any size artifact, producing data for up to several hundred samples per day. Major issues have been raised, however, about the sensitivity, precision, and accuracy of these devices, and the limitation of performing surface analysis on potentially heterogeneous objects. The advantages and limitations of pXRF are discussed here regarding archaeological studies of obsidian, ceramics, metals, bone, and painted materials. © The Author(s) 2015.
Ultra low-cost, portable smartphone optosensors for mobile point-of-care diagnostics
NASA Astrophysics Data System (ADS)
Wang, Li-Ju; Chang, Yu-Chung; Sun, Rongrong; Li, Lei
2018-02-01
Smartphone optosensors with integrated optical components make mobile point-of-care (MPoC) diagnostics be done near patients' side. It'll especially have a significant impact on healthcare delivery in rural or remote areas. Current FDA-approved PoC devices achieving clinical level are still at high cost and not affordable in rural hospitals. We present a series of ultra low-cost smartphone optical sensing devices for mobile point-of-care diagnosis. Aiming different targeting analytes and sensing mechanisms, we developed custom required optical components for each smartphone optosensros. These optical devices include spectrum readers, colorimetric readers for microplate, lateral flow device readers, and chemiluminescence readers. By integrating our unique designed optical components into smartphone optosening platform, the anlaytes can be precisely detected. Clinical testing results show the clinical usability of our smartphone optosensors. Ultra low-cost portable smartphone optosensors are affordable for rural/remote doctors.
NASA Technical Reports Server (NTRS)
Fleming, K. J.; Crump, O. B.
1994-01-01
VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR's large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity have restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of and underground nuclear detonation. The Solid State VISAR uses a prototype diode pumped Nd:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors were developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).
Design of portable electrocardiogram device using DSO138
NASA Astrophysics Data System (ADS)
Abuzairi, Tomy; Matondang, Josef Stevanus; Purnamaningsih, Retno Wigajatri; Basari, Ratnasari, Anita
2018-02-01
Cardiovascular disease has been one of the leading causes of sudden cardiac deaths in many countries, covering Indonesia. Electrocardiogram (ECG) is a medical test to detect cardiac abnormalities by measuring the electrical activity generated by the heart, as the heart contracts. By using ECG, we can observe anomaly at the time of heart abnormalities. In this paper, design of portable ECG device is presented. The portable ECG device was designed to easily use in the village clinic or houses, due to the small size device and other benefits. The device was designed by using four units: (1) ECG electrode; (2) ECG analog front-end; (3) DSO138; and (4) battery. To create a simple electrode system in the portable ECG, 1-lead ECG with two electrodes were applied. The analog front-end circuitry consists of three integrated circuits, an instrumentation amplifier AD820AN, a low noise operational amplifier OPA134, and a low offset operational amplifier TL082. Digital ECG data were transformed to graphical data on DSO138. The results show that the portable ECG is successfully read the signal from 1-lead ECG system.
Portable nucleic acid thermocyclers.
Almassian, David R; Cockrell, Lisa M; Nelson, William M
2013-11-21
A nucleic acid thermal cycler is considered to be portable if it is under ten pounds, easily carried by one individual, and battery powered. Nucleic acid amplification includes both polymerase chain reaction (e.g. PCR, RT-PCR) and isothermal amplification (e.g. RPA, HDA, LAMP, NASBA, RCA, ICAN, SMART, SDA). There are valuable applications for portable nucleic acid thermocyclers in fields that include clinical diagnostics, biothreat detection, and veterinary testing. A system that is portable allows for the distributed detection of targets at the point of care and a reduction of the time from sample to answer. The designer of a portable nucleic acid thermocycler must carefully consider both thermal control and the detection of amplification. In addition to thermal control and detection, the designer may consider the integration of a sample preparation subsystem with the nucleic acid thermocycler. There are a variety of technologies that can achieve accurate thermal control and the detection of nucleic acid amplification. Important evaluation criteria for each technology include maturity, power requirements, cost, sensitivity, speed, and manufacturability. Ultimately the needs of a particular market will lead to user requirements that drive the decision between available technologies.
STS-41 MS Shepherd uses DTO 1206 portable computer on OV-103's middeck
1990-10-10
STS-41 Mission Specialist (MS) William M. Shepherd uses Detailed Test Objective (DTO) Space Station Cursor Control Device Evaluation MACINTOSH portable computer on the middeck of Discovery, Orbiter Vehicle (OV) 103. The computer is velcroed to forward lockers MF71C and MF71E. Surrounding Shepherd are checklists, the field sequential (FS) crew cabin camera, and a lighting fixture.
40 CFR Table 4 to Subpart Zzzz of... - Requirements for Performance Tests
Code of Federal Regulations, 2010 CFR
2010-07-01
... and outlet of the control device; and (1) Portable CO and O2 analyzer. (a) Using ASTM D6522-00 (2005... control device (1) Portable CO and O2 analyzer. (a) Using ASTM D6522-00 (2005) a,b (incorporated by..., appendix A, or ASTM Method D6522-00 (2005) (a) Measurements to determine O2 concentration must be made at...
Deschamps, Kevin; Messier, Benjamin
2015-03-01
Pressure redistribution and off-loading is a vital component in the management of the foot in diabetes. In the present study, a new portable system encompassing thin piezoresistors was tested for clinical utility and efficacy with respect to a commonly used pressure relieving dressing for the foot in diabetes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Vo, Evanly; Horvatin, Matthew; Zhuang, Ziqing
2018-05-21
This study compared the performance of the following field portable aerosol instrument sets to performance of the reference Scanning Mobility Particle Sizer (SMPS): the handheld CPC-3007, the portable aerosol mobility spectrometer (PAMS), the NanoScan scanning mobility particle sizer (NanoScan SMPS) combined with an optical particle sizer (OPS). Tests were conducted with monodispersed and polydispersed aerosols. Monodispersed aerosols were controlled at the approximate concentration of 1 × 105 particles cm-3 and four monodispersed particle sizes of 30, 60, 100, and 300 nm were selected and classified for the monodispersed aerosol test, while three different steady-state concentration levels (low, medium, and high: ~8 × 103, 5 × 104, and 1 × 105 particles cm-3, respectively) were selected for the polydispersed aerosol test. For all four monodispersed aerosol sizes, particle concentrations measured with the NanoScan SMPS were within 13% of those measured with the reference SMPS. Particle concentrations measured with the PAMS were within 25% of those measured with the reference SMPS. Concentrations measured with the handheld condensation particle counter were within 30% of those measured with the reference SMPS. For the polydispersed aerosols, the particle sizes and concentrations measured with the NanoScan-OPS compared most favorably with those measured with the reference SMPS for three different concentration levels of low, medium, and high (concentration deviations ≤10% for all three concentration levels; deviations of particle size ≤4%). Although the particle-size comparability between the PAMS and the reference SMPS was quite reasonable with the deviations within 10%, the polydispersed particle concentrations measured with the PAMS were within 36% of those measured with the reference SMPS. The results of this evaluation will be useful for selecting a suitable portable device for our next workplace study phase of respiratory protection assessment. This study also provided the advantages and limitations of each individual portable instrument and therefore results from this study can be used by industrial hygienists and safety professionals, with appropriate caution, when selecting a suitable portable instrument for aerosol particle measurement in nanotechnology workplaces.
Childhood lead poisoning investigations: evaluating a portable instrument for testing soil lead.
Reames, Ginger; Lance, Larrie L
2002-04-01
The Childhood Lead Poisoning Prevention Branch of the California Department of Health Services evaluated a portable X-ray fluorescence (XRF) instrument for use as a soil lead-testing tool during environmental investigations of lead-poisoned children's homes. A Niton XRF was used to test soil at 119 sampling locations in the yards of 11 San Francisco Bay Area houses. Niton XRF readings were highly correlated with laboratory results and met the study criteria for an acceptable screening method. The data suggest that the most health-protective and time-efficient approach to testing for soil lead above regulatory levels is to take either surface readings or readings of a test cup of soil prepared by grinding with a mortar and pestle. The advantage of the test cup method is that the test cup with soil may be submitted to a laboratory for confirmatory analysis.
NASA Astrophysics Data System (ADS)
Shiou, Fang-Jung; Lai, Yao-Zih; Tsai, Min-Long
2011-12-01
Due to the volumetric shrinkage of the resin and the induced residual stress during the curing process, the reflection on the gel-coating layer surface will be imperfect if twists and wrinkles exist on the gel-coating surface. This phenomenon is denoted as print-through phenomenon (PTP). Currently, the detection of PTP for most of the yacht industry using the composite materials is performed mainly by visual inspection, and its quality is needed to be quantified to determine their grades. Therefore, there is a need to develop a lightweight portable optical measurement system that can be applied quickly to inspect different levels of PTP for the fiber-reinforced plastics (FRP) of the yacht body. The measurement system was developed based on the scattering principle of a reflected laser fringe projected on to the workpiece surface. Two indexes, namely the profile peak-valley height and wave-height of the Fast-Fourier Transform based on the centerline of the extracted image profile, were proposed to quantify the PTP of a test specimen. The mean line width of the extracted image was applied to evaluate the surface roughness of the test specimen, based on the scattering theorem. A set of software programmed with Borland C++ Builder language was developed to calculate the proposed indexes and the mean line width. The developed measurement system has been taken to some yacht factories to do the on-site measurements. The measurement results were, in general, consistent with the surface conditions of the polished surfaces.
Screening of ground water samples for volatile organic compounds using a portable gas chromatograph
Buchmiller, R.C.
1989-01-01
A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author
Center for Global Health announces grants to support portable technologies
NCI's Center for Global Health announced grants that will support the development and validation of low-cost, portable technologies. These technologies have the potential to improve early detection, diagnosis, and non-invasive or minimally invasive treatm
X-ray fluorescence for quantification of lead and strontium in vivo
NASA Astrophysics Data System (ADS)
Specht, Aaron James
Lead (Pb) is a toxicant well known for its effects on almost every organ system in the body. Pb use in industry has declined since removal of Pb from gasoline, but many developing countries still have significant use of Pb. Exposure to Pb has been linked with diseases causing neurodegeneration and thus have lasting effects long after the initial exposure. Another metal, strontium (Sr), has been linked with bone disease in particular situations and shown to have uses in treating osteoporosis as a supplement. However, there are no studies of the effects of Sr using a meaningful biomarker. The most commonly used biomarkers for Pb and Sr exposures are blood Pb and Sr; however, blood tests are unable to identify long-term exposure levels due to the short half-life of these metals in blood. Bone stores of Pb and Sr have a half-life of years to decades and serve as a biomarker of long-term exposure. X-ray fluorescence has been used to measure bone Pb and Sr. However, current systems have limitations with radioisotope sources, bulky equipment, and long measurement times. A portable XRF device capable of measurement of bone Pb and Sr, overcomes the limitation of the current systems and has been developed in this work. The detection limit of the portable XRF for bone Pb and Sr was found to be 11 ppm and 5 ppm respectively at 5 mm of skin thickness. The portable XRF will have limitations of measurement based on an individual's skin thickness. The device was calibrated using standard phantoms and validated with in-lab samples, which demonstrated good agreement between KXRF and portable XRF measurements with strong correlations between goat bone, cadaver bone, and phantom measurements. In a population study of Pb poisoned children the portable XRF was further validated and a significant correlation between KXRF measured bone Pb and portable XRF measured bone Pb was identified; however, the device had limitations based on anatomical differences unaccounted for in children from our calibration. Adaptations of our calibration to account for the differences in children's bone can be used to further improve on the results we obtained. Pb biokinetics was studied in these children, and the blood Pb half-life in the children was calculated to be about 10 days, which is much short than the 30 day half-life identified for adults. Bone Sr was measured in these children and a significant correlation with age was identified, indicating the Sr accumulates in bone. A novel high-energy x-ray tube based KXRF measurement system was tested for its feasibility of in vivo measurement of metals in bone using Monte Carlo (MC) simulation. The novel system shows a combination of the advantages of the portable XRF with a smaller scale device, x-ray tube source, and room temperature detector, as well as the advantages of the KXRF of minimal soft tissue signal degradation with more applicability to a wider range of populations. This device, with an optimized x-ray tube and uranium target of 0.056 mm, was found to have a detection limit for bone Pb measurement of about 3.6 ppm and could be adapted for measurements of multiple metals.
Smart portable rehabilitation devices.
Mavroidis, Constantinos; Nikitczuk, Jason; Weinberg, Brian; Danaher, Gil; Jensen, Katherine; Pelletier, Philip; Prugnarola, Jennifer; Stuart, Ryan; Arango, Roberto; Leahey, Matt; Pavone, Robert; Provo, Andrew; Yasevac, Dan
2005-07-12
The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s). In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Laboratory tests of the devices demonstrated that they were able to meet their design objectives. The prototypes of portable rehabilitation devices presented here did demonstrate that these concepts are capable of the performance their commercially available but non-portable counterparts exhibit. Smart, portable devices with the ability for real time monitoring and adjustment open a new era in rehabilitation where the recovery process could be dramatically improved.
Smart portable rehabilitation devices
Mavroidis, Constantinos; Nikitczuk, Jason; Weinberg, Brian; Danaher, Gil; Jensen, Katherine; Pelletier, Philip; Prugnarola, Jennifer; Stuart, Ryan; Arango, Roberto; Leahey, Matt; Pavone, Robert; Provo, Andrew; Yasevac, Dan
2005-01-01
Background The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s). Methods In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Results Laboratory tests of the devices demonstrated that they were able to meet their design objectives. The prototypes of portable rehabilitation devices presented here did demonstrate that these concepts are capable of the performance their commercially available but non-portable counterparts exhibit. Conclusion Smart, portable devices with the ability for real time monitoring and adjustment open a new era in rehabilitation where the recovery process could be dramatically improved. PMID:16011801
A simple dental caries detection system using full spectrum of laser-induced fluorescence
NASA Astrophysics Data System (ADS)
Rocha-Cabral, Renata Maciel; Mendes, Fausto Medeiros; Maldonado, Edison Puig; Zezell, Denise Maria
2015-06-01
Objectives: to develop an apparatus for the detection of early caries lesions in enamel using the full extent of the tooth fluorescence spectrum, through the integration of a laser diode, fiber optics, filters and one portable spectrometer connected to a computer, all commercially available; to evaluate the developed device in clinical and laboratory tests, and compare its performance with commercial equipment. Methods: clinical examinations were performed in patients with indication for exodontics of premolars. After examinations, the patients underwent surgery and the teeth were stored individually. The optical measurements were repeated approximately two months after extraction, on the same sites previously examined, then histological analysis was carried out. Results: the spectral detector has presented high specificity and moderate sensitivity when applied to differentiate between healthy and damaged tissues, with no significant differences from the performance of the commercial equipment. The developed device is able to detect initial damages in enamel, with depth of approximately 300 μm. Conclusions: we successfully demonstrated the development of a simple and portable system based in laser-induced fluorescence for caries detection, assembled from common commercial parts. As the spectral detector acquires a complete recording of the spectrum from each tissue, it is possible to use it for monitoring developments of caries lesions.
NASA Astrophysics Data System (ADS)
Kim, Minkook; Lee, Dai Gil
2016-05-01
Polymer electrolyte membrane fuel cells (PEMFC) exhibit a wide power range, low operating temperature, high energy density and long life time. These advantages favor PEMFC for applications such as vehicle power sources, portable power, and backup power applications. With the push towards the commercialization of PEMFC, especially for portable power applications, the overall balance of plants (BOPs) of the systems should be minimized. To reduce the mass and complexity of the systems, air-breathing PEMFC stack design with open cathode channel configuration is being developed. However, the open cathode channel configuration incurs hydrogen leakage problem. In this study, the bonding strength of a silicon adhesive between the Nafion membrane and the carbon fiber/epoxy composite bipolar plate was measured. Then, an anode bipolar plate/membrane assembly unit which was bonded with the silicone adhesive was developed to solve the hydrogen leakage problem. The reliability of the anode bipolar plate/membrane assembly unit was estimated under the internal pressure of hydrogen by the FE analysis. Additionally, the gas sealability of the developed air breathing PEMFC unit cell was experimentally measured. Finally, unit cell performance of the developed anode bipolar plate/membrane assembly unit was tested and verified under operating conditions without humidity and temperature control.
Portable, one-step, and rapid GMR biosensor platform with smartphone interface.
Choi, Joohong; Gani, Adi Wijaya; Bechstein, Daniel J B; Lee, Jung-Rok; Utz, Paul J; Wang, Shan X
2016-11-15
Quantitative immunoassay tests in clinical laboratories require trained technicians, take hours to complete with multiple steps, and the instruments used are generally immobile-patient samples have to be sent in to the labs for analysis. This prevents quantitative immunoassay tests to be performed outside laboratory settings. A portable, quantitative immunoassay device will be valuable in rural and resource-limited areas, where access to healthcare is scarce or far away. We have invented Eigen Diagnosis Platform (EDP), a portable quantitative immunoassay platform based on Giant Magnetoresistance (GMR) biosensor technology. The platform does not require a trained technician to operate, and only requires one-step user involvement. It displays quantitative results in less than 15min after sample insertion, and each test costs less than US$4. The GMR biosensor employed in EDP is capable of detecting multiple biomarkers in one test, enabling a wide array of immune diagnostics to be performed simultaneously. In this paper, we describe the design of EDP, and demonstrate its capability. Multiplexed assay of human immunoglobulin G and M (IgG and IgM) antibodies with EDP achieves sensitivities down to 0.07 and 0.33 nanomolar, respectively. The platform will allow lab testing to be performed in remote areas, and open up applications of immunoassay testing in other non-clinical settings, such as home, school, and office. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of Android apps for cognitive assessment of dementia and delirium.
Weir, Alexander J; Paterson, Craig A; Tieges, Zoe; MacLullich, Alasdair M; Parra-Rodriguez, Mario; Della Sala, Sergio; Logie, Robert H
2014-01-01
The next generation of medical technology applications for hand-held portable platforms will provide a core change in performance and sophistication, transforming the way health care professionals interact with patients. This advance is particularly apparent in the delivery of cognitive patient assessments, where smartphones and tablet computers are being used to assess complex neurological conditions to provide objective, accurate and reproducible test results. This paper reports on two such applications (apps) that have been developed to assist healthcare professionals with the detection and diagnosis of dementia and delirium.
Code of Federal Regulations, 2010 CFR
2010-07-01
... VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS Control of Evaporative... may test any portable fuel container subject to the standards of this subpart. (a) Certification and...
Final Summary Report on Project 3310 Marine Diesel Exhaust Emissions (Alternative Fuels)
1997-09-01
of five types) operating on the West Coast. Of the 14 vessels tested, eight were found to exceed the proposed NOx limits, although some by very small amounts....develop methodology applicable for use on small vessels by using portable emission analyzers, and to examine various potential means of reducing excessive...This report summarizes the results of a 5-year study to ascertain the magnitude of emission problems from Coast Guard and
van Schie, Mojca K M; Werth, Esther; Lammers, Gert Jan; Overeem, Sebastiaan; Baumann, Christian R; Fronczek, Rolf
2016-08-01
This two-centre observational study of vigilance measurements assessed the feasibility of vigilance measurements on multiple days using the Sustained Attention to Response Task and the Psychomotor Vigilance Test with portable task equipment, and subsequently assessed the effect of sodium oxybate treatment on vigilance in patients with narcolepsy. Twenty-six patients with narcolepsy and 15 healthy controls were included. The study comprised two in-laboratory days for the Maintenance of Wakefulness Test and the Oxford Sleep Resistance test, followed by 7-day portable vigilance battery measurements. This procedure was repeated for patients with narcolepsy after at least 3 months of stable treatment with sodium oxybate. Patients with narcolepsy had a higher Sustained Attention to Response Task error count, lower Psychomotor Vigilance Test reciprocal reaction time, higher Oxford Sleep Resistance test omission error count adjusted for test duration (Oxford Sleep Resistance testOMIS / MIN ), and lower Oxford Sleep Resistance test and Maintenance of Wakefulness Test sleep latency compared with controls (all P < 0.01). Treatment with sodium oxybate was associated with a longer Maintenance of Wakefulness Test sleep latency (P < 0.01), lower Oxford Sleep Resistance testOMIS / MIN (P = 0.01) and a lower Sustained Attention to Response Task error count (P = 0.01) in patients with narcolepsy, but not with absolute changes in Oxford Sleep Resistance test sleep latency or Psychomotor Vigilance Test reciprocal reaction time. It was concluded that portable measurements of sustained attention as well as in-laboratory Oxford Sleep Resistance test and Maintenance of Wakefulness Test measurements revealed worse performance for narcoleptic patients compared with controls, and that sodium oxybate was associated with an improvement of sustained attention and a better resistance to sleep. © 2016 European Sleep Research Society.
NASA Technical Reports Server (NTRS)
1977-01-01
In the sixties, Chrysler was NASA's prime contractor for the Saturn I and IB test launch vehicles. The company installed and operated at Huntsville what was known as the Saturn I/IB Development Breadboard Facility. "Breadboard," means an array of electrical and electronic equipment for performing a variety of development and test functions. This work gave Chrysler a broad capability in computerized testing to assure quality control in development of solid-state electronic systems. Today that division is manufacturing many products not destined for NASA, most of them being associated with the company's automotive line. A major project is production and quality-control testing of the "lean-burn" engine, one that has a built-in Computer to control emission timing, and allow the engine to run on a leaner mixture of fuel and air. Other environment-related products include vehicle emission analyzers. The newest of the line is an accurate, portable solid state instrument for testing auto exhaust gases. The exhaust analyzers, now being produced for company dealers and for service
Kao, Peng-Kai; Hsu, Cheng-Che
2014-09-02
A portable microplasma generation device (MGD) operated in ambient air is introduced for making a microfluidic paper-based analytical device (μPAD) that serves as a primary healthcare platform. By utilizing a printed circuit board fabrication process, a flexible and lightweight MGD can be fabricated within 30 min with ultra low-cost. This MGD can be driven by a portable power supply (less than two pounds), which can be powered using 12 V-batteries or ac-dc converters. This MGD is used to perform maskless patterning of hydrophilic patterns with sub-millimeter spatial resolution on hydrophobic paper substrates with good pattern transfer fidelity. Using this MGD to fabricate μPADs is demonstrated. With a proper design of the MGD electrode geometry, μPADs with 500-μm-wide flow channels can be fabricated within 1 min and with a cost of less than $USD 0.05/device. We then test the μPADs by performing quantitative colorimetric assay tests and establish a calibration curve for detection of glucose and nitrite. The results show a linear response to a glucose assay for 1-50 mM and a nitrite assay for 0.1-5 mM. The low cost, miniaturized, and portable MGD can be used to fabricate μPADs on demand, which is suitable for in-field diagnostic tests. We believe this concept brings impact to the field of biomedical analysis, environmental monitoring, and food safety survey.
Automated spot defect characterization in a field portable night vision goggle test set
NASA Astrophysics Data System (ADS)
Scopatz, Stephen; Ozten, Metehan; Aubry, Gilles; Arquetoux, Guillaume
2018-05-01
This paper discusses a new capability developed for and results from a field portable test set for Gen 2 and Gen 3 Image Intensifier (I2) tube-based Night Vision Goggles (NVG). A previous paper described the test set and the automated and semi-automated tests supported for NVGs including a Knife Edge MTF test to replace the operator's interpretation of the USAF 1951 resolution chart. The major improvement and innovation detailed in this paper is the use of image analysis algorithms to automate the characterization of spot defects of I² tubes with the same test set hardware previously presented. The original and still common Spot Defect Test requires the operator to look through the NVGs at target of concentric rings; compare the size of the defects to a chart and manually enter the results into a table based on the size and location of each defect; this is tedious and subjective. The prior semi-automated improvement captures and displays an image of the defects and the rings; allowing the operator determine the defects with less eyestrain; while electronically storing the image and the resulting table. The advanced Automated Spot Defect Test utilizes machine vision algorithms to determine the size and location of the defects, generates the result table automatically and then records the image and the results in a computer-generated report easily usable for verification. This is inherently a more repeatable process that ensures consistent spot detection independent of the operator. Results of across several NVGs will be presented.
Test procedures and data input techniques for skid testing.
DOT National Transportation Integrated Search
1974-01-01
The purpose of this report is to describe the system for obtaining and handling skid data, including skid testing procedures and data input procedures. While all testing devices used in Virginia are covered (other than the British portable tester), t...
49 CFR 236.587 - Departure test.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Departure test. 236.587 Section 236.587..., Train Control and Cab Signal Systems Inspection and Tests; Locomotive § 236.587 Departure test. (a) The...: (1) Operation over track elements; (2) Operation over test circuit; (3) Use of portable test...
49 CFR 236.587 - Departure test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Departure test. 236.587 Section 236.587..., Train Control and Cab Signal Systems Inspection and Tests; Locomotive § 236.587 Departure test. (a) The...: (1) Operation over track elements; (2) Operation over test circuit; (3) Use of portable test...
Development of a portable petroleum by-products chemical sensor, phase 1 and 2 report.
DOT National Transportation Integrated Search
2006-07-31
We have proposed to tailor design nanoparticle based chemical sensors for the sensitive, selective and field portable analyses of soil samples for petroleum spill indicating hydrocarbons (such as benzene, toluene, ethyl-benzenes, xylenes, PCBs, trich...
A portable device for the measurement of evaporative water loss.
DOT National Transportation Integrated Search
1967-08-01
A portable device has been developed for the precise measurement of evaporative water loss. Under appropriate conditions the measurement of evaporative water loss may be used as an index of 'emotional stress' in flying personnel. The apparatus incorp...
Chang, Keke; Chen, Ruipeng; Wang, Shun; Li, Jianwei; Hu, Xinran; Liang, Hao; Cao, Baiqiong; Sun, Xiaohui; Ma, Liuzheng; Zhu, Juanhua; Jiang, Min; Hu, Jiandong
2015-08-19
The aim of this study was to develop a circuit for an inexpensive portable biosensing system based on surface plasmon resonance spectroscopy. This portable biosensing system designed for field use is characterized by a special structure which consists of a microfluidic cell incorporating a right angle prism functionalized with a biomolecular identification membrane, a laser line generator and a data acquisition circuit board. The data structure, data memory capacity and a line charge-coupled device (CCD) array with a driving circuit for collecting the photoelectric signals are intensively focused on and the high performance analog-to-digital (A/D) converter is comprehensively evaluated. The interface circuit and the photoelectric signal amplifier circuit are first studied to obtain the weak signals from the line CCD array in this experiment. Quantitative measurements for validating the sensitivity of the biosensing system were implemented using ethanol solutions of various concentrations indicated by volume fractions of 5%, 8%, 15%, 20%, 25%, and 30%, respectively, without a biomembrane immobilized on the surface of the SPR sensor. The experiments demonstrated that it is possible to detect a change in the refractive index of an ethanol solution with a sensitivity of 4.99838 × 10(5) ΔRU/RI in terms of the changes in delta response unit with refractive index using this SPR biosensing system, whereby the theoretical limit of detection of 3.3537 × 10(-5) refractive index unit (RIU) and a high linearity at the correlation coefficient of 0.98065. The results obtained from a series of tests confirmed the practicality of this cost-effective portable SPR biosensing system.
Handheld probe for portable high frame photoacoustic/ultrasound imaging system
NASA Astrophysics Data System (ADS)
Daoudi, K.; van den Berg, P. J.; Rabot, O.; Kohl, A.; Tisserand, S.; Brands, P.; Steenbergen, W.
2013-03-01
Photoacoustics is a hybrid imaging modality that is based on the detection of acoustic waves generated by absorption of pulsed light by tissue chromophors. In current research, this technique uses large and costly photoacoustic systems with a low frame rate imaging. To open the door for widespread clinical use, a compact, cost effective and fast system is required. In this paper we report on the development of a small compact handset pulsed laser probe which will be connected to a portable ultrasound system for real-time photoacoustic imaging and ultrasound imaging. The probe integrates diode lasers driven by an electrical driver developed for very short high power pulses. It uses specifically developed highly efficient diode stacks with high frequency repetition rate up to 10 kHz, emitting at 800nm wavelength. The emitted beam is collimated and shaped with compact micro optics beam shaping system delivering a homogenized rectangular laser beam intensity distribution. The laser block is integrated with an ultrasound transducer in an ergonomically designed handset probe. This handset is a building block enabling for a low cost high frame rate photoacoustic and ultrasound imaging system. The probe was used with a modified ultrasound scanner and was tested by imaging a tissue mimicking phantom.
Development of a portable graphite calorimeter for radiation dosimetry.
Sakama, Makoto; Kanai, Tatsuaki; Fukumura, Akifumi
2008-01-01
We developed and performance-tested a portable graphite calorimeter designed to measure the absolute dosimetry of various beams including heavy-ion beams, based on a flexible and convenient means of measurement. This measurement system is fully remote-controlled by the GPIB system. This system uses a digital PID (Proportional, Integral, Derivative) control method based on the LabVIEW software. It was possible to attain stable conditions in a shorter time by this system. The standard deviation of the measurements using the calorimeter was 0.79% at a dose rate of 0.8 Gy/min in 17 calorimeter runs for a (60)Co photon beam. The overall uncertainties for the absorbed dose to graphite and water of the (60)Co photon beam using the developed calorimeter were 0.89% and 1.35%, respectively. Estimations of the correction factors due to vacuum gaps, impurities in the core, the dose gradient and the radiation profile were included in the uncertainties. The absorbed doses to graphite and water irradiated by the (60)Co photon beam were compared with dosimetry measurements obtained using three ionization chambers. The absorbed doses to graphite and water estimated by the two dosimetry methods agreed within 0.1% and 0.3%, respectively.
Development and testing of a portable wind sensitive directional air sampler
NASA Technical Reports Server (NTRS)
Deyo, J.; Toma, J.; King, R. B.
1975-01-01
A portable wind sensitive directional air sampler was developed as part of an air pollution source identification system. The system is designed to identify sources of air pollution based on the directional collection of field air samples and their analysis for TSP and trace element characteristics. Sources can be identified by analyzing the data on the basis of pattern recognition concepts. The unit, designated Air Scout, receives wind direction signals from an associated wind vane. Air samples are collected on filter slides using a standard high volume air sampler drawing air through a porting arrangement which tracks the wind direction and permits collection of discrete samples. A preset timer controls the length of time each filter is in the sampling position. At the conclusion of the sampling period a new filter is automatically moved into sampling position displacing the previous filter to a storage compartment. Thus the Air Scout may be set up at a field location, loaded with up to 12 filter slides, and left to acquire air samples automatically, according to the wind, at any timer interval desired from 1 to 30 hours.
NASA Astrophysics Data System (ADS)
Dubecký, F.; Perd'ochová, A.; Ščepko, P.; Zat'ko, B.; Sekerka, V.; Nečas, V.; Sekáčová, M.; Hudec, M.; Boháček, P.; Huran, J.
2005-07-01
The present work describes a portable digital X-ray scanner based on bulk undoped semi-insulating (SI) GaAs monolithic strip line detectors. The scanner operates in "quantum" imaging mode ("single photon counting"), with potential improvement of the dynamic range in contrast of the observed X-ray images. The "heart" of the scanner (detection unit) is based on SI GaAs strip line detectors. The measured detection efficiency of the SI GaAs detector reached a value of over 60 % (compared to the theoretical one of ˜75 %) for the detection of 60 keV photons at a reverse bias of 200 V. The read-out electronics consists of 20 modules fabricated using a progressive SMD technology with automatic assembly of electronic devices. Signals from counters included in the digital parts of the modules are collected in a PC via a USB port and evaluated by custom developed software allowing X-ray image reconstruction. The collected data were used for the creation of the first X-ray "quantum" images of various test objects using the imaging software developed.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... Nonphysician practitioners (that is, clinical nurse specialists, clinical psychologists, clinical social... that do not involve the use of contrast media; and (iii) Diagnostic mammograms if the approved portable...
V-SUIT Model Validation Using PLSS 1.0 Test Results
NASA Technical Reports Server (NTRS)
Olthoff, Claas
2015-01-01
The dynamic portable life support system (PLSS) simulation software Virtual Space Suit (V-SUIT) has been under development at the Technische Universitat Munchen since 2011 as a spin-off from the Virtual Habitat (V-HAB) project. The MATLAB(trademark)-based V-SUIT simulates space suit portable life support systems and their interaction with a detailed and also dynamic human model, as well as the dynamic external environment of a space suit moving on a planetary surface. To demonstrate the feasibility of a large, system level simulation like V-SUIT, a model of NASA's PLSS 1.0 prototype was created. This prototype was run through an extensive series of tests in 2011. Since the test setup was heavily instrumented, it produced a wealth of data making it ideal for model validation. The implemented model includes all components of the PLSS in both the ventilation and thermal loops. The major components are modeled in greater detail, while smaller and ancillary components are low fidelity black box models. The major components include the Rapid Cycle Amine (RCA) CO2 removal system, the Primary and Secondary Oxygen Assembly (POS/SOA), the Pressure Garment System Volume Simulator (PGSVS), the Human Metabolic Simulator (HMS), the heat exchanger between the ventilation and thermal loops, the Space Suit Water Membrane Evaporator (SWME) and finally the Liquid Cooling Garment Simulator (LCGS). Using the created model, dynamic simulations were performed using same test points also used during PLSS 1.0 testing. The results of the simulation were then compared to the test data with special focus on absolute values during the steady state phases and dynamic behavior during the transition between test points. Quantified simulation results are presented that demonstrate which areas of the V-SUIT model are in need of further refinement and those that are sufficiently close to the test results. Finally, lessons learned from the modelling and validation process are given in combination with implications for the future development of other PLSS models in V-SUIT.
Code of Federal Regulations, 2014 CFR
2014-10-01
....): (A) Without insulation or sun shield: 60 °C (140 °F); (B) With sun shield: 55 °C (131 °F); and (C) With insulation: 50 °C (122 °F). (3) Filling density means the average mass of liquefied compressed gas... stamped in accordance with the ASME Code, Section VIII. (2) Portable tanks must be postweld heat-treated...
Code of Federal Regulations, 2012 CFR
2012-10-01
....): (A) Without insulation or sun shield: 60 °C (140 °F); (B) With sun shield: 55 °C (131 °F); and (C) With insulation: 50 °C (122 °F). (3) Filling density means the average mass of liquefied compressed gas... stamped in accordance with the ASME Code, Section VIII. (2) Portable tanks must be postweld heat-treated...
Code of Federal Regulations, 2013 CFR
2013-10-01
....): (A) Without insulation or sun shield: 60 °C (140 °F); (B) With sun shield: 55 °C (131 °F); and (C) With insulation: 50 °C (122 °F). (3) Filling density means the average mass of liquefied compressed gas... stamped in accordance with the ASME Code, Section VIII. (2) Portable tanks must be postweld heat-treated...
Code of Federal Regulations, 2010 CFR
2010-10-01
....): (A) Without insulation or sun shield: 60 °C (140 °F); (B) With sun shield: 55 °C (131 °F); and (C) With insulation: 50 °C (122 °F). (3) Filling density means the average mass of liquefied compressed gas... stamped in accordance with the ASME Code, Section VIII. (2) Portable tanks must be postweld heat-treated...
Code of Federal Regulations, 2011 CFR
2011-10-01
....): (A) Without insulation or sun shield: 60 °C (140 °F); (B) With sun shield: 55 °C (131 °F); and (C) With insulation: 50 °C (122 °F). (3) Filling density means the average mass of liquefied compressed gas... stamped in accordance with the ASME Code, Section VIII. (2) Portable tanks must be postweld heat-treated...
Portable exhauster POR-007/Skid E and POR-008/Skid F storage plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, O.D.
1998-07-25
This document provides storage requirements for 1,000 CFM portable exhausters POR-O07/Skid E and POR-008/Skid F. These requirements are presented in three parts: preparation for storage, storage maintenance and testing, and retrieval from storage. The exhauster component identification numbers listed in this document contain the prefix POR-007 or POR-008 depending on which exhauster is being used.
Park, Hee-Won; Baek, Sora; Kim, Hong Young; Park, Jung-Gyoo; Kang, Eun Kyoung
2017-10-01
To investigate the reliability and validity of a new method for isometric back extensor strength measurement using a portable dynamometer. A chair equipped with a small portable dynamometer was designed (Power Track II Commander Muscle Tester). A total of 15 men (mean age, 34.8±7.5 years) and 15 women (mean age, 33.1±5.5 years) with no current back problems or previous history of back surgery were recruited. Subjects were asked to push the back of the chair while seated, and their isometric back extensor strength was measured by the portable dynamometer. Test-retest reliability was assessed with intraclass correlation coefficient (ICC). For the validity assessment, isometric back extensor strength of all subjects was measured by a widely used physical performance evaluation instrument, BTE PrimusRS system. The limit of agreement (LoA) from the Bland-Altman plot was evaluated between two methods. The test-retest reliability was excellent (ICC=0.82; 95% confidence interval, 0.65-0.91). The Bland-Altman plots demonstrated acceptable agreement between the two methods: the lower 95% LoA was -63.1 N and the upper 95% LoA was 61.1 N. This study shows that isometric back extensor strength measurement using a portable dynamometer has good reliability and validity.
Development and Applications of Portable Biosensors.
Srinivasan, Balaji; Tung, Steve
2015-08-01
The significance of microfluidics-based and microelectromechanical systems-based biosensors has been widely acknowledged, and many reviews have explored their potential applications in clinical diagnostics, personalized medicine, global health, drug discovery, food safety, and forensics. Because health care costs are increasing, there is an increasing need to remotely monitor the health condition of patients by point-of-care-testing. The demand for biosensors for detection of biological warfare agents has increased, and research is focused on ways of producing small portable devices that would allow fast, accurate, and on-site detection. In the past decade, the demand for rapid and accurate on-site detection of plant disease diagnosis has increased due to emerging pathogens with resistance to pesticides, increased human mobility, and regulations limiting the application of toxic chemicals to prevent spread of diseases. The portability of biosensors for on-site diagnosis is limited due to various issues, including sample preparation techniques, fluid-handling techniques, the limited lifetime of biological reagents, device packaging, integrating electronics for data collection/analysis, and the requirement of external accessories and power. Many microfluidic, electronic, and biological design strategies, such as handling liquids in biosensors without pumps/valves, the application of droplet-based microfluidics, paper-based microfluidic devices, and wireless networking capabilities for data transmission, are being explored. © 2015 Society for Laboratory Automation and Screening.
Huang, Yunguang; Li, Jinxu; Tang, Bin; Zhu, Liping; Hou, Keyong; Li, Haiyang
2015-01-01
A vacuum ultraviolet lamp based single photon ionization- (SPI-) photoelectron ionization (PEI) portable reflecting time-of-flight mass spectrometer (TOFMS) was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE) below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX), SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1) with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear. PMID:26587023
A small, portable, battery-powered brain-computer interface system for motor rehabilitation.
McCrimmon, Colin M; Ming Wang; Silva Lopes, Lucas; Wang, Po T; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An H
2016-08-01
Motor rehabilitation using brain-computer interface (BCI) systems may facilitate functional recovery in individuals after stroke or spinal cord injury. Nevertheless, these systems are typically ill-suited for widespread adoption due to their size, cost, and complexity. In this paper, a small, portable, and extremely cost-efficient (<;$200) BCI system has been developed using a custom electroencephalographic (EEG) amplifier array, and a commercial microcontroller and touchscreen. The system's performance was tested using a movement-related BCI task in 3 able-bodied subjects with minimal previous BCI experience. Specifically, subjects were instructed to alternate between relaxing and dorsiflexing their right foot, while their EEG was acquired and analyzed in real-time by the BCI system to decode their underlying movement state. The EEG signals acquired by the custom amplifier array were similar to those acquired by a commercial amplifier (maximum correlation coefficient ρ=0.85). During real-time BCI operation, the average correlation between instructional cues and decoded BCI states across all subjects (ρ=0.70) was comparable to that of full-size BCI systems. Small, portable, and inexpensive BCI systems such as the one reported here may promote a widespread adoption of BCI-based movement rehabilitation devices in stroke and spinal cord injury populations.
Parallel and Portable Monte Carlo Particle Transport
NASA Astrophysics Data System (ADS)
Lee, S. R.; Cummings, J. C.; Nolen, S. D.; Keen, N. D.
1997-08-01
We have developed a multi-group, Monte Carlo neutron transport code in C++ using object-oriented methods and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α eigenvalues of the neutron transport equation on a rectilinear computational mesh. It is portable to and runs in parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities are discussed, along with physics and performance results for several test problems on a variety of hardware, including all three Accelerated Strategic Computing Initiative (ASCI) platforms. Current parallel performance indicates the ability to compute α-eigenvalues in seconds or minutes rather than days or weeks. Current and future work on the implementation of a general transport physics framework (TPF) is also described. This TPF employs modern C++ programming techniques to provide simplified user interfaces, generic STL-style programming, and compile-time performance optimization. Physics capabilities of the TPF will be extended to include continuous energy treatments, implicit Monte Carlo algorithms, and a variety of convergence acceleration techniques such as importance combing.
Brennan, Linda M.; Widder, Mark W.; McAleer, Michael K.; Mayo, Michael W.; Greis, Alex P.; van der Schalie, William H.
2016-01-01
This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity testing of drinking water. The manuscript further describes how to run a toxicity test using the prepared biochips. A control water sample and the test water sample are mixed with pre-measured powdered media and injected into separate channels of the biochip. Impedance readings from the sensing electrodes in each of the biochip channels are measured and compared by an automated statistical software program. The screen on the ECIS instrument will indicate either "Contamination Detected" or "No Contamination Detected" within an hour of sample injection. Advantages are ease of use and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the long-term stability of stored biochips in a ready state for testing. Limitations are the requirement for cold storage of the biochips and limited sensitivity to cholinesterase-inhibiting pesticides. Applications for this toxicity detector are for rapid field-portable testing of drinking water supplies by Army Preventative Medicine personnel or for use at municipal water treatment facilities. PMID:27023147
Brennan, Linda M; Widder, Mark W; McAleer, Michael K; Mayo, Michael W; Greis, Alex P; van der Schalie, William H
2016-03-07
This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity testing of drinking water. The manuscript further describes how to run a toxicity test using the prepared biochips. A control water sample and the test water sample are mixed with pre-measured powdered media and injected into separate channels of the biochip. Impedance readings from the sensing electrodes in each of the biochip channels are measured and compared by an automated statistical software program. The screen on the ECIS instrument will indicate either "Contamination Detected" or "No Contamination Detected" within an hour of sample injection. Advantages are ease of use and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the long-term stability of stored biochips in a ready state for testing. Limitations are the requirement for cold storage of the biochips and limited sensitivity to cholinesterase-inhibiting pesticides. Applications for this toxicity detector are for rapid field-portable testing of drinking water supplies by Army Preventative Medicine personnel or for use at municipal water treatment facilities.
Sanad, Mohamed; Hassan, Noha
2014-01-01
A dual resonant antenna configuration is developed for multistandard multifunction mobile handsets and portable computers. Only two wideband resonant antennas can cover most of the LTE spectrums in portable communication equipment. The bandwidth that can be covered by each antenna exceeds 70% without using any matching or tuning circuits, with efficiencies that reach 80%. Thus, a dual configuration of them is capable of covering up to 39 LTE (4G) bands besides the existing 2G and 3G bands. 2×2 MIMO configurations have been also developed for the two wideband antennas with a maximum isolation and a minimum correlation coefficient between the primary and the diversity antennas.
Gibelli, Daniele; Pucciarelli, Valentina; Cappella, Annalisa; Dolci, Claudia; Sforza, Chiarella
2018-01-31
Modern 3-dimensional (3D) image acquisition systems represent a crucial technologic development in facial anatomy because of their accuracy and precision. The recently introduced portable devices can improve facial databases by increasing the number of applications. In the present study, the VECTRA H1 portable stereophotogrammetric device was validated to verify its applicability to 3D facial analysis. Fifty volunteers underwent 4 facial scans using portable VECTRA H1 and static VECTRA M3 devices (2 for each instrument). Repeatability of linear, angular, surface area, and volume measurements was verified within the device and between devices using the Bland-Altman test and the calculation of absolute and relative technical errors of measurement (TEM and rTEM, respectively). In addition, the 2 scans obtained by the same device and the 2 scans obtained by different devices were registered and superimposed to calculate the root mean square (RMS; point-to-point) distance between the 2 surfaces. Most linear, angular, and surface area measurements had high repeatability in M3 versus M3, H1 versus H1, and M3 versus H1 comparisons (range, 82.2 to 98.7%; TEM range, 0.3 to 2.0 mm, 0.4° to 1.8°; rTEM range, 0.2 to 3.1%). In contrast, volumes and RMS distances showed evident differences in M3 versus M3 and H1 versus H1 comparisons and reached the maximum when scans from the 2 different devices were compared. The portable VECTRA H1 device proved reliable for assessing linear measurements, angles, and surface areas; conversely, the influence of involuntary facial movements on volumes and RMS distances was more important compared with the static device. Copyright © 2018 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Portable Life Support System 2.5 Fan Design and Development
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Carra, Michael; Converse, David; Chullen, Cinda
2016-01-01
NASA is building a high-fidelity prototype of an advanced Portable Life Support System (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, was driven by a centrifugal fan developed using specifications from the Constellation Program. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement were identified with the PLSS 2.0 fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5. The PLSS 2.5 fan is a derivative of the one used in PLSS 2.0, and it uses the same nonmetallic, canned motor, with a larger volute and impeller to meet the higher pressure drop requirements of the PLSS 2.5 ventilation loop. The larger impeller allows it to operate at rotational speeds that are matched to rolling element bearings, and which create reasonably low impeller tip speeds consistent with prior, oxygen-rated fans. Development of the fan also considered a shrouded impeller design that could allow larger clearances for greater oxygen safety, assembly tolerances and particle ingestion. This paper discusses the design, manufacturing and performance testing of the new fans.
Concept Test of a Smoking Cessation Smart Case.
Comello, Maria Leonora G; Porter, Jeannette H
2018-04-05
Wearable/portable devices that unobtrusively detect smoking and contextual data offer the potential to provide Just-In-Time Adaptive Intervention (JITAI) support for mobile cessation programs. Little has been reported on the development of these technologies. To address this gap, we offer a case report of users' experiences with a prototype "smart" cigarette case that automatically tracks time and location of smoking. Small-scale user-experience studies are typical of iterative product design and are especially helpful when proposing novel ideas. The purpose of the study was to assess concept acceptability and potential for further development. We tested the prototype case with a small sample of potential users (n = 7). Participants used the hardware/software for 2 weeks and reconvened for a 90-min focus group to discuss experiences and provide feedback. Participants liked the smart case in principle but found the prototype too bulky for easy portability. The potential for the case to convey positive messages about self also emerged as a finding. Participants indicated willingness to pay for improved technology (USD $15-$60 on a one-time basis). The smart case is a viable concept, but design detail is critical to user acceptance. Future research should examine designs that maximize convenience and that explore the device's ability to cue intentions and other cognitions that would support cessation. This study is the first to our knowledge to report formative research on the smart case concept. This initial exploration provides insights that may be helpful to other developers of JITAI-support technology.
An examination of safety reports involving electronic flight bags and portable electronic devices
DOT National Transportation Integrated Search
2014-06-01
The purpose of this research was to develop a better understanding of safety considerations with the use of Electronic Flight Bags (EFBs) and Portable Electronic Devices (PEDs) by examining safety reports from Aviation Safety Reporting System (ASRS),...
Development of MASH TL-3 transition between guardrail and portable concrete barriers.
DOT National Transportation Integrated Search
2014-06-01
Often, road construction causes the need to create a work zone. In these scenarios, portable concrete barriers (PCBs) : are typically installed to shield workers and equipment from errant vehicles as well as prevent motorists from striking other : ro...
McHenry, Megan S; Fischer, Lydia J; Chun, Yeona; Vreeman, Rachel C
2017-08-01
The objective of this study is to conduct a systematic review of the literature of how portable electronic technologies with offline functionality are perceived and used to provide health education in resource-limited settings. Three reviewers evaluated articles and performed a bibliography search to identify studies describing health education delivered by portable electronic device with offline functionality in low- or middle-income countries. Data extracted included: study population; study design and type of analysis; type of technology used; method of use; setting of technology use; impact on caregivers, patients, or overall health outcomes; and reported limitations. Searches yielded 5514 unique titles. Out of 75 critically reviewed full-text articles, 10 met inclusion criteria. Study locations included Botswana, Peru, Kenya, Thailand, Nigeria, India, Ghana, and Tanzania. Topics addressed included: development of healthcare worker training modules, clinical decision support tools, patient education tools, perceptions and usability of portable electronic technology, and comparisons of technologies and/or mobile applications. Studies primarily looked at the assessment of developed educational modules on trainee health knowledge, perceptions and usability of technology, and comparisons of technologies. Overall, studies reported positive results for portable electronic device-based health education, frequently reporting increased provider/patient knowledge, improved patient outcomes in both quality of care and management, increased provider comfort level with technology, and an environment characterized by increased levels of technology-based, informal learning situations. Negative assessments included high investment costs, lack of technical support, and fear of device theft. While the research is limited, portable electronic educational resources present promising avenues to increase access to effective health education in resource-limited settings, contingent on the development of culturally adapted and functional materials to be used on such devices.
NASA Astrophysics Data System (ADS)
Li, Z.; Che, W.; Frey, H. C.; Lau, A. K. H.
2016-12-01
Portable air monitors are currently being developed and used to enable a move towards exposure monitoring as opposed to fixed site monitoring. Reliable methods are needed regarding capturing spatial and temporal variability in exposure concentration to obtain credible data from which to develop efficient exposure mitigation measures. However, there are few studies that quantify the validity and repeatability of the collected data. The objective of this study is to present and evaluate a collocated exposure monitoring (CEM) methodology including the calibration of portable air monitors against stationary reference equipment, side-by-side comparison of portable air monitors, personal or microenvironmental exposure monitoring and the processing and interpretation of the collected data. The CEM methodology was evaluated based on application to portable monitors TSI DustTrak II Aerosol Monitor 8530 for fine particulate matter (PM2.5) and TSI Q-Trak model 7575 with probe model 982 for CO, CO2, temperature and relative humidity. Taking a school sampling campaign in Hong Kong in January and June, 2015 as an example, the calibrated side-by-side measured 1 Hz PM2.5 concentrations showed good consistency between two sets of portable air monitors. Confidence in side-by-side comparison, PM2.5 concentrations of which most of the time were within 2 percent, enabled robust inference regarding differences when the monitors measured in classroom and pedestrian during school hour. The proposed CEM methodology can be widely applied in sampling campaigns with the objective of simultaneously characterizing pollutant concentrations in two or more locations or microenvironments. The further application of the CEM methodology to transportation exposure will be presented and discussed.
Hart, Tessa; Hawkey, Karen; Whyte, John
2002-12-01
To test the efficacy of a portable voice organizer in helping people with traumatic brain injury (TBI) to recall therapy goals and plans discussed with their clinical case managers. Prospective within-subjects trial, in which individualized therapy goals were randomly assigned to intervention or no intervention. Comprehensive postacute TBI rehabilitation program. Ten people with moderate to severe TBI enrolled from 3 months to 18 years after injury. Memory for therapy goals. Clinicians generated statements describing six current therapy goals, half of which were randomly assigned to be recorded on a voice organizer during the next case management session. Participants selected three times per day to listen to the recorded goals, prompted by an alarm. One-week recall was tested using both free- and cued-recall formats. Recorded goals were recalled better than unrecorded goals and appeared to be associated with better awareness or follow-through with therapy objectives. Portable electronic devices have the potential to assist with treatment areas beyond tasks involving prospective memory.
P. Veres; J. B. Gilman; J. M. Roberts; W. C. Kuster; C. Warneke; I. R. Burling; J. de Gouw
2010-01-01
We report on the development of an accurate, portable, dynamic calibration system for volatile organic compounds (VOCs). The Mobile Organic Carbon Calibration System (MOCCS) combines the production of gas-phase VOC standards using permeation or diffusion sources with quantitative total organic carbon (TOC) conversion on a palladium surface to CO2 in the presence of...
Fuel Processor Development for a Soldier-Portable Fuel Cell System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palo, Daniel R.; Holladay, Jamie D.; Rozmiarek, Robert T.
2002-01-01
Battelle is currently developing a soldier-portable power system for the U.S. Army that will continuously provide 15 W (25 W peak) of base load electric power for weeks or months using a micro technology-based fuel processor. The fuel processing train consists of a combustor, two vaporizers, and a steam-reforming reactor. This paper describes the concept and experimental progress to date.
Portable Tandem Mass Spectrometer Analyzer
1991-07-01
The planned instrument was to be small enough to be portable in small vehicles and was to be able to use either an atmospheric pressure ion source or a...conventional electron impact/chemical ionization ion source. In order to accomplish these developments an atmospheric pressure ionization source was...developed for a compact, commercially available tandem quadrupole mass spectrometer. This ion source could be readily exchanged with the conventional
Automated collection and processing of environmental samples
Troyer, Gary L.; McNeece, Susan G.; Brayton, Darryl D.; Panesar, Amardip K.
1997-01-01
For monitoring an environmental parameter such as the level of nuclear radiation, at distributed sites, bar coded sample collectors are deployed and their codes are read using a portable data entry unit that also records the time of deployment. The time and collector identity are cross referenced in memory in the portable unit. Similarly, when later recovering the collector for testing, the code is again read and the time of collection is stored as indexed to the sample collector, or to a further bar code, for example as provided on a container for the sample. The identity of the operator can also be encoded and stored. After deploying and/or recovering the sample collectors, the data is transmitted to a base processor. The samples are tested, preferably using a test unit coupled to the base processor, and again the time is recorded. The base processor computes the level of radiation at the site during exposure of the sample collector, using the detected radiation level of the sample, the delay between recovery and testing, the duration of exposure and the half life of the isotopes collected. In one embodiment, an identity code and a site code are optically read by an image grabber coupled to the portable data entry unit.
Performance and Life Tests of a Regenerative Blower for EVA Suit Ventilation
NASA Technical Reports Server (NTRS)
Izenson, Mike; Chen, Weibo; Paul, Heather L.; Jennings, Mallory A.
2011-01-01
Ventilation fans for future space suits must meet demanding performance specifications, satisfy stringent safety requirements for operation in an oxygen atmosphere, and be able to increase output to operate in buddy mode. A regenerative blower is an attractive choice due to its ability to meet these requirements at low operating speed. This paper describes progress in the development and testing of a regenerative blower designed to meet requirements for ventilation subsystems in a future space suit Portable Life Support Systems (PLSS). The blower assembly includes a custom-designed motor that has significantly improved in efficiency during this development effort. The blower was tested at both nominal and buddy mode operating points and head/flow performance and power consumption were measured. The blower was operated for over 1000 hours to demonstrate safe operation in an oxygen test loop at prototypical pressures. In addition, the blower demonstrated operation with the introduction of simulated lunar dust.